EP3321999A1 - Method for manufacturing a separating membrane for a battery - Google Patents

Method for manufacturing a separating membrane for a battery Download PDF

Info

Publication number
EP3321999A1
EP3321999A1 EP17200968.0A EP17200968A EP3321999A1 EP 3321999 A1 EP3321999 A1 EP 3321999A1 EP 17200968 A EP17200968 A EP 17200968A EP 3321999 A1 EP3321999 A1 EP 3321999A1
Authority
EP
European Patent Office
Prior art keywords
dinitrile compound
metal salt
alkali metal
process according
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP17200968.0A
Other languages
German (de)
French (fr)
Other versions
EP3321999B1 (en
Inventor
Sébastien SOLAN
Camille GUERIN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA, Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP3321999A1 publication Critical patent/EP3321999A1/en
Application granted granted Critical
Publication of EP3321999B1 publication Critical patent/EP3321999B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • H01M50/406Moulding; Embossing; Cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0085Immobilising or gelification of electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for manufacturing a separator membrane for an accumulator. More particularly, the present invention relates to a method of manufacturing a separating membrane, in gelled form, for accumulator, flexible, or even deformable.
  • the positive electrode generally comprises a lithium cation insertion material.
  • This insertion material may for example comprise composite materials of the type, for example LiFePO 4 (lithium iron phosphate), or transition metal oxide (lamellar materials: LiCoO 2 : lithiated cobalt oxide, LiNi 0.33 Mn 0.33 Co 0.33 O 2 , etc ).
  • the electrolytic constituent includes a separator physically separating the positive and negative electrodes.
  • the separator may comprise a polymeric material or a microporous composite, and is generally soaked with an organic electrolyte solution for carrying lithium ions from one electrode to the other. More particularly, it is a transport of lithium ions from the positive electrode to the negative electrode during a charge cycle and vice versa during a discharge cycle.
  • the organic electrolyte solution may comprise a mixture of organic solvents (for example carbonates) to which a lithium salt, for example LiPF 6, is added .
  • the negative electrode may be graphite carbon, silicon, or, as soon as power applications are envisaged, Li 4 Ti 5 O 12 (titanate material).
  • the current collector of the positive electrode is usually aluminum. Furthermore, the positive electrode may be formed by a technique of depositing the insertion material on the current collector.
  • the deposition technique can be an induction technique, screen printing, inkjet or liquid spray.
  • the current collector of the negative electrode may be copper or aluminum, depending on whether the negative electrode is, respectively, graphite carbon or titanate material.
  • the assembly of the lithium ion battery generally comprises a first step of placing the electrolyte or electrolytic cores, devoid of the electrolytic solution, in the package.
  • the assembly of the lithium ion battery further comprises a second step of introducing the electrolytic solution intended to wet the electrolytic core or cores, and more particularly, to imbibe the separator of the electrolytic core or cores.
  • the package is sealed, for example thermo sealed, so as to make the assembly tight.
  • lithium ion batteries assembled by the assembly method known in the state of the art offer reduced flexibility, limiting the shaping of said batteries (by winding for example).
  • an object of the present invention is to provide a method of manufacturing a separator membrane for accumulator for simplifying the assembly process of said accumulator.
  • Another object of the present invention is also to provide a method of manufacturing a flexible membrane, or deformable.
  • Another object of the present invention is to provide a method of manufacturing a membrane for imparting to said membrane forms other than a flat surface.
  • the method according to the invention thus makes it possible to manufacture a separating membrane in gelled form comprising the electrolyte.
  • the separating membrane thus manufactured has the mechanical strength and the ionic conductivity required to be implemented in an alkaline metal battery.
  • the extrusion process also opens the way to the manufacture of membranes of different shapes, for example son, hollow tubes, especially for applications in the textile and medical fields.
  • the implementation of the gelling process of the carrier polymer by the dinitrile compound gives the separating membrane sufficient mechanical strength to be used in an alkaline metal battery, and an increased flexibility compared to solid membranes known from the state of the technical.
  • the process according to the invention uses only one solvent, the dinitrile compound, to solubilize the alkali metal salt, and to confer a gelled form.
  • the process according to the invention uses only one solvent, the dinitrile compound, to solubilize the alkali metal salt, and to confer a gelled form.
  • the method according to the invention is a simpler method to implement than those known from the state of the art.
  • the alkali metal salt is solubilized while hot in the dinitrile compound to form an electrolyte.
  • Hot solubilization means solubilized at a temperature above the melting point of the dinitrile compound.
  • the extrusion is performed by means of an extruder comprising at least one heating zone, at least one mixing zone, and a pumping zone terminated by a die.
  • the support polymer is introduced into the extruder at the heating zone, where it is heated to a temperature T greater than its glass transition temperature Tg, advantageously at a temperature T between Tg and Tg + 50 ° C.
  • the alkali metal salt and the dinitrile compound are introduced into the extruder either at the heating zone or at the mixing zone.
  • the alkali metal salt is a lithium metal salt
  • the lithium metal salt comprises at least one of the following elements: lithium bis-trifluoromethanesulfonimide, lithium bis (oxatlato) borate, LiPF 6 , LiClO 4 , LiBF 4 , LiAsF 6 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 3 , LiN (C 2 F 5 SO 2 ).
  • the carrier polymer comprises at least one of the following elements: copolyfluoride of vinylidene hexafluoropropylene, poly (methyl methacrylate), poly (butyl methacrylate), polyethylene oxide, polyvinylpyrrolidone.
  • the mass ratio between the dinitrile compound and the support polymer is between 40/60 and 90/10.
  • the alkali metal salt has a concentration of between 0.5 mol / L -1 and 5 mol / L -1 in the dinitrile compound.
  • the invention described in detail below employs a method of forming a separating membrane, in gelled form, of an alkali-metal battery, by molten route. More particularly, the melt process according to the invention involves an extrusion step.
  • the process according to the invention which makes it possible to produce flexible membranes in gelled form, uses only three elements, namely a support polymer, a dinitrile compound, and an alkali metal salt.
  • the method according to the invention comprises a step of extruding a mixture.
  • An extrusion process makes it possible to compress the mixture and to force it to pass through a die.
  • the die makes it possible to impose a given shape on the profile of the extruded mixture.
  • profile of the extruded mixture we mean the intersection with a plane perpendicular to the extrusion direction of said mixture.
  • the extrusion is performed by means of an extruder 10, and allows for an intimate mixture of the various elements forming the mixture.
  • extrusion makes it possible to produce thinner and more conductive membranes than those known from the state of the art, for example with a thickness of between 10 ⁇ m and 50 ⁇ m.
  • the extruder 10 comprises a sleeve 11, extending along a longitudinal axis XX ', inside which is positioned one or more endless screws, for example two screws.
  • the extruder 10 may comprise, in line (in other words along the longitudinal axis XX '), one or more heating zones 12, a mixing zone 13, and a pumping zone 14 terminated by a die 15 (it is understood that that the heating zone 12, the mixing zone 13, and the pumping zone 14 are in the sleeve).
  • a heating zone 12 is intended to melt, by raising the temperature, at least one of the elements forming the mixture.
  • the extruder is also provided with first feed means 16, for example a gravimetric feeder, allowing the introduction of elements forming the mixture at one of the heating zones 12.
  • the temperature rise is ensured by heating means, the use of which is known to those skilled in the art, and are therefore not described in the present application.
  • a mixing zone 13 ensures an intimate mixing of the elements forming the mixture, and may be contiguous to the heating zone 12.
  • the mixing is then provided by mixing means arranged on the worm or screws. More particularly, the mixing means constitute a rupture of the screw thread, and may comprise blades.
  • the mixing means are known to those skilled in the art and are therefore not described in the present application.
  • the mixing zone is also intended to induce a high rate of shear, and thus, as we shall see in the following description, orient the chains of a support polymer.
  • the mixing zone may also comprise second feed means 16.
  • the worm or screws comprise in the zone pumping 14 a thread to exert the pressure necessary to push the mixture to the die 15.
  • the die 15 can impart any shape to the profile of the extruded mixture. More particularly, the mixture can be extruded into sheet form, hollow tube or have a corner profile.
  • the extrusion can be carried out by introducing all or part of the elements forming the mixture into the extruder at the level of the first feed means 16.
  • the elements are then heated in the heating zone 12, and are also pushed from the heating zone. heating 12 to the mixing zone 13 by the thread of the worm or screws.
  • the elements not introduced at the level of the first feed means 16 are at the level of the second feed means 17.
  • alkali metal salt is meant a lithium salt, or a sodium salt, or a potassium salt.
  • a lithium salt may comprise at least one of the following elements: lithium bis-trifluoromethanesulfonimide (LiTFSI), lithium bis (oxatlato) borate (LiBoB), LiPF 6 , LiClO 4 , LiBF 4 , LiAsF 6 , LiCl 3 SO 3 , LiN (CF 3 SO 2 ) 3 , LiN (C 2 F 5 SO 2 ).
  • LiTFSI lithium bis-trifluoromethanesulfonimide
  • LiBoB lithium bis (oxatlato) borate
  • LiPF 6 LiClO 4
  • LiBF 4 LiAsF 6
  • LiCl 3 SO 3 LiN (CF 3 SO 2 ) 3
  • a lithium salt comprising LiPF 6 is generally widely used for the manufacture of the electrolytic solution of Lithium ion batteries, however it can advantageously be replaced by a lithium salt comprising LiTFSI which does not degrade when it is set. in contact with water.
  • LiTFSI has a thermal and chemical stability that allow it to improve the safety during its implementation in lithium ion batteries, as well as the performance of the latter.
  • the alkali metal salt may advantageously comprise LiTFSI.
  • a sodium salt may comprise at least one element chosen from: sodium bis-trifluoromethanesulfonimide (NaTFSI), sodium bis (oxatlato) borate (NaBoB), NaPF 6 , NaClO 4 , NaBF 4 , NaAsF 6 , NaCF 3 SO 3 , NaN ( CF 3 SO 2 ) 3 , NaN (C 2 F 5 SO 2 ).
  • NaTFSI sodium bis-trifluoromethanesulfonimide
  • NaBoB sodium bis (oxatlato) borate
  • NaPF 6 NaClO 4
  • NaBF 4 NaAsF 6
  • NaCF 3 SO 3 NaN ( CF 3 SO 2 ) 3
  • a potassium salt may comprise at least one element selected from: potassium bis-trifluoromethanesulfonimide (KTFSI), potassium bis (oxatlato) borate (KBoB), KPF 6 , KClO 4 , KBF 4 , KAsF 6 , KCF 3 SO 3 , KN ( CF 3 SO 2 ) 3 , KN (C 2 F 5 SO 2 ), KSCN.
  • KTFSI potassium bis-trifluoromethanesulfonimide
  • KBoB potassium bis (oxatlato) borate
  • KPF 6 , KClO 4 , KBF 4 , KAsF 6 , KCF 3 SO 3 , KN ( CF 3 SO 2 ) 3 , KN (C 2 F 5 SO 2 ), KSCN.
  • the dinitrile compound makes it possible to solubilize the alkali metal salt, more particularly the lithium salt.
  • the alkali metal salt solubilized in the dinitrile compound forms the electrolytic solution.
  • the dinitrile compound used in the invention has a melting temperature greater than 20 ° C., and advantageously replaces the solvent of the electrolytic solution known from the state of the art.
  • n 2
  • the dinitrile compound is succinonitrile.
  • Succinonitrile is a hyper-plastic, non-flammable, non-volatile organic compound with a melting point of 57 ° C.
  • succinonitrile can be used in an alkaline metal battery over a temperature range from -20 ° C to 250 ° C.
  • the alkali metal salt can be solubilized, hot, in the dinitrile compound either before extrusion or during extrusion.
  • the alkali metal salt solubilized in the dinitrile compound forms the electrolyte, also noted electrolyte SNx.
  • the introduction into the extruder of the alkali metal salt and the dinitrile compound, solubilized or not, can be made at the first 16 or second 17 feed means.
  • the alkali metal salt may have a concentration in the dinitrile compound of between 0.5 mol / L -1 and 5 mol / L -1 .
  • the alkali metal salt may be LiPF 6 , diluted in 1M% succinonitrile.
  • the alkali metal salt may be LiTFSI, and diluted in 1 M% succinonitrile, more particularly in succinonitrile also comprising 0.2 M% LiBoB.
  • the support polymer has the function of forming a physically insulating matrix of the positive and negative electrodes of the alkaline metal battery, while allowing the transfer of ionic species from one electrode to the other.
  • the carrier polymer is heat-fusible (and optionally thermally ductile) and soluble in the dinitrile compound.
  • the support polymer within the meaning of the invention, has a glass transition temperature Tg.
  • the support polymer is introduced into the heating zone 12 of the extruder 10 via the first feed means 16.
  • the support polymer can then be advantageously heated to a temperature T greater than its glass transition temperature Tg.
  • the carrier polymer, the dinitrile compound and the alkali metal salt are then brought into contact in the extruder, either at the heating zone 12 or at the mixing zone 13.
  • the support polymer and the dinitrile compound form a gel.
  • gel By gel is meant a three-dimensional network of solids diluted in a carrier fluid.
  • the cohesion of the three-dimensional network can be provided by chemical and / or physical bonds, and / or small crystals, and / or other bonds that remain intact in the carrier fluid.
  • the whole mixture is homogenized, then pushed into the pumping zone 14, then into the die 15 to be given the desired separating membrane shape.
  • the mass ratio between the dinitrile compound and the carrier polymer is between 40/60 and 90/10, preferably between 65/35 and 75/25, even more preferably of the order of 70/30.
  • the support polymer may comprise at least one of the following elements: copolyvinylidene fluoride hexafluoropropylene 21216 (PVDF-HFP 21216), copolyfluoride of vinylidene hexafluoropropylene 21510 (PVDF-HFP 21510), poly (methyl methacrylate) (PMMA), poly (butyl methacrylate) ) (PBMA), polyethylene oxide (POE), polyvinylpyrrolidone (PVP).
  • PVDF-HFP 21216 copolyvinylidene fluoride hexafluoropropylene 21216
  • PVDF-HFP 21510 copolyfluoride of vinylidene hexafluoropropylene 21510
  • PMMA poly (methyl methacrylate)
  • PBMA poly (butyl methacrylate)
  • POE polyethylene oxide
  • PVP polyvinylpyrrolidone
  • the aforementioned elements have a chemical, thermal, and electrochemical stability required to be implemented in a separating membrane of an alkaline metal battery.
  • the inventors have furthermore demonstrated that a support polymer comprising one or the other of POE or PVP polymers gelled almost instantaneously. Moreover, at the end of the gelling process, these two compounds are flexible and have a slight swelling.
  • POE known for its ability to form complexes with a wide variety of lithium salts, has relatively low ionic conductivity (10 -8 to 10 -5 S / cm) at room temperature when used as a solid membrane.
  • ionic conductivity 10 -8 to 10 -5 S / cm
  • the same membrane in gelled form sees its ionic conductivity increase.
  • a separating membrane in gelled form comprising POE, succinonitrile, and LiTFSI, in the proportions 70: 25: 5, has an ionic conductivity of the order of 10 -3 S / cm at temperature. room.
  • the use of the dinitrile compound, and especially succinonitrile, as a plasticizer makes it possible to improve the ionic conductivity of separating membranes that could not have been envisaged for their implementation by solid route.
  • the dinitrile compound is succinonitrile
  • heating the support polymer at a temperature of between Tg and Tg + 50 ° C., advantageously between Tg and Tg + 25 ° C. makes it possible to obtain the separating membrane under gelled form.
  • Succinonitrile makes it possible to consider temperatures during extrusion close to the glass transition temperature of the support polymer.
  • a support polymer comprising one or the other of the PVDF-HFP 21216 and PVDF-HFP 21510 polymers, after gelling with the dinitrile compound, has crystalline regions contributing to the good mechanical strength of the separating membrane, and amorphous regions capable of trapping a large amount of the solubilized alkali metal salt mixture in the dinitrile compound.
  • the use of such polymers makes it possible to obtain membranes having good mechanical strength and electrochemical performances compatible with their use in an alkaline metal battery.
  • the inventors have been able to demonstrate that the latter can gel to a mass content of 70% of SNx electrolyte (more particularly the electrolyte comprising a succinonitrile-lithium salt mixture).
  • the separating membrane thus obtained has a good mechanical strength and an ionic conductivity, between 30 ° C and 50 ° C, of the order of 10 -4 to 10 -3 S / cm for a thickness of 60 microns at temperature room.
  • the figure 3 shows the ionic conductivity of three membranes, A, B, and C, including PMMA, each gelled with succinonitrile.
  • the succinonitrile / PMMA mass ratios and the extrusion membrane formation temperature are given in Table 1.
  • Table 1 Membrane Succinonitrile / PMMA mass ratio Formation temperature (° C) AT 50/50 50 B 70/30 30 vs 70/30 50
  • the conductivity of each of the gelled PMMA membranes is obtained by impedance spectroscopy.
  • the three membranes A, B and C have acceptable ionic conductivities for their use in an alkaline metal battery, and more particularly in a lithium ion battery.
  • the figure 4 represents a measurement of voltammetry (in mA on the vertical axis) cyclic executed for voltages included in 0 V and 5 V (in Volt on the horizontal axis), respectively, for a cycle (cycle 1), five cycles (cycle 5) and ten cycles (cycle 10) on a gelled PMMA membrane.
  • cycle 1 a measurement of voltammetry (in mA on the vertical axis) cyclic executed for voltages included in 0 V and 5 V (in Volt on the horizontal axis), respectively, for a cycle (cycle 1), five cycles (cycle 5) and ten cycles (cycle 10) on a gelled PMMA membrane.
  • the invention is not limited to a single support polymer, and a mixture of a plurality of support polymers can be envisaged.
  • electrodes positive and negative, can also be manufactured by an extrusion process, and be laminated with the separator membrane at the extruder outlet and thus constitute the electrochemical core of an alkaline metal battery.
  • the electrodes may also be formed in gelled form.
  • carrier polymer and alkaline salt may be the same as that made for the method of manufacturing the separating membrane previously described.
  • the dinitrile compound may advantageously be succinonitrile.
  • the extrusion can also be performed under conditions similar to the extrusion conditions of the separating membrane according to the invention.
  • the colamination of the positive electrode, the separating membrane and the negative electrode can be performed directly at the outlet of three extruders.

