EP3322947B1 - Method for cooling a process flow - Google Patents

Method for cooling a process flow Download PDF

Info

Publication number
EP3322947B1
EP3322947B1 EP16738675.4A EP16738675A EP3322947B1 EP 3322947 B1 EP3322947 B1 EP 3322947B1 EP 16738675 A EP16738675 A EP 16738675A EP 3322947 B1 EP3322947 B1 EP 3322947B1
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
cooled
stream
process stream
helium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16738675.4A
Other languages
German (de)
French (fr)
Other versions
EP3322947A1 (en
Inventor
Lutz Decker
Andres Kündig
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Publication of EP3322947A1 publication Critical patent/EP3322947A1/en
Application granted granted Critical
Publication of EP3322947B1 publication Critical patent/EP3322947B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0005Light or noble gases
    • F25J1/0007Helium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0005Light or noble gases
    • F25J1/001Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/007Primary atmospheric gases, mixtures thereof
    • F25J1/0072Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0221Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0244Operation; Control and regulation; Instrumentation
    • F25J1/0245Different modes, i.e. 'runs', of operation; Process control
    • F25J1/0247Different modes, i.e. 'runs', of operation; Process control start-up of the process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0244Operation; Control and regulation; Instrumentation
    • F25J1/0254Operation; Control and regulation; Instrumentation controlling particular process parameter, e.g. pressure, temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • F25J1/0264Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D3/00Devices using other cold materials; Devices using cold-storage bodies
    • F25D3/10Devices using other cold materials; Devices using cold-storage bodies using liquefied gases, e.g. liquid air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/06Splitting of the feed stream, e.g. for treating or cooling in different ways
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/42Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/02Mixing or blending of fluids to yield a certain product
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/30Helium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/32Neon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/02Recycle of a stream in general, e.g. a by-pass stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/12External refrigeration with liquid vaporising loop

Definitions

  • the invention relates to a method for cooling a process stream against an auxiliary stream, the heat exchange between the process stream and the auxiliary stream taking place in a first heat exchanger and a second heat exchanger connected downstream of the latter.
  • auxiliary streams Generic methods for precooling a process stream against an auxiliary stream are used, for example, in cryogenic refrigeration and liquefaction plants, such as helium and neon refrigeration plants, hydrogen and helium liquefiers, etc.
  • Such refrigeration and liquefaction systems generally have a pre-cooling circuit in which the process stream to be cooled and possibly liquefied is cooled against an auxiliary stream, for example against liquefied nitrogen (LN 2 ).
  • LN 2 liquefied nitrogen
  • Liquid nitrogen is a comparatively inexpensive cold source. It enables the process stream to be cooled down to a temperature of approx. 80 K.
  • the process flow is cooled against the auxiliary flow in two heat exchangers arranged in series.
  • the circulating auxiliary flow or liquefied nitrogen is separated into a liquid and a gas fraction after its relaxation, as is shown in FIG Figure 1 will be explained. While the liquid fraction is passed in countercurrent to the process stream to be cooled through both heat exchangers, initially being passed through the second, colder heat exchanger, the gas fraction is only passed in countercurrent to the process stream to be cooled through the first or warmer of the two heat exchangers.
  • Particle accelerators, fusion research reactors, etc. have comparatively large masses of superconducting magnets and the associated installations. These magnets must be cooled from the ambient temperature (approx. 300 K) to an operating temperature which is usually below 5 K. This cooling procedure can take several days and weeks. As already described at the beginning, for the first cooling phase from approx. 300 K to approx. 80 K Required cold preferably provided by inexpensive liquefied nitrogen. In this case, however, the nitrogen must not be led directly through the cooling channels of the magnets to be cooled, since the nitrogen remaining in them would freeze out in the subsequent cooling phases, in which cooling down to a temperature of less than 5 K, and would lay the channels. For this reason, indirect heat exchange between the liquefied nitrogen and the process stream to be cooled must be implemented.
  • counterflow plate heat exchangers are preferably used for this purpose.
  • these types of heat exchangers are sensitive to excessive temperature gradients between the individual channels and can be damaged or destroyed by excessive thermal expansion forces.
  • the process stream to be cooled is cooled from ambient temperature to a temperature of approximately 80 K.
  • the low or medium pressure flow returned by the magnet or experiment to be cooled remains warm for a comparatively long time and is usually returned to the circuit compressor via a heater at approximately ambient temperature.
  • the high-pressure stream is cooled exclusively in the manner described above by the liquefied nitrogen.
  • the heat of vaporization of the liquefied nitrogen is approximately the same as the enthalpy difference of the nitrogen due to saturated steam at ambient temperature.
  • the enthalpy curve of the helium is constant.
  • the temperature spread between the helium process stream to be cooled and the nitrogen stream at the level of saturated nitrogen vapor is therefore greatest - this is in the area of the cold end of the warm heat exchanger or the warm end of the cold heat exchanger.
  • the object of the present invention is to provide a generic method for cooling a process stream against an auxiliary stream, in which the disadvantages described above are avoided.
  • the process stream to be cooled is divided into two or more, preferably three, partial streams.
  • the volume flows of these partial flows can be regulated by means of one valve each. Only the first and largest partial flow is cooled against the auxiliary flow in the first and second heat exchangers. This cools down to a temperature of approx. 1 K above the temperature of the auxiliary flow.
  • the second partial stream is then mixed into the process partial stream cooled in this way and the process stream thus formed is again added to the second one Heat exchanger supplied and cooled against the auxiliary flow in this. If the process stream is divided into three or more partial streams, the process stream thus formed is cooled again in the second heat exchanger against the auxiliary stream after each additional admixture of a partial stream.
  • the mass flows of the two or more partial flows are regulated in such a way that all process flows to be cooled have approximately the same temperatures at the inlet of the second heat exchanger.
  • the temperatures of the process streams to be cooled differ from one another by no more than 10 K, preferably no more than 5 K, in particular no more than 2 K, at the inlet of the second heat exchanger.
  • Temporary control deviations of up to 10 K, preferably up to 5 K, in particular up to 2 K are thus tolerable.
  • at least one of the valves controlling the flow rates of the two or more partial flows is completely open. As a result, the number of actuators (n + 1 valves) is adjusted to the number of controlled variables (n temperature differences). At the same time, the pressure loss in the process stream is minimized.
  • the thermal load is reduced while the load in the second heat exchanger, preferably auxiliary current evaporator, increases.
  • This allows the temperatures between the process and the auxiliary flow to be adjusted significantly. If the maximum temperature difference in the processes belonging to the prior art is more than 100 K, it can be reduced to less than 50 K by two or more admixtures or division into three or more partial flows. The temperature difference is therefore below the maximum permissible temperature difference for plate heat exchangers, which is between 50 and 100 K depending on the manufacturer and the geometry of the heat exchanger.
  • the maximum permissible temperature difference of the heat exchangers used is at least 70 K, it is basically sufficient if the process stream to be cooled is divided into only two partial streams. In this case, a second or further admixture of partial flows is not absolutely necessary.
  • the maximum temperature difference that occurs can be further reduced by more than two admixtures. Due to the procedure according to the invention, in the case of a helium refrigeration system, the entire high-pressure helium flow available in the refrigeration cycle can be cooled against liquefied nitrogen from the beginning of the cooling phase without exceeding the maximum permissible temperature difference between the individual channels in the plate heat exchangers. The cost of additional equipment and additional logic required to implement the method according to the invention is comparatively low. The method according to the invention also ensures full operational safety at all times.
  • hydrophil gas helium-rich gas
  • neon-rich gas helium-rich gas
  • nitrogen-rich liquid nitrogen-rich gas
  • nitrogen-rich gas helium-rich gas
  • nitrogen-rich liquid nitrogen-rich gas
  • the process stream to be cooled is helium
  • the auxiliary stream is a nitrogen-rich stream.
  • the helium process stream 1 to be cooled is corresponding to a first one in the Figure 1 illustrated embodiment divided into two substreams 2 and 2a. Valves a and b are used to control the volume of the two partial flows.
  • the first and larger partial stream 2 is cooled in the heat exchangers E1 and E2 to a temperature of approximately 1 K above the temperature of the auxiliary stream or liquefied nitrogen 9.
  • a cold, relaxed, nitrogen-rich stream 8 is separated in the separator D into a liquid fraction 9 and a gas fraction 10. Only the liquid fraction 9 is passed through the heat exchanger E2 in countercurrent to the helium partial stream 2 ′ to be cooled in the heat exchanger E2, mixed with the gas fraction 10 and the combined nitrogen-rich auxiliary stream 11 is then passed through in countercurrent to the helium partial stream 2 to be cooled passed the heat exchanger E1 before being withdrawn via line 12 and again in the Figure 1 Circulation compressor, not shown, is supplied.
  • the helium partial flow 3 cooled in the heat exchangers E1 and E2 is now mixed with the second helium partial flow 2a.
  • the helium process stream 4 thus formed is cooled in the heat exchanger E2; the cooled helium process stream 5 is then fed to the load to be cooled and / or at least one expansion device.
  • the volume flows of the helium substreams 2, 2a and 2b are by means of the control valves a, b and c to be regulated such that the temperatures of the process streams 2 ', 4 and 6 to be cooled in the second heat exchanger differ from one another by no more than 10 K, preferably by no more than 5 K, in particular by no more than 2 K.
  • control or control valves are provided within a refrigeration or liquefaction system that are only required during certain operating states, for example in continuous operation, these can possibly take over the function (s) of one of the control valves a, b and c described above. By means of this embodiment, the additional outlay required for fittings or valves can be reduced.

