EP3325592A1 - Utilisation d'une combinaison d'un agent complexant et d'un tensioactif pour améliorer l'efficacité de rinçage - Google Patents

Utilisation d'une combinaison d'un agent complexant et d'un tensioactif pour améliorer l'efficacité de rinçage

Info

Publication number
EP3325592A1
EP3325592A1 EP16741026.5A EP16741026A EP3325592A1 EP 3325592 A1 EP3325592 A1 EP 3325592A1 EP 16741026 A EP16741026 A EP 16741026A EP 3325592 A1 EP3325592 A1 EP 3325592A1
Authority
EP
European Patent Office
Prior art keywords
phase
acid
branched
dishwashing detergent
linear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP16741026.5A
Other languages
German (de)
English (en)
Other versions
EP3325592B1 (fr
Inventor
Inga Kerstin Vockenroth
David MATULLA
Oliver Kurth
Volker Blank
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=56464214&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP3325592(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Publication of EP3325592A1 publication Critical patent/EP3325592A1/fr
Application granted granted Critical
Publication of EP3325592B1 publication Critical patent/EP3325592B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0047Detergents in the form of bars or tablets
    • C11D17/0065Solid detergents containing builders
    • C11D17/0073Tablets
    • C11D17/0078Multilayered tablets
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/72Ethers of polyoxyalkylene glycols
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/72Ethers of polyoxyalkylene glycols
    • C11D1/721End blocked ethers
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0047Detergents in the form of bars or tablets
    • C11D17/0065Solid detergents containing builders
    • C11D17/0073Tablets
    • C11D17/0091Dishwashing tablets
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/26Organic compounds containing nitrogen
    • C11D3/33Amino carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D2111/00Cleaning compositions characterised by the objects to be cleaned; Cleaning compositions characterised by non-standard cleaning or washing processes
    • C11D2111/10Objects to be cleaned
    • C11D2111/14Hard surfaces
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/38Products with no well-defined composition, e.g. natural products
    • C11D3/386Preparations containing enzymes, e.g. protease or amylase
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/39Organic or inorganic per-compounds
    • C11D3/3902Organic or inorganic per-compounds combined with specific additives
    • C11D3/3905Bleach activators or bleach catalysts
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/395Bleaching agents
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/50Perfumes

