EP3317111B1 - Security element with colour-filtering grating - Google Patents
Security element with colour-filtering grating Download PDFInfo
- Publication number
- EP3317111B1 EP3317111B1 EP16733880.5A EP16733880A EP3317111B1 EP 3317111 B1 EP3317111 B1 EP 3317111B1 EP 16733880 A EP16733880 A EP 16733880A EP 3317111 B1 EP3317111 B1 EP 3317111B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- surface elements
- security element
- dielectric
- carrier
- regular pattern
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001914 filtration Methods 0.000 title description 6
- 239000000463 material Substances 0.000 claims description 21
- 238000000034 method Methods 0.000 claims description 18
- 239000011248 coating agent Substances 0.000 claims description 16
- 238000000576 coating method Methods 0.000 claims description 16
- 238000004519 manufacturing process Methods 0.000 claims description 16
- 239000002243 precursor Substances 0.000 claims description 6
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- 229910052710 silicon Inorganic materials 0.000 claims description 4
- 238000012546 transfer Methods 0.000 claims description 4
- 229910045601 alloy Inorganic materials 0.000 claims description 3
- 239000000956 alloy Substances 0.000 claims description 3
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 238000010276 construction Methods 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 229910052763 palladium Inorganic materials 0.000 claims description 3
- 229910052697 platinum Inorganic materials 0.000 claims description 3
- 229910052709 silver Inorganic materials 0.000 claims description 3
- 229910052715 tantalum Inorganic materials 0.000 claims 1
- 229910052719 titanium Inorganic materials 0.000 claims 1
- 229910052725 zinc Inorganic materials 0.000 claims 1
- 238000004049 embossing Methods 0.000 description 16
- 239000003086 colorant Substances 0.000 description 12
- 230000005540 biological transmission Effects 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 238000003491 array Methods 0.000 description 7
- 230000000737 periodic effect Effects 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 230000005855 radiation Effects 0.000 description 7
- 229920002799 BoPET Polymers 0.000 description 5
- 239000003989 dielectric material Substances 0.000 description 5
- 229910004298 SiO 2 Inorganic materials 0.000 description 4
- 239000007769 metal material Substances 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 238000000411 transmission spectrum Methods 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000004922 lacquer Substances 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 239000002966 varnish Substances 0.000 description 3
- 229910052984 zinc sulfide Inorganic materials 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000013039 cover film Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- SBIBMFFZSBJNJF-UHFFFAOYSA-N selenium;zinc Chemical compound [Se]=[Zn] SBIBMFFZSBJNJF-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 229910052950 sphalerite Inorganic materials 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N zinc oxide Inorganic materials [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 239000005083 Zinc sulfide Substances 0.000 description 1
- 238000002679 ablation Methods 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000012876 carrier material Substances 0.000 description 1
- 230000004456 color vision Effects 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000000025 interference lithography Methods 0.000 description 1
- 238000002164 ion-beam lithography Methods 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B42—BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
- B42D—BOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
- B42D25/00—Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
Definitions
- the invention relates to a security element for a document of value, wherein the security element has a two-dimensionally regular pattern of individual cylindrical surface elements of high-refractive, in particular metallic material, which lie in a lattice plane, are spaced apart by gaps and are embedded on all sides in a dielectric, wherein the regular Pattern in at least two directions parallel to the lattice plane has a periodicity of 100 nm to 800 nm, preferably 200 nm to 500 nm.
- the invention further relates to a method for producing a security element for a document of value, wherein a two-dimensionally regular pattern of individual cylindrical surface elements of high refractive, in particular metallic material is formed, which lie in a lattice plane, are spaced apart by gaps and are embedded on all sides in a dielectric wherein the regular pattern in at least two directions parallel to the lattice plane has a periodicity of 100 nm to 800 nm, preferably 200 nm to 500 nm.
- the invention also relates to a not yet executable precursor to a document of value.
- Such a security element or method for producing as well as a non-executable precursor to a value document are known from the WO 2012/156049 A1 , which discloses a security element according to the preamble of claim 1, known.
- This generic security element has good color filter properties and can be in multiply an embossing process cost-effectively.
- the security element provides an array of surface elements, also referred to as nanodisks because of their size, arranged above a base surface having a complementary hole pattern. This hole pattern is also referred to as a nanohole array.
- a structure is embossed in a dielectric which is to surround the nanodisks and nanoholes.
- the color effect depends very much on the distance between the nanodisks and the nanoholes. This distance is determined by the height of the embossed structure and thus ultimately by an embossing tool. During the embossing process, in particular due to wear of the embossing tool, fluctuations or a continuous decrease in the embossing height over the production period occur. This causes effort, in particular a frequent embossing tool exchange in series production, to ensure a constant color effect.
- the WO 2011/107782 A1 relates to a Moire Magnifier whose pixels are in the grid 1-100 microns.
- the invention is therefore based on the object of specifying a two-dimensional, color-filtering grating, which on the one hand has a good color filter property and on the other hand can be produced by inexpensive duplication methods.
- security element for a document of value, wherein the security element has a two-dimensional regular pattern of individual cylindrical surface elements of high refractive, in particular metallic material, which lie in a lattice plane, are spaced apart by gaps and are embedded on all sides in a dielectric, wherein the regular pattern in at least two directions, which run parallel to the lattice plane, has a periodicity of 100 nm to 800 nm, preferably of 200 nm to 500 nm, wherein the gaps between the surface elements in a range of at least 1 micron, optionally 5 microns to 50 microns, perpendicular to the lattice plane also only have dielectric.
- the object is further achieved by a method for producing a security element for a document of value, wherein a two-dimensionally regular pattern of individual cylindrical surface elements of high-refractive, in particular metallic material is formed, which lie in a lattice plane, are spaced apart by gaps and all sides in one Dielectric embedded, wherein the regular pattern in at least two directions, which extend parallel to the lattice plane, a periodicity of 100 nm to 800 nm, preferably from 200 nm to 500 nm, wherein the gaps between the surface elements in a range of at least 1 micron , optionally 5 microns to 50 microns, perpendicular to the lattice plane also have only one dielectric, in particular seen perpendicular to the lattice plane are not covered by high refractive index material.
- the object is finally also solved by a non-executable precursor to a value document containing a security element according to the invention.
- the grid provides high-refractive surface elements that are different than in the WO 2012/156049 A1 are no longer arranged over a high-refractive base layer. Rather, there are also the gaps between the surface elements in a range of at least 1 micron (depending on the realization up to 50 microns or more) of dielectric, non-high refractive index material. The area is measured perpendicular to the plane in which the surface elements are located, and extends on both sides of the plane. For the optical effect of the security element no longer depends on a precise distance of the high refractive surface elements to a high refractive base layer. As a result, an embossing depth no longer plays a role in the production process, and the abovementioned wear problem of the embossing tool is avoided.
- the high refractive property of the surface elements is achieved by a suitable choice of material.
- metal in addition to metal as a material are in particular silicon, zinc sulfide or titanium dioxide in question.
- the term “metallic” is taken as an example of "high refractive index", unless expressly described otherwise.
- the dielectric material which z. B. has a refractive index of about 1.5
- plastic films for.