Description

Die Erfindung betrifft ein Verfahren zum Abkühlen eines Prozessstromes gegen einen Hilfsstrom, wobei der Wärmetausch zwischen dem Prozess- und dem Hilfsstrom in einem ersten Wärmetauscher und einem diesem nachgeschalteten zweiten Wärmetauscher erfolgt.The invention relates to a method for cooling a process stream against an auxiliary stream, the heat exchange between the process stream and the auxiliary stream taking place in a first heat exchanger and a second heat exchanger connected downstream of the latter.

Gattungsgemäße Verfahren zum Vorkühlen eines Prozessstromes gegen einen Hilfsstrom finden beispielsweise bei kryogenen Kälte- und Verflüssigungsanlagen, wie beispielsweise Helium- und Neonkälteanlagen, Wasserstoff- und Heliumverflüssiger, etc., Anwendung. Derartige Kälte- und Verflüssigungsanlagen weisen im Regelfall einen Vorkühlkreislauf auf, in dem der abzukühlende und ggf. zu verflüssigende Prozessstrom gegen einen Hilfsstrom, beispielsweise gegen verflüssigten Stickstoff (LN2) abgekühlt wird. Flüssiger Stickstoff stellt eine vergleichsweise kostengünstige Kältequelle dar. Er ermöglicht die Abkühlung des Prozessstromes bis auf eine Temperatur von ca. 80 K.Generic methods for precooling a process stream against an auxiliary stream are used, for example, in cryogenic refrigeration and liquefaction plants, such as helium and neon refrigeration plants, hydrogen and helium liquefiers, etc. Such refrigeration and liquefaction systems generally have a pre-cooling circuit in which the process stream to be cooled and possibly liquefied is cooled against an auxiliary stream, for example against liquefied nitrogen (LN 2 ). Liquid nitrogen is a comparatively inexpensive cold source. It enables the process stream to be cooled down to a temperature of approx. 80 K.