Definitions

  • the present invention relates to a solid, multi-phase dishwashing detergent comprising at least two phases and the use of such a dishwashing detergent and a method for cleaning dishes using such a dishwashing detergent.
  • Plastics are particularly critical in terms of rinse performance because they usually have a non-polar surface and a lower heat capacity compared to porcelain and glass.
  • the drainage and drying behavior of water droplets is inadequate, which causes water stains to remain visible on the plastic surface. This effect is exacerbated by high water hardness and perceived enhanced on dyed plastic rinse (e.g., Tupperware®).
  • Dishwashing formulation is reduced, making the dishes (especially plastic) is cleaner and, especially for the consumer, a visually clean impression.
  • an MGDA-containing core is used, in which larger amounts of MGDA and surfactant can be formulated compared to conventional pressed cores.
  • MGDA MGDA-containing core
  • approximately twice the amount of MGDA and about ten times the amount of surfactant can be used via a melted core. This is not possible with pressed cores, as it is with this amount of surfactant and MGDA would come to sticky non-compressible powders.
  • the present invention is directed to a dishwashing detergent comprising at least a first solid, compacted phase and at least one second phase, wherein the at least one second phase is a melted core comprising at least one surfactant, in particular a nonionic surfactant, in an amount from 1 to 90 wt .-%, preferably 10 to 40 wt .-%, based on the total weight of the melt core, and at least one
  • Complexing agent from the group of aminocarboxylic acids and their salts, in an amount of 1 to 90 wt .-%, preferably 30 to 60 wt .-%, based on the total weight of
  • the present invention is directed to the use of a dishwashing detergent according to the invention for machine dishwashing.
  • the present invention is directed to a method for machine cleaning of dishes, characterized in that in at least one method step, a dishwashing agent according to the invention is applied.
  • a dishwashing detergent is to be understood as meaning all agents which are suitable for washing or cleaning hard surfaces, in particular crockery.
  • Other suitable ingredients are described in detail below.
  • At least one refers to 1 or more, for example, 1, 2, 3, 4, 5, 6, 7, 8, 9 or more.
  • the dishwashing agent according to the invention comprises at least two phases, wherein the first phase is solid and compacted and the second phase is a melt.
  • the term "melt” refers to a composition liquefied under the influence of elevated temperatures (eg> 50 ° C.) which solidifies again on cooling to room temperature and forms a solid form.
  • a phase in the sense of the present invention is a spatial area in which physical parameters and the chemical composition are homogeneous.
  • a phase is different from another phase in terms of different characteristics, such as ingredients,
  • the washing or cleaning agent according to the invention has more than one first phase, then these can likewise be distinguished from one another by the naked eye, because they can be found, for example, in the
  • Coloring differ from each other.
  • a visual differentiation of the phases for example due to a color or transparency difference is possible.
  • Phases in the sense of the present invention are thus self-contained areas that can be optically distinguished from the consumer by the naked eye.
  • the individual phases may have different properties in use, such as the rate at which the phase dissolves in water and thus the rate and order of release of the ingredients contained in the respective phase.
  • the dishwashing detergent according to the invention comprises at least two different phases. Both the at least one first phase and the at least one second phase are described below. In the event that the dishwashing detergent according to the invention has more than two phases, each further phase corresponds in each case either to the at least one first phase, as defined herein, or to the at least one second phase, as defined herein. In this case, the compositions of the respectively corresponding phases may differ to the extent permitted by the respective definitions given below of both the at least one first phase and the at least one second phase. For example, it may be a three-phase dishwashing detergent having two phases corresponding to the first phase as defined herein and one phase corresponding to the second phase as defined herein.
  • the at least one second phase of the dishwashing detergent is a melted core which comprises at least one surfactant, in particular a nonionic surfactant, in an amount of from 1 to 90% by weight, preferably 10 to 40% by weight to the total weight of the melted core, and at least one complexing agent selected from the group consisting of aminocarboxylic acids and their salts in an amount of from 1 to 90% by weight, preferably 30-60 wt .-%, based on the total weight of the melt core comprises.
  • the second phase will also be referred to hereinafter as the "fused core" or
  • nonionic surfactants from the group of alkoxylated alcohols.
  • a class of preferably usable nonionic surfactants which can be used either as the sole nonionic surfactant or in combination with other nonionic surfactants as constituent of the melt-core phase are accordingly alkoxylated, preferably ethoxylated or ethoxylated and propoxylated fatty acid alkyl esters.
  • nonionic surfactants which are end-capped, poly (oxyalkylated) nonionic surfactants according to the formula R 0 [CH 2 CH 2 O] xR 2 where R is linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radicals 2 to 30 carbon atoms, preferably having 4 to 22 carbon atoms and R 2 is linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radicals having 1 to 30
  • R is a linear or branched C 12-20 alkyl radical, in particular a linear or branched C 16-18 alkyl radical
  • R 2 is a linear or branched C 4-22 alkyl radical, preferably a C 4 14 alkyl radical, more preferably a C6-12 alkyl radical, in particular a linear or branched Ce-io alkyl radical.
  • the above-described end-capped, poly (oxyalkylated) nonionic surfactants of the melt-core phase are used in amounts of 5-60% by weight, preferably 10-40% by weight, based on the melt-core phase.
  • poly (oxyalkylated) nonionic surfactants of the melt core phase combined with another surfactant from the group of non-end-capped, poly (oxyalkylated) nonionic surfactants according to the formula R 0 [CH 2CR 3 HO] xH, where R is linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radicals having from 2 to 30 carbon atoms, preferably from 4 to 22 carbon atoms, each R 3 is independently H, CH 3 or CH 2 -CH 3, preferably H or CH 3, and x is between 1 and 80, preferably between 15 and 50 and especially for values between 20 and 25 stands.
  • fatty alcohol ethoxylates or fatty alcohol ethoxypropoxylates in where R is a linear or branched C 12-20 alkyl radical, in particular a linear or branched C 16-18 alkyl radical.
  • poly (oxyalkylated) nonionic surfactants of the melt core phase in amounts of 5-50 wt .-%, preferably 10-30 wt .-%, based on the melt core phase used.
  • nonionic surfactants used in the surfactant melt phase have a melting point above room temperature.
  • the complexing agent is contained in an amount of from 1 to 90% by weight, preferably from 30 to 60% by weight, based on the total weight of the melted core, in the melted core phase.
  • the complexing agents from the group of aminocarboxylic acids and their salts which are contained in the at least one second phase may be, for example, methylglycinediacetic acid (MGDA) or its salts, glutamic diacetic acid (GLDA) or its salts or
  • Ethylenediaminediacetic acid or its salts According to a preferred embodiment, Ethylenediaminediacetic acid or its salts (EDDS). According to a preferred
  • the complexing agent is methylglycinediacetic acid.
  • the melt core phase may contain other ingredients.
  • such ingredients include, for example, polyethylene glycol (PEG).
  • PEG polyethylene glycol
  • PEG may be included, for example, in amounts of 10 to 40 wt .-%, preferably 25-35 wt .-% based on the weight of the melt core phase.
  • Other polymers, especially polycarboxylates, may also preferably be used in the melt core phase.
  • the at least one first phase of the dishwashing agent according to the invention is a solid, compacted phase, typically a pressed powder phase.
  • This at least one first phase of the dishwashing agent according to the invention usually contains at least one surfactant, preferably at least one nonionic surfactant. Suitable surfactants are described below.
  • Suitable nonionic surfactants of the first phase are, for example, alkyl glycosides of the general formula RO (G) x in which R corresponds to a primary straight-chain or methyl-branched, especially methyl-branched, 2-position aliphatic radical having 8 to 22, preferably 12 to 18, carbon atoms and G is the symbol for a glycose unit having 5 or 6 C atoms, preferably for glucose.
  • the degree of oligomerization x which indicates the distribution of monoglycosides and oligoglycosides, is an arbitrary number between 1 and 10; preferably x is 1, 2 to 1, 4.
  • Nonionic surfactants of the amine oxide type for example N-cocoalkyl-N, N-dimethylamine oxide and N-tallowalkyl-N, N-dihydroxyethylamine oxide, and the fatty acid alkanolamides may also be suitable.
  • the amount of these nonionic surfactants is preferably not more than that of the ethoxylated fatty alcohols, especially not more than half thereof.
