EP3299367B1 - Biaryl amide compounds as kinase inhibitors - Google Patents
Biaryl amide compounds as kinase inhibitors Download PDFInfo
- Publication number
- EP3299367B1 EP3299367B1 EP17190132.5A EP17190132A EP3299367B1 EP 3299367 B1 EP3299367 B1 EP 3299367B1 EP 17190132 A EP17190132 A EP 17190132A EP 3299367 B1 EP3299367 B1 EP 3299367B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- methyl
- morpholino
- isonicotinamide
- trifluoromethyl
- benzamide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- -1 Biaryl amide compounds Chemical class 0.000 title claims description 131
- 229940043355 kinase inhibitor Drugs 0.000 title 1
- 239000003757 phosphotransferase inhibitor Substances 0.000 title 1
- 150000001875 compounds Chemical class 0.000 claims description 194
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 claims description 85
- 150000003839 salts Chemical class 0.000 claims description 75
- 125000005843 halogen group Chemical group 0.000 claims description 57
- 125000001424 substituent group Chemical group 0.000 claims description 47
- 125000000229 (C1-C4)alkoxy group Chemical group 0.000 claims description 38
- 206010028980 Neoplasm Diseases 0.000 claims description 37
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical group C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 claims description 37
- 125000004043 oxo group Chemical group O=* 0.000 claims description 30
- 125000003118 aryl group Chemical group 0.000 claims description 28
- 229910052717 sulfur Inorganic materials 0.000 claims description 26
- 239000003795 chemical substances by application Substances 0.000 claims description 24
- 229910052760 oxygen Inorganic materials 0.000 claims description 24
- 239000008194 pharmaceutical composition Substances 0.000 claims description 24
- 125000000592 heterocycloalkyl group Chemical group 0.000 claims description 23
- KYQCOXFCLRTKLS-UHFFFAOYSA-N Pyrazine Chemical group C1=CN=CC=N1 KYQCOXFCLRTKLS-UHFFFAOYSA-N 0.000 claims description 21
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 21
- 125000001072 heteroaryl group Chemical group 0.000 claims description 20
- 125000005842 heteroatom Chemical group 0.000 claims description 20
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 20
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims description 20
- 125000000623 heterocyclic group Chemical group 0.000 claims description 19
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Chemical group COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 claims description 19
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 claims description 19
- 125000004429 atom Chemical group 0.000 claims description 17
- 229910052757 nitrogen Inorganic materials 0.000 claims description 17
- 201000011510 cancer Diseases 0.000 claims description 16
- LVWZTYCIRDMTEY-UHFFFAOYSA-N metamizole Chemical group O=C1C(N(CS(O)(=O)=O)C)=C(C)N(C)N1C1=CC=CC=C1 LVWZTYCIRDMTEY-UHFFFAOYSA-N 0.000 claims description 16
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 16
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 claims description 15
- 208000002699 Digestive System Neoplasms Diseases 0.000 claims description 14
- 206010051066 Gastrointestinal stromal tumour Diseases 0.000 claims description 14
- 206010039491 Sarcoma Diseases 0.000 claims description 14
- 201000011243 gastrointestinal stromal tumor Diseases 0.000 claims description 14
- 201000010231 gastrointestinal system cancer Diseases 0.000 claims description 14
- 201000001441 melanoma Diseases 0.000 claims description 14
- 125000004765 (C1-C4) haloalkyl group Chemical group 0.000 claims description 13
- 125000005913 (C3-C6) cycloalkyl group Chemical group 0.000 claims description 13
- 206010033128 Ovarian cancer Diseases 0.000 claims description 13
- 206010061535 Ovarian neoplasm Diseases 0.000 claims description 13
- 206010006187 Breast cancer Diseases 0.000 claims description 12
- 208000026310 Breast neoplasm Diseases 0.000 claims description 12
- 206010009944 Colon cancer Diseases 0.000 claims description 12
- 208000001333 Colorectal Neoplasms Diseases 0.000 claims description 12
- 208000024770 Thyroid neoplasm Diseases 0.000 claims description 12
- 201000002510 thyroid cancer Diseases 0.000 claims description 12
- 206010058467 Lung neoplasm malignant Diseases 0.000 claims description 11
- 206010061902 Pancreatic neoplasm Diseases 0.000 claims description 11
- PCNDJXKNXGMECE-UHFFFAOYSA-N Phenazine Chemical group C1=CC=CC2=NC3=CC=CC=C3N=C21 PCNDJXKNXGMECE-UHFFFAOYSA-N 0.000 claims description 11
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical group C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 claims description 11
- 201000005202 lung cancer Diseases 0.000 claims description 11
- 208000020816 lung neoplasm Diseases 0.000 claims description 11
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 claims description 11
- 201000002528 pancreatic cancer Diseases 0.000 claims description 11
- 208000008443 pancreatic carcinoma Diseases 0.000 claims description 11
- 125000006656 (C2-C4) alkenyl group Chemical group 0.000 claims description 10
- FZWLAAWBMGSTSO-UHFFFAOYSA-N Thiazole Chemical group C1=CSC=N1 FZWLAAWBMGSTSO-UHFFFAOYSA-N 0.000 claims description 9
- PBMFSQRYOILNGV-UHFFFAOYSA-N pyridazine Chemical group C1=CC=NN=C1 PBMFSQRYOILNGV-UHFFFAOYSA-N 0.000 claims description 9
- HUTNOYOBQPAKIA-UHFFFAOYSA-N 1h-pyrazin-2-one Chemical group OC1=CN=CC=N1 HUTNOYOBQPAKIA-UHFFFAOYSA-N 0.000 claims description 8
- 239000003937 drug carrier Substances 0.000 claims description 8
- AAILEWXSEQLMNI-UHFFFAOYSA-N 1h-pyridazin-6-one Chemical group OC1=CC=CN=N1 AAILEWXSEQLMNI-UHFFFAOYSA-N 0.000 claims description 7
- 125000006570 (C5-C6) heteroaryl group Chemical group 0.000 claims description 6
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 claims description 6
- VTGOHKSTWXHQJK-UHFFFAOYSA-N pyrimidin-2-ol Chemical group OC1=NC=CC=N1 VTGOHKSTWXHQJK-UHFFFAOYSA-N 0.000 claims description 6
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 claims description 6
- ZCQWOFVYLHDMMC-UHFFFAOYSA-N Oxazole Chemical compound C1=COC=N1 ZCQWOFVYLHDMMC-UHFFFAOYSA-N 0.000 claims description 5
- 125000006222 dimethylaminomethyl group Chemical group [H]C([H])([H])N(C([H])([H])[H])C([H])([H])* 0.000 claims description 5
- ZLTPDFXIESTBQG-UHFFFAOYSA-N isothiazole Chemical compound C=1C=NSC=1 ZLTPDFXIESTBQG-UHFFFAOYSA-N 0.000 claims description 5
- CTAPFRYPJLPFDF-UHFFFAOYSA-N isoxazole Chemical compound C=1C=NOC=1 CTAPFRYPJLPFDF-UHFFFAOYSA-N 0.000 claims description 5
- 125000006569 (C5-C6) heterocyclic group Chemical group 0.000 claims description 4
- SJHPCNCNNSSLPL-CSKARUKUSA-N (4e)-4-(ethoxymethylidene)-2-phenyl-1,3-oxazol-5-one Chemical compound O1C(=O)C(=C/OCC)\N=C1C1=CC=CC=C1 SJHPCNCNNSSLPL-CSKARUKUSA-N 0.000 claims description 3
- 125000006552 (C3-C8) cycloalkyl group Chemical group 0.000 claims description 3
- 125000000339 4-pyridyl group Chemical group N1=C([H])C([H])=C([*])C([H])=C1[H] 0.000 claims description 3
- CMSMOCZEIVJLDB-UHFFFAOYSA-N Cyclophosphamide Chemical compound ClCCN(CCCl)P1(=O)NCCCO1 CMSMOCZEIVJLDB-UHFFFAOYSA-N 0.000 claims description 3
- ZDZOTLJHXYCWBA-VCVYQWHSSA-N N-debenzoyl-N-(tert-butoxycarbonyl)-10-deacetyltaxol Chemical compound O([C@H]1[C@H]2[C@@](C([C@H](O)C3=C(C)[C@@H](OC(=O)[C@H](O)[C@@H](NC(=O)OC(C)(C)C)C=4C=CC=CC=4)C[C@]1(O)C3(C)C)=O)(C)[C@@H](O)C[C@H]1OC[C@]12OC(=O)C)C(=O)C1=CC=CC=C1 ZDZOTLJHXYCWBA-VCVYQWHSSA-N 0.000 claims description 3
- 229930012538 Paclitaxel Natural products 0.000 claims description 3
- WTKZEGDFNFYCGP-UHFFFAOYSA-N Pyrazole Chemical compound C=1C=NNC=1 WTKZEGDFNFYCGP-UHFFFAOYSA-N 0.000 claims description 3
- BPEGJWRSRHCHSN-UHFFFAOYSA-N Temozolomide Chemical compound O=C1N(C)N=NC2=C(C(N)=O)N=CN21 BPEGJWRSRHCHSN-UHFFFAOYSA-N 0.000 claims description 3
- 229960004397 cyclophosphamide Drugs 0.000 claims description 3
- 229960003668 docetaxel Drugs 0.000 claims description 3
- VJJPUSNTGOMMGY-MRVIYFEKSA-N etoposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@H](C)OC[C@H]4O3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 VJJPUSNTGOMMGY-MRVIYFEKSA-N 0.000 claims description 3
- 229960005420 etoposide Drugs 0.000 claims description 3
- SDUQYLNIPVEERB-QPPQHZFASA-N gemcitabine Chemical compound O=C1N=C(N)C=CN1[C@H]1C(F)(F)[C@H](O)[C@@H](CO)O1 SDUQYLNIPVEERB-QPPQHZFASA-N 0.000 claims description 3
- 229960005277 gemcitabine Drugs 0.000 claims description 3
- HOMGKSMUEGBAAB-UHFFFAOYSA-N ifosfamide Chemical compound ClCCNP1(=O)OCCCN1CCCl HOMGKSMUEGBAAB-UHFFFAOYSA-N 0.000 claims description 3
- 229960001101 ifosfamide Drugs 0.000 claims description 3
- UWKQSNNFCGGAFS-XIFFEERXSA-N irinotecan Chemical compound C1=C2C(CC)=C3CN(C(C4=C([C@@](C(=O)OC4)(O)CC)C=4)=O)C=4C3=NC2=CC=C1OC(=O)N(CC1)CCC1N1CCCCC1 UWKQSNNFCGGAFS-XIFFEERXSA-N 0.000 claims description 3
- 229960004768 irinotecan Drugs 0.000 claims description 3
- 125000004433 nitrogen atom Chemical group N* 0.000 claims description 3
- 125000006574 non-aromatic ring group Chemical group 0.000 claims description 3
- 229960001592 paclitaxel Drugs 0.000 claims description 3
- 125000000168 pyrrolyl group Chemical group 0.000 claims description 3
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 claims description 3
- 229960004964 temozolomide Drugs 0.000 claims description 3
- 229930192474 thiophene Natural products 0.000 claims description 3
- UCFGDBYHRUNTLO-QHCPKHFHSA-N topotecan Chemical compound C1=C(O)C(CN(C)C)=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)[C@]5(O)CC)C4=NC2=C1 UCFGDBYHRUNTLO-QHCPKHFHSA-N 0.000 claims description 3
- 229960000303 topotecan Drugs 0.000 claims description 3
- 125000000876 trifluoromethoxy group Chemical group FC(F)(F)O* 0.000 claims description 3
- 125000006163 5-membered heteroaryl group Chemical group 0.000 claims description 2
- 201000007270 liver cancer Diseases 0.000 claims description 2
- 208000014018 liver neoplasm Diseases 0.000 claims description 2
- VFQXVTODMYMSMJ-UHFFFAOYSA-N isonicotinamide Chemical compound NC(=O)C1=CC=NC=C1 VFQXVTODMYMSMJ-UHFFFAOYSA-N 0.000 claims 34
- KXDAEFPNCMNJSK-UHFFFAOYSA-N benzene carboxamide Natural products NC(=O)C1=CC=CC=C1 KXDAEFPNCMNJSK-UHFFFAOYSA-N 0.000 claims 5
- GEBGCSXVYUDDPU-UHFFFAOYSA-N pyridazine-4-carboxamide Chemical compound NC(=O)C1=CC=NN=C1 GEBGCSXVYUDDPU-UHFFFAOYSA-N 0.000 claims 4
- LFXIIYJGGZBWBR-UHFFFAOYSA-N 2-(2-cyanopropan-2-yl)-n-[6-methyl-5-(1-methyl-5-morpholin-4-yl-6-oxopyridazin-3-yl)pyridin-3-yl]pyridine-4-carboxamide Chemical compound C1=C(C2=NN(C)C(=O)C(N3CCOCC3)=C2)C(C)=NC=C1NC(=O)C1=CC=NC(C(C)(C)C#N)=C1 LFXIIYJGGZBWBR-UHFFFAOYSA-N 0.000 claims 3
- JYCGAJUVLULZLX-UHFFFAOYSA-N N-[6-methyl-5-(8-morpholin-4-ylimidazo[1,2-a]pyridin-6-yl)pyridin-3-yl]-3-(trifluoromethyl)benzamide Chemical compound CC1=C(C=C(C=N1)NC(C1=CC(=CC=C1)C(F)(F)F)=O)C=1C=C(C=2N(C=1)C=CN=2)N1CCOCC1 JYCGAJUVLULZLX-UHFFFAOYSA-N 0.000 claims 3
- LTLGSEVOOHUBQL-UHFFFAOYSA-N n-[4-cyano-3-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)phenyl]-2-(trifluoromethyl)pyridine-4-carboxamide Chemical compound O=C1N(C)C=C(C=2C(=CC=C(NC(=O)C=3C=C(N=CC=3)C(F)(F)F)C=2)C#N)C=C1N1CCOCC1 LTLGSEVOOHUBQL-UHFFFAOYSA-N 0.000 claims 3
- FYWJKENPJYBDJW-UHFFFAOYSA-N 2,5-dimethyl-N-[6-methyl-5-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)pyridin-3-yl]-1,3-oxazole-4-carboxamide Chemical compound CN1C=C(C=C(C1=O)N1CCOCC1)C=1C(=NC=C(C=1)NC(=O)C=1N=C(OC=1C)C)C FYWJKENPJYBDJW-UHFFFAOYSA-N 0.000 claims 2
- MHXDDBSOWRGCEL-UHFFFAOYSA-N 2-(1,1-difluoroethyl)-n-[5-(2-morpholin-4-ylpyridin-4-yl)-6-oxo-1h-pyridin-3-yl]pyridine-4-carboxamide Chemical compound C1=NC(C(F)(F)C)=CC(C(=O)NC=2C=C(C(=O)NC=2)C=2C=C(N=CC=2)N2CCOCC2)=C1 MHXDDBSOWRGCEL-UHFFFAOYSA-N 0.000 claims 2
- LNLLSEAMZKXAPP-UHFFFAOYSA-N 2-(2-cyanopropan-2-yl)-n-[4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridazin-3-yl)phenyl]pyridine-4-carboxamide Chemical compound C1=C(C2=NN(C)C(=O)C(N3CCOCC3)=C2)C(C)=CC=C1NC(=O)C1=CC=NC(C(C)(C)C#N)=C1 LNLLSEAMZKXAPP-UHFFFAOYSA-N 0.000 claims 2
- PTQWLEFABJSRKO-UHFFFAOYSA-N 2-(2-cyanopropan-2-yl)-n-[5-(2-morpholin-4-ylpyridin-4-yl)-6-oxo-1h-pyridin-3-yl]pyridine-4-carboxamide Chemical compound C1=NC(C(C)(C#N)C)=CC(C(=O)NC=2C=C(C(=O)NC=2)C=2C=C(N=CC=2)N2CCOCC2)=C1 PTQWLEFABJSRKO-UHFFFAOYSA-N 0.000 claims 2
- DGVMTMIZIBKSLP-UHFFFAOYSA-N 2-(2-cyanopropan-2-yl)-n-[6-methoxy-5-(2-morpholin-4-ylpyridin-4-yl)pyridin-3-yl]pyridine-4-carboxamide Chemical compound C1=C(C=2C=C(N=CC=2)N2CCOCC2)C(OC)=NC=C1NC(=O)C1=CC=NC(C(C)(C)C#N)=C1 DGVMTMIZIBKSLP-UHFFFAOYSA-N 0.000 claims 2
- REUREILZLZCFOE-UHFFFAOYSA-N 2-(2-fluoropropan-2-yl)-n-[3-(6-methoxy-5-morpholin-4-ylpyridazin-3-yl)-4-methylphenyl]pyridine-4-carboxamide Chemical compound COC1=NN=C(C=2C(=CC=C(NC(=O)C=3C=C(N=CC=3)C(C)(C)F)C=2)C)C=C1N1CCOCC1 REUREILZLZCFOE-UHFFFAOYSA-N 0.000 claims 2