Hierbei erfolgt die Abkühlung des Prozessstromes gegen den Hilfsstrom in zwei in Reihe angeordneten Wärmetauschern. Der im Kreislauf geführte Hilfsstrom bzw. verflüssigte Stickstoff wird nach seiner kälteleistenden Entspannung in eine Flüssig-und eine Gasfraktion aufgetrennt, wie dies anhand der Figur 1 erläutert werden wird. Während die Flüssigfraktion im Gegenstrom zu dem abzukühlenden Prozessstrom durch beide Wärmetauscher geführt wird, wobei sie zunächst durch den zweiten, kälteren Wärmetauscher geführt wird, wird die Gasfraktion lediglich im Gegenstrom zu dem abzukühlenden Prozessstrom durch den ersten bzw. wärmeren der beiden Wärmetauscher geführt.The process flow is cooled against the auxiliary flow in two heat exchangers arranged in series. The circulating auxiliary flow or liquefied nitrogen is separated into a liquid and a gas fraction after its relaxation, as is shown in FIG Figure 1 will be explained. While the liquid fraction is passed in countercurrent to the process stream to be cooled through both heat exchangers, initially being passed through the second, colder heat exchanger, the gas fraction is only passed in countercurrent to the process stream to be cooled through the first or warmer of the two heat exchangers.

Teilchenbeschleuniger, Fusionsforschungsreaktoren, etc. weisen vergleichsweise große Massen an supraleitenden Magneten sowie den zugehörigen Installationen auf. Diese Magneten müssen von Umgebungstemperatur (ca. 300 K) auf eine Betriebstemperatur, die im Regelfall unterhalb von 5 K liegt, abgekühlt werden. Diese Abkühlprozedur kann mehrere Tage und Wochen in Anspruch nehmen. Wie eingangs bereits beschrieben, wird für die erste Abkühlphase von ca. 300 K auf ca. 80 K die benötigte Kälte vorzugsweise durch kostengünstigen verflüssigten Stickstoff bereitgestellt. Hierbei darf der Stickstoff jedoch nicht direkt durch die Kühlkanäle der abzukühlenden Magnete geführt werden, da in ihnen verbleibender Stickstoff in den nachfolgenden Kühlephasen, in denen bis zu einer Temperatur von weniger als 5 K abgekühlt wird, ausfrieren und die Kanäle verlegen würde. Aus diesem Grund ist ein indirekter Wärmetausch zwischen dem verflüssigten Stickstoff und dem abzukühlenden Prozessstrom zu realisieren.Particle accelerators, fusion research reactors, etc. have comparatively large masses of superconducting magnets and the associated installations. These magnets must be cooled from the ambient temperature (approx. 300 K) to an operating temperature which is usually below 5 K. This cooling procedure can take several days and weeks. As already described at the beginning, for the first cooling phase from approx. 300 K to approx. 80 K Required cold preferably provided by inexpensive liquefied nitrogen. In this case, however, the nitrogen must not be led directly through the cooling channels of the magnets to be cooled, since the nitrogen remaining in them would freeze out in the subsequent cooling phases, in which cooling down to a temperature of less than 5 K, and would lay the channels. For this reason, indirect heat exchange between the liquefied nitrogen and the process stream to be cooled must be implemented.

Aufgrund ihrer vergleichsweise hohen Effizienz und kompakten Bauform werden vorzugsweise Gegenstrom-Plattenwärmetauscher für diesen Zweck verwendet. Diese Wärmetauschertypen sind jedoch empfindlich auf zu hohe Temperaturgradienten zwischen den einzelnen Kanälen und können durch zu hohe thermische Dehnungskräfte beschädigt bzw. zerstört werden.Because of their comparatively high efficiency and compact design, counterflow plate heat exchangers are preferably used for this purpose. However, these types of heat exchangers are sensitive to excessive temperature gradients between the individual channels and can be damaged or destroyed by excessive thermal expansion forces.

Diese Gefahr besteht insbesondere während der vorbeschriebenen ersten Abkühlphase, bei der der abzukühlende Prozessstrom von Umgebungstemperatur auf eine Temperatur von ca. 80 K abgekühlt wird. Bei herkömmlichen Kälte- und Verflüssigungskreisläufen bleibt der von dem abzukühlenden Magnet bzw. Experiment zurückgeführte Nieder- oder Mitteldruckstrom vergleichsweise lange warm und wird üblicherweise über einen Anwärmer bei etwa Umgebungstemperatur zum Kreislaufkompressor zurückgeführt. Die Kühlung des Hochdruckstromes erfolgt in dieser Abkühlphase ausschließlich in vorbeschriebener Weise durch den verflüssigten Stickstoff. Die Verdampfungswärme des verflüssigten Stickstoffes ist in etwa gleich groß wie die Enthalpiedifferenz des Stickstoffs durch Sattdampf auf Umgebungstemperatur. Bei Helium-Kälte- und Helium-Verflüssigungsanlagen gilt, dass der Enthalpieverlauf des Heliums im Gegensatz dazu konstant ist. Daher ist die Temperaturspreizung zwischen dem abzukühlenden Helium-Prozessstrom und dem Stickstoffstrom auf Höhe des Stickstoff-Sattdampfes - dies ist im Bereich des kalten Endes des warmen Wärmetauschers bzw. des warmen Endes des kalten Wärmetauschers - am größten.This risk exists in particular during the above-described first cooling phase, in which the process stream to be cooled is cooled from ambient temperature to a temperature of approximately 80 K. In conventional refrigeration and liquefaction circuits, the low or medium pressure flow returned by the magnet or experiment to be cooled remains warm for a comparatively long time and is usually returned to the circuit compressor via a heater at approximately ambient temperature. In this cooling phase, the high-pressure stream is cooled exclusively in the manner described above by the liquefied nitrogen. The heat of vaporization of the liquefied nitrogen is approximately the same as the enthalpy difference of the nitrogen due to saturated steam at ambient temperature. In the case of helium refrigeration and helium liquefaction plants, the enthalpy curve of the helium, on the other hand, is constant. The temperature spread between the helium process stream to be cooled and the nitrogen stream at the level of saturated nitrogen vapor is therefore greatest - this is in the area of the cold end of the warm heat exchanger or the warm end of the cold heat exchanger.