  • surfactants are the polyhydroxy fatty acid amides known as PHFA.
  • low-foaming nonionic surfactants are preferably used in the first phase, in particular alkoxylated, especially ethoxylated, low-foaming nonionic surfactants.
  • the automatic dishwashing detergents contain nonionic surfactants from the group of the alkoxylated alcohols.
  • a class of useful nonionic surfactants which can be used either as the sole nonionic surfactant or in combination with other nonionic surfactants are accordingly alkoxylated, preferably ethoxylated or ethoxylated and propoxylated fatty acid alkyl esters, preferably having 1 to 4 carbon atoms in the alkyl chain.
  • surfactants come from the groups of ethoxylated primary alcohols and mixtures of these surfactants with structurally complicated surfactants such as
  • Polyoxypropylene / polyoxyethylene / polyoxypropylene ((PO / EO / PO) surfactants).
  • Such (PO / EO / PO) nonionic surfactants are characterized by good foam control.
  • Suitable nonionic surfactants are those which have alternating ethylene oxide and alkylene oxide units.
  • surfactants with EO-AO-EO-AO blocks are preferred, wherein in each case one to ten EO or AO groups are bonded to each other before a block of the other groups follows.
  • R is a straight-chain or branched, saturated or mono- or polyunsaturated Ce-24-alkyl or alkenyl radical; each group R 2 or R 3 is independently selected from -CH 3, -CH 2 CH 3, -CH 2 CH 2 -CH 3, CH (CH 3) 2 and the indices w, x, y, z are independently integers from 1 to 6.
  • nonionic surfactants which have a C 9 -alkyl group with 1 to 4 ethylene oxide units, followed by 1 to 4
  • Preferred nonionic surfactants here are those of the general formula R -CH (OH) CH20- (AO) w- (A'0) x- (A "0) y - (A '" 0) zR 2 , in which
  • R is a straight-chain or branched, saturated or mono- or polyunsaturated C 6-24-alkyl or alkenyl radical
  • R 2 is H or a linear or branched hydrocarbon radical having 2 to 26 carbon atoms
  • A, ⁇ ', A "and A'" independently of one another are radicals from the group -CH 2 CH 2 , -CH 2 CH 2 -CH 2 , -CH 2 -CH (CH 3 ), -CH 2 -CH 2 -CH 2 -CH 2 , -CH 2 - CH (CH 3 ) -CH 2 -, - CH 2 -CH (CH 2 -CH 3 ),
  • w, x, y and z are values between 0.5 and 120, where x, y and / or z can also be 0.
  • Hydrocarbon radicals having 2 to 30 carbon atoms, preferably 4 to 22
  • Carbon atoms furthermore a linear or branched, saturated or
  • x stands for values between 1 and 90, preferably for values between 10 and 80 and in particular for values between 20 and 60.
  • Particularly preferred are surfactants of the above formula in which R is C7 to C13, x is an integer from 16 to 28 and R 2 is Cs to C12.
  • R is a linear or branched aliphatic hydrocarbon radical having 4 to 18 carbon atoms or mixtures thereof, R 2 is a linear or branched one
  • Hydrocarbon radical having 2 to 26 carbon atoms or mixtures thereof and x for values between 0.5 and 1, 5 and y is a value of at least 15 stands.
  • nonionic surfactants include, for example, the C2-26 fatty alcohol (PO) i- (EO) is-4o-2-hydroxyalkyl ethers, in particular the coco fatty alcohol (PO) i (EO) 22-2-hydroxydecyl ethers , Particular preference is furthermore given to those end-capped poly (oxyalkylated) nonionic surfactants of the formula R 0 [CH 2 CH 2 O] x [CH 2 CH (R 3 ) O] y CH 2 CH (OH) R 2 in which R and R 2 independently of one another are linear or branched , saturated or single or multiple
  • nonionic surfactants are the end-capped poly (oxyalkylated) nonionic surfactants of the formula R 0 [CH 2 CH (R 3 ) O] x [CH 2 ] k CH (OH) [CH 2 ] jOR 2 where R and R 2 are linear or branched , saturated or unsaturated, aliphatic or aromatic
  • Hydrocarbon radicals having 1 to 30 carbon atoms R 3 is H or a methyl, ethyl, n-propyl, iso-propyl, n-butyl, 2-butyl or 2-methyl-2-butyl radical, x is Values between 1 and 30, k and j represent values between 1 and 12, preferably between 1 and 5.
  • k and j represent values between 1 and 12, preferably between 1 and 5.
  • R and R 2 are preferably linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radicals having 6 to 22
  • Carbon atoms, with radicals having 8 to 18 carbon atoms are particularly preferred.
  • R 3 H, -CH 3 or -CH 2 CH 3 are particularly preferred.
  • Particularly preferred values for x are in the range from 1 to 20, in particular from 6 to 15.
  • each R 3 in the above formula may be different if x> 2.
  • the alkylene oxide unit in the square bracket can be varied.
  • R 0 [CH 2 CH (R 3 ) O] x CH 2 CH (OH) CH 2 OR 2 simplified.
  • R 1 R 2 and R 3 are as defined above and x is from 1 to 30, preferably from 1 to 20 and in particular from 6 to 18.
  • Particularly preferred are surfactants in which the radicals R and R 2 Have 9 to 14 carbon atoms, R 3 is H and x assumes values of 6 to 15.
  • nonionic surfactants of the general formula R -CH (OH) CH 2 O- (AO) wR 2 have proved to be particularly effective, in which
  • R for a straight-chain or branched, saturated or on or
  • R 2 is a linear or branched hydrocarbon radical having 2 to 26 carbon atoms;
  • A is a radical from the group CH 2 CH 2 , CH 2 CH 2 CH 2 , CH 2 CH (CH 3 ),
  • w stands for values between 1 and 120, preferably 10 to 80, in particular 15 to 50.
  • the group of these nonionic surfactants includes, for example, the C4-22 fatty alcohol (EO) io-8o-2-hydroxyalkyl ethers, in particular also the C8-12 fatty alcohol (EO) 22-2-hydroxydecyl ethers and the C4-22 fatty alcohol (EO) 4o 8o-2-hydroxyalkyl ethers.
  • R 2 is hydrogen and R, R 3 , A, ⁇ ', A ", A'", w, x, y and z are as defined above.
  • Degradation levels of nonionic surfactants represent statistical averages which may be an integer or a fractional number for a particular product. Due to the
  • Herste II method exist commercial products of the formulas mentioned mostly not from an individual representative, but from mixtures, which may result in both the C chain lengths and for the Ethoxyl michsgrade or degrees of alkoxylation averages and resulting broken numbers.
  • nonionic surfactants can not only be used as
  • dishwashing compositions described herein which comprise in the at least one first phase at least one surfactant, preferably a nonionic surfactant, preferably a nonionic surfactant from the group of hydroxy mixed ethers, contain the surfactant in various aspects
  • the amounts used per application may be in the range of 0.5-10 g / job, preferably in the range of 1-5 g / job.
  • Particular preference is given to those nonionic surfactants which have a melting point above room temperature.
  • Nonionic surfactant (s) having a melting point above 20 ° C, preferably above 25 ° C, more preferably between 25 and 60 ° C and especially between 26.6 and 43.3 ° C, is / are particularly preferred .
  • Suitable nonionic surfactants which have melting or softening points in the temperature range mentioned are, for example, low-foaming nonionic surfactants which are solid at room temperature.
  • the first phase may also contain the surfactants described above in connection with the second phase, in particular the described optionally end-group-capped fatty alcohol ethoxylates.
  • the first phase of the dishwashing detergent according to the invention may also contain surfactants from the group of anionic, cationic and amphoteric surfactants.
  • Suitable anionic surfactants in dishwashing detergents are all anionic surfactants. These are characterized by a water-solubilizing, anionic group such as. As a carboxylate, sulfate, sulfonate or phosphate group and a lipophilic alkyl group having about 8 to 30 carbon atoms. In addition, glycol or polyglycol ether groups, ester, ether and amide groups and hydroxyl groups may be present in the molecule.
  • Suitable anionic surfactants are preferably present in the form of the sodium, potassium and ammonium as well as mono-, di- and trialkanolammonium salts having 2 to 4 C atoms in the alkanol group, but also zinc, manganese (II), magnesium, calcium or Mixtures of these can serve as counterions.
  • Preferred anionic surfactants are alkyl sulfates, alkyl polyglycol ether sulfates and
  • Ethercarbon yarn having 10 to 18 carbon atoms in the alkyl group and up to 12 glycol ether groups in the molecule.
  • cationic and / or amphoteric surfactants such as betaines or quaternary ammonium compounds.
  • the dishwashing detergent in the at least one first phase may contain further ingredients which further improve the performance and / or aesthetic properties of the dishwashing detergent.
  • the dishwashing detergent in various embodiments contains at least one or preferably several substances from the group of builders, polymers, bleaching agents, bleach activators, Bleaching catalysts, enzymes, thickeners, sequestering agents, electrolytes, corrosion inhibitors, glass corrosion inhibitors, foam inhibitors, dyes, additives for improving the drainage and drying behavior, disintegrants, preservatives, pH adjusters, fragrances and perfume carriers.
  • builders such as silicates, aluminum silicates (especially zeolites), salts of organic di- and polycarboxylic acids and mixtures of these substances, preferably water-soluble builders, may be advantageous.
  • the use of phosphates is largely or completely omitted.
  • the agent in this embodiment preferably contains less than 5% by weight, more preferably less than 3% by weight, in particular less than 1% by weight of phosphate (s).
  • the agent is completely phosphate-free, i. the agents contain less than 0.1% by weight of phosphate (s).
  • the builders include in particular carbonates, citrates, phosphonates,
  • Total weight of compositions according to the invention is preferably from 15 to 80% by weight and in particular from 20 to 70% by weight.