- the actual basic structure is z. B. also in plastic, preferably UV lacquer is formed. After evaporation, the structure is finally filled with UV varnish and laminated with a cover film.
- the high refractive index material of the surface elements is not limited to simple metallic layers. There are also multiple layers, especially trilayer conceivable. It is known that multi-coated one-dimensional periodic gratings enable strong color filter filtering through the formation of Fabry-Perot resonators both in reflection and in transmission. In trilayer, the following layers are particularly preferred: two semi-transparent metal layers with an intervening dielectric spacer layer or two high-index layers with an intermediate low-refractive layer.
- the Metal layers are the following materials: Al, Ag, Pt, Pd, Au, Cu, Cr and alloys thereof.
- Suitable high-index layers are, for example, ZnS, ZnO, TiO 2 , ZnSe, SiO 2 , Ta 2 O 5 or silicon. SiO 2 , Al 2 O 3 or MgF 2 are suitable as low-index layers.
- the refractive index of the dielectric which fills the gaps between the surface elements, may for example be between 1.4 and 1.6.
- the color effects depend primarily on the periodicity of the pattern.
- the color can also be varied by the geometry of the nanodisks. This can be exploited to create colored symbols or images.
- the surface filling factor and / or the geometry of the surface elements and / or their material can be locally varied.
- Several subpixels are designed with different color properties by appropriate geometric design and then combined into one pixel. This allows a colored image representation.
- the different colors can be varied by the corresponding local variation of one or more of the parameters of the grid.
- Characteristic of the security element is that opposite to the WO 2012/0156049 A1 Known approach the base layer of high refractive index material is missing, since the gaps between the surface elements (the latter in the above range) are formed by a dielectric material. It is not mandatory that it is consistently the same dielectric. What is essential is the refractive index difference between the surface elements and the dielectric material or materials in the gaps and in the vicinity of the surface elements. Particularly preferred is a security element whose gaps seen perpendicular to the ground plane are not covered by high refractive index material.
- the security element may in particular be integrated in a security thread, tear-open thread, security strip, security strip, patch or label.
- the security element can span transparent areas or recesses.
- the security element can in particular be part of a not yet executable precursor to a value document, which additionally may have further authenticity features.
- value documents on the one hand documents are understood, which with the security element are provided.
- value documents can also be other documents or objects that are provided with the security element, so that the value documents have non-copyable authenticity features in order to enable authenticity verification and to prevent undesired copies.
- Chip or security cards such as bank or credit cards or ID cards, are further examples of a value document.
- Fig. 1 shows a schematic representation of a security element 1. It has on a support 2 surface elements 3. There are gaps 4 between the surface elements 3.
- the carrier 2 is made of a dielectric material, the surface elements of a high refractive index material, for example a metallic coating.
- the surface elements 3 are covered with a cover layer 5, so that they are surrounded on all sides by dielectric.
- the arrangement of the surface elements 3 with the intervening gaps 4 forms a pattern 6, so that a total of a two-dimensional periodic sub-wavelength grating is formed by the periodic arrangement of surface elements.
- the surface elements 3 consist of a high refractive index material with a refractive index v. Due to the arrangement and the embedding in dielectric with the refractive index n (in the embodiment according to FIG Fig.
- the refractive indices of the carrier 2 and the cover layer 5 are identical; this is not mandatory) results for incident radiation E a color effect for transmitted radiation T and reflected radiation R. This will be explained below, as well, that the color effect of an angle of incidence ⁇ to the surface normal, here registered as an optical axis OA depends.
- the shape of the surface elements 3 can be designed differently.
- Fig. 2 shows an embodiment with in plan view circular surface elements.
- the surface elements 3 are cylindrical (not necessarily circular cylindrical) and have a width w 1 and a depth w 2 .
- the arrangement of the surface elements 3 in the pattern 6 is periodic.
- Fig. 1 and Fig. 2 show a period d. It may be different in other embodiments in the two spatial directions of the basic or lattice plane 7.
- the security element 1 If the security element 1 is incident at the angle ⁇ radiation E, the reflection R in the glancing angle shows the zeroth order of diffraction and, at the same time, a zeroth diffraction order in transmission.
- the structure of the surface elements 3, so the nanodisks is not limited to homogeneous, metallic or semi-metallic layers. There are also multi-layers, especially so-called trilayer conceivable, for example, show a color shift effect.
- multi-coated, one-dimensionally periodic gratings enable strong color filter filtering through the formation of Fabry-Perot resonators both in reflection and in transmission.
- the following layers are particularly preferred: two semi-transparent metal layers with an intervening dielectric spacer layer or two high-index layers with an intermediate low-refractive layer.
- the following materials are suitable for the metal layers: Al, Ag, Pt, Pd, Au, Cu, Cr and alloys thereof.
- Suitable high-index layers are, for example, ZnS, ZnO, TiO 2 , ZnSe, SiO 2 , Ta 2 O 5 or silicon.
- SiO 2 , Al 2 O 3 or MgF 2 are suitable as low-index layers.
- the periodicity d lies in the sub-wavelength range, ie in the range between 100 nm and 800 nm, preferably between 200 nm and 450 nm or 600 nm.
- the fill factors u 1 / d 1 and u 2 / d 2 are between 0.2 and 0.8 , preferably between 0.3 and 0.7.
- the periodicity directions are perpendicular to each other. This too is optional. Also spatially asymmetrical arrangements of the profile and the periodicity are conceivable. In other words, the pattern 6 does not have to, as in Fig. 1 shown to be a Cartesian pattern.
- Fig. 2 shows a security element 1, the surface elements 3 are formed circular-cylindrical. This form is suitable as the construction of the Fig. 1 or 2 especially for color filters for unpolarized light.
- Other mathematically cylindrical geometries are provided for the surface elements in embodiments. For example, variations of the square shape are the Fig. 1 or the circular shape of the Fig. 2 provided, z. B. by rounded corners.
- These security elements have different periods at about the same filling factor w / d.
- the transmission spectra show a resonant minimum, which is shifted into the long-wave range for increasing periods.
- the color properties of these security elements in the CIE 1931 color space were examined.
- the transmission spectra were folded with the emission curve of a standard D65 lamp and the sensitivity of the human eye and from this the color coordinates X, Y, Z were calculated.
- the D65 lighting corresponds approximately to the daylight.
- Fig. 4b shows the calculated color values in CIE 1931 color space.
- the white point is marked with the symbol "O”.
- the triangle limits the color range, which can usually be displayed with screens.
- the diagram shows the x, y color coordinates as trajectories. It turns out that a large color range can be realized by varying the period.
- the calculated color values of the Fig. 5b x, y demonstrate that the color is barely changed by the tilt, only the color saturation decreases for increasing angles.
- the brightness L * was calculated from the color coordinates X, Y, Z, which corresponds approximately to the intensity perceived by the viewer.
- the brightness L * here is about 25 and is almost constant for an angle change from 0 ° to 30 °.