Abstract

L'invention concerne un procédé de fabrication d'une membrane séparatrice, sous forme gélifiée, d'une batterie métal alcalin-ion, le procédé étant exécuté par extrusion d'un mélange comprenant : - un sel de métal alcalin, - un composé dinitrile de formule N‰¡C - R - C ‰¡ N, où R est un groupement hydrocarboné C n H 2n , et n'étant égal à 1 ou 2, de préférence n est égal à 2, - un polymère support thermo fusible, soluble dans le composé dinitrile.The invention relates to a process for manufacturing a separating membrane, in gelled form, of an alkali metal-ion battery, the process being carried out by extrusion of a mixture comprising: - an alkali metal salt, - a dinitrile compound of formula N‰¡C - R - C‰¡ N, where R is a hydrocarbon group C n H 2n , and n being equal to 1 or 2, preferably n is equal to 2, - a thermofusible support polymer, soluble in the dinitrile compound.

Description

DOMAINE TECHNIQUETECHNICAL AREA

La présente invention concerne un procédé de fabrication d'une membrane séparatrice pour accumulateur. Plus particulièrement, la présente invention concerne un procédé de fabrication d'une membrane séparatrice, sous forme gélifiée, pour accumulateur, flexible, voire déformable.The present invention relates to a method for manufacturing a separator membrane for an accumulator. More particularly, the present invention relates to a method of manufacturing a separating membrane, in gelled form, for accumulator, flexible, or even deformable.