- MJXGSJQBDVRXKS-UHFFFAOYSA-N 2-(difluoromethyl)-n-[4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridazin-3-yl)phenyl]pyridine-4-carboxamide Chemical compound C1=C(C2=NN(C)C(=O)C(N3CCOCC3)=C2)C(C)=CC=C1NC(=O)C1=CC=NC(C(F)F)=C1 MJXGSJQBDVRXKS-UHFFFAOYSA-N 0.000 claims 2
- YZFGUJDSWAIDIF-UHFFFAOYSA-N 2-(difluoromethyl)-n-[4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)phenyl]pyridine-4-carboxamide Chemical compound C1=C(C2=CN(C)C(=O)C(N3CCOCC3)=C2)C(C)=CC=C1NC(=O)C1=CC=NC(C(F)F)=C1 YZFGUJDSWAIDIF-UHFFFAOYSA-N 0.000 claims 2
- GFMHYSFPEQEHTI-UHFFFAOYSA-N 3-(difluoromethyl)-n-[4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridazin-3-yl)phenyl]benzamide Chemical compound C1=C(C2=NN(C)C(=O)C(N3CCOCC3)=C2)C(C)=CC=C1NC(=O)C1=CC=CC(C(F)F)=C1 GFMHYSFPEQEHTI-UHFFFAOYSA-N 0.000 claims 2
- BXJJMVWIWRXBJU-UHFFFAOYSA-N 3-(difluoromethyl)-n-[4-methyl-3-(8-morpholin-4-ylimidazo[1,2-b]pyridazin-6-yl)phenyl]benzamide Chemical compound C1=C(C2=NN3C=CN=C3C(N3CCOCC3)=C2)C(C)=CC=C1NC(=O)C1=CC=CC(C(F)F)=C1 BXJJMVWIWRXBJU-UHFFFAOYSA-N 0.000 claims 2
- QHSZJJNKHFTMCO-UHFFFAOYSA-N 4-(1,2-dihydroxyethyl)-n-[4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)phenyl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C2=CN(C)C(=O)C(N3CCOCC3)=C2)C(C)=CC=C1NC(=O)C1=CC=C(C(O)CO)C(C(F)(F)F)=C1 QHSZJJNKHFTMCO-UHFFFAOYSA-N 0.000 claims 2
- PJBCEFMITCLXRZ-UHFFFAOYSA-N 4-(5-amino-2-methylpyridin-3-yl)-1-methyl-6-morpholin-4-ylpyridin-2-one Chemical compound CC1=NC=C(N)C=C1C1=CC(=O)N(C)C(N2CCOCC2)=C1 PJBCEFMITCLXRZ-UHFFFAOYSA-N 0.000 claims 2
- ACPBZIGFKRMCOB-UHFFFAOYSA-N 4-(methylaminomethyl)-n-[6-methyl-5-(8-morpholin-4-ylimidazo[1,2-a]pyridin-6-yl)pyridin-3-yl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C(F)(F)F)C(CNC)=CC=C1C(=O)NC1=CN=C(C)C(C2=CN3C=CN=C3C(N3CCOCC3)=C2)=C1 ACPBZIGFKRMCOB-UHFFFAOYSA-N 0.000 claims 2
- RXKJHRIACPQLIJ-UHFFFAOYSA-N 4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridazin-3-yl)-n-[3-(trifluoromethyl)phenyl]benzamide Chemical compound CC1=CC=C(C(=O)NC=2C=C(C=CC=2)C(F)(F)F)C=C1C(=NN(C)C1=O)C=C1N1CCOCC1 RXKJHRIACPQLIJ-UHFFFAOYSA-N 0.000 claims 2
- QGKARSABKQRTLJ-UHFFFAOYSA-N n-[3-(1-ethyl-5-morpholin-4-yl-6-oxopyridin-3-yl)-4-methylphenyl]-3-(trifluoromethyl)benzamide Chemical compound O=C1N(CC)C=C(C=2C(=CC=C(NC(=O)C=3C=C(C=CC=3)C(F)(F)F)C=2)C)C=C1N1CCOCC1 QGKARSABKQRTLJ-UHFFFAOYSA-N 0.000 claims 2
- UFSSCDAODYJAIS-UHFFFAOYSA-N n-[3-(6-methoxy-5-morpholin-4-ylpyridazin-3-yl)-4-methylphenyl]-6-(trifluoromethyl)pyridazine-4-carboxamide Chemical compound COC1=NN=C(C=2C(=CC=C(NC(=O)C=3C=C(N=NC=3)C(F)(F)F)C=2)C)C=C1N1CCOCC1 UFSSCDAODYJAIS-UHFFFAOYSA-N 0.000 claims 2
- VIMSPEXOOOZTHP-UHFFFAOYSA-N n-[3-[2-(2-hydroxyethoxy)-6-morpholin-4-ylpyrimidin-4-yl]-4-methylphenyl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C=2N=C(OCCO)N=C(C=2)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 VIMSPEXOOOZTHP-UHFFFAOYSA-N 0.000 claims 2
- FRTRWUVXRSFSHD-UHFFFAOYSA-N n-[3-[2-(ethylamino)-6-morpholin-4-ylpyrimidin-4-yl]-4-methylphenyl]-2-(trifluoromethyl)pyridine-4-carboxamide Chemical compound N=1C(NCC)=NC(N2CCOCC2)=CC=1C(C(=CC=1)C)=CC=1NC(=O)C1=CC=NC(C(F)(F)F)=C1 FRTRWUVXRSFSHD-UHFFFAOYSA-N 0.000 claims 2
- YULMIWVPBRHYSJ-UHFFFAOYSA-N n-[4-chloro-3-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)phenyl]-3-(trifluoromethyl)benzamide Chemical compound O=C1N(C)C=C(C=2C(=CC=C(NC(=O)C=3C=C(C=CC=3)C(F)(F)F)C=2)Cl)C=C1N1CCOCC1 YULMIWVPBRHYSJ-UHFFFAOYSA-N 0.000 claims 2
- YJAFXQYRMGBMNV-UHFFFAOYSA-N n-[4-methyl-3-[2-morpholin-4-yl-6-(3-oxa-8-azabicyclo[3.2.1]octan-8-yl)pyrimidin-4-yl]phenyl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C=2N=C(N=C(C=2)N2C3CCC2COC3)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 YJAFXQYRMGBMNV-UHFFFAOYSA-N 0.000 claims 2
- PDCWNMAIMBYGOD-UHFFFAOYSA-N n-[5-(2-morpholin-4-ylpyridin-4-yl)-6-oxo-1h-pyridin-3-yl]-2-(trifluoromethyl)pyridine-4-carboxamide Chemical compound C1=NC(C(F)(F)F)=CC(C(=O)NC=2C=C(C(=O)NC=2)C=2C=C(N=CC=2)N2CCOCC2)=C1 PDCWNMAIMBYGOD-UHFFFAOYSA-N 0.000 claims 2
- KPZHLNWOKWZIHG-UHFFFAOYSA-N n-[6-methyl-5-(1-methyl-5-morpholin-4-yl-6-oxopyridazin-3-yl)pyridin-3-yl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C2=NN(C)C(=O)C(N3CCOCC3)=C2)C(C)=NC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 KPZHLNWOKWZIHG-UHFFFAOYSA-N 0.000 claims 2
- AQMWNANHLXNIPM-UHFFFAOYSA-N 1,3-dimethyl-N-[4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)phenyl]pyrazole-4-carboxamide Chemical compound CN1N=C(C(=C1)C(=O)NC1=CC(=C(C=C1)C)C1=CN(C(C(=C1)N1CCOCC1)=O)C)C AQMWNANHLXNIPM-UHFFFAOYSA-N 0.000 claims 1
- NMFNUKPOBXHNSZ-UHFFFAOYSA-N 1,3-dimethyl-N-[6-methyl-5-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)pyridin-3-yl]pyrazole-4-carboxamide Chemical compound CN1C=C(C=C(C1=O)N1CCOCC1)C=1C(=NC=C(C=1)NC(=O)C=1C(=NN(C=1)C)C)C NMFNUKPOBXHNSZ-UHFFFAOYSA-N 0.000 claims 1
- KQZDXFHLRKIXNJ-UHFFFAOYSA-N 1-ethyl-3-methyl-N-[6-methyl-5-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)pyridin-3-yl]pyrazole-4-carboxamide Chemical compound CN1C=C(C=C(C1=O)N1CCOCC1)C=1C(=NC=C(C=1)NC(=O)C=1C(=NN(C=1)CC)C)C KQZDXFHLRKIXNJ-UHFFFAOYSA-N 0.000 claims 1
- FIFBYIMXNIIZCC-UHFFFAOYSA-N 1-ethyl-3-methyl-n-[4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)phenyl]pyrazole-4-carboxamide Chemical compound CC1=NN(CC)C=C1C(=O)NC1=CC=C(C)C(C2=CN(C)C(=O)C(N3CCOCC3)=C2)=C1 FIFBYIMXNIIZCC-UHFFFAOYSA-N 0.000 claims 1
- QETAQXRFJBQCCQ-UHFFFAOYSA-N 1-ethyl-3-methyl-n-[4-methyl-3-(4-morpholin-4-yl-1h-imidazo[4,5-c]pyridin-6-yl)phenyl]pyrazole-4-carboxamide Chemical compound CC1=NN(CC)C=C1C(=O)NC1=CC=C(C)C(C=2N=C(C=3N=CNC=3C=2)N2CCOCC2)=C1 QETAQXRFJBQCCQ-UHFFFAOYSA-N 0.000 claims 1
- NYHOOZMKFIKAJT-UHFFFAOYSA-N 1-ethyl-N-[4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridazin-3-yl)phenyl]-6-oxo-5-(trifluoromethyl)pyridine-3-carboxamide Chemical compound C(C)N1C=C(C=C(C1=O)C(F)(F)F)C(=O)NC1=CC(=C(C=C1)C)C1=NN(C(C(=C1)N1CCOCC1)=O)C NYHOOZMKFIKAJT-UHFFFAOYSA-N 0.000 claims 1
- SMLZFRASYJHFGO-UHFFFAOYSA-N 1-ethyl-N-[5-[2-(2-hydroxyethylamino)-6-morpholin-4-ylpyridin-4-yl]-6-methylpyridin-3-yl]-6-oxo-5-(trifluoromethyl)pyridine-3-carboxamide Chemical compound C(C)N1C=C(C=C(C1=O)C(F)(F)F)C(=O)NC=1C=C(C(=NC=1)C)C1=CC(=NC(=C1)N1CCOCC1)NCCO SMLZFRASYJHFGO-UHFFFAOYSA-N 0.000 claims 1
- PXAMBMNGEOUBFG-UHFFFAOYSA-N 1-ethyl-N-[5-[2-(3-hydroxyazetidin-1-yl)-6-morpholin-4-ylpyridin-4-yl]-6-methylpyridin-3-yl]-6-oxo-5-(trifluoromethyl)pyridine-3-carboxamide Chemical compound C(C)N1C=C(C=C(C1=O)C(F)(F)F)C(=O)NC=1C=C(C(=NC=1)C)C1=CC(=NC(=C1)N1CCOCC1)N1CC(C1)O PXAMBMNGEOUBFG-UHFFFAOYSA-N 0.000 claims 1
- FNCZCULRMIPACE-UHFFFAOYSA-N 1-ethyl-N-[5-[2-(ethylamino)-6-morpholin-4-ylpyrimidin-4-yl]-6-methylpyridin-3-yl]-6-oxo-5-(trifluoromethyl)pyridine-3-carboxamide Chemical compound C(C)N1C=C(C=C(C1=O)C(F)(F)F)C(=O)NC=1C=NC(=C(C=1)C1=NC(=NC(=C1)N1CCOCC1)NCC)C FNCZCULRMIPACE-UHFFFAOYSA-N 0.000 claims 1
- MSWMVQYCRQAENY-UHFFFAOYSA-N 1-ethyl-N-[6-methyl-5-(1-methyl-2-morpholin-4-yl-6-oxopyridin-4-yl)pyridin-3-yl]-6-oxo-5-(trifluoromethyl)pyridine-3-carboxamide Chemical compound CN1C(C=C(C=C1N1CCOCC1)C=1C(=NC=C(C=1)NC(=O)C1=CN(C(C(=C1)C(F)(F)F)=O)CC)C)=O MSWMVQYCRQAENY-UHFFFAOYSA-N 0.000 claims 1
- GVGXHJZRKLQEOV-UHFFFAOYSA-N 1-ethyl-n-[3-[2-(3-hydroxyazetidin-1-yl)-6-morpholin-4-ylpyridin-4-yl]-4-methylphenyl]-6-oxo-5-(trifluoromethyl)pyridine-3-carboxamide Chemical compound C1=C(C(F)(F)F)C(=O)N(CC)C=C1C(=O)NC1=CC=C(C)C(C=2C=C(N=C(C=2)N2CC(O)C2)N2CCOCC2)=C1 GVGXHJZRKLQEOV-UHFFFAOYSA-N 0.000 claims 1
- RMESOPJVHOLUCH-UHFFFAOYSA-N 1-ethyl-n-[3-[2-(ethylamino)-6-morpholin-4-ylpyrimidin-4-yl]-4-methylphenyl]-6-oxo-5-(trifluoromethyl)pyridine-3-carboxamide Chemical compound N=1C(NCC)=NC(N2CCOCC2)=CC=1C(C(=CC=1)C)=CC=1NC(=O)C=1C=C(C(F)(F)F)C(=O)N(CC)C=1 RMESOPJVHOLUCH-UHFFFAOYSA-N 0.000 claims 1
- SWWUULLUNIUGEY-UHFFFAOYSA-N 1-ethyl-n-[4-methyl-3-(1-methyl-2-morpholin-4-yl-6-oxopyridin-4-yl)phenyl]-6-oxo-5-(trifluoromethyl)pyridine-3-carboxamide Chemical compound C1=C(C(F)(F)F)C(=O)N(CC)C=C1C(=O)NC1=CC=C(C)C(C2=CC(=O)N(C)C(N3CCOCC3)=C2)=C1 SWWUULLUNIUGEY-UHFFFAOYSA-N 0.000 claims 1
- MKZSFPJXPHOTDV-UHFFFAOYSA-N 1-ethyl-n-[4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)phenyl]-6-oxo-5-(trifluoromethyl)pyridine-3-carboxamide Chemical compound C1=C(C(F)(F)F)C(=O)N(CC)C=C1C(=O)NC1=CC=C(C)C(C2=CN(C)C(=O)C(N3CCOCC3)=C2)=C1 MKZSFPJXPHOTDV-UHFFFAOYSA-N 0.000 claims 1
- CCCXUVYYHIWBRQ-UHFFFAOYSA-N 1-ethyl-n-[4-methyl-3-(2-morpholin-4-ylpyridin-4-yl)phenyl]-6-oxo-5-(trifluoromethyl)pyridine-3-carboxamide Chemical compound C1=C(C(F)(F)F)C(=O)N(CC)C=C1C(=O)NC1=CC=C(C)C(C=2C=C(N=CC=2)N2CCOCC2)=C1 CCCXUVYYHIWBRQ-UHFFFAOYSA-N 0.000 claims 1
- LQJPCUOMODKASH-UHFFFAOYSA-N 2,5-dimethyl-N-[6-methyl-5-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)pyridin-3-yl]pyrazole-3-carboxamide Chemical compound CN1C=C(C=C(C1=O)N1CCOCC1)C=1C(=NC=C(C=1)NC(=O)C1=CC(=NN1C)C)C LQJPCUOMODKASH-UHFFFAOYSA-N 0.000 claims 1
- MVCSKNRBGKDLBT-UHFFFAOYSA-N 2,5-dimethyl-n-[4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)phenyl]pyrazole-3-carboxamide Chemical compound CN1N=C(C)C=C1C(=O)NC1=CC=C(C)C(C2=CN(C)C(=O)C(N3CCOCC3)=C2)=C1 MVCSKNRBGKDLBT-UHFFFAOYSA-N 0.000 claims 1
- OLTGUYDIYLEZAH-UHFFFAOYSA-N 2-(1,1-difluoroethyl)-N-[3-(6-ethoxy-5-morpholin-4-ylpyridin-3-yl)-4-methylphenyl]pyridine-4-carboxamide Chemical compound FC(C)(F)C=1C=C(C(=O)NC2=CC(=C(C=C2)C)C=2C=NC(=C(C=2)N2CCOCC2)OCC)C=CN=1 OLTGUYDIYLEZAH-UHFFFAOYSA-N 0.000 claims 1
- YBUYKLNIKKSGMG-UHFFFAOYSA-N 2-(1,1-difluoroethyl)-N-[3-[2-(2-hydroxyethylamino)-6-morpholin-4-ylpyridin-4-yl]-4-methylphenyl]pyridine-4-carboxamide Chemical compound FC(C)(F)C=1C=C(C(=O)NC2=CC(=C(C=C2)C)C2=CC(=NC(=C2)N2CCOCC2)NCCO)C=CN=1 YBUYKLNIKKSGMG-UHFFFAOYSA-N 0.000 claims 1
- IBINNYRGHRQIFO-UHFFFAOYSA-N 2-(1,1-difluoroethyl)-N-[3-[2-(3-hydroxyazetidin-1-yl)-6-morpholin-4-ylpyridin-4-yl]-4-methylphenyl]pyridine-4-carboxamide Chemical compound FC(C)(F)C=1C=C(C(=O)NC2=CC(=C(C=C2)C)C2=CC(=NC(=C2)N2CCOCC2)N2CC(C2)O)C=CN=1 IBINNYRGHRQIFO-UHFFFAOYSA-N 0.000 claims 1
- OIJPBVCVDSVXLV-UHFFFAOYSA-N 2-(1,1-difluoroethyl)-N-[3-[2-(dimethylamino)-6-morpholin-4-ylpyrimidin-4-yl]-4-methylphenyl]pyridine-4-carboxamide Chemical compound FC(C)(F)C=1C=C(C(=O)NC2=CC(=C(C=C2)C)C2=NC(=NC(=C2)N2CCOCC2)N(C)C)C=CN=1 OIJPBVCVDSVXLV-UHFFFAOYSA-N 0.000 claims 1
- SHBMQJJYZPYFJY-UHFFFAOYSA-N 2-(1,1-difluoroethyl)-N-[3-[6-(2-hydroxyethoxy)-5-morpholin-4-ylpyridazin-3-yl]-4-methylphenyl]pyridine-4-carboxamide Chemical compound FC(C)(F)C=1C=C(C(=O)NC2=CC(=C(C=C2)C)C=2N=NC(=C(C=2)N2CCOCC2)OCCO)C=CN=1 SHBMQJJYZPYFJY-UHFFFAOYSA-N 0.000 claims 1
- GRGVCZVRNDGECU-QGZVFWFLSA-N 2-(1,1-difluoroethyl)-N-[3-[6-[[(2R)-2-hydroxypropyl]amino]-2-morpholin-4-ylpyrimidin-4-yl]-4-methylphenyl]pyridine-4-carboxamide Chemical compound C[C@@H](O)CNC1=CC(=NC(=N1)N1CCOCC1)C1=CC(NC(=O)C2=CC=NC(=C2)C(C)(F)F)=CC=C1C GRGVCZVRNDGECU-QGZVFWFLSA-N 0.000 claims 1
- PYCRDHRFOVBBQM-UHFFFAOYSA-N 2-(1,1-difluoroethyl)-N-[4-methyl-3-(2-morpholin-4-ylpyridin-4-yl)phenyl]pyridine-4-carboxamide Chemical compound FC(C)(F)C=1C=C(C(=O)NC2=CC(=C(C=C2)C)C2=CC(=NC=C2)N2CCOCC2)C=CN=1 PYCRDHRFOVBBQM-UHFFFAOYSA-N 0.000 claims 1
- KUWKOKQQSGVPBT-QGZVFWFLSA-N 2-(1,1-difluoroethyl)-N-[4-methyl-3-[1-methyl-2-[(3R)-3-methylmorpholin-4-yl]-6-oxopyridin-4-yl]phenyl]pyridine-4-carboxamide Chemical compound FC(C)(F)C=1C=C(C(=O)NC2=CC(=C(C=C2)C)C2=CC(N(C(=C2)N2[C@@H](COCC2)C)C)=O)C=CN=1 KUWKOKQQSGVPBT-QGZVFWFLSA-N 0.000 claims 1
- KUWKOKQQSGVPBT-KRWDZBQOSA-N 2-(1,1-difluoroethyl)-N-[4-methyl-3-[1-methyl-2-[(3S)-3-methylmorpholin-4-yl]-6-oxopyridin-4-yl]phenyl]pyridine-4-carboxamide Chemical compound FC(C)(F)C=1C=C(C(=O)NC2=CC(=C(C=C2)C)C2=CC(N(C(=C2)N2[C@H](COCC2)C)C)=O)C=CN=1 KUWKOKQQSGVPBT-KRWDZBQOSA-N 0.000 claims 1
- RPPLBNDYDPFVJZ-MRXNPFEDSA-N 2-(1,1-difluoroethyl)-N-[4-methyl-3-[1-methyl-5-[(3R)-3-methylmorpholin-4-yl]-6-oxopyridazin-3-yl]phenyl]pyridine-4-carboxamide Chemical compound FC(C)(F)C=1C=C(C(=O)NC2=CC(=C(C=C2)C)C2=NN(C(C(=C2)N2[C@@H](COCC2)C)=O)C)C=CN=1 RPPLBNDYDPFVJZ-MRXNPFEDSA-N 0.000 claims 1
- RPPLBNDYDPFVJZ-INIZCTEOSA-N 2-(1,1-difluoroethyl)-N-[4-methyl-3-[1-methyl-5-[(3S)-3-methylmorpholin-4-yl]-6-oxopyridazin-3-yl]phenyl]pyridine-4-carboxamide Chemical compound FC(C)(F)C=1C=C(C(=O)NC2=CC(=C(C=C2)C)C2=NN(C(C(=C2)N2[C@H](COCC2)C)=O)C)C=CN=1 RPPLBNDYDPFVJZ-INIZCTEOSA-N 0.000 claims 1
- FOLVBVJHOLIIRE-UHFFFAOYSA-N 2-(1,1-difluoroethyl)-N-[5-(2-ethoxy-6-morpholin-4-ylpyridin-4-yl)-6-methylpyridin-3-yl]pyridine-4-carboxamide Chemical compound FC(C)(F)C=1C=C(C(=O)NC=2C=C(C(=NC=2)C)C2=CC(=NC(=C2)N2CCOCC2)OCC)C=CN=1 FOLVBVJHOLIIRE-UHFFFAOYSA-N 0.000 claims 1
- JJFFBOSJXCOLFE-UHFFFAOYSA-N 2-(1,1-difluoroethyl)-N-[5-(5-ethoxy-6-morpholin-4-ylpyrazin-2-yl)-6-methylpyridin-3-yl]pyridine-4-carboxamide Chemical compound CCOc1ncc(nc1N1CCOCC1)-c1cc(NC(=O)c2ccnc(c2)C(C)(F)F)cnc1C JJFFBOSJXCOLFE-UHFFFAOYSA-N 0.000 claims 1