Bisher wird diesem Problem dadurch begegnet, dass temporär ein Überschreiten der maximal zulässigen Temperaturdifferenz zwischen den Kanälen des bzw. der Wärmetauscher zugelassen wird. Aufgrund der Gefahr der Beschädigung der Wärmetauscher wird dadurch die Betriebssicherheit der Anlage verringert. Auch wurde bereits vorgeschlagen, den verflüssigten Stickstoff auf eine Temperatur von wenigstens 50 K unterhalb der erreichten Kältekreistemperatur - beginnend mit einer Temperatur von 250 K - vorzuverdampfen und aufzuheizen. Diese Verfahrensweise ist jedoch ineffizient und vergleichsweise langsam. In BAKER C R: "HYDROGEN LIQUEFACTION USING CENTRIFUGAL COMPRESSORS",HYDROGEN ENERGY PROGRESS. PROCEEDINGS OF THE WORLD HYDROGENENERGY CONFERENCE, Bd. 3, 1. Januar 1982 (1982-01-01), Seiten 1317-1333 , wird ein Prozess entsprechend des Oberbegriffes von Anspruch 1 offenbart.So far, this problem has been countered by temporarily allowing the maximum permissible temperature difference between the channels of the heat exchanger (s) to be exceeded. Because of the risk of damage to the heat exchanger, the operational safety of the system is reduced. Also was already proposed to pre-evaporate and heat the liquefied nitrogen to a temperature of at least 50 K below the cooling circuit temperature reached - starting at a temperature of 250 K. However, this procedure is inefficient and comparatively slow. In BAKER CR: "HYDROGEN LIQUEFACTION USING CENTRIFUGAL COMPRESSORS", HYDROGEN ENERGY PROGRESS. PROCEEDINGS OF THE WORLD HYDROGENENERGY CONFERENCE, Vol. 3, January 1, 1982 (1982-01-01), pages 1317-1333 A process according to the preamble of claim 1 is disclosed.

Aufgabe der vorliegenden Erfindung ist es, ein gattungsgemäßes Verfahren zum Abkühlen eines Prozessstromes gegen einen Hilfsstrom anzugeben, bei dem die vorbeschriebenen Nachteile vermieden werden.The object of the present invention is to provide a generic method for cooling a process stream against an auxiliary stream, in which the disadvantages described above are avoided.

Zur Lösung dieser Aufgabe wird ein gattungsgemäßes Verfahren zum Abkühlen eines Prozessstromes gegen einen Hilfsstrom vorgeschlagen, das dadurch gekennzeichnet ist, dass

  1. a) der Prozessstrom in zwei oder mehr Teilströme aufgeteilt wird,
  2. b) die Mengenströme der Teilströme mittels jeweils eines Ventils regelbar sind,
  3. c) lediglich ein erster Teilstrom in dem ersten und dem zweiten Wärmetauscher gegen den Hilfsstrom abgekühlt wird, und
  4. d) der oder die anderen Teilströme dem abgekühlten ersten Teilstrom zugemischt werden und der so gebildete Prozessstrom im zweiten Wärmetauscher erneut abgekühlt wird, wobei im Falle einer Aufteilung auf mehr als zwei Teilströme der Prozessstrom nach jeder Zumischung eines Teilstromes erneut im zweiten Wärmetauscher abgekühlt wird,
  5. e) wobei die Mengenströme der Teilströme derart geregelt werden, dass sich die Temperaturen der im zweiten Wärmetauscher abzukühlenden Prozessströme am Eintritt des zweiten Wärmetauschers um nicht mehr als 10 K voneinander unterscheiden, und
  6. f) wobei wenigstens eines der die Mengenströme der Teilströme regelnden Ventile vollständig geöffnet ist.
To solve this problem, a generic method for cooling a process stream against an auxiliary stream is proposed, which is characterized in that
  1. a) the process stream is divided into two or more substreams,
  2. b) the volume flows of the partial flows can be regulated by means of one valve each,
  3. c) only a first partial flow is cooled in the first and the second heat exchanger against the auxiliary flow, and
  4. d) the other sub-streams are mixed with the cooled first sub-stream and the process stream thus formed is cooled again in the second heat exchanger, the process stream being cooled again in the second heat exchanger after each addition of a sub-stream in the event of a division into more than two sub-streams,
  5. e) the volume flows of the partial flows being regulated in such a way that the temperatures of the process flows to be cooled in the second heat exchanger differ from one another by no more than 10 K at the inlet of the second heat exchanger, and
  6. f) wherein at least one of the valves regulating the flow rates of the partial flows is completely open.

