EP3299627A1 - Feed pump - Google Patents

Feed pump Download PDF

Info

Publication number
EP3299627A1
EP3299627A1 EP17192607.4A EP17192607A EP3299627A1 EP 3299627 A1 EP3299627 A1 EP 3299627A1 EP 17192607 A EP17192607 A EP 17192607A EP 3299627 A1 EP3299627 A1 EP 3299627A1
Authority
EP
European Patent Office
Prior art keywords
pump
feed pump
rotor
outer rotor
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP17192607.4A
Other languages
German (de)
French (fr)
Other versions
EP3299627B1 (en
Inventor
Armin Herger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SPECK PUMPEN VERKAUFSGESELLCHAFT GmbH
Original Assignee
SPECK PUMPEN VERKAUFSGESELLCHAFT GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SPECK PUMPEN VERKAUFSGESELLCHAFT GmbH filed Critical SPECK PUMPEN VERKAUFSGESELLCHAFT GmbH
Publication of EP3299627A1 publication Critical patent/EP3299627A1/en
Application granted granted Critical
Publication of EP3299627B1 publication Critical patent/EP3299627B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D1/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/021Units comprising pumps and their driving means containing a coupling
    • F04D13/024Units comprising pumps and their driving means containing a coupling a magnetic coupling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/021Units comprising pumps and their driving means containing a coupling
    • F04D13/024Units comprising pumps and their driving means containing a coupling a magnetic coupling
    • F04D13/025Details of the can separating the pump and drive area
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/021Units comprising pumps and their driving means containing a coupling
    • F04D13/024Units comprising pumps and their driving means containing a coupling a magnetic coupling
    • F04D13/026Details of the bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/021Units comprising pumps and their driving means containing a coupling
    • F04D13/024Units comprising pumps and their driving means containing a coupling a magnetic coupling
    • F04D13/027Details of the magnetic circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/06Lubrication
    • F04D29/061Lubrication especially adapted for liquid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/5806Cooling the drive system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/586Cooling; Heating; Diminishing heat transfer specially adapted for liquid pumps
    • F04D29/588Cooling; Heating; Diminishing heat transfer specially adapted for liquid pumps cooling or heating the machine

Definitions

  • the present invention relates to a feed pump for fluid media, in particular a circulation pump for swimming pools or swimming pools or a feed pump for fluid chemicals in the system engineering, with a pump housing, arranged in the pump housing impeller which is rotatably mounted on a pump shaft, and a drive unit, which is connectable to a drive motor, wherein the drive unit and the pump shaft are in magnetic operative connection with each other via inner and outer magnets, which are separated from each other by a containment shell. Because of this magnetic drive concept such pumps are also referred to as magnetic coupling pumps.
  • Magnetic clutch pumps are among the most versatile types of pumps. They are robust and capable of delivering fluids of varying densities, from gases to liquids, at temperatures up to 400 ° C.
  • the pump part of a magnetic coupling pump usually corresponds to a conventional centrifugal pump and has a non-rotatably mounted on a pump shaft radial impeller. While in a conventional pump, the pump shaft is mechanically coupled to the drive motor, has a typical magnetic coupling pump driven by an electric or internal combustion engine cup-shaped drive member with an outer rotor, on the inner surfaces of which outer magnets are arranged radially.
  • an inner rotor connected to the pump shaft, on the outer surface of which inner magnets are arranged, is surrounded at its engine facing end by the outer rotor of the drive member so that the outer and inner magnets are opposed to the reverse polarity.
  • the inner rotor is hermetically separated from the outer rotor by means of a split pot, the inner magnets of the inner rotor being in magnetic operative connection with the outer magnets of the outer rotor over the split pot. Due to the hermetic separation of the inner rotor from the outer rotor through this split pot, which thus replaces the corresponding shaft seals of conventional motor-driven pumps, a leak-free delivery of the fluids is possible.
  • the storage of the pump shaft is usually done by several Sliding bearings that radially and axially support the inner rotor and the pump shaft and are typically lapped for lubrication and cooling of the fluid.
  • magnetic coupling pumps Due to the necessary use of permanent magnets magnetic coupling pumps are more expensive than corresponding pumps in which the pump shaft is mechanically connected to the drive motor. Therefore, magnetic coupling pumps have not yet been used in areas where there is a particularly high cost pressure, for example in the field of circulation pumps for swimming pools and swimming pools, where the clientele often consists of public and private end users. Meanwhile, however, permanent magnets are available at such low cost that magnetic coupling pumps can also be used in such areas.
  • the legal requirements for the energy efficiency of electric motors which are preferably used for magnetic drive pumps as driving motor, are increasing more and more, so that from January 2017 for motor powers from 0.75 kW compliance with a minimum efficiency IE3 in the EU is legally required (energy efficiency classification according to IEC 60034-30).
  • the engine manufacturers can only meet these requirements by installing high-quality components, so that, for example, more copper has to be used for the windings of electric motors.
  • the engines are not only more efficient, but then have a larger torque when starting the engine.
  • a magnetic drive pump in this case there is the risk of slippage, d. H.
  • the magnetic contact of the magnets of the rotor of the pump breaks off, so that the impeller can not be rotated despite the rotating motor.
  • the present invention is therefore based on the technical problem of providing a feed pump for fluid media, in particular a circulating pump for swimming pools and swimming pools, which allows the use of a magnetic drive coupling and is particularly inexpensive to produce when using energy efficient drive motors.
  • the invention therefore solves the technical problem by reversing the assignment of the inner and outer rotors, which are separated by a containment shell, compared with conventional magnetic coupling pumps.
  • conventional magnetic coupling pumps namely, the rotor connected to the motor shaft is designed as an outer rotor specifically with respect to a high tightening torque while the inner rotor is connected to the pump shaft
  • the outer rotor is connected to the pump shaft and the inner rotor is connected to the drive motor.
  • the present invention thus relates to a pump for fluid media of the type described above, which is characterized in that the drive unit, an inner rotor on which the inner magnets are arranged and which is rotatably connected to a motor shaft of the drive motor, and a rotationally fixed to the pump shaft connected outer rotor, wherein the outer rotor carries the outer magnet and engages around the inner rotor.
  • the inner rotor has additional weights, which serve to increase the moment of inertia of the inner rotor and thus act as a starting brake. Therefore, the additional weights slow down the start of the engine in the first few seconds after switching on, so that the risk of tearing of the magnetic coupling is reduced and the outer rotor synchronously with the Inner rotor can start. Surprisingly, it was found that despite the additional weights with the engine running no increased energy consumption is observed.
  • the additional weights can be adjusted in the function for increasing the moment of inertia of the respective engine power and the efficiency of the engine, so that for example the same feed pump can be used with motors in a power range of 0.75 to 2.2 kW.
  • the additional weights can be integrated into the inner rotor, for example, be sprayed as metal rings with an inner rotor made of die-cast metal or plastic.
  • the additional weights are designed as a flywheel, which is preferably replaceably mounted on the inner rotor.
  • the flywheel can be easily replaced by discs of different thicknesses or different materials, thus modifying the effect of the starting brake and adapting it to engine performance.
  • Such a flywheel also ensures, with its circularly symmetrical mass distribution, an equalization of the rotation of the inner rotor, so that a tearing off of the magnetic coupling during load fluctuations can be avoided.
  • the pump shaft and the outer rotor can be manufactured as an injection molded part.
  • the outer rotor and the Pump shaft are connected in many ways with each other.
  • the outer rotor can be sprayed against rotation on the pump shaft, so that the pump shaft and outer rotor in turn form a one-piece component.
  • the outer rotor has at its motor end a pot-like general shape, wherein the dimensions are selected so that the outer rotor engages around the inner rotor and the split pot disposed between the inner rotor and outer rotor.
  • the feed pump also preferably includes a fluid circuit via which for cooling and lubricating the bearings of the outer rotor, the can and the seal housing.
  • This fluid circuit is configured more complex than in a conventional magnetic coupling pump, in which fluid only needs to be guided close to the axis of the pump shaft to the plain bearings.
  • the feed pump preferably has a seal housing, in which the outer rotor is arranged and which together with the containment shell defines a part of the fluid housing provided for cooling and lubrication.
  • the pump shaft is preferably rotatably supported by at least one sliding bearing, particularly preferably two plain bearings, wherein the sliding bearing of the in the Fluid circulation guided fluid to be cooled and lubricated.
  • plain bearings preferably ceramic plain bearings are used.
  • the feed pump has an axial suction opening, through which the medium to be conveyed is sucked by the impeller and, for example, is conveyed radially into the pressure space on the outer circumference of the impeller.
  • the feed pump according to the invention can be used for different purposes, for example as a feed pump for fluid chemicals in systems engineering or as a circulation pump for swimming pools or swimming pools.
  • a fiber catcher is preferably arranged in front of the suction opening of the feed pump.
  • the fiber catcher can be connected to the suction opening via a hose or a line, but preferably the fiber catcher is integrated in the pump housing immediately before the suction opening of the pump.
  • the drive unit of the feed pump according to the invention may have a drive shaft which is centrally mounted in the inner rotor or sprayed with this, and which can be connected via a mechanical coupling with a motor shaft of a drive motor.
  • the inner rotor has a central bore, in which the motor shaft of a drive motor can engage in rotation, so that the drive motor can be flanged directly to the drive unit of the pump.
  • FIG. 2 shows an enlarged detail view of the FIG. 1
  • the illustrated feed pump 10 can be used for example as a circulation pump for swimming pools or swimming pools.
  • the feed pump 10 has a suction nozzle 11 which opens into an inlet opening 12 of an upstream fiber catcher 13.
  • the fiber catcher 13 comprises a filter basket 14 which can be removed via an opening 15 provided on the upper side of the fiber catcher 13.
  • the opening 15 of the fiber catcher 13 is closed by a screw 16.
  • An outlet opening 17 of the fiber trap opens into an axial suction opening 18 of the feed pump.
  • Adjoining the suction opening 18 is a radial impeller 19, which axially sucks the fluid to be delivered and transports it radially into a pressure chamber 20 of the delivery pump. From the pressure chamber 20, the fluid to be delivered is discharged via a pressure port 21.
  • the impeller 19 is stuck on a free end of a pump shaft 22 and there is rotationally fixed by means of tolerance ring and a screw 23.
  • an outer rotor 24 is sprayed.
  • the pump shaft 22 and the outer rotor 24 are isolated in the FIGS. 3 and 4 shown in more detail.
  • the impeller 19 opposite end of the outer rotor 24 is cup-shaped and has outer magnets 25 which are arranged on the inner circumference of the outer rotor 24.
  • the outer magnets 25 are permanent magnets, for example, on the outer rotor can be plugged in Nuttaschen or can be encapsulated by this. In the example shown, the outer magnets are fixed by means of a steel ring 26 in a recess of the outer rotor 24.
  • the recess is welded in the example shown by a frontal cover 50 gas-tight.
  • an inner rotor 27 In the pot formed by the outer rotor 24 is an inner rotor 27, on the outer circumference, the outer magnet 25 of the outer rotor 24 opposite, inner magnets 28 are arranged.
  • the inner rotor is insulated and detailed in the FIGS. 5 and 6 shown.
  • a split pot 29 is arranged, which consists of a non-magnetizable material.
  • the containment shell 29 is insulated and detailed in FIGS FIGS. 7 and 8 shown.
  • the inner rotor 27 has a drive shaft bore 30 into which a motor shaft 31 of a drive motor 32 flanged to the feed pump 10 can engage in a rotationally fixed manner.
  • the drive motor 32 may be, for example, an electric motor.
  • the inner rotor 27 on a flywheel 33 which is rotatably connected to the motor side end side of the inner rotor 27 and serves as additional weight to slightly delay the tarnishing of the inner rotor immediately after switching on the drive motor, so that the magnetic coupling between inner magnet 28 and outer magnet 25 does not break off in this phase.
  • the flywheel 33 is replaceably formed and fixed by means of two screws 34 on the motor-side end face of the inner rotor 27.
  • the feed pump 10 has a pump housing 35, which surrounds the impeller 19 and the pressure chamber 20. Adjoining the pump housing 35 is an intermediate housing 36, which surrounds the drive unit of the feed pump 10 which consists of the inner rotor and outer rotor. In the interior of the intermediate housing 36, a seal housing 37 is arranged, which together with the containment shell 29 forms a fluid channel 38 for a fluid for cooling and lubrication of the outer rotor and the bearings of the pump shaft.
  • the seal housing 37 is insulated in the FIGS. 9 and 10 shown in more detail.
  • the containment shell 29 has on its outer periphery a plate-like collar 39 which is connected by screws 40 to the seal housing and thus serves as a motor-side cover for the seal housing.
  • an O-ring 41 is arranged between the collar 39 acting as a cover for the seal housing of the can 29 and the seal housing 37.
  • the screws 40 can be protected by plugs 51 from the pumped medium.
  • plugs and o-rings made of a chemical resistant material, such as a fluoroelastomer or an ethylene-propylene-diene rubber, may be used.
  • a chemical resistant material such as a fluoroelastomer or an ethylene-propylene-diene rubber
  • FIG. 2 In particular, in the enlarged view of FIG. 2 is the central area of the feed pump 10 off FIG. 1 better recognizable. Additional arrows symbolized in FIG. 2 the fluid circuit for lubrication and cooling of the drive component. It can be seen that openings 43 are recessed between a pump-side cover 42 of the seal housing and the seal housing 37, via which conveying medium can pass from the pressure chamber 20 in a distributor space 44 formed by the seal housing. From the distributor space 44, the fluid passes through apertures 46 recessed in an inner wall 45 of the seal housing 37 into the fluid channel 38. There, the fluid flows around the cup-like region of the outer rotor 24 and the outer surface of the containment shell 29 between outer rotor 24 and containment shell 29 and passes over in the outer rotor provided openings 47 in the channel 38 back.
  • the pump shaft 22 is mounted at its ends in each case by a ceramic plain bearing 48a, 48b.
  • one component 48a is connected to the seal housing or the containment shell, while the other component 48b is connected to the pump shaft 22 or to the end of the outer rotor 24 sprayed onto the pump shaft.
  • the pump-side cover 42 has a central opening through which projects the impeller-side end of the pump shaft. About the annular gap formed between the pump shaft and the inner edge of the opening, the fluid enters a formed on the back of the impeller in the cover 42 radial gap 49 through which the fluid can be directed in the direction of pressure chamber 20 again.
  • FIGS. 3 and 4 the outer rotor 24 of the feed pump 10 according to the invention is shown in more detail. It can be seen that the cup-shaped housing of the outer rotor 24, in which the outer magnets 25 are fixed by means of steel ring 26, is gas-tight welded at the motor-side front end by means of a cover 50. At the impeller-side end of the outer rotor, the outer rotor 24 is sprayed onto the pump shaft 22. Furthermore, the components 48b of the two ceramic plain bearings connected to the outer rotor 24 are shown.
  • FIGS. 5 and 6 the inner rotor 27 of the feed pump according to the invention with screwed flywheel 33 is shown. It can be seen in particular in the perspective view of FIG. 6 the inner magnets 28 glued distributed on the outer circumference of the inner rotor, which are likewise designed like the outer magnets 25 of the outer rotor as permanent magnets.
  • the containment shell 29 is shown in more detail in cross section and in plan view.
  • the cross section corresponds to that in the FIG. 8 indicated section along the line VII-VII. It also recognizes the connected to the gap pot component 48a of the ceramic plain bearing, as well as acting as a motor-side cover of the seal housing collar 39 of the gap pot, which is formed as an integral component with the containment shell.
  • the seal housing 37 is shown in more detail in cross-section and in plan view.
  • FIG. 10 is the cut of the FIG. 9 indicated by the line IX-IX.
  • the seal housing 37 is a complex injection-molded part, which has an inner wall 45 for forming a distribution chamber 44 for serving as a coolant and lubricant partial flow of the pumped medium. It also recognizes the connected to the seal housing component 48a of the ceramic plain bearing.
  • the distribution chambers (44) are dimensioned large-scale for good cooling and lubrication of the ceramic bearings.
  • six chambers arranged in a star shape and separated by ribs enable a uniform, uniform flushing of the ceramic bearings over the openings 43, the chambers 44 and the openings 46 (cf. Fig. 2 ).