ART ANTÉRIEURPRIOR ART

Un batterie lithium ion, illustrée à la figure 1 et connue de l'état de la technique, comprend en général :

  • un ou plusieurs coeurs électrochimiques 1, chaque coeur électrochimique comprenant un constituant électrolytique 2 intercalé entre une électrode négative 3 et une électrode positive 4, ladite électrode positive comprenant un matériau d'insertion, par exemple le cation lithium,
  • deux collecteurs de courant 5 et 6, respectivement, de l'électrode positive et de l'électrode négative,
  • un emballage, solide ou souple, dans lequel est disposé le coeur électrochimique, et fermé hermétiquement de manière à assurer l'étanchéité du dispositif.
A lithium ion battery, shown in figure 1 known from the state of the art, generally comprises:
  • one or more electrochemical cores 1, each electrochemical core comprising an electrolytic constituent 2 interposed between a negative electrode 3 and a positive electrode 4, said positive electrode comprising an insertion material, for example the lithium cation,
  • two current collectors 5 and 6, respectively, of the positive electrode and the negative electrode,
  • a package, solid or flexible, in which is disposed the electrochemical core, and hermetically sealed so as to seal the device.

Des pattes de reprise de courant, connectées aux deux collecteurs, sortent de l'emballage.Current recovery tabs, connected to the two collectors, come out of the package.

L'électrode positive comprend généralement un matériau d'insertion du cation lithium. Ce matériau d'insertion peut par exemple comprendre des matériaux composites du type, par exemple, LiFePO4 (phosphate de fer lithié), ou oxyde de métaux de transition (matériaux lamellaires : LiCoO2 : oxyde de cobalt lithié, LiNi0.33Mn0.33Co0.33O2, etc...).The positive electrode generally comprises a lithium cation insertion material. This insertion material may for example comprise composite materials of the type, for example LiFePO 4 (lithium iron phosphate), or transition metal oxide (lamellar materials: LiCoO 2 : lithiated cobalt oxide, LiNi 0.33 Mn 0.33 Co 0.33 O 2 , etc ...).

Le constituant électrolytique comprend un séparateur séparant physiquement les électrodes positive et négative. Le séparateur peut comprendre un matériau polymère ou un composite microporeux, et est généralement imbibé d'une solution électrolytique organique destinée à assurer le transport des ions lithium d'une électrode à l'autre. Plus particulièrement, il s'agit d'un transport des ions lithium de l'électrode positive vers l'électrode négative lors d'un cycle de charge et inversement lors d'un cycle de décharge.The electrolytic constituent includes a separator physically separating the positive and negative electrodes. The separator may comprise a polymeric material or a microporous composite, and is generally soaked with an organic electrolyte solution for carrying lithium ions from one electrode to the other. More particularly, it is a transport of lithium ions from the positive electrode to the negative electrode during a charge cycle and vice versa during a discharge cycle.

La solution électrolytique organique, généralement exempte de traces d'eau et/ou d'oxygène, peut comprendre un mélange de solvants organiques (par exemple des carbonates) auquel est ajouté un sel de lithium, par exemple du LiPF6.The organic electrolyte solution, generally free of traces of water and / or oxygen, may comprise a mixture of organic solvents (for example carbonates) to which a lithium salt, for example LiPF 6, is added .

L'électrode négative peut être en carbone graphite, en silicium, ou, dès lors que des applications de puissance sont envisagées, en Li4Ti5O12 (matériau titanate).The negative electrode may be graphite carbon, silicon, or, as soon as power applications are envisaged, Li 4 Ti 5 O 12 (titanate material).

Le collecteur de courant de l'électrode positive est généralement en aluminium. Par ailleurs, l'électrode positive peut être formée par une technique de dépôt du matériau d'insertion sur le collecteur de courant. La technique de dépôt peut être une technique d'induction, de sérigraphie, de jet d'encre ou encore de pulvérisation en voie liquide.The current collector of the positive electrode is usually aluminum. Furthermore, the positive electrode may be formed by a technique of depositing the insertion material on the current collector. The deposition technique can be an induction technique, screen printing, inkjet or liquid spray.

Le collecteur de courant de l'électrode négative peut être en cuivre ou en aluminium, selon que l'électrode négative est, respectivement, en carbone graphite ou en matériau titanate.The current collector of the negative electrode may be copper or aluminum, depending on whether the negative electrode is, respectively, graphite carbon or titanate material.

Ainsi, l'assemblage de la batterie lithium ion, connu de l'état de la technique, comprend en général une première étape de mise en place du ou des coeurs électrolytiques, dépourvu de la solution électrolytique, dans l'emballage.Thus, the assembly of the lithium ion battery, known from the state of the art, generally comprises a first step of placing the electrolyte or electrolytic cores, devoid of the electrolytic solution, in the package.

L'assemblage de la batterie lithium ion comprend en outre une seconde étape d'introduction de la solution électrolytique destinée à mouiller le ou les coeurs électrolytiques, et plus particulièrement, à imbiber le séparateur du ou des coeurs électrolytiques.The assembly of the lithium ion battery further comprises a second step of introducing the electrolytic solution intended to wet the electrolytic core or cores, and more particularly, to imbibe the separator of the electrolytic core or cores.

Enfin, l'emballage est scellé, par exemple thermo scellé, de manière à rendre l'assemblage étanche.Finally, the package is sealed, for example thermo sealed, so as to make the assembly tight.

Il est entendu que les pattes de reprise de courant ont été positionnées avant le scellement de l'emballage.It is understood that the current recovery tabs were positioned before the sealing of the package.

Toutefois, ce procédé de fabrication d'une batterie lithium ion n'est pas satisfaisant.However, this method of manufacturing a lithium ion battery is not satisfactory.

En effet, le procédé d'assemblage connu de l'état de la technique nécessite l'utilisation d'une solution électrolytique liquide, qui est introduite dans l'emballage et de manière à correctement imprégner le séparateur.Indeed, the known assembly method of the state of the art requires the use of a liquid electrolyte solution, which is introduced into the package and to correctly impregnate the separator.

Aussi, dans un souci de simplification du procédé, il est souhaitable de pouvoir supprimer cette étape.Also, for the sake of simplification of the process, it is desirable to be able to eliminate this step.

Par ailleurs, les batteries lithium ions assemblées par le procédé d'assemblage connu de l'état de la technique offrent une flexibilité réduite, limitant d'autant la mise en forme desdites batteries (par enroulement par exemple).Furthermore, lithium ion batteries assembled by the assembly method known in the state of the art offer reduced flexibility, limiting the shaping of said batteries (by winding for example).

En outre, le procédé d'assemblage connu de l'état de la technique est limité à la mise en oeuvre de séparateur plan. Or pour certaines applications, notamment des applications textiles, d'autres formes de séparateur peuvent être requises.In addition, the assembly method known from the state of the art is limited to the implementation of planar separator. However for some applications, including textile applications, other forms of separator may be required.

Ainsi, un but de la présente invention est de proposer un procédé de fabrication d'une membrane séparatrice pour accumulateur permettant de simplifier le procédé d'assemblage dudit accumulateur.Thus, an object of the present invention is to provide a method of manufacturing a separator membrane for accumulator for simplifying the assembly process of said accumulator.

Un autre but de la présente invention est également de proposer un procédé de fabrication d'une membrane flexible, voire déformable.Another object of the present invention is also to provide a method of manufacturing a flexible membrane, or deformable.

Un autre but de la présente invention est de proposer un procédé de fabrication d'une membrane permettant de conférer à ladite membrane d'autres formes qu'une surface plane.Another object of the present invention is to provide a method of manufacturing a membrane for imparting to said membrane forms other than a flat surface.

EXPOSÉ DE L'INVENTIONSTATEMENT OF THE INVENTION

Les buts de la présente invention sont au moins en partie atteints par un procédé de fabrication d'une membrane séparatrice, sous forme gélifiée, d'une batterie métal alcalin-ion, le procédé comprend une étape d'extrusion d'un mélange comprenant :

  • un sel de métal alcalin,
  • un composé dinitrile de formule N≡C-R-C≡N, où R est un groupement hydrocarboné CnH2n, et n étant égal à 1 ou 2, - un polymère support, présentant une température de transition vitreuse Tg, thermo fusible, soluble dans le composé dinitrile.
The objects of the present invention are at least partly achieved by a method of manufacturing a separating membrane, in gelled form, of an alkaline-ion battery, the method comprises a step of extruding a mixture comprising:
  • an alkali metal salt,
  • a dinitrile compound of formula N≡CRC≡N, where R is a hydrocarbon group C n H 2n , and n being equal to 1 or 2, a support polymer, having a glass transition temperature Tg, thermally fusible, soluble in the dinitrile compound.

Le procédé selon l'invention permet ainsi de fabriquer une membrane séparatrice sous forme gélifiée comprenant l'électrolyte.The method according to the invention thus makes it possible to manufacture a separating membrane in gelled form comprising the electrolyte.

La membrane séparatrice ainsi fabriquée présente la tenue mécanique et la conductivité ionique requises pour être mise en oeuvre dans une batterie métal alcalin ion.The separating membrane thus manufactured has the mechanical strength and the ionic conductivity required to be implemented in an alkaline metal battery.

Le procédé d'extrusion ouvre également la voie à la fabrication de membranes de différentes formes, par exemple des fils, des tubes creux, notamment pour des applications dans les domaines textile et médical.The extrusion process also opens the way to the manufacture of membranes of different shapes, for example son, hollow tubes, especially for applications in the textile and medical fields.

La mise en oeuvre du procédé de gélification du polymère support par le composé dinitrile confère à la membrane séparatrice une tenue mécanique suffisante pour être utilisée dans une batterie métal alcalin ion, et une flexibilité accrue par rapport aux membranes solides connues de l'état de la technique.The implementation of the gelling process of the carrier polymer by the dinitrile compound gives the separating membrane sufficient mechanical strength to be used in an alkaline metal battery, and an increased flexibility compared to solid membranes known from the state of the technical.

