EP3325799B1 - Method for implementation with the operation of an internal combustion engine - Google Patents

Method for implementation with the operation of an internal combustion engine Download PDF

Info

Publication number
EP3325799B1
EP3325799B1 EP16734559.4A EP16734559A EP3325799B1 EP 3325799 B1 EP3325799 B1 EP 3325799B1 EP 16734559 A EP16734559 A EP 16734559A EP 3325799 B1 EP3325799 B1 EP 3325799B1
Authority
EP
European Patent Office
Prior art keywords
spark plug
determined
internal combustion
combustion engine
electrode spacing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16734559.4A
Other languages
German (de)
French (fr)
Other versions
EP3325799A1 (en
Inventor
Markus Raindl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rolls Royce Solutions GmbH
Original Assignee
MTU Friedrichshafen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Friedrichshafen GmbH filed Critical MTU Friedrichshafen GmbH
Publication of EP3325799A1 publication Critical patent/EP3325799A1/en
Application granted granted Critical
Publication of EP3325799B1 publication Critical patent/EP3325799B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D41/1406Introducing closed-loop corrections characterised by the control or regulation method with use of a optimisation method, e.g. iteration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/023Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining the cylinder pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0027Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures the fuel being gaseous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P17/00Testing of ignition installations, e.g. in combination with adjusting; Testing of ignition timing in compression-ignition engines
    • F02P17/12Testing characteristics of the spark, ignition voltage or current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/58Testing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/221Safety or indicating devices for abnormal conditions relating to the failure of actuators or electrically driven elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P17/00Testing of ignition installations, e.g. in combination with adjusting; Testing of ignition timing in compression-ignition engines
    • F02P17/12Testing characteristics of the spark, ignition voltage or current
    • F02P2017/121Testing characteristics of the spark, ignition voltage or current by measuring spark voltage

Definitions

  • the present invention relates to a method for carrying out the operation of an internal combustion engine according to claim 1.
  • Spark plugs in use with gasoline engines, especially gas engines, are subject to considerable fluctuations in terms of their service life.
  • low combustion-accelerating combustion air ratios are used to meet transient times, which lead to high combustion chamber temperatures and high wear on the spark plug due to the additional heat flow in the wear element of the spark plug.
  • This increased wear shows a high degree of variability in terms of tool life reliability, which can disadvantageously lead to an unforeseen failure.
  • an electrode distance of a spark plug is determined based on a breakdown voltage and the cylinder pressure.
  • the present invention is based on the object of specifying a method on the basis of which a failure can be predicted.
  • a method for execution with the operation of an internal combustion engine which has a spark plug which is arranged on a combustion chamber of a cylinder of the internal combustion engine.
  • the internal combustion engine is preferably, for example, a gas engine, generally preferably a gasoline engine, in the context of the present invention in particular a large engine, furthermore in particular a large engine running in lean operation, for example for a commercial vehicle such as a ship, a special vehicle, for example also for industrial applications.
  • the spark plug is preferably a prechamber spark plug which - in a manner known per se - can have a spark plug housing or a spark plug body, furthermore a prechamber cap which - together with the spark plug housing - defines a prechamber combustion chamber of the spark plug, i.e. an antechamber.
  • the spark plug has an (ignition) electrode arrangement, particularly preferably accommodated in the prechamber combustion chamber, the ignition electrodes of which are spaced apart, i.e. an electrode gap (at the spark gap).
  • the electrode arrangement comprises in particular a central electrode and at least one ground electrode, which define the distance between the electrodes (which varies with the burn-up of the electrodes over the life of the spark plug, in particular increases).
  • the spark plug arranged on the combustion chamber is furthermore provided for spark ignition of the fuel mixture which has been introduced into the combustion chamber.
  • a higher-level sequence control of the internal combustion engine e.g. an ECU (ECU: Electronic Control Unit; central engine control unit) or generally a control unit
  • ECU Electronic Control Unit
  • central engine control unit central engine control unit
  • a breakdown (ignition) voltage at the spark plug are recorded or determined (as the ignition point the time at which the ignition spark is triggered on the spark plug is designated in the context of the invention).
  • a cylinder pressure sensor is provided for the cylinder pressure detection, while the breakdown voltage can be detected by a suitable device.
  • a suitable device can e.g. comprise a temporally high-resolution measuring arrangement, e.g. delivering measurement signals in the gigahertz range, which e.g. taps voltage signals on an ignition voltage line (to the spark plug) to provide the breakdown voltage information or e.g. on a measuring line.
  • a current electrode spacing of the ignition electrodes which represents a current ignition electrode wear state, is now determined based on the detected cylinder pressure, the detected breakdown voltage and a (proportionality) constant.
  • the determined electrode spacing advantageously serves as a wear indicator (since, as already mentioned, the electrode spacing varies with the operating time of the spark plug, in particular it generally increases over the running time of the spark plug, i.e. as a result of the spark electrodes burning off (melting)).
  • the usual safety surcharges on the service life can subsequently be reduced, so that the wear-related costs can advantageously be reduced.
  • the proportionality constant used in the second step is determined as a system-specific variable on the internal combustion engine, in particular once, and is based on a previously known electrode distance of the spark plug, a correspondingly determined cylinder pressure at the time of ignition and a breakdown voltage of the spark plug, which in turn is determined accordingly.
  • the known electrode spacing is defined by the manufacturer, for example, that electrode spacing according to the delivery state of the spark plug.
  • the proportionality constant is determined, for example, on a measurement setup comprising the internal combustion engine, ignition voltage and cylinder pressure measurement technology, the engine preferably being brought to a predetermined operating point.
  • K U ZZP p zzp EA known "EA known” means the known electrode spacing, "U ZZP” the breakdown voltage (at the ignition point), " p zzp " the cylinder pressure (at the ignition point) and " K " the proportionality constant.
  • the proportionality constant depends, for example, on the gas mixture at the spark gap (electrode gap), the work function of the electrons, the electrode material and other parameters, so that the proportionality constant in the The scope of the invention is determined individually for each system (system of internal combustion engine and spark plug).
  • a service life of the spark plug is now determined.
  • the determined service life can be an elapsed service life, i.e. an age, alternatively or additionally, and preferably a remaining life.
  • a characteristic curve can be used to determine the service life, with which the determined electrode spacing is correlated. The end of the service life is reached when the maximum electrode distance is reached, and therefore the maximum electrode wear.
  • EA max denotes the maximum electrode distance which characterizes the end of the service life
  • EA min the initial electrode distance which characterizes the start of the service life
  • d wear body the thickness of the consumable electrode material.
  • an information signal can be output to an operator based on the determined current electrode distance or the life span determined on the basis thereof, in particular prompted by the control unit, i.e. in particular with the aim of initiating user intervention as required, e.g. a spark plug change or cylinder deactivation.
  • the method are preferably also provided in such a way that based on the electrode distance determined in the second step, in a further step, for example and preferably also in addition to determining the service life, at least one combustion parameter of the internal combustion engine is set or the current electrode distance is tracked, in particular a combustion air ratio (Lambda).
  • a combustion air ratio Libda
  • the ignition energy can now also be made available on the spark plug as required (e.g. via ECU (and ignition system)), a burning time or blowing time adjusted (burning time or burning process controller) or other parameters depending on the determined electrode spacing can be set in a way that is favorable for combustion.
  • the method can use a characteristic curve or a model which relates the determined electrode distance to a combustion parameter, in particular a conversion point, a combustion air ratio, a blowing time or a parameter different therefrom, i.e. for combustion-optimizing correction purposes.
  • the invention provides that the method is carried out iteratively and continuously, and consequently the distance between the ignition electrodes is continuously determined or monitored.
  • a continuous, electrode distance-dependent influencing of the combustion - as discussed above - is also provided, in addition e.g. also continuous lifespan determination and signaling.
  • the method also advantageously opens up the possibility of checking a spark plug for its originality or usability with the internal combustion engine.
  • the method can be carried out with an unused spark plug (and known, system-specific proportionality constant), the determined electrode distance being compared with a new, target-electrode distance. If the determined electrode distance does not correspond to the target distance, it can be recognized that a spark plug other than the original one or the spark plug intended for use with the internal combustion engine has been arranged on the combustion chamber, e.g. can also be signaled to a user via suitable signaling.
  • an internal combustion engine which is set up to carry out the method as discussed above.
  • the internal combustion engine can have, in particular, a cylinder with a combustion chamber, a spark plug arranged on the combustion chamber, a cylinder pressure sensor and a device for detecting the breakdown voltage on the spark plug (tapping, for example, on the ignition line), in addition, a sequence control or control unit for controlling the method is preferred, in particular in the form of the ECU.
  • Program code for carrying out the method can also be implemented in this and / or a data carrier, for example also characteristic curves or models that can be used with the method.
  • Fig. 1 shows an example and schematically, particularly greatly simplified, an internal combustion engine 1, with the operation of which the inventive method can be carried out.
  • the internal combustion engine 1 provided as a (lean-fueled) gas engine with fuel gas injection, for example fuel gas in the form of natural gas, biogas, special gas, landfill gas, hydrogen, has a cylinder 3 in which a combustion chamber 5 is defined, ie between a reciprocating piston 7 and one Combustion chamber deck 9.
  • a spark plug 11 for igniting the fuel gas / air mixture.
  • the spark plug 11 is provided as a prechamber spark plug and is connected via a plug connector 13 together with the ignition line 15 to an ignition system 17 of the internal combustion engine 1, which Receives ignition signals from a higher-level control unit 19, that is, from an engine control or ECU. Depending on the control of the ignition system by the ECU 19, the spark plug 11 is supplied with ignition voltage by the ignition system 17, so that ignition sparks are generated between the electrodes (not shown) of the spark plug 11.
  • the current electrode spacing EA of the ignition electrodes which comprise a center and a ground electrode, that is to say for the formation of the spark gap, is decisive for the ignition energy required to generate an ignition spark.
  • a measuring device 23 is also provided, which likewise provides the breakdown voltage information to the engine control 19.
  • the measuring or scanning device 23 which in particular dissolves high frequencies and which scans in the GHz range, is coupled to the spark plug 11 via a measuring line 23a.
  • combustion process or combustion duration controller 25 In active connection with the motor control 19 and controlled by it, there is also a combustion process or combustion duration controller 25, via which the combustion process is regulated and which can be influenced by the engine control 19 by target values.
  • a user interface 27 in the form of an operator information system is also provided on the internal combustion engine 1, which can be activated by the engine control unit 19 in a signaling manner.
  • the user interface 27 can be permanently connected to the internal combustion engine 1, alternatively or additionally provide a remote interface module, for example in the form of a tablet PC or smartphone.
  • Information can preferably be visualized or also represented acoustically via the user interface 27.
  • the superordinate control unit 19 has program code, in addition characteristic curves are stored, in particular stored in a non-volatile memory, which enable the engine control 19 to control the sequence of the method according to the invention, which is described in more detail below.
  • the known electrode spacing EA is known here as an electrode spacing of a new spark plug or the spark plug 11 when new, as specified by the manufacturer, and how this is used to determine the proportionality constant K once or initially.
  • the other variables "U ZZP " and "p zzp " are determined by measurement using the new spark plug 11, that is to say by means of the cylinder pressure sensor 21 and the device 23 for measuring the breakdown voltage. From this, the proportionality constant K is now determined for the method according to the invention that can be carried out with the internal combustion engine 1, in particular stored in the method-controlling control unit 19.
  • a cylinder pressure at the ignition point (p zzp ) at the combustion chamber 5 and a breakdown voltage (U ZZP ) at the spark plug 11 are recorded in a first step.
  • the cylinder pressure sensor 21 and the device 23 for determining the breakdown voltage each (continuously) supply suitable measurement signals to the ECU or the higher-level control unit 19.
  • the current electrode spacing EA is thus continuously known with continuous implementation of the method, which is preferably also used in the context of the invention for determining the service life, i.e. in a further step.
  • Fig. 2 shows an example of a characteristic curve for the spark plug 11 as it can be used for determining the service life, for example empirically determined.
  • the electrode distance EA is plotted over the operating hours Bh, and therefore the service life, the minimum (previously known) electrode distance corresponding to that at zero operating hours (EA (0Bh)), the maximum electrode distance that at the end of the service life (EA max ), i.e. the maximum possible electrode spacing (with the maximum possible electrode erosion).
  • EA max EA min + d Wear body
  • EA max denotes the maximum electrode distance which characterizes the end of the service life
  • EA min the initial electrode distance which characterizes the start of the service life
  • d wear body the thickness of the consumable electrode material
  • the currently determined electrode distance EA is correlated with the characteristic curve.
  • the distance that can thus be determined (by forming a difference) between the currently reached operating hours (corresponding to the current electrode distance) and the end of the service life (corresponding to the maximum electrode distance) now indicates the remaining service life, which is signaled by the ECU 19 via the user interface 27, that is to say with an information signal.
  • a combustion parameter of the internal combustion engine 1 in particular a combustion air ratio, is set in a step after the second step, in particular again continuously with the operation of the internal combustion engine.
  • the setting is based on the knowledge that the electrode spacing EA decisively determines the burning rate or the flow rate in the combustion chamber 5 - with otherwise unchanged conditions. For example, with a relatively small electrode spacing EA, for example when the spark plug 11 is new, the combustion would only be initiated slowly, in particular when only a small ignition spark jumps over the spark gap between the electrodes. As a result, the entire combustion would take place slowly, since the pressure drop between the prechamber and the combustion chamber 5 is disadvantageous, and consequently only a small depth of ignition beam penetration into the combustion chamber 5 is achieved, and the combustion in the combustion chamber 5 is subsequently carried over.
  • the invention now provides for the combustion air ratio ⁇ to be adapted to the current electrode spacing EA, so that, for example, for a candle state as described above, an increased amount of fuel gas is blown into the combustion chamber 5, that is to say on the internal combustion engine (which is running in lean operation) 1, an enriched mixture is set so that the burning rate is increased, which means that faster combustion can be achieved at lower exhaust gas temperatures and improved emission values.
  • the enrichment can be reduced accordingly, e.g. the blowing time is shortened, so that the combustion and emission conditions which are always optimized with the invention can advantageously be easily achieved.
  • provision is made to influence the course of the burn as a function of the current, determined electrode distance EA, i.e. by setting at least one firing parameter.
  • suitable control signals are transmitted to the combustion process or combustion duration controller 25, i.e. on the part of the ECU 19.
  • the invention also makes it possible to recognize pearl formation on the spark plug 11, which terminology means the formation of the smallest spheres on the surface referred to the electrodes, which can grow from a few micrometers to, for example, 100 ⁇ m. These beads form when the electrode melts and solidify after the spark is extinguished. From a certain size, the pearls can serve as a surface for further pearls, so that a kind of stalagmite is formed which can reduce the electrode spacing EA in such a way that the spark volume becomes too small for a mixture ignition, and mixture ignition can therefore no longer take place.
  • an ignition energy control is advantageously also possible, in which the ignition energy supplied to the spark plug 11 is supplied to the spark plug 11 as a function of the determined, current electrode distance EA, i.e. advantageous according to need (so that pearl formation due to excessive temperature can be avoided, for example).
  • Such a method for regulating the ignition energy is, for example, from the publication DE 10 2013 010 685 A1 known.