Der abzukühlende Prozessstrom wird erfindungsgemäß in zwei oder mehr, vorzugsweise in drei Teilströme aufgeteilt. Die Mengenströme dieser Teilströme sind mittels jeweils eines Ventils regelbar. Lediglich der erste und größte Teilstrom wird in dem ersten und dem zweiten Wärmetauscher gegen den Hilfsstrom abgekühlt. Hierbei erfolgt eine Abkühlung bis auf eine Temperatur von ca. 1 K oberhalb der Temperatur des Hilfsstromes. Anschließend wird dem derart abgekühlten Prozessteilstrom der zweite Teilstrom zugemischt und der so gebildete Prozessstrom erneut dem zweiten Wärmetauscher zugeführt und in diesem gegen den Hilfsstrom abgekühlt. Sofern der Prozessstrom in drei oder mehr Teilströme aufgeteilt wird, wird nach jeder weiteren Zumischung eines Teilstromes der so gebildete Prozessstrom erneut im zweiten Wärmetauscher gegen den Hilfsstrom abgekühlt. Erfindungsgemäß werden die Mengenströme der zwei oder mehr Teilströme derart geregelt, dass alle abzukühlenden Prozessströme am Eintritt des zweiten Wärmetauschers annähernd gleiche Temperaturen aufweisen. Insbesondere weichen die Temperaturen der abzukühlenden Prozessströme am Eintritt des zweiten Wärmetauschers um nicht mehr als 10 K, vorzugsweise um nicht mehr als 5 K, insbesondere um nicht mehr als 2 K voneinander ab. Temporäre Regelabweichungen bis 10 K, vorzugsweise bis 5 K, insbesondere bis 2 K sind somit tolerierbar. Des Weiteren ist wenigstens eines der die Mengenströme der zwei oder mehr Teilströme regelnden Ventile vollständig geöffnet. Dadurch wird die Anzahl der Stellglieder (n+1 Ventile) an die Anzahl der Regelgrößen (n Temperaturdifferenzen) angeglichen. Zugleich wird der Druckverlust im Prozessstrom minimiert.According to the invention, the process stream to be cooled is divided into two or more, preferably three, partial streams. The volume flows of these partial flows can be regulated by means of one valve each. Only the first and largest partial flow is cooled against the auxiliary flow in the first and second heat exchangers. This cools down to a temperature of approx. 1 K above the temperature of the auxiliary flow. The second partial stream is then mixed into the process partial stream cooled in this way and the process stream thus formed is again added to the second one Heat exchanger supplied and cooled against the auxiliary flow in this. If the process stream is divided into three or more partial streams, the process stream thus formed is cooled again in the second heat exchanger against the auxiliary stream after each additional admixture of a partial stream. According to the invention, the mass flows of the two or more partial flows are regulated in such a way that all process flows to be cooled have approximately the same temperatures at the inlet of the second heat exchanger. In particular, the temperatures of the process streams to be cooled differ from one another by no more than 10 K, preferably no more than 5 K, in particular no more than 2 K, at the inlet of the second heat exchanger. Temporary control deviations of up to 10 K, preferably up to 5 K, in particular up to 2 K are thus tolerable. Furthermore, at least one of the valves controlling the flow rates of the two or more partial flows is completely open. As a result, the number of actuators (n + 1 valves) is adjusted to the number of controlled variables (n temperature differences). At the same time, the pressure loss in the process stream is minimized.

Erfindungsgemäß wird durch den ersten Wärmetauscher nurmehr ein Teilstrom des abzukühlenden Prozessstromes geleitet; dies hat zur Folge, dass die thermische Last reduziert wird, während die Last im zweiten Wärmetauscher, vorzugsweise Hilfsstrom-Verdampfer, ansteigt. Damit können die Temperaturen zwischen dem Prozess- und dem Hilfsstrom deutlich angeglichen werden. Beträgt die maximale Temperaturdifferenz bei den zum Stand der Technik zählenden Verfahren mehr als 100 K, kann sie durch eine zwei- oder mehrfache Zumischung bzw. Aufteilung in drei oder mehr Teilströme auf weniger als 50 K gesenkt werden. Damit liegt die Temperaturdifferenz unterhalb der für Plattenwärmetauscher maximal zulässigen Temperaturdifferenz, die je nach Hersteller und Geometrie des Wärmetauschers zwischen 50 und 100 K beträgt.According to the invention, only a partial stream of the process stream to be cooled is passed through the first heat exchanger; this has the consequence that the thermal load is reduced while the load in the second heat exchanger, preferably auxiliary current evaporator, increases. This allows the temperatures between the process and the auxiliary flow to be adjusted significantly. If the maximum temperature difference in the processes belonging to the prior art is more than 100 K, it can be reduced to less than 50 K by two or more admixtures or division into three or more partial flows. The temperature difference is therefore below the maximum permissible temperature difference for plate heat exchangers, which is between 50 and 100 K depending on the manufacturer and the geometry of the heat exchanger.

Sofern die maximal zulässige Temperaturdifferenz der verwendeten Wärmetauscher wenigstens 70 K beträgt, ist es grundsätzlich ausreichend, wenn der abzukühlende Prozessstrom auf lediglich zwei Teilströme aufgeteilt wird. Eine zweite bzw. weitere Zumischung von Teilströmen ist in diesem Fall nicht zwingend erforderlich.If the maximum permissible temperature difference of the heat exchangers used is at least 70 K, it is basically sufficient if the process stream to be cooled is divided into only two partial streams. In this case, a second or further admixture of partial flows is not absolutely necessary.

Mittels der erfindungsgemäßen Verfahrensweise kann die maximal auftretende Temperaturdifferenz durch mehr als zwei Zumischungen weiter reduziert werden. Aufgrund der erfindungsgemäßen Verfahrensweise kann im Falle einer Helium-Kälteanlage der gesamte im Kältekreislauf zur Verfügung stehende Helium-Hochdruckstrom von Beginn der Abkühlphase an gegen verflüssigten Stickstoff gekühlt werden ohne die maximal zulässige Temperaturdifferenz zwischen den einzelnen Kanälen in den Plattenwärmetauschern zu überschreiten. Der für die Realisierung des erfindungsgemäßen Verfahrens erforderliche Aufwand an zusätzlichem Equipment und zusätzlicher Logik ist dabei vergleichsweise gering. Das erfindungsgemäße Verfahren gewährleistet zudem jederzeit eine volle Betriebssicherheit.Using the procedure according to the invention, the maximum temperature difference that occurs can be further reduced by more than two admixtures. Due to the procedure according to the invention, in the case of a helium refrigeration system, the entire high-pressure helium flow available in the refrigeration cycle can be cooled against liquefied nitrogen from the beginning of the cooling phase without exceeding the maximum permissible temperature difference between the individual channels in the plate heat exchangers. The cost of additional equipment and additional logic required to implement the method according to the invention is comparatively low. The method according to the invention also ensures full operational safety at all times.