- AIGXJUAWPJZXET-UHFFFAOYSA-N 2-(1,1-difluoroethyl)-N-[5-(5-ethoxy-6-morpholin-4-ylpyridin-2-yl)-6-methylpyridin-3-yl]pyridine-4-carboxamide Chemical compound FC(C)(F)C=1C=C(C(=O)NC=2C=C(C(=NC=2)C)C2=NC(=C(C=C2)OCC)N2CCOCC2)C=CN=1 AIGXJUAWPJZXET-UHFFFAOYSA-N 0.000 claims 1
- GAIGZMYWYVKPKA-UHFFFAOYSA-N 2-(1,1-difluoroethyl)-N-[5-(6-ethoxy-5-morpholin-4-ylpyridazin-3-yl)-6-methylpyridin-3-yl]pyridine-4-carboxamide Chemical compound CCOc1nnc(cc1N1CCOCC1)-c1cc(NC(=O)c2ccnc(c2)C(C)(F)F)cnc1C GAIGZMYWYVKPKA-UHFFFAOYSA-N 0.000 claims 1
- JLOQONCMTDGMMA-UHFFFAOYSA-N 2-(1,1-difluoroethyl)-N-[5-[2-(1,4-dioxan-2-yl)-6-morpholin-4-ylpyridin-4-yl]-6-methylpyridin-3-yl]pyridine-4-carboxamide Chemical compound O1C(COCC1)C1=NC(=CC(=C1)C=1C(=NC=C(C=1)NC(C1=CC(=NC=C1)C(C)(F)F)=O)C)N1CCOCC1 JLOQONCMTDGMMA-UHFFFAOYSA-N 0.000 claims 1
- RRGKYVWVWKUVKI-MRXNPFEDSA-N 2-(1,1-difluoroethyl)-N-[5-[2-(2-hydroxyethylamino)-6-[(3R)-3-methylmorpholin-4-yl]pyridin-4-yl]-6-methylpyridin-3-yl]pyridine-4-carboxamide Chemical compound FC(C)(F)C=1C=C(C(=O)NC=2C=C(C(=NC=2)C)C2=CC(=NC(=C2)N2[C@@H](COCC2)C)NCCO)C=CN=1 RRGKYVWVWKUVKI-MRXNPFEDSA-N 0.000 claims 1
- PKZOIWHEQLERMA-UHFFFAOYSA-N 2-(1,1-difluoroethyl)-N-[5-[2-(2-hydroxyethylamino)-6-morpholin-4-ylpyridin-4-yl]-6-methylpyridin-3-yl]pyridine-4-carboxamide Chemical compound FC(C)(F)C=1C=C(C(=O)NC=2C=C(C(=NC=2)C)C2=CC(=NC(=C2)N2CCOCC2)NCCO)C=CN=1 PKZOIWHEQLERMA-UHFFFAOYSA-N 0.000 claims 1
- SLMSYGQTYYKVOS-UHFFFAOYSA-N 2-(1,1-difluoroethyl)-N-[5-[2-(3-hydroxyazetidin-1-yl)-6-morpholin-4-ylpyridin-4-yl]-6-methylpyridin-3-yl]pyridine-4-carboxamide Chemical compound FC(C)(F)C=1C=C(C(=O)NC=2C=C(C(=NC=2)C)C2=CC(=NC(=C2)N2CCOCC2)N2CC(C2)O)C=CN=1 SLMSYGQTYYKVOS-UHFFFAOYSA-N 0.000 claims 1
- KEKHHBANOLAJDA-LJQANCHMSA-N 2-(1,1-difluoroethyl)-N-[5-[2-[(2R)-2-(hydroxymethyl)morpholin-4-yl]-1-methyl-6-oxopyridin-4-yl]-6-methylpyridin-3-yl]pyridine-4-carboxamide Chemical compound FC(C)(F)C=1C=C(C(=O)NC=2C=C(C(=NC=2)C)C2=CC(N(C(=C2)N2C[C@@H](OCC2)CO)C)=O)C=CN=1 KEKHHBANOLAJDA-LJQANCHMSA-N 0.000 claims 1
- KEKHHBANOLAJDA-IBGZPJMESA-N 2-(1,1-difluoroethyl)-N-[5-[2-[(2S)-2-(hydroxymethyl)morpholin-4-yl]-1-methyl-6-oxopyridin-4-yl]-6-methylpyridin-3-yl]pyridine-4-carboxamide Chemical compound CN1C(=O)C=C(C=C1N1CCO[C@H](CO)C1)C1=CC(NC(=O)C2=CC=NC(=C2)C(C)(F)F)=CN=C1C KEKHHBANOLAJDA-IBGZPJMESA-N 0.000 claims 1
- AQHIGRWVPFAESP-UHFFFAOYSA-N 2-(1,1-difluoroethyl)-N-[5-[6-(difluoromethoxy)-5-morpholin-4-ylpyridin-3-yl]-6-methylpyridin-3-yl]pyridine-4-carboxamide Chemical compound FC(C)(F)C=1C=C(C(=O)NC=2C=C(C(=NC=2)C)C=2C=NC(=C(C=2)N2CCOCC2)OC(F)F)C=CN=1 AQHIGRWVPFAESP-UHFFFAOYSA-N 0.000 claims 1
- CZCHKIQTUUNUMO-UHFFFAOYSA-N 2-(1,1-difluoroethyl)-N-[5-[6-(dimethylamino)-5-morpholin-4-ylpyridin-3-yl]-6-methylpyridin-3-yl]pyridine-4-carboxamide Chemical compound CN(C)C1=NC=C(C=C1N1CCOCC1)C1=C(C)N=CC(NC(=O)C2=CC=NC(=C2)C(C)(F)F)=C1 CZCHKIQTUUNUMO-UHFFFAOYSA-N 0.000 claims 1
- BMCCEASWBGENQW-UHFFFAOYSA-N 2-(1,1-difluoroethyl)-N-[6-methyl-5-(1-methyl-2-morpholin-4-yl-6-oxopyridin-4-yl)pyridin-3-yl]pyridine-4-carboxamide Chemical compound FC(C)(F)C=1C=C(C(=O)NC=2C=C(C(=NC=2)C)C2=CC(N(C(=C2)N2CCOCC2)C)=O)C=CN=1 BMCCEASWBGENQW-UHFFFAOYSA-N 0.000 claims 1
- WXVATTKHRVNCKR-UHFFFAOYSA-N 2-(1,1-difluoroethyl)-N-[6-methyl-5-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)pyridin-3-yl]pyridine-4-carboxamide Chemical compound FC(C)(F)C=1C=C(C(=O)NC=2C=C(C(=NC=2)C)C2=CN(C(C(=C2)N2CCOCC2)=O)C)C=CN=1 WXVATTKHRVNCKR-UHFFFAOYSA-N 0.000 claims 1
- JNEGWVZMAAXSDR-UHFFFAOYSA-N 2-(1,1-difluoroethyl)-N-[6-methyl-5-(5-morpholin-4-yl-6-propan-2-yloxypyridin-3-yl)pyridin-3-yl]pyridine-4-carboxamide Chemical compound FC(C)(F)C=1C=C(C(=O)NC=2C=C(C(=NC=2)C)C=2C=NC(=C(C=2)N2CCOCC2)OC(C)C)C=CN=1 JNEGWVZMAAXSDR-UHFFFAOYSA-N 0.000 claims 1
- LMWNSZRGFQPTAG-UHFFFAOYSA-N 2-(1,1-difluoroethyl)-N-[6-methyl-5-(8-morpholin-4-ylimidazo[1,2-b]pyridazin-6-yl)pyridin-3-yl]pyridine-4-carboxamide Chemical compound Cc1ncc(NC(=O)c2ccnc(c2)C(C)(F)F)cc1-c1cc(N2CCOCC2)c2nccn2n1 LMWNSZRGFQPTAG-UHFFFAOYSA-N 0.000 claims 1
- AEJVTXXPLUEZEB-OAHLLOKOSA-N 2-(1,1-difluoroethyl)-N-[6-methyl-5-[1-methyl-2-[(3R)-3-methylmorpholin-4-yl]-6-oxopyridin-4-yl]pyridin-3-yl]pyridine-4-carboxamide Chemical compound FC(C)(F)C=1C=C(C(=O)NC=2C=C(C(=NC=2)C)C2=CC(N(C(=C2)N2[C@@H](COCC2)C)C)=O)C=CN=1 AEJVTXXPLUEZEB-OAHLLOKOSA-N 0.000 claims 1
- AEJVTXXPLUEZEB-HNNXBMFYSA-N 2-(1,1-difluoroethyl)-N-[6-methyl-5-[1-methyl-2-[(3S)-3-methylmorpholin-4-yl]-6-oxopyridin-4-yl]pyridin-3-yl]pyridine-4-carboxamide Chemical compound FC(C)(F)C=1C=C(C(=O)NC=2C=C(C(=NC=2)C)C2=CC(N(C(=C2)N2[C@H](COCC2)C)C)=O)C=CN=1 AEJVTXXPLUEZEB-HNNXBMFYSA-N 0.000 claims 1
- GRNQCTMTIYRPGV-UHFFFAOYSA-N 2-(1,1-difluoroethyl)-N-[6-methyl-5-[5-morpholin-4-yl-6-(oxan-4-yloxy)pyridazin-3-yl]pyridin-3-yl]pyridine-4-carboxamide Chemical compound Cc1ncc(NC(=O)c2ccnc(c2)C(C)(F)F)cc1-c1cc(N2CCOCC2)c(OC2CCOCC2)nn1 GRNQCTMTIYRPGV-UHFFFAOYSA-N 0.000 claims 1
- LVYWDKDHHFMDBG-UHFFFAOYSA-N 2-(1,1-difluoroethyl)-N-[6-methyl-5-[5-morpholin-4-yl-6-(oxan-4-yloxy)pyridin-3-yl]pyridin-3-yl]pyridine-4-carboxamide Chemical compound FC(C)(F)C=1C=C(C(=O)NC=2C=C(C(=NC=2)C)C=2C=NC(=C(C=2)N2CCOCC2)OC2CCOCC2)C=CN=1 LVYWDKDHHFMDBG-UHFFFAOYSA-N 0.000 claims 1
- TVZOOFYXXUNQKB-UHFFFAOYSA-N 2-(1,1-difluoroethyl)-n-[3-(1-ethyl-2-morpholin-4-yl-6-oxopyridin-4-yl)-4-methylphenyl]pyridine-4-carboxamide Chemical compound C=1C(=O)N(CC)C(N2CCOCC2)=CC=1C(C(=CC=1)C)=CC=1NC(=O)C1=CC=NC(C(C)(F)F)=C1 TVZOOFYXXUNQKB-UHFFFAOYSA-N 0.000 claims 1
- GHRZFOJTQDLVQC-UHFFFAOYSA-N 2-(1,1-difluoroethyl)-n-[3-(6-methoxy-5-morpholin-4-ylpyridazin-3-yl)-4-methylphenyl]pyridine-4-carboxamide Chemical compound COC1=NN=C(C=2C(=CC=C(NC(=O)C=3C=C(N=CC=3)C(C)(F)F)C=2)C)C=C1N1CCOCC1 GHRZFOJTQDLVQC-UHFFFAOYSA-N 0.000 claims 1
- PYHYMBDJYKFULS-UHFFFAOYSA-N 2-(1,1-difluoroethyl)-n-[3-[2-(1,4-dioxan-2-yl)-6-morpholin-4-ylpyridin-4-yl]-4-methylphenyl]pyridine-4-carboxamide Chemical compound C1=C(C=2C=C(N=C(C=2)C2OCCOC2)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CC=NC(C(C)(F)F)=C1 PYHYMBDJYKFULS-UHFFFAOYSA-N 0.000 claims 1
- MQMHSENZRYMGAY-UHFFFAOYSA-N 2-(1,1-difluoroethyl)-n-[3-[2-(ethylamino)-6-morpholin-4-ylpyrimidin-4-yl]-4-methylphenyl]pyridine-4-carboxamide Chemical compound N=1C(NCC)=NC(N2CCOCC2)=CC=1C(C(=CC=1)C)=CC=1NC(=O)C1=CC=NC(C(C)(F)F)=C1 MQMHSENZRYMGAY-UHFFFAOYSA-N 0.000 claims 1
- NBBHHXSOPOFURI-UHFFFAOYSA-N 2-(1,1-difluoroethyl)-n-[3-[5-(2,2-dimethylmorpholin-4-yl)-1-methyl-6-oxopyridazin-3-yl]-4-methylphenyl]pyridine-4-carboxamide Chemical compound C1=C(C2=NN(C)C(=O)C(N3CC(C)(C)OCC3)=C2)C(C)=CC=C1NC(=O)C1=CC=NC(C(C)(F)F)=C1 NBBHHXSOPOFURI-UHFFFAOYSA-N 0.000 claims 1
- AAKDISFYBVCWAI-UHFFFAOYSA-N 2-(1,1-difluoroethyl)-n-[3-[6-(2-hydroxyethoxy)-5-morpholin-4-ylpyridin-3-yl]-4-methylphenyl]pyridine-4-carboxamide Chemical compound C1=C(C=2C=C(C(OCCO)=NC=2)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CC=NC(C(C)(F)F)=C1 AAKDISFYBVCWAI-UHFFFAOYSA-N 0.000 claims 1
- JDAWBAOYRPWDSU-UHFFFAOYSA-N 2-(1,1-difluoroethyl)-n-[3-[6-(2-methoxyethoxy)-5-morpholin-4-ylpyridazin-3-yl]-4-methylphenyl]pyridine-4-carboxamide Chemical compound COCCOC1=NN=C(C=2C(=CC=C(NC(=O)C=3C=C(N=CC=3)C(C)(F)F)C=2)C)C=C1N1CCOCC1 JDAWBAOYRPWDSU-UHFFFAOYSA-N 0.000 claims 1
- TVJCAVBGPYIKNG-UHFFFAOYSA-N 2-(1,1-difluoroethyl)-n-[4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridazin-3-yl)phenyl]pyridine-4-carboxamide Chemical compound C1=C(C2=NN(C)C(=O)C(N3CCOCC3)=C2)C(C)=CC=C1NC(=O)C1=CC=NC(C(C)(F)F)=C1 TVJCAVBGPYIKNG-UHFFFAOYSA-N 0.000 claims 1
- NBZGAVIGFGPZPW-UHFFFAOYSA-N 2-(1,1-difluoroethyl)-n-[4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)phenyl]pyridine-4-carboxamide Chemical compound C1=C(C2=CN(C)C(=O)C(N3CCOCC3)=C2)C(C)=CC=C1NC(=O)C1=CC=NC(C(C)(F)F)=C1 NBZGAVIGFGPZPW-UHFFFAOYSA-N 0.000 claims 1
- OIYIRZYUSQJZTH-UHFFFAOYSA-N 2-(1,1-difluoroethyl)-n-[4-methyl-3-(5-morpholin-4-yl-6-propan-2-yloxypyridazin-3-yl)phenyl]pyridine-4-carboxamide Chemical compound CC(C)OC1=NN=C(C=2C(=CC=C(NC(=O)C=3C=C(N=CC=3)C(C)(F)F)C=2)C)C=C1N1CCOCC1 OIYIRZYUSQJZTH-UHFFFAOYSA-N 0.000 claims 1
- DDSNJNSZZOOAAH-UHFFFAOYSA-N 2-(1,1-difluoroethyl)-n-[4-methyl-3-(5-morpholin-4-yl-6-propan-2-yloxypyridin-3-yl)phenyl]pyridine-4-carboxamide Chemical compound CC(C)OC1=NC=C(C=2C(=CC=C(NC(=O)C=3C=C(N=CC=3)C(C)(F)F)C=2)C)C=C1N1CCOCC1 DDSNJNSZZOOAAH-UHFFFAOYSA-N 0.000 claims 1
- LHFPVBOMCBOBAA-UHFFFAOYSA-N 2-(1,1-difluoroethyl)-n-[4-methyl-3-(6-methylsulfonyl-5-morpholin-4-ylpyridazin-3-yl)phenyl]pyridine-4-carboxamide Chemical compound C1=C(C=2N=NC(=C(N3CCOCC3)C=2)S(C)(=O)=O)C(C)=CC=C1NC(=O)C1=CC=NC(C(C)(F)F)=C1 LHFPVBOMCBOBAA-UHFFFAOYSA-N 0.000 claims 1
- JODNXTZRZICRLH-UHFFFAOYSA-N 2-(1,1-difluoroethyl)-n-[4-methyl-3-(8-morpholin-4-ylimidazo[1,2-b]pyridazin-6-yl)phenyl]pyridine-4-carboxamide Chemical compound C1=C(C2=NN3C=CN=C3C(N3CCOCC3)=C2)C(C)=CC=C1NC(=O)C1=CC=NC(C(C)(F)F)=C1 JODNXTZRZICRLH-UHFFFAOYSA-N 0.000 claims 1
- LWSFHBKFWXVNGE-UHFFFAOYSA-N 2-(1,1-difluoroethyl)-n-[4-methyl-3-[1-methyl-2-(3-oxa-8-azabicyclo[3.2.1]octan-8-yl)-6-oxopyridin-4-yl]phenyl]pyridine-4-carboxamide Chemical compound C1=C(C2=CC(=O)N(C)C(N3C4CCC3COC4)=C2)C(C)=CC=C1NC(=O)C1=CC=NC(C(C)(F)F)=C1 LWSFHBKFWXVNGE-UHFFFAOYSA-N 0.000 claims 1
- ZUIIEJZRAKBPHQ-UHFFFAOYSA-N 2-(1,1-difluoroethyl)-n-[4-methyl-3-[1-methyl-4-(3-oxa-8-azabicyclo[3.2.1]octan-8-yl)-6-oxopyridin-2-yl]phenyl]pyridine-4-carboxamide Chemical compound C1=C(C=2N(C(=O)C=C(C=2)N2C3CCC2COC3)C)C(C)=CC=C1NC(=O)C1=CC=NC(C(C)(F)F)=C1 ZUIIEJZRAKBPHQ-UHFFFAOYSA-N 0.000 claims 1
- XKGVAQAEEQFTIR-UHFFFAOYSA-N 2-(1,1-difluoroethyl)-n-[4-methyl-3-[1-methyl-5-(3-oxa-8-azabicyclo[3.2.1]octan-8-yl)-6-oxopyridazin-3-yl]phenyl]pyridine-4-carboxamide Chemical compound C1=C(C2=NN(C)C(=O)C(N3C4CCC3COC4)=C2)C(C)=CC=C1NC(=O)C1=CC=NC(C(C)(F)F)=C1 XKGVAQAEEQFTIR-UHFFFAOYSA-N 0.000 claims 1
- QQSUYFCYUQZJDH-UHFFFAOYSA-N 2-(1,1-difluoroethyl)-n-[4-methyl-3-[5-morpholin-4-yl-6-(oxan-4-yloxy)pyridazin-3-yl]phenyl]pyridine-4-carboxamide Chemical compound C1=C(C=2N=NC(OC3CCOCC3)=C(N3CCOCC3)C=2)C(C)=CC=C1NC(=O)C1=CC=NC(C(C)(F)F)=C1 QQSUYFCYUQZJDH-UHFFFAOYSA-N 0.000 claims 1
- CNUPUGLPKNCIHU-UHFFFAOYSA-N 2-(1,1-difluoroethyl)-n-[5-(5-methoxy-6-morpholin-4-ylpyrazin-2-yl)-6-methylpyridin-3-yl]pyridine-4-carboxamide Chemical compound COC1=NC=C(C=2C(=NC=C(NC(=O)C=3C=C(N=CC=3)C(C)(F)F)C=2)C)N=C1N1CCOCC1 CNUPUGLPKNCIHU-UHFFFAOYSA-N 0.000 claims 1
- ACSOQLWNKLVZHZ-UHFFFAOYSA-N 2-(1,1-difluoroethyl)-n-[5-(6-methoxy-5-morpholin-4-ylpyridazin-3-yl)-6-methylpyridin-3-yl]pyridine-4-carboxamide Chemical compound COC1=NN=C(C=2C(=NC=C(NC(=O)C=3C=C(N=CC=3)C(C)(F)F)C=2)C)C=C1N1CCOCC1 ACSOQLWNKLVZHZ-UHFFFAOYSA-N 0.000 claims 1
- PCZFWEAWJJRUGT-UHFFFAOYSA-N 2-(1,1-difluoroethyl)-n-[6-methyl-5-(1-methyl-5-morpholin-4-yl-6-oxopyridazin-3-yl)pyridin-3-yl]pyridine-4-carboxamide Chemical compound C1=C(C2=NN(C)C(=O)C(N3CCOCC3)=C2)C(C)=NC=C1NC(=O)C1=CC=NC(C(C)(F)F)=C1 PCZFWEAWJJRUGT-UHFFFAOYSA-N 0.000 claims 1
- ZAPJTTHBHRSAGS-UHFFFAOYSA-N 2-(1,1-difluoroethyl)-n-[6-methyl-5-(2-morpholin-4-ylpyridin-4-yl)pyridin-3-yl]pyridine-4-carboxamide Chemical compound C1=C(C=2C=C(N=CC=2)N2CCOCC2)C(C)=NC=C1NC(=O)C1=CC=NC(C(C)(F)F)=C1 ZAPJTTHBHRSAGS-UHFFFAOYSA-N 0.000 claims 1
- IRVDZOGUBWGPAR-UHFFFAOYSA-N 2-(1,1-difluoroethyl)-n-[6-methyl-5-(5-morpholin-4-yl-6-propan-2-yloxypyridazin-3-yl)pyridin-3-yl]pyridine-4-carboxamide Chemical compound CC(C)OC1=NN=C(C=2C(=NC=C(NC(=O)C=3C=C(N=CC=3)C(C)(F)F)C=2)C)C=C1N1CCOCC1 IRVDZOGUBWGPAR-UHFFFAOYSA-N 0.000 claims 1
- UFMFXEYIEWPCOM-UHFFFAOYSA-N 2-(1,1-difluoroethyl)-n-[6-methyl-5-(6-methylsulfonyl-5-morpholin-4-ylpyridazin-3-yl)pyridin-3-yl]pyridine-4-carboxamide Chemical compound C1=C(C=2N=NC(=C(N3CCOCC3)C=2)S(C)(=O)=O)C(C)=NC=C1NC(=O)C1=CC=NC(C(C)(F)F)=C1 UFMFXEYIEWPCOM-UHFFFAOYSA-N 0.000 claims 1
- ZCZPPOCOHMIXPQ-UHFFFAOYSA-N 2-(1,1-difluoroethyl)-n-[6-methyl-5-(6-morpholin-4-ylpyrazin-2-yl)pyridin-3-yl]pyridine-4-carboxamide Chemical compound C1=C(C=2N=C(C=NC=2)N2CCOCC2)C(C)=NC=C1NC(=O)C1=CC=NC(C(C)(F)F)=C1 ZCZPPOCOHMIXPQ-UHFFFAOYSA-N 0.000 claims 1
- MUGSHVQXVRLFFT-UHFFFAOYSA-N 2-(1,1-difluoroethyl)-n-[6-methyl-5-(7-morpholin-4-ylpyrazolo[1,5-a]pyrimidin-5-yl)pyridin-3-yl]pyridine-4-carboxamide Chemical compound C1=C(C2=NC3=CC=NN3C(N3CCOCC3)=C2)C(C)=NC=C1NC(=O)C1=CC=NC(C(C)(F)F)=C1 MUGSHVQXVRLFFT-UHFFFAOYSA-N 0.000 claims 1
- ZYAJPOLTUROPMG-UHFFFAOYSA-N 2-(1,1-difluoroethyl)-n-[6-methyl-5-(8-morpholin-4-ylimidazo[1,2-a]pyridin-6-yl)pyridin-3-yl]pyridine-4-carboxamide Chemical compound C1=C(C2=CN3C=CN=C3C(N3CCOCC3)=C2)C(C)=NC=C1NC(=O)C1=CC=NC(C(C)(F)F)=C1 ZYAJPOLTUROPMG-UHFFFAOYSA-N 0.000 claims 1
- INTSCAPCJOZFEC-UHFFFAOYSA-N 2-(1,1-difluoropropyl)-N-[3-(1-ethyl-2-morpholin-4-yl-6-oxopyridin-4-yl)-4-methylphenyl]pyridine-4-carboxamide Chemical compound FC(CC)(F)C=1C=C(C(=O)NC2=CC(=C(C=C2)C)C2=CC(N(C(=C2)N2CCOCC2)CC)=O)C=CN=1 INTSCAPCJOZFEC-UHFFFAOYSA-N 0.000 claims 1