Abstract

Die Erfindung betrifft eine Förderpumpe für fluide Medien, insbesondere Umwälzpumpe für Swimmingpools oder Schwimmbäder, mit einem Pumpengehäuse (35), einem in dem Pumpengehäuse (35) angeordneten Laufrad (19), das drehfest auf einer Pumpenwelle (22) montiert ist, einer Antriebseinheit (27,28), die mit einem Antriebsmotor (32) verbindbar ist, wobei die Antriebseinheit (24,25,27,28) und die Pumpenwelle (22) über Innen- und Außenmagneten (25,28), die durch einen Spalttopf (29) voneinander getrennt sind, miteinander in magnetischer Wirkverbindung stehen und die Antriebseinheit (24,25,27,28) einen Innenrotor (27), auf dem die Innenmagneten (28) angeordnet sind und der drehfest mit einer Motorwelle (21) des Antriebsmotors (32) verbindbar ist, und einen drehfest mit der Pumpenwelle verbunden Außenrotor (24) umfasst, wobei der Außenrotor (24) die Außenmagneten (25) trägt und den Innenrotor (27) umgreift, und wobei der Innenrotor (27) Zusatzgewichte (33) aufweist, die als Anlaufbremse wirken.The invention relates to a delivery pump for fluid media, in particular circulation pump for swimming pools or swimming pools, with a pump housing (35), one in the pump housing (35) arranged impeller (19) which is rotatably mounted on a pump shaft (22), a drive unit ( 27,28), which is connectable to a drive motor (32), wherein the drive unit (24,25,27,28) and the pump shaft (22) via inner and outer magnets (25,28) through a split pot (29 ) are in mutually active magnetic connection, and the drive unit (24, 25, 27, 28) has an inner rotor (27) on which the inner magnets (28) are arranged and which is non-rotatably connected to a motor shaft (21) of the drive motor (32 ), and an outer rotor (24) rotatably connected to the pump shaft, wherein the outer rotor (24) carries the outer magnets (25) and the inner rotor (27) engages, and wherein the inner rotor (27) additional weights (33), the as a starting book act.