- the reflection of the security element 1 shows Fig. 6a in (non-normalized) values as a function of wavelength. This shows that these spectra each contain a pronounced resonant maximum whose position approximately corresponds to the position of the minima of the transmission spectra. These spectra were also converted to the x, y color values shown in the CIE 1931 color diagram of Fig. 6b are shown. By the illustrated security element red, yellow and green shades can be generated. For blue or violet colors (not shown), a grating period of the nanodisk arrays ⁇ 240 nm must be selected.
- the From this calculated color values x, y demonstrate that the hue in reflection is hardly changed by the change of the angle of incidence. However, the color saturation becomes weaker for increasing angles ⁇ .
- Fig. 8a and b show three regions of different geometry (d R , w R ), (d G , w G ) and (d B , w B ) of the pattern 6, which appear in the colors red, green and blue. These different colors can be caused by the corresponding variation of one or more profile parameters.
- the three regions 11, 12, 13 correspond to RGB subpixels and together form a pixel 14.
- the respective geometry ensures that the corresponding colors red, green and blue are effected.
- the proportion of the color of the respective RGB subpixel in the pixel 14 can be set by the choice of geometry.
- the pixel 14 can be given a desired color.
- the color mixing of the primary colors effected in the pixel 16 by the regions 11, 12, 13 of the RGB subpixels thus makes true color images possible.
- the advantage of such a structure over a conventional printing technique is that a very fine structuring down to the micrometer range is possible, which is advantageous in particular with magnification arrangements.
- the security element 8a, b according to Fig. 12 allows micro images in which the pattern changes laterally to achieve a color or an intensity contrast in the microimage.
- the structure described here is preferred for this, since their optical properties are very angle-tolerant, ie their color hardly changes with a variation of the angle of incidence. This property is advantageous in a combination with microlens arrays, since the light perceived by a viewer comes from different light paths, which have different angles of incidence.
- the intensity in the individual color pixels can be adjusted via the area ratios of the nanodisk arrays to surrounding unstructured areas.
- the unstructured areas are either completely metallized or completely transparent and appear neutral in color.
- This lateral arrangement of a region filled with a nanodisk array in the vicinity of an unstructured region can also serve to form a motif against a color-neutral background.
- Fig. 9 shows side by side different patterns 6 of the nanodisks, which are arranged orthogonally or hexagonally.
- the individual nanodisks can have different geometries such as squares, rectangles, circles, ellipses or triangles. Such a lateral variation of the arrangement can also produce a variation in the color.
- hexagonal arrangement other arrangements such as octagonal arrangements are possible, as in Figure 9 illustrated.
- the security element 1 can be combined with other embossing structures such as holograms, micromirror arrangements and known subwavelength structures for the production of security features. On the one hand, this increases the counterfeiting security of such features.
- safety features can be visually upgraded by the color attractiveness of the nanodisk arrays described here.
- the nanodisk arrays described here are particularly suitable for see-through elements, as they show colors in reflection and in transmission. An additional security against forgery of this structure is provided by the first diffraction order, which is observable for grating periods of approximately> 330 nm at an oblique angle of incidence.
- the security element 1 can be produced by a dielectric having two-dimensionally periodically arranged recesses according to the pattern 6 is vapor-deposited vertically with high refractive index material, for example one of said metals or metal alloys. Then a coating with holes on the upper level is created. In addition, the bottoms of the periodically arranged depressions are coated in a high-refractive index and form the nanodisk array, ie the pattern 6 of the surface elements 3.
- the top metallic hole structure can then be removed by known methods so that the pattern 6 of the surface elements 3 remains in the depressions , A carrier treated in this way can subsequently be embedded in a dielectric or laminated with a cover film. For this purpose, preference is given to using a photopolymer which has the same refractive index as possible, ideally even the same refractive index as the carrier material into which the depressions have been embossed.
- Fig. 10a shows the carrier 15, in which the recesses 16 have been introduced in the arrangement according to the pattern 6, for example by an embossing process in an embossable medium of the carrier 15, for example an embossing lacquer which is part of the carrier 15. Subsequently, the coating 17 was applied, which in Fig. 10a hatched is registered.
- Fig. 10b shows the subsequent state after the removal of the coating 17 on the upper side 18 of the carrier 15, ie at all portions except the depressions 16.
- the high refractive coating such as metallization, thus remains exclusively in the depressions 16 and forms the surface elements 3.
- the top 18th is now without coating 17.
- the original for the production of an embossing tool which is used in the stamping process according to 10a and 10b can be used, for example, photolithographically getting produced. This can be done using an e-beam system, focused ion beam or interference lithography.
- the written in photoresist structure is then developed, while the photoresist partially removed.
- the resulting structure is then preferably etched into a quartz wafer so that as far as possible vertical flanks of the profile are formed.
- the quartz mask can now be copied eg in Ormocer or replicated by galvanic impressions. It is also a direct impression of the photolithographically produced original in Ormocer or nickel in a galvanic process conceivable.
- the original structure often has to be joined together on one level and finally galvanically molded.
- This galvanic impression can then be clamped onto a cylinder and used as embossing cylinder.
- the structure can now be replicated in UV varnish on film, eg PET film.
- the thus structured films are then directed under high vacuum with the desired coating evaporated. So that the combination of a nanodisk array and a nanohole array is formed (see Fig. 10a ), from which the coating 17 with the nanohole arrays is removed again.
- the generation of the sub-waveguide structure of the surface elements 3 according to the pattern 6 is also possible with a transfer method.
- an intermediate carrier 19 is embossed so that it has elevations 20, which are arranged according to the pattern 6.
- the embossing process is essentially the same as that of the 10a and 10b
- the embossing tool for this manufacturing technique is negative to that of 10a and 10b educated.
- the intermediate carrier 19 embossed in this way is then provided with the coating 17, so that, as a result, a coating also remains on the elevations 20.
- This coating is then combined with a Metal transfer method, as it is, for example, from the DE 102012018774 A1 or DE 102013005839 A1 is known, transferred to the carrier 15, optionally by using an intermediate transfer to another temporary carrier.
- the carrier 15 thus provided with the pattern 6 of the surface elements 3 is then coated or laminated with a dielectric in the form of the cover layer 5.
- a further production method (not shown in the figures) provides directly for a structuring of a metal layer 17 on the still planar carrier 5, for example by a photolithographic etching process or ablation with laser irradiation.
- the security element according to the invention can be combined with other security elements.
- An example of this shows the Fig. 12 , which provides an area II, in which the security element 1 according to the invention is formed and a region I with a further security element 21, for example, the construction according to WO 2012/156049 A1 equivalent.
- This can for example be made particularly simple by the fact that in the region II, the coating 17 in the manufacturing process according to Fig. 10a, 10b not removed.
- the areas I and II or the security elements 21 and 1 then show different colors with otherwise identical geometry of the pattern 6.
- the front and back of the area I appear differently in reflection, while the reflection of the front and back of the area II identical is.