- IQDUYZHLQPWSGV-UHFFFAOYSA-N 2-(1,1-difluoropropyl)-N-[3-[6-(2-hydroxyethoxy)-5-morpholin-4-ylpyridazin-3-yl]-4-methylphenyl]pyridine-4-carboxamide Chemical compound FC(CC)(F)C=1C=C(C(=O)NC2=CC(=C(C=C2)C)C=2N=NC(=C(C=2)N2CCOCC2)OCCO)C=CN=1 IQDUYZHLQPWSGV-UHFFFAOYSA-N 0.000 claims 1
- OZOPEVNRONREIV-UHFFFAOYSA-N 2-(1,1-difluoropropyl)-N-[4-methyl-3-(1-methyl-2-morpholin-4-yl-6-oxopyridin-4-yl)phenyl]pyridine-4-carboxamide Chemical compound CCC(F)(F)c1cc(ccn1)C(=O)Nc1ccc(C)c(c1)-c1cc(N2CCOCC2)n(C)c(=O)c1 OZOPEVNRONREIV-UHFFFAOYSA-N 0.000 claims 1
- WKQWDRJBPKMUMH-UHFFFAOYSA-N 2-(1,1-difluoropropyl)-N-[5-[2-(1,4-dioxan-2-yl)-6-morpholin-4-ylpyridin-4-yl]-6-methylpyridin-3-yl]pyridine-4-carboxamide Chemical compound O1C(COCC1)C1=NC(=CC(=C1)C=1C(=NC=C(C=1)NC(C1=CC(=NC=C1)C(CC)(F)F)=O)C)N1CCOCC1 WKQWDRJBPKMUMH-UHFFFAOYSA-N 0.000 claims 1
- KLZDAZKIRBISQK-UHFFFAOYSA-N 2-(1,1-difluoropropyl)-N-[5-[2-(2-hydroxyethylamino)-6-morpholin-4-ylpyridin-4-yl]-6-methylpyridin-3-yl]pyridine-4-carboxamide Chemical compound FC(CC)(F)C=1C=C(C(=O)NC=2C=C(C(=NC=2)C)C2=CC(=NC(=C2)N2CCOCC2)NCCO)C=CN=1 KLZDAZKIRBISQK-UHFFFAOYSA-N 0.000 claims 1
- UTSVVJVAYOPFIE-UHFFFAOYSA-N 2-(1,1-difluoropropyl)-N-[6-methyl-5-(6-methylsulfonyl-5-morpholin-4-ylpyridazin-3-yl)pyridin-3-yl]pyridine-4-carboxamide Chemical compound CCC(F)(F)c1cc(ccn1)C(=O)Nc1cnc(C)c(c1)-c1cc(N2CCOCC2)c(nn1)S(C)(=O)=O UTSVVJVAYOPFIE-UHFFFAOYSA-N 0.000 claims 1
- FOEASOJXMTXWMA-UHFFFAOYSA-N 2-(1,1-difluoropropyl)-n-[3-(6-ethoxy-5-morpholin-4-ylpyridazin-3-yl)-4-methylphenyl]pyridine-4-carboxamide Chemical compound CCOC1=NN=C(C=2C(=CC=C(NC(=O)C=3C=C(N=CC=3)C(F)(F)CC)C=2)C)C=C1N1CCOCC1 FOEASOJXMTXWMA-UHFFFAOYSA-N 0.000 claims 1
- USDMDPVBQZBXEU-UHFFFAOYSA-N 2-(1,1-difluoropropyl)-n-[3-(6-methoxy-5-morpholin-4-ylpyridazin-3-yl)-4-methylphenyl]pyridine-4-carboxamide Chemical compound C1=NC(C(F)(F)CC)=CC(C(=O)NC=2C=C(C(C)=CC=2)C=2N=NC(OC)=C(N3CCOCC3)C=2)=C1 USDMDPVBQZBXEU-UHFFFAOYSA-N 0.000 claims 1
- AXYWWZQSJHAPEU-UHFFFAOYSA-N 2-(1,1-difluoropropyl)-n-[4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridazin-3-yl)phenyl]pyridine-4-carboxamide Chemical compound C1=NC(C(F)(F)CC)=CC(C(=O)NC=2C=C(C(C)=CC=2)C2=NN(C)C(=O)C(N3CCOCC3)=C2)=C1 AXYWWZQSJHAPEU-UHFFFAOYSA-N 0.000 claims 1
- ZKANYWMNLVXDMU-UHFFFAOYSA-N 2-(1,1-difluoropropyl)-n-[4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)phenyl]pyridine-4-carboxamide Chemical compound C1=NC(C(F)(F)CC)=CC(C(=O)NC=2C=C(C(C)=CC=2)C2=CN(C)C(=O)C(N3CCOCC3)=C2)=C1 ZKANYWMNLVXDMU-UHFFFAOYSA-N 0.000 claims 1
- BWWSPDMXASOUSM-UHFFFAOYSA-N 2-(1,1-difluoropropyl)-n-[4-methyl-3-(6-methylsulfonyl-5-morpholin-4-ylpyridazin-3-yl)phenyl]pyridine-4-carboxamide Chemical compound C1=NC(C(F)(F)CC)=CC(C(=O)NC=2C=C(C(C)=CC=2)C=2N=NC(=C(N3CCOCC3)C=2)S(C)(=O)=O)=C1 BWWSPDMXASOUSM-UHFFFAOYSA-N 0.000 claims 1
- OWECOZXQTYSRFK-UHFFFAOYSA-N 2-(1,1-difluoropropyl)-n-[5-(6-ethoxy-5-morpholin-4-ylpyridazin-3-yl)-6-methylpyridin-3-yl]pyridine-4-carboxamide Chemical compound CCOC1=NN=C(C=2C(=NC=C(NC(=O)C=3C=C(N=CC=3)C(F)(F)CC)C=2)C)C=C1N1CCOCC1 OWECOZXQTYSRFK-UHFFFAOYSA-N 0.000 claims 1
- VSYIZFAODFICDI-UHFFFAOYSA-N 2-(1,1-difluoropropyl)-n-[5-(6-methoxy-5-morpholin-4-ylpyridazin-3-yl)-6-methylpyridin-3-yl]pyridine-4-carboxamide Chemical compound C1=NC(C(F)(F)CC)=CC(C(=O)NC=2C=C(C(C)=NC=2)C=2N=NC(OC)=C(N3CCOCC3)C=2)=C1 VSYIZFAODFICDI-UHFFFAOYSA-N 0.000 claims 1
- CDDMDFROMOOHOQ-UHFFFAOYSA-N 2-(1,1-difluoropropyl)-n-[6-methyl-5-(1-methyl-5-morpholin-4-yl-6-oxopyridazin-3-yl)pyridin-3-yl]pyridine-4-carboxamide Chemical compound C1=NC(C(F)(F)CC)=CC(C(=O)NC=2C=C(C(C)=NC=2)C2=NN(C)C(=O)C(N3CCOCC3)=C2)=C1 CDDMDFROMOOHOQ-UHFFFAOYSA-N 0.000 claims 1
- HQUDDILRHDJPLI-UHFFFAOYSA-N 2-(1,1-difluoropropyl)-n-[6-methyl-5-(6-morpholin-4-ylpyrazin-2-yl)pyridin-3-yl]pyridine-4-carboxamide Chemical compound C1=NC(C(F)(F)CC)=CC(C(=O)NC=2C=C(C(C)=NC=2)C=2N=C(C=NC=2)N2CCOCC2)=C1 HQUDDILRHDJPLI-UHFFFAOYSA-N 0.000 claims 1
- ZPWXHBDTGQTVBV-UHFFFAOYSA-N 2-(1,1-difluoropropyl)-n-[6-methyl-5-(7-morpholin-4-ylpyrazolo[1,5-a]pyrimidin-5-yl)pyridin-3-yl]pyridine-4-carboxamide Chemical compound C1=NC(C(F)(F)CC)=CC(C(=O)NC=2C=C(C(C)=NC=2)C2=NC3=CC=NN3C(N3CCOCC3)=C2)=C1 ZPWXHBDTGQTVBV-UHFFFAOYSA-N 0.000 claims 1
- KPBPKIMSIANJOA-UHFFFAOYSA-N 2-(1-cyanocyclopropyl)-N-[4-methyl-3-(7-morpholin-4-ylpyrazolo[1,5-a]pyrimidin-5-yl)phenyl]pyridine-4-carboxamide Chemical compound C(#N)C1(CC1)C=1C=C(C(=O)NC2=CC(=C(C=C2)C)C2=NC=3N(C(=C2)N2CCOCC2)N=CC=3)C=CN=1 KPBPKIMSIANJOA-UHFFFAOYSA-N 0.000 claims 1
- MKSMMQHYPGOHAM-UHFFFAOYSA-N 2-(1-cyanocyclopropyl)-N-[5-(5-methoxy-6-morpholin-4-ylpyrazin-2-yl)-6-methylpyridin-3-yl]pyridine-4-carboxamide Chemical compound C(#N)C1(CC1)C=1C=C(C(=O)NC=2C=NC(=C(C=2)C2=NC(=C(N=C2)OC)N2CCOCC2)C)C=CN=1 MKSMMQHYPGOHAM-UHFFFAOYSA-N 0.000 claims 1
- FZIOFRSOILSRKO-UHFFFAOYSA-N 2-(1-cyanocyclopropyl)-N-[5-(6-methoxy-5-morpholin-4-ylpyridin-3-yl)-6-methylpyridin-3-yl]pyridine-4-carboxamide Chemical compound COC1=NC=C(C=C1N1CCOCC1)C1=C(C)N=CC(NC(=O)C2=CC(=NC=C2)C2(CC2)C#N)=C1 FZIOFRSOILSRKO-UHFFFAOYSA-N 0.000 claims 1
- IBSREDGABGOMNQ-UHFFFAOYSA-N 2-(1-cyanocyclopropyl)-N-[5-[2-(3-hydroxy-3-methylazetidin-1-yl)-6-morpholin-4-ylpyridin-4-yl]-6-methylpyridin-3-yl]pyridine-4-carboxamide Chemical compound C(#N)C1(CC1)C=1C=C(C(=O)NC=2C=C(C(=NC=2)C)C2=CC(=NC(=C2)N2CCOCC2)N2CC(C2)(C)O)C=CN=1 IBSREDGABGOMNQ-UHFFFAOYSA-N 0.000 claims 1
- GAQBWXSEJOHZJS-UHFFFAOYSA-N 2-(1-cyanocyclopropyl)-N-[5-[6-(dimethylamino)-5-morpholin-4-ylpyridin-3-yl]-6-methylpyridin-3-yl]pyridine-4-carboxamide Chemical compound C(#N)C1(CC1)C=1C=C(C(=O)NC=2C=C(C(=NC=2)C)C=2C=NC(=C(C=2)N2CCOCC2)N(C)C)C=CN=1 GAQBWXSEJOHZJS-UHFFFAOYSA-N 0.000 claims 1
- QDVOVDWVFZOQIX-UHFFFAOYSA-N 2-(1-cyanocyclopropyl)-N-[6-methyl-5-(7-morpholin-4-ylpyrazolo[1,5-a]pyrimidin-5-yl)pyridin-3-yl]pyridine-4-carboxamide Chemical compound C(#N)C1(CC1)C=1C=C(C(=O)NC=2C=NC(=C(C=2)C2=NC=3N(C(=C2)N2CCOCC2)N=CC=3)C)C=CN=1 QDVOVDWVFZOQIX-UHFFFAOYSA-N 0.000 claims 1
- ZOHHDEYKNWIOEM-UHFFFAOYSA-N 2-(1-cyanocyclopropyl)-N-[6-methyl-5-[5-morpholin-4-yl-6-(oxan-4-yloxy)pyridin-3-yl]pyridin-3-yl]pyridine-4-carboxamide Chemical compound C(#N)C1(CC1)C=1C=C(C(=O)NC=2C=C(C(=NC=2)C)C=2C=NC(=C(C=2)N2CCOCC2)OC2CCOCC2)C=CN=1 ZOHHDEYKNWIOEM-UHFFFAOYSA-N 0.000 claims 1
- LDWLKZFOTRFNQS-UHFFFAOYSA-N 2-(1-cyanocyclopropyl)-n-[3-(6-ethoxy-5-morpholin-4-ylpyridazin-3-yl)-4-methylphenyl]pyridine-4-carboxamide Chemical compound CCOC1=NN=C(C=2C(=CC=C(NC(=O)C=3C=C(N=CC=3)C3(CC3)C#N)C=2)C)C=C1N1CCOCC1 LDWLKZFOTRFNQS-UHFFFAOYSA-N 0.000 claims 1
- UDCQMXLNHJMTMV-UHFFFAOYSA-N 2-(1-cyanocyclopropyl)-n-[3-[2-(2-hydroxyethylamino)-6-morpholin-4-ylpyridin-4-yl]-4-methylphenyl]pyridine-4-carboxamide Chemical compound C1=C(C=2C=C(N=C(NCCO)C=2)N2CCOCC2)C(C)=CC=C1NC(=O)C(C=1)=CC=NC=1C1(C#N)CC1 UDCQMXLNHJMTMV-UHFFFAOYSA-N 0.000 claims 1
- CVUARWCEZRGONB-UHFFFAOYSA-N 2-(1-cyanocyclopropyl)-n-[3-[2-(3-hydroxy-3-methylazetidin-1-yl)-6-morpholin-4-ylpyridin-4-yl]-4-methylphenyl]pyridine-4-carboxamide Chemical compound C1=C(C=2C=C(N=C(C=2)N2CC(C)(O)C2)N2CCOCC2)C(C)=CC=C1NC(=O)C(C=1)=CC=NC=1C1(C#N)CC1 CVUARWCEZRGONB-UHFFFAOYSA-N 0.000 claims 1
- GUBSVMMBRGVGCD-UHFFFAOYSA-N 2-(1-cyanocyclopropyl)-n-[3-[2-(3-hydroxyazetidin-1-yl)-6-morpholin-4-ylpyridin-4-yl]-4-methylphenyl]pyridine-4-carboxamide Chemical compound C1=C(C=2C=C(N=C(C=2)N2CC(O)C2)N2CCOCC2)C(C)=CC=C1NC(=O)C(C=1)=CC=NC=1C1(C#N)CC1 GUBSVMMBRGVGCD-UHFFFAOYSA-N 0.000 claims 1
- FXXKRWMIVAYMPU-UHFFFAOYSA-N 2-(1-cyanocyclopropyl)-n-[3-[2-(ethylamino)-6-morpholin-4-ylpyrimidin-4-yl]-4-methylphenyl]pyridine-4-carboxamide Chemical compound N=1C(NCC)=NC(N2CCOCC2)=CC=1C(C(=CC=1)C)=CC=1NC(=O)C(C=1)=CC=NC=1C1(C#N)CC1 FXXKRWMIVAYMPU-UHFFFAOYSA-N 0.000 claims 1
- CQCBBMZJBSRAMU-UHFFFAOYSA-N 2-(1-cyanocyclopropyl)-n-[3-[3-fluoro-6-(2-hydroxyethylamino)-2-morpholin-4-ylpyridin-4-yl]-4-methylphenyl]pyridine-4-carboxamide Chemical compound C1=C(C=2C(=C(N3CCOCC3)N=C(NCCO)C=2)F)C(C)=CC=C1NC(=O)C(C=1)=CC=NC=1C1(C#N)CC1 CQCBBMZJBSRAMU-UHFFFAOYSA-N 0.000 claims 1
- KAIOZIXFNCXYEB-UHFFFAOYSA-N 2-(1-cyanocyclopropyl)-n-[4-methyl-3-(1-methyl-2-morpholin-4-yl-6-oxopyridin-4-yl)phenyl]pyridine-4-carboxamide Chemical compound C1=C(C2=CC(=O)N(C)C(N3CCOCC3)=C2)C(C)=CC=C1NC(=O)C(C=1)=CC=NC=1C1(C#N)CC1 KAIOZIXFNCXYEB-UHFFFAOYSA-N 0.000 claims 1
- BTXSFXPMDZDEKQ-UHFFFAOYSA-N 2-(1-cyanocyclopropyl)-n-[4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridazin-3-yl)phenyl]pyridine-4-carboxamide Chemical compound C1=C(C2=NN(C)C(=O)C(N3CCOCC3)=C2)C(C)=CC=C1NC(=O)C(C=1)=CC=NC=1C1(C#N)CC1 BTXSFXPMDZDEKQ-UHFFFAOYSA-N 0.000 claims 1
- BIOKZUHKCALIAO-UHFFFAOYSA-N 2-(1-cyanocyclopropyl)-n-[4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)phenyl]pyridine-4-carboxamide Chemical compound C1=C(C2=CN(C)C(=O)C(N3CCOCC3)=C2)C(C)=CC=C1NC(=O)C(C=1)=CC=NC=1C1(C#N)CC1 BIOKZUHKCALIAO-UHFFFAOYSA-N 0.000 claims 1
- GMCYQRYABVZELS-UHFFFAOYSA-N 2-(1-cyanocyclopropyl)-n-[6-methyl-5-(1-methyl-5-morpholin-4-yl-6-oxopyridazin-3-yl)pyridin-3-yl]pyridine-4-carboxamide Chemical compound C1=C(C2=NN(C)C(=O)C(N3CCOCC3)=C2)C(C)=NC=C1NC(=O)C(C=1)=CC=NC=1C1(C#N)CC1 GMCYQRYABVZELS-UHFFFAOYSA-N 0.000 claims 1
- WCGIFAUOSCNXHI-UHFFFAOYSA-N 2-(2-cyanopropan-2-yl)-N-[3-(6-ethoxy-5-morpholin-4-ylpyridazin-3-yl)-4-methylphenyl]pyridine-4-carboxamide Chemical compound CCOc1nnc(cc1N1CCOCC1)-c1cc(NC(=O)c2ccnc(c2)C(C)(C)C#N)ccc1C WCGIFAUOSCNXHI-UHFFFAOYSA-N 0.000 claims 1
- QTQRBYBQGAANDG-UHFFFAOYSA-N 2-(2-cyanopropan-2-yl)-N-[3-[2-(2-hydroxypropan-2-yl)-6-morpholin-4-ylpyrimidin-4-yl]-4-methylphenyl]pyridine-4-carboxamide Chemical compound C(#N)C(C)(C)C=1C=C(C(=O)NC2=CC(=C(C=C2)C)C2=NC(=NC(=C2)N2CCOCC2)C(C)(C)O)C=CN=1 QTQRBYBQGAANDG-UHFFFAOYSA-N 0.000 claims 1
- WWNCQRSXXSTJEA-UHFFFAOYSA-N 2-(2-cyanopropan-2-yl)-N-[3-[2-(3-hydroxy-3-methylazetidin-1-yl)-6-morpholin-4-ylpyridin-4-yl]-4-methylphenyl]pyridine-4-carboxamide Chemical compound C(#N)C(C)(C)C=1C=C(C(=O)NC2=CC(=C(C=C2)C)C2=CC(=NC(=C2)N2CCOCC2)N2CC(C2)(C)O)C=CN=1 WWNCQRSXXSTJEA-UHFFFAOYSA-N 0.000 claims 1
- QCSHXQSIPJWEJT-UHFFFAOYSA-N 2-(2-cyanopropan-2-yl)-N-[4-methyl-3-(1-methyl-2-morpholin-4-yl-6-oxopyridin-4-yl)phenyl]pyridine-4-carboxamide Chemical compound C(#N)C(C)(C)C=1C=C(C(=O)NC2=CC(=C(C=C2)C)C2=CC(N(C(=C2)N2CCOCC2)C)=O)C=CN=1 QCSHXQSIPJWEJT-UHFFFAOYSA-N 0.000 claims 1
- QKINODCXLKEKAE-UHFFFAOYSA-N 2-(2-cyanopropan-2-yl)-N-[4-methyl-3-(4-morpholin-4-yl-5,5-dioxo-6,7-dihydrothieno[3,2-d]pyrimidin-2-yl)phenyl]pyridine-4-carboxamide Chemical compound C(#N)C(C)(C)C=1C=C(C(=O)NC2=CC(=C(C=C2)C)C=2N=C(C3=C(N=2)CCS3(=O)=O)N2CCOCC2)C=CN=1 QKINODCXLKEKAE-UHFFFAOYSA-N 0.000 claims 1
- QRMPJUMOXKKAFP-UHFFFAOYSA-N 2-(2-cyanopropan-2-yl)-N-[4-methyl-3-(4-morpholin-4-yl-5,6,7,8-tetrahydropyrido[3,4-d]pyrimidin-2-yl)phenyl]pyridine-4-carboxamide Chemical compound C(#N)C(C)(C)C=1C=C(C(=O)NC2=CC(=C(C=C2)C)C=2N=C(C3=C(N=2)CNCC3)N2CCOCC2)C=CN=1 QRMPJUMOXKKAFP-UHFFFAOYSA-N 0.000 claims 1
- OWCIEKARBMAYCN-UHFFFAOYSA-N 2-(2-cyanopropan-2-yl)-N-[4-methyl-3-(4-morpholin-4-yl-6,7-dihydro-5H-pyrrolo[3,4-d]pyrimidin-2-yl)phenyl]pyridine-4-carboxamide Chemical compound C(#N)C(C)(C)C=1C=C(C(=O)NC2=CC(=C(C=C2)C)C=2N=C(C3=C(N=2)CNC3)N2CCOCC2)C=CN=1 OWCIEKARBMAYCN-UHFFFAOYSA-N 0.000 claims 1
- ORNRTLFGZJPBFD-UHFFFAOYSA-N 2-(2-cyanopropan-2-yl)-N-[4-methyl-3-(6-morpholin-4-ylpyrazin-2-yl)phenyl]pyridine-4-carboxamide Chemical compound C(#N)C(C)(C)C=1C=C(C(=O)NC2=CC(=C(C=C2)C)C2=NC(=CN=C2)N2CCOCC2)C=CN=1 ORNRTLFGZJPBFD-UHFFFAOYSA-N 0.000 claims 1
- ROTJLNFGZWQSGH-UHFFFAOYSA-N 2-(2-cyanopropan-2-yl)-N-[4-methyl-3-(7-morpholin-4-ylpyrazolo[1,5-a]pyrimidin-5-yl)phenyl]pyridine-4-carboxamide Chemical compound CC1=CC=C(NC(=O)C2=CC(=NC=C2)C(C)(C)C#N)C=C1C1=NC2=CC=NN2C(=C1)N1CCOCC1 ROTJLNFGZWQSGH-UHFFFAOYSA-N 0.000 claims 1
- GWWMADPPWXLUER-UHFFFAOYSA-N 2-(2-cyanopropan-2-yl)-N-[4-methyl-3-(8-morpholin-4-ylimidazo[1,2-b]pyridazin-6-yl)phenyl]pyridine-4-carboxamide Chemical compound C(#N)C(C)(C)C=1C=C(C(=O)NC2=CC(=C(C=C2)C)C=2C=C(C=3N(N=2)C=CN=3)N2CCOCC2)C=CN=1 GWWMADPPWXLUER-UHFFFAOYSA-N 0.000 claims 1
- QCANTRHJQVRPBP-UHFFFAOYSA-N 2-(2-cyanopropan-2-yl)-N-[4-methyl-3-[1-methyl-5-(6-oxa-3-azabicyclo[3.1.1]heptan-3-yl)-6-oxopyridin-3-yl]phenyl]pyridine-4-carboxamide Chemical compound C12CN(CC(O1)C2)C1=CC(=CN(C1=O)C)C=1C=C(C=CC=1C)NC(C1=CC(=NC=C1)C(C)(C)C#N)=O QCANTRHJQVRPBP-UHFFFAOYSA-N 0.000 claims 1
- SDTMEOJAYBOKRA-UHFFFAOYSA-N 2-(2-cyanopropan-2-yl)-N-[4-methyl-3-[5-morpholin-4-yl-6-(oxan-4-yloxy)pyridazin-3-yl]phenyl]pyridine-4-carboxamide Chemical compound C(#N)C(C)(C)C=1C=C(C(=O)NC2=CC(=C(C=C2)C)C=2N=NC(=C(C=2)N2CCOCC2)OC2CCOCC2)C=CN=1 SDTMEOJAYBOKRA-UHFFFAOYSA-N 0.000 claims 1
- ZJPYLCMVTIXNSG-UHFFFAOYSA-N 2-(2-cyanopropan-2-yl)-N-[5-(1-ethyl-5-morpholin-4-yl-6-oxopyridin-3-yl)-6-methylpyridin-3-yl]pyridine-4-carboxamide Chemical compound C(#N)C(C)(C)C=1C=C(C(=O)NC=2C=C(C(=NC=2)C)C2=CN(C(C(=C2)N2CCOCC2)=O)CC)C=CN=1 ZJPYLCMVTIXNSG-UHFFFAOYSA-N 0.000 claims 1
