EP3299500B1 - Hygroscopic core-sheath conjugate yarn and production method therefor - Google Patents

Hygroscopic core-sheath conjugate yarn and production method therefor Download PDF

Info

Publication number
EP3299500B1
EP3299500B1 EP16799810.3A EP16799810A EP3299500B1 EP 3299500 B1 EP3299500 B1 EP 3299500B1 EP 16799810 A EP16799810 A EP 16799810A EP 3299500 B1 EP3299500 B1 EP 3299500B1
Authority
EP
European Patent Office
Prior art keywords
core
sheath
false
sheath composite
composite fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16799810.3A
Other languages
German (de)
French (fr)
Other versions
EP3299500A4 (en
EP3299500A1 (en
Inventor
Kentaro Takagi
Tsuyoshi Hayashi
Daisuke Yoshioka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=57393948&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP3299500(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Publication of EP3299500A1 publication Critical patent/EP3299500A1/en
Publication of EP3299500A4 publication Critical patent/EP3299500A4/en
Application granted granted Critical
Publication of EP3299500B1 publication Critical patent/EP3299500B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/12Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyamide as constituent
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/28Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor
    • D01D5/30Conjugate filaments; Spinnerette packs therefor
    • D01D5/34Core-skin structure; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D7/00Collecting the newly-spun products
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/14Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyester as constituent
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G1/00Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics
    • D02G1/02Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics by twisting, fixing the twist and backtwisting, i.e. by imparting false twist
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G1/00Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics
    • D02G1/02Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics by twisting, fixing the twist and backtwisting, i.e. by imparting false twist
    • D02G1/0286Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics by twisting, fixing the twist and backtwisting, i.e. by imparting false twist characterised by the use of certain filaments, fibres or yarns
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • D03D15/283Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads synthetic polymer-based, e.g. polyamide or polyester fibres
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/40Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the yarns or threads
    • D03D15/47Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the yarns or threads multicomponent, e.g. blended yarns or threads
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/02Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/06Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyethers
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/02Moisture-responsive characteristics