Landscapes
- Diffracting Gratings Or Hologram Optical Elements (AREA)
Description
Die Erfindung betrifft ein Sicherheitselement für ein Wertdokument, wobei das Sicherheitselement ein zweidimensional regelmäßiges Muster aus einzelnen zylindrischen Flächenelementen aus hochbrechendem, insbesondere metallischem Material aufweist, die in einer Gitterebene liegen, durch Lücken voneinander beabstandet sind und allseitig in ein Dielektrikum eingebettet sind, wobei das regelmäßige Muster in mindestens zwei Richtungen, die parallel zur Gitterebene verlaufen, eine Periodizität von 100 nm bis 800 nm, bevorzugt von 200 nm bis 500 nm hat.The invention relates to a security element for a document of value, wherein the security element has a two-dimensionally regular pattern of individual cylindrical surface elements of high-refractive, in particular metallic material, which lie in a lattice plane, are spaced apart by gaps and are embedded on all sides in a dielectric, wherein the regular Pattern in at least two directions parallel to the lattice plane has a periodicity of 100 nm to 800 nm, preferably 200 nm to 500 nm.
Die Erfindung betrifft weiter ein Verfahren zum Herstellen eines Sicherheitselements für ein Wertdokument, wobei ein zweidimensional regelmäßiges Muster aus einzelnen zylindrischen Flächenelementen aus hochbrechendem, insbesondere metallischem Material ausgebildet wird, die in einer Gitterebene liegen, durch Lücken voneinander beabstandet sind und allseitig in ein Dielektrikum eingebettet sind, wobei das regelmäßige Muster in mindestens zwei Richtungen, die parallel zur Gitterebene verlaufen, eine Periodizität von 100 nm bis 800 nm, bevorzugt von 200 nm bis 500 nm hat.The invention further relates to a method for producing a security element for a document of value, wherein a two-dimensionally regular pattern of individual cylindrical surface elements of high refractive, in particular metallic material is formed, which lie in a lattice plane, are spaced apart by gaps and are embedded on all sides in a dielectric wherein the regular pattern in at least two directions parallel to the lattice plane has a periodicity of 100 nm to 800 nm, preferably 200 nm to 500 nm.
Die Erfindung betrifft auch eine noch nicht umlauffähige Vorstufe zu einem Wertdokument.The invention also relates to a not yet executable precursor to a document of value.
Ein solches Sicherheitselement bzw. Verfahren zum Herstellen sowie eine nicht umlauffähige Vorstufe zu einem Wertdokument sind aus der
Der Erfindung liegt deshalb die Aufgabe zugrunde, ein zweidimensionales, farbfilterndes Gitter anzugeben, das zum einen eine gute Farbfiltereigenschaft aufweist und sich zum anderen durch kostengünstige Vervielfältigungsverfahren herstellen lässt.The invention is therefore based on the object of specifying a two-dimensional, color-filtering grating, which on the one hand has a good color filter property and on the other hand can be produced by inexpensive duplication methods.
Diese Aufgabe wird erfindungsgemäß gelöst durch Sicherheitselement für ein Wertdokument, wobei das Sicherheitselement ein zweidimensional regelmäßiges Muster aus einzelnen zylindrischen Flächenelementen aus hochbrechendem, insbesondere metallischem Material aufweist, die in einer Gitterebene liegen, durch Lücken voneinander beabstandet sind und allseitig in ein Dielektrikum eingebettet sind, wobei das regelmäßige Muster in mindestens zwei Richtungen, die parallel zur Gitterebene verlaufen, eine Periodizität von 100 nm bis 800 nm, bevorzugt von 200 nm bis 500 nm hat, wobei die Lücken zwischen den Flächenelementen in einem Bereich von mindestens 1 µm, optional 5 µm bis 50 µm, senkrecht zur Gitterebene ebenfalls nur Dielektrikum aufweisen.This object is achieved by security element for a document of value, wherein the security element has a two-dimensional regular pattern of individual cylindrical surface elements of high refractive, in particular metallic material, which lie in a lattice plane, are spaced apart by gaps and are embedded on all sides in a dielectric, wherein the regular pattern in at least two directions, which run parallel to the lattice plane, has a periodicity of 100 nm to 800 nm, preferably of 200 nm to 500 nm, wherein the gaps between the surface elements in a range of at least 1 micron, optionally 5 microns to 50 microns, perpendicular to the lattice plane also only have dielectric.
Die Aufgabe wird erfindungsgemäß weiter gelöst durch ein Verfahren zum Herstellen eines Sicherheitselements für ein Wertdokument, wobei ein zweidimensional regelmäßiges Muster aus einzelnen zylindrischen Flächenelementen aus hochbrechendem, insbesondere metallischem Material ausgebildet wird, die in einer Gitterebene liegen, durch Lücken voneinander beabstandet sind und allseitig in ein Dielektrikum eingebettet sind, wobei das regelmäßige Muster in mindestens zwei Richtungen, die parallel zur Gitterebene verlaufen, eine Periodizität von 100 nm bis 800 nm, bevorzugt von 200 nm bis 500 nm hat, wobei die Lücken zwischen den Flächenelementen in einem Bereich von mindestens 1 µm, optional 5 µm bis 50 µm, senkrecht zur Gitterebene ebenfalls nur ein Dielektrikum aufweisen, insbesondere senkrecht zur Gitterebene gesehen nicht von hochbrechendem Material überdeckt werden.The object is further achieved by a method for producing a security element for a document of value, wherein a two-dimensionally regular pattern of individual cylindrical surface elements of high-refractive, in particular metallic material is formed, which lie in a lattice plane, are spaced apart by gaps and all sides in one Dielectric embedded, wherein the regular pattern in at least two directions, which extend parallel to the lattice plane, a periodicity of 100 nm to 800 nm, preferably from 200 nm to 500 nm, wherein the gaps between the surface elements in a range of at least 1 micron , optionally 5 microns to 50 microns, perpendicular to the lattice plane also have only one dielectric, in particular seen perpendicular to the lattice plane are not covered by high refractive index material.
Die Aufgabe wird schließlich ebenfalls gelöst durch eine nicht umlauffähige Vorstufe zu einem Wertdokument, das ein erfindungsgemäßes Sicherheitselement enthält.The object is finally also solved by a non-executable precursor to a value document containing a security element according to the invention.
Das Gitter sieht hochbrechende Flächenelemente vor, die anders als in der
Die hochbrechende Eigenschaft der Flächenelemente wird durch eine geeignete Materialwahl erreicht. Neben Metall als Material kommen dabei insbesondere Silizium, Zinksulfid oder Titandioxid in Frage. In dieser Beschreibung wird der Begriff "metallisch" als Beispiel für "hochbrechend" aufgefasst, soweit nicht ausdrücklich anderes beschrieben ist.The high refractive property of the surface elements is achieved by a suitable choice of material. In addition to metal as a material are in particular silicon, zinc sulfide or titanium dioxide in question. In this description, the term "metallic" is taken as an example of "high refractive index", unless expressly described otherwise.