Description

Die vorliegende Erfindung betrifft ein Verfahren zur Ausführung mit dem Betrieb einer Brennkraftmaschine gemäß Anspruch 1.The present invention relates to a method for carrying out the operation of an internal combustion engine according to claim 1.

Zündkerzen in Verwendung mit Ottomotoren, insbesondere auch Gasmotoren, unterliegen erheblichen Schwankungen im Hinblick auf ihre Standzeit. So werden z.B. im drehzahl- und lastvariablen Motor zur Erfüllung von Transientzeiten niedrige verbrennungsbeschleunigende Verbrennungsluftverhältnisse gefahren, die zu hohen Brennraumtemperaturen sowie zu hohem Verschleiß an der Zündkerze durch den zusätzlichen Wärmestrom im Verschleißelement der Zündkerze führen. Dieser erhöhte Verschleiß weist eine hohe Streuung hinsichtlich der Standzeitsicherheit auf, was in nachteiliger Weise zu einem unvorhergesehenen Ausfall führen kann. In der JP 2008-101585 A wird ein Elektrodenabstand einer Zündkerze basierend auf einer Durchbruchsspannung und dem Zylinderdruck bestimmt.Spark plugs in use with gasoline engines, especially gas engines, are subject to considerable fluctuations in terms of their service life. For example, in the variable-speed and load-variable engine, low combustion-accelerating combustion air ratios are used to meet transient times, which lead to high combustion chamber temperatures and high wear on the spark plug due to the additional heat flow in the wear element of the spark plug. This increased wear shows a high degree of variability in terms of tool life reliability, which can disadvantageously lead to an unforeseen failure. In the JP 2008-101585 A an electrode distance of a spark plug is determined based on a breakdown voltage and the cylinder pressure.

Ausgehend hiervon liegt der vorliegenden Erfindung die Aufgabe zu Grunde, ein Verfahren anzugeben, basierend auf welchem ein Ausfall vorhergesagt werden kann.Based on this, the present invention is based on the object of specifying a method on the basis of which a failure can be predicted.

Diese Aufgabe wird mit einem Verfahren mit den Merkmalen des Anspruchs 1 gelöst. Vorteilhafte Weiterbildungen und Ausführungsformen der Erfindung sind in den weiteren Ansprüchen angegeben.This object is achieved with a method having the features of claim 1. Advantageous further developments and embodiments of the invention are specified in the further claims.