- HULVKZCBRXGLIR-UHFFFAOYSA-N 2-(2-cyanopropan-2-yl)-N-[5-(2,6-dimorpholin-4-ylpyridin-4-yl)-6-methylpyridin-3-yl]pyridine-4-carboxamide Chemical compound C(#N)C(C)(C)C=1C=C(C(=O)NC=2C=C(C(=NC=2)C)C2=CC(=NC(=C2)N2CCOCC2)N2CCOCC2)C=CN=1 HULVKZCBRXGLIR-UHFFFAOYSA-N 0.000 claims 1
- HESSXJRHDXNWLR-UHFFFAOYSA-N 2-(2-cyanopropan-2-yl)-N-[5-(2-ethoxy-6-morpholin-4-ylpyridin-4-yl)-6-methylpyridin-3-yl]pyridine-4-carboxamide Chemical compound C(#N)C(C)(C)C=1C=C(C(=O)NC=2C=C(C(=NC=2)C)C2=CC(=NC(=C2)N2CCOCC2)OCC)C=CN=1 HESSXJRHDXNWLR-UHFFFAOYSA-N 0.000 claims 1
- QQHGUFHYJMRAMI-UHFFFAOYSA-N 2-(2-cyanopropan-2-yl)-N-[5-(6-ethoxy-5-morpholin-4-ylpyridin-3-yl)-6-methylpyridin-3-yl]pyridine-4-carboxamide Chemical compound C(#N)C(C)(C)C=1C=C(C(=O)NC=2C=C(C(=NC=2)C)C=2C=NC(=C(C=2)N2CCOCC2)OCC)C=CN=1 QQHGUFHYJMRAMI-UHFFFAOYSA-N 0.000 claims 1
- WGMNHXQFHGKVNS-UHFFFAOYSA-N 2-(2-cyanopropan-2-yl)-N-[5-[2-(2-hydroxyethylamino)-6-morpholin-4-ylpyridin-4-yl]-6-methylpyridin-3-yl]pyridine-4-carboxamide Chemical compound C(#N)C(C)(C)C=1C=C(C(=O)NC=2C=C(C(=NC=2)C)C2=CC(=NC(=C2)N2CCOCC2)NCCO)C=CN=1 WGMNHXQFHGKVNS-UHFFFAOYSA-N 0.000 claims 1
- OSKNCBQBQUWYOD-UHFFFAOYSA-N 2-(2-cyanopropan-2-yl)-N-[5-[2-(3-hydroxy-3-methylazetidin-1-yl)-6-morpholin-4-ylpyridin-4-yl]-6-methylpyridin-3-yl]pyridine-4-carboxamide Chemical compound C(#N)C(C)(C)C=1C=C(C(=O)NC=2C=C(C(=NC=2)C)C2=CC(=NC(=C2)N2CCOCC2)N2CC(C2)(C)O)C=CN=1 OSKNCBQBQUWYOD-UHFFFAOYSA-N 0.000 claims 1
- KOBZPEFNTFUTAU-UHFFFAOYSA-N 2-(2-cyanopropan-2-yl)-N-[5-[2-(3-hydroxyazetidin-1-yl)-6-morpholin-4-ylpyridin-4-yl]-6-methylpyridin-3-yl]pyridine-4-carboxamide Chemical compound C(#N)C(C)(C)C=1C=C(C(=O)NC=2C=C(C(=NC=2)C)C2=CC(=NC(=C2)N2CCOCC2)N2CC(C2)O)C=CN=1 KOBZPEFNTFUTAU-UHFFFAOYSA-N 0.000 claims 1
- BPBAKALHGFIUOE-UHFFFAOYSA-N 2-(2-cyanopropan-2-yl)-N-[5-[6-(2,2-difluoroethoxy)-5-morpholin-4-ylpyridin-3-yl]-6-methylpyridin-3-yl]pyridine-4-carboxamide Chemical compound C(#N)C(C)(C)C=1C=C(C(=O)NC=2C=C(C(=NC=2)C)C=2C=NC(=C(C=2)N2CCOCC2)OCC(F)F)C=CN=1 BPBAKALHGFIUOE-UHFFFAOYSA-N 0.000 claims 1
- UWRWUQWAWZLJMD-UHFFFAOYSA-N 2-(2-cyanopropan-2-yl)-N-[5-[6-(2-hydroxyethoxy)-5-morpholin-4-ylpyridin-3-yl]-6-methylpyridin-3-yl]pyridine-4-carboxamide Chemical compound C(#N)C(C)(C)C=1C=C(C(=O)NC=2C=C(C(=NC=2)C)C=2C=NC(=C(C=2)N2CCOCC2)OCCO)C=CN=1 UWRWUQWAWZLJMD-UHFFFAOYSA-N 0.000 claims 1
- NVIGRCMXKBEVMA-UHFFFAOYSA-N 2-(2-cyanopropan-2-yl)-N-[5-[6-(difluoromethoxy)-5-morpholin-4-ylpyridin-3-yl]-6-methylpyridin-3-yl]pyridine-4-carboxamide Chemical compound C(#N)C(C)(C)C=1C=C(C(=O)NC=2C=C(C(=NC=2)C)C=2C=NC(=C(C=2)N2CCOCC2)OC(F)F)C=CN=1 NVIGRCMXKBEVMA-UHFFFAOYSA-N 0.000 claims 1
- OEBVKSDEIZJYDL-UHFFFAOYSA-N 2-(2-cyanopropan-2-yl)-N-[5-[6-(dimethylamino)-5-morpholin-4-ylpyridin-3-yl]-6-methylpyridin-3-yl]pyridine-4-carboxamide Chemical compound C(#N)C(C)(C)C=1C=C(C(=O)NC=2C=C(C(=NC=2)C)C=2C=NC(=C(C=2)N2CCOCC2)N(C)C)C=CN=1 OEBVKSDEIZJYDL-UHFFFAOYSA-N 0.000 claims 1
- MXFQYIBNMAANRS-QGZVFWFLSA-N 2-(2-cyanopropan-2-yl)-N-[5-[6-ethoxy-5-[(3R)-3-methylmorpholin-4-yl]pyridazin-3-yl]-6-methylpyridin-3-yl]pyridine-4-carboxamide Chemical compound CCOc1nnc(cc1N1CCOC[C@H]1C)-c1cc(NC(=O)c2ccnc(c2)C(C)(C)C#N)cnc1C MXFQYIBNMAANRS-QGZVFWFLSA-N 0.000 claims 1
- MWHCXEYDAHOTNJ-UHFFFAOYSA-N 2-(2-cyanopropan-2-yl)-N-[6-methyl-5-(1-methyl-2-morpholin-4-yl-6-oxopyridin-4-yl)pyridin-3-yl]pyridine-4-carboxamide Chemical compound CN1C(=O)C=C(C=C1N1CCOCC1)C1=C(C)N=CC(NC(=O)C2=CC=NC(=C2)C(C)(C)C#N)=C1 MWHCXEYDAHOTNJ-UHFFFAOYSA-N 0.000 claims 1
- SUKQKUOMEBVCSB-UHFFFAOYSA-N 2-(2-cyanopropan-2-yl)-N-[6-methyl-5-(5-morpholin-4-ylpyridin-3-yl)pyridin-3-yl]pyridine-4-carboxamide Chemical compound C(#N)C(C)(C)C=1C=C(C(=O)NC=2C=C(C(=NC=2)C)C=2C=NC=C(C=2)N2CCOCC2)C=CN=1 SUKQKUOMEBVCSB-UHFFFAOYSA-N 0.000 claims 1
- YQNWCIRZPDZMGH-UHFFFAOYSA-N 2-(2-cyanopropan-2-yl)-N-[6-methyl-5-(7-morpholin-4-ylpyrazolo[1,5-a]pyrimidin-5-yl)pyridin-3-yl]pyridine-4-carboxamide Chemical compound C(#N)C(C)(C)C=1C=C(C(=O)NC=2C=NC(=C(C=2)C2=NC=3N(C(=C2)N2CCOCC2)N=CC=3)C)C=CN=1 YQNWCIRZPDZMGH-UHFFFAOYSA-N 0.000 claims 1
- JZCQCFGBDILLDH-UHFFFAOYSA-N 2-(2-cyanopropan-2-yl)-N-[6-methyl-5-(8-morpholin-4-ylimidazo[1,2-a]pyridin-6-yl)pyridin-3-yl]pyridine-4-carboxamide Chemical compound C(#N)C(C)(C)C=1C=C(C(=O)NC=2C=NC(=C(C=2)C=2C=C(C=3N(C=2)C=CN=3)N2CCOCC2)C)C=CN=1 JZCQCFGBDILLDH-UHFFFAOYSA-N 0.000 claims 1
- AICYPNBSLOCCHN-UHFFFAOYSA-N 2-(2-cyanopropan-2-yl)-N-[6-methyl-5-[5-morpholin-4-yl-6-(2-oxaspiro[3.3]heptan-6-yloxy)pyridin-3-yl]pyridin-3-yl]pyridine-4-carboxamide Chemical compound C1OCC11CC(C1)OC1=C(C=C(C=N1)C=1C(=NC=C(C=1)NC(C1=CC(=NC=C1)C(C)(C)C#N)=O)C)N1CCOCC1 AICYPNBSLOCCHN-UHFFFAOYSA-N 0.000 claims 1
- ARMONIZJRZDTKV-UHFFFAOYSA-N 2-(2-cyanopropan-2-yl)-N-[6-methyl-5-[5-morpholin-4-yl-6-(oxan-4-yloxy)pyridin-3-yl]pyridin-3-yl]pyridine-4-carboxamide Chemical compound C(#N)C(C)(C)C=1C=C(C(=O)NC=2C=C(C(=NC=2)C)C=2C=NC(=C(C=2)N2CCOCC2)OC2CCOCC2)C=CN=1 ARMONIZJRZDTKV-UHFFFAOYSA-N 0.000 claims 1
- UJDISZKLADRITJ-UHFFFAOYSA-N 2-(2-cyanopropan-2-yl)-n-[3-(1-ethyl-5-morpholin-4-yl-6-oxopyridin-3-yl)-4-methylphenyl]pyridine-4-carboxamide Chemical compound O=C1N(CC)C=C(C=2C(=CC=C(NC(=O)C=3C=C(N=CC=3)C(C)(C)C#N)C=2)C)C=C1N1CCOCC1 UJDISZKLADRITJ-UHFFFAOYSA-N 0.000 claims 1
- PRPZEFLLWATTOC-UHFFFAOYSA-N 2-(2-cyanopropan-2-yl)-n-[3-(2,6-dimorpholin-4-ylpyridin-4-yl)-4-methylphenyl]pyridine-4-carboxamide Chemical compound C1=C(C=2C=C(N=C(C=2)N2CCOCC2)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CC=NC(C(C)(C)C#N)=C1 PRPZEFLLWATTOC-UHFFFAOYSA-N 0.000 claims 1
- DGSFEEKRYOVQNO-UHFFFAOYSA-N 2-(2-cyanopropan-2-yl)-n-[3-(2,6-dimorpholin-4-ylpyrimidin-4-yl)-4-methylphenyl]pyridine-4-carboxamide Chemical compound C1=C(C=2N=C(N=C(C=2)N2CCOCC2)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CC=NC(C(C)(C)C#N)=C1 DGSFEEKRYOVQNO-UHFFFAOYSA-N 0.000 claims 1
- BPWZHHUEZAZOGP-UHFFFAOYSA-N 2-(2-cyanopropan-2-yl)-n-[3-(6-ethoxy-5-morpholin-4-ylpyridin-3-yl)-4-methylphenyl]pyridine-4-carboxamide Chemical compound CCOC1=NC=C(C=2C(=CC=C(NC(=O)C=3C=C(N=CC=3)C(C)(C)C#N)C=2)C)C=C1N1CCOCC1 BPWZHHUEZAZOGP-UHFFFAOYSA-N 0.000 claims 1
- ZVKBJECQZPXKKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yl)-n-[3-(6-methoxy-5-morpholin-4-ylpyridazin-3-yl)-4-methylphenyl]pyridine-4-carboxamide Chemical compound COC1=NN=C(C=2C(=CC=C(NC(=O)C=3C=C(N=CC=3)C(C)(C)C#N)C=2)C)C=C1N1CCOCC1 ZVKBJECQZPXKKX-UHFFFAOYSA-N 0.000 claims 1
- RMODVQQXAZVOQC-UHFFFAOYSA-N 2-(2-cyanopropan-2-yl)-n-[3-(6-methoxy-5-morpholin-4-ylpyridin-3-yl)-4-methylphenyl]pyridine-4-carboxamide Chemical compound COC1=NC=C(C=2C(=CC=C(NC(=O)C=3C=C(N=CC=3)C(C)(C)C#N)C=2)C)C=C1N1CCOCC1 RMODVQQXAZVOQC-UHFFFAOYSA-N 0.000 claims 1
- GGDWRDONSOKHNJ-UHFFFAOYSA-N 2-(2-cyanopropan-2-yl)-n-[3-[1-(2-hydroxyethyl)-5-morpholin-4-yl-6-oxopyridin-3-yl]-4-methylphenyl]pyridine-4-carboxamide Chemical compound C1=C(C2=CN(CCO)C(=O)C(N3CCOCC3)=C2)C(C)=CC=C1NC(=O)C1=CC=NC(C(C)(C)C#N)=C1 GGDWRDONSOKHNJ-UHFFFAOYSA-N 0.000 claims 1
- XPGUTZJBGBALBR-UHFFFAOYSA-N 2-(2-cyanopropan-2-yl)-n-[3-[2-(3-hydroxyazetidin-1-yl)-6-morpholin-4-ylpyridin-4-yl]-4-methylphenyl]pyridine-4-carboxamide Chemical compound C1=C(C=2C=C(N=C(C=2)N2CC(O)C2)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CC=NC(C(C)(C)C#N)=C1 XPGUTZJBGBALBR-UHFFFAOYSA-N 0.000 claims 1
- CAECMNOIKHANDJ-UHFFFAOYSA-N 2-(2-cyanopropan-2-yl)-n-[3-[2-(dimethylamino)-6-morpholin-4-ylpyrimidin-4-yl]-4-methylphenyl]pyridine-4-carboxamide Chemical compound N=1C(N(C)C)=NC(N2CCOCC2)=CC=1C(C(=CC=1)C)=CC=1NC(=O)C1=CC=NC(C(C)(C)C#N)=C1 CAECMNOIKHANDJ-UHFFFAOYSA-N 0.000 claims 1
- STAZWCVPUNIJEO-PXDATVDWSA-N 2-(2-cyanopropan-2-yl)-n-[3-[2-[(2r,5r)-2-[(dimethylamino)methyl]-5-methylmorpholin-4-yl]pyridin-4-yl]-4-methylphenyl]pyridine-4-carboxamide Chemical compound C[C@@H]1CO[C@H](CN(C)C)CN1C1=CC(C=2C(=CC=C(NC(=O)C=3C=C(N=CC=3)C(C)(C)C#N)C=2)C)=CC=N1 STAZWCVPUNIJEO-PXDATVDWSA-N 0.000 claims 1
- PGYUGYRBRUPMST-QFIPXVFZSA-N 2-(2-cyanopropan-2-yl)-n-[3-[2-[(2s)-2-(hydroxymethyl)morpholin-4-yl]pyridin-4-yl]-4-methylphenyl]pyridine-4-carboxamide Chemical compound C1=C(C=2C=C(N=CC=2)N2C[C@@H](CO)OCC2)C(C)=CC=C1NC(=O)C1=CC=NC(C(C)(C)C#N)=C1 PGYUGYRBRUPMST-QFIPXVFZSA-N 0.000 claims 1
- STAZWCVPUNIJEO-OFVILXPXSA-N 2-(2-cyanopropan-2-yl)-n-[3-[2-[(2s,5s)-2-[(dimethylamino)methyl]-5-methylmorpholin-4-yl]pyridin-4-yl]-4-methylphenyl]pyridine-4-carboxamide Chemical compound C[C@H]1CO[C@@H](CN(C)C)CN1C1=CC(C=2C(=CC=C(NC(=O)C=3C=C(N=CC=3)C(C)(C)C#N)C=2)C)=CC=N1 STAZWCVPUNIJEO-OFVILXPXSA-N 0.000 claims 1
- VNBXSCAKRWJGCD-UHFFFAOYSA-N 2-(2-cyanopropan-2-yl)-n-[3-[5-(2,2-dimethylmorpholin-4-yl)-1-methyl-6-oxopyridazin-3-yl]-4-methylphenyl]pyridine-4-carboxamide Chemical compound C1=C(C2=NN(C)C(=O)C(N3CC(C)(C)OCC3)=C2)C(C)=CC=C1NC(=O)C1=CC=NC(C(C)(C)C#N)=C1 VNBXSCAKRWJGCD-UHFFFAOYSA-N 0.000 claims 1
- KFACCVSCGOVFGF-UHFFFAOYSA-N 2-(2-cyanopropan-2-yl)-n-[3-[5-(3,3-dimethylmorpholin-4-yl)-1-methyl-6-oxopyridazin-3-yl]-4-methylphenyl]pyridine-4-carboxamide Chemical compound C1=C(C2=NN(C)C(=O)C(N3C(COCC3)(C)C)=C2)C(C)=CC=C1NC(=O)C1=CC=NC(C(C)(C)C#N)=C1 KFACCVSCGOVFGF-UHFFFAOYSA-N 0.000 claims 1
- NBNAULLPQAVJSW-UHFFFAOYSA-N 2-(2-cyanopropan-2-yl)-n-[3-[6-(2-hydroxyethoxy)-5-morpholin-4-ylpyridazin-3-yl]-4-methylphenyl]pyridine-4-carboxamide Chemical compound C1=C(C=2N=NC(OCCO)=C(N3CCOCC3)C=2)C(C)=CC=C1NC(=O)C1=CC=NC(C(C)(C)C#N)=C1 NBNAULLPQAVJSW-UHFFFAOYSA-N 0.000 claims 1
- KFHDINCIMOZINU-UHFFFAOYSA-N 2-(2-cyanopropan-2-yl)-n-[3-[6-(2-hydroxyethoxy)-5-morpholin-4-ylpyridin-3-yl]-4-methylphenyl]pyridine-4-carboxamide Chemical compound C1=C(C=2C=C(C(OCCO)=NC=2)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CC=NC(C(C)(C)C#N)=C1 KFHDINCIMOZINU-UHFFFAOYSA-N 0.000 claims 1
- UUWPEGPXUJHHFO-UHFFFAOYSA-N 2-(2-cyanopropan-2-yl)-n-[3-[6-(2-methoxyethoxy)-5-morpholin-4-ylpyridazin-3-yl]-4-methylphenyl]pyridine-4-carboxamide Chemical compound COCCOC1=NN=C(C=2C(=CC=C(NC(=O)C=3C=C(N=CC=3)C(C)(C)C#N)C=2)C)C=C1N1CCOCC1 UUWPEGPXUJHHFO-UHFFFAOYSA-N 0.000 claims 1
- LTRSSPIAOVLQFO-UHFFFAOYSA-N 2-(2-cyanopropan-2-yl)-n-[3-[6-(difluoromethoxy)-5-morpholin-4-ylpyridin-3-yl]-4-methylphenyl]pyridine-4-carboxamide Chemical compound C1=C(C=2C=C(C(OC(F)F)=NC=2)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CC=NC(C(C)(C)C#N)=C1 LTRSSPIAOVLQFO-UHFFFAOYSA-N 0.000 claims 1
- YSAXIPGNWBQMDN-LJQANCHMSA-N 2-(2-cyanopropan-2-yl)-n-[3-[6-[[(2r)-2-hydroxypropyl]amino]-2-morpholin-4-ylpyrimidin-4-yl]-4-methylphenyl]pyridine-4-carboxamide Chemical compound N=1C(NC[C@H](O)C)=CC(C=2C(=CC=C(NC(=O)C=3C=C(N=CC=3)C(C)(C)C#N)C=2)C)=NC=1N1CCOCC1 YSAXIPGNWBQMDN-LJQANCHMSA-N 0.000 claims 1
- JXLJQOYOBGFKKR-LJQANCHMSA-N 2-(2-cyanopropan-2-yl)-n-[3-[6-ethoxy-5-[(3r)-3-methylmorpholin-4-yl]pyridazin-3-yl]-4-methylphenyl]pyridine-4-carboxamide Chemical compound CCOC1=NN=C(C=2C(=CC=C(NC(=O)C=3C=C(N=CC=3)C(C)(C)C#N)C=2)C)C=C1N1CCOC[C@H]1C JXLJQOYOBGFKKR-LJQANCHMSA-N 0.000 claims 1
- JXLJQOYOBGFKKR-IBGZPJMESA-N 2-(2-cyanopropan-2-yl)-n-[3-[6-ethoxy-5-[(3s)-3-methylmorpholin-4-yl]pyridazin-3-yl]-4-methylphenyl]pyridine-4-carboxamide Chemical compound CCOC1=NN=C(C=2C(=CC=C(NC(=O)C=3C=C(N=CC=3)C(C)(C)C#N)C=2)C)C=C1N1CCOC[C@@H]1C JXLJQOYOBGFKKR-IBGZPJMESA-N 0.000 claims 1
- OEJFUUXOBQVTCG-UHFFFAOYSA-N 2-(2-cyanopropan-2-yl)-n-[4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)phenyl]pyridine-4-carboxamide Chemical compound C1=C(C2=CN(C)C(=O)C(N3CCOCC3)=C2)C(C)=CC=C1NC(=O)C1=CC=NC(C(C)(C)C#N)=C1 OEJFUUXOBQVTCG-UHFFFAOYSA-N 0.000 claims 1
- PKLRBGAQQDIHST-UHFFFAOYSA-N 2-(2-cyanopropan-2-yl)-n-[4-methyl-3-(1-methyl-7-morpholin-4-ylpyrazolo[4,3-d]pyrimidin-5-yl)phenyl]pyridine-4-carboxamide Chemical compound C1=C(C=2N=C3C=NN(C)C3=C(N3CCOCC3)N=2)C(C)=CC=C1NC(=O)C1=CC=NC(C(C)(C)C#N)=C1 PKLRBGAQQDIHST-UHFFFAOYSA-N 0.000 claims 1
- ZVINRJBBUUYHRX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yl)-n-[4-methyl-3-(2-morpholin-4-ylpyridin-4-yl)phenyl]pyridine-4-carboxamide Chemical compound C1=C(C=2C=C(N=CC=2)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CC=NC(C(C)(C)C#N)=C1 ZVINRJBBUUYHRX-UHFFFAOYSA-N 0.000 claims 1
- ZDROHJHWUJJQRS-UHFFFAOYSA-N 2-(2-cyanopropan-2-yl)-n-[4-methyl-3-(4-morpholin-4-yl-5h-pyrrolo[3,2-d]pyrimidin-2-yl)phenyl]pyridine-4-carboxamide Chemical compound C1=C(C=2N=C3C=CNC3=C(N3CCOCC3)N=2)C(C)=CC=C1NC(=O)C1=CC=NC(C(C)(C)C#N)=C1 ZDROHJHWUJJQRS-UHFFFAOYSA-N 0.000 claims 1
- OBNSXLCGQZZEPT-UHFFFAOYSA-N 2-(2-cyanopropan-2-yl)-n-[4-methyl-3-(4-morpholin-4-ylthieno[3,2-d]pyrimidin-2-yl)phenyl]pyridine-4-carboxamide Chemical compound C1=C(C=2N=C3C=CSC3=C(N3CCOCC3)N=2)C(C)=CC=C1NC(=O)C1=CC=NC(C(C)(C)C#N)=C1 OBNSXLCGQZZEPT-UHFFFAOYSA-N 0.000 claims 1
- WYOQZZQRRFKXAE-UHFFFAOYSA-N 2-(2-cyanopropan-2-yl)-n-[4-methyl-3-(5-morpholin-4-yl-6-propan-2-yloxypyridazin-3-yl)phenyl]pyridine-4-carboxamide Chemical compound CC(C)OC1=NN=C(C=2C(=CC=C(NC(=O)C=3C=C(N=CC=3)C(C)(C)C#N)C=2)C)C=C1N1CCOCC1 WYOQZZQRRFKXAE-UHFFFAOYSA-N 0.000 claims 1