Definitions

  • the present invention relates to a hygroscopic core-sheath composite fiber which is excellent in terms of feeling.
  • Synthetic fibers including thermoplastic resins such as polyamides and polyesters are excellent in terms of strength, chemical resistance, heat resistance, etc., and are hence used extensively in clothing applications, industrial applications, etc.
  • polyamide fibers not only have properties such as the peculiar softness, high tensile strength, colorability by dyeing, and high heat resistance but also have excellent hygroscopicity, and are hence in extensive use in applications such as inner wear and sportswear.
  • polyamide fibers are insufficient in hygroscopicity as compared with natural fibers such as cotton, and have problems such as stuffiness and stickiness. There is hence a problem in that the polyamide fibers are inferior in comfortableness to natural fibers.
  • Patent Document 1 proposes a method in which polyvinylpyrrolidone is blended as a hydrophilic polymer with a polyamide and the blend is spun to thereby improve the hygroscopicity.
  • a fiber is made to have a core-sheath structure in which a highly hygroscopic thermoplastic resin is used as the core and a thermoplastic resin having excellent mechanical properties is used as the sheath, thereby attaining both hygroscopicity and mechanical properties.
  • Patent Document 2 describes a core-sheath composite fiber which has a shape including a core and a sheath, the core being unexposed on the fiber surface, in which the core is a polyether-block-amide copolymer including nylon-6 as a hard segment, the sheath is a nylon-6 resin, and the areal proportion between the core and the sheath in a fiber cross-section is 3/1 to 1/5.
  • Patent Document 3 describes a core-sheath composite fiber including a polyetheresteramide as the core and a polyamide as the sheath and having high hygroscopicity, as a core-sheath type composite fiber having excellent hygroscopicity.
  • This composite fiber is a core-sheath type composite fiber including a thermoplastic resin as the core and a fiber-forming polyamide resin as the sheath, in which the main component of the thermoplastic resin constituting the core is a polyetheresteramide and the proportion of the core is 5-50% by weight of the overall weight of the composite fiber.
  • Patent Document 4 describes a composite fiber having moisture absorbing/releasing properties, which includes a polyamide or a polyester as a sheath component and a water-absorbing thermoplastic resin including crosslinked poly(ethylene oxide) as a core component. Described therein is a highly hygroscopic core-sheath composite fiber including a highly hygroscopic water-insoluble modified poly(ethylene oxide) disposed as the core and a polyamide disposed as the sheath.
  • Patent Document 5 discloses a composite false twist textured yarn obtained by subjecting a polyester-based filament yarn having > 1 % moisture-absorbing and releasing parameter AMR and comprising a fiber containing >5wt.% copolyester having a copolymerized hydrophilic compound and containing at least either one in a polar group containing compound and a crosslinking agent or a fiber containing >5wt.% polyether ester amide or mixture of a polyether ester amide with other thermoplastic resin to composite false twist processing with other filament yarn.
  • a crimped conjugated fiber is disclosed in Patent Document 6.
  • Patent Document 1 has a problem in that although this fiber has moisture absorbing/releasing properties substantially comparable to those of natural fibers, the performance is not fully satisfactory, and even higher moisture absorbing/releasing properties are required to be attained.
  • the core-sheath composite fibers of Patent Documents 2 to 4 have moisture absorbing/releasing properties equal to or higher than those of natural fibers.
  • the core deteriorates due to repetitions of practical use, and there has been a problem in that the hygroscopicity decreases with repetitions of use.
  • fabrics formed therefrom have softness equal to that of nylons and are hence insufficient in feeling. A soft feeling superior to that of any existing article has been strongly desired.
  • An object of the present invention is to provide a core-sheath composite fiber which overcomes the problems of the background-art techniques, and which is capable of attaining: comfortableness superior to that of natural fibers with high hygroscopicity; laundering durability of the hygroscopicity, which makes the fiber withstand practical use; and a soft feeling that has been impossible so far.
  • the present invention includes the following configurations.
  • a core-sheath composite fiber which is capable of attaining: comfortableness superior to that of natural fibers with high hygroscopicity; laundering durability of the hygroscopicity, which makes the fiber withstand practical use; and a soft feeling that has been impossible so far.
  • the core-sheath composite fiber of the present invention employs a polyamide as the sheath and a thermoplastic polymer having high hygroscopicity as the core.
  • thermoplastic polymer having high hygroscopicity as the core means a polymer which, when examined in a pellet form, has a ⁇ MR of 10% or higher, and examples thereof include polyetheresteramide copolymers, poly(vinyl alcohol), and cellulosic thermoplastic resins. Of these, a polyetheresteramide copolymer is used from the standpoint that this polymer has satisfactory thermal stability and satisfactory compatibility with the polyamide as the sheath and has excellent separation resistance.
  • the fiber can be made to have a high ⁇ MR, and a textile which has excellent hygroscopicity and is comfortable can be achieved.
  • ⁇ MR is an index to humidity regulation, and is expressed by the difference in the coefficient of moisture absorption between an in-garment temperature and humidity condition during light to medium works or light to medium exercises which is represented by 30°C ⁇ 90% RH and an outside-air temperature and humidity condition represented by 20°C ⁇ 65% RH. The larger the ⁇ MR, the higher the hygroscopicity and the better the comfortableness during wear.
  • the polyetheresteramide copolymer is a block copolymer which has an ether linkage, an ester linkage, and an amide linkage in the same molecular chain. More specifically, the copolymer is a block copolymer obtained by subjecting a polyamide ingredient (A) including one or more members selected from among lactams, aminocarboxylic acids, and salts of diamines with dicarboxylic acids and a polyetherester ingredient (B) including a dicarboxylic acid and a poly(alkylene oxide) glycol to polycondensation reaction.
  • A polyamide ingredient
  • B including a dicarboxylic acid and a poly(alkylene oxide) glycol
  • polyamide ingredient (A) examples include lactams such as ⁇ -caprolactam, dodecanolactam, and undecanolactom, ⁇ -aminocarboxylic acids such as aminocaproic acid, 11-aminoundecanoic acid and 12-aminododecanoic acid, and diamine-dicarboxylic acid nylon salts which are precursors for nylon-66, nylon-610, nylon-612, etc.
  • a preferred polyamide-forming ingredient is ⁇ -caprolactam.
  • the polyetherester ingredient (B) is an ingredient including a dicarboxylic acid having 4-20 carbon atoms and a poly(alkylene oxide) glycol.
  • the dicarboxylic acid having 4-20 carbon atoms include aliphatic dicarboxylic acids such as succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, sebacic acid and dodecanedioic acid, aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid and 2,6-naphthalenedicarboxylic acid, and alicyclic dicarboxylic acids such as 1,4-cyclohexanedicaroxylic acid; one of these or a mixture of two or more thereof can be used.
  • Preferred dicarboxylic acids are adipic acid, sebacic acid, dodecanedioic acid, terephthalic acid, and isophthalic acid.
  • Examples of the poly(alkylene oxide) glycol include polyethylene glycol, poly(1,2- and 1,3-propylene oxide) glycol, poly(tetramethylene oxide) glycol, and poly(hexamethylene oxide) glycol.
  • Preferred is polyethylene glycol, which has especially satisfactory hygroscopicity.
  • the number-average molecular weight of the poly(alkylene oxide) glycol is preferably 300-10,000, more preferably 500-5,000. In cases when the molecular weight of the poly(alkylene oxide) glycol is 300 or higher, this glycol is less apt to fly off from the system during the polycondensation reaction and a fiber having stable hygroscopicity is obtained. Such molecular weights are hence preferred. In cases when the molecular weight thereof is 10,000 or less, an even block copolymer is obtained to attain stable spinning. Such molecular weights are hence preferred.
  • the proportion of the polyetherester ingredient (B) is 20-80% by mole. Proportions thereof not less than 20% are preferred because satisfactory hygroscopicity is obtained. Meanwhile, proportions thereof not higher than 80% are preferred because satisfactory color fastness and laundering durability are obtained.
  • polyetheresteramide copolymer Commercial examples of such polyetheresteramide copolymer are “MH 1657” and “MV 1074", both manufactured by Arkema Inc.
  • polyamide as the sheath examples include nylon-6, nylon-66, nylon-46, nylon-9, nylon-610, nylon-11, nylon-12, nylon-612, and the like and copolyamides including these nylons and comonomer components such as compounds having an amide-forming functional group, e.g., laurolactam, sebacic acid, terephthalic acid, isophthalic acid, and 5-sodiumsulfoisophthalic acid.
  • amide-forming functional group e.g., laurolactam, sebacic acid, terephthalic acid, isophthalic acid, and 5-sodiumsulfoisophthalic acid.
  • nylone-6 nylon-11, nylon-12, nylon-610, and nylon-612
  • nylon-6 which has excellent dyeability.
  • additives may have been copolymerized with or incorporated into the sheath polyamide in the present invention according to need in a total additive content in the range of 0.001-10% by weight.
  • the additives include a delustering agent, flame retardant, antioxidant, ultraviolet absorber, infrared absorber, nucleator, fluorescent brightener, antistatic agent, hygroscopic polymer, and carbon.
  • the core-sheath composite fiber of the present invention must have a degree of shrinkage with boiling water of 6-11%.
  • a degree of shrinkage with boiling water thereof By regulating the degree of shrinkage with boiling water thereof so as to be within the specified range, a soft feeling which has not been attained with any conventional nylon is rendered possible in cases when a false-twist textured yarn is obtained from the core-sheath composite fiber and a textile is then obtained from the yarn.
  • the degree of shrinkage with boiling water thereof is less than 6%, this core-sheath composite fiber has undergone crystallization before false twisting and, hence, cannot be crimped in false twisting, making it impossible to attain fluffiness and a soft feeling.
  • the degree of shrinkage with boiling water thereof is higher than 11%, the shrinkage is so large that the textile may give a hard feeling.
  • a more preferred range of the degree of shrinkage with boiling water is 6-10%, and an even more preferred range thereof is 7-9.5%.
  • an oil is applied in two stages.
  • an oil is essential for improving the smoothness and collectibility of fibers
  • the degree of shrinkage with boiling water can be easily reduced by applying an aqueous solution (emulsion) to a filament which has been cooled and solidified and, after the lapse of a certain time period, applying an emulsion again. This is thought to be because the first-stage application simultaneously supplies water to the fiber and crystallization proceeds thereupon, and the second-stage oil supply ensures smoothness and collectibility.
  • the time gap between the first-stage application and the second-stage application is 20 msec or longer, because this time gap makes it easy to regulate the degree of shrinkage with boiling water so as to be within the specified range according to the present invention.
  • longer application time gaps are preferred, the longer gaps necessitate a prolongation of the step. It is therefore preferred to set a time gap while taking account of efficient production.
  • the application time gap is 30 msec.
  • the tension of the fiber during the oil application is in the range of 0.15-0.40 cN/dtex, because the orientation of the fiber is accelerated thereby.
  • the fiber tension is measured at a position between the first-stage and second-stage oil application positions.
  • the core-sheath composite fiber of the present invention has an elongation of 60-90%.