  • Suitable organic builders according to the invention are, for example, the polycarboxylic acids (polycarboxylates) which can be used in the form of their sodium salts, polycarboxylic acids meaning those carboxylic acids which have more than one, in particular two to eight
  • Acid functions, preferably two to six, in particular two, three, four or five
  • Preferred polycarboxylic acids are thus dicarboxylic acids, tricarboxylic acids, tetracarboxylic acids and pentacarboxylic acids, in particular di-, tri- and tetracarboxylic acids.
  • the polycarboxylic acids may carry further functional groups, such as hydroxyl or amino groups.
  • these are citric acid, adipic acid, succinic acid, glutaric acid, malic acid, tartaric acid, maleic acid, fumaric acid, sugar acids (preferably aldaric acids, for example galactaric acid and
  • Glucaric acid aminocarboxylic acids, especially aminodicarboxylic acids, aminotricarboxylic acids, aminotetracarboxylic acids such as nitrilotriacetic acid (NTA), glutamine-N, N-diacetic acid (also referred to as N, N-bis (carboxymethyl) -L-glutamic acid or GLDA),
  • NTA nitrilotriacetic acid
  • glutamine-N glutamine-N
  • N-diacetic acid also referred to as N, N-bis (carboxymethyl) -L-glutamic acid or GLDA
  • Methylglycinediacetic acid (MGDA)) and their derivatives and mixtures thereof.
  • Preferred salts are the salts of polycarboxylic acids such as citric acid, adipic acid, succinic acid, glutaric acid, tartaric acid, GLDA, MGDA and mixtures thereof.
  • polymeric polycarboxylates organic polymers having a multiplicity of (in particular greater than 10) carboxylate functions in the
  • the free acids also typically have the property of an acidifying component and can thus, if desired, also serve to set a lower pH.
  • citric acid, succinic acid, glutaric acid, adipic acid, gluconic acid and any desired mixtures of these can be mentioned here.
  • Particularly preferred cleaning agents according to the invention in particular dishwashing agents, preferably automatic dishwasher detergents, contain one or more salts of citric acid, ie citrates, as one of their essential builders. These are preferably in a proportion of 2 to 40 wt .-%, in particular from 5 to 30 wt .-%, particularly from 7 to 28 wt .-%, particularly preferably 10 to 25 wt .-%, most preferably 15 to Contain 20 wt .-%, each based on the total weight of the composition.
  • dishwashing detergents preferably automatic dishwashing detergents
  • dishwashing detergents are characterized in that they comprise at least two builders from the group of silicates, phosphonates, carbonates, aminocarboxylic acids and citrates, the weight fraction of these builders, based on the total weight of the inventive detergent, preferably 5 to 70 wt .-%, preferably 15 to 60 wt .-% and in particular 20 to 50 wt .-% is.
  • the combination of two or more builders from the above-mentioned group has proven to be advantageous for the cleaning and rinsing performance of cleaning agents according to the invention, in particular dishwashing detergents, preferably automatic dishwashing detergents.
  • one or more other builders may additionally be present.
  • Preferred cleaning agents in particular dishwashing agents, preferably mechanical
  • Dishwashing detergents are characterized by a builder combination of citrate and carbonate and / or bicarbonate.
  • a mixture of carbonate and citrate is used, the amount of carbonate preferably being from 5 to 40% by weight, in particular from 10 to 35% by weight, very particularly preferably from 15 to 30% by weight. and the amount of citrate is preferably from 5 to 35 wt .-%, in particular 10 to 25 wt .-%, most preferably 15 to 20 wt .-%, each based on the total amount of the cleaning agent, wherein the total amount of these two Builders preferably 20 to 65% by weight, in particular 25 to 60 wt .-%, preferably 30 to 50 wt .-%, is. In addition, one or more further builders may additionally be included.
  • the detergents according to the invention in particular dishwashing detergents, preferably automatic dishwashing detergents, may in particular contain phosphonates as further builder.
  • the phosphonate compound used is preferably a hydroxyalkane and / or aminoalkane phosphonate.
  • the hydroxyalkane phosphonates the 1-hydroxyethane-1, 1-diphosphonate (HEDP) is of particular importance.
  • Aminoalkanphosphonate are preferably
  • Ethylenediamine tetramethylene phosphonate Ethylenediamine tetramethylene phosphonate (EDTMP), diethylene triamine pentamethylene phosphonate (DTPMP) and their higher homologs in question.
  • Phosphonates are preferably present in compositions according to the invention in amounts of from 0.1 to 10% by weight, in particular in amounts of from 0.5 to 8% by weight, very particularly preferably from 2.5 to 7.5% by weight, in each case based on the
  • citrate particularly preferred is the combined use of citrate, (hydrogen) carbonate and phosphonate. These can be used in the above quantities. In particular, in this combination amounts of, in each case based on the total weight of the composition, 10 to 25 wt .-% citrate, 10 to 30 wt .-% carbonate (or bicarbonate), and 2.5 to 7.5 wt .-%
  • dishwashing agents preferably automatic dishwashing detergents
  • dishwashing agents are characterized in that they contain citrate and
  • MGDA methylglycinediacetic acid
  • GLDA glutamic acid diacetate
  • ASDA aspartic diacetic acid
  • HEIDA Hydroxyethyliminodiacetate
  • IDS iminodisuccinate
  • EDDS ethylenediamine disuccinate
  • a particularly preferred combination is, for example, citrate, (hydrogen) carbonate and MGDA and optionally phosphonate.
  • the percentage by weight of the further phosphorus-free builder, in particular of the MGDA and / or GLDA, is preferably 0 to 40% by weight, in particular 5 to 30% by weight, especially 7 to 25% by weight.
  • Particularly preferred is the use of MGDA or GLDA, in particular MGDA, as granules.
  • MGDA granules which contain as little water as possible and / or a lower hygroscopicity compared to the non-granulated powder
  • organic builders polymeric polycarboxylates are also suitable, these are, for example, the alkali metal salts of polyacrylic acid or polymethacrylic acid,
  • Suitable polymers are, in particular, polyacrylates which preferably have a molecular weight of 2,000 to 20,000 g / mol. Because of their superior solubility, the short-chain polyacrylates, which have molar masses of from 2000 to 10000 g / mol, and particularly preferably from 3000 to 5000 g / mol, may again be preferred from this group.
  • the content of the cleaning agents according to the invention, in particular dishwashing agents, preferably automatic dishwashing agents, of (homo) polymeric polycarboxylates is preferably 0.5 to 20% by weight, preferably 2 to 15% by weight and in particular 4 to 10% by weight.
  • Cleaning agents according to the invention can further crystalline layered silicates of the general formula contain as builder NaMSix02x + i ⁇ y H2O wherein M is sodium or hydrogen, x is a number from 1, 9 to 22, preferably from 1, 9 to 4, with particularly preferred values for x being 2, 3 or 4, and y being a number from 0 to 33, preferably from 0 to 20. It is also possible to use amorphous sodium silicates having a modulus Na 2 O: SiO 2 of from 1: 2 to 1: 3.3, preferably from 1: 2 to 1: 2.8 and in particular from 1: 2 to 1: 2.6, which are preferably delayed in dissolution and secondary wash properties.
  • the content of silicates is limited to amounts below 10% by weight, preferably below 5% by weight and in particular below 2% by weight ,
  • the washing or cleaning agents according to the invention may furthermore comprise alkali metal hydroxides.
  • alkali carriers are preferably present only in small amounts, preferably in amounts below 10% by weight, preferably below 6% by weight, preferably below 5% by weight, particularly preferably in the detergents or cleaners and in particular in the second phases 0.1 and 5 wt .-% and in particular between 0.5 and 5 wt .-%, each based on the total weight of the detergent or cleaning agent used.
  • Alternative cleaning agents according to the invention are free of alkali metal hydroxides.
  • the at least one first phase of the dishwashing detergent described herein may further contain various polymers.
  • homopolymers of ⁇ , ⁇ -ethylenically unsaturated carboxylic acids can be used according to the invention.
  • unsaturated carboxylic acids ⁇ , ⁇ -ethylenically unsaturated carboxylic acids
  • unsaturated carboxylic acids are acrylic acid, methacrylic acid, ethacrylic acid, ⁇ -chloroacrylic acid, ⁇ -cyanoacrylic acid, crotonic acid, ⁇ -phenyl-acrylic acid, maleic acid,
  • Methylenmalonic acid sorbic acid, cinnamic acid or mixtures thereof.
  • acrylic acid very particular preference is given to acrylic acid.
  • the homopolymer is therefore a polyacrylic acid.
  • the carboxylic acid groups may be wholly or partially in neutralized form, i. in that the acidic carbon atom of the carboxylic acid group in some or all of the carboxylic acid groups can be exchanged for metal ions, preferably alkali metal ions and in particular for sodium ions.
  • metal ions preferably alkali metal ions and in particular for sodium ions.
  • partially or completely neutralized polymers is preferred according to the invention.
  • the molecular weight of the homopolymers used can be varied in order to adapt the properties of the polymers to the desired end use.
  • Preferred dishwashing detergents are characterized in that the homopolymers, in particular the polyacrylic acids, have molar masses M n of from 1000 to 20 000 g / mol. Because of their superior solubility, the short-chain polyacrylates, which have molar masses of from 1000 to 10 000 g / mol, and particularly preferably from 1500 to 5000 g / mol, may again be preferred from this group.