Par ailleurs, le procédé selon l'invention ne met en oeuvre qu'un seul solvant, le composé dinitrile, pour solubiliser le sel de métal alcalin, et conférer une forme gélifiée. Autrement dit, il n'est nullement nécessaire d'employer un solvant spécifique pour le polymère support. Par conséquent, aucune étape d'évaporation de solvant n'est requise pour la mise en oeuvre du procédé.Moreover, the process according to the invention uses only one solvent, the dinitrile compound, to solubilize the alkali metal salt, and to confer a gelled form. In other words, it is not necessary to use a specific solvent for the carrier polymer. Therefore, no solvent evaporation step is required for carrying out the method.

En outre, le procédé selon l'invention est un procédé plus simple à mettre oeuvre que ceux connus de l'état de la technique.In addition, the method according to the invention is a simpler method to implement than those known from the state of the art.

Selon un mode de mise en oeuvre, le sel de métal alcalin est solubilisé à chaud dans le composé dinitrile pour former un électrolyte.According to one embodiment, the alkali metal salt is solubilized while hot in the dinitrile compound to form an electrolyte.

Par solubilisé à chaud, on entend solubilisé à une température supérieure à la température de fusion du composé dinitrile.Hot solubilization means solubilized at a temperature above the melting point of the dinitrile compound.

Selon un mode de mise en oeuvre, l'extrusion est exécutée au moyen d'une extrudeuse comprenant au moins une zone de chauffe, au moins une zone de mélangeage, et une zone de pompage terminée par une filière.According to one embodiment, the extrusion is performed by means of an extruder comprising at least one heating zone, at least one mixing zone, and a pumping zone terminated by a die.

Selon un mode de mise en oeuvre, le polymère support est introduit dans l'extrudeuse au niveau de la zone chauffe, où il est chauffé à une température T supérieure à sa température de transition vitreuse Tg, avantageusement à une température T comprise entre Tg et Tg + 50°C.According to one embodiment, the support polymer is introduced into the extruder at the heating zone, where it is heated to a temperature T greater than its glass transition temperature Tg, advantageously at a temperature T between Tg and Tg + 50 ° C.

Selon un mode de mise en oeuvre, le sel de métal alcalin et le composé dinitrile sont introduits dans l'extrudeuse soit au niveau de la zone de chauffe, soit au niveau de la zone de mélangeage.According to one embodiment, the alkali metal salt and the dinitrile compound are introduced into the extruder either at the heating zone or at the mixing zone.

Selon un mode de mise en oeuvre, le sel de métal alcalin est un sel de métal lithium, avantageusement, le sel de métal lithium comprend au moins un des éléments choisi parmi : lithium bis-trifluorométhanesulfonimide, lithium bis(oxatlato)borate, LiPF6, LiClO4, LiBF4, LiAsF6, LiCF3SO3, LiN(CF3SO2)3, LiN(C2F5SO2).According to one embodiment, the alkali metal salt is a lithium metal salt, advantageously the lithium metal salt comprises at least one of the following elements: lithium bis-trifluoromethanesulfonimide, lithium bis (oxatlato) borate, LiPF 6 , LiClO 4 , LiBF 4 , LiAsF 6 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 3 , LiN (C 2 F 5 SO 2 ).

Selon un mode de mise en oeuvre, le polymère support comprend au moins un des éléments choisi parmi : copolyfluorure de vinylidène hexafluoropropylène, poly(méthyl méthacrylate), poly(butyl méthacrylate), oxyde de polyéthylène, polyvinylpyrrolidone.According to one embodiment, the carrier polymer comprises at least one of the following elements: copolyfluoride of vinylidene hexafluoropropylene, poly (methyl methacrylate), poly (butyl methacrylate), polyethylene oxide, polyvinylpyrrolidone.

Selon un mode de mise en oeuvre, le rapport massique entre le composé dinitrile et le polymère support est compris entre 40/60 et 90/10.According to one embodiment, the mass ratio between the dinitrile compound and the support polymer is between 40/60 and 90/10.

Selon un mode de mise en oeuvre, le sel de métal alcalin présente une concentration comprise entre 0,5 mol/L-1 et 5 mol/L-1 dans le composé dinitrile.According to one embodiment, the alkali metal salt has a concentration of between 0.5 mol / L -1 and 5 mol / L -1 in the dinitrile compound.

BRÈVE DESCRIPTION DES DESSINSBRIEF DESCRIPTION OF THE DRAWINGS

D'autres caractéristiques et avantages apparaîtront dans la description qui va suivre du procédé de fabrication d'une membrane séparatrice, sous forme gélifiée, d'une batterie métal alcalin-ion selon l'invention, donnés à titre d'exemples non limitatifs, en référence aux dessins annexés dans lesquels :

  • la figure 1 est une représentation schématique d'une batterie lithium ions, plus particulièrement, la figure 1 représente l'empilement des éléments constitutifs du coeur électrolytique de ladite batterie,
  • la figure 2a est une représentation schématique, selon un plan de coupe, d'une extrudeuse, le plan de coupe comprenant l'axe longitudinal XX',
  • la figure 2b est une représentation schématique de différentes formes de filières possibles pour la mise en oeuvre du procédé selon l'invention,
  • la figure 3 est une représentation graphique des conductivités ioniques en S/cm (sur l'axe vertical) de trois membranes, A, B, et C, comprenant du PMMA, gélifiées chacune avec du succinonitrile, pour différents rapports massiques succinonitrile/PMMA et différentes températures de formation,
  • la figure 4 représente un premier cycle (Cycle 1), un cinquième cycle (cycle 5) et un dixième cycle d'une mesure de voltampérométrie (en mA sur l'axe vertical) cyclique exécutée pour des tensions comprises en 0 V et 5 V (en Volt sur l'axe horizontal) sur une membrane de PMMA gélifiée.
Other features and advantages will become apparent in the following description of the method of manufacturing a separating membrane, in gelled form, of an alkaline-metal battery according to the invention, given by way of non-limiting examples, in reference to the accompanying drawings in which:
  • the figure 1 is a schematic representation of a lithium ion battery, more particularly, the figure 1 represents the stack of constituent elements of the electrolytic core of said battery,
  • the figure 2a is a diagrammatic representation, in a section plane, of an extruder, the sectional plane comprising the longitudinal axis XX ',
  • the figure 2b is a diagrammatic representation of various possible forms of dies for the implementation of the method according to the invention,
  • the figure 3 is a graphical representation of the ionic conductivities in S / cm (on the vertical axis) of three membranes, A, B, and C, comprising PMMA, each gelled with succinonitrile, for various succinonitrile / PMMA mass ratios and different temperatures of training,
  • the figure 4 represents a first cycle (Cycle 1), a fifth cycle (cycle 5) and a tenth cycle of a measurement of voltammetry (in mA on the vertical axis) cyclic performed for voltages between 0 V and 5 V (in Volt on the horizontal axis) on a gelled PMMA membrane.

EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERSDETAILED PRESENTATION OF PARTICULAR EMBODIMENTS

Pour les différents modes de mise en oeuvre, les mêmes références seront utilisées pour des éléments identiques ou assurant la même fonction, par souci de simplification de la description.For the different modes of implementation, the same references will be used for identical elements or ensuring the same function, for the sake of simplification of the description.

L'invention décrite de manière détaillée ci-dessous met en oeuvre un procédé de formation d'une membrane séparatrice, sous forme gélifiée, d'une batterie métal alcalin-ion, par voie fondue. Plus particulièrement, le procédé par voie fondue selon l'invention implique une étape d'extrusion. Le procédé selon l'invention, qui permet de réaliser des membranes flexibles sous forme gélifiée, ne met en oeuvre que trois éléments, à savoir un polymère support, un composé dinitrile, et un sel de métal alcalin.The invention described in detail below employs a method of forming a separating membrane, in gelled form, of an alkali-metal battery, by molten route. More particularly, the melt process according to the invention involves an extrusion step. The process according to the invention, which makes it possible to produce flexible membranes in gelled form, uses only three elements, namely a support polymer, a dinitrile compound, and an alkali metal salt.

A la figure 2, on peut voir un exemple de mise en oeuvre de la présente invention.To the figure 2 an exemplary embodiment of the present invention can be seen.

Le procédé selon l'invention comprend une étape d'extrusion d'un mélange. Un procédé d'extrusion permet de compresser le mélange, et de le contraindre à traverser une filière. La filière permet d'imposer une forme donnée au profil du mélange extrudé.The method according to the invention comprises a step of extruding a mixture. An extrusion process makes it possible to compress the mixture and to force it to pass through a die. The die makes it possible to impose a given shape on the profile of the extruded mixture.

Par profil du mélange extrudé nous entendons l'intersection avec un plan perpendiculaire avec la direction d'extrusion dudit mélange.By profile of the extruded mixture we mean the intersection with a plane perpendicular to the extrusion direction of said mixture.

L'extrusion est exécutée au moyen d'une extrudeuse 10, et permet de réaliser un mélange intime des différents éléments formant le mélange.The extrusion is performed by means of an extruder 10, and allows for an intimate mixture of the various elements forming the mixture.

Plus particulièrement, l'extrusion permet de réaliser des membranes plus fines et plus conductrices que celles connue de l'état de la technique, par exemple d'une épaisseur comprise entre 10 µm et 50 µm.More particularly, extrusion makes it possible to produce thinner and more conductive membranes than those known from the state of the art, for example with a thickness of between 10 μm and 50 μm.