Für das dielektrische Material, welches z. B. eine Brechzahl von etwa 1,5 aufweist, eignen sich besonders Kunststofffolien, z. B. PET-Folien, als Substrat. Die eigentliche Basisstruktur ist z. B. ebenfalls in Kunststoff, bevorzugt UV-Lack, ausgebildet. Nach der Bedampfung wird schließlich die Struktur mit UV-Lack aufgefüllt und mit einer Deckfolie kaschiert. Somit liegt ein Schichtaufbau vor, bei dem die Ober- und die Unterseite im Wesentlichen dieselbe Brechzahl besitzt.For the dielectric material, which z. B. has a refractive index of about 1.5, are particularly suitable plastic films, for. As PET films, as a substrate. The actual basic structure is z. B. also in plastic, preferably UV lacquer is formed. After evaporation, the structure is finally filled with UV varnish and laminated with a cover film. Thus, there is a layer structure in which the top and the bottom has substantially the same refractive index.
Ferner ist das hochbrechende Material der Flächenelemente nicht nur auf einfache metallische Schichten beschränkt. Es sind auch Mehrfachschichten, insbesondere Trilayer denkbar. Es ist bekannt, dass mehrfach beschichtete eindimensional periodische Gitter eine starke Farbfilterfilterung durch die Ausbildung von Fabry-Perot-Resonatoren sowohl in Reflexion als auch in Transmission ermöglichen. Bei Trilayer sind folgende Schichten besonders bevorzugt: zwei halbtransparente Metallschichten mit einer dazwischen liegenden dielektrischen Abstandsschicht bzw. zwei hochbrechende Schichten mit einer dazwischen liegenden niedrigbrechenden Schicht. Für die Metallschichten kommen folgende Materialien in Frage: Al, Ag, Pt, Pd, Au, Cu, Cr und Legierungen davon. Als hochbrechende Schichten eignen sich beispielsweise ZnS, ZnO, TiO2, ZnSe, SiO, Ta2O5 oder Silizium. Als niedrigbrechende Schichten bieten sich SiO2, Al2O3 bzw. MgF2 an.Furthermore, the high refractive index material of the surface elements is not limited to simple metallic layers. There are also multiple layers, especially trilayer conceivable. It is known that multi-coated one-dimensional periodic gratings enable strong color filter filtering through the formation of Fabry-Perot resonators both in reflection and in transmission. In trilayer, the following layers are particularly preferred: two semi-transparent metal layers with an intervening dielectric spacer layer or two high-index layers with an intermediate low-refractive layer. For the Metal layers are the following materials: Al, Ag, Pt, Pd, Au, Cu, Cr and alloys thereof. Suitable high-index layers are, for example, ZnS, ZnO, TiO 2 , ZnSe, SiO 2 , Ta 2 O 5 or silicon. SiO 2 , Al 2 O 3 or MgF 2 are suitable as low-index layers.
Die Brechzahl des Dielektrikums, welches die Lücken zwischen den Flächenelementen füllt, kann beispielsweise zwischen 1,4 und 1,6 liegen.The refractive index of the dielectric, which fills the gaps between the surface elements, may for example be between 1.4 and 1.6.
Die Farbeffekte hängen in erster Linie von der Periodizität des Musters ab. Die Farbe kann ferner durch die Geometrie der Nanodisks variiert werden. Dies kann dazu ausgenutzt werden, farbige Symbole bzw. Bilder zu erzeugen. Dazu kann der Flächenfüllfaktor und/oder die Geometrie der Flächenelemente und/oder deren Material lokal variiert werden. Insbesondere ist es möglich, Gruppen mehrerer Flächenelemente mit identischen Abmessungen so zu gestalten, dass ein gewünschter Farbeffekt eintritt. Eine Gruppe bildet dann ein Subpixel. Mehrere Subpixel werden mit unterschiedlichen Farbeigenschaften durch entsprechende geometrische Gestaltung ausgestaltet und dann zu einem Pixel zusammengefasst. Dies erlaubt eine farbige Bilddarstellung. Die unterschiedlichen Farben können dabei durch die entsprechende lokale Variation eines oder mehrerer der Parameter des Gitters variiert werden.The color effects depend primarily on the periodicity of the pattern. The color can also be varied by the geometry of the nanodisks. This can be exploited to create colored symbols or images. For this purpose, the surface filling factor and / or the geometry of the surface elements and / or their material can be locally varied. In particular, it is possible to make groups of several surface elements with identical dimensions so that a desired color effect occurs. A group then forms a subpixel. Several subpixels are designed with different color properties by appropriate geometric design and then combined into one pixel. This allows a colored image representation. The different colors can be varied by the corresponding local variation of one or more of the parameters of the grid.
Durch die pixelweise Farbmischung von Basisfarben, z. B. RGB-Farben, in Subpixelbereichen können Echtfarbenbilder hergestellt werden. Der Vorteil von solchen Strukturen gegenüber der herkömmlichen Drucktechnik ist, dass hierbei eine sehr feine Strukturierung bis in den Mikrometerbereich vorgenommen werden kann. Diese Feinstrukturierung eignet sich besonders für Anwendungen in Moire-Vergrößerungsanordnungen, z. B. indem das Gitter so ausgebildet ist, dass es Mikrobilder für Moire-Vergrößerungsanordnungen bereitstellt. Bei Mikrolinsenanordnungen wirkt sich die große Winkeltoleranz der oben beschriebenen zweidimensional periodischen Gitter sehr vorteilhaft aus, denn die Mikrolinsen haben bei Moiré-Vergrößerungsanordnungen eine kleine Brennweite bei einem relativ großen Öffnungsverhältnis. Daher zeigen die hier beschriebenen Strukturen eine größere Farbsättigung in der Kombination mit Mikrolinsen als bisher bekannte eindimensional periodische Subwellenlängenstrukturen.Due to the pixel-by-pixel color mixture of basic colors, eg. RGB colors, in subpixel areas true color images can be made. The advantage of such structures over the conventional printing technique is that in this case a very fine structuring down to the micrometer range can be made. This fine structuring is particularly suitable for applications in Moire magnification arrangements, z. By forming the grating so as to form microimages for moiré magnification arrangements provides. In microlens arrays, the large angular tolerance of the two-dimensionally periodic gratings described above has a very favorable effect, since the microlenses have a small focal length with a relatively large aperture ratio in moiré magnification arrangements. Therefore, the structures described herein show greater color saturation in combination with microlenses than previously known one-dimensional periodic sub-wavelength structures.
Kennzeichnend für das Sicherheitselement ist es, dass gegenüber dem aus
Das Sicherheitselement kann insbesondere in einem Sicherheitsfaden, Aufreißfaden, Sicherheitsband, Sicherheitsstreifen, Patch oder Etikett integriert sein. Insbesondere kann das Sicherheitselement transparente Bereiche oder Ausnehmungen überspannen.The security element may in particular be integrated in a security thread, tear-open thread, security strip, security strip, patch or label. In particular, the security element can span transparent areas or recesses.