Weitere vorteilhafte Ausgestaltungen des erfindungsgemäßen Verfahrens zum Abkühlen eines Prozessstromes gegen einen Hilfsstrom, die Gegenstände der abhängigen Patentansprüche darstellen, sind dadurch gekennzeichnet, dass

  • die Mengenströme der Teilströme derart geregelt werden, dass sich die Temperaturen der im zweiten Wärmetauscher abzukühlenden Prozessströme am Eintritt des zweiten Wärmetauschers um nicht mehr als 5 K, vorzugsweise um nicht mehr als 2 K voneinander unterscheiden,
  • der erste Wärmetauscher und/oder der zweite Wärmetauscher als Plattenwärmetauscher ausgebildet sind,
  • der abzukühlende Prozessstrom ein Wasserstoff-, Helium- oder Neon-reiches Gas ist, und
  • der Hilfsstrom eine Stickstoff-reiche Flüssigkeit und/oder ein Stickstoff-reiches Gas ist.
Further advantageous refinements of the method according to the invention for cooling a process stream against an auxiliary stream, which are the subject matter of the dependent claims, are characterized in that
  • the mass flows of the partial flows are regulated in such a way that the temperatures of the process flows to be cooled in the second heat exchanger differ from one another by no more than 5 K, preferably no more than 2 K, at the inlet of the second heat exchanger,
  • the first heat exchanger and / or the second heat exchanger are designed as plate heat exchangers,
  • the process stream to be cooled is a hydrogen, helium or neon-rich gas, and
  • the auxiliary flow is a nitrogen-rich liquid and / or a nitrogen-rich gas.

Unter den Begriffen "Wasserstoff-reiches Gas", "Helium-reiches Gas", Neon-reiches Gas", "Stickstoff-reiche Flüssigkeit" und "Stickstoff-reiches Gas" seien jeweils Gase bzw. Flüssigkeiten zu verstehen, deren Anteil an den genannten Komponenten wenigstens 90 Vol.-%, vorzugsweise wenigstens 95 Vol.-%, insbesondere wenigstens 99 Vol.-% beträgt.The terms "hydrogen-rich gas", "helium-rich gas", neon-rich gas "," nitrogen-rich liquid "and" nitrogen-rich gas "are to be understood in each case as gases or liquids whose share in the named Components is at least 90% by volume, preferably at least 95% by volume, in particular at least 99% by volume.

Das erfindungsgemäße Verfahren zum Abkühlen eines Prozessstromes gegen einen Hilfsstrom sowie weitere vorteilhafte Ausgestaltungen desselben seien anhand der in der Figur 1 dargestellten Ausführungsbeispiele näher erläutert.The method according to the invention for cooling a process stream against an auxiliary stream, as well as further advantageous refinements of the same, are based on that in FIG Figure 1 illustrated embodiments explained in more detail.

Dargestellt sind zwei Ausführungsformen des erfindungsgemäßen Verfahrens zum Abkühlen eines Prozessstromes gegen einen Hilfsstrom, wie sie beispielsweise in kryogenen Helium- und Neonkälteanlagen, Wasserstoff- und Heliumverflüssiger, etc. realisiert werden können. Im Folgenden sei der abzukühlende Prozessstrom Helium, während der Hilfsstrom ein Stickstoff-reicher Strom ist.Shown are two embodiments of the method according to the invention for cooling a process stream against an auxiliary stream, as can be implemented, for example, in cryogenic helium and neon refrigeration systems, hydrogen and helium liquefiers, etc. In the following, the process stream to be cooled is helium, while the auxiliary stream is a nitrogen-rich stream.

Der abzukühlende Helium-Prozessstrom 1 wird entsprechend einer ersten, in der Figur 1 dargestellten Ausführungsform in zwei Teilströme 2 und 2a aufgeteilt. Die Ventile a und b dienen der Mengenregelung der beiden Teilströme. Der erste und größere Teilstrom 2 wird in den Wärmetauschern E1 und E2 bis auf eine Temperatur von ca. 1 K oberhalb der Temperatur des Hilfsstroms bzw. verflüssigten Stickstoffs 9 abgekühlt.The helium process stream 1 to be cooled is corresponding to a first one in the Figure 1 illustrated embodiment divided into two substreams 2 and 2a. Valves a and b are used to control the volume of the two partial flows. The first and larger partial stream 2 is cooled in the heat exchangers E1 and E2 to a temperature of approximately 1 K above the temperature of the auxiliary stream or liquefied nitrogen 9.

Ein kälteleistend entspannter, Stickstoff-reicher Strom 8 wird im Abscheider D in eine Flüssigfraktion 9 und eine Gasfraktion 10 aufgetrennt. Lediglich die Flüssigfraktion 9 wird im Gegenstrom zu dem vorbeschriebenen, im Wärmetauscher E2 abzukühlenden Helium-Teilstrom 2' durch den Wärmetauscher E2 geführt, mit der Gasfraktion 10 vermischt und der vereinigte Stickstoff-reiche Hilfsstrom 11 anschließend im Gegenstrom zu dem abzukühlenden Helium-Teilstrom 2 durch den Wärmetauscher E1 geführt, bevor er über Leitung 12 abgezogen und erneut einem in der Figur 1 nicht dargestellten Kreislaufverdichter zugeführt wird.A cold, relaxed, nitrogen-rich stream 8 is separated in the separator D into a liquid fraction 9 and a gas fraction 10. Only the liquid fraction 9 is passed through the heat exchanger E2 in countercurrent to the helium partial stream 2 ′ to be cooled in the heat exchanger E2, mixed with the gas fraction 10 and the combined nitrogen-rich auxiliary stream 11 is then passed through in countercurrent to the helium partial stream 2 to be cooled passed the heat exchanger E1 before being withdrawn via line 12 and again in the Figure 1 Circulation compressor, not shown, is supplied.

Dem in den Wärmetauschern E1 und E2 abgekühlten Helium-Teilstrom 3 wird nunmehr der zweite Helium-Teilstrom 2a zugemischt. Der derart gebildete Helium-Prozessstrom 4 wird im Wärmetauscher E2 abgekühlt; der abgekühlte Helium-Prozessstrom 5 wird anschließend der abzukühlenden Last und/oder wenigstens einer Expansionsvorrichtung zugeführt.The helium partial flow 3 cooled in the heat exchangers E1 and E2 is now mixed with the second helium partial flow 2a. The helium process stream 4 thus formed is cooled in the heat exchanger E2; the cooled helium process stream 5 is then fed to the load to be cooled and / or at least one expansion device.