L'extrudeuse 10 comprend un fourreau 11, s'étendant selon un axe longitudinal XX', à l'intérieur duquel est positionné un ou plusieurs vis sans fin, par exemple deux vis. L'extrudeuse 10 peut comprendre, en ligne (autrement dit selon l'axe longitudinal XX'), une ou plusieurs zones de chauffe 12, un zone de mélangeage 13, et un zone de pompage 14 terminée par une filière 15 (il est entendu que la zone de chauffe 12, la zone de mélangeage 13, et la zone de pompage 14 sont dans le fourreau).The extruder 10 comprises a sleeve 11, extending along a longitudinal axis XX ', inside which is positioned one or more endless screws, for example two screws. The extruder 10 may comprise, in line (in other words along the longitudinal axis XX '), one or more heating zones 12, a mixing zone 13, and a pumping zone 14 terminated by a die 15 (it is understood that that the heating zone 12, the mixing zone 13, and the pumping zone 14 are in the sleeve).

Une zone de chauffe 12 est destinée à faire fondre, par élévation de température, au moins un des éléments formant le mélange. L'extrudeuse est également pourvue de premiers moyens d'alimentation 16, par exemple un doseur gravimétrique, permettant l'introduction d'éléments formant le mélange au niveau de l'une des zones de chauffe 12. L'élévation de température est assurée par des moyens de chauffage, dont la mise en oeuvre est connue par l'homme du métier, et ne sont, par conséquent, pas décrits dans la présente demande.A heating zone 12 is intended to melt, by raising the temperature, at least one of the elements forming the mixture. The extruder is also provided with first feed means 16, for example a gravimetric feeder, allowing the introduction of elements forming the mixture at one of the heating zones 12. The temperature rise is ensured by heating means, the use of which is known to those skilled in the art, and are therefore not described in the present application.

Une zone de mélangeage 13 assure un mélange intime des éléments formant le mélange, et peut être contigüe à la zone de chauffe 12. Le mélangeage est alors assurée par des moyens de mélangeage disposés sur la ou les vis sans fin. Plus particulièrement, les moyens de mélangeage constituent une rupture du filetage des vis sans fin, et peuvent comprendre des pales. Les moyens de mélangeage sont connus de l'homme du métier et ne sont donc pas décrits dans la présente demande. La zone de mélangeage est également destinée à induire un fort taux de cisaillement, et ainsi, comme nous le verrons dans la suite de la description, orienter les chaines d'un polymère support. La zone de mélangeage peut également comprendre des seconds moyens d'alimentation 16.A mixing zone 13 ensures an intimate mixing of the elements forming the mixture, and may be contiguous to the heating zone 12. The mixing is then provided by mixing means arranged on the worm or screws. More particularly, the mixing means constitute a rupture of the screw thread, and may comprise blades. The mixing means are known to those skilled in the art and are therefore not described in the present application. The mixing zone is also intended to induce a high rate of shear, and thus, as we shall see in the following description, orient the chains of a support polymer. The mixing zone may also comprise second feed means 16.

La zone de pompage 14, contigüe à la zone de mélangeage 13, pousse le mélange, par pression, vers la filière 15. La ou les vis sans fin comprennent dans la zone de pompage 14 un filetage permettant d'exercer la pression nécessaire pour pousser le mélange vers la filière 15.The pumping zone 14, contiguous to the mixing zone 13, pushes the mixture, by pressure, towards the die 15. The worm or screws comprise in the zone pumping 14 a thread to exert the pressure necessary to push the mixture to the die 15.

La filière 15 peut conférer n'importe quelle forme au profil du mélange extrudé. Plus particulièrement, le mélange peut être extrudé en forme de feuille, de tube creux ou encore présenter un profil en coin.The die 15 can impart any shape to the profile of the extruded mixture. More particularly, the mixture can be extruded into sheet form, hollow tube or have a corner profile.

L'extrusion peut être exécutée en introduisant tout ou partie des éléments formant le mélange dans l'extrudeuse au niveau des premiers moyens d'alimentation 16. Les éléments sont alors chauffés dans la zone de chauffe 12, et sont également poussés de la zone de chauffe 12 vers la zone de mélangeage 13 par le filetage de la ou des vis sans fin. Les éléments non introduits au niveau des premiers moyens d'alimentation 16 le sont au niveau des seconds moyens d'alimentation 17.The extrusion can be carried out by introducing all or part of the elements forming the mixture into the extruder at the level of the first feed means 16. The elements are then heated in the heating zone 12, and are also pushed from the heating zone. heating 12 to the mixing zone 13 by the thread of the worm or screws. The elements not introduced at the level of the first feed means 16 are at the level of the second feed means 17.

Les éléments formant le mélange comprennent :

  • un sel de métal alcalin,
  • un composé dinitrile de formule N≡C-R-C≡N, où R est un groupement hydrocarboné CnH2n, et n étant égal à 1 ou 2,
  • un polymère support thermo fusible, soluble dans le composé dinitrile.
The elements forming the mixture include:
  • an alkali metal salt,
  • a dinitrile compound of formula N≡CRC≡N, where R is a hydrocarbon group C n H 2n , and n being equal to 1 or 2,
  • a heat-fusible support polymer, soluble in the dinitrile compound.

Par sel de métal alcalin, on entend un sel de lithium, ou un sel de sodium, ou un sel de potassium.By alkali metal salt is meant a lithium salt, or a sodium salt, or a potassium salt.

Un sel de lithium peut comprendre au moins un des éléments choisi parmi : lithium bis-trifluorométhanesulfonimide (LiTFSI), lithium bis(oxatlato)borate (LiBoB), LiPF6, LiClO4, LiBF4, LiAsF6, LiCF3SO3, LiN(CF3SO2)3, LiN(C2F5SO2).A lithium salt may comprise at least one of the following elements: lithium bis-trifluoromethanesulfonimide (LiTFSI), lithium bis (oxatlato) borate (LiBoB), LiPF 6 , LiClO 4 , LiBF 4 , LiAsF 6 , LiCl 3 SO 3 , LiN (CF 3 SO 2 ) 3 , LiN (C 2 F 5 SO 2 ).

Un sel de lithium comprenant du LiPF6 est généralement très utilisé pour la fabrication de la solution électrolytique des batteries Lithium ion, cependant il peut avantageusement être remplacée par un sel de lithium comprenant du LiTFSI qui ne se dégrade pas dès lors qu'il est mis en contact avec de l'eau.A lithium salt comprising LiPF 6 is generally widely used for the manufacture of the electrolytic solution of Lithium ion batteries, however it can advantageously be replaced by a lithium salt comprising LiTFSI which does not degrade when it is set. in contact with water.

Par ailleurs, le LiTFSI présente une stabilité thermique et chimique qui lui permettent d'améliorer la sûreté lors de sa mise en oeuvre dans des batteries lithium ion, ainsi que les performances de ces dernières. Ainsi, le sel de métal alcalin peut avantageusement comprendre du LiTFSI.In addition, LiTFSI has a thermal and chemical stability that allow it to improve the safety during its implementation in lithium ion batteries, as well as the performance of the latter. Thus, the alkali metal salt may advantageously comprise LiTFSI.

Un sel de sodium peut comprendre au moins des éléments choisi parmi : sodium bis-trifluorométhanesulfonimide (NaTFSI), Sodium bis(oxatlato)borate (NaBoB), NaPF6, NaClO4, NaBF4, NaAsF6, NaCF3SO3, NaN(CF3SO2)3, NaN(C2F5SO2).A sodium salt may comprise at least one element chosen from: sodium bis-trifluoromethanesulfonimide (NaTFSI), sodium bis (oxatlato) borate (NaBoB), NaPF 6 , NaClO 4 , NaBF 4 , NaAsF 6 , NaCF 3 SO 3 , NaN ( CF 3 SO 2 ) 3 , NaN (C 2 F 5 SO 2 ).

Un sel de potassium peut comprendre au moins des éléments choisi parmi : Potassium bis-trifluorométhanesulfonimide (KTFSI), Potassium bis(oxatlato)borate (KBoB), KPF6, KClO4, KBF4, KAsF6, KCF3SO3, KN(CF3SO2)3, KN(C2F5SO2), KSCN.A potassium salt may comprise at least one element selected from: potassium bis-trifluoromethanesulfonimide (KTFSI), potassium bis (oxatlato) borate (KBoB), KPF 6 , KClO 4 , KBF 4 , KAsF 6 , KCF 3 SO 3 , KN ( CF 3 SO 2 ) 3 , KN (C 2 F 5 SO 2 ), KSCN.

Le composé dinitrile permet de solubiliser le sel de métal alcalin, plus particulièrement le sel de lithium.The dinitrile compound makes it possible to solubilize the alkali metal salt, more particularly the lithium salt.

Le sel de métal alcalin solubilisé dans le composé dinitrile forme la solution électrolytique.The alkali metal salt solubilized in the dinitrile compound forms the electrolytic solution.

Le composé dinitrile est du malononitrile ou du succinonitrile, respectivement, si n=1 ou n=2.The dinitrile compound is malononitrile or succinonitrile, respectively, if n = 1 or n = 2.

Le composé dinitrile, mis en oeuvre dans l'invention, présente une température de fusion supérieure à 20°C, et remplace avantageusement le solvant de la solution électrolytique connue de l'état de la technique.The dinitrile compound used in the invention has a melting temperature greater than 20 ° C., and advantageously replaces the solvent of the electrolytic solution known from the state of the art.

De manière particulièrement avantageuse, n=2, autrement dit le composé dinitrile est du succinonitrile. Le succinonitrile est un composé organique hyper-plastique, ininflammable et non volatile qui présente une température de fusion de 57°C. Par ailleurs, le succinonitrile peut être utilisé dans une batterie de métal alcalin ion sur une gamme de températures comprises entre -20°C et 250°C.Particularly advantageously, n = 2, in other words the dinitrile compound is succinonitrile. Succinonitrile is a hyper-plastic, non-flammable, non-volatile organic compound with a melting point of 57 ° C. In addition, succinonitrile can be used in an alkaline metal battery over a temperature range from -20 ° C to 250 ° C.

Le sel de métal alcalin peut être solubilisé, à chaud, dans le composé dinitrile indifféremment avant l'extrusion ou pendant l'extrusion.The alkali metal salt can be solubilized, hot, in the dinitrile compound either before extrusion or during extrusion.