Das Sicherheitselement kann insbesondere Teil einer noch nicht umlauffähigen Vorstufe zu einem Wertdokument sein, das zusätzlich noch weitere Echtheitsmerkmale aufweisen kann. Unter Wertdokumenten werden einerseits Dokumente verstanden, welche mit dem Sicherheitselement versehen sind. Andererseits können Wertdokumente auch sonstige Dokumente oder Gegenstände sein, die mit dem Sicherheitselement versehen werden, damit die Wertdokumente nicht kopierbare Echtheitsmerkmale aufweisen, um eine Echtheitsüberprüfung zu ermöglichen und unerwünschte Kopien zu verhindern. Chip- oder Sicherheitskarten, wie z.B. Bank- oder Kreditkarten oder Ausweise, sind weitere Beispiele für ein Wertdokument.The security element can in particular be part of a not yet executable precursor to a value document, which additionally may have further authenticity features. By value documents on the one hand documents are understood, which with the security element are provided. On the other hand, value documents can also be other documents or objects that are provided with the security element, so that the value documents have non-copyable authenticity features in order to enable authenticity verification and to prevent undesired copies. Chip or security cards, such as bank or credit cards or ID cards, are further examples of a value document.
Es versteht sich, dass die vorstehend genannten und die nachstehend noch zu erläuternden Merkmale nicht nur in den angegebenen Kombinationen, sondern auch in anderen Kombinationen oder in Alleinstellung einsetzbar sind, ohne den Rahmen der vorliegenden Erfindung zu verlassen.It is understood that the features mentioned above and those yet to be explained below can be used not only in the specified combinations but also in other combinations or alone, without departing from the scope of the present invention.
Nachfolgend wird die Erfindung beispielshalber anhand der beigefügten Zeichnungen, die auch erfindungswesentliche Merkmale offenbaren, noch näher erläutert. Es zeigen:
- Fig. 1
- eine perspektivische Schemadarstellung einer ersten Ausfüh-rungsform eines Sicherheitselementes,
- Fig. 2
- eine Abwandlung des Sicherheitselementes der
Fig. 1 , - Fig. 3
- eine weitere Abwandlung des Sicherheitselementes der
Fig. 2 , - Fig. 4-7
- Diagramme hinsichtlich der Filtereigenschaften verschiedener Sicherheitselemente,
- Fig. 8-9
- Schemadarstellungen zur Ausbildung des Sicherheitselementes zur Bilddarstellung,
- Fig. 10-11
- Schemadarstellungen verschiedener Herstellungsstufen des Sicherheitselementes für verschiedene Herstelltechniken, und
- Fig. 12
- ein Sicherheitselement mit einem weiteren Sicherheitsmerkmal.
- Fig. 1
- a perspective schematic representation of a first embodiment of a security element,
- Fig. 2
- a modification of the security element of
Fig. 1 . - Fig. 3
- a further modification of the security element of
Fig. 2 . - Fig. 4-7
- Diagrams regarding the filter characteristics of different security elements,
- Fig. 8-9
- Schematic representations for the formation of the security element for image presentation,
- Fig. 10-11
- Schematic representations of different manufacturing stages of the security element for different manufacturing techniques, and
- Fig. 12
- a security element with another security feature.
Die Form der Flächenelemente 3 kann unterschiedlich ausgebildet sein.
Hinsichtlich der Geometrie der Flächenelemente 3, die Nanodisks bilden, sind auch Zwischenformen zwischen kreis- und quadratförmigen Grundriss möglich. Eine symmetrische Form hat besonders gute Farbfilterung für unpolarisiertes Licht. Für die praktische Umsetzung eignen sich insbesondere Quadrate mit abgerundeten Ecken.With regard to the geometry of the
Fällt auf das Sicherheitselement 1 unter dem Winkel Θ Strahlung E ein, zeigt die Reflexion R im Glanzwinkel die nullte Beugungsordnung und zugleich in Transmission eine nullte Beugungsordnung. Der Aufbau der Flächenelemente 3, also der Nanodisks, ist nicht auf homogene, metallische oder halbmetallische Schichten beschränkt. Es sind auch Mehrfachschichten, insbesondere sogenannte Trilayer denkbar, die beispielsweise einen Color-Shift-Effekt zeigen.If the
Es ist bekannt, dass mehrfach beschichtete, eindimensional periodische Gitter eine starke Farbfilterfilterung durch die Ausbildung von Fabry-Perot-Resonatoren sowohl in Reflexion als auch in Transmission ermöglichen. Bei Trilayer sind folgende Schichten besonders bevorzugt: zwei halbtransparente Metallschichten mit einer dazwischen liegenden dielektrischen Abstandsschicht bzw. zwei hochbrechende Schichten mit einer dazwischen liegenden niedrigbrechenden Schicht. Für die Metallschichten kommen folgende Materialien in Frage: Al, Ag, Pt, Pd, Au, Cu, Cr und Legierungen davon. Als hochbrechende Schichten eignen sich beispielsweise ZnS, ZnO, TiO2, ZnSe, SiO, Ta2O5 oder Silizium. Als niedrigbrechende Schichten bieten sich SiO2, Al2O3 bzw. MgF2 an.It is known that multi-coated, one-dimensionally periodic gratings enable strong color filter filtering through the formation of Fabry-Perot resonators both in reflection and in transmission. In trilayer, the following layers are particularly preferred: two semi-transparent metal layers with an intervening dielectric spacer layer or two high-index layers with an intermediate low-refractive layer. The following materials are suitable for the metal layers: Al, Ag, Pt, Pd, Au, Cu, Cr and alloys thereof. Suitable high-index layers are, for example, ZnS, ZnO, TiO 2 , ZnSe, SiO 2 , Ta 2 O 5 or silicon. SiO 2 , Al 2 O 3 or MgF 2 are suitable as low-index layers.
Die Periodizität d liegt im Subwellenbereich, d. h. im Bereich zwischen 100 nm und 800 nm, bevorzugt zwischen 200 nm und 450 nm oder 600 nm. Die Füllfaktoren u1/d1 und u2/d2 liegen zwischen 0,2 und 0,8, bevorzugt zwischen 0,3 und 0,7. Um eine polarisationsunabhängige Farbfilterung zu erzielen, werden die Profilparameter für die beiden Raumrichtungen möglichst identisch gewählt, also w1 = w2. Dies ist jedoch optional. Ebenso sind im beschriebenen Ausführungsbeispiel die Periodizitätsrichtungen senkrecht zueinander. Auch dies ist optional. Auch räumlich asymmetrische Anordnungen des Profils und der Periodizität sind denkbar. Mit anderen Worten, das Muster 6 muss nicht, wie in
Je nach Variation der Gitterperiode und des Füllfaktors ergeben sich unterschiedlich gesättigte Farben in Reflexion und Transmission, insbesondere für Füllfaktoren über 0,35 und ganz besonders oberhalb von 0,45. Exemplarische Parameter solcher Strukturen sind in folgender Tabelle 1 zusammengefasst. Die Form der Flächenelemente (Nanodisks) ist im Wesentlichen quaderförmig mit einer einheitlichen Seitenlänge w sowie der Höhe t, in den nachfolgend diskutierten Fällen exemplarisch für t = 80 nm.
Alle oben aufgeführten Gitter wurden auf PET-Folien in UV-Lack abgeformt, nur in den Vertiefungen mit einer 80 nm dicken Aluminiumschicht versehen und anschließend mit einer PET-Folie kaschiert. Die Brechzahl der PET-Folie sowie des UV-Lacks beträgt im Sichtbaren etwa 1,56.All lattices listed above were formed on PET films in UV lacquer, provided only in the wells with an 80 nm thick aluminum layer and then laminated with a PET film. The refractive index of the PET film and the UV varnish is about 1.56 in the visible.