Sofern eine wenigstens zweifache Zumischung von Helium-Teilströmen zu dem in den Wärmetauschern E1 und E2 abgekühlten Helium-Teilstrom 2 erfolgen soll, ist eine Auftrennung des Helium-Prozessstromes 1 in drei Teilströme 2, 2a und 2b erforderlich. Diese Variante ist in Figur 1 durch die gestrichelt gezeichneten Leitungsabschnitte 2b, 5', 6 und 7 sowie das gestrichelt gezeichnete Regelventil c dargestellt. Bei dieser Ausführungsform des erfindungsgemäßen Verfahrens wird der im Wärmetauscher E2 nach der Zumischung des Helium-Teilstromes 2a abgekühlte Helium-Prozessstrom 5' nicht über Leitung 5 abgezogen. Stattdessen wird ihm der dritte Helium-Teilstrom 2b zugemischt und der so gebildete Helium-Prozessstrom 6 im Wärmetauscher E2 abgekühlt, bevor er über Leitung 7 abgezogen wird.If at least two additions of helium partial streams to the helium partial stream 2 cooled in the heat exchangers E1 and E2 are to take place, a separation of the helium process stream 1 into three partial streams 2, 2a and 2b is necessary. This variant is in Figure 1 through the dashed line sections 2b, 5 ', 6 and 7 and the dashed control valve c shown. In this embodiment of the method according to the invention, the helium process stream 5 ′ cooled in the heat exchanger E2 after the admixture of the helium partial stream 2a is not drawn off via line 5. Instead, the third helium partial stream 2b is added to it and the helium process stream 6 thus formed is cooled in the heat exchanger E2 before it is drawn off via line 7.

Unabhängig davon, ob der abzukühlende Helium-Prozessstrom 1 in zwei, drei oder mehr als drei Helium-Teilströme 2, 2a, 2b, ... aufgeteilt wird, sind die Mengenströme der Helium-Teilströme 2, 2a und 2b mittels der Regelventile a, b und c derart zu regeln, dass sich die Temperaturen der im zweiten Wärmetauscher abzukühlenden Prozessströme 2', 4 und 6 um nicht mehr als 10 K, vorzugsweise um nicht mehr als 5 K, insbesondere um nicht mehr als 2 K voneinander unterscheiden.Regardless of whether the helium process stream 1 to be cooled is divided into two, three or more than three helium substreams 2, 2a, 2b, ..., the volume flows of the helium substreams 2, 2a and 2b are by means of the control valves a, b and c to be regulated such that the temperatures of the process streams 2 ', 4 and 6 to be cooled in the second heat exchanger differ from one another by no more than 10 K, preferably by no more than 5 K, in particular by no more than 2 K.

Sofern innerhalb einer Kälte- oder Verflüssigungsanlage Kontroll- bzw. Regelventile vorgesehen sind, die nur während bestimmter Betriebszustände, beispielsweise im Dauerbetrieb, benötigt werden, können diese ggf. die Funktion(en) eines der vorbeschriebenen Regelventile a, b und c übernehmen. Mittels dieser Ausführungsform kann der Mehraufwand benötigter Armaturen bzw. Ventile verringert werden.If control or control valves are provided within a refrigeration or liquefaction system that are only required during certain operating states, for example in continuous operation, these can possibly take over the function (s) of one of the control valves a, b and c described above. By means of this embodiment, the additional outlay required for fittings or valves can be reduced.

Claims (5)

  1. Method of cooling a process stream with an auxiliary stream, wherein the exchange of heat between the process stream and the auxiliary stream is effected in a first heat exchanger and a second heat exchanger connected downstream thereof,
    characterized in that
    a) the process stream (1) is divided into two or more substreams (2, 2a, 2b),
    b) the flow rates of the substreams (2, 2a, 2b) are regulatable by means of one valve (a, b, c) each,
    c) only a first substream (2) is cooled down with the auxiliary stream (9, 11) in the first and second heat exchangers (E1, E2), and
    d) the other substream(s) (2a, 2b) is/are mixed into the cooled first substream (3) and the process stream thus formed is cooled again in the second heat exchanger (E2), and, in the case of division into more than two substreams (2a, 2b), the process stream is cooled again in the second heat exchanger (E2) after each substream has been mixed in,
    e) wherein the flow rates of the substreams (2, 2a, 2b) are regulated such that the temperatures of the process streams to be cooled in the second heat exchanger (E2), on entry into the second heat exchanger (E2), differ from one another by not more than 10 K, and
    f) wherein at least one of the valves (a, b, c) that regulates the flow rates of the substreams is fully opened.
  2. Method according to Claim 1, characterized in that the flow rates of the substreams (2, 2a, 2b) are regulated such that the temperatures of the process streams to be cooled in the second heat exchanger (E2), on entry into the second heat exchanger (E2), differ from one another by not more than 5 K, preferably by not more than 2 K.
  3. Method according to Claim 1 or 2, characterized in that the first heat exchanger (E1) and/or the second heat exchanger (E2) take(s) the form of a plate heat exchanger.
  4. Method according to any of Claims 1 to 3, characterized in that the process stream (1) to be cooled is a hydrogen-, helium- or neon-rich gas.
  5. Method according to any of Claims 1 to 4, characterized in that the auxiliary stream (9, 11) is a nitrogen-rich liquid and/or a nitrogen-rich gas.
EP16738675.4A 2015-07-16 2016-07-14 Method for cooling a process flow Active EP3322947B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015009255.3A DE102015009255A1 (en) 2015-07-16 2015-07-16 Method for cooling a process stream
PCT/EP2016/001217 WO2017008910A1 (en) 2015-07-16 2016-07-14 Method for cooling a process flow