  • the core-sheath composite fiber It is desirable to false-twist the core-sheath composite fiber from the standpoint of improving the softness, and an elongation of 60-90% is preferred for the false twisting because the crimp is less apt to change with the lapse of time or less apt to be weakened by repeated stretching and because the softness of the fiber can be further improved.
  • the core-sheath composite fiber of the present invention is not particularly limited in total fineness and the number of filaments (in the case of long fibers) and in length and the number of crimp waves (in the case of short fibers), and can be made to have any desired cross-sectional shape in accordance with the intended use of the fabric to be obtained, etc.
  • the core-sheath composite fiber of the present invention has, as a multifilament, a total fineness of 5-235 dtex and the number of filaments of 1-144.
  • the cross-sectional shape preferably is circular, triangular, flat, Y-shaped, star-shaped, eccentric, or laminate-type.
  • the proportion of the core in the core-sheath composite fiber of the present invention is preferably 20-80 parts by weight, more preferably 30-70 parts by weight, per 100 parts by weight of the composite fiber. By regulating the proportion thereof so as to be within that range, not only a satisfactory ⁇ MR is obtained but also the processability during false twisting is rendered satisfactory.
  • Chips of the polyamide to be used as the sheath in the present invention have a sulfuric-acid relative viscosity of preferably 2.3-3.3, more preferably 2.6-3.3.
  • chips of the polyetheresteramide copolymer to be used as the core in the present invention have an o-chlorophenol relative viscosity (OCP relative viscosity) of 1.2-2.0.
  • OCP relative viscosity o-chlorophenol relative viscosity
  • the core-sheath composite fiber of the present invention can be obtained by known techniques of melt spinning or composite spinning. Examples thereof are as follows.
  • a polyamide (sheath) and a polyetheresteramide copolymer (core) are separately melted, and the melts are metered and transported with gear pumps, then put together to form a composite flow by an ordinary method so as to result in a core-sheath structure, and ejected from a spinneret.
  • a cooling wind is blown against the resultant filament with a filament cooler, such as a chimney, thereby cooling the filament to room temperature.
  • a filament cooler such as a chimney
  • an oil is supplied in two stages, and the oiled filament is passed through take-up rollers.
  • the peripheral speed of the take-up rollers is preferably 3,000-3,900 m/min.
  • the filament which has passed through the take-up rollers is stretched preferably in a stretch ratio of 1.0-1.1 and is passed through the stretching rollers. Thereafter, the winder (winding device) is regulated so as to impose a winding tension which results in a preferred package form, and the filament is then wound up therewith.
  • the false twisting can be conducted using a known technique such as friction processing, pin processing, or belt nip processing. When cost, etc. are taken into account, friction processing is preferred. When crimping performance is taken into account, pin processing is preferred. In any processing, it is preferred to set the elongation of the false-twisted textured yarn at 25-40%, when the change of the crimp with the lapse of time, processability in the false twisting, and the subsequent weaving or knitting are taken into account. It is preferred to perform heat setting at 140-170°C in order to obtain satisfactory crimp and to inhibit the crimp from changing with the lapse of time.
  • the core-sheath composite fiber of the present invention is advantageously used in fabric and garments.
  • the type of fabric it is possible to select woven fabric, knitted fabric, nonwoven fabric, etc. according to purposes, and clothing is also included.
  • the garments can be various clothing products including inner wear and sportswear.
  • a 0.25-g portion of a sample was dissolved in sulfuric acid having a concentration of 98% by weight, so that the sample amount was 1 g per 100 mL of the sulfuric acid.
  • the solution was examined for flow time (T1) at 25°C.
  • the sulfuric acid having a concentration of 98% by weight was examined alone for flow time (T2).
  • T1 to T2 i.e., T1/T2 was taken as the sulfuric-acid relative viscosity.
  • a 0.5-g portion of a sample was dissolved in o-chlorophenol so that the sample amount was 1 g per 100 mL of the o-chlorophenol.
  • the solution was examined for flow time (T1) at 25°C.
  • the o-chlorophenol was examined alone for flow time (T2).
  • T1 to T2 i.e., T1/T2 was taken as the OCP relative viscosity.
  • a fiber sample was set on a counter reel having a peripheral length of 1.125 m, and the counter reel was caused to make 200 revolutions to form a hank in a loop form.
  • the hank was dried in a hot-air drying oven (105 ⁇ 2°C ⁇ 60 min) and then weighed with a balance. The measured mass was multiplied by an official moisture regain, and the fineness was calculated from the resultant product. The official moisture regain of the core-sheath composite fiber was taken as 4.5% by weight.
  • a fiber sample was examined with "TENSILON” (registered trademark) UCT-100, manufactured by Orientec Co., Ltd., under the constant-speed stretching conditions shown in JIS L1013 ( Test Methods for Chemical-Fiber Filament Yarns, 2010 ).
  • the elongation was determined from the tensile strength/elongation curve by obtaining the elongation at the point on the curve where a maximum strength was observed. Meanwhile, a value obtained by dividing the maximum strength by the fineness was taken as the strength. The measurement was made ten times, and average values were taken as the strength and the elongation.
  • a hank of a fiber was taken, and the sample length S0 was measured under a load of 0.09 cN/dtex. Thereafter, the hank under no load was treated by immersion in boiling water for 15 minutes. After the treatment, the hank was air-dried and the sample length S1 was measured under a load of 0.09 cN/dtex.
  • the recovery of stretchability is an index to the crimp properties of false-twisted textured yarns.
  • a cylindrical knitted fabric was produced so as to result in a stitch density of 50.
  • the fibers were suitably put together so that the fibers being supplied to the circular knitting machine had a total fineness of 50-100 dtex.
  • a single yarn was supplied to the circular knitting machine and knitted so as to result in a stitch density of 50 as in the case shown above.
  • An about 1-2 g portion of the cylindrical knitted fabric is weighed out and introduced into a weighing bottle, dried by holding it at 110°C for 2 hours, and then weighed (W0).
  • the cylindrical knitted fabric was repeatedly laundered 20 times by the method No. 103 described in JIS L0217 (1995), appended table 1. Thereafter, this fabric was examined to calculate the ⁇ MR (moisture absorbing/releasing properties) in the manner described above.
  • Fabrics having a ⁇ MR of 7.0% or larger were rated as S, and fabrics having a ⁇ MR of 5.0% or larger were rated as A.
  • ⁇ MR after laundering was calculated as an index to a change in ⁇ MR through laundering, using the following equation. ⁇ MR after laundering / ⁇ MR before laundering ⁇ 100
  • Fabrics having a retention of ⁇ MR of 95% or higher were rated as S, and fabrics which had a retention of ⁇ MR of 90% or higher and had laundering durability and which were regarded as giving satisfactory comfortableness during wear were rated as A. The others were rated as C.
  • a core-sheath composite fiber of the present invention and a 22-dtex elastic polyurethane fiber were used to produce a bare plain knitted fabric using a 28G single circular knitting machine, and the knitted fabric was subjected to scouring, heat setting, dyeing, and finish setting to obtain a fabric.
  • an ordinary, nylon-6, 44-dtex, 26-filament, false-twist textured yarn (CR, 26%) was prepared, and a bare plain knitted fabric was produced therefrom in the same manner as described above.
  • the fabrics obtained were evaluated for feeling and compared. S and A were acceptable. S ... Far softer than the ordinary fabric formed using nylon-6. A ... Superior in softness to the ordinary fabric formed using nylon-6. C ... Equal to the ordinary fabric formed using nylon-6.
  • the fabric In the case where all of the ⁇ MR after laundering, retention of ⁇ MR after laundering, and feeling of fabric were rated as S, the fabric not only had comfortableness with satisfactory moisture absorbing properties but also had excellent softness; the overall evaluation in this case was S. In the case where all these properties were rated as A or higher, the overall evaluation was A. In the case where any of those properties was rated as C, the overall evaluation was C.
  • Tension values were measured using TENSION METER and FT-R pickup sensor, both manufactured by Toray Engineering Co., Ltd.
  • Winding tension was determined by measuring the tension value (cN) between the second roller and the winder.
  • a polyetheresteramide copolymer (MH 1657, manufactured by Arkema Inc.; o-chlorophenol relative viscosity, 1.69) including nylon-6 as a polyamide component and polyethylene glycol having a molecular weight of 1,500 as a polyether component (poly(alkylene oxide)glycol) in which the proportion of the polyether component was about 76% by mole was used for the core, and nylon-6 having a sulfuric-acid relative viscosity of 2.71 and a terminal amino group content of 5.95 ⁇ 10 -5 mol/g was used for the sheath.
  • the polyetheresteramide copolymer and the nylon-6 were melted at 270°C and spun with a spinneret for concentric core-sheath formation so as to result in a core-sheath ratio (parts by weight) of 50/50.
  • the terminal amino group content had been regulated with hexamethylenediamine and acetic acid during the polymerization.
  • the rotational speeds of the gear pumps were set so as to give core-sheath composite fibers having a total fineness of 57 dtex, and the core ingredient and the sheath ingredient were each ejected at a rate of 19.6 g/min.
  • the filaments ejected from the spinneret nozzle were cooled and solidified with a filament cooler, and were then subjected to first-stage oil application in which an oil emulsion having a concentration of 1% was applied thereto with an oiling device.
  • the tension of the fibers at this moment was 0.30 cN/dtex.
  • a second-stage oiling device was disposed at a position 2.0 m downstream from the first-stage oiling, and an oil emulsion having a concentration of 15% was used to conduct oil application. Thereafter, the fibers were temporarily taken up by a first roller which was rotating at a speed of 3,500 m/min, and were subsequently wound up, via a second roller which was rotating at the same speed, by a winder having a peripheral speed regulated to 3,430 m/min so as to result in a winding tension of 5 cN. In this case, the time gap between the first-stage oil application and the second-stage oil application was 34 msec.
  • the core-sheath composite fibers obtained had the properties shown in Table 1. Thus, core-sheath composite fibers having a degree of shrinkage with boiling water of 8.5% and an elongation of 75% were obtained.
  • the core-sheath composite fibers were processed under the conditions of a processing ratio of 1.3, processing speed of 400 m/min, and heater temperature 150°C, thereby obtaining a 44-dtex, 26-filament, false-twist textured yarn having an elongation of 34%. These false twisting conditions were common among the Examples and the Comparative Examples.
  • the false-twist textured yarn obtained was evaluated and, as a result, was found to have a ⁇ MR of 12.1% and a ⁇ MR after laundering of 11.8%, that is, the retention of ⁇ MR was 98%.
  • the yarn showed highly satisfactory moisture absorbing/releasing properties, and the moisture absorbing/releasing properties had highly satisfactory laundering durability.
  • the fabric showed an excellent feeling and was superior in softness to the ordinary nylon. Consequently, the overall evaluation was S.
  • the speeds of the first roller and second roller were regulated to 3,200 m/min, and spinning was conducted using the same positional relationship between the first stage and the second stage as in Example 1, i.e., 2.0 m. Namely, spinning was conducted in which the oil application time gap was 38 msec.
  • the speed of the winder was regulated so as to result in a winding tension of 5 cN, as in Example 1.