Die Winkelabhängigkeit der Farben in Transmission werden exemplarisch für die Struktur (c) mit der Periode d = 281 nm demonstriert.
Die Reflexion des Sicherheitselementes 1 zeigt
Die Farbkonstanz bei einer Variation zeigt
Die oben beschriebene geometrieabhängige Farbgebung kann benutzt werden, um farbige Symbole bzw. Bilder zu erzeugen.
Die Intensität in den einzelnen Farbpixeln kann über die Flächenverhältnisse der Nanodisk-Arrays zu umgebenden, unstrukturierten Bereichen eingestellt werden. Die unstrukturierten Bereiche sind entweder komplett metallisiert oder vollkommen transparent und erscheinen farbneutral. Diese laterale Anordnung eines mit einem Nanodisk-Array gefüllten Bereichs in der Umgebung eines unstrukturierten Bereiches kann auch zur Ausgestaltung eines Motivs vor einem farbneutralen Hintergrund dienen.The intensity in the individual color pixels can be adjusted via the area ratios of the nanodisk arrays to surrounding unstructured areas. The unstructured areas are either completely metallized or completely transparent and appear neutral in color. This lateral arrangement of a region filled with a nanodisk array in the vicinity of an unstructured region can also serve to form a motif against a color-neutral background.
Das Sicherheitselement 1 kann mit anderen Prägestrukturen wie Hologrammen, Mikrospiegelanordnungen und bekannten Subwellenlängenstrukturen zur Herstellung von Sicherheitsmerkmalen kombiniert werden. Dies erhöht einerseits die Fälschungssicherheit solcher Merkmale. Außerdem können Sichermerkmale durch die farbliche Attraktivität der hier beschriebenen Nanodisk-Arrays optisch aufgewertet werden. Die hier beschriebenen Nanodisk-Arrays eignen sich besonders für Durchsichtselemente, da sie Farben in Reflexion und in Transmission zeigen. Eine zusätzliche Fälschungssicherheit dieser Struktur bietet die erste Beugungsordnung, welche für Gitterperioden von etwa > 330 nm unter schrägem Einfallswinkel beobachtbar ist.The
Das Sicherheitselement 1 kann dadurch hergestellt werden, dass ein Dielektrikum mit zweidimensional periodisch angeordneten Vertiefungen gemäß dem Muster 6 senkrecht mit hochbrechendem Material, z.B. einem der genannten Metalle bzw. Metalllegierungen bedampft wird. Dann entsteht eine Beschichtung mit Löchern an der oberen Ebene. Zudem sind die Böden der periodisch angeordneten Vertiefungen hochbrechend überzogen und bilden das Nanodisk-Array, d.h. das Muster 6 der Flächenelemente 3. Die oben liegende metallische Lochstruktur kann dann durch bekannte Verfahren entfernt werden, so dass das Muster 6 der Flächenelemente 3 in den Vertiefungen verbleibt. Ein derart behandelter Träger kann anschließend in ein Dielektrikum eingebettet oder mit einer Deckfolie kaschiert werden. Bevorzugt wird hierzu ein Fotopolymer verwendet, das möglichst denselben Brechungsindex, idealerweise sogar denselben Brechungsindex wie das Trägermaterial besitzt, in welches die Vertiefungen geprägt wurden.The
Die
Das Original für die Herstellung eines Prägewerkzeugs, das im Prägeprozess gemäß
Das Erzeugen der Subwellengitterstruktur der Flächenelemente 3 gemäß dem Muster 6 ist auch mit einem Transferverfahren möglich. Dazu wird ein Zwischenträger 19 so geprägt, dass er Erhöhungen 20 hat, die gemäß dem Muster 6 angeordnet sind. Der Prägeprozess entspricht im Wesentlichen dem, wie er anhand der
Ein weiteres Herstellverfahren (nicht in den Figuren gezeigt) sieht direkt eine Strukturierung einer Metallschicht 17 auf dem noch ebenen Träger 5 vor, beispielsweise durch einen photolithographischen Ätzprozess oder Ablation mit Laserbestrahlung.A further production method (not shown in the figures) provides directly for a structuring of a
Das erfindungsgemäße Sicherheitselement kann mit weiteren Sicherheitselementen kombiniert werden. Ein Beispiel hierfür zeigt die
Selbstverständlich ist in vorstehender Beschreibung der Begriff "über" bzw. "unter" lediglich exemplarisch und auf die Darstellung in den Zeichnungen bezogen zu verstehen. Natürlich kann der Aufbau auch dahingehend invertiert werden.Of course, in the above description, the term "about" or "below" is to be understood as exemplary only and with reference to the representation in the drawings. Of course, the structure can also be inverted to that effect.
- 1,211.21
- Sicherheitselementsecurity element
- 22
- Trägercarrier
- 33
- Flächenelementsurface element
- 44
- Lückegap
- 55
- Deckschichttopcoat
- 66
- Mustertemplate
- 77
- Grund- oder GitterebeneBasic or lattice plane
- 8, 9, 108, 9, 10
- Schichtlayer
- 11, 12, 1311, 12, 13
- BereichArea
- 1414
- Pixelpixel
- 1515
- Trägercarrier
- 1616
- Vertiefungdeepening
- 1717
- Beschichtungcoating
- 1818
- Oberseitetop
- 1919
- Zwischenträgersubcarrier
- 2020
- Erhöhungenincreases
- I, III, II
- BereichArea
- tt
- Beschichtungsdickecoating thickness
- w1 w 1
- Breitewidth
- w2 w 2
- Tiefedepth
- dd
- Periodeperiod
- Ee
- einfallende Strahlungincident radiation
- RR
- reflektierte Strahlungreflected radiation
- TT
- transmittierte Strahlungtransmitted radiation
- OAOA
- optische Achseoptical axis
- ΘΘ
- Winkelcorner
Claims (13)
- Security element for a valuable document, wherein the security element (1) comprises a two-dimensionally regular pattern (6) made of individual cylindrical surface elements (3) made of a highly refractive, in particular metallic, material, which surface elements (3) are located in a grating plane (7), are spaced apart from one another by gaps (4) and are embedded on all sides in a dielectric (2, 5), wherein the regular pattern (6) has a periodicity (d) of 100 nm to 800 nm, preferably from 200 nm to 500 nm, in at least two directions that extend parallel to the grating plane,
characterized in that the gaps (4) between the surface elements (3) likewise comprise only dielectric (2, 5) in a region of at least 1 µm perpendicularly to the grating plane (7). - Security element according to Claim 1, characterized in that the gaps (4) between the surface elements (3), viewed perpendicularly to the grating plane (7), are not covered by highly refractive material.
- Security element according to Claim 1 or 2, characterized in that the surface elements (9) comprise a material that contains: Al, Ag, Cu, Cr, Si, Zn, Ti, Pt, Pd, Ta and an alloy thereof.
- Security element according to one of the above claims, characterized in that the dielectric (2, 5) has a refractive index of between 1.4 and 1.6.