  • the agents further comprise at least one sulfopolymer.
  • the polymers which can be used in this context are, in particular, copolymers which may have two, three, four or more different monomer units, where at least one monomer unit carries a sulfonic acid group.
  • Preferred copolymers contain, in addition to sulfonic acid-containing (s) monomer (s) at least one monomer from the group of unsaturated carboxylic acids.
  • unsaturated carboxylic acid As the unsaturated carboxylic acid (s), the above-described unsaturated carboxylic acids are / are used with particular preference. Acrylic acid is very particularly preferred.
  • R 5 (R 6 ) C C (R 7 ) -X-SO 3 H in which R 5 to R 7, independently of one another, is -H, -CH 3 , a straight-chain or branched saturated alkyl radical having 2 to 12 carbon atoms, a straight-chain or branched, mono- or polyunsaturated alkenyl radical having 2 to 12 carbon atoms, with alkyl or alkenyl radicals substituted by -NH 2 , -OH or -COOH, or by -COOH or -COOR 4 , where R 4 is a saturated or unsaturated, straight-chain or branched
  • Particularly preferred monomers containing sulfonic acid groups are 1-acrylamido-1-propanesulfonic acid, 2-acrylamido-2-propanesulfonic acid, 2-acrylamido-2-methyl-1-propanesulfonic acid, 2-methacrylamido-2-methyl-1-propanesulfonic acid, 3 Methacrylamido-2-hydroxypropanesulfonic acid, allylsulfonic acid, methallylsulfonic acid, allyloxybenzenesulfonic acid, methallyloxybenzenesulfonic acid, 2-hydroxy-3- (2-propenyloxy) propanesulfonic acid, 2-methyl-2-propenylsulfonic acid, styrenesulfonic acid, vinylsulfonic acid, 3-sulfopropyl acrylate, 3-sulfo - Propylmethacrylat, sulfomethacrylamide, sulfomethylmethacrylamide and mixtures of said acids or their water-
  • the acid groups may be wholly or partially in neutralized form, ie that the acidic hydrogen atom of the sulfonic and / or carboxylic acid group in some or all acid groups can be exchanged for metal ions, preferably alkali metal ions and in particular against sodium ions.
  • metal ions preferably alkali metal ions and in particular against sodium ions.
  • the monomer distribution of the copolymers preferably used in the case of copolymers which contain only monomers containing carboxylic acid groups and monomers containing sulfonic acid groups is preferably in each case from 5 to 95% by weight, with the proportion of
  • Sulfonic acid group-containing monomers 50 to 90 wt .-% and the proportion of
  • the copolymers may contain other monomers, particularly unsaturated carboxylic acid ester group-containing monomers.
  • Particularly preferred unsaturated carboxylic acid esters are alkyl esters of monocarboxylic acids such as acrylic acid, methacrylic acid, ethacrylic acid, ⁇ -chloroacrylic acid, ⁇ -cyanoacrylic acid,
  • Crotonic acid a-phenyl-acrylic acid, sorbic acid, cinnamic acid or mixtures thereof.
  • C1-8-alkyl esters of acrylic acid such as methyl acrylate, ethyl acrylate,
  • the molecular weight of the copolymers used can be varied in order to adapt the properties of the polymers to the desired use.
  • Preferred dishwashing detergents are characterized in that the copolymers have molar masses M n of 2,000 to 200,000 g / mol, preferably of 4,000 to 25,000 g / mol and in particular of 5,000 to 15,000 g / mol.
  • the above-described homopolymers and copolymers may each be used in amounts of from 0.5 to 10% by weight, preferably from 1 to 5% by weight, based on the total weight of the composition. Absolute amounts are typically in the range of 0.1 to 2 g / job, preferably in the range of 0.2 to 1.0 g / job.
  • the mass ratio of the polymers to each other, i. Homopolymer to copolymer is in various embodiments, 5: 1 to 1: 5, preferably 2: 1 to 1: 2.
  • the dishwashing agents may alternatively or additionally contain other polymers.
  • the group of suitable polymers includes in particular the cleaning-active amphoteric, zwitterionic or cationic polymers, for example the rinse aid polymers and / or as softeners effective polymers.
  • Preferred usable amphoteric polymers are from the group of
  • Alkylacrylamide / acrylic acid copolymers the alkylacrylamide / methacrylic acid copolymers, the alkylacrylamide / methylmethacrylic acid copolymers, the alkylacrylamide / acrylic acid / alkylaminoalkyl (meth) acrylic acid copolymers, the alkylacrylamide / methacrylic acid / alkylaminoalkyl (meth) acrylic acid copolymers , the alkylacrylamide / methylmethacrylic acid / alkylaminoalkyl (meth) acrylic acid copolymers, the alkylacrylamide / alkymethacrylate / alkylaminoethylmethacrylate / alkylmethacrylate copolymers and the copolymers of unsaturated carboxylic acids, cationically derivatized unsaturated carboxylic acids and optionally further ionic or nonionic monomers.
  • Further usable zwitterionic polymers are from the group of acrylamidoalkyl trialkyl ammonium chloride / acrylic acid copolymers and their alkali metal and ammonium salts, the acrylamidoalkyltrialkylammonium chloride / methacrylic acid copolymers and their alkali metal and ammonium salts and the Methacroylethylbetain / methacrylate copolymers.
  • Applicable cationic polymers come from the groups of quaternized cellulose derivatives, the polysiloxanes with quaternary groups, the cationic guar derivatives, the polymeric dimethyldiallylammonium salts and their copolymers with acrylic acid and
  • Methacrylic acid and its esters and amides the copolymers of vinylpyrrolidone with quaternized derivatives of dialkylamino acrylate and methacrylate, the vinylpyrrolidone Methoimidazoliniumchlorid copolymers, the quaternized polyvinyl alcohols or under the INCI names Polyquaternium 2, Polyquaternium 17, Polyquaternium 18 and
  • Polyquaternium 27 indicated polymers.
  • amphoteric, zwitterionic or cationic polymers are present in prefabricated form.
  • Coating compositions preferably by means of water-insoluble coating agents from the group of waxes or paraffins having a melting point above 30 ° C;
  • dishwashing agents from the group of washing or cleaning-active substances, particularly preferably from the group of builders (builders) or cobuilders.
  • dishwashing agents according to the invention in the first phase preferably contain one or more enzyme (s). These include in particular proteases, amylases, lipases, hemicellulases, cellulases, perhydrolases or oxidoreductases, and preferably mixtures thereof. These enzymes are basically of natural origin; Starting from the natural molecules, improved variants are available for use in detergents, which are preferably used accordingly.
  • Detergents according to the invention preferably contain enzymes in total amounts of from 1 ⁇ 10 -6 % by weight to 5% by weight, based on active protein. The protein concentration can be determined by known methods, for example the BCA method or the biuret method.
  • subtilisin type those of the subtilisin type are preferable.
  • these are the subtilisins BPN 'and Carlsberg and their further developed forms, the protease PB92, the subtilisins 147 and 309, the alkaline protease from Bacillus lentus, subtilisin DY and the enzymes thermitase which can no longer be assigned to the subtilisins in the narrower sense, Proteinase K and the proteases TW3 and TW7.
  • amylases which can be used according to the invention are the ⁇ -amylases from Bacillus licheniformis, from B. amyloliquefaciens, from B. stearothermophilus, from Aspergillus niger and A. oryzae as well as the further developments of the abovementioned amylases which are improved for use in cleaning agents. Furthermore, for this purpose, the ⁇ -amylase from Bacillus sp. A 7-7 (DSM 12368) and the cyclodextrin glucanotransferase (CGTase) from B. agaradherens (DSM 9948).
  • lipases or cutinases are also usable according to the invention.
  • lipases or cutinases in particular because of their triglyceride-splitting activities, but also in order to generate in situ peracids from suitable precursors.
  • lipases or cutinases include, for example, those originally from Humicola lanuginosa
  • Thermomyces lanuginosus available, or further developed lipases, especially those with the amino acid exchange in positions D96L, T213R and / or N233R, most preferably all of the exchanges D96L, T213R and N233R.
  • enzymes can be used which are termed hemicellulases
  • mannanases xanthan lyases
  • pectin lyases pectinases
  • pectin esterases pectate lyases
  • xyloglucanases xylanases
  • pullulanases and ⁇ -glucanases.
  • Oxidoreductases for example oxidases, oxygenases, catalases, peroxidases, such as halo, chloro, bromo, lignin, glucose or manganese peroxidases, dioxygenases or laccases (phenol oxidases, polyphenol oxidases), can be used according to the invention to increase the bleaching effect.
  • peroxidases such as halo, chloro, bromo, lignin, glucose or manganese peroxidases, dioxygenases or laccases
  • organic, more preferably aromatic, enzyme-interacting compounds to enhance the activity of the respective oxidoreductases (enhancers) or to react at greatly varying redox potentials between the oxidizing enzymes and the
  • a protein and / or enzyme may be particularly protected during storage against damage such as inactivation, denaturation or degradation, such as by physical influences, oxidation or proteolytic cleavage.
  • damage such as inactivation, denaturation or degradation, such as by physical influences, oxidation or proteolytic cleavage.
  • inhibition of proteolysis is particularly preferred, especially if the agents also contain proteases.