Vorgeschlagen wird erfindungsgemäß ein Verfahren zur Ausführung mit dem Betrieb einer Brennkraftmaschine, welche eine Zündkerze aufweist, welche an einem Brennraum eines Zylinders der Brennkraftmaschine angeordnet ist. Bevorzugt ist die Brennkraftmaschine z.B. ein Gasmotor, allgemein bevorzugt ein Ottomotor, im Rahmen der vorliegenden Erfindung insbesondere ein Großmotor, weiterhin insbesondere ein im Magerbetrieb laufender Großmotor, z.B. für ein Nutzfahrzeug wie ein Schiff, ein Sonderfahrzeug, z.B. auch für Industrieanwendungen.According to the invention, a method is proposed for execution with the operation of an internal combustion engine which has a spark plug which is arranged on a combustion chamber of a cylinder of the internal combustion engine. The internal combustion engine is preferably, for example, a gas engine, generally preferably a gasoline engine, in the context of the present invention in particular a large engine, furthermore in particular a large engine running in lean operation, for example for a commercial vehicle such as a ship, a special vehicle, for example also for industrial applications.

Die Zündkerze ist bevorzugt eine Vorkammerzündkerze, welche - auf an sich bekannte Weise - ein Zündkerzengehäuse bzw. einen Zündkerzenkörper aufweisen kann, weiterhin eine Vorkammerkappe, welche - zusammen mit dem Zündkerzengehäuse - einen Vorkammerbrennraum der Zündkerze definiert, i.e. eine Vorkammer. Die Zündkerze weist eine (Zünd-)Elektrodenanordnung auf, insbesondere bevorzugt in dem Vorkammerbrennraum aufgenommen, deren Zündelektroden einen Abstand zueinander aufweisen, i.e. einen Elektrodenabstand (an der Funkenstrecke). Die Elektrodenanordnung umfasst insbesondere eine Mittelelektrode und wenigstens eine Masseelektrode, welche den Elektrodenabstand zu einander definieren (welcher mit dem Abbrand der Elektroden über die Lebensdauer der Zündkerze variiert, insbesondere zunimmt). Die an dem Brennraum angeordnete Zündkerze ist weiterhin zur Fremdzündung in den Brennraum eingetragenen Kraftstoffgemisches vorgesehen.The spark plug is preferably a prechamber spark plug which - in a manner known per se - can have a spark plug housing or a spark plug body, furthermore a prechamber cap which - together with the spark plug housing - defines a prechamber combustion chamber of the spark plug, i.e. an antechamber. The spark plug has an (ignition) electrode arrangement, particularly preferably accommodated in the prechamber combustion chamber, the ignition electrodes of which are spaced apart, i.e. an electrode gap (at the spark gap). The electrode arrangement comprises in particular a central electrode and at least one ground electrode, which define the distance between the electrodes (which varies with the burn-up of the electrodes over the life of the spark plug, in particular increases). The spark plug arranged on the combustion chamber is furthermore provided for spark ignition of the fuel mixture which has been introduced into the combustion chamber.

Bei dem vorgeschlagenen Verfahren, welches bevorzugt von einer übergeordneten Ablaufsteuerung der Brennkraftmaschine koordiniert wird, z.B. einer ECU (ECU: Electronic Control Unit; Zentrales Motorsteuergerät) oder allgemein einer Kontrolleinheit, wird in einem ersten Schritt (bei einem Zündvorgang) ein Zylinderdruck zum Zündzeitpunkt am Brennraum sowie eine Durchbruch(zünd)spannung an der Zündkerze erfasst bzw. ermittelt (als Zündzeitpunkt ist im Rahmen der Erfindung hierbei der Zeitpunkt des Auslösens des Zündfunkens an der Zündkerze bezeichnet).In the proposed method, which is preferably coordinated by a higher-level sequence control of the internal combustion engine, e.g. an ECU (ECU: Electronic Control Unit; central engine control unit) or generally a control unit, in a first step (during an ignition process) a cylinder pressure at the ignition point in the combustion chamber and a breakdown (ignition) voltage at the spark plug are recorded or determined (as the ignition point the time at which the ignition spark is triggered on the spark plug is designated in the context of the invention).

Für die Zylinderdruckerfassung ist in diesem Zusammenhang ein Zylinderdrucksensor vorgesehen, während die Durchbruchspannung durch eine hierfür geeignete Vorrichtung erfasst werden kann. Eine solche Vorrichtung kann z.B. eine zeitlich hochauflösende Messanordnung umfassen, z.B. im Gigahertzbereich Messignale liefernd, welche z.B. an einer Zündspannungsleitung (zur Zündkerze) Spannungssignale zur Bereitstellung der Durchbruchspannungsinformation abgreift oder z.B. an einer Messleitung.In this context, a cylinder pressure sensor is provided for the cylinder pressure detection, while the breakdown voltage can be detected by a suitable device. Such a device can e.g. comprise a temporally high-resolution measuring arrangement, e.g. delivering measurement signals in the gigahertz range, which e.g. taps voltage signals on an ignition voltage line (to the spark plug) to provide the breakdown voltage information or e.g. on a measuring line.

In einem zweiten Schritt des Verfahrens wird nunmehr ein aktueller Elektrodenabstand der Zündelektroden, welcher einen aktuellen Zündelektrodenverschleißzustand repräsentiert, basierend auf dem erfassten Zylinderdruck, der erfassten Durchbruchspannung und einer (Proportionalitäts-)Konstante ermittelt. Korrespondierend mit dem Paschengesetz kann hierzu die Gleichung 1) herangezogen werden, wonach gilt: EA = U ZZP p zzp K ,

Figure imgb0001
wobei mit "EA" der (aktuelle) Elektrodenabstand, mit "UZZP" die Durchbruchspannung (zum Zündzeitpunkt), mit "pzzp " der Zylinderdruck (zum Zündzeitpunkt) und mit "K" die Proportionalitätskonstante bezeichnet ist.In a second step of the method, a current electrode spacing of the ignition electrodes, which represents a current ignition electrode wear state, is now determined based on the detected cylinder pressure, the detected breakdown voltage and a (proportionality) constant. Corresponding to the Paschen law, equation 1) can be used for this, according to which the following applies: EA = U ZZP p zzp K ,
Figure imgb0001
"EA" denotes the (current) electrode spacing, "U ZZP " denotes the breakdown voltage (at the ignition point), " p zzp " the cylinder pressure (at the ignition point) and "K" the proportionality constant.

Basierend auf dem ermittelten aktuellen Elektrodenabstand wird vorteilhaft eine verlässliche Ausfallvorhersage im Hinblick auf die Zündkerze ermöglicht, d.h. der ermittelte Elektrodenabstand dient vorteilhaft als Verschleißindikator (da, wie bereits erwähnt, der Elektrodenabstand mit der Betriebsdauer der Zündkerze variiert, insbesondere über die Laufzeit der Zündkerze im Regelfall zunimmt, d.h. durch Abbrand (Abschmelzen) der Zündelektroden). Mit einer präzisen Vorhersage können in der Folge auch die sonst üblichen Sicherheitsaufschläge auf die Standzeit verringert werden, so dass die verschleißbedingten Kosten vorteilhaft verringert werden können.Based on the determined current electrode spacing, a reliable failure prediction with regard to the spark plug is advantageously made possible, i.e. the determined electrode spacing advantageously serves as a wear indicator (since, as already mentioned, the electrode spacing varies with the operating time of the spark plug, in particular it generally increases over the running time of the spark plug, i.e. as a result of the spark electrodes burning off (melting)). With a precise prediction, the usual safety surcharges on the service life can subsequently be reduced, so that the wear-related costs can advantageously be reduced.