Publications (2)

Publication Number Publication Date
EP3322947A1 EP3322947A1 (en) 2018-05-23
EP3322947B1 true EP3322947B1 (en) 2020-02-12

Family

ID=56411577

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16738675.4A Active EP3322947B1 (en) 2015-07-16 2016-07-14 Method for cooling a process flow

Country Status (6)

Country Link
US (1) US10677523B2 (en)
EP (1) EP3322947B1 (en)
JP (1) JP2018523082A (en)
CN (1) CN108027198B (en)
DE (1) DE102015009255A1 (en)
WO (1) WO2017008910A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2575980A (en) * 2018-07-30 2020-02-05 Linde Ag High temperature superconductor refrigeration system
FR3110222B3 (en) * 2020-05-15 2022-04-22 Air Liquide Installation and process for refrigerating a fluid at cryogenic temperature

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL287922A (en) * 1962-02-12
US3377811A (en) * 1965-12-28 1968-04-16 Air Prod & Chem Liquefaction process employing expanded feed as refrigerant
US3415077A (en) * 1967-01-31 1968-12-10 500 Inc Method and apparatus for continuously supplying refrigeration below 4.2deg k.
CN1004228B (en) * 1985-04-01 1989-05-17 气体产品与化学公司 To liquidize natural gas by two mixed refrigerants
AU718068B2 (en) * 1995-10-05 2000-04-06 Bhp Petroleum Pty. Ltd. Liquefaction process
US6041620A (en) * 1998-12-30 2000-03-28 Praxair Technology, Inc. Cryogenic industrial gas liquefaction with hybrid refrigeration generation
US6532750B1 (en) * 2000-07-12 2003-03-18 Phpk Technologies Inc. Method and system for densifying cryogenic propellants
DE102008007923A1 (en) * 2008-02-07 2009-08-13 Linde Aktiengesellschaft Method for cooling a storage container
US20100281915A1 (en) * 2009-05-05 2010-11-11 Air Products And Chemicals, Inc. Pre-Cooled Liquefaction Process
RU2499208C1 (en) * 2012-04-06 2013-11-20 Общество с ограниченной ответственностью "Научно-исследовательский институт природных газов и газовых технологий - Газпром ВНИИГАЗ" Method for partial liquefaction of natural gas
JP5890748B2 (en) * 2012-05-22 2016-03-22 川崎重工業株式会社 Liquid hydrogen production equipment
EP2942585B1 (en) * 2012-12-27 2021-03-17 Mitsubishi Electric Corporation Refrigeration cycle device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CN108027198A (en) 2018-05-11
CN108027198B (en) 2020-05-22
DE102015009255A1 (en) 2017-01-19
JP2018523082A (en) 2018-08-16
EP3322947A1 (en) 2018-05-23
US20180202712A1 (en) 2018-07-19
WO2017008910A1 (en) 2017-01-19
US10677523B2 (en) 2020-06-09

Similar Documents

Publication Publication Date Title
DE1019333B (en) Process for the production of gaseous oxygen under pressure
DE19938216A1 (en) Liquefaction process
DE2709192A1 (en) METHODS FOR COLD TEA PRODUCTION WITH CRYO SYSTEMS
EP3322947B1 (en) Method for cooling a process flow
EP4018143A1 (en) Method for operating a heat exchanger, arrangement with a heat exchanger, and system with a corresponding arrangement
WO2006072365A1 (en) Method for liquefying a hydrocarbon-enriched flow
WO2010091804A2 (en) Method for liquefying a hydrocarbon-rich stream
EP2084722B1 (en) Method for cooling superconducting magnets
WO2020011396A1 (en) Method for operating a heat exchanger, arrangement comprising a heat exchanger, and air processing system comprising a corresponding arrangement
DE19848280C2 (en) Heat exchanger to liquefy a hydrocarbon-rich stream
DE19908506A1 (en) Refrigeration using thermal cycle for low boiling point fluid, especially for cooling superconducting components of particle accelerators
DE102004054674A1 (en) Process for liquefying a hydrocarbon-rich stream
EP0168519A2 (en) Apparatus for liquefying a low-boiling gas, particularly helium gas
WO2020229395A1 (en) Method for cooling a fluid mixture
EP3948124B1 (en) Method for operating a heat exchanger, assembly with heat exchanger and system with corresponding assembly
DE102021117030B4 (en) Gas mixture separation system and method for separating at least one main fluid from a gas mixture
EP2770286A1 (en) Method and apparatus for the production of high pressure oxygen and high pressure nitrogen
DE102013015850A1 (en) Method for operating a refrigeration cycle
DE102010062231A1 (en) Method for operating system for liquidation of natural gas flow, involves providing load of compressor unit, overheating of cooling medium and pressure of coolant medium or flow rates of cooling medium fraction as regulating variables
DE102020205184A1 (en) Power supply and process for their manufacture
EP3361197A1 (en) Method for the liquefaction of a fraction rich in hydrocarbon
DE102011013345A1 (en) refrigeration plant
EP4139613A1 (en) Apparatus and method for generating cryogenic temperatures and use thereof
DE10355935A1 (en) Liquefaction of natural gas comprises heat exchange with coolant or coolant mixture after coolant has been decompressed using two-phase expander
EP4246070A1 (en) Gas liquefaction method and gas liquefaction plant

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180115

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190701

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAL Information related to payment of fee for publishing/printing deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

GRAR Information related to intention to grant a patent recorded

Free format text: ORIGINAL CODE: EPIDOSNIGR71

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20191128

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1232671

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016008721

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: LINDE GMBH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502016008721

Country of ref document: DE

Owner name: LINDE GMBH, DE

Free format text: FORMER OWNER: LINDE AG, 80331 MUENCHEN, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200512

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200512

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200612

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200705

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016008721

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20201113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200714

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200714

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1232671

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210714

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210714

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230724

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230720

Year of fee payment: 8

Ref country code: DE

Payment date: 20230720

Year of fee payment: 8