  • Detergents may contain stabilizers for this purpose; the provision of such means constitutes a preferred embodiment of the present invention.
  • Cleaning-active proteases and amylases are generally not provided in the form of the pure protein but rather in the form of stabilized, storage and transportable preparations.
  • Such prefabricated preparations include, for example, the solid preparations obtained by granulation, extrusion or lyophilization or, especially in the case of liquid or gel-form detergents, solutions of the enzymes, advantageously as concentrated as possible, low in water and / or added with stabilizers or further auxiliaries.
  • the enzymes may be encapsulated for the first and / or second phase, for example by spray drying or extrusion of the enzyme solution together with a preferably natural polymer or in the form of capsules, for example those in which the enzymes are entrapped as in a solidified gel or in those of the core-shell type, in which an enzyme-containing core is coated with a water, air and / or chemical impermeable protective layer.
  • a preferably natural polymer or in the form of capsules for example those in which the enzymes are entrapped as in a solidified gel or in those of the core-shell type, in which an enzyme-containing core is coated with a water, air and / or chemical impermeable protective layer.
  • further active ingredients for example stabilizers, emulsifiers, pigments, bleaches or dyes, may additionally be applied.
  • Such capsules are applied by methods known per se, for example by shaking or rolling granulation or in fluid-bed processes.
  • such granules for example by applying poly
  • Protease and amylase preparations preferably used according to the invention contain between 0.1 and 40% by weight, preferably between 0.2 and 30% by weight, more preferably between 0.4 and 20% by weight and
  • detergents which, based in each case on their total weight, contain 0.1 to 12% by weight, preferably 0.2 to 10% by weight and in particular 0.5 to 8% by weight, of the respective enzyme preparations.
  • the dishwashing detergent may further contain one or more enzyme stabilizer (s).
  • enzyme stabilizers include boron-containing compounds such as boric acid or boronic acids, and their salts and esters, polyols such as glycerol or 1, 2-ethylene glycol, sugars, sugar alcohols, lactic acid or antioxidants.
  • Dishwashing agents according to the invention contain in a preferred embodiment as further constituent at least one zinc salt as glass corrosion inhibitor.
  • the zinc salt may be an inorganic or organic zinc salt.
  • the zinc salt to be used according to the invention preferably has a solubility in water above 100 mg / l, preferably above 500 mg / l, more preferably above 1 g / l and especially above 5 g / l (all solubilities at 20 ° C water temperature).
  • the inorganic zinc salt is preferably selected from the group consisting of zinc bromide, zinc chloride, zinc iodide, zinc nitrate and zinc sulfate.
  • the organic zinc salt is preferably selected from the group consisting of zinc salts of monomeric or polymeric organic acids, in particular from the group zinc acetate, zinc acetylacetonate, zinc benzoate, zinc formate, zinc lactate, zinc gluconate, zinc ricinoleate, zinc abietate, zinc valerate and zinc p-toluenesulfonate.
  • zinc acetate is used as the zinc salt.
  • the zinc salt is preferably present in the detergent according to the invention in an amount of from 0.01% by weight to 5% by weight, more preferably in an amount of from 0.05% by weight to 3% by weight, in particular in an amount of 0, 1 wt .-% to 2 wt .-%, based on the
  • polyethyleneimines such as those available under the name Lupasol® (BASF)
  • a Lupasol® preferably in an amount of 0 to 5 wt .-%, in particular 0.01 to 2 wt .-%, are used as glass corrosion inhibitors.
  • the at least one first phase of the dishwashing agent may further comprise a bleaching agent, in particular an oxygen bleaching agent and optionally a bleach activator and / or bleach catalyst. These are, if available, only included in the first phase.
  • Dishwashing agents according to the invention contain as preferred bleaching agents
  • Other useful bleaching agents are, for example Peroxypyrophosphates, citrate perhydrates and H2O2-yielding peracidic salts or peracids, such as perbenzoates, peroxophthalates, diperazelaic acid, phthaloiminoperacid or
  • Typical organic bleaches are the diacyl peroxides, such as dibenzoyl peroxide.
  • Other typical organic bleaches are the peroxyacids, examples of which include the alkyl peroxyacids and the aryl peroxyacids. Because of its good bleaching performance, sodium percarbonate is particularly preferred. A particularly preferred oxygen bleach is sodium percarbonate.
  • bleach activators it is possible to use compounds which, under perhydrolysis conditions, give aliphatic peroxycarboxylic acids having preferably 1 to 10 C atoms, in particular 2 to 4 C atoms, and / or optionally substituted perbenzoic acid.
  • Suitable substances are those which carry O- and / or N-acyl groups of the stated C atom number and / or optionally substituted benzoyl groups.
  • Preference is given to polyacylated alkylenediamines, with tetraacetylethylenediamine (TAED) having proven particularly suitable.
  • the bleach catalysts are bleach-enhancing transition metal salts or transition metal complexes such as, for example, Mn, Fe, Co, Ru or Mo salt complexes or carbonyl complexes.
  • Mn, Fe, Co, Ru, Mo, Ti, V and Cu complexes with N-containing tripod ligands and Co, Fe-Cu and Ru ammine complexes are also known
  • Bleach catalysts usable With particular preference complexes of manganese in the oxidation state II, III, IV or IV are used, preferably one or more
  • ligands are used which have nitrogen donor functions. It is particularly preferred to use bleach catalyst (s) in the compositions of the invention, which as macromolecular ligands 1, 4,7-trimethyl-1, 4,7-triazacyclononan (Me-TACN), 1, 4,7-triazacyclononane (TACN ), 1, 5,9-trimethyl-1, 5,9-triazacyclododecane (Me-TACD), 2-methyl-1-1, 4,7-trimethyl-1, 4,7-triazacyclononane (Me / Me-TACN ) and / or 2-methyl-1, 4,7-triazacyclononane (Me / TACN).
  • bleach catalyst s
  • the pH of the dishwashing detergent can be adjusted by means of customary pH regulators, the pH value being chosen as a function of the desired intended use.
  • the pH is in a range of 5.5 to 1 1,
  • the pH adjusting agents are acids and / or alkalis, preferably alkalis.
  • Suitable acids are in particular organic acids such as acetic acid, citric acid, glycolic acid, Lactic acid, succinic acid, adipic acid, malic acid, tartaric acid and gluconic acid or amidosulfonic acid.
  • mineral acids hydrochloric acid, sulfuric acid and nitric acid or mixtures thereof are selected from the group of alkali and alkaline earth metal hydroxides and carbonates, in particular the
  • Alkali metal hydroxides of which potassium hydroxide and especially sodium hydroxide is preferred.
  • volatile alkali for example in the form of ammonia and / or alkanolamines, which may contain up to 9 carbon atoms in the molecule.
  • the alkanolamine here is preferably selected from the group consisting of mono-, di-, triethanol- and -propanolamine and mixtures thereof.
  • the inventive composition for adjusting and / or stabilizing the pH, the inventive
  • Dishwashing agents also contain one or more buffer substances (INCI Buffering Agents), usually in amounts of 0.001 to 5 wt .-%. Preference is given to buffer substances which are at the same time complexing agents or even chelating agents (chelating agents, INCI chelating agents).
  • buffer substances are the citric acid or the citrates, in particular the sodium and potassium conduction rates, for example trisodium citrate 2H.sub.2O and tripotassium citrate.RTM.
  • perfume oils or perfumes within the scope of the present invention, individual fragrance compounds, e.g. the synthetic products of the ester, ether, aldehyde, ketone, alcohol and hydrocarbon type are used. Preferably, however, mixtures of different fragrances are used, which together produce an attractive fragrance.
  • perfume oils may also contain natural fragrance mixtures such as are available from vegetable sources, e.g. Pine, citrus, jasmine, patchouli, rose or ylang-ylang oil.
  • preservatives may be contained in the dishwashing detergent according to the invention. Suitable examples are preservatives from the groups of alcohols, aldehydes, antimicrobial acids and / or their salts, carboxylic acid esters, acid amides, phenols,
  • Phenol derivatives diphenyls, diphenylalkanes, urea derivatives, oxygen, nitrogen acetals and formals, benzamidines, isothiazoles and their derivatives such as isothiazolines and isothiazolinones, phthalimide derivatives, pyridine derivatives, antimicrobial surface-active compounds, guanidines, antimicrobial amphoteric compounds, quinolines, 1, 2 Dibromo-2,4-dicyanobutane, iodo-2-propynyl-butyl-carbamate, iodine, iodophores and peroxides.
  • Preferred antimicrobial active ingredients are preferably selected from the group comprising ethanol, n-propanol, i-propanol, 1,3-butanediol, phenoxyethanol, 1,2-propylene glycol, glycerol, undecylenic acid, citric acid, lactic acid, benzoic acid, salicylic acid, Thymol, 2-benzyl-4-chlorophenol, 2,2'-methylenebis (6-bromo-4-chlorophenol), 2,4,4'-trichloro-2'-hydroxydiphenyl ether, N- (4-chlorophenyl) N- (3,4-dichlorophenyl) urea, N, N '- (1, 10-decanediyldi-1-pyridinyl-4-ylidene) bis (1-octanamine) dihydrochloride, N, N'-bis - (4-chlorophenyl) -3,12-diimino-2,4,1,1,1,3
  • preservatives are selected from the group comprising salicylic acid, quaternary surfactants, in particular benzalkonium chloride and isothiazoles and their derivatives such as isothiazolines and isothiazolinones.