Le sel de métal alcalin solubilisé dans le composé dinitrile forme l'électrolyte, également noté électrolyte SNx.The alkali metal salt solubilized in the dinitrile compound forms the electrolyte, also noted electrolyte SNx.

L'introduction dans l'extrudeuse du sel de métal alcalin et du composé dinitrile, solubilisé ou non, peut être faite au niveau des premiers 16 ou des seconds 17 moyens d'alimentation.The introduction into the extruder of the alkali metal salt and the dinitrile compound, solubilized or not, can be made at the first 16 or second 17 feed means.

Le sel de métal alcalin peut présenter une concentration, dans le composé dinitrile, comprise entre 0,5 mol/L-1 et 5 mol/L-1.The alkali metal salt may have a concentration in the dinitrile compound of between 0.5 mol / L -1 and 5 mol / L -1 .

A titre d'exemple, le sel de métal alcalin peut être du LiPF6, dilué dans du succinonitrile à 1M%.By way of example, the alkali metal salt may be LiPF 6 , diluted in 1M% succinonitrile.

De manière avantageuse et toujours à titre d'exemple, le sel de métal alcalin peut être du LiTFSI, et dilué dans du succinonitrile à 1 M%, plus particulièrement dans du succinonitrile comprenant également du LiBoB à 0,2 M%.Advantageously and still by way of example, the alkali metal salt may be LiTFSI, and diluted in 1 M% succinonitrile, more particularly in succinonitrile also comprising 0.2 M% LiBoB.

Le polymère support a pour fonction de former une matrice isolant physiquement les électrodes positives et négatives de la batterie métal alcalin ion, tout en permettant le transfert d'espèces ioniques d'une électrode à l'autre.The support polymer has the function of forming a physically insulating matrix of the positive and negative electrodes of the alkaline metal battery, while allowing the transfer of ionic species from one electrode to the other.

Selon l'invention, le polymère support est thermo fusible (et éventuellement thermo ductile) et soluble dans le composé dinitrile.According to the invention, the carrier polymer is heat-fusible (and optionally thermally ductile) and soluble in the dinitrile compound.

Il est entendu tout au long de la description, que le polymère support, au sens de l'invention, présente une température de transition vitreuse Tg.It is understood throughout the description that the support polymer, within the meaning of the invention, has a glass transition temperature Tg.

Le polymère support est introduit dans la zone de chauffe 12 de l'extrudeuse 10 par l'intermédiaire des premiers moyens d'alimentation 16.The support polymer is introduced into the heating zone 12 of the extruder 10 via the first feed means 16.

Le polymère support peut alors être avantageusement chauffé à une température T supérieure à sa température de transition vitreuse Tg.The support polymer can then be advantageously heated to a temperature T greater than its glass transition temperature Tg.

Le polymère support, le composé dinitrile et le sel de métal alcalin sont alors mis en contact dans l'extrudeuse, soit au niveau de la zone de chauffe 12, soit au niveau de la zone de mélangeage 13.The carrier polymer, the dinitrile compound and the alkali metal salt are then brought into contact in the extruder, either at the heating zone 12 or at the mixing zone 13.

Dès lors qu'ils sont mis en contact, soit dans la zone de chauffe 12, soit dans la zone de mélangeage 13, le polymère support et le composé dinitrile forment un gel.As soon as they are brought into contact, either in the heating zone 12 or in the mixing zone 13, the support polymer and the dinitrile compound form a gel.

Par gel, on entend un réseau tridimensionnel de solides dilué dans un fluide porteur. La cohésion du réseau tridimensionnel peut être assurée par des liaisons chimiques et/ou physiques, et/ou de petits cristaux, et/ou d'autres liaisons qui demeurent intacte dans le fluide porteur.By gel is meant a three-dimensional network of solids diluted in a carrier fluid. The cohesion of the three-dimensional network can be provided by chemical and / or physical bonds, and / or small crystals, and / or other bonds that remain intact in the carrier fluid.

Dès lors qu'il se retrouve dans la zone de mélangeage, l'ensemble du mélange est homogénéisé, puis poussé dans la zone de pompage 14, puis dans la filière 15 pour se voir conférer la forme de membrane séparatrice voulue.Once it is in the mixing zone, the whole mixture is homogenized, then pushed into the pumping zone 14, then into the die 15 to be given the desired separating membrane shape.

De manière avantageuse, le rapport massique entre le composé dinitrile et le polymère support est compris entre 40/60 et 90/10, préférentiellement entre 65/35 et 75/25, encore plus préférentiellement de l'ordre de 70/30.Advantageously, the mass ratio between the dinitrile compound and the carrier polymer is between 40/60 and 90/10, preferably between 65/35 and 75/25, even more preferably of the order of 70/30.

Le polymère support peut comprendre au moins un des éléments choisi parmi : copolyfluorure de vinylidène hexafluoropropylène 21216 (PVDF-HFP 21216), copolyfluorure de vinylidène hexafluoropropylène 21510 (PVDF-HFP 21510), poly(méthyl méthacrylate) (PMMA), poly(butyl méthacrylate) (PBMA), oxyde de polyéthylène (POE), polyvinylpyrrolidone (PVP).The support polymer may comprise at least one of the following elements: copolyvinylidene fluoride hexafluoropropylene 21216 (PVDF-HFP 21216), copolyfluoride of vinylidene hexafluoropropylene 21510 (PVDF-HFP 21510), poly (methyl methacrylate) (PMMA), poly (butyl methacrylate) ) (PBMA), polyethylene oxide (POE), polyvinylpyrrolidone (PVP).

Les éléments précités présentent une stabilité chimique, thermique, et électrochimique requises pour être mis en oeuvre dans une membrane séparatrice d'une batterie métal alcalin ion.The aforementioned elements have a chemical, thermal, and electrochemical stability required to be implemented in a separating membrane of an alkaline metal battery.

Les inventeurs ont par ailleurs démontré qu'un polymère support comprenant l'un ou l'autre des polymères POE ou PVP gélifiait de manière quasi instantanée. Par ailleurs, à l'issue du processus de gélification, ces deux composés sont flexibles et présentent un léger gonflement.The inventors have furthermore demonstrated that a support polymer comprising one or the other of POE or PVP polymers gelled almost instantaneously. Moreover, at the end of the gelling process, these two compounds are flexible and have a slight swelling.

Le POE, connu pour sa capacité à former des complexes avec une large variété de sels de lithium, présente une conductivité ionique relativement faible (10-8 à 10-5 S/cm) à température ambiante lorsqu'il est utilisé comme membrane solide. Cependant, dès lors qu'il est mis en combinaison avec un composé dinitrile, notamment du succinonitrile, la même membrane sous forme gélifiée voit sa conductivité ionique augmenter. Par exemple, une membrane séparatrice sous forme gélifiée comprenant du POE, du succinonitrile, et du LiTFSI, dans les proportions 70 : 25 : 5, présente une conductivité ionique de l'ordre de l'ordre de 10-3 S/cm à température ambiante.POE, known for its ability to form complexes with a wide variety of lithium salts, has relatively low ionic conductivity (10 -8 to 10 -5 S / cm) at room temperature when used as a solid membrane. However, since it is combined with a dinitrile compound, especially succinonitrile, the same membrane in gelled form sees its ionic conductivity increase. For example, a separating membrane in gelled form comprising POE, succinonitrile, and LiTFSI, in the proportions 70: 25: 5, has an ionic conductivity of the order of 10 -3 S / cm at temperature. room.

Ainsi, l'emploi du composé dinitrile, et notamment du succinonitrile, en tant que plastifiant, permet d'améliorer la conductivité ionique de membranes séparatrices qui n'auraient pu être envisagées pour leur mise en oeuvre par voie solide.Thus, the use of the dinitrile compound, and especially succinonitrile, as a plasticizer, makes it possible to improve the ionic conductivity of separating membranes that could not have been envisaged for their implementation by solid route.

En outre, dès lors que le composé dinitrile est du succinonitrile, un chauffage du polymère support à une température comprise entre Tg et Tg + 50 °C, avantageusement entre Tg et Tg + 25 °C, permet d'obtenir la membrane séparatrice sous forme gélifiées. Le succinonitrile permet de considérer des températures lors de l'extrusion proches de la température de transition vitreuse du polymère support.In addition, since the dinitrile compound is succinonitrile, heating the support polymer at a temperature of between Tg and Tg + 50 ° C., advantageously between Tg and Tg + 25 ° C., makes it possible to obtain the separating membrane under gelled form. Succinonitrile makes it possible to consider temperatures during extrusion close to the glass transition temperature of the support polymer.

Un polymère support comprenant l'un ou l'autre des polymères PVDF-HFP 21216 et PVDF-HFP 21510, à l'issue de sa gélification avec le composé dinitrile, présente des régions cristallines participant à la bonne tenue mécanique de la membrane séparatrice, et des régions amorphes capables de piéger une grande quantité du mélange de sel de métal alcalin solubilisé dans le composé dinitrile. L'utilisation de tels polymères permet d'obtenir des membranes présentant une bonne tenue mécanique et des performances électrochimiques compatibles avec leur utilisation dans une batterie métal alcalin ion.A support polymer comprising one or the other of the PVDF-HFP 21216 and PVDF-HFP 21510 polymers, after gelling with the dinitrile compound, has crystalline regions contributing to the good mechanical strength of the separating membrane, and amorphous regions capable of trapping a large amount of the solubilized alkali metal salt mixture in the dinitrile compound. The use of such polymers makes it possible to obtain membranes having good mechanical strength and electrochemical performances compatible with their use in an alkaline metal battery.

En ce qui concerne le PMMA, les inventeurs ont pu démontrer que ce dernier peut gélifier jusqu'à une teneur massique de 70% d'électrolyte SNx (plus particulièrement l'électrolyte comprenant un mélange succinonitrile - sel de lithium).With regard to PMMA, the inventors have been able to demonstrate that the latter can gel to a mass content of 70% of SNx electrolyte (more particularly the electrolyte comprising a succinonitrile-lithium salt mixture).