Description

Die vorliegende Erfindung betrifft eine Förderpumpe für fluide Medien, insbesondere eine Umwälzpumpe für Swimmingpools oder Schwimmbäder oder eine Förderpumpe für fluide Chemikalien in der Anlagentechnik, mit einem Pumpengehäuse, einem in dem Pumpengehäuse angeordneten Laufrad, das drehfest auf einer Pumpenwelle montiert ist, und einer Antriebseinheit, die mit einem Antriebsmotor verbindbar ist, wobei die Antriebseinheit und die Pumpenwelle über Innen- und Außenmagneten, die durch einen Spalttopf voneinander getrennt sind, miteinander in magnetischer Wirkverbindung stehen. Aufgrund dieses magnetischen Antriebskonzeptes werden derartige Pumpen auch als Magnetkupplungspumpen bezeichnet.The present invention relates to a feed pump for fluid media, in particular a circulation pump for swimming pools or swimming pools or a feed pump for fluid chemicals in the system engineering, with a pump housing, arranged in the pump housing impeller which is rotatably mounted on a pump shaft, and a drive unit, which is connectable to a drive motor, wherein the drive unit and the pump shaft are in magnetic operative connection with each other via inner and outer magnets, which are separated from each other by a containment shell. Because of this magnetic drive concept such pumps are also referred to as magnetic coupling pumps.

Magnetkupplungspumpen gehören zu den am vielfältigsten einsetzbaren Pumpenarten. Sie sind robust und in der Lage, Fluide unterschiedlichster Dichte, von Gasen bis zu Flüssigkeiten, bei Temperaturen bis zu 400 °C zu fördern. Der Pumpenteil einer Magnetkupplungspumpe entspricht üblicherweise einer herkömmlichen Kreiselpumpe und weist ein auf einer Pumpenwelle drehfest angeordnetes Radiallaufrad auf. Während bei einer herkömmlichen Pumpe die Pumpenwelle mechanisch mit dem Antriebsmotor gekoppelt ist, weist eine typische Magnetkupplungspumpe einen von einem Elektro- oder Verbrennungsmotor angetriebenen topfförmigen Antriebsteil mit einem Außenrotor auf, an dessen Innenflächen Außenmagneten radial angeordnet sind. Bei den bisher bekannten Magnetkupplungspumpen wird ein mit der Pumpenwelle verbundener Innenrotor, an dessen Außenfläche Innenmagneten angeordnet sind, wird an seinem dem Motor zugewandten Ende von dem Außenrotor des Antriebsteil so umgeben, dass sich die Außen- und Innenmagneten korrespondierend mit umgekehrter Polarität gegenüberliegen. Der Innenrotor wird mittels eines Spalttopfes hermetisch von dem Außenrotor getrennt, wobei die Innenmagneten des Innenrotors mit den Außenmagneten des Außenrotors über den Spalttopf hinweg in magnetischer Wirkverbindung stehen. Durch die hermetische Abtrennung des Innenrotors vom Außenrotor durch diesen Spalttopf, der damit die entsprechenden Wellendichtungen herkömmlicher motorbetriebener Pumpen ersetzt, ist eine leckagefreie Förderung der Fluide möglich. Die Lagerung der Pumpenwelle erfolgt üblicherweise durch mehrere Gleitlager, die den Innenrotor und die Pumpenwelle radial bzw. axial abstützen und die zur Schmierung und Kühlung typischerweise von der Förderflüssigkeit umspült werden.Magnetic clutch pumps are among the most versatile types of pumps. They are robust and capable of delivering fluids of varying densities, from gases to liquids, at temperatures up to 400 ° C. The pump part of a magnetic coupling pump usually corresponds to a conventional centrifugal pump and has a non-rotatably mounted on a pump shaft radial impeller. While in a conventional pump, the pump shaft is mechanically coupled to the drive motor, has a typical magnetic coupling pump driven by an electric or internal combustion engine cup-shaped drive member with an outer rotor, on the inner surfaces of which outer magnets are arranged radially. In the heretofore known magnetic drive pumps, an inner rotor connected to the pump shaft, on the outer surface of which inner magnets are arranged, is surrounded at its engine facing end by the outer rotor of the drive member so that the outer and inner magnets are opposed to the reverse polarity. The inner rotor is hermetically separated from the outer rotor by means of a split pot, the inner magnets of the inner rotor being in magnetic operative connection with the outer magnets of the outer rotor over the split pot. Due to the hermetic separation of the inner rotor from the outer rotor through this split pot, which thus replaces the corresponding shaft seals of conventional motor-driven pumps, a leak-free delivery of the fluids is possible. The storage of the pump shaft is usually done by several Sliding bearings that radially and axially support the inner rotor and the pump shaft and are typically lapped for lubrication and cooling of the fluid.

Durch den notwendigen Einsatz von Permanentmagneten sind Magnetkupplungspumpen teurer als entsprechende Pumpen, bei denen die Pumpenwelle mechanisch mit dem Antriebsmotor verbunden ist. Daher wurden Magnetkupplungspumpen bislang noch nicht in Bereichen eingesetzt, in denen ein besonders hoher Kostendruck herrscht, beispielsweise im Bereich der Umwälzpumpen für Swimmingpools und Schwimmbäder, wo der Kundenkreis vielfach aus öffentlichen und privaten Endanwendern besteht. Inzwischen sind aber Permanentmagneten derart kostengünstig erhältlich, dass Magnetkupplungspumpen auch in solchen Bereichen eingesetzt werden können. Gleichzeitig werden die gesetzlichen Anforderungen an die Energieeffizienz von Elektromotoren, die bei Magnetkupplungspumpen bevorzugt als Antriebsmotor eingesetzt werden, immer mehr erhöht, so dass ab Januar 2017 bereits für Motorleistungen ab 0,75 kW die Einhaltung eines Mindestwirkungsgrads IE3 in der EU gesetzlich verpflichtend ist (Energieeffizienzklassifikation gemäß IEC 60034-30). Die Motorenhersteller können diese Anforderungen nur durch Einbau hochwertiger Komponenten erreichen, so dass beispielsweise für die Wicklungen von Elektromotoren vermehrt Kupfer eingesetzt werden muss. Die Motoren werden dadurch nicht nur effizienter, sondern weisen dann auch ein größeres Anzugsmoment beim Anlaufen des Motors auf. Bei einer Magnetkupplungspumpe besteht in diesem Fall die Gefahr von Schlupf, d. h. der magnetische Kontakt der Magneten des Läufers der Pumpe reißt ab, so dass das Laufrad trotz rotierendem Motor nicht mehr in Rotation versetzt werden kann.Due to the necessary use of permanent magnets magnetic coupling pumps are more expensive than corresponding pumps in which the pump shaft is mechanically connected to the drive motor. Therefore, magnetic coupling pumps have not yet been used in areas where there is a particularly high cost pressure, for example in the field of circulation pumps for swimming pools and swimming pools, where the clientele often consists of public and private end users. Meanwhile, however, permanent magnets are available at such low cost that magnetic coupling pumps can also be used in such areas. At the same time, the legal requirements for the energy efficiency of electric motors, which are preferably used for magnetic drive pumps as driving motor, are increasing more and more, so that from January 2017 for motor powers from 0.75 kW compliance with a minimum efficiency IE3 in the EU is legally required (energy efficiency classification according to IEC 60034-30). The engine manufacturers can only meet these requirements by installing high-quality components, so that, for example, more copper has to be used for the windings of electric motors. The engines are not only more efficient, but then have a larger torque when starting the engine. In a magnetic drive pump in this case there is the risk of slippage, d. H. The magnetic contact of the magnets of the rotor of the pump breaks off, so that the impeller can not be rotated despite the rotating motor.

Aus der europäischen Patentanmeldung EP-A-0 237 868 , dem deutschen Gebrauchsmuster DE 20 2006 005 189 und das deutsche Patent DE 102 61 079 sind jeweils Pumpen mit Magnetkupplungsantrieb bekannt, bei denen motorseitig die Permanentmagneten auf einem Innenrotor und pumpenseitig auf einem Außenrotor angeordnet sind.From the European patent application EP-A-0 237 868 , the German utility model DE 20 2006 005 189 and the German patent DE 102 61 079 For example, pumps with magnetic coupling drive are known in which the motor side, the permanent magnets on an inner rotor and the pump side are arranged on an outer rotor.

Der vorliegenden Erfindung liegt daher das technische Problem zugrunde, eine Förderpumpe für fluide Medien bereitzustellen, insbesondere eine Umwälzpumpe für Swimmingpools und Schwimmbäder, welche die Verwendung eines Magnetkupplungsantriebs ermöglicht und auch bei Verwendung energieeffizienter Antriebsmotoren besonders kostengünstig herstellbar ist.The present invention is therefore based on the technical problem of providing a feed pump for fluid media, in particular a circulating pump for Swimming pools and swimming pools, which allows the use of a magnetic drive coupling and is particularly inexpensive to produce when using energy efficient drive motors.

Gelöst wird dieses technische Problem durch eine Förderpumpe mit den Merkmalen des vorliegenden Anspruchs 1. Vorteilhafte Weiterbildungen der erfindungsgemäßen Förderpumpe sind Gegenstand der abhängigen Ansprüche.This technical problem is solved by a feed pump with the features of the present claim 1. Advantageous developments of the feed pump according to the invention are the subject of the dependent claims.