- GBCBASDHIVYBSQ-UHFFFAOYSA-N 2-(2-cyanopropan-2-yl)-n-[4-methyl-3-(6-methylsulfonyl-5-morpholin-4-ylpyridazin-3-yl)phenyl]pyridine-4-carboxamide Chemical compound C1=C(C=2N=NC(=C(N3CCOCC3)C=2)S(C)(=O)=O)C(C)=CC=C1NC(=O)C1=CC=NC(C(C)(C)C#N)=C1 GBCBASDHIVYBSQ-UHFFFAOYSA-N 0.000 claims 1
- FYGPVPWZKUOBTA-UHFFFAOYSA-N 2-(2-cyanopropan-2-yl)-n-[4-methyl-3-(6-morpholin-4-ylpyrimidin-4-yl)phenyl]pyridine-4-carboxamide Chemical compound C1=C(C=2N=CN=C(C=2)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CC=NC(C(C)(C)C#N)=C1 FYGPVPWZKUOBTA-UHFFFAOYSA-N 0.000 claims 1
- RREFDZUZLSRWEE-UHFFFAOYSA-N 2-(2-cyanopropan-2-yl)-n-[4-methyl-3-(8-morpholin-4-ylimidazo[1,2-a]pyrazin-6-yl)phenyl]pyridine-4-carboxamide Chemical compound C1=C(C=2N=C(C3=NC=CN3C=2)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CC=NC(C(C)(C)C#N)=C1 RREFDZUZLSRWEE-UHFFFAOYSA-N 0.000 claims 1
- DWUGRCWNRAZKQO-UHFFFAOYSA-N 2-(2-cyanopropan-2-yl)-n-[4-methyl-3-(8-morpholin-4-ylimidazo[1,2-a]pyridin-6-yl)phenyl]pyridine-4-carboxamide Chemical compound C1=C(C2=CN3C=CN=C3C(N3CCOCC3)=C2)C(C)=CC=C1NC(=O)C1=CC=NC(C(C)(C)C#N)=C1 DWUGRCWNRAZKQO-UHFFFAOYSA-N 0.000 claims 1
- ZBFKCXHPWMKSLK-UHFFFAOYSA-N 2-(2-cyanopropan-2-yl)-n-[4-methyl-3-[1-[(3-methyloxetan-3-yl)methyl]-5-morpholin-4-yl-6-oxopyridin-3-yl]phenyl]pyridine-4-carboxamide Chemical compound C1=C(C2=CN(CC3(C)COC3)C(=O)C(N3CCOCC3)=C2)C(C)=CC=C1NC(=O)C1=CC=NC(C(C)(C)C#N)=C1 ZBFKCXHPWMKSLK-UHFFFAOYSA-N 0.000 claims 1
- FOEBTHJGCIVNGO-UHFFFAOYSA-N 2-(2-cyanopropan-2-yl)-n-[4-methyl-3-[1-methyl-5-(3-oxa-8-azabicyclo[3.2.1]octan-8-yl)-6-oxopyridazin-3-yl]phenyl]pyridine-4-carboxamide Chemical compound C1=C(C2=NN(C)C(=O)C(N3C4CCC3COC4)=C2)C(C)=CC=C1NC(=O)C1=CC=NC(C(C)(C)C#N)=C1 FOEBTHJGCIVNGO-UHFFFAOYSA-N 0.000 claims 1
- NTXSAOJYDKTZPA-UHFFFAOYSA-N 2-(2-cyanopropan-2-yl)-n-[4-methyl-3-[1-methyl-5-(oxan-4-yl)-6-oxopyridazin-3-yl]phenyl]pyridine-4-carboxamide Chemical compound C1=C(C2=NN(C)C(=O)C(C3CCOCC3)=C2)C(C)=CC=C1NC(=O)C1=CC=NC(C(C)(C)C#N)=C1 NTXSAOJYDKTZPA-UHFFFAOYSA-N 0.000 claims 1
- SJOZGWWCZVOWLR-GOSISDBHSA-N 2-(2-cyanopropan-2-yl)-n-[4-methyl-3-[1-methyl-5-[(3r)-3-methylmorpholin-4-yl]-6-oxopyridazin-3-yl]phenyl]pyridine-4-carboxamide Chemical compound C[C@@H]1COCCN1C1=CC(C=2C(=CC=C(NC(=O)C=3C=C(N=CC=3)C(C)(C)C#N)C=2)C)=NN(C)C1=O SJOZGWWCZVOWLR-GOSISDBHSA-N 0.000 claims 1
- SJOZGWWCZVOWLR-SFHVURJKSA-N 2-(2-cyanopropan-2-yl)-n-[4-methyl-3-[1-methyl-5-[(3s)-3-methylmorpholin-4-yl]-6-oxopyridazin-3-yl]phenyl]pyridine-4-carboxamide Chemical compound C[C@H]1COCCN1C1=CC(C=2C(=CC=C(NC(=O)C=3C=C(N=CC=3)C(C)(C)C#N)C=2)C)=NN(C)C1=O SJOZGWWCZVOWLR-SFHVURJKSA-N 0.000 claims 1
- WWYRVCWQGYBXSH-HSZRJFAPSA-N 2-(2-cyanopropan-2-yl)-n-[4-methyl-3-[2-[(2r)-2-(methylaminomethyl)morpholin-4-yl]pyridin-4-yl]phenyl]pyridine-4-carboxamide Chemical compound C1CO[C@H](CNC)CN1C1=CC(C=2C(=CC=C(NC(=O)C=3C=C(N=CC=3)C(C)(C)C#N)C=2)C)=CC=N1 WWYRVCWQGYBXSH-HSZRJFAPSA-N 0.000 claims 1
- JWBUKPMOLLPTEL-LJQANCHMSA-N 2-(2-cyanopropan-2-yl)-n-[4-methyl-3-[2-[(3r)-3-methylmorpholin-4-yl]pyridin-4-yl]phenyl]pyridine-4-carboxamide Chemical compound C[C@@H]1COCCN1C1=CC(C=2C(=CC=C(NC(=O)C=3C=C(N=CC=3)C(C)(C)C#N)C=2)C)=CC=N1 JWBUKPMOLLPTEL-LJQANCHMSA-N 0.000 claims 1
- YWXHCAQISAEKBP-UHFFFAOYSA-N 2-(2-cyanopropan-2-yl)-n-[4-methyl-3-[2-morpholin-4-yl-6-(oxan-4-yl)pyridin-4-yl]phenyl]pyridine-4-carboxamide Chemical compound C1=C(C=2C=C(N=C(C=2)C2CCOCC2)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CC=NC(C(C)(C)C#N)=C1 YWXHCAQISAEKBP-UHFFFAOYSA-N 0.000 claims 1
- RTBNNSJDMQCXGZ-UHFFFAOYSA-N 2-(2-cyanopropan-2-yl)-n-[4-methyl-3-[2-morpholin-4-yl-6-(oxan-4-yloxy)pyridin-4-yl]phenyl]pyridine-4-carboxamide Chemical compound C1=C(C=2C=C(N=C(OC3CCOCC3)C=2)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CC=NC(C(C)(C)C#N)=C1 RTBNNSJDMQCXGZ-UHFFFAOYSA-N 0.000 claims 1
- ATAYJURVWAXKBD-GOSISDBHSA-N 2-(2-cyanopropan-2-yl)-n-[4-methyl-3-[4-[(3r)-3-methylmorpholin-4-yl]-1h-imidazo[4,5-c]pyridin-6-yl]phenyl]pyridine-4-carboxamide Chemical compound C[C@@H]1COCCN1C1=NC(C=2C(=CC=C(NC(=O)C=3C=C(N=CC=3)C(C)(C)C#N)C=2)C)=CC2=C1N=CN2 ATAYJURVWAXKBD-GOSISDBHSA-N 0.000 claims 1
- OELJPWILBPNDSB-UHFFFAOYSA-N 2-(2-cyanopropan-2-yl)-n-[5-(5-ethoxy-6-morpholin-4-ylpyrazin-2-yl)-6-methylpyridin-3-yl]pyridine-4-carboxamide Chemical compound CCOC1=NC=C(C=2C(=NC=C(NC(=O)C=3C=C(N=CC=3)C(C)(C)C#N)C=2)C)N=C1N1CCOCC1 OELJPWILBPNDSB-UHFFFAOYSA-N 0.000 claims 1
- YCUFYTVPBGVRKN-UHFFFAOYSA-N 2-(2-cyanopropan-2-yl)-n-[5-(5-methoxy-6-morpholin-4-ylpyrazin-2-yl)-6-methylpyridin-3-yl]pyridine-4-carboxamide Chemical compound COC1=NC=C(C=2C(=NC=C(NC(=O)C=3C=C(N=CC=3)C(C)(C)C#N)C=2)C)N=C1N1CCOCC1 YCUFYTVPBGVRKN-UHFFFAOYSA-N 0.000 claims 1
- FKJAVKCHUOECHM-UHFFFAOYSA-N 2-(2-cyanopropan-2-yl)-n-[5-(6-ethoxy-5-morpholin-4-ylpyridazin-3-yl)-6-methylpyridin-3-yl]pyridine-4-carboxamide Chemical compound CCOC1=NN=C(C=2C(=NC=C(NC(=O)C=3C=C(N=CC=3)C(C)(C)C#N)C=2)C)C=C1N1CCOCC1 FKJAVKCHUOECHM-UHFFFAOYSA-N 0.000 claims 1
- STHQWWOCJPWQET-UHFFFAOYSA-N 2-(2-cyanopropan-2-yl)-n-[5-(6-methoxy-5-morpholin-4-ylpyridin-3-yl)-6-methylpyridin-3-yl]pyridine-4-carboxamide Chemical compound COC1=NC=C(C=2C(=NC=C(NC(=O)C=3C=C(N=CC=3)C(C)(C)C#N)C=2)C)C=C1N1CCOCC1 STHQWWOCJPWQET-UHFFFAOYSA-N 0.000 claims 1
- DEMGQTZMUXZFMW-QGZVFWFLSA-N 2-(2-cyanopropan-2-yl)-n-[5-[2-[[(2r)-2-hydroxypropyl]amino]-6-morpholin-4-ylpyrimidin-4-yl]-6-methylpyridin-3-yl]pyridine-4-carboxamide Chemical compound N=1C(NC[C@H](O)C)=NC(N2CCOCC2)=CC=1C(C(=NC=1)C)=CC=1NC(=O)C1=CC=NC(C(C)(C)C#N)=C1 DEMGQTZMUXZFMW-QGZVFWFLSA-N 0.000 claims 1
- SFAHMYNGMYEECP-UHFFFAOYSA-N 2-(2-cyanopropan-2-yl)-n-[6-methyl-5-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)pyridin-3-yl]pyridine-4-carboxamide Chemical compound C1=C(C2=CN(C)C(=O)C(N3CCOCC3)=C2)C(C)=NC=C1NC(=O)C1=CC=NC(C(C)(C)C#N)=C1 SFAHMYNGMYEECP-UHFFFAOYSA-N 0.000 claims 1
- CFSCYQHLBXZELG-UHFFFAOYSA-N 2-(2-cyanopropan-2-yl)-n-[6-methyl-5-(2-morpholin-4-ylpyridin-4-yl)pyridin-3-yl]pyridine-4-carboxamide Chemical compound C1=C(C=2C=C(N=CC=2)N2CCOCC2)C(C)=NC=C1NC(=O)C1=CC=NC(C(C)(C)C#N)=C1 CFSCYQHLBXZELG-UHFFFAOYSA-N 0.000 claims 1
- BLCGNWQPHHXRSB-UHFFFAOYSA-N 2-(2-cyanopropan-2-yl)-n-[6-methyl-5-(5-morpholin-4-yl-6-propan-2-yloxypyridin-3-yl)pyridin-3-yl]pyridine-4-carboxamide Chemical compound CC(C)OC1=NC=C(C=2C(=NC=C(NC(=O)C=3C=C(N=CC=3)C(C)(C)C#N)C=2)C)C=C1N1CCOCC1 BLCGNWQPHHXRSB-UHFFFAOYSA-N 0.000 claims 1
- DFLKCKWPMUYANV-UHFFFAOYSA-N 2-(2-cyanopropan-2-yl)-n-[6-methyl-5-(6-methylsulfonyl-5-morpholin-4-ylpyridazin-3-yl)pyridin-3-yl]pyridine-4-carboxamide Chemical compound C1=C(C=2N=NC(=C(N3CCOCC3)C=2)S(C)(=O)=O)C(C)=NC=C1NC(=O)C1=CC=NC(C(C)(C)C#N)=C1 DFLKCKWPMUYANV-UHFFFAOYSA-N 0.000 claims 1
- SCBYYAPNCVURIO-UHFFFAOYSA-N 2-(2-cyanopropan-2-yl)-n-[6-methyl-5-(6-morpholin-4-ylpyrazin-2-yl)pyridin-3-yl]pyridine-4-carboxamide Chemical compound C1=C(C=2N=C(C=NC=2)N2CCOCC2)C(C)=NC=C1NC(=O)C1=CC=NC(C(C)(C)C#N)=C1 SCBYYAPNCVURIO-UHFFFAOYSA-N 0.000 claims 1
- OOIKYASLMYEFKB-UHFFFAOYSA-N 2-(2-cyanopropan-2-yl)-n-[6-methyl-5-[5-morpholin-4-yl-6-(oxan-4-yloxy)pyridazin-3-yl]pyridin-3-yl]pyridine-4-carboxamide Chemical compound C1=C(C=2N=NC(OC3CCOCC3)=C(N3CCOCC3)C=2)C(C)=NC=C1NC(=O)C1=CC=NC(C(C)(C)C#N)=C1 OOIKYASLMYEFKB-UHFFFAOYSA-N 0.000 claims 1
- HVWIIQBUQNFOCS-UHFFFAOYSA-N 2-(2-fluoropropan-2-yl)-N-[3-[6-(2-hydroxyethoxy)-5-morpholin-4-ylpyridazin-3-yl]-4-methylphenyl]pyridine-4-carboxamide Chemical compound FC(C)(C)C=1C=C(C(=O)NC2=CC(=C(C=C2)C)C=2N=NC(=C(C=2)N2CCOCC2)OCCO)C=CN=1 HVWIIQBUQNFOCS-UHFFFAOYSA-N 0.000 claims 1
- RNLUHDJLAXPLES-GOSISDBHSA-N 2-(2-fluoropropan-2-yl)-N-[3-[6-[[(2R)-2-hydroxypropyl]amino]-2-morpholin-4-ylpyrimidin-4-yl]-4-methylphenyl]pyridine-4-carboxamide Chemical compound FC(C)(C)C=1C=C(C(=O)NC2=CC(=C(C=C2)C)C2=NC(=NC(=C2)NC[C@@H](C)O)N2CCOCC2)C=CN=1 RNLUHDJLAXPLES-GOSISDBHSA-N 0.000 claims 1
- KARIECUMVMXLLT-UHFFFAOYSA-N 2-(2-fluoropropan-2-yl)-N-[4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)phenyl]pyridine-4-carboxamide Chemical compound Cc1ccc(NC(=O)c2ccnc(c2)C(C)(C)F)cc1-c1cc(N2CCOCC2)c(=O)n(C)c1 KARIECUMVMXLLT-UHFFFAOYSA-N 0.000 claims 1
- GGGFTTMBYHTHTO-UHFFFAOYSA-N 2-(2-fluoropropan-2-yl)-N-[4-methyl-3-(6-methylsulfonyl-5-morpholin-4-ylpyridazin-3-yl)phenyl]pyridine-4-carboxamide Chemical compound Cc1ccc(NC(=O)c2ccnc(c2)C(C)(C)F)cc1-c1cc(N2CCOCC2)c(nn1)S(C)(=O)=O GGGFTTMBYHTHTO-UHFFFAOYSA-N 0.000 claims 1
- OGOVBSKQEHIWCH-UHFFFAOYSA-N 2-(2-fluoropropan-2-yl)-N-[5-(6-methoxy-5-morpholin-4-ylpyridin-3-yl)-6-methylpyridin-3-yl]pyridine-4-carboxamide Chemical compound COC1=C(C=C(C=N1)C=1C(=NC=C(C=1)NC(C1=CC(=NC=C1)C(C)(C)F)=O)C)N1CCOCC1 OGOVBSKQEHIWCH-UHFFFAOYSA-N 0.000 claims 1
- IKRWPOVNCZKZBX-QGZVFWFLSA-N 2-(2-fluoropropan-2-yl)-N-[5-[2-(2-hydroxyethylamino)-6-[(3R)-3-methylmorpholin-4-yl]pyridin-4-yl]-6-methylpyridin-3-yl]pyridine-4-carboxamide Chemical compound FC(C)(C)C=1C=C(C(=O)NC=2C=C(C(=NC=2)C)C2=CC(=NC(=C2)N2[C@@H](COCC2)C)NCCO)C=CN=1 IKRWPOVNCZKZBX-QGZVFWFLSA-N 0.000 claims 1
- UKMWTHFEMDICMY-UHFFFAOYSA-N 2-(2-fluoropropan-2-yl)-N-[5-[2-(2-hydroxyethylamino)-6-morpholin-4-ylpyridin-4-yl]-6-methylpyridin-3-yl]pyridine-4-carboxamide Chemical compound FC(C)(C)C=1C=C(C(=O)NC=2C=C(C(=NC=2)C)C2=CC(=NC(=C2)N2CCOCC2)NCCO)C=CN=1 UKMWTHFEMDICMY-UHFFFAOYSA-N 0.000 claims 1
- JRLPAGHYXHPMSA-UHFFFAOYSA-N 2-(2-fluoropropan-2-yl)-N-[5-[2-(3-hydroxy-3-methylazetidin-1-yl)-6-morpholin-4-ylpyridin-4-yl]-6-methylpyridin-3-yl]pyridine-4-carboxamide Chemical compound FC(C)(C)C=1C=C(C(=O)NC=2C=C(C(=NC=2)C)C2=CC(=NC(=C2)N2CCOCC2)N2CC(C2)(C)O)C=CN=1 JRLPAGHYXHPMSA-UHFFFAOYSA-N 0.000 claims 1
- IQMIDCUMDOPUNC-UHFFFAOYSA-N 2-(2-fluoropropan-2-yl)-N-[5-[6-(2-hydroxyethoxy)-5-morpholin-4-ylpyridin-3-yl]-6-methylpyridin-3-yl]pyridine-4-carboxamide Chemical compound FC(C)(C)C=1C=C(C(=O)NC=2C=C(C(=NC=2)C)C=2C=NC(=C(C=2)N2CCOCC2)OCCO)C=CN=1 IQMIDCUMDOPUNC-UHFFFAOYSA-N 0.000 claims 1
- RJPRFPHPVZTZHP-KRWDZBQOSA-N 2-(2-fluoropropan-2-yl)-N-[5-[6-[(2S)-2-hydroxypropoxy]-5-morpholin-4-ylpyridin-3-yl]-6-methylpyridin-3-yl]pyridine-4-carboxamide Chemical compound C[C@H](O)COC1=C(C=C(C=N1)C1=CC(NC(=O)C2=CC(=NC=C2)C(C)(C)F)=CN=C1C)N1CCOCC1 RJPRFPHPVZTZHP-KRWDZBQOSA-N 0.000 claims 1
- MOUAKHSIRKLVDE-UHFFFAOYSA-N 2-(2-fluoropropan-2-yl)-N-[6-methyl-5-(1-methyl-5-morpholin-4-yl-6-oxopyridazin-3-yl)pyridin-3-yl]pyridine-4-carboxamide Chemical compound Cc1ncc(NC(=O)c2ccnc(c2)C(C)(C)F)cc1-c1cc(N2CCOCC2)c(=O)n(C)n1 MOUAKHSIRKLVDE-UHFFFAOYSA-N 0.000 claims 1
- YMRIILPEHZRPKK-UHFFFAOYSA-N 2-(2-fluoropropan-2-yl)-N-[6-methyl-5-(5-morpholin-4-yl-6-propan-2-yloxypyridin-3-yl)pyridin-3-yl]pyridine-4-carboxamide Chemical compound FC(C)(C)C=1C=C(C(=O)NC=2C=C(C(=NC=2)C)C=2C=NC(=C(C=2)N2CCOCC2)OC(C)C)C=CN=1 YMRIILPEHZRPKK-UHFFFAOYSA-N 0.000 claims 1
- OMYZBHJKPOMAFO-UHFFFAOYSA-N 2-(2-fluoropropan-2-yl)-N-[6-methyl-5-(5-morpholin-4-ylpyridin-3-yl)pyridin-3-yl]pyridine-4-carboxamide Chemical compound FC(C)(C)C=1C=C(C(=O)NC=2C=C(C(=NC=2)C)C=2C=NC=C(C=2)N2CCOCC2)C=CN=1 OMYZBHJKPOMAFO-UHFFFAOYSA-N 0.000 claims 1
- YHXBIRRLTLYTEO-UHFFFAOYSA-N 2-(2-fluoropropan-2-yl)-N-[6-methyl-5-[5-(3-oxa-8-azabicyclo[3.2.1]octan-8-yl)-6-(oxan-4-yloxy)pyridin-3-yl]pyridin-3-yl]pyridine-4-carboxamide Chemical compound C12COCC(CC1)N2C=1C=C(C=NC=1OC1CCOCC1)C=1C(=NC=C(C=1)NC(C1=CC(=NC=C1)C(C)(C)F)=O)C YHXBIRRLTLYTEO-UHFFFAOYSA-N 0.000 claims 1
- IRIGYQNVLRIJJA-UHFFFAOYSA-N 2-(2-fluoropropan-2-yl)-N-[6-methyl-5-[5-morpholin-4-yl-6-(2-oxaspiro[3.3]heptan-6-yloxy)pyridin-3-yl]pyridin-3-yl]pyridine-4-carboxamide Chemical compound C1OCC11CC(C1)OC1=C(C=C(C=N1)C=1C(=NC=C(C=1)NC(C1=CC(=NC=C1)C(C)(C)F)=O)C)N1CCOCC1 IRIGYQNVLRIJJA-UHFFFAOYSA-N 0.000 claims 1
- RKVMOBCSEVFUTD-UHFFFAOYSA-N 2-(2-fluoropropan-2-yl)-N-[6-methyl-5-[5-morpholin-4-yl-6-(oxan-4-yloxy)pyridazin-3-yl]pyridin-3-yl]pyridine-4-carboxamide Chemical compound FC(C)(C)C=1C=C(C(=O)NC=2C=NC(=C(C=2)C=2N=NC(=C(C=2)N2CCOCC2)OC2CCOCC2)C)C=CN=1 RKVMOBCSEVFUTD-UHFFFAOYSA-N 0.000 claims 1
- PBYLPDCMJHIFLM-UHFFFAOYSA-N 2-(2-fluoropropan-2-yl)-N-[6-methyl-5-[5-morpholin-4-yl-6-(oxan-4-yloxy)pyridin-3-yl]pyridin-3-yl]pyridine-4-carboxamide Chemical compound FC(C)(C)C=1C=C(C(=O)NC=2C=C(C(=NC=2)C)C=2C=NC(=C(C=2)N2CCOCC2)OC2CCOCC2)C=CN=1 PBYLPDCMJHIFLM-UHFFFAOYSA-N 0.000 claims 1
- SDIALWKFQDWRQM-UHFFFAOYSA-N 2-(2-fluoropropan-2-yl)-n-[3-[2-(2-hydroxyethoxy)-6-morpholin-4-ylpyridin-4-yl]-4-methylphenyl]pyridine-4-carboxamide Chemical compound C1=C(C=2C=C(N=C(OCCO)C=2)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CC=NC(C(C)(C)F)=C1 SDIALWKFQDWRQM-UHFFFAOYSA-N 0.000 claims 1
- IIFWSFBWNGNUAF-UHFFFAOYSA-N 2-(2-fluoropropan-2-yl)-n-[3-[6-(2-hydroxyethoxy)-5-morpholin-4-ylpyridin-3-yl]-4-methylphenyl]pyridine-4-carboxamide Chemical compound C1=C(C=2C=C(C(OCCO)=NC=2)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CC=NC(C(C)(C)F)=C1 IIFWSFBWNGNUAF-UHFFFAOYSA-N 0.000 claims 1