Die im zweiten Schritt herangezogene Proportionalitätskonstante ist als systemindividuelle Größe an der Brennkraftmaschine ermittelt, insbesondere einmalig, und basiert auf einem vorbekannten Elektrodenabstand der Zündkerze, weiterhin einem damit korrespondierend ermittelten Zylinderdruck zum Zündzeitpunkt sowie einer wiederum damit korrespondierend ermittelten Durchbruchsspannung der Zündkerze. Der vorbekannte Elektrodenabstand ist z.B. herstellerseitig definiert, z.B. jener Elektrodenabstand gemäß dem Auslieferungszustand der Zündkerze. Die Proportionalitätskonstante wird z.B. an einem Messaufbau aus Brennkraftmaschine, Zündspannungs- und Zylinderdruckmesstechnik ermittelt, wobei der Motor vorzugsweise in einen vorbestimmten Betriebspunkt gebracht wird. Mit dem bekannten Elektrodenabstand lässt sich die Proportionalitätskonstante bzw. Paschenkonstante sodann bestimmen zu: K = U ZZP p zzp EA bekannt

Figure imgb0002
wobei mit "EAbekannt" der vorbekannte Elektrodenabstand, mit "UZZP" die Durchbruchspannung (zum Zündzeitpunkt), mit "pzzp " der Zylinderdruck (zum Zündzeitpunkt) und mit "K" die Proportionalitätskonstante bezeichnet ist. Die Proportionalitätskonstante hängt z.B. vom Gasgemisch an der Funkenstrecke (Elektrodenspalt), der Austrittsarbeit der Elektronen, dem Elektrodenwerkstoff und weiteren Parametern ab, so dass die Proportionalitätskonstante im Rahmen der Erfindung je systemindividuell (System aus Brennkraftmaschine und Zündkerze) ermittelt wird.The proportionality constant used in the second step is determined as a system-specific variable on the internal combustion engine, in particular once, and is based on a previously known electrode distance of the spark plug, a correspondingly determined cylinder pressure at the time of ignition and a breakdown voltage of the spark plug, which in turn is determined accordingly. The known electrode spacing is defined by the manufacturer, for example, that electrode spacing according to the delivery state of the spark plug. The proportionality constant is determined, for example, on a measurement setup comprising the internal combustion engine, ignition voltage and cylinder pressure measurement technology, the engine preferably being brought to a predetermined operating point. With the known electrode spacing, the proportionality constant or Paschen constant can then be determined: K = U ZZP p zzp EA known
Figure imgb0002
"EA known " means the known electrode spacing, "U ZZP " the breakdown voltage (at the ignition point), " p zzp " the cylinder pressure (at the ignition point) and " K " the proportionality constant. The proportionality constant depends, for example, on the gas mixture at the spark gap (electrode gap), the work function of the electrons, the electrode material and other parameters, so that the proportionality constant in the The scope of the invention is determined individually for each system (system of internal combustion engine and spark plug).

In bevorzugter Weiterbildung des Verfahrens wird in einem weiteren Schritt, welcher auf dem im zweiten Schritt ermittelten aktuellen Elektrodenabstand der Zündelektroden basiert, nunmehr eine Lebensdauer der Zündkerze ermittelt. Die ermittelte Lebensdauer kann hierbei eine verstrichene Lebensdauer sein, d.h. ein Alter, alternativ oder zusätzlich und bevorzugt eine Restlebensdauer. Für die Ermittlung der Lebensdauer kann eine Kennlinie herangezogen werden, mit welcher der ermittelte Elektrodenabstand korreliert wird. Das Lebensdauerende wird erreicht, wenn der maximale Elektrodenabstand erreicht ist, mithin der maximale Elektrodenverschleiß.In a preferred development of the method, in a further step, which is based on the current electrode spacing of the ignition electrodes determined in the second step, a service life of the spark plug is now determined. The determined service life can be an elapsed service life, i.e. an age, alternatively or additionally, and preferably a remaining life. A characteristic curve can be used to determine the service life, with which the determined electrode spacing is correlated. The end of the service life is reached when the maximum electrode distance is reached, and therefore the maximum electrode wear.

Der maximale Elektrodenabstand kann z.B. für die Zündkerze ermittelt werden zu: EA max = EA min + d Verschleißkörper ,

Figure imgb0003
wobei mit "EAmax" der maximale, das Lebensdauerende kennzeichnende Elektrodenabstand, mit "EAmin" der anfängliche, den Lebensdauerbeginn kennzeichnende minimale Elektrodenabstand und mit "dVerschleißkörper" die Dicke des abbrandfähigen Elektrodenmaterials bezeichnet ist. Mit den bekannten Werten für EAmax und EAmin kann eine Lebensdauerkennlinie nunmehr auf einfache Weise generiert werden, z.B. empirisch ermittelt werden oder auch modellgestützt.The maximum electrode distance can be determined for the spark plug, for example: EA Max = EA min + d Wear body ,
Figure imgb0003
where "EA max " denotes the maximum electrode distance which characterizes the end of the service life, "EA min " the initial electrode distance which characterizes the start of the service life and "d wear body " the thickness of the consumable electrode material. With the known values for EA max and EA min , a service life characteristic can now be generated in a simple manner, for example determined empirically or also model-based.

In Weiterbildung des Verfahrens kann ein Informationssignal basierend auf dem ermittelten aktuellen Elektrodenabstand oder der darauf basierend ermittelten Lebensdauer an einen Bediener ausgegeben werden, insbesondere veranlasst von der Kontrolleinheit, d.h. insbesondere mit dem Ziel, bedarfsgerecht einen Nutzereingriff zu veranlassen, z.B. einen Zündkerzenwechsel oder eine Zylinderabschaltung.In a further development of the method, an information signal can be output to an operator based on the determined current electrode distance or the life span determined on the basis thereof, in particular prompted by the control unit, i.e. in particular with the aim of initiating user intervention as required, e.g. a spark plug change or cylinder deactivation.

Weiterhin bevorzugt sind auch Weiterbildungen des Verfahrens dahingehend vorgesehen, dass basierend auf dem im zweiten Schritt ermittelten Elektrodenabstand in einem weiteren Schritt, z.B. und bevorzugt auch zusätzlich zu der Lebensdauerermittlung, wenigstens ein Verbrennungsparameter der Brennkraftmaschine eingestellt bzw. dem aktuellen Elektrodenabstand nachgeführt wird, insbesondere ein Verbrennungsluftverhältnis (Lambda). Durch Nachführung eines oder mehrerer Verbrennungsparameter in Abhängigkeit des ermittelten Elektrodenabstands, mithin des Zündkerzenalters, kann der alterungsbedingte Einfluss der Zündkerze auf die Verbrennung nunmehr vorteilhaft - durch die Motorregelung - kompensiert werden, in der Folge auch eine verbesserte Einhaltung von Emissionsgrenzwerten erzielt werden. Z.B. kann nunmehr auch die Zündenergie bedarfsgerechter an der Zündkerze bereitgestellt werden (z.B. via ECU (und Zündanlage)), eine Brenndauer oder Einblasedauer verstellt (Brenndauer- bzw. Brennverlaufsregler) oder weitere Parameter in Abhängigkeit des ermittelten Elektrodenabstands verbrennungsgünstig eingestellt werden.Further developments of the method are preferably also provided in such a way that based on the electrode distance determined in the second step, in a further step, for example and preferably also in addition to determining the service life, at least one combustion parameter of the internal combustion engine is set or the current electrode distance is tracked, in particular a combustion air ratio (Lambda). By tracking one or more combustion parameters depending on the determined electrode distance, hence the spark plug age, the age-related influence of the spark plug on the combustion can now advantageously be compensated for - by the engine control - and consequently improved compliance with emission limit values can also be achieved. For example, the ignition energy can now also be made available on the spark plug as required (e.g. via ECU (and ignition system)), a burning time or blowing time adjusted (burning time or burning process controller) or other parameters depending on the determined electrode spacing can be set in a way that is favorable for combustion.

Für eine derartige Parameterbeeinflussung kann mit dem Verfahren eine Kennlinie oder ein Modell verwendet werden, welche bzw. welches den ermittelten Elektrodenabstand mit einem Verbrennungsparameter, insbesondere mit einem Umsatzpunkt, einem Verbrennungsluftverhältnis, einer Einblasedauer oder einem davon verschiedenen Parameter in Beziehung setzt, d.h. zu verbrennungsoptimierenden Korrekturzwecken.For such parameter influencing, the method can use a characteristic curve or a model which relates the determined electrode distance to a combustion parameter, in particular a conversion point, a combustion air ratio, a blowing time or a parameter different therefrom, i.e. for combustion-optimizing correction purposes.

Mit der Erfindung ist insbesondere vorgesehen, dass das Verfahren iterativ und kontinuierlich durchgeführt wird, mithin der Abstand der Zündelektroden kontinuierlich ermittelt bzw. überwacht wird. Einhergehend damit wird auch eine kontinuierliche, elektrodenabstandsabhängige Beeinflussung der Verbrennung - wie oben erörtert - vorgesehen, daneben z.B. auch eine kontinuierliche Lebensdauerermittlung und -signalgebung.In particular, the invention provides that the method is carried out iteratively and continuously, and consequently the distance between the ignition electrodes is continuously determined or monitored. Along with this, a continuous, electrode distance-dependent influencing of the combustion - as discussed above - is also provided, in addition e.g. also continuous lifespan determination and signaling.