Gemäß einem ersten Aspekt der Erfindung löst die Erfindung das technische Problem also dadurch, dass gegenüber herkömmlichen Magnetkupplungspumpen die Zuordnung der durch einen Spalttopf getrennten Innen- bzw. Außenrotoren vertauscht wird. Während bei herkömmlichen Magnetkupplungspumpen nämlich speziell im Hinblick auf ein hohes Anzugsdrehmoment der mit der Motorwelle verbundenen Rotor als Außenrotor ausgelegt ist, während der Innenrotor mit der Pumpenwelle verbundenen ist, wird bei der erfindungsgemäßen Pumpe der Außenrotor mit der Pumpenwelle und der Innenrotor mit dem Antriebsmotor verbunden. Gegenstand der vorliegenden Erfindung ist somit eine Förderpumpe für fluide Medien der oben bezeichneten Art, die dadurch gekennzeichnet ist, dass die Antriebseinheit einen Innenrotor, auf dem die Innenmagneten angeordnet sind und der drehfest mit einer Motorwelle des Antriebsmotors verbindbar ist, und einen drehfest mit der Pumpenwelle verbunden Außenrotor umfasst, wobei der Außenrotor die Außenmagneten trägt und den Innenrotor umgreift.According to a first aspect of the invention, the invention therefore solves the technical problem by reversing the assignment of the inner and outer rotors, which are separated by a containment shell, compared with conventional magnetic coupling pumps. In conventional magnetic coupling pumps, namely, the rotor connected to the motor shaft is designed as an outer rotor specifically with respect to a high tightening torque while the inner rotor is connected to the pump shaft, in the pump of the present invention, the outer rotor is connected to the pump shaft and the inner rotor is connected to the drive motor. The present invention thus relates to a pump for fluid media of the type described above, which is characterized in that the drive unit, an inner rotor on which the inner magnets are arranged and which is rotatably connected to a motor shaft of the drive motor, and a rotationally fixed to the pump shaft connected outer rotor, wherein the outer rotor carries the outer magnet and engages around the inner rotor.

Bereits aufgrund der Tatsache, dass der Motor nun einen Innenrotor statt eines Außenrotors antreibt, wird das auf den mit der Pumpenwelle verbundenen Außenrotor wirkende Anzugsdrehmoment verkleinert, was die Schlupfgefahr beim Anlaufen des Motors verringert.Already due to the fact that the motor now drives an inner rotor instead of an outer rotor, the tightening torque acting on the outer rotor connected to the pump shaft is reduced, which reduces the danger of slippage when starting the engine.

Außerdem ist vorgesehen, dass der Innenrotor Zusatzgewichte aufweist, die zur Erhöhung des Massenträgheitsmoments des Innenrotors dienen und so als Anlaufbremse wirken. Die Zusatzgewichte verlangsamen daher das Anlaufen des Motors in den ersten Sekundenbruchteilen nach dem Einschalten, so dass die Gefahr eines Abreißens der Magnetkupplung verringert wird und der Außenrotor synchron zum Innenrotor anlaufen kann. Überraschend wurde gefunden, dass trotz der Zusatzgewichte bei laufendem Motor kein erhöhter Energieverbrauch beobachtet wird.It is also provided that the inner rotor has additional weights, which serve to increase the moment of inertia of the inner rotor and thus act as a starting brake. Therefore, the additional weights slow down the start of the engine in the first few seconds after switching on, so that the risk of tearing of the magnetic coupling is reduced and the outer rotor synchronously with the Inner rotor can start. Surprisingly, it was found that despite the additional weights with the engine running no increased energy consumption is observed.

Aus der deutschen Patentanmeldung DE 29 12 938 ist zwar eine auf der motorseitigen Antriebswelle angeordnete Schwungscheibe bekannt, ein Abreißen der magnetischen Kopplung beim Anfahren der Pumpe verhindern soll. Jedoch sind bei der dort beschriebenen Pumpe in konventioneller Weise die Außenmagneten antriebsseitig und die Innenmagneten pumpenseitig angeordnet. Zudem handelt es sich bei der dort beschriebenen Pumpe um eine Flüssigkeitsringpumpe, bei der das Laufrad beim Anfahren der Pumpe, ausgehend von einer ruhenden Betriebsflüssigkeit, den Flüssigkeitsring erzeugen muss. Die in DE 29 12 938 vorgeschlagene Lösung lässt sich daher nicht auf die erfindungsgemäße Pumpe übertragen.From the German patent application DE 29 12 938 Although a arranged on the motor-side drive shaft flywheel is known to prevent tearing of the magnetic coupling when starting the pump. However, in the pump described there in a conventional manner, the outer magnet on the drive side and the inner magnet are arranged on the pump side. In addition, the pump described there is a liquid ring pump in which the impeller when starting the pump, starting from a stationary operating fluid, the liquid ring must generate. In the DE 29 12 938 Therefore proposed solution can not be transferred to the pump according to the invention.

Die Zusatzgewichte können in der Funktion zur Erhöhung des Massenträgheitsmoments an die jeweilige Motorleistung bzw. die Effizienz des Motors angepasst werden, so dass beispielsweise dieselbe Förderpumpe mit Motoren in einem Leistungsbereich von 0,75 bis 2,2 kW einsetzbar ist.The additional weights can be adjusted in the function for increasing the moment of inertia of the respective engine power and the efficiency of the engine, so that for example the same feed pump can be used with motors in a power range of 0.75 to 2.2 kW.

Die Zusatzgewichte können in den Innenrotor integriert werden, beispielsweise als Metallringe mit einem Innenrotor aus Metall-Druckguss oder Kunststoff verspritzt werden. Gemäß einer bevorzugten Ausführungsform der Erfindung sind die Zusatzgewichte als Schwungscheibe ausgebildet, die vorzugsweise auswechselbar an dem Innenrotor montiert ist. Die Schwungscheibe kann beispielsweise leicht durch Scheiben unterschiedlicher Dicke oder unterschiedlicher Materialien ausgetauscht und so die Wirkung der Anlaufbremse modifiziert und an die Motorleistung angepasst werden. Eine solche Schwungscheibe sorgt mit ihrer kreissymmetrischen Massenverteilung zudem für eine Vergleichmäßigung der Drehung des Innenrotors, so dass ein Abreißen der Magnetkupplung bei Lastschwankungen vermieden werden kann.The additional weights can be integrated into the inner rotor, for example, be sprayed as metal rings with an inner rotor made of die-cast metal or plastic. According to a preferred embodiment of the invention, the additional weights are designed as a flywheel, which is preferably replaceably mounted on the inner rotor. For example, the flywheel can be easily replaced by discs of different thicknesses or different materials, thus modifying the effect of the starting brake and adapting it to engine performance. Such a flywheel also ensures, with its circularly symmetrical mass distribution, an equalization of the rotation of the inner rotor, so that a tearing off of the magnetic coupling during load fluctuations can be avoided.

Wenn der Außenrotor aus demselben Material wie die Pumpenwelle besteht, können Pumpenwelle und Außenrotor beispielsweise als ein Spritzgussteil gefertigt werden. Bei Verwendung unterschiedlicher Materialien können der Außenrotor und die Pumpenwelle auf vielfältige Weise miteinander verbunden werden. Beispielsweise kann der Außenrotor verdrehsicher auf die Pumpenwelle aufgespritzt werden, so dass Pumpenwelle und Außenrotor wiederum ein einstückiges Bauteil bilden.When the outer rotor is made of the same material as the pump shaft, for example, the pump shaft and the outer rotor can be manufactured as an injection molded part. When using different materials, the outer rotor and the Pump shaft are connected in many ways with each other. For example, the outer rotor can be sprayed against rotation on the pump shaft, so that the pump shaft and outer rotor in turn form a one-piece component.

Der Außenrotor weist dabei an seinem motorseitigen Ende eine topfartige Allgemeinform auf, wobei die Abmessungen so gewählt sind, dass der Außenrotor den Innenrotor und den zwischen Innenrotor und Außenrotor angeordneten Spalttopf umgreift.The outer rotor has at its motor end a pot-like general shape, wherein the dimensions are selected so that the outer rotor engages around the inner rotor and the split pot disposed between the inner rotor and outer rotor.

Im Gegensatz zu den in DE 20 2006 005 189 U1 oder EP 0 237 868 A beschriebenen Pumpen, bei denen das Laufrad fest mit dem Außenrotor verbunden ist, wird erfindungsgemäß bevorzugt, dass das Laufrad der Förderpumpe auswechselbar auf die Pumpenwelle drehfest aufgesteckt und beispielsweise mittels einer Schraube und/oder Toleranzringen fixiert wird, was die Wartung der Pumpe vereinfacht. Zudem wird der Einsatz unterschiedlicher Laufräder in der Pumpe durch einfachen Austausch der Laufräder ermöglicht.Unlike the in DE 20 2006 005 189 U1 or EP 0 237 868 A described pumps in which the impeller is fixedly connected to the outer rotor, according to the invention is preferred that the impeller of the pump replaceable plugged onto the pump shaft rotatably and, for example, by means of a screw and / or tolerance rings is fixed, which simplifies the maintenance of the pump. In addition, the use of different impellers in the pump is made possible by simply replacing the wheels.

Die Förderpumpe umfasst außerdem vorzugsweise einen Fluidkreislauf, über den zur Kühlung und Schmierung der Lager des Außenrotors, des Spalttopfes und des Dichtungsgehäuses. Dieser Fluidkreislauf ist komplexer ausgestaltet als bei einer herkömmlichen Magnetkupplungspumpe, bei der Fluid lediglich achsnah an der Pumpenwelle zu den Gleitlagern geführt werden muss. Bei der erfindungsgemäßen Pumpe wird vorgeschlagen, einen Teil des Fördermediums von einem Druckraum der Förderpumpe zu dem Außenrotor und der Pumpenwelle zu führen und dann axial entlang der Pumpenwelle zum Laufrad zurück und von dort radial an der Rückseite des Laufrades wieder in den Druckraum der Förderpumpe zuleiten. Dazu weist die Förderpumpe vorzugsweise ein Dichtungsgehäuse auf, in welchem der Außenrotor angeordnet ist und das zusammen mit dem Spalttopf einen Teil des zur Kühlung und Schmierung vorgesehenen Fluidgehäuses definiert.The feed pump also preferably includes a fluid circuit via which for cooling and lubricating the bearings of the outer rotor, the can and the seal housing. This fluid circuit is configured more complex than in a conventional magnetic coupling pump, in which fluid only needs to be guided close to the axis of the pump shaft to the plain bearings. In the pump according to the invention is proposed to lead a portion of the fluid from a pressure chamber of the feed pump to the outer rotor and the pump shaft and then axially back along the pump shaft to the impeller and from there radially on the back of the impeller back into the pressure chamber of the feed pump. For this purpose, the feed pump preferably has a seal housing, in which the outer rotor is arranged and which together with the containment shell defines a part of the fluid housing provided for cooling and lubrication.