- Security element according to one of the above claims, characterized in that the regular pattern (6) of the surface elements (3) has an area fill factor of 0.15 to 0.85, preferably of 0.35 to 0.8.
- Security element according to one of the above claims, characterized in that at least one of the following parameters of the pattern (6) locally varies for producing coloured image information: area fill factor, the period (d), dimensions of the surface elements (3) and the highly refractive material of the surface elements (3).
- Security element according to one of the above claims, characterized in that the surface elements (3) have a multilayer construction (8, 9, 10), in particular in the form of a colour shift layer system.
- Precursor, not yet fit for circulation, of a valuable document having a security element (1) according to one of the above claims.
- Precursor according to Claim 8, characterized in that the security element (1) spans transparent regions or cutouts.
- Method for producing a security element (1) for a valuable document, wherein a two-dimensionally regular pattern (6) is formed from individual cylindrical surface elements (3) made of a highly refractive, in particular metallic, material, which surface elements (3) are located in a grating plane (7), are spaced apart from one another by gaps (4) and are embedded on all sides in a dielectric (2, 5), wherein the regular pattern (6) has a periodicity (d) from 100 nm to 800 nm, preferably from 200 nm to 500 nm, in at least two directions that extend parallel to the grating plane (7),
characterized in that the gaps (4) between the surface elements (3) likewise comprise only a dielectric (2, 5) in a region of at least 1 µm perpendicularly to the grating plane (7), and are not covered by highly refractive material, in particular viewed perpendicularly to the grating plane (7). - Method according to Claim 10, characterized in that a security element (1) according to one of Claims 1 to 7 is produced.
- Method according to one of Claims 10 and 11, characterized in that depressions (16) that are arranged as per the regular pattern (6) and have the geometry of the surface elements (3) are formed, in particular embossed, in a carrier (R) that comprises the dielectric, in that the carrier (R) is coated with the highly refractive material of the surface elements (3), in that the coating (17) is removed again outside the depressions (16), and in that the carrier (R) and the surface elements (3) are then covered with a cover layer comprising the dielectric.
- Method according to one of Claims 10 and 11, characterized in that elevations (20) that are arranged as per the regular pattern (6) and have, in plan view, the geometry of the surface elements (3) are formed on an intermediate carrier (19), in that the intermediate carrier (19) is coated with the highly refractive material of the surface elements (3), in that elevated portions of the coating (17) are transferred, in a contact transfer step, to a carrier (R) comprising the dielectric, and in that the carrier (R) and the surface elements (3) are covered with a cover layer comprising the dielectric.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102015008655.3A DE102015008655A1 (en) | 2015-07-03 | 2015-07-03 | Security element with color filtering grid |
PCT/EP2016/001091 WO2017005346A1 (en) | 2015-07-03 | 2016-06-27 | Security element with colour-filtering grating |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3317111A1 EP3317111A1 (en) | 2018-05-09 |
EP3317111B1 true EP3317111B1 (en) | 2019-08-07 |
Family
ID=56296758
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16733880.5A Active EP3317111B1 (en) | 2015-07-03 | 2016-06-27 | Security element with colour-filtering grating |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP3317111B1 (en) |
CN (1) | CN107743446B (en) |
DE (1) | DE102015008655A1 (en) |
WO (1) | WO2017005346A1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102016015335A1 (en) | 2016-12-21 | 2018-06-21 | Giesecke+Devrient Currency Technology Gmbh | Holographic security element and method for its production |
DE102017130589A1 (en) * | 2017-12-19 | 2019-06-19 | Giesecke+Devrient Currency Technology Gmbh | Security element with two-dimensional nanostructure and manufacturing process for this security element |
DE102018005872A1 (en) * | 2018-07-25 | 2020-01-30 | Giesecke+Devrient Currency Technology Gmbh | Use of a radiation-curable lacquer composition, method for producing micro-optical structures, micro-optical structure and data carrier |
EP3917703A1 (en) | 2019-01-29 | 2021-12-08 | Basf Se | Security element |
CN110488406A (en) * | 2019-09-12 | 2019-11-22 | 江苏集萃智能传感技术研究所有限公司 | A kind of multiband optical filter and preparation method thereof |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB0919108D0 (en) * | 2009-10-30 | 2009-12-16 | Rue De Int Ltd | Security device |
GB201003397D0 (en) * | 2010-03-01 | 2010-04-14 | Rue De Int Ltd | Moire magnification security device |
DE102011101635A1 (en) | 2011-05-16 | 2012-11-22 | Giesecke & Devrient Gmbh | Two-dimensionally periodic, color-filtering grid |
DE102012018774A1 (en) | 2012-09-24 | 2014-03-27 | Giesecke & Devrient Gmbh | Security element with representation arrangement |
DE102013005839A1 (en) | 2013-04-04 | 2014-10-09 | Giesecke & Devrient Gmbh | Security element for value documents |
-
2015
- 2015-07-03 DE DE102015008655.3A patent/DE102015008655A1/en not_active Withdrawn
-
2016
- 2016-06-27 CN CN201680035408.XA patent/CN107743446B/en active Active
- 2016-06-27 EP EP16733880.5A patent/EP3317111B1/en active Active
- 2016-06-27 WO PCT/EP2016/001091 patent/WO2017005346A1/en unknown
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
EP3317111A1 (en) | 2018-05-09 |
CN107743446A (en) | 2018-02-27 |
CN107743446B (en) | 2019-09-03 |
WO2017005346A1 (en) | 2017-01-12 |
DE102015008655A1 (en) | 2017-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2882598B1 (en) | Security element having a structure creating colour effects | |
EP3233512B1 (en) | Optically variable transparent security element | |
EP3317111B1 (en) | Security element with colour-filtering grating | |
EP3174728B1 (en) | Security element for producing securities | |
EP2766192B1 (en) | Security element | |
EP2710416B1 (en) | Two dimensional periodic colour filtering grating | |
EP3172601A1 (en) | Security element having a subwavelength grating | |
EP3331709B1 (en) | Security element having a subwavelength grating | |
EP2795376A1 (en) | Security element for security papers, documents of value, or similar | |
WO2018114034A1 (en) | Holographic security element and method for the production thereof | |
EP2927715A1 (en) | Safety element for security papers, valuable documents or the like | |
EP2874820A1 (en) | Security element for security papers, value documents or the like | |
EP2821242B1 (en) | Security element for value documents | |
EP3541630B1 (en) | Security element having a subwavelength grating | |
DE102017130589A1 (en) | Security element with two-dimensional nanostructure and manufacturing process for this security element | |
EP3609718B1 (en) | Security element and method for producing same | |
EP3184319B1 (en) | Safety element for security papers, valuable documents or the like and method for manufacturing a safety element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20180205 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20190225 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 1163234 Country of ref document: AT Kind code of ref document: T Effective date: 20190815 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502016005983 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20190807 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191107 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191107 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191209 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191108 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191207 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200224 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502016005983 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG2D | Information on lapse in contracting state deleted |
Ref country code: IS |
|
26N | No opposition filed |
Effective date: 20200603 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200627 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20200630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200627 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230520 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20230702 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240620 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240630 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20240617 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240621 Year of fee payment: 9 |