Mit dem Verfahren wird vorteilhaft auch die Möglichkeit eröffnet, eine jeweilige Zündkerze auf ihre Originalität bzw. Verwendbarkeit mit der Brennkraftmaschine zu prüfen. Hierzu kann das Verfahren mit einer ungebrauchten Zündkerze (und bekannter, systemindividueller Proportionalitätskonstante) durchgeführt werden, wobei der ermittelte Elektrodenabstand mit einem Neuzustands-Soll-Elektrodenabstand verglichen wird. Entspricht der ermittelte Elektrodenabstand nicht dem Soll-Abstand, kann erkannt werden, dass eine andere als eine originale oder die zur Verwendung mit der Brennkraftmaschine vorgesehene Zündkerze am Brennraum angeordnet wurde, z.B. auch via geeigneter Signalgebung an einen Nutzer signalisiert werden.The method also advantageously opens up the possibility of checking a spark plug for its originality or usability with the internal combustion engine. For this purpose, the method can be carried out with an unused spark plug (and known, system-specific proportionality constant), the determined electrode distance being compared with a new, target-electrode distance. If the determined electrode distance does not correspond to the target distance, it can be recognized that a spark plug other than the original one or the spark plug intended for use with the internal combustion engine has been arranged on the combustion chamber, e.g. can also be signaled to a user via suitable signaling.

Im Rahmen der vorliegenden Erfindung wird auch eine Brennkraftmaschine vorgeschlagen, welche zur Durchführung des wie vorstehend erörterten Verfahrens eingerichtet ist. Hierzu kann die Brennkraftmaschine insbesondere einen Zylinder mit einem Brennraum aufweisen, eine am Brennraum angeordnete Zündkerze, einen Zylinderdrucksensor sowie eine Vorrichtung zur Erfassung der Durchbruchspannung an der Zündkerze (Abgriff z.B. an der Zündleitung), daneben weiterhin bevorzugt eine Ablaufsteuerung oder Kontrolleinheit zur Steuerung des Verfahrens, insbesondere in Form der ECU. In dieser und/oder einem Datenträger kann weiterhin Programmcode zur Durchführung des Verfahrens implementiert sein, zum Beispiel auch mit dem Verfahren verwendbare Kennlinien oder Modelle.Within the scope of the present invention, an internal combustion engine is also proposed, which is set up to carry out the method as discussed above. For this purpose, the internal combustion engine can have, in particular, a cylinder with a combustion chamber, a spark plug arranged on the combustion chamber, a cylinder pressure sensor and a device for detecting the breakdown voltage on the spark plug (tapping, for example, on the ignition line), in addition, a sequence control or control unit for controlling the method is preferred, in particular in the form of the ECU. Program code for carrying out the method can also be implemented in this and / or a data carrier, for example also characteristic curves or models that can be used with the method.

Weitere Merkmale und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen der Erfindung, anhand der Figuren der Zeichnungen, die erfindungswesentliche Einzelheiten zeigen, und aus den Ansprüchen. Die einzelnen Merkmale können je einzeln für sich oder zu mehreren in verschiedener Kombination bei einer Variante der Erfindung verwirklicht sein.Further features and advantages of the invention result from the following description of exemplary embodiments of the invention, with reference to the figures of the drawings, which show details essential to the invention, and from the claims. The individual features can each be implemented individually or in several combinations in a variant of the invention.

Bevorzugte Ausführungsformen der Erfindung werden nachfolgend anhand der beigefügten Zeichnungen näher erläutert. Es zeigen:

Fig. 1
exemplarisch und schematisch stark vereinfacht eine Brennkraftmaschine, welche zur Durchführung des Verfahrens eingerichtet ist.
Fig. 2
exemplarisch und schematisch eine Kennlinie zur Ermittlung der Lebensdauer der Zündkerze.
Preferred embodiments of the invention are explained below with reference to the accompanying drawings. Show it:
Fig. 1
An internal combustion engine, which is set up to carry out the method, is greatly simplified by way of example and schematically.
Fig. 2
exemplary and schematic of a characteristic curve for determining the service life of the spark plug.

In der nachfolgenden Beschreibung und den Zeichnungen entsprechen gleichen Bezugszeichen Elemente gleicher oder vergleichbarer Funktion.In the following description and the drawings, the same reference symbols correspond to elements of the same or comparable function.

Fig. 1 zeigt exemplarisch und schematisch, insbesondere stark vereinfacht, eine Brennkraftmaschine 1, mit deren Betrieb das erfindungsgemäße Verfahren ausführbar ist. Die Brennkraftmaschine 1, bereitgestellt als (magerbetriebener) Gasmotor mit Brenngaseinblasung, z.B. von Brenngas in Form von Erdgas, Biogas, Sondergas, Deponiegas, Wasserstoff, weist einen Zylinder 3 auf, in welchem ein Brennraum 5 definiert ist, d.h. zwischen einem Hubkolben 7 und einem Brennraumdeck 9. Am Brennraum 5, insbesondere an dem Zylinderkopf bzw. Brennraumdeck 9 des Zylinders 3, angeordnet und insoweit in den Brennraum 5 ragend ist eine Zündkerze 11 zur Zündung des Brenngas-Luft- Gemisches. Fig. 1 shows an example and schematically, particularly greatly simplified, an internal combustion engine 1, with the operation of which the inventive method can be carried out. The internal combustion engine 1, provided as a (lean-fueled) gas engine with fuel gas injection, for example fuel gas in the form of natural gas, biogas, special gas, landfill gas, hydrogen, has a cylinder 3 in which a combustion chamber 5 is defined, ie between a reciprocating piston 7 and one Combustion chamber deck 9. On the combustion chamber 5, in particular on the cylinder head or combustion chamber deck 9 of the cylinder 3, and in this respect projecting into the combustion chamber 5, there is a spark plug 11 for igniting the fuel gas / air mixture.

Die Zündkerze 11 ist als Vorkammerzündkerze bereitgestellt und über einen Kerzenstecker 13 samt Zündleitung 15 mit einer Zündanlage 17 der Brennkraftmaschine 1 verbunden, welche Zündsignale von einer übergeordneten Kontrolleinheit 19 erhält, das heißt von einer Motorsteuerung bzw. ECU. In Abhängigkeit der Ansteuerung der Zündanlage durch die ECU 19 wird die Zündkerze 11 mit Zündspannung durch die Zündanlage 17 versorgt, so dass Zündfunken zwischen den Elektroden (nicht dargestellt) der Zündkerze 11 generiert werden. Maßgeblich für die notwendige Zündenergie zur Erzeugung eines Zündfunkens ist hierbei der aktuelle Elektrodenabstand EA der Zündelektroden, welche eine Mitten- und eine Massenelektrode umfassen, d.h. zur Ausbildung der Funkenstrecke.The spark plug 11 is provided as a prechamber spark plug and is connected via a plug connector 13 together with the ignition line 15 to an ignition system 17 of the internal combustion engine 1, which Receives ignition signals from a higher-level control unit 19, that is, from an engine control or ECU. Depending on the control of the ignition system by the ECU 19, the spark plug 11 is supplied with ignition voltage by the ignition system 17, so that ignition sparks are generated between the electrodes (not shown) of the spark plug 11. The current electrode spacing EA of the ignition electrodes, which comprise a center and a ground electrode, that is to say for the formation of the spark gap, is decisive for the ignition energy required to generate an ignition spark.

Wie Fig. 1 weiter veranschaulicht, ist in Wirkverbindung mit dem Brennraum 5 ferner ein Zylinderdrucksensor 21 am Brennraum 5 angeordnet, welcher Brennraumdruckinformation pZyl an die Motorsteuerung 19 liefert. Zur Erfassung einer Durchbruchspannung an der Zündkerze 11 ist weiterhin eine Messvorrichtung 23 vorgesehen, welche die Durchbruchspannungsinformation ebenfalls an die Motorsteuerung 19 bereitstellt. Zur Erfassung der Durchbruchspannung ist die insbesondere hochfrequentauflösende Mess- bzw. Abtastvorrichtung 23, welche im GHz-Bereich abtastet, über eine Messleitung 23a an die Zündkerze 11 gekoppelt.How Fig. 1 further illustrated, a cylinder pressure sensor 21, which supplies combustion chamber pressure information p cyl to the engine control 19, is also arranged in operative connection with the combustion chamber 5. To detect a breakdown voltage at the spark plug 11, a measuring device 23 is also provided, which likewise provides the breakdown voltage information to the engine control 19. To detect the breakdown voltage, the measuring or scanning device 23, which in particular dissolves high frequencies and which scans in the GHz range, is coupled to the spark plug 11 via a measuring line 23a.

In Wirkverbindung mit der Motorsteuerung 19 und durch diese kontrolliert steht weiterhin ein Brennverlaufs- bzw. Brenndauerregler 25, über welchen der Brennverlauf geregelt wird und welcher durch Sollvorgaben seitens der Motorsteuerung 19 beeinflussbar ist.In active connection with the motor control 19 and controlled by it, there is also a combustion process or combustion duration controller 25, via which the combustion process is regulated and which can be influenced by the engine control 19 by target values.