  • the polymer ejection rates were regulated so as to give a false-twist textured yarn having a fineness of 44 dtex.
  • the core-sheath composite fibers obtained had the properties shown in Table 1.
  • the degree of shrinkage with boiling water was 7.2%, and the elongation was 81%.
  • False twisting was conducted in the same manner as in Example 1, except that the processing ratio was regulated to 1.35 so as to give a false-twist textured yarn having an elongation of 35%. Thus, a 44-dtex, 26-filament, false-twist textured yarn was obtained.
  • the false-twist textured yarn obtained had a ⁇ MR after laundering of 11.2% and a retention of ⁇ MR of 97%.
  • the yarn showed highly satisfactory moisture absorbing/releasing properties, and the moisture absorbing/releasing properties had highly satisfactory laundering durability.
  • the fabric showed an excellent feeling and was superior in softness to the ordinary nylon. Consequently, the overall evaluation was S.
  • the stretch ratio was regulated to 1.05. Namely, the speeds of the first roller and the second roller were regulated to 3,500 m/min and 3,675 m/min, respectively, to conduct spinning.
  • the oil application time gap was the same as in Example 1, and the other conditions were set from the same standpoint as in Example 1.
  • the core-sheath composite fibers obtained had the properties shown in Table 1.
  • the degree of shrinkage with boiling water was 9.5%, and the elongation was 66.
  • False twisting was conducted in the same manner as in Example 1, except that the processing ratio was regulated so as to give a false-twist textured yarn having an elongation of 35%. Thus, a 44-dtex, 26-filament, false-twist textured yarn was obtained.
  • the false-twist textured yarn obtained had a ⁇ MR after laundering of 12.8% and a retention of ⁇ MR of 98%.
  • the yarn showed highly satisfactory moisture absorbing/releasing properties, and the moisture absorbing/releasing properties had highly satisfactory laundering durability. Meanwhile, the feeling of the fabric was slightly rough and hard because the degree of shrinkage with boiling water of the core-sheath composite fibers was higher than that in Example 1. However, the fabric showed better softness than the fabric obtained using ordinary nylon-6. Consequently, the overall evaluation was A.
  • the core-sheath composite fibers obtained had the properties shown in Table 1.
  • the degree of shrinkage with boiling water was 6.1%, and the elongation was 69%.
  • False twisting was conducted in the same manner as in Example 1, except that the processing ratio was regulated so as to give a false-twist textured yarn having an elongation of 35%. Thus, a 44-dtex, 26-filament, false-twist textured yarn was obtained.
  • the false-twist textured yarn obtained had a ⁇ MR after laundering of 7.2% and a retention of ⁇ MR of 91%.
  • the yarn showed highly satisfactory moisture absorbing/releasing properties. Meanwhile, it is thought that since the roller speed had been lower than that in Example 1, the orientation of the core-sheath composite fibers had been affected thereby and the composite fibers had a slightly poor retention of ⁇ MR. However, the moisture absorbing/releasing properties had satisfactory laundering durability. With respect to the feeling of the fabric, the crimp was slightly weak and the fabric was slightly poor in fluffiness, because the degree of shrinkage with boiling water was lower than that in Example 1. However, the fabric showed better softness than the fabric obtained using ordinary nylon-6. Consequently, the overall evaluation was A.
  • the procedure was changed so that the core-sheath ratio (parts by weight) was 20/80, the speeds of the first roller and the second roller were 3,800 m/min each, and the second-stage oil application was conducted at a position 1.25 m downstream from the first-stage oil application. Namely, spinning was conducted in which the oil application time gap was 20 msec.
  • the core-sheath composite fibers obtained had the properties shown in Table 1. The degree of shrinkage with boiling water was 10.8%, which was slightly high because the time gap had been set at a shorter period. The elongation was 58%.
  • False twisting was conducted in the same manner as in Example 1, except that the processing ratio was regulated so as to give a false-twist textured yarn having an elongation of 35%. Thus, a 44-dtex, 26-filament, false-twist textured yarn was obtained.
  • the false-twist textured yarn obtained had a ⁇ MR after laundering of 5.9% and a retention of ⁇ MR of 98%.
  • the yarn showed satisfactory moisture absorbing/releasing properties, and the moisture absorbing/releasing properties had highly satisfactory laundering durability.
  • the feeling of the fabric was slightly rough and hard because the degree of shrinkage with boiling water of the core-sheath composite fibers was higher than that in Example 1.
  • the fabric showed better softness than the fabric obtained using ordinary nylon-6. Consequently, the overall evaluation was A.
  • Example 2 Spinning was conducted in the same manner as in Example 1, except that nylon-6 having a sulfuric-acid relative viscosity of 3.30 and a terminal amino group content of 4.78 ⁇ 10 -5 mol/g was used for the sheath.
  • the core-sheath composite fibers obtained had the properties shown in Table 1.
  • the degree of shrinkage with boiling water was 9.3%, and the elongation was 70%.
  • False twisting was conducted in the same manner as in Example 1, except that the processing ratio was regulated so as to give a false-twist textured yarn having an elongation of 35%. Thus, a 44-dtex, 26-filament, false-twist textured yarn was obtained.
  • the false-twist textured yarn obtained had a ⁇ MR after laundering of 12.2% and a retention of ⁇ MR of 99%.
  • the yarn showed highly satisfactory moisture absorbing/releasing properties, and the moisture absorbing/releasing properties had highly satisfactory laundering durability.
  • the fabric showed an excellent feeling and was superior in softness to the ordinary nylon. Consequently, the overall evaluation was S.
  • Example 2 Spinning was conducted in the same manner as in Example 1, except that nylon-6 having a sulfuric-acid relative viscosity of 2.40 and a terminal amino group content of 3.95 ⁇ 10 -5 mol/g was used for the sheath.
  • the core-sheath composite fibers obtained had the properties shown in Table 1. The degree of shrinkage with boiling water was 6.7%, and the elongation was 84%.
  • False twisting was conducted in the same manner as in Example 1, except that the processing ratio was regulated so as to give a false-twist textured yarn having an elongation of 35%. Thus, a 44-dtex, 26-filament, false-twist textured yarn was obtained.
  • the false-twist textured yarn obtained had a ⁇ MR after laundering of 9.2% and a retention of ⁇ MR of 93%.
  • the yarn showed highly satisfactory moisture absorbing/releasing properties.
  • the sulfuric-acid relative viscosity had been lower than that in Example 1, the orientation of the core-sheath composite fibers had been affected thereby and the composite fibers had a slightly poor retention of ⁇ MR.
  • the moisture absorbing/releasing properties had satisfactory laundering durability.
  • the crimp was slightly weak and the fabric was slightly poor in fluffiness, because the degree of shrinkage with boiling water was lower than that in Example 1.
  • the fabric showed better softness than the fabric obtained using ordinary nylon-6. Consequently, the overall evaluation was A.
  • Spinning was conducted in which nylon-6 having a sulfuric-acid relative viscosity of 2.15 and a terminal amino group content of 4.70 ⁇ 10 -5 mol/g was used for the sheath, the speeds of the first roller and second roller were regulated to 4,000 m/min, and the positional relationship between the first stage and the second stage was the same as in Example 1, i.e., 2.0 m. Namely, spinning was conducted in which the oil application time gap was 30 msec.
  • the core-sheath composite fibers obtained had the properties shown in Table 2. The degree of shrinkage with boiling water was 11.5%, and the elongation was 68%.
  • False twisting was conducted in the same manner as in Example 1, except that the processing ratio was set so as to give a false-twist textured yarn having an elongation of 35%. Thus, a 44-dtex, 26-filament, false-twist textured yarn was obtained.
  • the false-twist textured yarn obtained had a ⁇ MR after laundering of 7.5% and a retention of ⁇ MR of 70%. This yarn was poor in the laundering durability of moisture absorbing/releasing properties.
  • the feeling of the fabric was considerably rough and hard because the degree of shrinkage with boiling water was higher than those in the Examples.
  • the fabric obtained was nothing but one which was equal in feeling to the fabric obtained using ordinary nylon-6. Consequently, the overall evaluation was C.
  • Spinning was conducted in which the speeds of the first roller and second roller were regulated to 4,200 m/min, and the positional relationship between the first stage and the second stage was the same as in Example 1, i.e., 2.0 m. Namely, spinning was conducted in which the oil application time gap was 7 msec.
  • the core-sheath composite fibers obtained had the properties shown in Table 2. The degree of shrinkage with boiling water was 14.5%, and the elongation was 70%.
  • False twisting was conducted in the same manner as in Example 1, except that the processing ratio was set so as to give a false-twist textured yarn having an elongation of 35%. Thus, a 44-dtex, 26-filament, false-twist textured yarn was obtained.
  • the false-twist textured yarn obtained had a ⁇ MR after laundering of 10.6% and a retention of ⁇ MR of 96%.
  • This yarn showed highly satisfactory moisture absorbing/releasing properties, and the moisture absorbing/releasing properties had highly satisfactory laundering durability. Meanwhile, the feeling of the fabric was considerably rough and hard because the degree of shrinkage with boiling water was higher than those in the Examples.
  • the fabric obtained was nothing but one which was equal in feeling to the fabric obtained using ordinary nylon-6. The feeling was rated as C. Consequently, the overall evaluation was C.
  • the core-sheath composite fibers obtained had the properties shown in Table 2.
  • the degree of shrinkage with boiling water was 5.2%, and the elongation was 70%.
  • False twisting was conducted in the same manner as in Example 1, except that the processing ratio was set so as to give a false-twist textured yarn having an elongation of 35%. Thus, a 44-dtex, 26-filament, false-twist textured yarn was obtained.
  • the false-twist textured yarn obtained had a ⁇ MR after laundering of 11.5% and a retention of ⁇ MR of 96%. This yarn showed highly satisfactory moisture absorbing/releasing properties, and the moisture absorbing/releasing properties had highly satisfactory laundering durability. Meanwhile, with respect to the feeling of the fabric, the false-twist textured yarn had not been crimped because the degree of shrinkage with boiling water had been higher than those in the Examples and because the crystallization of the core-sheath composite fibers had proceeded. The fabric obtained was poor in fluffiness and was nothing but one which was equal in feeling to the fabric obtained using ordinary nylon-6. Consequently, the overall evaluation was C.
  • Example 1 Example 2
  • Example 3 Example 4
  • Example 5 Example 6
  • Example 7 Core component Polymer polyetheresteramide copolymer polyetheresteramide copolymer polyetheresteramide copolymer polyetheresteramide copolymer polyetheresteramide copolymer polyetheresteramide copolymer polyetheresteramide copolymer polyetheresteramide copolymer polyetheresteramide copolymer polyetheresteramide copolymer polyetheresteramide copolymer OCP relative viscosity 1.69 1.69 1.69 1.69 1.69 1.69 Sheath component Polymer nylon-6 nylon-6 nylon-6 nylon-6 nylon-6 Sulfuric-acid relative viscosity 2.71 2.71 2.71 2.71 2.71 3.30 2.40 Core-sheath ratio Core/sheath 50/50 50/50 50/50 30/70 20/80 50/50 50/50 Spinning conditions Oil application time gap between first stage and second stage (msec) 34 38 34 40 20 34 34 34 Fiber tension at first-stage oil application (cN
  • the core-sheath composite fiber of the present invention high hygroscopicity, laundering durability of the hygroscopicity, which makes the fiber withstand practical use, and a soft feeling can be attained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Multicomponent Fibers (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Woven Fabrics (AREA)