  • disintegration aids so-called tablet disintegrants
  • tablet disintegrants or disintegrants excipients which ensure the rapid disintegration of tablets in water or other media and for the rapid release of the active ingredients.
  • Desintegration aids may preferably be used in amounts of from 0.5 to 10% by weight, preferably from 3 to 7% by weight and in particular from 4 to 6% by weight, based in each case on the total weight of the disintegration assistant-containing agent.
  • the dishwashing detergent according to the invention consists of at least two phases, wherein the first phase is solid and compacted and the second phase consists of a melting core.
  • the first phase is first prepared by methods known in the art in the form of a pressed powder phase.
  • the first phase preferably has a depression or the like, into which the second phase can be introduced as a melt.
  • the components of the melt phase are mixed at temperatures at which the components of the melt phase for the most part, preferably completely, liquefied, for example at temperatures above 50 ° C.
  • the melting temperature of this melt depends on the melting points of the particular components used.
  • the liquid melt is poured hot into the designated well of the first solid phase of the dishwashing detergent, so that it can harden.
  • the hot, second phase liquid melt may also be preformed in any other suitable form as desired to be subsequently adhered to a designated and suitable location on the surface of the solid first phase.
  • a suitable location on the surface of the first solid phase may, for example, be a suitable depression or depression.
  • the cured melt has more attractive optical properties compared to pressed powder phases.
  • the dishwashing agent according to the invention comprises a plurality of first phases, for example two first phases, wherein these are independently of one another as defined above.
  • one of the first phases may contain bleach and other ingredients and the other enzymes and other ingredients.
  • the plurality of first phases are combined into a multi-phase base tablet, for example, by the method described above, which then has a trough or the like, into which then the melting core is introduced as described above.
  • the multi-phase dishwashing detergent is closely enveloped by a water-soluble film or is contained in a water-soluble bag.
  • the water-soluble film or the water-soluble bag preferably comprises a water-soluble polymer.
  • Some preferred water-soluble polymers which are preferably used as water-soluble packaging are polyvinyl alcohols, acetalized
  • Polyvinyl alcohols polyvinylpyrrolidones, polyethylene oxides, celluloses and gelatin, wherein polyvinyl alcohols and acetalated polyvinyl alcohols are particularly preferably used.
  • Polyvinyl alcohols (abbreviated PVAL, occasionally PVOH) is the name for polymers of the general structure in small proportions (about 2%) also structural units of the type
  • Polymerization degrees in the range of about 100 to 2500 (molecular weights of about 4000 to 100,000 g / mol) are offered, have degrees of hydrolysis of 87-99 mol%, so still contain a residual content of acetyl groups.
  • the water-soluble packaging at least partly comprises a polyvinyl alcohol whose degree of hydrolysis is preferably 70 to 100 mol%, in particular 80 to 90 mol%, particularly preferably 81 to 89 mol% and especially 82 to 88 mole%.
  • the water-soluble packaging consists of at least 20 wt .-%, more preferably at least 40 wt .-%, most preferably at least 60 wt .-% and in particular at least 80 wt .-% of a polyvinyl alcohol, the Hydrolysis degree 70 to 100 mol%, preferably 80 to 90 mol%, particularly preferably 81 to 89 mol% and in particular 82 to 88 mol%, is.
  • Polyvinyl alcohols of a certain molecular weight range are preferably used as materials for the packaging, it being preferred according to the invention that the
  • Packaging material comprises a polyvinyl alcohol whose molecular weight in the range of 5,000 g-mol to 100,000 g-mol, preferably from 10,000 g-mol to 90,000 g-mol "1 , more preferably from 12,000 g-mol " to 80,000 g -mol " and in particular from 15,000 g-mol " to 70,000 g-mol “ 1 .
  • the degree of polymerization of such preferred polyvinyl alcohols is between about 200 to about 2100, preferably between about 220 to about 1890, more preferably between about 240 to about 1680, and most preferably between about 260 to about 1500.
  • the water solubility of polyvinyl alcohol can be improved by post-treatment with aldehydes
  • the water-soluble bag preferably has a thickness of 10 ⁇ to 500 ⁇ , in particular from 20 ⁇ to 400 ⁇ , more preferably from 30 ⁇ to 300 ⁇ , especially from 40 ⁇ to 200 ⁇ , in particular from 50 ⁇ to 150 ⁇ .
  • a particularly preferred polyvinyl alcohol is available, for example, under the trade name M8630 (Monosol).
  • the water-soluble film ((narrow) envelope) particularly preferably comprises polyvinyl alcohol, as described above, wherein the starting thickness is preferably from 10 .mu.m to 100 .mu.m, in particular from 12 .mu.m to 60 .mu.m, particularly preferably from 15 .mu.m to 50 .mu.m, above all from 20 ⁇ to 40 ⁇ , in particular from 22 ⁇ to 35 ⁇ is used.
  • the envelope is even under tension, which is not absolutely necessary.
  • This dense covering of the envelope is conducive to disintegration: upon first contact with water, the envelope will pass a small amount of water at some point, and at first it does not need to dissolve at all. At this point, the disintegrant contained in the tablet begins to swell. This leads to the wrapping now due to the Volume increase of the tablet abruptly ruptures and releases the tablet. If the wrapper is not tight, the mechanism described here will not work as the tablet can swell without bursting the wrapper. In this case, the use of a swellable disintegrating agent is superior to a gas-developing system, since its explosive effect in each case leads to a rupture of the casing. At a
  • Gas evolving system may "deflate" the explosive effect by venting the gas from a leakage of the enclosure.
  • Preferred detergent or cleaning agent portions according to the invention are characterized in that the distance between the disposable portion and water-soluble coating over the entire surface is 0.1 to 1000 ⁇ , preferably 0.5 to 500 ⁇ , particularly preferably 1 to 250 ⁇ and in particular 2.5 to 100 ⁇ , is.
  • the film wrapping is first laid loosely around a washing or cleaning agent portion and welded and then shrunk onto it, so that a close contact between the film package and the detergent concentrate is given.
  • washing or cleaning agent disposable portions according to the invention are characterized in that the wrapping is a film packaging shrunk onto the latter.
  • this wrapping can be done by placing a water-soluble lower film on a conveyor chain or a mold (s) tool, then one or more detergent or cleaning agent portion (s) are placed on the lower film; Subsequently, a water-soluble upper film placed on the washing or cleaning agent portion (s) on the lower film and then fixed on the lower film including the washing or cleaning agent portion (s), Alternatively, this step can also be done by a single-strand film, which then as Hose is placed around the disposable portions. This is followed by sealing and optional cutting of the films. Subsequently, then the shrinking of the film by the use of hot air or infrared radiation, optionally with pressing done.
  • the dishwashing agents described herein are preferably prefabricated into dosage units. These metering units preferably comprise the necessary for a cleaning cycle amount of washing or cleaning-active substances. Preferred metering units have a weight between 12 and 30 g, preferably between 14 and 26 g and in particular between 15 and 22 g.
  • the volume of the aforementioned metering units and their spatial form are with particular preference chosen so that a metering of the prefabricated units is ensured via the metering chamber of a dishwasher.
  • the volume of the dosing unit is therefore preferably between 10 and 35 ml, preferably between 12 and 30 ml.
  • the invention likewise relates to a method, in particular a machine dishwashing method, in which a washing or cleaning center according to the invention is used in at least one step of the method.
  • the subject of the present application is therefore further a process for the purification of dishes in one
  • Dishwasher wherein the agent according to the invention during the passage of a dishwasher before the start of the main wash cycle or in the course of
  • Rinse rinses based on the visual appearance of the dry items to be washed (porcelain, glasses, plastic parts and stainless steel) are assigned as parameters.
  • a tablet is dosed with the above recipe and 100 g of dirt are dosed per wash to simulate a normally soiled load.
  • the machine After completing the rinse cycle, the machine is fully opened for 30 minutes and then the clear rinse effect is visually determined in the black box (black room, D6500 daylight lamp). On the crockery and cutlery remaining dried water droplets, streaks, coverings and films are rated on a scale of 1-10. 10 means no films or no drops, 1 means strong film formation or dripping.
  • the idea was based on MGDA powder to produce a hardenable mass.
  • Suitable raw material combinations and production parameters were tested by preliminary tests, for example: suitable solvent (propylene glycol, glycerol, Biodac, etc.)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Detergent Compositions (AREA)