Die Pumpenwelle ist vorzugsweise durch wenigstens ein Gleitlager, besonders bevorzugt zwei Gleitlager, drehbar gelagert, wobei die Gleitlager von dem in dem Fluidkreislauf geführten Fördermedium gekühlt und geschmiert werden. Als Gleitlager werden vorzugsweise Keramikgleitlager verwendet.The pump shaft is preferably rotatably supported by at least one sliding bearing, particularly preferably two plain bearings, wherein the sliding bearing of the in the Fluid circulation guided fluid to be cooled and lubricated. As plain bearings preferably ceramic plain bearings are used.

Gemäß einer bevorzugten Ausführungsform weist die Förderpumpe eine axiale Saugöffnung auf, durch welche das zu fördernde Medium vom Laufrad angesaugt und beispielsweise radial in den Druckraum am Außenumfang des Laufrades gefördert wird.According to a preferred embodiment, the feed pump has an axial suction opening, through which the medium to be conveyed is sucked by the impeller and, for example, is conveyed radially into the pressure space on the outer circumference of the impeller.

Die erfindungsgemäße Förderpumpe kann für unterschiedliche Zwecke, beispielsweise als Förderpumpe für fluide Chemikalien in der Anlagentechnik oder als Umwälzpumpe für Swimmingpools oder Schwimmbäder eingesetzt werden. Insbesondere im Fall des Einsatzes der erfindungsgemäßen Förderpumpe als Umwälzpumpe ist vorzugsweise vor der Saugöffnung der Förderpumpe noch ein Fasernfänger angeordnet. Der Fasernfänger kann über einen Schlauch oder eine Leitung mit der Saugöffnung verbunden sein, vorzugsweise ist der Fasernfänger aber unmittelbar vor der Saugöffnung der Pumpe in das Pumpengehäuse integriert.The feed pump according to the invention can be used for different purposes, for example as a feed pump for fluid chemicals in systems engineering or as a circulation pump for swimming pools or swimming pools. In particular, in the case of the use of the feed pump according to the invention as a circulation pump, a fiber catcher is preferably arranged in front of the suction opening of the feed pump. The fiber catcher can be connected to the suction opening via a hose or a line, but preferably the fiber catcher is integrated in the pump housing immediately before the suction opening of the pump.

Die Antriebseinheit der erfindungsgemäßen Förderpumpe kann eine Antriebswelle aufweisen, die zentral im Innenrotor montiert oder mit diesem verspritzt ist, und die über eine mechanische Kupplung mit einer Motorwelle eines Antriebsmotors verbunden werden kann.The drive unit of the feed pump according to the invention may have a drive shaft which is centrally mounted in the inner rotor or sprayed with this, and which can be connected via a mechanical coupling with a motor shaft of a drive motor.

Bei einer besonders kompakten Ausführungsform der erfindungsgemäßen Förderpumpe weist der Innenrotor eine zentrale Bohrung auf, in welche die Motorwelle eines Antriebsmotors drehfest eingreifen kann, so dass der Antriebsmotor unmittelbar an die Antriebseinheit der Pumpe anflanschbar ist.In a particularly compact embodiment of the feed pump according to the invention, the inner rotor has a central bore, in which the motor shaft of a drive motor can engage in rotation, so that the drive motor can be flanged directly to the drive unit of the pump.

Die Erfindung wird im Folgenden anhand eines unter Bezugnahme auf die in den beigefügten Zeichnungen dargestelltes, bevorzugtes Ausführungsbeispiel näher erläutert. In den Zeichnungen zeigen:

Figur 1
eine als Umwälzpumpe für Swimmingpools ausgebildete erfindungsgemäße Förderpumpe im Teilquerschnitt;
Figur 2
eine vergrößerte Detailansicht der Schnittdarstellung der Figur 1;
Figur 3
eine isolierte Darstellung des Außenrotors der Figuren 1 und 2 im Querschnitt;
Figur 4
den Außenrotor der Figur 3 in perspektivischem Teilquerschnitt;
Figur 5
eine isolierte Darstellung des Innenrotors der Figuren 1 und 2 im Querschnitt;
Figur 6
den Innenrotor der Figur 5 in perspektivischer Darstellung;
Figur 7
eine isolierte Darstellung des Spalttopfes der Förderpumpe der Figuren 1 und 2 im Querschnitt;
Figur 8
eine Draufsicht auf den Spalttopf der Figur 7;
Figur 9
eine isolierte Darstellung des Dichtungsgehäuses der Förderpumpe der Figuren 1 und 2 im Querschnitt; und
Figur 10
eine Draufsicht auf das Dichtungsgehäuse der Figur 9.
The invention is explained in more detail below with reference to a preferred embodiment illustrated with reference to the attached drawings. In the drawings show:
FIG. 1
a trained as a circulation pump for swimming pools invention feed pump in partial cross section;
FIG. 2
an enlarged detail view of the sectional view of FIG. 1 ;
FIG. 3
an isolated view of the outer rotor of Figures 1 and 2 in cross-section;
FIG. 4
the outer rotor of FIG. 3 in perspective partial cross-section;
FIG. 5
an isolated view of the inner rotor of Figures 1 and 2 in cross-section;
FIG. 6
the inner rotor of the FIG. 5 in perspective view;
FIG. 7
an isolated view of the split pot of the feed pump of Figures 1 and 2 in cross-section;
FIG. 8
a plan view of the containment shell of FIG. 7 ;
FIG. 9
an isolated view of the seal housing of the feed pump of Figures 1 and 2 in cross-section; and
FIG. 10
a plan view of the seal housing the FIG. 9 ,

In den Figuren 1 und 2 ist eine insgesamt mit der Bezugsziffer 10 bezeichnete Ausführungsform der erfindungsgemäßen Förderpumpe dargestellt. Figur 2 zeigt dabei eine vergrößerte Detailansicht der Figur 1. Die dargestellte Förderpumpe 10 kann beispielsweise als Umwälzpumpe für Swimmingpools oder Schwimmbäder eingesetzt werden. Die Förderpumpe 10 weist einen Saugstutzen 11 auf, welcher in eine Eintrittsöffnung 12 eines vorgeschalteten Fasernfängers 13 mündet. Der Fasernfänger 13 umfasst einen Filterkorb 14, der über eine auf der Oberseite des Fasernfängers 13 vorgesehene Öffnung 15 herausnehmbar ist. Die Öffnung 15 des Fasernfängers 13 wird durch einen Schraubdeckel 16 verschlossen. Eine Austrittsöffnung 17 des Fasernfängers mündet in eine axiale Saugöffnung 18 der Förderpumpe. An die Saugöffnung 18 schließt sich ein Radiallaufrad 19 an, welches das zu fördernde Fluid axial ansaugt und radial in einen Druckraum 20 der Förderpumpe transportiert. Aus dem Druckraum 20 wird das zu fördernde Fluid über einen Druckstutzen 21 abgeleitet.In the Figures 1 and 2 an embodiment designated overall by the reference numeral 10 of the feed pump according to the invention is shown. FIG. 2 shows an enlarged detail view of the FIG. 1 , The illustrated feed pump 10 can be used for example as a circulation pump for swimming pools or swimming pools. The feed pump 10 has a suction nozzle 11 which opens into an inlet opening 12 of an upstream fiber catcher 13. The fiber catcher 13 comprises a filter basket 14 which can be removed via an opening 15 provided on the upper side of the fiber catcher 13. The opening 15 of the fiber catcher 13 is closed by a screw 16. An outlet opening 17 of the fiber trap opens into an axial suction opening 18 of the feed pump. Adjoining the suction opening 18 is a radial impeller 19, which axially sucks the fluid to be delivered and transports it radially into a pressure chamber 20 of the delivery pump. From the pressure chamber 20, the fluid to be delivered is discharged via a pressure port 21.