Description

    TECHNICAL FIELD
  • The present invention relates to a hygroscopic core-sheath composite fiber which is excellent in terms of feeling.
  • BACKGROUND ART
  • Synthetic fibers including thermoplastic resins such as polyamides and polyesters are excellent in terms of strength, chemical resistance, heat resistance, etc., and are hence used extensively in clothing applications, industrial applications, etc.
  • In particular, polyamide fibers not only have properties such as the peculiar softness, high tensile strength, colorability by dyeing, and high heat resistance but also have excellent hygroscopicity, and are hence in extensive use in applications such as inner wear and sportswear. However, polyamide fibers are insufficient in hygroscopicity as compared with natural fibers such as cotton, and have problems such as stuffiness and stickiness. There is hence a problem in that the polyamide fibers are inferior in comfortableness to natural fibers.
  • Under such circumstances, a synthetic fiber which shows excellent moisture absorbing/releasing properties for eliminating stuffiness and stickiness and has comfortableness substantially comparable to that of natural fibers is desired mainly in inner wear applications and sportswear applications.
  • Methods in which a hydrophilic compound is added to polyamide fibers have been most commonly investigated for that purpose. For example, Patent Document 1 proposes a method in which polyvinylpyrrolidone is blended as a hydrophilic polymer with a polyamide and the blend is spun to thereby improve the hygroscopicity.
  • Meanwhile, investigations are being made enthusiastically in which a fiber is made to have a core-sheath structure in which a highly hygroscopic thermoplastic resin is used as the core and a thermoplastic resin having excellent mechanical properties is used as the sheath, thereby attaining both hygroscopicity and mechanical properties.
  • For example, Patent Document 2 describes a core-sheath composite fiber which has a shape including a core and a sheath, the core being unexposed on the fiber surface, in which the core is a polyether-block-amide copolymer including nylon-6 as a hard segment, the sheath is a nylon-6 resin, and the areal proportion between the core and the sheath in a fiber cross-section is 3/1 to 1/5.
  • Patent Document 3 describes a core-sheath composite fiber including a polyetheresteramide as the core and a polyamide as the sheath and having high hygroscopicity, as a core-sheath type composite fiber having excellent hygroscopicity. This composite fiber is a core-sheath type composite fiber including a thermoplastic resin as the core and a fiber-forming polyamide resin as the sheath, in which the main component of the thermoplastic resin constituting the core is a polyetheresteramide and the proportion of the core is 5-50% by weight of the overall weight of the composite fiber.
  • Furthermore, Patent Document 4 describes a composite fiber having moisture absorbing/releasing properties, which includes a polyamide or a polyester as a sheath component and a water-absorbing thermoplastic resin including crosslinked poly(ethylene oxide) as a core component. Described therein is a highly hygroscopic core-sheath composite fiber including a highly hygroscopic water-insoluble modified poly(ethylene oxide) disposed as the core and a polyamide disposed as the sheath.
  • Patent Document 5 discloses a composite false twist textured yarn obtained by subjecting a polyester-based filament yarn having > 1 % moisture-absorbing and releasing parameter AMR and comprising a fiber containing >5wt.% copolyester having a copolymerized hydrophilic compound and containing at least either one in a polar group containing compound and a crosslinking agent or a fiber containing >5wt.% polyether ester amide or mixture of a polyether ester amide with other thermoplastic resin to composite false twist processing with other filament yarn.
  • A crimped conjugated fiber is disclosed in Patent Document 6. The fiber is characterized by bonding a polyamide-based polymer to a polyetheresteramide-based polymer in a side-by-side form, satisfying the following characteristics (1) and (2), and having a reversibly crimping ability: (1) a coefficient of moisture absorption is 2 to 10% at 20°C, 65% RH; and (2) MR2-MR1 = 5 to 20%, wherein MR2 and MR 1 are coefficients of moisture absorption at 20°C, 65% RH and at 35°C, 95% RH, respectively.
  • BACKGROUND ART DOCUMENT PATENT DOCUMENT
    • Patent Document 1: JP-A-9-188917
    • Patent Document 2: WO 2014/10709
    • Patent Document 3: JP-A-6-136618
    • Patent Document 4: JP-A-8-209450
    • Patent Document 5: JP-H-10-18136
    • Patent Document 6: JP-2007-321295
    SUMMARY OF THE INVENTION PROBLEMS THAT THE INVENTION IS TO SOLVE
  • However, the fiber described in Patent Document 1 has a problem in that although this fiber has moisture absorbing/releasing properties substantially comparable to those of natural fibers, the performance is not fully satisfactory, and even higher moisture absorbing/releasing properties are required to be attained.
  • Meanwhile, the core-sheath composite fibers of Patent Documents 2 to 4 have moisture absorbing/releasing properties equal to or higher than those of natural fibers. However, the core deteriorates due to repetitions of practical use, and there has been a problem in that the hygroscopicity decreases with repetitions of use. In addition, fabrics formed therefrom have softness equal to that of nylons and are hence insufficient in feeling. A soft feeling superior to that of any existing article has been strongly desired.
  • MEANS FOR SOLVING THE PROBLEMS
  • An object of the present invention is to provide a core-sheath composite fiber which overcomes the problems of the background-art techniques, and which is capable of attaining: comfortableness superior to that of natural fibers with high hygroscopicity; laundering durability of the hygroscopicity, which makes the fiber withstand practical use; and a soft feeling that has been impossible so far.
  • In order to solve the above-described problem, the present invention includes the following configurations.
    1. (1) A hygroscopic core-sheath composite fiber which comprises: a polyetheresteramide copolymer as a core polymer; and a polyamide as a sheath polymer, wherein the hygroscopic core-sheath composite fiber which has been treated in boiling water for 15 minutes under no load has a degree of shrinkage with boiling water of 6-11 %.
    2. (2) The hygroscopic core-sheath composite fiber according to claim 1, which has an elongation measured according to JIS L1013 under constant-speed stretching conditions of 60-90%.
    3. (3) A false-twist textured yarn including the hygroscopic core-sheath composite fiber according to (1) or (2).
    4. (4) A fabric at least a part of which includes the hygroscopic core-sheath composite fiber according to any one of (1) to (2).
    5. (5) A process for producing the hygroscopic core-sheath composite fiber according to (1) or (2), the process including: ejecting a filament from a spinneret; cooling and solidifying the ejected filament with a cooling wind; thereafter applying an aqueous solution (oil emulsion) twice to the filament; and then winding up the filament, in which a time gap between the first-stage application and the second-stage application is 20 msec or longer.
    ADVANTAGE OF THE INVENTION
  • According to the present invention, it is possible to provide a core-sheath composite fiber which is capable of attaining: comfortableness superior to that of natural fibers with high hygroscopicity; laundering durability of the hygroscopicity, which makes the fiber withstand practical use; and a soft feeling that has been impossible so far.
  • MODE FOR CARRYING OUT THE INVENTION
  • The core-sheath composite fiber of the present invention employs a polyamide as the sheath and a thermoplastic polymer having high hygroscopicity as the core. The term "thermoplastic polymer having high hygroscopicity as the core" means a polymer which, when examined in a pellet form, has a ΔMR of 10% or higher, and examples thereof include polyetheresteramide copolymers, poly(vinyl alcohol), and cellulosic thermoplastic resins. Of these, a polyetheresteramide copolymer is used from the standpoint that this polymer has satisfactory thermal stability and satisfactory compatibility with the polyamide as the sheath and has excellent separation resistance. By thus-configuring a core-sheath composite fiber, the fiber can be made to have a high ΔMR, and a textile which has excellent hygroscopicity and is comfortable can be achieved. ΔMR is an index to humidity regulation, and is expressed by the difference in the coefficient of moisture absorption between an in-garment temperature and humidity condition during light to medium works or light to medium exercises which is represented by 30°C×90% RH and an outside-air temperature and humidity condition represented by 20°C×65% RH. The larger the ΔMR, the higher the hygroscopicity and the better the comfortableness during wear.
  • The polyetheresteramide copolymer is a block copolymer which has an ether linkage, an ester linkage, and an amide linkage in the same molecular chain. More specifically, the copolymer is a block copolymer obtained by subjecting a polyamide ingredient (A) including one or more members selected from among lactams, aminocarboxylic acids, and salts of diamines with dicarboxylic acids and a polyetherester ingredient (B) including a dicarboxylic acid and a poly(alkylene oxide) glycol to polycondensation reaction.
  • Examples of the polyamide ingredient (A) include lactams such as ε-caprolactam, dodecanolactam, and undecanolactom, ω-aminocarboxylic acids such as aminocaproic acid, 11-aminoundecanoic acid and 12-aminododecanoic acid, and diamine-dicarboxylic acid nylon salts which are precursors for nylon-66, nylon-610, nylon-612, etc. A preferred polyamide-forming ingredient is ε-caprolactam.
  • The polyetherester ingredient (B) is an ingredient including a dicarboxylic acid having 4-20 carbon atoms and a poly(alkylene oxide) glycol. Examples of the dicarboxylic acid having 4-20 carbon atoms include aliphatic dicarboxylic acids such as succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, sebacic acid and dodecanedioic acid, aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid and 2,6-naphthalenedicarboxylic acid, and alicyclic dicarboxylic acids such as 1,4-cyclohexanedicaroxylic acid; one of these or a mixture of two or more thereof can be used. Preferred dicarboxylic acids are adipic acid, sebacic acid, dodecanedioic acid, terephthalic acid, and isophthalic acid. Examples of the poly(alkylene oxide) glycol include polyethylene glycol, poly(1,2- and 1,3-propylene oxide) glycol, poly(tetramethylene oxide) glycol, and poly(hexamethylene oxide) glycol. Preferred is polyethylene glycol, which has especially satisfactory hygroscopicity.
  • The number-average molecular weight of the poly(alkylene oxide) glycol is preferably 300-10,000, more preferably 500-5,000. In cases when the molecular weight of the poly(alkylene oxide) glycol is 300 or higher, this glycol is less apt to fly off from the system during the polycondensation reaction and a fiber having stable hygroscopicity is obtained. Such molecular weights are hence preferred. In cases when the molecular weight thereof is 10,000 or less, an even block copolymer is obtained to attain stable spinning. Such molecular weights are hence preferred.
  • It is preferable that the proportion of the polyetherester ingredient (B) is 20-80% by mole. Proportions thereof not less than 20% are preferred because satisfactory hygroscopicity is obtained. Meanwhile, proportions thereof not higher than 80% are preferred because satisfactory color fastness and laundering durability are obtained.
  • Commercial examples of such polyetheresteramide copolymer are "MH 1657" and "MV 1074", both manufactured by Arkema Inc.
  • Examples of the polyamide as the sheath include nylon-6, nylon-66, nylon-46, nylon-9, nylon-610, nylon-11, nylon-12, nylon-612, and the like and copolyamides including these nylons and comonomer components such as compounds having an amide-forming functional group, e.g., laurolactam, sebacic acid, terephthalic acid, isophthalic acid, and 5-sodiumsulfoisophthalic acid. Preferred of these are nylone-6, nylon-11, nylon-12, nylon-610, and nylon-612, from the standpoint of spinning because the difference in melting point between such nylons and the polyetheresteramide copolymer is so small that the polyetheresteramide copolymer can be inhibited from thermally deteriorating during melt spinning. Preferred of these is nylon-6, which has excellent dyeability.
  • Various additives may have been copolymerized with or incorporated into the sheath polyamide in the present invention according to need in a total additive content in the range of 0.001-10% by weight. Examples of the additives include a delustering agent, flame retardant, antioxidant, ultraviolet absorber, infrared absorber, nucleator, fluorescent brightener, antistatic agent, hygroscopic polymer, and carbon.
  • The core-sheath composite fiber of the present invention must have a degree of shrinkage with boiling water of 6-11%. By regulating the degree of shrinkage with boiling water thereof so as to be within the specified range, a soft feeling which has not been attained with any conventional nylon is rendered possible in cases when a false-twist textured yarn is obtained from the core-sheath composite fiber and a textile is then obtained from the yarn. In case where the degree of shrinkage with boiling water thereof is less than 6%, this core-sheath composite fiber has undergone crystallization before false twisting and, hence, cannot be crimped in false twisting, making it impossible to attain fluffiness and a soft feeling. Meanwhile, in case where the degree of shrinkage with boiling water thereof is higher than 11%, the shrinkage is so large that the textile may give a hard feeling. A more preferred range of the degree of shrinkage with boiling water is 6-10%, and an even more preferred range thereof is 7-9.5%.
  • From the standpoint of attaining a degree of shrinkage in boiling water of 6-11%, it is preferable that when producing the core-sheath composite fiber described above, an oil is applied in two stages. Although an oil is essential for improving the smoothness and collectibility of fibers, the degree of shrinkage with boiling water can be easily reduced by applying an aqueous solution (emulsion) to a filament which has been cooled and solidified and, after the lapse of a certain time period, applying an emulsion again. This is thought to be because the first-stage application simultaneously supplies water to the fiber and crystallization proceeds thereupon, and the second-stage oil supply ensures smoothness and collectibility. It is preferable that the time gap between the first-stage application and the second-stage application is 20 msec or longer, because this time gap makes it easy to regulate the degree of shrinkage with boiling water so as to be within the specified range according to the present invention. Although longer application time gaps are preferred, the longer gaps necessitate a prolongation of the step. It is therefore preferred to set a time gap while taking account of efficient production. Incidentally, in cases when the spinning speed is 3,000 m/min and the distance between the first-stage and second-stage oil application positions is 1.5 m, then the application time gap is 30 msec. Furthermore, from the standpoint of regulating the degree of shrinkage with boiling water so as to be within the specified range, it is preferable that the tension of the fiber during the oil application is in the range of 0.15-0.40 cN/dtex, because the orientation of the fiber is accelerated thereby. The fiber tension is measured at a position between the first-stage and second-stage oil application positions. It is also preferable that the core-sheath composite fiber of the present invention has an elongation of 60-90%. It is desirable to false-twist the core-sheath composite fiber from the standpoint of improving the softness, and an elongation of 60-90% is preferred for the false twisting because the crimp is less apt to change with the lapse of time or less apt to be weakened by repeated stretching and because the softness of the fiber can be further improved.