Abstract

La présente invention concerne une lessive lave-vaisselle multiphase, contenant au moins deux phases, son utilisation, ainsi qu'un procédé de lavage de vaisselle au moyen de ladite lessive. La première phase est une phase solide, compactée. La deuxième phase est un noyau fusible, comprenant au moins un tensioactif, notamment un tensioactif non ionique, dans une proportion de 1 à 90 % en poids par rapport au poids total du noyau fusible, et au moins un agent complexant du groupe des acides aminocarboxyliques et leurs sels, dans une proportion de 1 à 90 % en poids par rapport au poids total du noyau fusible.
EP16741026.5A 2015-07-23 2016-07-20 Utilisation d'une combinaison d'un agent complexant et d'un tensioactif pour améliorer l'efficacité de rinçage Active EP3325592B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015213938.7A DE102015213938A1 (de) 2015-07-23 2015-07-23 Einsatz einer Kombination aus Komplexbildner und Tensid zur Verbesserung der Klarspülleistung
PCT/EP2016/067267 WO2017013162A1 (fr) 2015-07-23 2016-07-20 Utilisation d'une combinaison d'un agent complexant et d'un tensioactif pour améliorer l'efficacité de rinçage

Publications (2)

Publication Number Publication Date
EP3325592A1 true EP3325592A1 (fr) 2018-05-30
EP3325592B1 EP3325592B1 (fr) 2021-03-24

Family

ID=56464214

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16741026.5A Active EP3325592B1 (fr) 2015-07-23 2016-07-20 Utilisation d'une combinaison d'un agent complexant et d'un tensioactif pour améliorer l'efficacité de rinçage

Country Status (4)

Country Link
US (1) US20180142191A1 (fr)
EP (1) EP3325592B1 (fr)
DE (1) DE102015213938A1 (fr)
WO (1) WO2017013162A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110603312B (zh) 2017-05-04 2021-10-15 联合利华知识产权控股有限公司 洗涤剂组合物
DE102017212561A1 (de) * 2017-07-21 2019-01-24 Henkel Ag & Co. Kgaa Geschirrspülmittel enthaltend Citratdihydrat und -anhydrat
DE102018212208A1 (de) 2018-07-23 2020-01-23 Henkel Ag & Co. Kgaa Mehrphasiger Reinigungsmittelpouch
DE102018212207A1 (de) 2018-07-23 2020-01-23 Henkel Ag & Co. Kgaa Reinigungsmittel mit tensidhaltiger Gelphase
DE102019132402A1 (de) 2019-11-28 2021-06-02 Henkel Ag & Co. Kgaa Verfahren zur erhöhung der stabilität von reinigungsmitteln
DE102020132593A1 (de) 2020-12-08 2022-06-09 Henkel Ag & Co. Kgaa Stufenweise Zugabe von Verdicker bei der Herstellung von Wasch- und Reinigungsmitteln zur Verbesserung der Prozessierbarkeit

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10223266C1 (de) 2002-05-24 2003-11-20 Henkel Kgaa Verwendung Einspülkammer-dosierbare Tabletten-Portionen
DE10245260A1 (de) 2002-09-27 2004-04-15 Henkel Kgaa Verfahren zur Herstellung umhüllter Wasch- oder Reinigungsmittel-Portionen
EP1669438B1 (fr) * 2004-12-08 2007-10-17 Unilever N.V. Comprimé détergent
EP1746151A1 (fr) * 2005-07-20 2007-01-24 Unilever N.V. Pastilles de composition détergente
GB0522659D0 (en) * 2005-11-07 2005-12-14 Reckitt Benckiser Nv Delivery cartridge
EP1803801A1 (fr) 2006-01-03 2007-07-04 Basf Aktiengesellschaft Poudre ou granule basés sur acide glutamique-N,N-diacetique et leurs sels
EP1845153A1 (fr) * 2006-04-12 2007-10-17 Unilever N.V. Tablettes détergentes
GB0718944D0 (en) * 2007-09-28 2007-11-07 Reckitt Benckiser Nv Detergent composition
EP2071018A1 (fr) * 2007-12-06 2009-06-17 Dalli-Werke GmbH & Co. KG Pastille de détergent avec une partie non comprimée
ES2662525T3 (es) * 2010-06-04 2018-04-06 Dalli-Werke Gmbh & Co. Kg Mezcla de un tensioactivo con un compuesto sólido para mejorar el rendimiento de enjuagado de detergentes para lavavajillas automáticos
GB201014328D0 (en) * 2010-08-27 2010-10-13 Reckitt Benckiser Nv Detergent composition comprising manganese-oxalate
DE102011084934A1 (de) 2011-10-21 2013-04-25 Henkel Ag & Co. Kgaa Klarspül- und Geschirrspülmittel
WO2014139653A2 (fr) * 2013-03-14 2014-09-18 Clariant International Ltd Compositions détergentes de lavage de vaisselle automatique comprenant des acides carboxyliques d'éther ou leurs sels et des tensioactifs non ioniques à point de trouble élevé
WO2014184280A1 (fr) 2013-05-17 2014-11-20 Unilever N.V. Composition de détergent pour lave-vaisselle
DE102013214780A1 (de) 2013-07-29 2015-01-29 Henkel Ag & Co. Kgaa Pflegemittel für automatische Geschirrspülmaschinen
DE102013225485A1 (de) 2013-12-10 2015-06-11 Henkel Ag & Co. Kgaa Reinigungskraftverstärker für maschinelle Geschirrspülmittel

Also Published As

Publication number Publication date
US20180142191A1 (en) 2018-05-24
WO2017013162A1 (fr) 2017-01-26
EP3325592B1 (fr) 2021-03-24
DE102015213938A1 (de) 2017-01-26

Similar Documents

Publication Publication Date Title
EP3325592B1 (fr) Utilisation d'une combinaison d'un agent complexant et d'un tensioactif pour améliorer l'efficacité de rinçage
EP2225357B1 (fr) Composition détergente
EP3325595B1 (fr) Détergent ou produit de nettoyage comprenant au moins deux phases
WO2009074403A1 (fr) Produit de nettoyage
WO2018138124A1 (fr) Dose de détergent comprenant au moins deux phases
EP3599269B1 (fr) Agent de nettoyage à protection contre la corrosion du verre
EP3325596B1 (fr) Lessive lave-vaisselle contenant des agents de blanchiment et des polymères
EP3325597B1 (fr) Lessive lave-vaisselle contenant des agents de blanchiment et des enzymes
EP3325591B1 (fr) Produit pour lave-vaisselle multiphase à noyau tensioactif
EP3599268A1 (fr) Agent de nettoyage à phase de gel contenant du tenside
EP3431575A1 (fr) Détergent pour lave-vaisselle comportant un citrate dihydraté et anhydre
EP3502224A1 (fr) Détergent pour lave-vaisselle à performance de nettoyage améliorée, procédé reposant sur l'utilisation dudit détergent ainsi que l'utilisation dudit détergeant
EP4067464A1 (fr) Détergent
DE102020131794A1 (de) Verbesserte Reinigung durch Hydrogencarbonat im maschinellen Geschirrspülmittel
DE102017212348A1 (de) Verwendung eines Reinigungsmittels enthaltend Aminocarbonsäuren und Sulfopolymere zur Belagsinhibierung
EP3574075A1 (fr) Procédé de fabrication d'un corps moulé
WO2022207590A1 (fr) Agents de lavage ou de nettoyage
EP4314224A1 (fr) Agents de lavage ou de nettoyage
EP4067469A1 (fr) Détergent
WO2018138122A1 (fr) Tensioactifs en capsules ayant un point de trouble optimisé
DE102021203176A1 (de) Wasch- oder Reinigungsmittel
EP4067466A1 (fr) Détergent ou nettoyant
EP3502220A1 (fr) Détergent pour lave-vaisselle à performance de rinçage et de nettoyage améliorée, procédé reposant sur l'utilisation dudit détergent ainsi que l'utilisation dudit détergent

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20171006

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190816

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200619

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20201125

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016012666

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1374524

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210415

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210625

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210624

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210324

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210726

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210724

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502016012666

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: RECKITT BENCKISER FINISH B.V.

Effective date: 20211217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210724

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210720

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1374524

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230705

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230721

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230726

Year of fee payment: 8

Ref country code: DE

Payment date: 20230719

Year of fee payment: 8

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: RECKITT BENCKISER FINISH B.V.

Effective date: 20211217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324