Ein Nutzerinterface 27 in Form eines Bediener-Informationssystems ist weiterhin an der Brennkraftmaschine 1 bereitgestellt, welches seitens der Motorsteuereinheit 19 signalgebend ansteuerbar ist. Das Nutzerinterface 27 kann mit der Brennkraftmaschine 1 fest verbunden sein, alternativ oder zusätzlich ein abgesetztes Interfacemodul vorsehen, zum Beispiel in Form eines Tablet-PCs oder Smartphones. Über das Nutzerinterface 27 können Informationen vorzugsweise visualisiert oder auch akustisch dargestellt werden.A user interface 27 in the form of an operator information system is also provided on the internal combustion engine 1, which can be activated by the engine control unit 19 in a signaling manner. The user interface 27 can be permanently connected to the internal combustion engine 1, alternatively or additionally provide a remote interface module, for example in the form of a tablet PC or smartphone. Information can preferably be visualized or also represented acoustically via the user interface 27.

Die übergeordnete Kontrolleinheit 19 weist im Rahmen der vorliegenden Erfindung Programmcode auf, daneben sind Kennlinien abgespeichert, insbesondere abgelegt in einem nichtflüchtigen Speicher, welche die Motorsteuerung 19 zur Ablaufsteuerung des erfindungsgemäßen Verfahrens befähigen, welches nachfolgend näher beschrieben ist.In the context of the present invention, the superordinate control unit 19 has program code, in addition characteristic curves are stored, in particular stored in a non-volatile memory, which enable the engine control 19 to control the sequence of the method according to the invention, which is described in more detail below.

Im Rahmen des vorgeschlagenen Verfahrens wird für dessen Durchführung zunächst eine (Proportionalitäts-)Konstante bzw. Paschenkonstante K als systemindividuelle Größe an der Brennkraftmaschine ermittelt, das heißt im Rahmen eines Messaufbaus und unter Hinzuziehung der eingangs erwähnten Gleichung 2), wonach gilt: K = U ZZP p zzp EA bekannt

Figure imgb0004
und worin "K" die Proportionalitätskonstante, "UZZP" die Durchbruchspannung (zum Zündzeitpunkt), "EAbekannt" einen vorbekannten Elektrodenabstand (an der Funkenstrecke) und "pzzp" den Zylinderdruck zum Zündzeitpunkt bezeichnen.In the context of the proposed method, a (proportionality) constant or Paschen constant K is initially used as a system-specific variable for the implementation thereof Internal combustion engine determined, that is, within the framework of a measurement setup and using equation 2) mentioned at the beginning, according to which: K = U ZZP p zzp EA known
Figure imgb0004
and in which "K" denotes the proportionality constant, "U ZZP " the breakdown voltage (at the ignition point), "EA known " a previously known electrode distance (at the spark gap) and "p zzp " the cylinder pressure at the ignition point.

Der vorbekannte Elektrodenabstand EAbekannt ist hierbei ein Elektrodenabstand einer neuen Zündkerze bzw. der Zündkerze 11 im Neuzustand, wie dieser herstellerseitig vorgegeben ist und wie diese zur einmaligen bzw. anfänglichen Ermittlung der Proportionalitätskonstante K genutzt wird. Die weiteren Größen "UZZP" und "pzzp" werden messtechnisch unter Verwendung der neuen Zündkerze 11 ermittelt, das heißt mittels des Zylinderdrucksensors 21 und der Vorrichtung 23 zur Messung der Durchbruchspannung. Rechnerisch wird daraus nun die Proportionalitätskonstante K für das mit der Brennkraftmaschine 1 ausführbare erfindungsgemäße Verfahren bestimmt, insbesondere in der verfahrenssteuernden Kontrolleinheit 19 abgelegt.The known electrode spacing EA is known here as an electrode spacing of a new spark plug or the spark plug 11 when new, as specified by the manufacturer, and how this is used to determine the proportionality constant K once or initially. The other variables "U ZZP " and "p zzp " are determined by measurement using the new spark plug 11, that is to say by means of the cylinder pressure sensor 21 and the device 23 for measuring the breakdown voltage. From this, the proportionality constant K is now determined for the method according to the invention that can be carried out with the internal combustion engine 1, in particular stored in the method-controlling control unit 19.

Bei dem Verfahren wird - insbesondere kontinuierlich mit dem Betrieb der Brennkraftmaschine 1 - in einem ersten Schritt ein Zylinderdruck zum Zündzeitpunkt (pzzp) am Brennraum 5 sowie eine Durchbruchspannung (UZZP) an der Zündkerze 11 erfasst. Hierzu liefern der Zylinderdrucksensor 21 sowie die Vorrichtung 23 zur Durchbruchspannungsermittlung je (kontinuierlich) geeignete Messsignale an die ECU bzw. die übergeordnete Kontrolleinheit 19.In the method - in particular continuously with the operation of the internal combustion engine 1 - a cylinder pressure at the ignition point (p zzp ) at the combustion chamber 5 and a breakdown voltage (U ZZP ) at the spark plug 11 are recorded in a first step. For this purpose, the cylinder pressure sensor 21 and the device 23 for determining the breakdown voltage each (continuously) supply suitable measurement signals to the ECU or the higher-level control unit 19.

In einem zweiten Schritt - insbesondere wiederum kontinuierlich mit dem Betrieb der Brennkraftmaschine 1 - wird nunmehr der aktuelle Elektrodenabstand EA der Zündelektroden (an der Funkenstrecke), welcher einen aktuellen Zündelektrodenverschleißzustand repräsentiert, basierend auf dem im ersten Schritt erfassten Zylinderdruck pzzp, der erfassten Durchbruchspannung UZZP und der - wie oben beschrieben ermittelten - Proportionalitätskonstante K ermittelt, d.h. durch die ECU 19. Zur Ermittlung dient insbesondere eingangs erwähnte Gleichung 1), wonach gilt: EA = U ZZP p zzp K ,

Figure imgb0005
wobei mit "EA" der (aktuelle) Elektrodenabstand, mit "UZZP" die Durchbruchspannung (zum Zündzeitpunkt), mit "pzzp " der Zylinderdruck (zum Zündzeitpunkt) und mit "K" die Proportionalitätskonstante bezeichnet ist.In a second step - in particular again continuously with the operation of the internal combustion engine 1 - the current electrode distance EA of the ignition electrodes (at the spark gap), which represents a current state of wear of the ignition electrodes, is now based on the cylinder pressure p zzp recorded in the first step, the detected breakdown voltage U ZZP and the proportionality constant K determined as described above, ie determined by the ECU 19. The above-mentioned equation 1) is used in particular, according to which: EA = U ZZP p zzp K ,
Figure imgb0005
"EA" denotes the (current) electrode spacing, "U ZZP " denotes the breakdown voltage (at the ignition point), " p zzp " the cylinder pressure (at the ignition point) and "K" the proportionality constant.

Aus der Gleichung 1) ist mit kontinuierlicher Durchführung des Verfahrens somit fortwährend der aktuelle Elektrodenabstand EA bekannt, welcher im Rahmen der Erfindung bevorzugt weiterhin zur Lebensdauerermittlung herangezogen wird, d.h. in einem weiteren Schritt.From equation 1), the current electrode spacing EA is thus continuously known with continuous implementation of the method, which is preferably also used in the context of the invention for determining the service life, i.e. in a further step.

Fig. 2 zeigt exemplarisch eine Kennlinie für die Zündkerze 11, wie sie für die Lebensdauerermittlung Verwendung finden kann, z.B. empirisch ermittelt. In der Kennlinie, welche bevorzugt ebenfalls in der ECU 19 hinterlegt ist, ist der Elektrodenabstand EA über den Betriebsstunden Bh, mithin der Lebensdauer angetragen, wobei der minimale (vorbekannte) Elektrodenabstand jenem bei null Betriebsstunden entspricht (EA(0Bh)), der maximale Elektrodenabstand jenem zum Standzeitende (EAmax), das heißt dem maximal möglichen Elektrodenabstand (mit maximal möglichem Elektrodenabbrand). Der maximal mögliche Elektrodenabstand EAmax kann ermittelt werden basierend auf der eingangs erwähnten Gleichung 3) gemäß: EA max = EA min + d Verschleißkörper

Figure imgb0006
wobei mit "EAmax " der maximale, das Lebensdauerende kennzeichnende Elektrodenabstand bezeichnet ist, mit "EAmin " der anfängliche, den Lebensdauerbeginn kennzeichnende minimale Elektrodenabstand und mit "dVerschleißkörper " die Dicke des abbrandfähigen Elektrodenmaterials. Fig. 2 shows an example of a characteristic curve for the spark plug 11 as it can be used for determining the service life, for example empirically determined. In the characteristic curve, which is also preferably stored in the ECU 19, the electrode distance EA is plotted over the operating hours Bh, and therefore the service life, the minimum (previously known) electrode distance corresponding to that at zero operating hours (EA (0Bh)), the maximum electrode distance that at the end of the service life (EA max ), i.e. the maximum possible electrode spacing (with the maximum possible electrode erosion). The maximum possible electrode spacing EA max can be determined based on equation 3) mentioned at the beginning in accordance with: EA Max = EA min + d Wear body
Figure imgb0006
where "EA max " denotes the maximum electrode distance which characterizes the end of the service life, " EA min " the initial electrode distance which characterizes the start of the service life and "d wear body " the thickness of the consumable electrode material.