  • The core-sheath composite fiber of the present invention is not particularly limited in total fineness and the number of filaments (in the case of long fibers) and in length and the number of crimp waves (in the case of short fibers), and can be made to have any desired cross-sectional shape in accordance with the intended use of the fabric to be obtained, etc. In view of use as a long-fiber material for clothing, it is preferable that the core-sheath composite fiber of the present invention has, as a multifilament, a total fineness of 5-235 dtex and the number of filaments of 1-144. The cross-sectional shape preferably is circular, triangular, flat, Y-shaped, star-shaped, eccentric, or laminate-type.
  • The proportion of the core in the core-sheath composite fiber of the present invention is preferably 20-80 parts by weight, more preferably 30-70 parts by weight, per 100 parts by weight of the composite fiber. By regulating the proportion thereof so as to be within that range, not only a satisfactory ΔMR is obtained but also the processability during false twisting is rendered satisfactory.
  • Chips of the polyamide to be used as the sheath in the present invention have a sulfuric-acid relative viscosity of preferably 2.3-3.3, more preferably 2.6-3.3. By regulating the sulfuric-acid relative viscosity so as to be within that range, not only the degree of shrinkage with boiling water can be easily regulated but also the laundering durability of ΔMR is improved, easily rendering comfortable textiles possible.
  • It is preferable that chips of the polyetheresteramide copolymer to be used as the core in the present invention have an o-chlorophenol relative viscosity (OCP relative viscosity) of 1.2-2.0. In cases when the o-chlorophenol relative viscosity thereof is 1.2 or higher, not only optimal stress is imposed on the sheath in spinning to cause the crystallization of the sheath polyamide to proceed, thereby facilitating control of the degree of shrinkage with boiling water, but also the laundering durability of ΔMR improves. Such o-chlorophenol relative viscosities are hence preferred.
  • Besides being produced by the preferred production process described above, the core-sheath composite fiber of the present invention can be obtained by known techniques of melt spinning or composite spinning. Examples thereof are as follows.
  • For example, a polyamide (sheath) and a polyetheresteramide copolymer (core) are separately melted, and the melts are metered and transported with gear pumps, then put together to form a composite flow by an ordinary method so as to result in a core-sheath structure, and ejected from a spinneret. A cooling wind is blown against the resultant filament with a filament cooler, such as a chimney, thereby cooling the filament to room temperature. In this method, an oil is supplied in two stages, and the oiled filament is passed through take-up rollers. The peripheral speed of the take-up rollers is preferably 3,000-3,900 m/min. The filament which has passed through the take-up rollers is stretched preferably in a stretch ratio of 1.0-1.1 and is passed through the stretching rollers. Thereafter, the winder (winding device) is regulated so as to impose a winding tension which results in a preferred package form, and the filament is then wound up therewith.
  • By false-twisting the core-sheath composite fiber obtained by the present invention, the softness thereof is improved and a feeling which has not been attained so far is obtained. The false twisting can be conducted using a known technique such as friction processing, pin processing, or belt nip processing. When cost, etc. are taken into account, friction processing is preferred. When crimping performance is taken into account, pin processing is preferred. In any processing, it is preferred to set the elongation of the false-twisted textured yarn at 25-40%, when the change of the crimp with the lapse of time, processability in the false twisting, and the subsequent weaving or knitting are taken into account. It is preferred to perform heat setting at 140-170°C in order to obtain satisfactory crimp and to inhibit the crimp from changing with the lapse of time.
  • The core-sheath composite fiber of the present invention is advantageously used in fabric and garments. With respect to the type of fabric, it is possible to select woven fabric, knitted fabric, nonwoven fabric, etc. according to purposes, and clothing is also included. The garments can be various clothing products including inner wear and sportswear.
  • EXAMPLES
  • The present invention will be explained below in more detail by reference to Examples. In the Examples, property values were determined by the following methods.
  • (1) Sulfuric-acid Relative Viscosity
  • A 0.25-g portion of a sample was dissolved in sulfuric acid having a concentration of 98% by weight, so that the sample amount was 1 g per 100 mL of the sulfuric acid. Using an Ostwald viscometer, the solution was examined for flow time (T1) at 25°C. Subsequently, the sulfuric acid having a concentration of 98% by weight was examined alone for flow time (T2). The ratio of T1 to T2, i.e., T1/T2, was taken as the sulfuric-acid relative viscosity.
  • (2) o-Chlorophenol Relative Viscosity (OCP relative viscosity)
  • A 0.5-g portion of a sample was dissolved in o-chlorophenol so that the sample amount was 1 g per 100 mL of the o-chlorophenol. Using an Ostwald viscometer, the solution was examined for flow time (T1) at 25°C. Subsequently, the o-chlorophenol was examined alone for flow time (T2). The ratio of T1 to T2, i.e., T1/T2, was taken as the OCP relative viscosity.
  • (3) Fineness
  • A fiber sample was set on a counter reel having a peripheral length of 1.125 m, and the counter reel was caused to make 200 revolutions to form a hank in a loop form. The hank was dried in a hot-air drying oven (105±2°C × 60 min) and then weighed with a balance. The measured mass was multiplied by an official moisture regain, and the fineness was calculated from the resultant product. The official moisture regain of the core-sheath composite fiber was taken as 4.5% by weight.
  • (4) Strength and Elongation
  • A fiber sample was examined with "TENSILON" (registered trademark) UCT-100, manufactured by Orientec Co., Ltd., under the constant-speed stretching conditions shown in JIS L1013 (Test Methods for Chemical-Fiber Filament Yarns, 2010). The elongation was determined from the tensile strength/elongation curve by obtaining the elongation at the point on the curve where a maximum strength was observed. Meanwhile, a value obtained by dividing the maximum strength by the fineness was taken as the strength. The measurement was made ten times, and average values were taken as the strength and the elongation.
  • (5) Degree of Shrinkage with Boiling Water
  • A hank of a fiber was taken, and the sample length S0 was measured under a load of 0.09 cN/dtex. Thereafter, the hank under no load was treated by immersion in boiling water for 15 minutes. After the treatment, the hank was air-dried and the sample length S1 was measured under a load of 0.09 cN/dtex. The degree of shrinkage with boiling water was calculated using the following equation. Degree of shrinkage with boiling water = S 0 S 1 / S 0 × 100 %
    Figure imgb0001
  • (6) Recovery of Stretchability (CR)
  • The recovery of stretchability is an index to the crimp properties of false-twisted textured yarns.
  • A hank of a false-twisted texture yarn was taken, and was subjected, in a free state, to a 20-minute treatment with 90°C water and then air-dried. Subsequently, in 25°C water, a load of 0.0018 cN/dtex was imposed on the hank, and the hank length L1 was measured at 2 minutes thereafter. Next, in the same water, the load of 0.0018 cN/dtex was removed and a load of 0.09 cN/dtex was imposed on the hank, and the hank length L0 was measured at 2 minutes thereafter. The recovery of stretchability was calculated using the following equation. CR = L 0 L 1 / L 0 × 100 %
    Figure imgb0002
  • (7) ΔMR
  • Using a circular knitting machine, a cylindrical knitted fabric was produced so as to result in a stitch density of 50. In the case of fibers having a low fineness based on corrected weight, the fibers were suitably put together so that the fibers being supplied to the circular knitting machine had a total fineness of 50-100 dtex. In the case of a yarn having a total fineness exceeding 100 dtex, a single yarn was supplied to the circular knitting machine and knitted so as to result in a stitch density of 50 as in the case shown above. An about 1-2 g portion of the cylindrical knitted fabric is weighed out and introduced into a weighing bottle, dried by holding it at 110°C for 2 hours, and then weighed (W0). Next, the specimen being examined is held at 20°C and a relative humidity of 65% for 24 hours and then weighed (W65). Furthermore, this specimen is held at 30°C and a relative humidity of 90% for 24 hours and then weighed (W90). ΔMR was calculated using the following equations. MR 1 = W 65 W 0 / W 0 × 100 %
    Figure imgb0003
    MR 2 = W 90 W 0 / W 0 × 100 %
    Figure imgb0004
    Δ MR = MR 2 MR 1
    Figure imgb0005
  • (8) ΔMR after Laundering
  • The cylindrical knitted fabric was repeatedly laundered 20 times by the method No. 103 described in JIS L0217 (1995), appended table 1. Thereafter, this fabric was examined to calculate the ΔMR (moisture absorbing/releasing properties) in the manner described above.
  • Fabrics having a ΔMR of 7.0% or larger were rated as S, and fabrics having a ΔMR of 5.0% or larger were rated as A.
  • (9) Retention of ΔMR after Laundering
  • The retention of ΔMR after laundering was calculated as an index to a change in ΔMR through laundering, using the following equation. Δ MR after laundering / Δ MR before laundering × 100
    Figure imgb0006
  • Fabrics having a retention of ΔMR of 95% or higher were rated as S, and fabrics which had a retention of ΔMR of 90% or higher and had laundering durability and which were regarded as giving satisfactory comfortableness during wear were rated as A. The others were rated as C.
  • (10) Feeling of Fabric
  • A core-sheath composite fiber of the present invention and a 22-dtex elastic polyurethane fiber were used to produce a bare plain knitted fabric using a 28G single circular knitting machine, and the knitted fabric was subjected to scouring, heat setting, dyeing, and finish setting to obtain a fabric. Meanwhile, an ordinary, nylon-6, 44-dtex, 26-filament, false-twist textured yarn (CR, 26%) was prepared, and a bare plain knitted fabric was produced therefrom in the same manner as described above. The fabrics obtained were evaluated for feeling and compared. S and A were acceptable.
    S ... Far softer than the ordinary fabric formed using nylon-6.
    A ... Superior in softness to the ordinary fabric formed using nylon-6.
    C ... Equal to the ordinary fabric formed using nylon-6.
  • (11) Overall Evaluation
  • In the case where all of the ΔMR after laundering, retention of ΔMR after laundering, and feeling of fabric were rated as S, the fabric not only had comfortableness with satisfactory moisture absorbing properties but also had excellent softness; the overall evaluation in this case was S. In the case where all these properties were rated as A or higher, the overall evaluation was A. In the case where any of those properties was rated as C, the overall evaluation was C.
  • (12) Tension Measurement
  • Tension values were measured using TENSION METER and FT-R pickup sensor, both manufactured by Toray Engineering Co., Ltd.
  • With respect to fiber tension at the time of first-stage oil application, the value of tension was measured between the first-stage and second-stage oil application devices, and the tension value was divided by the fineness. The resultant quotient (cN/dtex) was taken as the fiber tension.
  • Winding tension was determined by measuring the tension value (cN) between the second roller and the winder.
  • [Example 1]
  • A polyetheresteramide copolymer (MH 1657, manufactured by Arkema Inc.; o-chlorophenol relative viscosity, 1.69) including nylon-6 as a polyamide component and polyethylene glycol having a molecular weight of 1,500 as a polyether component (poly(alkylene oxide)glycol) in which the proportion of the polyether component was about 76% by mole was used for the core, and nylon-6 having a sulfuric-acid relative viscosity of 2.71 and a terminal amino group content of 5.95×10-5 mol/g was used for the sheath. The polyetheresteramide copolymer and the nylon-6 were melted at 270°C and spun with a spinneret for concentric core-sheath formation so as to result in a core-sheath ratio (parts by weight) of 50/50. The terminal amino group content had been regulated with hexamethylenediamine and acetic acid during the polymerization.
  • During the spinning, the rotational speeds of the gear pumps were set so as to give core-sheath composite fibers having a total fineness of 57 dtex, and the core ingredient and the sheath ingredient were each ejected at a rate of 19.6 g/min. The filaments ejected from the spinneret nozzle were cooled and solidified with a filament cooler, and were then subjected to first-stage oil application in which an oil emulsion having a concentration of 1% was applied thereto with an oiling device. The tension of the fibers at this moment was 0.30 cN/dtex. A second-stage oiling device was disposed at a position 2.0 m downstream from the first-stage oiling, and an oil emulsion having a concentration of 15% was used to conduct oil application. Thereafter, the fibers were temporarily taken up by a first roller which was rotating at a speed of 3,500 m/min, and were subsequently wound up, via a second roller which was rotating at the same speed, by a winder having a peripheral speed regulated to 3,430 m/min so as to result in a winding tension of 5 cN. In this case, the time gap between the first-stage oil application and the second-stage oil application was 34 msec. The core-sheath composite fibers obtained had the properties shown in Table 1. Thus, core-sheath composite fibers having a degree of shrinkage with boiling water of 8.5% and an elongation of 75% were obtained.
  • Using a friction type false-twist texturing machine, the core-sheath composite fibers were processed under the conditions of a processing ratio of 1.3, processing speed of 400 m/min, and heater temperature 150°C, thereby obtaining a 44-dtex, 26-filament, false-twist textured yarn having an elongation of 34%. These false twisting conditions were common among the Examples and the Comparative Examples.