Par ailleurs, la membrane séparatrice ainsi obtenue présente une bonne tenue mécanique et une conductivité ionique, entre 30 °C et 50 °C, de l'ordre de 10-4 à 10-3 S/cm pour une épaisseur de 60 µm à température ambiante.Furthermore, the separating membrane thus obtained has a good mechanical strength and an ionic conductivity, between 30 ° C and 50 ° C, of the order of 10 -4 to 10 -3 S / cm for a thickness of 60 microns at temperature room.

La figure 3 présente la conductivité ionique de trois membranes, A, B, et C, comprenant du PMMA, gélifiées chacune avec du succinonitrile. Les rapports massiques succinonitrile/PMMA, ainsi que la température de formation des membranes par extrusion sont donnés au tableau 1. Tableau 1 Membrane Rapport massique succinonitrile/PMMA Température de formation (°C) A 50/50 50 B 70/30 30 c 70/30 50 The figure 3 shows the ionic conductivity of three membranes, A, B, and C, including PMMA, each gelled with succinonitrile. The succinonitrile / PMMA mass ratios and the extrusion membrane formation temperature are given in Table 1. Table 1 Membrane Succinonitrile / PMMA mass ratio Formation temperature (° C) AT 50/50 50 B 70/30 30 vs 70/30 50

Les conductivité de chacune des membranes de PMMA gélifiées sont obtenues par spectroscopie d'impédance.The conductivity of each of the gelled PMMA membranes is obtained by impedance spectroscopy.

Les trois membranes A, B, et C présentent des conductivités ioniques acceptables pour leur mise en oeuvre dans une batterie métal alcalin ion, et plus particulièrement dans une batterie lithium ion.The three membranes A, B and C have acceptable ionic conductivities for their use in an alkaline metal battery, and more particularly in a lithium ion battery.

La figure 4 représente une mesure de voltampérométrie (en mA sur l'axe vertical) cyclique exécutée pour des tensions comprises en 0 V et 5 V (en Volt sur l'axe horizontal), respectivement, pour un cycle (cycle 1), cinq cycles (cycle 5) et dix cycles (cycle 10) sur une membrane de PMMA gélifiée. Les mesures ainsi présentées à la figure 4 démontrent que la membrane reste stable dans un domaine de tension compris entre 0 V et 5 V.The figure 4 represents a measurement of voltammetry (in mA on the vertical axis) cyclic executed for voltages included in 0 V and 5 V (in Volt on the horizontal axis), respectively, for a cycle (cycle 1), five cycles (cycle 5) and ten cycles (cycle 10) on a gelled PMMA membrane. The measures thus presented to the figure 4 demonstrate that the membrane remains stable in a voltage range between 0 V and 5 V.

L'invention n'est pas limitée à un seul polymère support, et un mélange d'une pluralité de polymères supports peut être envisagée.The invention is not limited to a single support polymer, and a mixture of a plurality of support polymers can be envisaged.

Nous notons également que des électrodes, positives et négatives, peuvent également être fabriquées par un procédé d'extrusion, et être laminées avec la membrane séparatrice en sortie d'extrudeuse et ainsi constituer le coeur électrochimique d'une batterie métal alcalin ion.We also note that electrodes, positive and negative, can also be manufactured by an extrusion process, and be laminated with the separator membrane at the extruder outlet and thus constitute the electrochemical core of an alkaline metal battery.

Plus particulièrement, les électrodes peuvent également être formées sous forme gélifiée.More particularly, the electrodes may also be formed in gelled form.

Ainsi, la formation de l'une ou l'autre des électrodes positive ou négative peut comprendre l'extrusion d'un mélange comprenant :

  • un polymère support,
  • un électrolyte comprenant un sel de métal alcalin solubilisé dans un composé dinitrile de formule N≡C-R-C≡N, où R est un groupement hydrocarboné CnH2n, et n étant égal à 1 ou 2,
  • un matériau actif adapté pour stocker et déstocker des ions alcalins (par exemple des ions lithium), le matériau actif étant avantageusement choisi parmi : LiFePO4, LiNiMnCoO2 si l'électrode est positive, et le matériau actif étant avantageusement du Li4Ti5O12 si l'électrode est négative.
  • un conducteur ionique comprenant par exemple un mélange de noir de carbone et de fibres de carbone.
Thus, the formation of one or the other of the positive or negative electrodes may comprise the extrusion of a mixture comprising:
  • a support polymer,
  • an electrolyte comprising an alkali metal salt solubilized in a dinitrile compound of formula N≡CRC≡N, where R is a hydrocarbon group C n H 2n , and n being equal to 1 or 2,
  • an active material adapted to store and destock alkaline ions (for example lithium ions), the active material being advantageously chosen from: LiFePO 4 , LiNiMnCoO 2 if the electrode is positive, and the active material is advantageously Li 4 Ti 5 O 12 if the electrode is negative.
  • an ionic conductor comprising for example a mixture of carbon black and carbon fibers.

Le choix du polymère support et du sel alcalin peut être le même que celui effectué pour le procédé de fabrication de la membrane séparatrice précédemment décrit.The choice of carrier polymer and alkaline salt may be the same as that made for the method of manufacturing the separating membrane previously described.

Le composé dinitrile peut avantageusement être du succinonitrile.The dinitrile compound may advantageously be succinonitrile.

L'extrusion peut être également exécutée dans des conditions similaires aux conditions d'extrusion de la membrane séparatrice selon l'invention.The extrusion can also be performed under conditions similar to the extrusion conditions of the separating membrane according to the invention.

Ainsi, la colamination de l'électrode positive, de la membrane séparatrice et de l'électrode négative peut être exécutée directement à la sortie de trois extrudeuses.Thus, the colamination of the positive electrode, the separating membrane and the negative electrode can be performed directly at the outlet of three extruders.

Claims (9)

Procédé de fabrication d'une membrane séparatrice, sous forme gélifiée, d'une batterie métal alcalin-ion, le procédé comprend une étape d'extrusion d'un mélange comprenant : - un sel de métal alcalin, - un composé dinitrile de formule N≡C-R-C≡N, où R est un groupement hydrocarboné CnH2n, et n étant égal à 1 ou 2, de préférence n est égal à 2, - un polymère support, présentant une température de transition vitreuse Tg, thermo fusible, soluble dans le composé dinitrile. A process for producing a separating membrane, in gelled form, of an alkaline-ion battery, the method comprises a step of extruding a mixture comprising: an alkali metal salt, a dinitrile compound of formula N≡CRC≡N, where R is a hydrocarbon group C n H 2n , and n being equal to 1 or 2, preferably n is equal to 2, a support polymer having a glass transition temperature Tg which is thermally fusible and soluble in the dinitrile compound. Procédé selon la revendication 1, dans lequel le sel de métal alcalin est solubilisé à chaud dans le composé dinitrile pour former un électrolyte.The process of claim 1 wherein the alkali metal salt is heat-solubilized in the dinitrile compound to form an electrolyte. Procédé selon la revendication 1 ou 2, dans lequel l'extrusion est exécutée au moyen d'une extrudeuse comprenant en ligne au moins une zone de chauffe, au moins une zone de mélangeage, et un zone de pompage terminée par une filière.A method according to claim 1 or 2, wherein the extrusion is performed by means of an extruder comprising in line at least one heating zone, at least one mixing zone, and a pumping zone terminated by a die. Procédé selon la revendication 3, dans lequel le polymère support est introduit dans l'extrudeuse au niveau de la zone chauffe, où il est chauffé à une température T supérieure à la température de transition vitreuse Tg, avantageusement à une température T comprise entre Tg et Tg + 50°C.Process according to Claim 3, in which the carrier polymer is introduced into the extruder at the heating zone, where it is heated to a temperature T greater than the glass transition temperature Tg, advantageously at a temperature T between Tg and Tg + 50 ° C. Procédé selon la revendication 3 ou 4, dans lequel le sel de métal alcalin et le composé dinitrile sont introduits dans l'extrudeuse soit au niveau de la zone de chauffe, soit au niveau de la zone de mélangeage.Process according to claim 3 or 4, wherein the alkali metal salt and the dinitrile compound are introduced into the extruder either at the heating zone or at the mixing zone. Procédé selon l'une des revendications 1 à 5, dans lequel le sel de métal alcalin est un sel lithium, avantageusement, le sel de métal lithium comprend au moins un des éléments choisi parmi : lithium bis-trifluorométhanesulfonimide, lithium bis(oxatlato)borate, LiPF6, LiClO4, LiBF4, LiAsF6, LiCF3SO3, LiN(CF3SO2)3, LiN(C2F5SO2).Process according to one of Claims 1 to 5, in which the alkali metal salt is a lithium salt, advantageously the lithium metal salt comprises at least one at least one of the following: lithium bis-trifluoromethanesulfonimide, lithium bis (oxatlato) borate, LiPF 6 , LiClO 4 , LiBF 4 , LiAsF 6 , LiCl 3 SO 3 , LiN (CF 3 SO 2 ) 3 , LiN (C 2 F) 5 SO 2). Procédé selon l'une des revendications 1 à 6, dans lequel le polymère support comprend au moins un des éléments choisi parmi : copolyfluorure de vinylidène hexafluoropropylène 21216, copolyfluorure de vinylidène hexafluoropropylène 21510, poly(méthyl méthacrylate), poly(butyl méthacrylate), oxyde de polyéthylène, polyvinylpyrrolidone.Process according to one of Claims 1 to 6, in which the carrier polymer comprises at least one of the following: vinylidene copolyfluoride hexafluoropropylene 21216, vinylidene copolyfluoride hexafluoropropylene 21510, poly (methyl methacrylate), poly (butyl methacrylate), oxide polyethylene, polyvinylpyrrolidone. Procédé selon l'une des revendications 1 à 7, dans lequel le rapport massique entre le composé dinitrile et le polymère support est compris entre 40/60 et 90/10.Process according to one of claims 1 to 7, wherein the mass ratio between the dinitrile compound and the carrier polymer is between 40/60 and 90/10. Procédé selon l'une des revendications 1 à 8, dans lequel le sel de métal alcalin présente une concentration comprise entre 0,5 mol/L-1 et 5 mol/L-1 dans le composé dinitrile.Process according to one of Claims 1 to 8, in which the alkali metal salt has a concentration of between 0.5 mol / L -1 and 5 mol / L -1 in the dinitrile compound.
EP17200968.0A 2016-11-15 2017-11-10 Method for manufacturing a separating membrane for a battery Active EP3321999B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1661024A FR3058833B1 (en) 2016-11-15 2016-11-15 PROCESS FOR MANUFACTURING A SEPARATORY MEMBRANE FOR ACCUMULATOR