Zur Lebensdauerermittlung, bevorzugt der Restlebensdauer der Zündkerze 11, wird der aktuelle ermittelte Elektrodenabstand EA mit der Kennlinie korreliert. Der (durch Differenzbildung) somit ermittelbare Abstand der aktuell erreichten Betriebsstunden (korrespondierend mit dem aktuellen Elektrodenabstand) vom Lebensdauerende (korrespondierend mit dem maximalen Elektrodenabstand) indiziert nunmehr die Restlebensdauer, welche von der ECU 19 über das Nutzerinterface 27 signalisiert wird, d.h. mit einem Informationssignal. In der Folge wird nunmehr ein Zündkerzentausch vorteilhaft bedarfsgerecht möglich.To determine the service life, preferably the remaining service life of the spark plug 11, the currently determined electrode distance EA is correlated with the characteristic curve. The distance that can thus be determined (by forming a difference) between the currently reached operating hours (corresponding to the current electrode distance) and the end of the service life (corresponding to the maximum electrode distance) now indicates the remaining service life, which is signaled by the ECU 19 via the user interface 27, that is to say with an information signal. As a result, a spark plug replacement is now advantageously possible as required.

Insbesondere parallel zu der Lebensdauerermittlung und Signalisierung wird bei dem erfindungsgemäßen Verfahren in einem Schritt nach dem zweiten Schritt - insbesondere wiederum kontinuierlich mit dem Betrieb der Brennkraftmaschine - ein Verbrennungsparameter der Brennkraftmaschine 1 basierend auf dem im zweiten Schritt ermittelten Elektrodenabstand eingestellt, insbesondere ein Verbrennungsluftverhältnis.In particular, parallel to the determination of the service life and signaling, in the method according to the invention, a combustion parameter of the internal combustion engine 1, in particular a combustion air ratio, is set in a step after the second step, in particular again continuously with the operation of the internal combustion engine.

Der Einstellung liegt die Erkenntnis zu Grunde, dass der Elektrodenabstand EA die Brenngeschwindigkeit bzw. die Strömungsgeschwindigkeit im Brennraum 5 - bei ansonsten unveränderten Voraussetzungen - maßgeblich bestimmt. Zum Beispiel würde bei relativ kleinem Elektrodenabstand EA, zum Beispiel bei Neuzustand der Zündkerze 11, die Verbrennung nur langsam initiiert, insbesondere als nur ein kleiner Zündfunken an der Funkenstrecke zwischen den Elektroden überspringt. In der Folge würde die gesamte Verbrennung langsam ablaufen, da das Druckgefälle zwischen Vorkammer und Brennraum 5 unvorteilhaft ist, mithin nur geringe Zündstrahleindringtiefe in den Brennraum 5 erzielt wird, die Verbrennung im Brennraum 5 in der Folge verschleppt wird.The setting is based on the knowledge that the electrode spacing EA decisively determines the burning rate or the flow rate in the combustion chamber 5 - with otherwise unchanged conditions. For example, with a relatively small electrode spacing EA, for example when the spark plug 11 is new, the combustion would only be initiated slowly, in particular when only a small ignition spark jumps over the spark gap between the electrodes. As a result, the entire combustion would take place slowly, since the pressure drop between the prechamber and the combustion chamber 5 is disadvantageous, and consequently only a small depth of ignition beam penetration into the combustion chamber 5 is achieved, and the combustion in the combustion chamber 5 is subsequently carried over.

Mit der Erfindung ist es nunmehr vorgesehen, dass Verbrennungsluftverhältnis λ an den aktuellen Elektrodenabstand EA anzupassen, so dass für einen wie vorstehend geschilderten Kerzenzustand zum Beispiel eine erhöhte Menge an Brenngas in den Brennraum 5 eingeblasen wird, das heißt an der (im Magerbetrieb laufenden) Brennkraftmaschine 1 wird ein angefettetes Gemisch eingestellt, so dass die Brenngeschwindigkeit erhöht wird, mithin sich eine schnellere Verbrennung bei niedrigerer Abgastemperatur und verbesserten Emissionswerten erzielen lässt.The invention now provides for the combustion air ratio λ to be adapted to the current electrode spacing EA, so that, for example, for a candle state as described above, an increased amount of fuel gas is blown into the combustion chamber 5, that is to say on the internal combustion engine (which is running in lean operation) 1, an enriched mixture is set so that the burning rate is increased, which means that faster combustion can be achieved at lower exhaust gas temperatures and improved emission values.

Wird der Elektrodenabstand EA größer (verschleißbedingt), kann die Anfettung korrespondierend zurückgenommen werden, z.B. die Einblasedauer verkürzt werden, so dass mit der Erfindung stets optimierte Verbrennungs- und Emissionsbedingungen vorteilhaft einfach erzielbar sind. Mit anderen Worten wird vorgesehen, den Brennverlauf in Abhängigkeit des aktuellen, ermittelten Elektrodenabstands EA zu beeinflussen, d.h. durch Einstellung wenigstens eines Brennparameters. Hierzu werden geeignete Steuersignale an den Brennverlaufs- bzw. Brenndauerregler 25 übermittelt, d.h. seitens der ECU 19.If the electrode distance EA becomes larger (due to wear), the enrichment can be reduced accordingly, e.g. the blowing time is shortened, so that the combustion and emission conditions which are always optimized with the invention can advantageously be easily achieved. In other words, provision is made to influence the course of the burn as a function of the current, determined electrode distance EA, i.e. by setting at least one firing parameter. For this purpose, suitable control signals are transmitted to the combustion process or combustion duration controller 25, i.e. on the part of the ECU 19.

Abschließend sei noch erwähnt, dass mit der Erfindung auch Perlenbildung an der Zündkerze 11 erkannt werden kann, welche Begrifflichkeit die Bildung kleinster Kügelchen an der Oberfläche der Elektroden bezeichnet, die von wenigen Mikrometern bis z.B. 100 µm anwachsen können. Diese Perlen entstehen beim Aufschmelzen der Elektrode und erstarren nachdem der Funken gelöscht ist. Ab einer bestimmten Größe können die Perlen als Oberfläche für weitere Perlen dienen, so dass eine Art Stalagmit entsteht, der den Elektrodenabstand EA so verringern kann, dass das Funkenvolumen für eine Gemischentzündung zu gering wird, mithin eine Gemischentzündung nicht mehr stattfinden kann.Finally, it should also be mentioned that the invention also makes it possible to recognize pearl formation on the spark plug 11, which terminology means the formation of the smallest spheres on the surface referred to the electrodes, which can grow from a few micrometers to, for example, 100 µm. These beads form when the electrode melts and solidify after the spark is extinguished. From a certain size, the pearls can serve as a surface for further pearls, so that a kind of stalagmite is formed which can reduce the electrode spacing EA in such a way that the spark volume becomes too small for a mixture ignition, and mixture ignition can therefore no longer take place.

Mit dem Verfahren bzw. dem aktuell ermittelten Elektrodenabstand EA wird vorteilhaft auch eine Zündenergieregelung möglich, bei welcher die der Zündkerze 11 zugeführte Zündenergie in Abhängigkeit des ermittelten, aktuellen Elektrodenabstands EA an die Zündkerze 11 zugeführt wird, d.h. vorteilhaft bedarfsgerecht (so dass Perlenbildung aufgrund zu hoher Temperatur zum Beispiel vorteilhaft vermieden werden kann).With the method or the currently determined electrode distance EA, an ignition energy control is advantageously also possible, in which the ignition energy supplied to the spark plug 11 is supplied to the spark plug 11 as a function of the determined, current electrode distance EA, i.e. advantageous according to need (so that pearl formation due to excessive temperature can be avoided, for example).

Ein solches Verfahren zur Regelung der Zündenergie ist z.B. aus der Druckschrift DE 10 2013 010 685 A1 bekannt.Such a method for regulating the ignition energy is, for example, from the publication DE 10 2013 010 685 A1 known.