  • The false-twist textured yarn obtained was evaluated and, as a result, was found to have a ΔMR of 12.1% and a ΔMR after laundering of 11.8%, that is, the retention of ΔMR was 98%. The yarn showed highly satisfactory moisture absorbing/releasing properties, and the moisture absorbing/releasing properties had highly satisfactory laundering durability. The fabric showed an excellent feeling and was superior in softness to the ordinary nylon. Consequently, the overall evaluation was S.
  • [Example 2]
  • The speeds of the first roller and second roller were regulated to 3,200 m/min, and spinning was conducted using the same positional relationship between the first stage and the second stage as in Example 1, i.e., 2.0 m. Namely, spinning was conducted in which the oil application time gap was 38 msec. Incidentally, the speed of the winder was regulated so as to result in a winding tension of 5 cN, as in Example 1. The polymer ejection rates were regulated so as to give a false-twist textured yarn having a fineness of 44 dtex. The core-sheath composite fibers obtained had the properties shown in Table 1. The degree of shrinkage with boiling water was 7.2%, and the elongation was 81%.
  • False twisting was conducted in the same manner as in Example 1, except that the processing ratio was regulated to 1.35 so as to give a false-twist textured yarn having an elongation of 35%. Thus, a 44-dtex, 26-filament, false-twist textured yarn was obtained.
  • The false-twist textured yarn obtained had a ΔMR after laundering of 11.2% and a retention of ΔMR of 97%. The yarn showed highly satisfactory moisture absorbing/releasing properties, and the moisture absorbing/releasing properties had highly satisfactory laundering durability. The fabric showed an excellent feeling and was superior in softness to the ordinary nylon. Consequently, the overall evaluation was S.
  • [Example 3]
  • The stretch ratio was regulated to 1.05. Namely, the speeds of the first roller and the second roller were regulated to 3,500 m/min and 3,675 m/min, respectively, to conduct spinning. The oil application time gap was the same as in Example 1, and the other conditions were set from the same standpoint as in Example 1. The core-sheath composite fibers obtained had the properties shown in Table 1. The degree of shrinkage with boiling water was 9.5%, and the elongation was 66.
  • False twisting was conducted in the same manner as in Example 1, except that the processing ratio was regulated so as to give a false-twist textured yarn having an elongation of 35%. Thus, a 44-dtex, 26-filament, false-twist textured yarn was obtained.
  • The false-twist textured yarn obtained had a ΔMR after laundering of 12.8% and a retention of ΔMR of 98%. The yarn showed highly satisfactory moisture absorbing/releasing properties, and the moisture absorbing/releasing properties had highly satisfactory laundering durability. Meanwhile, the feeling of the fabric was slightly rough and hard because the degree of shrinkage with boiling water of the core-sheath composite fibers was higher than that in Example 1. However, the fabric showed better softness than the fabric obtained using ordinary nylon-6. Consequently, the overall evaluation was A.
  • [Example 4]
  • Spinning was conducted in which the core-sheath ratio (parts by weight) was 30/70, the speeds of the first roller and the second roller was 3,000 m/min each, and the oil application time gap was 40 msec. The core-sheath composite fibers obtained had the properties shown in Table 1. The degree of shrinkage with boiling water was 6.1%, and the elongation was 69%.
  • False twisting was conducted in the same manner as in Example 1, except that the processing ratio was regulated so as to give a false-twist textured yarn having an elongation of 35%. Thus, a 44-dtex, 26-filament, false-twist textured yarn was obtained.
  • The false-twist textured yarn obtained had a ΔMR after laundering of 7.2% and a retention of ΔMR of 91%. The yarn showed highly satisfactory moisture absorbing/releasing properties. Meanwhile, it is thought that since the roller speed had been lower than that in Example 1, the orientation of the core-sheath composite fibers had been affected thereby and the composite fibers had a slightly poor retention of ΔMR. However, the moisture absorbing/releasing properties had satisfactory laundering durability. With respect to the feeling of the fabric, the crimp was slightly weak and the fabric was slightly poor in fluffiness, because the degree of shrinkage with boiling water was lower than that in Example 1. However, the fabric showed better softness than the fabric obtained using ordinary nylon-6. Consequently, the overall evaluation was A.
  • [Example 5]
  • The procedure was changed so that the core-sheath ratio (parts by weight) was 20/80, the speeds of the first roller and the second roller were 3,800 m/min each, and the second-stage oil application was conducted at a position 1.25 m downstream from the first-stage oil application. Namely, spinning was conducted in which the oil application time gap was 20 msec. The core-sheath composite fibers obtained had the properties shown in Table 1. The degree of shrinkage with boiling water was 10.8%, which was slightly high because the time gap had been set at a shorter period. The elongation was 58%.
  • False twisting was conducted in the same manner as in Example 1, except that the processing ratio was regulated so as to give a false-twist textured yarn having an elongation of 35%. Thus, a 44-dtex, 26-filament, false-twist textured yarn was obtained.
  • The false-twist textured yarn obtained had a ΔMR after laundering of 5.9% and a retention of ΔMR of 98%. The yarn showed satisfactory moisture absorbing/releasing properties, and the moisture absorbing/releasing properties had highly satisfactory laundering durability. Meanwhile, the feeling of the fabric was slightly rough and hard because the degree of shrinkage with boiling water of the core-sheath composite fibers was higher than that in Example 1. However, the fabric showed better softness than the fabric obtained using ordinary nylon-6. Consequently, the overall evaluation was A.
  • [Example 6]
  • Spinning was conducted in the same manner as in Example 1, except that nylon-6 having a sulfuric-acid relative viscosity of 3.30 and a terminal amino group content of 4.78×10-5 mol/g was used for the sheath. The core-sheath composite fibers obtained had the properties shown in Table 1. The degree of shrinkage with boiling water was 9.3%, and the elongation was 70%.
  • False twisting was conducted in the same manner as in Example 1, except that the processing ratio was regulated so as to give a false-twist textured yarn having an elongation of 35%. Thus, a 44-dtex, 26-filament, false-twist textured yarn was obtained.
  • The false-twist textured yarn obtained had a ΔMR after laundering of 12.2% and a retention of ΔMR of 99%. The yarn showed highly satisfactory moisture absorbing/releasing properties, and the moisture absorbing/releasing properties had highly satisfactory laundering durability. The fabric showed an excellent feeling and was superior in softness to the ordinary nylon. Consequently, the overall evaluation was S.
  • [Example 7]
  • Spinning was conducted in the same manner as in Example 1, except that nylon-6 having a sulfuric-acid relative viscosity of 2.40 and a terminal amino group content of 3.95×10-5 mol/g was used for the sheath. The core-sheath composite fibers obtained had the properties shown in Table 1. The degree of shrinkage with boiling water was 6.7%, and the elongation was 84%.
  • False twisting was conducted in the same manner as in Example 1, except that the processing ratio was regulated so as to give a false-twist textured yarn having an elongation of 35%. Thus, a 44-dtex, 26-filament, false-twist textured yarn was obtained.
  • The false-twist textured yarn obtained had a ΔMR after laundering of 9.2% and a retention of ΔMR of 93%. The yarn showed highly satisfactory moisture absorbing/releasing properties. Meanwhile, it is thought that since the sulfuric-acid relative viscosity had been lower than that in Example 1, the orientation of the core-sheath composite fibers had been affected thereby and the composite fibers had a slightly poor retention of ΔMR. However, the moisture absorbing/releasing properties had satisfactory laundering durability. With respect to the feeling of the fabric, the crimp was slightly weak and the fabric was slightly poor in fluffiness, because the degree of shrinkage with boiling water was lower than that in Example 1. However, the fabric showed better softness than the fabric obtained using ordinary nylon-6. Consequently, the overall evaluation was A.
  • [Comparative Example 1]
  • Spinning was conducted in which nylon-6 having a sulfuric-acid relative viscosity of 2.15 and a terminal amino group content of 4.70×10-5 mol/g was used for the sheath, the speeds of the first roller and second roller were regulated to 4,000 m/min, and the positional relationship between the first stage and the second stage was the same as in Example 1, i.e., 2.0 m. Namely, spinning was conducted in which the oil application time gap was 30 msec. The core-sheath composite fibers obtained had the properties shown in Table 2. The degree of shrinkage with boiling water was 11.5%, and the elongation was 68%.
  • False twisting was conducted in the same manner as in Example 1, except that the processing ratio was set so as to give a false-twist textured yarn having an elongation of 35%. Thus, a 44-dtex, 26-filament, false-twist textured yarn was obtained.
  • The false-twist textured yarn obtained had a ΔMR after laundering of 7.5% and a retention of ΔMR of 70%. This yarn was poor in the laundering durability of moisture absorbing/releasing properties. The feeling of the fabric was considerably rough and hard because the degree of shrinkage with boiling water was higher than those in the Examples. The fabric obtained was nothing but one which was equal in feeling to the fabric obtained using ordinary nylon-6. Consequently, the overall evaluation was C.
  • [Comparative Example 2]
  • Spinning was conducted in which the speeds of the first roller and second roller were regulated to 4,200 m/min, and the positional relationship between the first stage and the second stage was the same as in Example 1, i.e., 2.0 m. Namely, spinning was conducted in which the oil application time gap was 7 msec. The core-sheath composite fibers obtained had the properties shown in Table 2. The degree of shrinkage with boiling water was 14.5%, and the elongation was 70%.
  • False twisting was conducted in the same manner as in Example 1, except that the processing ratio was set so as to give a false-twist textured yarn having an elongation of 35%. Thus, a 44-dtex, 26-filament, false-twist textured yarn was obtained.
  • The false-twist textured yarn obtained had a ΔMR after laundering of 10.6% and a retention of ΔMR of 96%. This yarn showed highly satisfactory moisture absorbing/releasing properties, and the moisture absorbing/releasing properties had highly satisfactory laundering durability. Meanwhile, the feeling of the fabric was considerably rough and hard because the degree of shrinkage with boiling water was higher than those in the Examples. The fabric obtained was nothing but one which was equal in feeling to the fabric obtained using ordinary nylon-6. The feeling was rated as C. Consequently, the overall evaluation was C.
  • [Comparative Example 3]
  • Spinning was conducted in the same manner as in Example 1, except that the speed of the second roller was changed to 3,465 m/min and the surface temperature of the second roller was changed to 130°C. The core-sheath composite fibers obtained had the properties shown in Table 2. The degree of shrinkage with boiling water was 5.2%, and the elongation was 70%.
  • False twisting was conducted in the same manner as in Example 1, except that the processing ratio was set so as to give a false-twist textured yarn having an elongation of 35%. Thus, a 44-dtex, 26-filament, false-twist textured yarn was obtained.
  • The false-twist textured yarn obtained had a ΔMR after laundering of 11.5% and a retention of ΔMR of 96%. This yarn showed highly satisfactory moisture absorbing/releasing properties, and the moisture absorbing/releasing properties had highly satisfactory laundering durability. Meanwhile, with respect to the feeling of the fabric, the false-twist textured yarn had not been crimped because the degree of shrinkage with boiling water had been higher than those in the Examples and because the crystallization of the core-sheath composite fibers had proceeded. The fabric obtained was poor in fluffiness and was nothing but one which was equal in feeling to the fabric obtained using ordinary nylon-6. Consequently, the overall evaluation was C. Table 1
    Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 Example 7
    Core component Polymer polyetheresteramide copolymer polyetheresteramide copolymer polyetheresteramide copolymer polyetheresteramide copolymer polyetheresteramide copolymer polyetheresteramide copolymer polyetheresteramide copolymer
    OCP relative viscosity 1.69 1.69 1.69 1.69 1.69 1.69 1.69
    Sheath component Polymer nylon-6 nylon-6 nylon-6 nylon-6 nylon-6 nylon-6 nylon-6
    Sulfuric-acid relative viscosity 2.71 2.71 2.71 2.71 2.71 3.30 2.40
    Core-sheath ratio Core/sheath 50/50 50/50 50/50 30/70 20/80 50/50 50/50
    Spinning conditions Oil application time gap between first stage and second stage (msec) 34 38 34 40 20 34 34
    Fiber tension at first-stage oil application (cN/dtex) 0.30 0.25 0.29 0.35 0.30 0.37 0.22
    Speed of first roller (m/min) 3500 3200 3500 3500 3800 3500 3500
    Stretch ratio 1.0 1.0 1.05 1.0 1.0 1.0 1.0
    Speed of second roller (m/min) 3500 3200 3675 3500 3800 3500 3500
    Properties of unprocessed fibers Strength (cN/dtex) 2.6 2.5 2.7 2.5 2.7 3.0 2.2
    Elongation (%) 75 81 66 69 58 70 84
    Degree of shrinkage with boiling water (%) 8.5 7.2 9.5 6.1 10.8 9.3 6.7
    Property of false-twist yarn Recovery of stretchability CR (%) 30 31 27 25 21 31 25
    Hygroscopicity ΔMR (%) 12.1 11.6 13.0 7.9 6.0 12.3 9.9
    ΔMR after laundering (%) S 11.8 S 11.2 S 12.8 S 7.2 A 5.9 S 12.2 S 9.2
    Retention of ΔMR after laundering (%) S 98 S 97 S 98 A 91 S 98 S 99 A 93
    Feeling of fabric Sensory test S S A S A S A
    Overall evaluation S S A A A S A
    Table 2
    Comparative Example 1 Comparative Example 2 Comparative Example 3
    Core component Polymer polyetheresteramide copolymer polyetheresteramide copolymer polyetheresteramide copolymer
    OCP relative viscosity 1.69 1.69 1.69
    Sheath component Polymer nylon-6 nylon-6 nylon-6
    Sulfuric-acid relative viscosity 2.15 2.71 2.71
    Core-sheath ratio Core/sheath 50/50 50/50 50/50
    Spinning conditions Oil application time gap between first stage and second stage (msec) 30 7 34
    Fiber tension at first-stage oil application (cN/dtex) 0.14 0.52 0.31
    Speed of first roller (m/min) 4000 4200 3500
    Stretch ratio 1.0 1.0 0.99
    Speed of second roller (m/min) 4000 4200 3465
    Properties of Unprocessed fibers Strength (cN/dtex) 2.2 2.4 2.3
    Elongation (%) 68 70 70
    Degree of shrinkage with boiling water (%) 11.5 14.5 5.2
    Property of false-twist yarn Recovery of stretchability CR(%) 23 29 18
    Hygroscopicity ΔMR (%) 10.7 11.0 12.0
    ΔMR after laundering (%) S 7.5 S 10.6 S 11.5
    Retention of ΔMR after laundering (%) C 70 S 96 S 96
    Feeling of fabric Sensory test C C c
    Overall evaluation C C C
  • INDUSTRIAL APPLICABILITY
  • According to the core-sheath composite fiber of the present invention, high hygroscopicity, laundering durability of the hygroscopicity, which makes the fiber withstand practical use, and a soft feeling can be attained.