Publications (2)

Publication Number Publication Date
EP3321999A1 true EP3321999A1 (en) 2018-05-16
EP3321999B1 EP3321999B1 (en) 2019-10-09

Family

ID=57909665

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17200968.0A Active EP3321999B1 (en) 2016-11-15 2017-11-10 Method for manufacturing a separating membrane for a battery

Country Status (3)

Country Link
US (1) US10686174B2 (en)
EP (1) EP3321999B1 (en)
FR (1) FR3058833B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3040550B1 (en) * 2015-08-25 2017-08-11 Commissariat Energie Atomique GELIFIED LITHIUM ION BATTERY

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07176322A (en) 1993-12-21 1995-07-14 Mitsubishi Cable Ind Ltd Electrolytic solution for li secondary battery
US5749927A (en) 1996-05-24 1998-05-12 W. R. Grace & Co. -Conn. Continuous process to produce lithium-polymer batteries
JP2003003078A (en) * 2000-09-19 2003-01-08 Nisshinbo Ind Inc Ion-conductive composition, gel elecrolyte, and non- aqueous electrolytic cell and electric double layer capacitor
FR2841045B1 (en) 2002-06-17 2004-12-24 Electricite De France LITHIUM ACCUMULATOR
CA2435218A1 (en) 2003-07-28 2005-01-28 Michel Armand Plastic crystal electrolytes based on a polar, neutral matrix
CN101253650A (en) 2005-07-29 2008-08-27 加拿大国家研究委员会 Plastic crystal electrolyte in lithium-based electrochemical devices
JP4963186B2 (en) 2006-03-31 2012-06-27 パナソニック株式会社 Nonaqueous electrolyte secondary battery
JP5202816B2 (en) 2006-04-07 2013-06-05 東レバッテリーセパレータフィルム株式会社 Polyolefin microporous membrane and method for producing the same
US7807287B2 (en) 2006-08-31 2010-10-05 Tonen Chemical Corporation Multi-layer, microporous membrane, battery separator and battery
JP4936440B2 (en) 2006-10-26 2012-05-23 日立マクセルエナジー株式会社 Non-aqueous secondary battery
CA2686890C (en) 2007-05-11 2015-10-20 National Research Council Of Canada Plastic crystal electrolyte with a broad potential window
JP5342552B2 (en) * 2008-05-07 2013-11-13 日立マクセル株式会社 Non-aqueous secondary battery and electronic equipment
FR2985857B1 (en) 2012-01-17 2014-01-03 Hutchinson CATHODE FOR LITHIUM-ION BATTERY CELL, METHOD FOR MANUFACTURING SAME, AND BATTERY INCORPORATING SAME
KR102112787B1 (en) * 2013-02-27 2020-05-19 도레이 카부시키가이샤 Porous polyolefin film, battery separator obtained using same, and processes for producing these

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
FAN L Z ET AL: "All-solid-state polymer electrolyte with plastic crystal materials for rechargeable lithium-ion battery", JOURNAL OF POWER SOURCES, ELSEVIER SA, CH, vol. 189, no. 1, 9 August 2008 (2008-08-09), pages 775 - 778, XP025982797, ISSN: 0378-7753, [retrieved on 20080809], DOI: 10.1016/J.JPOWSOUR.2008.07.083 *
FAN L Z ET AL: "Composite effects in poly(ethylene oxide)-succinonitrile based all-solid electrolytes", ELECTROCHEMISTRY COMMUNICATIONS, ELSEVIER, AMSTERDAM, NL, vol. 8, no. 11, 7 September 2006 (2006-09-07), pages 1753 - 1756, XP028041714, ISSN: 1388-2481, [retrieved on 20061101], DOI: 10.1016/J.ELECOM.2006.08.017 *
FAN L-Z ET AL: "SUCCINONITRILE AS A VERSATILE ADDITIVE FOR POLYMER ELECTROLYTES", ADVANCED FUNCTIONAL MATERIALS, WILEY - V C H VERLAG GMBH & CO. KGAA, DE, vol. 17, no. 15, 15 October 2007 (2007-10-15), pages 2800 - 2807, XP001507267, ISSN: 1616-301X, DOI: 10.1002/ADFM.200601070 *
KATHARINA M. FREITAG ET AL: "Enhancement of Li Ion Conductivity by Electrospun Polymer Fibers and Direct Fabrication of Solvent-Free Separator Membranes for Li Ion Batteries", INORGANIC CHEMISTRY, vol. 56, no. 4, 20 February 2017 (2017-02-20), EASTON, US, pages 2100 - 2107, XP055353193, ISSN: 0020-1669, DOI: 10.1021/acs.inorgchem.6b02781 *
LI YAN-HUA ET AL: "A novel polymer electrolyte with improved high-temperature-tolerance up to 170 DEG C for high-temperature lithium-ion batteries", JOURNAL OF POWER SOURCES, vol. 244, 1 February 2013 (2013-02-01), pages 234 - 239, XP028692049, ISSN: 0378-7753, DOI: 10.1016/J.JPOWSOUR.2013.01.148 *
MYUNG-HYUN RYOU ET AL: "Cross-linkable Polymer Matrix for Enhanced Thermal Stability of Succinonitrile-based Polymer Electrolyte in Lithium Rechargeable Batteries", JOURNAL OF ELECTROCHEMICAL SCIENCE AND TECHNOLOGY, vol. 2, no. 4, 31 December 2011 (2011-12-31), pages 198 - 203, XP055083429, ISSN: 2093-8551, DOI: 10.5229/JECST.2011.2.4.198 *
VOIGT NADINE ET AL: "The effect of plastic-crystalline succinonitrile on the electrolyte system PEO:LiBF4: Insights from solid state NMR", SOLID STATE IONICS, vol. 260, 12 April 2014 (2014-04-12), pages 65 - 75, XP028644791, ISSN: 0167-2738, DOI: 10.1016/J.SSI.2014.03.009 *

Also Published As

Publication number Publication date
FR3058833A1 (en) 2018-05-18
EP3321999B1 (en) 2019-10-09
US10686174B2 (en) 2020-06-16
FR3058833B1 (en) 2019-05-10
US20180138481A1 (en) 2018-05-17

Similar Documents

Publication Publication Date Title
EP2618409B1 (en) Cathode for lithium ion battery, its manufacturing process and battery comprising it
EP3341987B1 (en) Lithium-ion gel battery
EP3322004B1 (en) Method for manufacturing an electrode for a battery
EP1602143B1 (en) Rechargeable electrochemical accumulator
EP2639860A1 (en) Anode for lithium ion battery, its fabrication procedure et the battery including it
EP3000141B1 (en) Bipolar li-ion battery having improved sealing and associated method of production
EP1849205A2 (en) Bilayer electrolyte for a lithium battery
CN1316788A (en) Manaqueous electrolyte secondary battery and method for manufacturing the battery
WO2017017023A1 (en) Electrode-forming composition
WO2017216179A1 (en) Flexible battery
EP3321999B1 (en) Method for manufacturing a separating membrane for a battery
CA2482003A1 (en) Polymer-fused salt-solvent mixture, process for its manufacture and use of the mixture in electrochemical systems
EP1514325B1 (en) Accumulateur au lithium
FR3127844A1 (en) SOLID ELECTROLYTE
WO2019058079A1 (en) Gel-type polymer electrolyte for an electrochemical device
FR3115934A1 (en) ELECTROCHEMICAL ACCUMULATOR WITH BIPOLAR ARCHITECTURE COMPRISING, AS ACTIVE ELECTRODE MATERIAL, A MATERIAL COMMON TO ALL ELECTRODES
EP4058508B1 (en) Gelled polymer membrane for li-ion battery
CN117223138A (en) battery cell separator
FR3105606A1 (en) SPECIFIC SEPARATOR INCLUDING AN ELECTROLYTE FOR ELECTROCHEMICAL ACCUMULATOR AND ELECTROCHEMICAL CELL FOR ACCUMULATOR INCLUDING SUCH A SEPARATOR
FR3073672A1 (en) PROCESS FOR PREPARING AN ELECTROCHEMICAL CELL FOR LITHIUM BATTERY COMPRISING A SPECIFIC GELIFIED ELECTROLYTE
FR3056339A1 (en) METHOD FOR PRODUCING AN ELECTROCHEMICAL DEVICE
KR20030019996A (en) Method of Manufacturing Polymer Electrolyte and Method of manufacturing Lithium Polymer Secondary Battery Utilizing Thereof
CA2582960A1 (en) Aprotic polymer/molten salt ternary mixture solvent, method for the production and use thereof in electrochemical systems

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20171110

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190104

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190502

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017007650

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1189856

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191115

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20191009

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1189856

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200109

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200110

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200210

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200109

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602017007650

Country of ref document: DE

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191110

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200209

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

26N No opposition filed

Effective date: 20200710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191110

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602017007650

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H01M0002140000

Ipc: H01M0050400000

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20171110

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20211110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211110

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231121

Year of fee payment: 7

Ref country code: DE

Payment date: 20231120

Year of fee payment: 7