- SBBUFHIBOBVZBO-UHFFFAOYSA-N 2-(2-fluoropropan-2-yl)-n-[3-[6-(2-methoxyethoxy)-5-morpholin-4-ylpyridazin-3-yl]-4-methylphenyl]pyridine-4-carboxamide Chemical compound COCCOC1=NN=C(C=2C(=CC=C(NC(=O)C=3C=C(N=CC=3)C(C)(C)F)C=2)C)C=C1N1CCOCC1 SBBUFHIBOBVZBO-UHFFFAOYSA-N 0.000 claims 1
- QBSGBBKYIBHYLQ-UHFFFAOYSA-N 2-(2-fluoropropan-2-yl)-n-[4-methyl-3-(1-methyl-2-morpholin-4-yl-6-oxopyridin-4-yl)phenyl]pyridine-4-carboxamide Chemical compound C1=C(C2=CC(=O)N(C)C(N3CCOCC3)=C2)C(C)=CC=C1NC(=O)C1=CC=NC(C(C)(C)F)=C1 QBSGBBKYIBHYLQ-UHFFFAOYSA-N 0.000 claims 1
- AKCLRSIFAYFSML-UHFFFAOYSA-N 2-(2-fluoropropan-2-yl)-n-[4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridazin-3-yl)phenyl]pyridine-4-carboxamide Chemical compound C1=C(C2=NN(C)C(=O)C(N3CCOCC3)=C2)C(C)=CC=C1NC(=O)C1=CC=NC(C(C)(C)F)=C1 AKCLRSIFAYFSML-UHFFFAOYSA-N 0.000 claims 1
- GNNHCLHJDZIHMO-UHFFFAOYSA-N 2-(2-fluoropropan-2-yl)-n-[4-methyl-3-(5-morpholin-4-yl-6-propan-2-yloxypyridazin-3-yl)phenyl]pyridine-4-carboxamide Chemical compound CC(C)OC1=NN=C(C=2C(=CC=C(NC(=O)C=3C=C(N=CC=3)C(C)(C)F)C=2)C)C=C1N1CCOCC1 GNNHCLHJDZIHMO-UHFFFAOYSA-N 0.000 claims 1
- LNOAMNCMSRLXSH-UHFFFAOYSA-N 2-(2-fluoropropan-2-yl)-n-[4-methyl-3-(5-morpholin-4-yl-6-propan-2-yloxypyridin-3-yl)phenyl]pyridine-4-carboxamide Chemical compound CC(C)OC1=NC=C(C=2C(=CC=C(NC(=O)C=3C=C(N=CC=3)C(C)(C)F)C=2)C)C=C1N1CCOCC1 LNOAMNCMSRLXSH-UHFFFAOYSA-N 0.000 claims 1
- XYTNZNOJPWGSCJ-UHFFFAOYSA-N 2-(2-fluoropropan-2-yl)-n-[4-methyl-3-[1-methyl-5-(3-oxa-8-azabicyclo[3.2.1]octan-8-yl)-6-oxopyridazin-3-yl]phenyl]pyridine-4-carboxamide Chemical compound C1=C(C2=NN(C)C(=O)C(N3C4CCC3COC4)=C2)C(C)=CC=C1NC(=O)C1=CC=NC(C(C)(C)F)=C1 XYTNZNOJPWGSCJ-UHFFFAOYSA-N 0.000 claims 1
- INPBSMUPRHWCCD-UHFFFAOYSA-N 2-(2-fluoropropan-2-yl)-n-[4-methyl-3-[1-methyl-5-(oxan-4-yl)-6-oxopyridazin-3-yl]phenyl]pyridine-4-carboxamide Chemical compound C1=C(C2=NN(C)C(=O)C(C3CCOCC3)=C2)C(C)=CC=C1NC(=O)C1=CC=NC(C(C)(C)F)=C1 INPBSMUPRHWCCD-UHFFFAOYSA-N 0.000 claims 1
- CPJKUNGRXXQWFE-QGZVFWFLSA-N 2-(2-fluoropropan-2-yl)-n-[4-methyl-3-[1-methyl-5-[(3r)-3-methylmorpholin-4-yl]-6-oxopyridazin-3-yl]phenyl]pyridine-4-carboxamide Chemical compound C[C@@H]1COCCN1C1=CC(C=2C(=CC=C(NC(=O)C=3C=C(N=CC=3)C(C)(C)F)C=2)C)=NN(C)C1=O CPJKUNGRXXQWFE-QGZVFWFLSA-N 0.000 claims 1
- CPJKUNGRXXQWFE-KRWDZBQOSA-N 2-(2-fluoropropan-2-yl)-n-[4-methyl-3-[1-methyl-5-[(3s)-3-methylmorpholin-4-yl]-6-oxopyridazin-3-yl]phenyl]pyridine-4-carboxamide Chemical compound C[C@H]1COCCN1C1=CC(C=2C(=CC=C(NC(=O)C=3C=C(N=CC=3)C(C)(C)F)C=2)C)=NN(C)C1=O CPJKUNGRXXQWFE-KRWDZBQOSA-N 0.000 claims 1
- IBQHTAUNXNWAJI-UHFFFAOYSA-N 2-(2-fluoropropan-2-yl)-n-[4-methyl-3-[5-morpholin-4-yl-6-(oxan-4-yloxy)pyridazin-3-yl]phenyl]pyridine-4-carboxamide Chemical compound C1=C(C=2N=NC(OC3CCOCC3)=C(N3CCOCC3)C=2)C(C)=CC=C1NC(=O)C1=CC=NC(C(C)(C)F)=C1 IBQHTAUNXNWAJI-UHFFFAOYSA-N 0.000 claims 1
- CSXBZENXISTQRF-UHFFFAOYSA-N 2-(2-fluoropropan-2-yl)-n-[5-(5-methoxy-6-morpholin-4-ylpyrazin-2-yl)-6-methylpyridin-3-yl]pyridine-4-carboxamide Chemical compound COC1=NC=C(C=2C(=NC=C(NC(=O)C=3C=C(N=CC=3)C(C)(C)F)C=2)C)N=C1N1CCOCC1 CSXBZENXISTQRF-UHFFFAOYSA-N 0.000 claims 1
- JORGFTCEEZTRKF-UHFFFAOYSA-N 2-(2-fluoropropan-2-yl)-n-[5-(6-methoxy-5-morpholin-4-ylpyridazin-3-yl)-6-methylpyridin-3-yl]pyridine-4-carboxamide Chemical compound COC1=NN=C(C=2C(=NC=C(NC(=O)C=3C=C(N=CC=3)C(C)(C)F)C=2)C)C=C1N1CCOCC1 JORGFTCEEZTRKF-UHFFFAOYSA-N 0.000 claims 1
- YUXXJWIWUYMVOD-UHFFFAOYSA-N 2-(2-fluoropropan-2-yl)-n-[6-methyl-5-(5-morpholin-4-yl-6-propan-2-yloxypyridazin-3-yl)pyridin-3-yl]pyridine-4-carboxamide Chemical compound CC(C)OC1=NN=C(C=2C(=NC=C(NC(=O)C=3C=C(N=CC=3)C(C)(C)F)C=2)C)C=C1N1CCOCC1 YUXXJWIWUYMVOD-UHFFFAOYSA-N 0.000 claims 1
- JCCDDEBFSGDCSJ-UHFFFAOYSA-N 2-(2-fluoropropan-2-yl)-n-[6-methyl-5-(6-methylsulfonyl-5-morpholin-4-ylpyridazin-3-yl)pyridin-3-yl]pyridine-4-carboxamide Chemical compound C1=C(C=2N=NC(=C(N3CCOCC3)C=2)S(C)(=O)=O)C(C)=NC=C1NC(=O)C1=CC=NC(C(C)(C)F)=C1 JCCDDEBFSGDCSJ-UHFFFAOYSA-N 0.000 claims 1
- XUVPYKFKJGLDMA-UHFFFAOYSA-N 2-(2-fluoropropan-2-yl)-n-[6-methyl-5-(6-morpholin-4-ylpyrazin-2-yl)pyridin-3-yl]pyridine-4-carboxamide Chemical compound C1=C(C=2N=C(C=NC=2)N2CCOCC2)C(C)=NC=C1NC(=O)C1=CC=NC(C(C)(C)F)=C1 XUVPYKFKJGLDMA-UHFFFAOYSA-N 0.000 claims 1
- PNCDPHGISBXBNA-UHFFFAOYSA-N 2-(2-fluoropropan-2-yl)-n-[6-methyl-5-(7-morpholin-4-ylpyrazolo[1,5-a]pyrimidin-5-yl)pyridin-3-yl]pyridine-4-carboxamide Chemical compound C1=C(C2=NC3=CC=NN3C(N3CCOCC3)=C2)C(C)=NC=C1NC(=O)C1=CC=NC(C(C)(C)F)=C1 PNCDPHGISBXBNA-UHFFFAOYSA-N 0.000 claims 1
- UMLXWPRANJDICW-UHFFFAOYSA-N 2-(2-hydroxypropan-2-yl)-N-[4-methyl-3-(1-methyl-2-morpholin-4-yl-6-oxopyridin-4-yl)phenyl]pyridine-4-carboxamide Chemical compound Cc1ccc(NC(=O)c2ccnc(c2)C(C)(C)O)cc1-c1cc(N2CCOCC2)n(C)c(=O)c1 UMLXWPRANJDICW-UHFFFAOYSA-N 0.000 claims 1
- HAJLKSINYKZUTH-UHFFFAOYSA-N 2-(2-hydroxypropan-2-yl)-N-[4-methyl-3-(6-methylsulfonyl-5-morpholin-4-ylpyridazin-3-yl)phenyl]pyridine-4-carboxamide Chemical compound Cc1ccc(NC(=O)c2ccnc(c2)C(C)(C)O)cc1-c1cc(N2CCOCC2)c(nn1)S(C)(=O)=O HAJLKSINYKZUTH-UHFFFAOYSA-N 0.000 claims 1
- STIYPATXJJTIKY-UHFFFAOYSA-N 2-(2-hydroxypropan-2-yl)-N-[4-methyl-3-[5-morpholin-4-yl-6-(oxan-4-yloxy)pyridazin-3-yl]phenyl]pyridine-4-carboxamide Chemical compound Cc1ccc(NC(=O)c2ccnc(c2)C(C)(C)O)cc1-c1cc(N2CCOCC2)c(OC2CCOCC2)nn1 STIYPATXJJTIKY-UHFFFAOYSA-N 0.000 claims 1
- ZMDDHZFVGAPHBR-UHFFFAOYSA-N 2-(2-hydroxypropan-2-yl)-N-[6-methyl-5-(1-methyl-2-morpholin-4-yl-6-oxopyridin-4-yl)pyridin-3-yl]pyridine-4-carboxamide Chemical compound CN1C(C=C(C=C1N1CCOCC1)C=1C(=NC=C(C=1)NC(C1=CC(=NC=C1)C(C)(C)O)=O)C)=O ZMDDHZFVGAPHBR-UHFFFAOYSA-N 0.000 claims 1
- LAGMJAXJZZEEFB-UHFFFAOYSA-N 2-(2-hydroxypropan-2-yl)-N-[6-methyl-5-(5-morpholin-4-yl-6-propan-2-yloxypyridin-3-yl)pyridin-3-yl]pyridine-4-carboxamide Chemical compound CC(C)Oc1ncc(cc1N1CCOCC1)-c1cc(NC(=O)c2ccnc(c2)C(C)(C)O)cnc1C LAGMJAXJZZEEFB-UHFFFAOYSA-N 0.000 claims 1
- ZODAQPSKPUMXIS-UHFFFAOYSA-N 2-(2-hydroxypropan-2-yl)-N-[6-methyl-5-[5-morpholin-4-yl-6-(2-oxaspiro[3.3]heptan-6-yloxy)pyridin-3-yl]pyridin-3-yl]pyridine-4-carboxamide Chemical compound C1OCC11CC(C1)OC1=C(C=C(C=N1)C=1C(=NC=C(C=1)NC(C1=CC(=NC=C1)C(C)(C)O)=O)C)N1CCOCC1 ZODAQPSKPUMXIS-UHFFFAOYSA-N 0.000 claims 1
- HPFGXLZQFXMXQP-UHFFFAOYSA-N 2-(2-hydroxypropan-2-yl)-N-[6-methyl-5-[5-morpholin-4-yl-6-(oxan-4-yloxy)pyridin-3-yl]pyridin-3-yl]pyridine-4-carboxamide Chemical compound OC(C)(C)C=1C=C(C(=O)NC=2C=C(C(=NC=2)C)C=2C=NC(=C(C=2)N2CCOCC2)OC2CCOCC2)C=CN=1 HPFGXLZQFXMXQP-UHFFFAOYSA-N 0.000 claims 1
- ATBKXLGFJHHDNZ-UHFFFAOYSA-N 2-(2-hydroxypropan-2-yl)-n-[3-(6-methoxy-5-morpholin-4-ylpyridazin-3-yl)-4-methylphenyl]pyridine-4-carboxamide Chemical compound COC1=NN=C(C=2C(=CC=C(NC(=O)C=3C=C(N=CC=3)C(C)(C)O)C=2)C)C=C1N1CCOCC1 ATBKXLGFJHHDNZ-UHFFFAOYSA-N 0.000 claims 1
- WBQBGXSWDLPKMP-UHFFFAOYSA-N 2-(2-hydroxypropan-2-yl)-n-[4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridazin-3-yl)phenyl]pyridine-4-carboxamide Chemical compound C1=C(C2=NN(C)C(=O)C(N3CCOCC3)=C2)C(C)=CC=C1NC(=O)C1=CC=NC(C(C)(C)O)=C1 WBQBGXSWDLPKMP-UHFFFAOYSA-N 0.000 claims 1
- RCWKIQOTRSKJIJ-UHFFFAOYSA-N 2-(2-hydroxypropan-2-yl)-n-[4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)phenyl]pyridine-4-carboxamide Chemical compound C1=C(C2=CN(C)C(=O)C(N3CCOCC3)=C2)C(C)=CC=C1NC(=O)C1=CC=NC(C(C)(C)O)=C1 RCWKIQOTRSKJIJ-UHFFFAOYSA-N 0.000 claims 1
- JXNDEGDDGPSRCY-UHFFFAOYSA-N 2-(2-hydroxypropan-2-yl)-n-[4-methyl-3-(4-morpholin-4-yl-1h-imidazo[4,5-c]pyridin-6-yl)phenyl]pyridine-4-carboxamide Chemical compound C1=C(C=2N=C(C=3N=CNC=3C=2)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CC=NC(C(C)(C)O)=C1 JXNDEGDDGPSRCY-UHFFFAOYSA-N 0.000 claims 1
- GUWXGAXEMXDUDP-UHFFFAOYSA-N 2-(2-hydroxypropan-2-yl)-n-[4-methyl-3-(5-morpholin-4-yl-6-propan-2-yloxypyridin-3-yl)phenyl]pyridine-4-carboxamide Chemical compound CC(C)OC1=NC=C(C=2C(=CC=C(NC(=O)C=3C=C(N=CC=3)C(C)(C)O)C=2)C)C=C1N1CCOCC1 GUWXGAXEMXDUDP-UHFFFAOYSA-N 0.000 claims 1
- ZAVGQAATYHXAFZ-UHFFFAOYSA-N 2-(2-hydroxypropan-2-yl)-n-[4-methyl-3-(7-morpholin-4-ylpyrazolo[1,5-a]pyrimidin-5-yl)phenyl]pyridine-4-carboxamide Chemical compound C1=C(C2=NC3=CC=NN3C(N3CCOCC3)=C2)C(C)=CC=C1NC(=O)C1=CC=NC(C(C)(C)O)=C1 ZAVGQAATYHXAFZ-UHFFFAOYSA-N 0.000 claims 1
- DBCCYBRCXIDJHP-UHFFFAOYSA-N 2-(2-hydroxypropan-2-yl)-n-[4-methyl-3-(8-morpholin-4-ylimidazo[1,2-b]pyridazin-6-yl)phenyl]pyridine-4-carboxamide Chemical compound C1=C(C2=NN3C=CN=C3C(N3CCOCC3)=C2)C(C)=CC=C1NC(=O)C1=CC=NC(C(C)(C)O)=C1 DBCCYBRCXIDJHP-UHFFFAOYSA-N 0.000 claims 1
- BYXXBDVYEKKNKK-UHFFFAOYSA-N 2-(2-hydroxypropan-2-yl)-n-[4-methyl-3-[2-morpholin-4-yl-6-(oxan-4-yloxy)pyridin-4-yl]phenyl]pyridine-4-carboxamide Chemical compound C1=C(C=2C=C(N=C(OC3CCOCC3)C=2)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CC=NC(C(C)(C)O)=C1 BYXXBDVYEKKNKK-UHFFFAOYSA-N 0.000 claims 1
- OUGUNFVYKMMHRI-UHFFFAOYSA-N 2-(2-hydroxypropan-2-yl)-n-[4-methyl-3-[5-morpholin-4-yl-6-(oxan-4-yloxy)pyridin-3-yl]phenyl]pyridine-4-carboxamide Chemical compound C1=C(C=2C=C(C(OC3CCOCC3)=NC=2)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CC=NC(C(C)(C)O)=C1 OUGUNFVYKMMHRI-UHFFFAOYSA-N 0.000 claims 1
- SEQHECDQXNIHKE-UHFFFAOYSA-N 2-(2-hydroxypropan-2-yl)-n-[6-methyl-5-(7-morpholin-4-ylpyrazolo[1,5-a]pyrimidin-5-yl)pyridin-3-yl]pyridine-4-carboxamide Chemical compound C1=C(C2=NC3=CC=NN3C(N3CCOCC3)=C2)C(C)=NC=C1NC(=O)C1=CC=NC(C(C)(C)O)=C1 SEQHECDQXNIHKE-UHFFFAOYSA-N 0.000 claims 1
- FUYFCWCWWSYMIR-UHFFFAOYSA-N 2-(2-hydroxypropan-2-yl)-n-[6-methyl-5-(8-morpholin-4-ylimidazo[1,2-a]pyridin-6-yl)pyridin-3-yl]pyridine-4-carboxamide Chemical compound C1=C(C2=CN3C=CN=C3C(N3CCOCC3)=C2)C(C)=NC=C1NC(=O)C1=CC=NC(C(C)(C)O)=C1 FUYFCWCWWSYMIR-UHFFFAOYSA-N 0.000 claims 1
- INVOEEUTANMFAX-UHFFFAOYSA-N 2-(2-hydroxypropan-2-yl)-n-[6-methyl-5-(8-morpholin-4-ylimidazo[1,2-b]pyridazin-6-yl)pyridin-3-yl]pyridine-4-carboxamide Chemical compound C1=C(C2=NN3C=CN=C3C(N3CCOCC3)=C2)C(C)=NC=C1NC(=O)C1=CC=NC(C(C)(C)O)=C1 INVOEEUTANMFAX-UHFFFAOYSA-N 0.000 claims 1
- VPDFEAMLUWKNGX-UHFFFAOYSA-N 2-(2-hydroxypropan-2-yl)-n-[6-methyl-5-[5-morpholin-4-yl-6-(oxan-4-yloxy)pyridazin-3-yl]pyridin-3-yl]pyridine-4-carboxamide Chemical compound C1=C(C=2N=NC(OC3CCOCC3)=C(N3CCOCC3)C=2)C(C)=NC=C1NC(=O)C1=CC=NC(C(C)(C)O)=C1 VPDFEAMLUWKNGX-UHFFFAOYSA-N 0.000 claims 1
- WUHCLCRCBCBJQT-UHFFFAOYSA-N 2-(azetidin-1-yl)-N-[4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)phenyl]pyridine-4-carboxamide Chemical compound Cc1ccc(NC(=O)c2ccnc(c2)N2CCC2)cc1-c1cc(N2CCOCC2)c(=O)n(C)c1 WUHCLCRCBCBJQT-UHFFFAOYSA-N 0.000 claims 1
- ONAMZFMHCGHNSP-UHFFFAOYSA-N 2-(difluoromethyl)-N-[3-(6-ethoxy-5-morpholin-4-ylpyridazin-3-yl)-4-methylphenyl]pyridine-4-carboxamide Chemical compound CCOc1nnc(cc1N1CCOCC1)-c1cc(NC(=O)c2ccnc(c2)C(F)F)ccc1C ONAMZFMHCGHNSP-UHFFFAOYSA-N 0.000 claims 1
- RSDYZQKJYMWKCT-UHFFFAOYSA-N 2-(difluoromethyl)-N-[3-[2-(3-hydroxy-3-methylazetidin-1-yl)-6-morpholin-4-ylpyridin-4-yl]-4-methylphenyl]pyridine-4-carboxamide Chemical compound Cc1ccc(NC(=O)c2ccnc(c2)C(F)F)cc1-c1cc(nc(c1)N1CCOCC1)N1CC(C)(O)C1 RSDYZQKJYMWKCT-UHFFFAOYSA-N 0.000 claims 1
- LBGBEZUWMGQFHM-UHFFFAOYSA-N 2-(difluoromethyl)-N-[4-methyl-3-(4-morpholin-4-yl-5,5-dioxo-6,7-dihydrothieno[3,2-d]pyrimidin-2-yl)phenyl]pyridine-4-carboxamide Chemical compound FC(C=1C=C(C(=O)NC2=CC(=C(C=C2)C)C=2N=C(C3=C(N=2)CCS3(=O)=O)N2CCOCC2)C=CN=1)F LBGBEZUWMGQFHM-UHFFFAOYSA-N 0.000 claims 1
- OGXWUFWZKYNULL-UHFFFAOYSA-N 2-(difluoromethyl)-N-[4-methyl-3-(8-morpholin-4-ylimidazo[1,2-a]pyridin-6-yl)phenyl]pyridine-4-carboxamide Chemical compound FC(C=1C=C(C(=O)NC2=CC(=C(C=C2)C)C=2C=C(C=3N(C=2)C=CN=3)N2CCOCC2)C=CN=1)F OGXWUFWZKYNULL-UHFFFAOYSA-N 0.000 claims 1
- LMNAUDLPCXMVJV-INIZCTEOSA-N 2-(difluoromethyl)-N-[4-methyl-3-[2-[(4S)-4-methyl-2-oxo-1,3-oxazolidin-3-yl]-6-morpholin-4-ylpyrimidin-4-yl]phenyl]pyridine-4-carboxamide Chemical compound C[C@H]1COC(=O)N1c1nc(cc(n1)-c1cc(NC(=O)c2ccnc(c2)C(F)F)ccc1C)N1CCOCC1 LMNAUDLPCXMVJV-INIZCTEOSA-N 0.000 claims 1
- JPACQCNZTJFXRL-UHFFFAOYSA-N 2-(difluoromethyl)-N-[5-(2,6-dimorpholin-4-ylpyridin-4-yl)-6-methylpyridin-3-yl]pyridine-4-carboxamide Chemical compound FC(C=1C=C(C(=O)NC=2C=C(C(=NC=2)C)C2=CC(=NC(=C2)N2CCOCC2)N2CCOCC2)C=CN=1)F JPACQCNZTJFXRL-UHFFFAOYSA-N 0.000 claims 1
- HKLXIGLBNKMGOD-UHFFFAOYSA-N 2-(difluoromethyl)-N-[5-(2-ethoxy-6-morpholin-4-ylpyridin-4-yl)-6-methylpyridin-3-yl]pyridine-4-carboxamide Chemical compound FC(C=1C=C(C(=O)NC=2C=C(C(=NC=2)C)C2=CC(=NC(=C2)N2CCOCC2)OCC)C=CN=1)F HKLXIGLBNKMGOD-UHFFFAOYSA-N 0.000 claims 1
- LKRCBGWRQYOFDQ-UHFFFAOYSA-N 2-(difluoromethyl)-N-[5-(6-ethoxy-5-morpholin-4-ylpyridin-3-yl)-6-methylpyridin-3-yl]pyridine-4-carboxamide Chemical compound FC(C=1C=C(C(=O)NC=2C=C(C(=NC=2)C)C=2C=NC(=C(C=2)N2CCOCC2)OCC)C=CN=1)F LKRCBGWRQYOFDQ-UHFFFAOYSA-N 0.000 claims 1
- PDWRKVXPEBTHLG-OAHLLOKOSA-N 2-(difluoromethyl)-N-[5-[2-(2-hydroxyethylamino)-6-[(3R)-3-methylmorpholin-4-yl]pyridin-4-yl]-6-methylpyridin-3-yl]pyridine-4-carboxamide Chemical compound FC(C=1C=C(C(=O)NC=2C=C(C(=NC=2)C)C2=CC(=NC(=C2)N2[C@@H](COCC2)C)NCCO)C=CN=1)F PDWRKVXPEBTHLG-OAHLLOKOSA-N 0.000 claims 1