Claims (9)

  1. Method for implementation with the operation of an internal combustion engine (1) which has a spark plug (11) which is arranged on a combustion chamber (5) of a cylinder (3) of the internal combustion engine (1), wherein:
    - in a first step a cylinder pressure is measured at the combustion chamber (5) at the ignition time (pzzp) and a breakdown voltage (UZZP) is measured at the spark plug (11),
    - in a second step a current electrode spacing (EA) of the ignition electrodes, which represents a current ignition electrode state of wear, is determined on the basis of the measured cylinder pressure (pzzp), the measured breakdown voltage (UZZP) and a proportionality constant (K),
    characterized in that
    - the proportionality constant (K) is determined as a system-specific variable at the internal combustion engine (1), on the basis of a previously known electrode spacing (EAknown), a cylinder pressure at the ignition time (pzzp) and a breakdown voltage (UZZP) of the spark plug (11).
  2. Method according to Claim 1,
    characterized in that
    - in a further step, a service life of the spark plug (11) is determined on the basis of the current electrode spacing (EA) of the ignition electrodes, which is determined in the second step.
  3. Method according to one of the preceding claims,
    characterized in that
    - in a further step, a combustion parameter of the internal combustion engine (1), in particular an air/fuel ratio (λ), is set on the basis of the current electrode spacing (EA), which is determined in the second step.
  4. Method according to one of the preceding claims,
    characterized in that
    - the method is carried out iteratively.
  5. Method according to one of the preceding claims, characterized in that
    - the method is carried out with an unused spark plug (11), wherein the determined current electrode spacing (EA) is compared with a new-state setpoint electrode spacing.
  6. Method according to one of the preceding claims,
    characterized in that
    - an information signal for an operator of the internal combustion engine (1) is output on the basis of the determined electrode spacing (EA).
  7. Method according to one of the preceding claims,
    characterized in that
    - a characteristic curve which relates the determined current electrode spacing (EA) to a service life is used with the method; and/or
    - a characteristic curve which relates the determined current electrode spacing (EA) to a combustion parameter, in particular to a conversion point or an air/fuel ratio (λ), is used with the method.
  8. Method according to one of the preceding claims,
    characterized in that
    - the spark plug (11) is a prechamber spark plug; and/or
    - the internal combustion engine (1) is a gas engine.
  9. Internal combustion engine (1) having a cylinder (3) with a combustion chamber (5), a spark plug (11) which is arranged on the combustion chamber (5), a cylinder pressure sensor (21) and a device (23) for measuring the breakdown voltage at the spark plug (11),
    characterized in that
    - the internal combustion engine (1) is configured to carry out the method according to one of the preceding claims.
EP16734559.4A 2015-07-17 2016-07-01 Method for implementation with the operation of an internal combustion engine Active EP3325799B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015009248.0A DE102015009248B4 (en) 2015-07-17 2015-07-17 Method for carrying out an internal combustion engine operation
PCT/EP2016/001122 WO2017012695A1 (en) 2015-07-17 2016-07-01 Method for implementation with the operation of an internal combustion engine

Publications (2)

Publication Number Publication Date
EP3325799A1 EP3325799A1 (en) 2018-05-30
EP3325799B1 true EP3325799B1 (en) 2020-03-25

Family

ID=56345076

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16734559.4A Active EP3325799B1 (en) 2015-07-17 2016-07-01 Method for implementation with the operation of an internal combustion engine

Country Status (6)

Country Link
US (1) US10900431B2 (en)
EP (1) EP3325799B1 (en)
CN (1) CN107850035B (en)
DE (1) DE102015009248B4 (en)
HK (1) HK1252907A1 (en)
WO (1) WO2017012695A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018201057A1 (en) * 2018-01-24 2019-07-25 Robert Bosch Gmbh Spark plug with self-diagnosis and high voltage cable for self-diagnosis of a spark plug and method for self-diagnosis of a spark plug
JP7176201B2 (en) * 2018-03-01 2022-11-22 株式会社デンソー ignition controller
EP3578804A1 (en) * 2018-06-07 2019-12-11 Caterpillar Energy Solutions GmbH Spark plug electrode wear rate determination for a spark-ignited engine
DE102019001627A1 (en) * 2018-06-18 2019-12-19 Deutz Aktiengesellschaft Process for wear detection and predictive wear forecast of electromechanical actuators at the operating time of a machine with an internal combustion engine
JP7243488B2 (en) * 2019-06-28 2023-03-22 株式会社アイシン Apparatus for calculating ignition plug maintenance timing for heat pump engine and method for calculating maintenance timing for ignition plug of heat pump engine
CN112392610B (en) * 2020-11-04 2023-05-23 潍柴动力股份有限公司 Engine control method, device and equipment
FR3121182B1 (en) 2021-03-25 2023-11-24 Renault Sas Method for controlling fuel injectors of a spark-ignition engine

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10189213A (en) 1996-12-24 1998-07-21 Tokyo Gas Co Ltd Gas engine spark plug monitoring device
DE19756336C1 (en) * 1997-12-18 1999-04-01 Daimler Benz Ag Compression and ignition system testing method for combustion engine
JP2008101585A (en) * 2006-10-20 2008-05-01 Toyota Motor Corp Control device and method for internal combustion engine
JP2011157904A (en) * 2010-02-02 2011-08-18 Toyota Motor Corp Ignition control device for internal combustion engine
DE102011005651A1 (en) * 2011-03-16 2012-09-20 Man Diesel & Turbo Se Method for ignition plug selective determination of wear of ignition plugs of internal combustion engine, involves detecting whether actual value of actuating parameter or operating parameter has reached predetermined threshold value
DE102013010685A1 (en) 2013-06-26 2014-12-31 Mtu Friedrichshafen Gmbh Method for controlling the ignition energy

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CN107850035A (en) 2018-03-27
DE102015009248B4 (en) 2020-01-02
US20180187620A1 (en) 2018-07-05
CN107850035B (en) 2019-10-01
US10900431B2 (en) 2021-01-26
EP3325799A1 (en) 2018-05-30
WO2017012695A1 (en) 2017-01-26
DE102015009248A1 (en) 2017-01-19
HK1252907A1 (en) 2019-06-06

Similar Documents

Publication Publication Date Title
EP3325799B1 (en) Method for implementation with the operation of an internal combustion engine
DE102006015503A1 (en) Method for control of injection process of directly fuel injected internal combustion engine is implemented in such way that change of injection process is effected on basis of parameter recorded during first working cycle
EP3841326B1 (en) Heating device and method for regulating a fan-operated gas burner
DE102014219722A1 (en) Ignition system and method for checking electrodes of a spark gap
DE102008031597A1 (en) Method for fuel change over with multi-fuel engine from one fuel to another fuel on basis of fuel relationship, involves increasing portion of fuel and reducing portion of another fuel with intermediate fuel relationship
EP1835172A2 (en) Device and method for determining the wear of an ignition plug in a combustion engine
DE102012214518B3 (en) Method for controlling an ignition system of an internal combustion engine and ignition system
DE10247977A1 (en) Method and system for checking the functionality of a particle detector
DE102012010177A1 (en) Diagnostic system for determining wear of spark plug in internal combustion engine of motor car, has evaluation unit calculating overall wear of spark plug, where calculation of total wear is carried out with respect to operating parameters
DE102010029933B4 (en) Method and device for operating a fuel injection system
EP2976521B1 (en) Method for operating an internal combustion engine and internal combustion engine
EP2180179A2 (en) Method for operating a combustion engine and device for executing the method
EP2826969B1 (en) Method for regenerating a particle filter and internal combustion engine with a particle filter
DE102011075124A1 (en) Method for operating a fuel injection system of an internal combustion engine
DE102016211388B3 (en) Method for detecting power manipulation during operation of an internal combustion engine
DE102013010685A1 (en) Method for controlling the ignition energy
DE102014108878A1 (en) Method for operating an exhaust gas burner
DE102018202819A1 (en) A method for determining the composition of a fuel mixture for an internal combustion engine and use of a device therefor
DE102011086445A1 (en) Method and device for regulating the temperature of a glow plug in an internal combustion engine
DE102019208471B4 (en) Method for operating an internal combustion engine and internal combustion engine for carrying out such a method
EP1164286B1 (en) Method for the monitoring of the increased production of nitrogen oxides
DE102007045641A1 (en) Method for operating internal combustion engine, particularly in motor vehicles, involves sending fuel to combustion chamber of internal combustion engine by fuel injection device
DE102014204198A1 (en) Method for detecting a mechanical fault on a supply line of a glow plug and a device
DE102012107905A1 (en) Process for the regeneration of a soot particle filter
EP4155608A1 (en) Method for detecting a burner flame extinguishment

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180219

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20191018

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1248831

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200415

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016009290

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200625

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200626

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200625

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200325

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200818

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200725

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016009290

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502016009290

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20210112

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200701

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200701

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200701

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200701

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210202

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20210722

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

REG Reference to a national code

Ref country code: AT

Ref legal event code: PC

Ref document number: 1248831

Country of ref document: AT

Kind code of ref document: T

Owner name: ROLLS-ROYCE SOLUTIONS GMBH, DE

Effective date: 20220831

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1248831

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220701