Das Laufrad 19 steckt auf einem freien Ende einer Pumpenwelle 22 und ist dort mittels Toleranzring und einer Schraube 23 drehfest fixiert. Auf die Pumpenwelle 22 ist ein Außenrotor 24 aufgespritzt. Die Pumpenwelle 22 und der Außenrotor 24 sind isoliert auch in den Figuren 3 und 4 detaillierter dargestellt. Das dem Laufrad 19 gegenüberliegendes Ende des Außenrotors 24 ist topfförmig ausgebildet und weist Außenmagneten 25 auf, die am Innenumfang des Außenrotors 24 angeordnet sind. Die Außenmagneten 25 sind Permanentmagneten, die beispielsweise an dem Außenrotor in Nuttaschen aufgesteckt oder von diesem umspritzt sein können. Im dargestellten Beispiel werden die Außenmagneten mittels eines Stahlrings 26 in einer Ausnehmung des Außenrotors 24 fixiert. Die Ausnehmung ist im dargestellten Beispiel durch einen stirnseitigen Deckel 50 gasdicht verschweißt. In dem durch den Außenrotor 24 gebildeten Topf befindet sich ein Innenrotor 27, an dessen Außenumfang, den Außenmagneten 25 des Außenrotors 24 gegenüberliegend, Innenmagneten 28 angeordnet sind. Der Innenrotor ist isoliert und detaillierten in den Figuren 5 und 6 dargestellt. Zwischen dem Außenrotor 24 mit seinen Außenmagneten 25 und dem Innenrotor 27 mit dessen Innenmagneten 28 ist ein Spalttopf 29 angeordnet, der aus einem nicht magnetisierbaren Material besteht. Der Spalttopf 29 ist isoliert und detaillierter in den Figuren 7 und 8 dargestellt.The impeller 19 is stuck on a free end of a pump shaft 22 and there is rotationally fixed by means of tolerance ring and a screw 23. On the pump shaft 22, an outer rotor 24 is sprayed. The pump shaft 22 and the outer rotor 24 are isolated in the FIGS. 3 and 4 shown in more detail. The impeller 19 opposite end of the outer rotor 24 is cup-shaped and has outer magnets 25 which are arranged on the inner circumference of the outer rotor 24. The outer magnets 25 are permanent magnets, for example, on the outer rotor can be plugged in Nuttaschen or can be encapsulated by this. In the example shown, the outer magnets are fixed by means of a steel ring 26 in a recess of the outer rotor 24. The recess is welded in the example shown by a frontal cover 50 gas-tight. In the pot formed by the outer rotor 24 is an inner rotor 27, on the outer circumference, the outer magnet 25 of the outer rotor 24 opposite, inner magnets 28 are arranged. The inner rotor is insulated and detailed in the FIGS. 5 and 6 shown. Between the outer rotor 24 with its outer magnet 25 and the inner rotor 27 with its inner magnet 28, a split pot 29 is arranged, which consists of a non-magnetizable material. The containment shell 29 is insulated and detailed in FIGS FIGS. 7 and 8 shown.

Der Innenrotor 27 weist eine Antriebswellenbohrung 30 auf, in welche eine Motorwelle 31 eines an die Förderpumpe 10 angeflanschten Antriebsmotors 32 drehfest eingreifen kann. Bei dem Antriebsmotor 32 kann es sich beispielsweise um einen Elektromotor handeln.The inner rotor 27 has a drive shaft bore 30 into which a motor shaft 31 of a drive motor 32 flanged to the feed pump 10 can engage in a rotationally fixed manner. The drive motor 32 may be, for example, an electric motor.

Zur Reduzierung eines möglichen Schlupfes beim Einschalten des Antriebsmotors 32 weist der Innenrotor 27 eine Schwungscheibe 33 auf, die drehfest mit der motorseitigen Stirnseite des Innenrotors 27 verbunden ist und als Zusatzgewicht dient, um das Anlaufen des Innenrotors unmittelbar nach Einschalten des Antriebsmotors geringfügig zu verzögern, so dass die Magnetkupplung zwischen Innenmagneten 28 und Außenmagneten 25 in dieser Phase nicht abreißt. Zur Anpassung an unterschiedliche Motorleistungen ist die Schwungscheibe 33 auswechselbar ausgebildet und mittels zweier Schrauben 34 an der motorseitigen Stirnseite des Innenrotors 27 befestigt.To reduce a possible slip when switching on the drive motor 32, the inner rotor 27 on a flywheel 33 which is rotatably connected to the motor side end side of the inner rotor 27 and serves as additional weight to slightly delay the tarnishing of the inner rotor immediately after switching on the drive motor, so that the magnetic coupling between inner magnet 28 and outer magnet 25 does not break off in this phase. To adapt to different engine performance, the flywheel 33 is replaceably formed and fixed by means of two screws 34 on the motor-side end face of the inner rotor 27.

Die Förderpumpe 10 weist ein Pumpengehäuse 35 auf, welches das Laufrad 19 und den Druckraum 20 umgibt. An das Pumpengehäuse 35 schließt sich ein Zwischengehäuse 36 an, welches die aus Innenrotor und Außenrotor bestehende Antriebseinheit der Förderpumpe 10 umgibt. Im Inneren des Zwischengehäuses 36 ist ein Dichtungsgehäuse 37 angeordnet, welches zusammen mit dem Spalttopf 29 einen Fluidkanal 38 für ein Fluid zur Kühlung und Schmierung des Außenrotors und der Lagerungen der Pumpenwelle bildet. Das Dichtungsgehäuse 37 ist isoliert in den Figuren 9 und 10 detaillierter dargestellt.The feed pump 10 has a pump housing 35, which surrounds the impeller 19 and the pressure chamber 20. Adjoining the pump housing 35 is an intermediate housing 36, which surrounds the drive unit of the feed pump 10 which consists of the inner rotor and outer rotor. In the interior of the intermediate housing 36, a seal housing 37 is arranged, which together with the containment shell 29 forms a fluid channel 38 for a fluid for cooling and lubrication of the outer rotor and the bearings of the pump shaft. The seal housing 37 is insulated in the FIGS. 9 and 10 shown in more detail.

Der Spalttopf 29 weist an seinem Außenumfang einen tellerartigen Kragen 39 auf, der über Schrauben 40 mit dem Dichtungsgehäuse verbunden ist und so als motorseitiger Deckel für das Dichtungsgehäuse dient. Zur zuverlässigen Abdichtung ist zwischen dem als Deckel für das Dichtungsgehäuse wirkenden Kragen 39 des Spalttopfes 29 und dem Dichtungsgehäuse 37 ein O-Ring 41 angeordnet. Je nach Fördermedium können die Schrauben 40 durch Stopfen 51 vor dem Fördermedium geschützt werden. Für den Einsatz im Chemiebereich können beispielsweise Stopfen und O-Ringe aus einem chemikalienbeständigen Material, beispielsweise aus einem Fluorelastomer oder aus einem Ethylen-Propylen-Dien-Kautschuk verwendet werden. In den Figuren 1 und 2 ist beispielhaft lediglich die obere Schraube 40 mit einem Stopfen 51 versehen.The containment shell 29 has on its outer periphery a plate-like collar 39 which is connected by screws 40 to the seal housing and thus serves as a motor-side cover for the seal housing. For reliable sealing, an O-ring 41 is arranged between the collar 39 acting as a cover for the seal housing of the can 29 and the seal housing 37. Depending on the pumped medium, the screws 40 can be protected by plugs 51 from the pumped medium. For example, for use in the chemical field, plugs and o-rings made of a chemical resistant material, such as a fluoroelastomer or an ethylene-propylene-diene rubber, may be used. In the Figures 1 and 2 For example, only the upper screw 40 is provided with a plug 51.

Insbesondere in der vergrößerten Darstellung der Figur 2 ist der zentralen Bereichs der Förderpumpe 10 aus Figur 1 besser erkennbar. Zusätzliche Pfeile symbolisierten in Figur 2 den Fluidkreislauf zur Schmierung und Kühlung der Antriebskomponente. Man erkennt, dass zwischen einem pumpenseitigen Deckel 42 des Dichtungsgehäuses und dem Dichtungsgehäuse 37 Öffnungen 43 ausgespart sind, über welche Fördermedium aus dem Druckraum 20 in einem von dem Dichtungsgehäuse gebildeten Verteilerraum 44 gelangen können. Aus dem Verteilerraum 44 gelangt das Fluid über in einer Innenwand 45 des Dichtungsgehäuses 37 ausgesparten Öffnungen 46 in den Fluidkanal 38. Dort umspült das Fluid den topfartigen Bereich des Außenrotors 24 und die Außenfläche des Spalttopfes 29 zwischen Außenrotor 24 und Spalttopf 29 und gelangt über im Außenrotor vorgesehene Öffnungen 47 in den Kanal 38 zurück.In particular, in the enlarged view of FIG. 2 is the central area of the feed pump 10 off FIG. 1 better recognizable. Additional arrows symbolized in FIG. 2 the fluid circuit for lubrication and cooling of the drive component. It can be seen that openings 43 are recessed between a pump-side cover 42 of the seal housing and the seal housing 37, via which conveying medium can pass from the pressure chamber 20 in a distributor space 44 formed by the seal housing. From the distributor space 44, the fluid passes through apertures 46 recessed in an inner wall 45 of the seal housing 37 into the fluid channel 38. There, the fluid flows around the cup-like region of the outer rotor 24 and the outer surface of the containment shell 29 between outer rotor 24 and containment shell 29 and passes over in the outer rotor provided openings 47 in the channel 38 back.

Im dargestellten Beispiel ist die Pumpenwelle 22 an ihren Enden jeweils durch ein Keramikgleitlager 48a, 48b gelagert. Dabei ist jeweils eine Komponente 48a mit dem Dichtungsgehäuse bzw. dem Spalttopf verbunden, während die andere Komponente 48b mit der Pumpenwelle 22 bzw. dem auf die Pumpenwelle aufgespritzten Ende des Außenrotors 24 verbunden ist. Der pumpenseitige Deckel 42 weist eine zentrale Öffnung auf, durch die das laufradseitige Ende der Pumpenwelle ragt. Über den zwischen Pumpenwelle und Innenrand der Öffnung gebildeten Ringspalt gelangt das Fluid in einen auf der Rückseite des Laufrades im Deckel 42 ausgebildeten Radialspalt 49, über den das Fluid wiederum in Richtung Druckraum 20 geleitet werden kann.In the example shown, the pump shaft 22 is mounted at its ends in each case by a ceramic plain bearing 48a, 48b. In this case, in each case one component 48a is connected to the seal housing or the containment shell, while the other component 48b is connected to the pump shaft 22 or to the end of the outer rotor 24 sprayed onto the pump shaft. The pump-side cover 42 has a central opening through which projects the impeller-side end of the pump shaft. About the annular gap formed between the pump shaft and the inner edge of the opening, the fluid enters a formed on the back of the impeller in the cover 42 radial gap 49 through which the fluid can be directed in the direction of pressure chamber 20 again.