Claims (5)

  1. A hygroscopic core-sheath composite fiber which comprises: a polyetheresteramide copolymer as a core polymer; and a polyamide as a sheath polymer, wherein the hygroscopic core-sheath composite fiber which has been treated in boiling water for 15 minutes under no load has a degree of shrinkage with boiling water of 6-11%.
  2. The hygroscopic core-sheath composite fiber according to claim 1, which has an elongation measured according to JIS L1013 under constant-speed stretching conditions of 60-90%.
  3. A false-twist textured yarn comprising the hygroscopic core-sheath composite fiber according to claim 1 or 2.
  4. A fabric at least a part of which comprises the hygroscopic core-sheath composite fiber according to claim 1 or 2.
  5. A process for producing the hygroscopic core-sheath composite fiber according to claim 1 or 2, the process comprising: ejecting a filament from a spinneret; cooling and solidifying the ejected filament with a cooling wind; thereafter applying an aqueous solution in the form of an oil emulsion, twice to the filament; and then winding up the filament,
    wherein a time gap between the first-stage application and the second-stage application is 20 msec or longer.
EP16799810.3A 2015-05-22 2016-05-11 Hygroscopic core-sheath conjugate yarn and production method therefor Active EP3299500B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015104543 2015-05-22
PCT/JP2016/063971 WO2016190102A1 (en) 2015-05-22 2016-05-11 Hygroscopic core-sheath conjugate yarn and production method therefor

Publications (3)

Publication Number Publication Date
EP3299500A1 EP3299500A1 (en) 2018-03-28
EP3299500A4 EP3299500A4 (en) 2018-12-26
EP3299500B1 true EP3299500B1 (en) 2020-10-21

Family

ID=57393948

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16799810.3A Active EP3299500B1 (en) 2015-05-22 2016-05-11 Hygroscopic core-sheath conjugate yarn and production method therefor

Country Status (10)

Country Link
US (1) US20180148863A1 (en)
EP (1) EP3299500B1 (en)
JP (1) JP6090546B1 (en)
KR (1) KR102465144B1 (en)
CN (1) CN107614765B (en)
AU (1) AU2016266265B2 (en)
CA (1) CA2986887A1 (en)
HK (1) HK1246374A1 (en)
TW (1) TWI693311B (en)
WO (1) WO2016190102A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2867529T3 (en) * 2014-12-18 2021-10-20 Toray Industries Moisture Absorbing Core / Sheath Composite Yarn
JP6213693B2 (en) * 2015-11-10 2017-10-18 東レ株式会社 Core-sheath composite cross-section fiber with excellent hygroscopic and anti-mold properties
KR20220038683A (en) * 2019-07-31 2022-03-29 도레이 카부시키가이샤 Polyamide Composite Fibers and Processed Yarns
CN116685728A (en) * 2021-03-16 2023-09-01 东丽纤维研究所(中国)有限公司 Composite fiber and preparation method thereof

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5184921A (en) * 1975-01-17 1976-07-24 Toray Industries KAIRYOSARETAHORIAMIDOFUKUGOSENI
JPS58104220A (en) * 1981-12-17 1983-06-21 Teijin Ltd Polyamide composite fiber
JPS6410607A (en) * 1987-07-03 1989-01-13 Toshiba Corp Panel-type radiator for electric apparatus
JP3144092B2 (en) * 1992-10-26 2001-03-07 東レ株式会社 Core-sheath type composite fiber with excellent hygroscopicity
TW317577B (en) * 1995-01-25 1997-10-11 Toray Industries
JP3476577B2 (en) 1995-02-08 2003-12-10 ユニチカ株式会社 Composite fiber with moisture absorption / release properties
JPH0941204A (en) * 1995-07-31 1997-02-10 Toray Ind Inc Stocking excellent in hygroscopicity
JP3716517B2 (en) 1995-11-06 2005-11-16 東レ株式会社 Highly hygroscopic polyamide fiber and method for producing the same
JPH09256224A (en) * 1996-03-22 1997-09-30 Teijin Ltd Conjugate yarn improved in hygroscopicity, blended yarn comprising the same and fabric
JPH1018136A (en) * 1996-07-01 1998-01-20 Toray Ind Inc Polyester-based composite false twist textured yarn and polyester-based woven and knitted fabric
JP2006124851A (en) 2004-10-27 2006-05-18 Toyobo Co Ltd Highly hygroscopic polyamide combined filament yarn with different shrinkage percentage and method for producing the same
JP2006173969A (en) * 2004-12-15 2006-06-29 Sony Corp Omnidirectional light reception device and infrared receiving device
JP2007321295A (en) * 2006-06-01 2007-12-13 Teijin Ltd Crimped conjugated fiber
JP5547474B2 (en) 2007-04-04 2014-07-16 Kbセーレン株式会社 Composite fiber with excellent antistatic, water absorption, and cool contact feeling
CN101748512A (en) * 2008-12-10 2010-06-23 东丽纤维研究所(中国)有限公司 Polyester composite fiber and method for producing same
EP2554721B1 (en) * 2010-03-31 2015-01-21 Toray Industries, Inc. Hygroscopic fibre, and manufacturing method for same
EP2873756B1 (en) 2012-07-12 2019-04-03 KB Seiren, Ltd. Sheath-core bicomponent fibre
CN103668536A (en) * 2012-09-13 2014-03-26 东丽纤维研究所(中国)有限公司 Moisture-absorbing fiber and preparation method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3299500A4 (en) 2018-12-26
TWI693311B (en) 2020-05-11
HK1246374A1 (en) 2018-09-07
AU2016266265B2 (en) 2020-01-30
JPWO2016190102A1 (en) 2017-06-15
KR20180010185A (en) 2018-01-30
CA2986887A1 (en) 2016-12-01
KR102465144B1 (en) 2022-11-10
US20180148863A1 (en) 2018-05-31
AU2016266265A1 (en) 2017-12-07
WO2016190102A1 (en) 2016-12-01
CN107614765B (en) 2020-04-03
CN107614765A (en) 2018-01-19
EP3299500A1 (en) 2018-03-28
JP6090546B1 (en) 2017-03-08
TW201704571A (en) 2017-02-01

Similar Documents

Publication Publication Date Title
EP3299500B1 (en) Hygroscopic core-sheath conjugate yarn and production method therefor
EP2554721B1 (en) Hygroscopic fibre, and manufacturing method for same
EP3235932B1 (en) Moisture absorbent core sheath composite yarn
JP2016204784A (en) Polyamide core-sheath composite fiber excellent in hygroscopicity and contact cool feeling and fabric using the same
EP3388562B1 (en) Moisture-absorbing core-sheath composite yarn, and fabric
TWI728131B (en) High heat-shrinkable polyamide composite fiber and processed yarn, and use them in some woven fabrics
CN105164324B (en) Nylon latent-crimp yarn having outstanding elasticity and cool feel
JPH06136618A (en) Sheath-core type conjugate fiber excellent in hygroscopicity
EP3375918B1 (en) Core-sheath composite cross-section fiber having excellent moisture absorbency and wrinkle prevention
JP6690160B2 (en) Anti-static polyamide core-sheath composite fiber with excellent durability
EP4006216A1 (en) Polyamide composite fiber and finished yarn
WO2020262511A1 (en) Sheath-core composite yarn and fabric
JP2018076613A (en) Hygroscopic sheath-core conjugated yarn
JP2016117979A (en) Hygroscopic sheath-core conjugated yarn excellent in washing durability
JP2016132828A (en) Hygroscopic core-sheath conjugated yarn

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20171116

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20181123

RIC1 Information provided on ipc code assigned before grant

Ipc: D03D 15/00 20060101ALI20181119BHEP

Ipc: D02G 1/02 20060101ALI20181119BHEP

Ipc: D01F 8/12 20060101AFI20181119BHEP

Ipc: D01D 5/34 20060101ALI20181119BHEP

Ipc: D01F 8/14 20060101ALI20181119BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200519

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602016046346

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1325963

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201115

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1325963

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201021

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20201021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210121

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210222

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210122

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210221

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210121

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602016046346

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

26N No opposition filed

Effective date: 20210722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210511

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210511

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210221

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160511

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230412

Year of fee payment: 8

Ref country code: DE

Payment date: 20230331

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021