In den Figuren 3 und 4 ist der Außenrotor 24 der erfindungsgemäßen Förderpumpe 10 detaillierter dargestellt. Man erkennt, dass das topfförmige Gehäuse des Außenrotors 24, in welchem die Außenmagneten 25 mittels Stahlring 26 fixiert sind, am motorseitigen Stirnende mittels eines Deckels 50 gasdicht verschweißt ist. Am laufradseitigen Ende des Außenrotors ist der Außenrotor 24 auf die Pumpenwelle 22 aufgespritzt. Ferner sind die mit dem Außenrotor 24 verbundenen Komponenten 48b der beiden Keramikgleitlager dargestellt.In the FIGS. 3 and 4 the outer rotor 24 of the feed pump 10 according to the invention is shown in more detail. It can be seen that the cup-shaped housing of the outer rotor 24, in which the outer magnets 25 are fixed by means of steel ring 26, is gas-tight welded at the motor-side front end by means of a cover 50. At the impeller-side end of the outer rotor, the outer rotor 24 is sprayed onto the pump shaft 22. Furthermore, the components 48b of the two ceramic plain bearings connected to the outer rotor 24 are shown.

In den Figuren 5 und 6 ist der Innenrotor 27 der erfindungsgemäßen Förderpumpe mit angeschraubter Schwungscheibe 33 dargestellt. Man erkennt insbesondere in der perspektivischen Darstellung der Figur 6 die am Außenumfang des Innenrotors verteilt aufgeklebten Innenmagneten 28, die ebenfalls wie die Außenmagneten 25 des Außenrotors als Permanentmagneten ausgebildet sind.In the FIGS. 5 and 6 the inner rotor 27 of the feed pump according to the invention with screwed flywheel 33 is shown. It can be seen in particular in the perspective view of FIG. 6 the inner magnets 28 glued distributed on the outer circumference of the inner rotor, which are likewise designed like the outer magnets 25 of the outer rotor as permanent magnets.

In den Figuren 7 und 8 ist der Spalttopf 29 im Querschnitt bzw. in Draufsicht detaillierter dargestellt. Der Querschnitt entspricht dem in der Figur 8 angedeuteten Schnitt entlang der Linie VII-VII. Man erkennt ferner die mit dem Spalttopf verbundene Komponente 48a des Keramikgleitlagers, sowie den als motorseitigen Deckel des Dichtungsgehäuses wirkenden Kragen 39 des Spalttopfes, der als einstückiges Bauteil mit dem Spalttopf ausgebildet ist.In the FIGS. 7 and 8 the containment shell 29 is shown in more detail in cross section and in plan view. The cross section corresponds to that in the FIG. 8 indicated section along the line VII-VII. It also recognizes the connected to the gap pot component 48a of the ceramic plain bearing, as well as acting as a motor-side cover of the seal housing collar 39 of the gap pot, which is formed as an integral component with the containment shell.

In den Figuren 9 und 10 ist das Dichtungsgehäuse 37 im Querschnitt und in Draufsicht detaillierter dargestellt. In Figur 10 ist dabei der Schnitt der Figur 9 durch die Linie IX-IX angedeutet. Im dargestellten Beispiel ist das Dichtungsgehäuse 37 ein komplexes Spritzgussteil, das eine Innenwand 45 zur Bildung einer Verteilerkammer 44 für den als Kühl- und Schmiermittel dienenden Teilstrom des Fördermediums aufweist. Man erkennt ferner die mit dem Dichtungsgehäuse verbundene Komponente 48a des Keramikgleitlagers. Die Verteilerkammern (44) sind für eine gute Kühlung und Schmierung der Keramiklager großräumig dimensioniert. In der dargestellten Ausführungsform ermöglichen sechs sternförmig angeordnete, durch Rippen getrennte Kammern eine allseitig hervorragende gleichmäßige Umspülung der Keramiklager über die Öffnungen 43, die Kammern 44 und die Öffnungen 46 (vgl. auch Fig. 2).In the FIGS. 9 and 10 the seal housing 37 is shown in more detail in cross-section and in plan view. In FIG. 10 is the cut of the FIG. 9 indicated by the line IX-IX. In the example shown, the seal housing 37 is a complex injection-molded part, which has an inner wall 45 for forming a distribution chamber 44 for serving as a coolant and lubricant partial flow of the pumped medium. It also recognizes the connected to the seal housing component 48a of the ceramic plain bearing. The distribution chambers (44) are dimensioned large-scale for good cooling and lubrication of the ceramic bearings. In the illustrated embodiment, six chambers arranged in a star shape and separated by ribs enable a uniform, uniform flushing of the ceramic bearings over the openings 43, the chambers 44 and the openings 46 (cf. Fig. 2 ).

In den Keramiklagern 48a, 48b sind längs- und stirnseitige Nuten ausgespart, die einen guten Durchfluss zur Schmierung gewährleisten. Die in den Fig. 3, 7, und 9 erkennbaren O-Ringe (52a, 52b, 52c) ermöglichen im zusammengebauten Zustand mit den Keramiklagern 48a, 48b eine gewisse axiale Winkelflexibilität und Kompensation bzw. Dämpfung von Schwingungen. Das Keramikgleitlager hat nämlich nur ein kleines Spiel zum Kunststoff-Gleitlagersitz. Der dazwischen eingepresste O-Ring kompensiert eventuelle mechanische Ungenauigkeiten der verbauten Kunststoffteileumgebung, d.h. die Leichtgängigkeit der Gleitlagerung lässt sich somit durch Kunststoffteile die in der Regel zu leichten Verzug neigen realisieren.In the ceramic bearings 48a, 48b longitudinal and end-side grooves are recessed, which ensure a good flow for lubrication. The in the Fig. 3 . 7, and 9 recognizable O-rings (52a, 52b, 52c) allow in the assembled state with the ceramic bearings 48a, 48b a certain axial angular flexibility and compensation or damping of vibrations. The ceramic plain bearing has only a small clearance to the plastic plain bearing seat. The pressed in between O-ring compensates any mechanical inaccuracies of the installed plastic parts environment, ie the ease of sliding bearing can thus be realized by plastic parts tend tend to slight distortion.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

1010
Förderpumpefeed pump
1111
Saugstutzensuction
1212
Eintrittsöffnung des FasernfängersEntry opening of the fiber catcher
1313
FasernfängerStrainer
1414
Filterkorbfilter basket
1515
Öffnungopening
1616
Schraubdeckelscrew
1717
Austrittsöffnungoutlet opening
1818
Saugöffnungsuction opening
1919
LaufradWheel
2020
Druckraumpressure chamber
2121
Druckstutzenpressure port
2222
Pumpenwellepump shaft
2323
Schraubescrew
2424
Außenrotorouter rotor
2525
Außenmagnetenexternal magnet
2626
Stahlringsteel ring
2727
Innenrotorinner rotor
2828
Innenmagneteninterior magnet
2929
Spalttopfcontainment shell
3030
AntriebswellenbohrungDrive shaft bore
3131
Motorwellemotor shaft
3232
Antriebsmotordrive motor
3333
Schwungscheibeflywheel
3434
Schraubescrew
3535
Pumpengehäusepump housing
3636
Zwischengehäuseintermediate housing
3737
Dichtungsgehäuseseal housing
3838
Fluidkanalfluid channel
3939
Kragen/DeckelCollar / lid
4040
Deckelschraubencover screws
4141
O-RingO-ring
4242
Deckelcover
4343
Öffnungenopenings
4444
Verteilerraumdistribution space
4545
Innenwand des DichtungsgehäusesInner wall of the seal housing
4646
Öffnung in InnenwandOpening in inner wall
4747
Öffnung in AußenrotorOpening in outer rotor
48a,b48a, b
Keramikgleitlagerceramic bearings
4949
Radialspaltradial gap
5050
Deckel des AußenrotorsCover of the outer rotor
5151
StopfenPlug
52a,b,c52a, b, c
O-RingeO-rings

Claims (11)

Förderpumpe für fluide Medien, insbesondere Umwälzpumpe für Swimmingpools oder Schwimmbäder, mit einem Pumpengehäuse (35), einem in dem Pumpengehäuse (35) angeordneten Laufrad (19), das drehfest auf einer Pumpenwelle (22) montiert ist, einer Antriebseinheit (27,28), die mit einem Antriebsmotor (32) verbindbar ist, wobei die Antriebseinheit (24,25,27,28) und die Pumpenwelle (22) über Innen- und Außenmagneten (25,28), die durch einen Spalttopf (29) voneinander getrennt sind, miteinander in magnetischer Wirkverbindung stehen und die Antriebseinheit (24,25,27,28) einen Innenrotor (27), auf dem die Innenmagneten (28) angeordnet sind und der drehfest mit einer Motorwelle (21) des Antriebsmotors (32) verbindbar ist, und einen drehfest mit der Pumpenwelle verbunden Außenrotor (24) umfasst, wobei der Außenrotor (24) die Außenmagneten (25) trägt und den Innenrotor (27) umgreift, und wobei der Innenrotor (27) Zusatzgewichte (33) aufweist, die als Anlaufbremse wirken. Feed pump for fluid media, in particular circulation pump for swimming pools or swimming pools, with a pump housing (35), an impeller (19) arranged in the pump housing (35) and non-rotatably mounted on a pump shaft (22), a drive unit (27, 28) which can be connected to a drive motor (32), wherein the drive unit (24, 25, 27, 28) and the pump shaft (22) are in magnetic operative connection with each other via inner and outer magnets (25, 28), which are separated from one another by a containment shell (29), and the drive unit (24 , 25, 27, 28) have an inner rotor (27) on which the inner magnets (28) are arranged and which can be connected in a rotationally fixed manner to a motor shaft (21) of the drive motor (32) and an outer rotor (24) connected non-rotatably to the pump shaft. wherein the outer rotor (24) carries the outer magnets (25) and surrounds the inner rotor (27), and wherein the inner rotor (27) has additional weights (33) which act as a starting brake. Förderpumpe gemäß Anspruch 2, dadurch gekennzeichnet, dass die Zusatzgewichte als Schwungscheibe (33) ausgebildet sind.Feed pump according to claim 2, characterized in that the additional weights are designed as flywheel (33). Förderpumpe gemäß Anspruch 3, dadurch gekennzeichnet, dass die die Schwungscheibe (33) auswechselbar an dem Innenrotor (27) montiert ist.Feed pump according to claim 3, characterized in that the flywheel (33) is replaceably mounted on the inner rotor (27). Förderpumpe gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Außenrotor (24) auf die Pumpenwelle (22) aufgespritzt ist.Feed pump according to one of claims 1 to 3, characterized in that the outer rotor (24) is sprayed onto the pump shaft (22). Förderpumpe gemäß Anspruch 4, dadurch gekennzeichnet, dass das Laufrad (19) auswechselbar auf die Pumpenwelle (22) aufgesteckt ist.Feed pump according to claim 4, characterized in that the impeller (19) is exchangeably mounted on the pump shaft (22). Förderpumpe gemäß einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass ein Fluidkreislauf vorgesehen ist, über den zur Kühlung und Schmierung des Außenrotors (24) und der Pumpenwelle (22) ein Teil des Fördermediums von einem Druckraum (20) der Förderpumpe zu dem Außenrotor (24) und der Pumpenwelle (22) geführt werden kann.Feed pump according to one of claims 1 to 5, characterized in that a fluid circuit is provided, via which for cooling and lubrication of the outer rotor (24) and the pump shaft (22) a part of the pumped medium from a pressure chamber (20) of the feed pump to the outer rotor (24) and the pump shaft (22) can be performed. Förderpumpe gemäß Anspruch 6, dadurch gekennzeichnet, dass der Außenrotor (24) in einem Dichtungsgehäuse (37) angeordnet ist, das mit dem Spalttopf (19) einen Fluidkanal (38) als Teil des Fluidkreislaufes zur Kühlung und Schmierung definiert.Feed pump according to claim 6, characterized in that the outer rotor (24) in a seal housing (37) is arranged, which defines with the gap pot (19) a fluid passage (38) as part of the fluid circuit for cooling and lubrication. Förderpumpe gemäß Anspruch 7, dadurch gekennzeichnet, dass die Pumpenwelle (22) durch wenigstens ein Gleitlager (48a,48b) drehbar gelagert ist, wobei das Gleitlager von dem in dem Fluidkreislauf geführten Fördermedium gekühlt und geschmiert wird.Feed pump according to claim 7, characterized in that the pump shaft (22) is rotatably supported by at least one slide bearing (48a, 48b), wherein the slide bearing is cooled and lubricated by the conveyed in the fluid circulation medium. Förderpumpe gemäß einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Förderpumpe (10) eine axiale Saugöffnung (18) aufweist.Feed pump according to one of claims 1 to 8, characterized in that the feed pump (10) has an axial suction opening (18). Förderpumpe gemäß Anspruch 9, dadurch gekennzeichnet, dass vor der Saugöffnung (18) ein Fasernfänger (13) angeordnet ist.Feed pump according to claim 9, characterized in that a fiber catcher (13) is arranged in front of the suction opening (18). Förderpumpe gemäß einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass ein Antriebsmotor (32) an die Antriebseinheit (24,25,27,28) angeflanscht ist.Feed pump according to one of claims 1 to 10, characterized in that a drive motor (32) to the drive unit (24,25,27,28) is flanged.
EP17192607.4A 2016-09-23 2017-09-22 Feed pump Active EP3299627B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE202016105312.9U DE202016105312U1 (en) 2016-09-23 2016-09-23 feed pump

Publications (2)

Publication Number Publication Date
EP3299627A1 true EP3299627A1 (en) 2018-03-28
EP3299627B1 EP3299627B1 (en) 2019-12-04

Family

ID=59955434

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17192607.4A Active EP3299627B1 (en) 2016-09-23 2017-09-22 Feed pump

Country Status (2)

Country Link
EP (1) EP3299627B1 (en)
DE (1) DE202016105312U1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113982964A (en) * 2021-11-18 2022-01-28 安徽莱恩电泵有限公司 Two-stage magnetic drive pump for nuclear power
US11439882B2 (en) * 2020-03-31 2022-09-13 Speck Pompen Verkaufsgesellschaft GmbH Countercurrent swimming system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2263312A (en) * 1992-01-17 1993-07-21 Stork Pompen Vertical pump with magnetic coupling.
DE202006005189U1 (en) * 2006-03-31 2007-08-16 H. Wernert & Co. Ohg Centrifugal pump with coaxial magnetic coupling
DE202015003085U1 (en) * 2015-04-29 2016-08-03 Speck Pumpen Verkaufsgesellschaft Gmbh Strainer for pump with illuminated filter unit

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2912938C2 (en) * 1979-03-31 1985-03-14 Lederle Gmbh Pumpen Und Maschinenfabrik, 7800 Freiburg Liquid ring gas pump
CH672820A5 (en) * 1986-03-21 1989-12-29 Ernst Hauenstein
US6863124B2 (en) * 2001-12-21 2005-03-08 Schlumberger Technology Corporation Sealed ESP motor system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2263312A (en) * 1992-01-17 1993-07-21 Stork Pompen Vertical pump with magnetic coupling.
DE202006005189U1 (en) * 2006-03-31 2007-08-16 H. Wernert & Co. Ohg Centrifugal pump with coaxial magnetic coupling
DE202015003085U1 (en) * 2015-04-29 2016-08-03 Speck Pumpen Verkaufsgesellschaft Gmbh Strainer for pump with illuminated filter unit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11439882B2 (en) * 2020-03-31 2022-09-13 Speck Pompen Verkaufsgesellschaft GmbH Countercurrent swimming system
CN113982964A (en) * 2021-11-18 2022-01-28 安徽莱恩电泵有限公司 Two-stage magnetic drive pump for nuclear power

Also Published As

Publication number Publication date
EP3299627B1 (en) 2019-12-04
DE202016105312U1 (en) 2018-01-09

Similar Documents

Publication Publication Date Title
DE102011001041B4 (en) Magnetically driven pump arrangement with a micropump with forced flushing and working method
EP3179106B1 (en) Electric motor driven liquid pump
EP1309070A2 (en) Wet rotor motorpump with protection arrangement against corrosion
DE2244275A1 (en) PUMP UNIT
EP3374642B1 (en) Electric axial-flow liquid pump for motor vehicle
EP2072826A1 (en) Rotor for a canned motor
EP3299627B1 (en) Feed pump
EP2691651A2 (en) Drive unit for a submerged oil pump and pump
EP1343972B1 (en) Method for operating a motor pump
DE102010008822A1 (en) agitator
WO2015067514A1 (en) Electric-motor water pump
EP2818725A1 (en) Centrifugal pump with axially shiftable and closable impeller
DE2912938A1 (en) Liquid-ring pump for gas - has impeller shaft driven via magnetic coupling with concentric halves separating pump section from drive input
WO2020074318A1 (en) Pump, in particular for a liquid circuit in a vehicle
EP2786021B1 (en) Wet-rotor motor pump
DE10154552A1 (en) Fuel pump device for a fuel system of an internal combustion engine and fuel system
DE3223236A1 (en) FUEL PUMP WITH MAGNETIC DRIVE
DE102016209311A1 (en) ELECTRIC CIRCULAR PUMP
EP3156663A1 (en) Centrifugal pump assembly
EP1211422A2 (en) Rotor of a canned motor for a canned motor pump
DE202004013080U1 (en) Magnetic coupling pump for conveying fluids comprises a pump shaft which is rotated by a single friction bearing acting as a radial and axial bearing between a running wheel and inner magnets
EP2990651A1 (en) Pump casing
EP1593852A2 (en) Centrifugal pump and lubrication method for its spherical bearing
DE10317010A1 (en) Vortex pump, especially a peripheral cyclic pump, with a pump housing and having suction and pressure sockets and at least one rotatable impeller wheel with scoops in its outer region useful for high pressure pumping of liquid media
EP3358224A1 (en) Compact transmission motor assembly

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180925

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190822

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1209753

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017003035

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: VALIPAT S.A. C/O BOVARD SA NEUCHATEL, CH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200305

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200404

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017003035

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

26N No opposition filed

Effective date: 20200907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230920

Year of fee payment: 7

Ref country code: IE

Payment date: 20230918

Year of fee payment: 7

Ref country code: GB

Payment date: 20230921

Year of fee payment: 7

Ref country code: AT

Payment date: 20230915

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230918

Year of fee payment: 7

Ref country code: DE

Payment date: 20230926

Year of fee payment: 7

Ref country code: BE

Payment date: 20230918

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230929

Year of fee payment: 7

Ref country code: CH

Payment date: 20231001

Year of fee payment: 7