- OSSSSQGZFADLFY-UHFFFAOYSA-N 2-(difluoromethyl)-N-[5-[2-(2-hydroxyethylamino)-6-morpholin-4-ylpyridin-4-yl]-6-methylpyridin-3-yl]pyridine-4-carboxamide Chemical compound FC(C=1C=C(C(=O)NC=2C=C(C(=NC=2)C)C2=CC(=NC(=C2)N2CCOCC2)NCCO)C=CN=1)F OSSSSQGZFADLFY-UHFFFAOYSA-N 0.000 claims 1
- NHYMNRKFPSPTOL-UHFFFAOYSA-N 2-(difluoromethyl)-N-[5-[2-(3-hydroxy-3-methylazetidin-1-yl)-6-morpholin-4-ylpyridin-4-yl]-6-methylpyridin-3-yl]pyridine-4-carboxamide Chemical compound FC(C=1C=C(C(=O)NC=2C=C(C(=NC=2)C)C2=CC(=NC(=C2)N2CCOCC2)N2CC(C2)(C)O)C=CN=1)F NHYMNRKFPSPTOL-UHFFFAOYSA-N 0.000 claims 1
- MUJKFLDNKIDIID-UHFFFAOYSA-N 2-(difluoromethyl)-N-[6-methyl-5-(1-methyl-2-morpholin-4-yl-6-oxopyridin-4-yl)pyridin-3-yl]pyridine-4-carboxamide Chemical compound FC(C=1C=C(C(=O)NC=2C=C(C(=NC=2)C)C2=CC(N(C(=C2)N2CCOCC2)C)=O)C=CN=1)F MUJKFLDNKIDIID-UHFFFAOYSA-N 0.000 claims 1
- KLICMIWUQDOPGS-UHFFFAOYSA-N 2-(difluoromethyl)-N-[6-methyl-5-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)pyridin-3-yl]pyridine-4-carboxamide Chemical compound FC(C=1C=C(C(=O)NC=2C=C(C(=NC=2)C)C2=CN(C(C(=C2)N2CCOCC2)=O)C)C=CN=1)F KLICMIWUQDOPGS-UHFFFAOYSA-N 0.000 claims 1
- KRUNWNFDLHWBTA-UHFFFAOYSA-N 2-(difluoromethyl)-N-[6-methyl-5-(5-morpholin-4-yl-6-propan-2-yloxypyridazin-3-yl)pyridin-3-yl]pyridine-4-carboxamide Chemical compound CC(C)Oc1nnc(cc1N1CCOCC1)-c1cc(NC(=O)c2ccnc(c2)C(F)F)cnc1C KRUNWNFDLHWBTA-UHFFFAOYSA-N 0.000 claims 1
- JDBHGMBVFCNSHY-UHFFFAOYSA-N 2-(difluoromethyl)-N-[6-methyl-5-[5-morpholin-4-yl-6-(2-oxaspiro[3.3]heptan-6-yloxy)pyridin-3-yl]pyridin-3-yl]pyridine-4-carboxamide Chemical compound C1OCC11CC(C1)OC1=C(C=C(C=N1)C=1C(=NC=C(C=1)NC(C1=CC(=NC=C1)C(F)F)=O)C)N1CCOCC1 JDBHGMBVFCNSHY-UHFFFAOYSA-N 0.000 claims 1
- QJYIMGVDSRUSLN-UHFFFAOYSA-N 2-(difluoromethyl)-n-[3-(2,6-dimorpholin-4-ylpyridin-4-yl)-4-methylphenyl]pyridine-4-carboxamide Chemical compound C1=C(C=2C=C(N=C(C=2)N2CCOCC2)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CC=NC(C(F)F)=C1 QJYIMGVDSRUSLN-UHFFFAOYSA-N 0.000 claims 1
- XNXYVBUDPKCWTN-UHFFFAOYSA-N 2-(difluoromethyl)-n-[3-(6-ethoxy-5-morpholin-4-ylpyridin-3-yl)-4-methylphenyl]pyridine-4-carboxamide Chemical compound CCOC1=NC=C(C=2C(=CC=C(NC(=O)C=3C=C(N=CC=3)C(F)F)C=2)C)C=C1N1CCOCC1 XNXYVBUDPKCWTN-UHFFFAOYSA-N 0.000 claims 1
- FRGRAXZJOUXYJI-UHFFFAOYSA-N 2-(difluoromethyl)-n-[3-[2-(2-hydroxyethylamino)-6-morpholin-4-ylpyridin-4-yl]-4-methylphenyl]pyridine-4-carboxamide Chemical compound C1=C(C=2C=C(N=C(NCCO)C=2)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CC=NC(C(F)F)=C1 FRGRAXZJOUXYJI-UHFFFAOYSA-N 0.000 claims 1
- YJAAENGSEJKFCT-UHFFFAOYSA-N 2-(difluoromethyl)-n-[3-[2-(3-hydroxyazetidin-1-yl)-6-morpholin-4-ylpyridin-4-yl]-4-methylphenyl]pyridine-4-carboxamide Chemical compound C1=C(C=2C=C(N=C(C=2)N2CC(O)C2)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CC=NC(C(F)F)=C1 YJAAENGSEJKFCT-UHFFFAOYSA-N 0.000 claims 1
- STTVGRVBWGPOSE-UHFFFAOYSA-N 2-(difluoromethyl)-n-[3-[3-fluoro-2-(2-hydroxyethylamino)-6-morpholin-4-ylpyridin-4-yl]-4-methylphenyl]pyridine-4-carboxamide Chemical compound C1=C(C=2C(=C(NCCO)N=C(C=2)N2CCOCC2)F)C(C)=CC=C1NC(=O)C1=CC=NC(C(F)F)=C1 STTVGRVBWGPOSE-UHFFFAOYSA-N 0.000 claims 1
- RVVYQHIZDLLKDO-UHFFFAOYSA-N 2-(difluoromethyl)-n-[3-[3-fluoro-6-(2-hydroxyethylamino)-2-morpholin-4-ylpyridin-4-yl]-4-methylphenyl]pyridine-4-carboxamide Chemical compound C1=C(C=2C(=C(N3CCOCC3)N=C(NCCO)C=2)F)C(C)=CC=C1NC(=O)C1=CC=NC(C(F)F)=C1 RVVYQHIZDLLKDO-UHFFFAOYSA-N 0.000 claims 1
- QPOWGPGOTGCBQP-UHFFFAOYSA-N 2-(difluoromethyl)-n-[3-[6-(2-methoxyethoxy)-5-morpholin-4-ylpyridazin-3-yl]-4-methylphenyl]pyridine-4-carboxamide Chemical compound COCCOC1=NN=C(C=2C(=CC=C(NC(=O)C=3C=C(N=CC=3)C(F)F)C=2)C)C=C1N1CCOCC1 QPOWGPGOTGCBQP-UHFFFAOYSA-N 0.000 claims 1
- RZKVDWJDQSXNFH-UHFFFAOYSA-N 2-(difluoromethyl)-n-[4-methyl-3-(1-methyl-2-morpholin-4-yl-6-oxopyridin-4-yl)phenyl]pyridine-4-carboxamide Chemical compound C1=C(C2=CC(=O)N(C)C(N3CCOCC3)=C2)C(C)=CC=C1NC(=O)C1=CC=NC(C(F)F)=C1 RZKVDWJDQSXNFH-UHFFFAOYSA-N 0.000 claims 1
- UEFAPHOCMPHIDW-UHFFFAOYSA-N 2-(difluoromethyl)-n-[4-methyl-3-(5-morpholin-4-yl-6-propan-2-yloxypyridazin-3-yl)phenyl]pyridine-4-carboxamide Chemical compound CC(C)OC1=NN=C(C=2C(=CC=C(NC(=O)C=3C=C(N=CC=3)C(F)F)C=2)C)C=C1N1CCOCC1 UEFAPHOCMPHIDW-UHFFFAOYSA-N 0.000 claims 1
- OQBWUQJBAXXYLL-UHFFFAOYSA-N 2-(difluoromethyl)-n-[4-methyl-3-(7-morpholin-4-ylpyrazolo[1,5-a]pyrimidin-5-yl)phenyl]pyridine-4-carboxamide Chemical compound C1=C(C2=NC3=CC=NN3C(N3CCOCC3)=C2)C(C)=CC=C1NC(=O)C1=CC=NC(C(F)F)=C1 OQBWUQJBAXXYLL-UHFFFAOYSA-N 0.000 claims 1
- BKOSMJWAOFWFIQ-UHFFFAOYSA-N 2-(difluoromethyl)-n-[4-methyl-3-[2-morpholin-4-yl-6-(oxan-4-yloxy)pyridin-4-yl]phenyl]pyridine-4-carboxamide Chemical compound C1=C(C=2C=C(N=C(OC3CCOCC3)C=2)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CC=NC(C(F)F)=C1 BKOSMJWAOFWFIQ-UHFFFAOYSA-N 0.000 claims 1
- ZRHWTBFCTQULSX-UHFFFAOYSA-N 2-(difluoromethyl)-n-[6-methyl-5-(1-methyl-5-morpholin-4-yl-6-oxopyridazin-3-yl)pyridin-3-yl]pyridine-4-carboxamide Chemical compound C1=C(C2=NN(C)C(=O)C(N3CCOCC3)=C2)C(C)=NC=C1NC(=O)C1=CC=NC(C(F)F)=C1 ZRHWTBFCTQULSX-UHFFFAOYSA-N 0.000 claims 1
- CWKOBNLHDKFRFD-UHFFFAOYSA-N 2-(difluoromethyl)-n-[6-methyl-5-(6-morpholin-4-ylpyrazin-2-yl)pyridin-3-yl]pyridine-4-carboxamide Chemical compound C1=C(C=2N=C(C=NC=2)N2CCOCC2)C(C)=NC=C1NC(=O)C1=CC=NC(C(F)F)=C1 CWKOBNLHDKFRFD-UHFFFAOYSA-N 0.000 claims 1
- KZCBXFJPHWUWFQ-UHFFFAOYSA-N 2-(difluoromethyl)-n-[6-methyl-5-(7-morpholin-4-ylpyrazolo[1,5-a]pyrimidin-5-yl)pyridin-3-yl]pyridine-4-carboxamide Chemical compound C1=C(C2=NC3=CC=NN3C(N3CCOCC3)=C2)C(C)=NC=C1NC(=O)C1=CC=NC(C(F)F)=C1 KZCBXFJPHWUWFQ-UHFFFAOYSA-N 0.000 claims 1
- JQJFDHIARPZGOT-UHFFFAOYSA-N 2-(dimethylamino)-n-[4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)phenyl]pyridine-4-carboxamide Chemical compound C1=NC(N(C)C)=CC(C(=O)NC=2C=C(C(C)=CC=2)C2=CN(C)C(=O)C(N3CCOCC3)=C2)=C1 JQJFDHIARPZGOT-UHFFFAOYSA-N 0.000 claims 1
- RHMMBSTYIGBNSX-UHFFFAOYSA-N 2-[2-hydroxyethyl(methyl)amino]-N-[4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)phenyl]pyridine-4-carboxamide Chemical compound CN(CCO)C1=CC(=CC=N1)C(=O)NC1=CC=C(C)C(=C1)C1=CN(C)C(=O)C(=C1)N1CCOCC1 RHMMBSTYIGBNSX-UHFFFAOYSA-N 0.000 claims 1
- IYNXRZBFWPYIAK-UHFFFAOYSA-N 2-[2-methoxyethyl(methyl)amino]-N-[4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)phenyl]pyridine-4-carboxamide Chemical compound COCCN(C=1C=C(C(=O)NC2=CC(=C(C=C2)C)C2=CN(C(C(=C2)N2CCOCC2)=O)C)C=CN=1)C IYNXRZBFWPYIAK-UHFFFAOYSA-N 0.000 claims 1
- FPKMKJUJDXTTKL-UHFFFAOYSA-N 2-[ethyl(methyl)amino]-n-[4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)phenyl]pyridine-4-carboxamide Chemical compound C1=NC(N(C)CC)=CC(C(=O)NC=2C=C(C(C)=CC=2)C2=CN(C)C(=O)C(N3CCOCC3)=C2)=C1 FPKMKJUJDXTTKL-UHFFFAOYSA-N 0.000 claims 1
- CPBQPJPZJHATFS-UHFFFAOYSA-N 2-[methyl-[2-(methylamino)ethyl]amino]-n-[4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)phenyl]pyridine-4-carboxamide Chemical compound C1=NC(N(C)CCNC)=CC(C(=O)NC=2C=C(C(C)=CC=2)C2=CN(C)C(=O)C(N3CCOCC3)=C2)=C1 CPBQPJPZJHATFS-UHFFFAOYSA-N 0.000 claims 1
- FFKKRWMNKAUJDI-UHFFFAOYSA-N 2-chloro-3-(1-cyanocyclopropyl)-N-[6-methyl-5-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)pyridin-3-yl]benzamide Chemical compound ClC1=C(C(=O)NC=2C=C(C(=NC=2)C)C2=CN(C(C(=C2)N2CCOCC2)=O)C)C=CC=C1C1(CC1)C#N FFKKRWMNKAUJDI-UHFFFAOYSA-N 0.000 claims 1
- XCXFXWRKFZQEPQ-UHFFFAOYSA-N 2-chloro-3-(1-cyanocyclopropyl)-n-[3-(2,6-dimorpholin-4-ylpyrimidin-4-yl)-4-methylphenyl]benzamide Chemical compound C1=C(C=2N=C(N=C(C=2)N2CCOCC2)N2CCOCC2)C(C)=CC=C1NC(=O)C(C=1Cl)=CC=CC=1C1(C#N)CC1 XCXFXWRKFZQEPQ-UHFFFAOYSA-N 0.000 claims 1
- LKZVQSPOTWXUTF-UHFFFAOYSA-N 2-chloro-3-(1-cyanocyclopropyl)-n-[4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)phenyl]benzamide Chemical compound C1=C(C2=CN(C)C(=O)C(N3CCOCC3)=C2)C(C)=CC=C1NC(=O)C(C=1Cl)=CC=CC=1C1(C#N)CC1 LKZVQSPOTWXUTF-UHFFFAOYSA-N 0.000 claims 1
- KQBACBRUHFGIHB-UHFFFAOYSA-N 2-cyclopropyl-N-[3-[2-(3-hydroxyazetidin-1-yl)-6-morpholin-4-ylpyridin-4-yl]-4-methylphenyl]pyridine-4-carboxamide Chemical compound C1(CC1)C=1C=C(C(=O)NC2=CC(=C(C=C2)C)C2=CC(=NC(=C2)N2CCOCC2)N2CC(C2)O)C=CN=1 KQBACBRUHFGIHB-UHFFFAOYSA-N 0.000 claims 1
- MJJHTBWDJAMARJ-UHFFFAOYSA-N 2-cyclopropyl-N-[3-[6-(2-hydroxyethoxy)-5-morpholin-4-ylpyridin-3-yl]-4-methylphenyl]pyridine-4-carboxamide Chemical compound C1(CC1)C=1C=C(C(=O)NC2=CC(=C(C=C2)C)C=2C=NC(=C(C=2)N2CCOCC2)OCCO)C=CN=1 MJJHTBWDJAMARJ-UHFFFAOYSA-N 0.000 claims 1
- GWXFGKFOQBVKAH-UHFFFAOYSA-N 2-cyclopropyl-N-[4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)phenyl]pyridine-4-carboxamide Chemical compound C1(CC1)C=1C=C(C(=O)NC2=CC(=C(C=C2)C)C2=CN(C(C(=C2)N2CCOCC2)=O)C)C=CN=1 GWXFGKFOQBVKAH-UHFFFAOYSA-N 0.000 claims 1
- VTHKEBCGQBGYOT-UHFFFAOYSA-N 2-cyclopropyl-N-[5-(2-ethoxy-6-morpholin-4-ylpyridin-4-yl)-6-methylpyridin-3-yl]pyridine-4-carboxamide Chemical compound C1(CC1)C=1C=C(C(=O)NC=2C=C(C(=NC=2)C)C2=CC(=NC(=C2)N2CCOCC2)OCC)C=CN=1 VTHKEBCGQBGYOT-UHFFFAOYSA-N 0.000 claims 1
- JNUVEXMQPTVVSO-UHFFFAOYSA-N 2-cyclopropyl-N-[5-(6-ethoxy-5-morpholin-4-ylpyridin-3-yl)-6-methylpyridin-3-yl]pyridine-4-carboxamide Chemical compound C1(CC1)C=1C=C(C(=O)NC=2C=C(C(=NC=2)C)C=2C=NC(=C(C=2)N2CCOCC2)OCC)C=CN=1 JNUVEXMQPTVVSO-UHFFFAOYSA-N 0.000 claims 1
- CLMCLHAKCMSVCI-UHFFFAOYSA-N 2-cyclopropyl-N-[5-[2-(1,4-dioxan-2-yl)-6-morpholin-4-ylpyridin-4-yl]-6-methylpyridin-3-yl]pyridine-4-carboxamide Chemical compound O1C(COCC1)C1=NC(=CC(=C1)C=1C(=NC=C(C=1)NC(C1=CC(=NC=C1)C1CC1)=O)C)N1CCOCC1 CLMCLHAKCMSVCI-UHFFFAOYSA-N 0.000 claims 1
- LTKDZYXPXRXOSY-UHFFFAOYSA-N 2-cyclopropyl-N-[5-[2-(2-hydroxyethylamino)-6-morpholin-4-ylpyridin-4-yl]-6-methylpyridin-3-yl]pyridine-4-carboxamide Chemical compound C1(CC1)C=1C=C(C(=O)NC=2C=C(C(=NC=2)C)C2=CC(=NC(=C2)N2CCOCC2)NCCO)C=CN=1 LTKDZYXPXRXOSY-UHFFFAOYSA-N 0.000 claims 1
- OKACXUZTRMEGHU-UHFFFAOYSA-N 2-cyclopropyl-N-[5-[2-(3-hydroxy-3-methylazetidin-1-yl)-6-morpholin-4-ylpyridin-4-yl]-6-methylpyridin-3-yl]pyridine-4-carboxamide Chemical compound C1(CC1)C=1C=C(C(=O)NC=2C=C(C(=NC=2)C)C2=CC(=NC(=C2)N2CCOCC2)N2CC(C2)(C)O)C=CN=1 OKACXUZTRMEGHU-UHFFFAOYSA-N 0.000 claims 1
- YLYFKVFQUUUXST-UHFFFAOYSA-N 2-cyclopropyl-N-[6-methyl-5-(1-methyl-2-morpholin-4-yl-6-oxopyridin-4-yl)pyridin-3-yl]pyridine-4-carboxamide Chemical compound C1(CC1)C=1C=C(C(=O)NC=2C=C(C(=NC=2)C)C2=CC(N(C(=C2)N2CCOCC2)C)=O)C=CN=1 YLYFKVFQUUUXST-UHFFFAOYSA-N 0.000 claims 1
- MFAFOSJZKZAZSS-UHFFFAOYSA-N 2-cyclopropyl-N-[6-methyl-5-[5-morpholin-4-yl-6-(2-oxaspiro[3.3]heptan-6-yloxy)pyridin-3-yl]pyridin-3-yl]pyridine-4-carboxamide Chemical compound C1OCC11CC(C1)OC1=C(C=C(C=N1)C=1C(=NC=C(C=1)NC(C1=CC(=NC=C1)C1CC1)=O)C)N1CCOCC1 MFAFOSJZKZAZSS-UHFFFAOYSA-N 0.000 claims 1
- ZRNWYQLYEIAASX-UHFFFAOYSA-N 2-cyclopropyl-N-[6-methyl-5-[5-morpholin-4-yl-6-(oxan-4-yloxy)pyridin-3-yl]pyridin-3-yl]pyridine-4-carboxamide Chemical compound C1(CC1)C=1C=C(C(=O)NC=2C=C(C(=NC=2)C)C=2C=NC(=C(C=2)N2CCOCC2)OC2CCOCC2)C=CN=1 ZRNWYQLYEIAASX-UHFFFAOYSA-N 0.000 claims 1
- DRUVICTYCPYHJJ-UHFFFAOYSA-N 2-cyclopropyl-n-[3-(6-ethoxy-5-morpholin-4-ylpyridazin-3-yl)-4-methylphenyl]pyridine-4-carboxamide Chemical compound CCOC1=NN=C(C=2C(=CC=C(NC(=O)C=3C=C(N=CC=3)C3CC3)C=2)C)C=C1N1CCOCC1 DRUVICTYCPYHJJ-UHFFFAOYSA-N 0.000 claims 1
- CSLYSZPPFQPIIR-UHFFFAOYSA-N 2-cyclopropyl-n-[3-(6-methoxy-5-morpholin-4-ylpyridazin-3-yl)-4-methylphenyl]pyridine-4-carboxamide Chemical compound COC1=NN=C(C=2C(=CC=C(NC(=O)C=3C=C(N=CC=3)C3CC3)C=2)C)C=C1N1CCOCC1 CSLYSZPPFQPIIR-UHFFFAOYSA-N 0.000 claims 1
- WNAUAJUEJOIWKE-UHFFFAOYSA-N 2-cyclopropyl-n-[3-[2-(2-hydroxyethoxy)-6-morpholin-4-ylpyridin-4-yl]-4-methylphenyl]pyridine-4-carboxamide Chemical compound C1=C(C=2C=C(N=C(OCCO)C=2)N2CCOCC2)C(C)=CC=C1NC(=O)C(C=1)=CC=NC=1C1CC1 WNAUAJUEJOIWKE-UHFFFAOYSA-N 0.000 claims 1
- SBMKKXAOEFNNIN-UHFFFAOYSA-N 2-cyclopropyl-n-[4-methyl-3-(1-methyl-2-morpholin-4-yl-6-oxopyridin-4-yl)phenyl]pyridine-4-carboxamide Chemical compound C1=C(C2=CC(=O)N(C)C(N3CCOCC3)=C2)C(C)=CC=C1NC(=O)C(C=1)=CC=NC=1C1CC1 SBMKKXAOEFNNIN-UHFFFAOYSA-N 0.000 claims 1
- YXXDBVSYKOZUDQ-UHFFFAOYSA-N 2-cyclopropyl-n-[4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridazin-3-yl)phenyl]pyridine-4-carboxamide Chemical compound C1=C(C2=NN(C)C(=O)C(N3CCOCC3)=C2)C(C)=CC=C1NC(=O)C(C=1)=CC=NC=1C1CC1 YXXDBVSYKOZUDQ-UHFFFAOYSA-N 0.000 claims 1
- LEKITHGJJJVYSN-UHFFFAOYSA-N 2-cyclopropyl-n-[5-(6-ethoxy-5-morpholin-4-ylpyridazin-3-yl)-6-methylpyridin-3-yl]pyridine-4-carboxamide Chemical compound CCOC1=NN=C(C=2C(=NC=C(NC(=O)C=3C=C(N=CC=3)C3CC3)C=2)C)C=C1N1CCOCC1 LEKITHGJJJVYSN-UHFFFAOYSA-N 0.000 claims 1
- PZAPAXHBQRINIV-UHFFFAOYSA-N 2-cyclopropyl-n-[5-(6-methoxy-5-morpholin-4-ylpyridazin-3-yl)-6-methylpyridin-3-yl]pyridine-4-carboxamide Chemical compound COC1=NN=C(C=2C(=NC=C(NC(=O)C=3C=C(N=CC=3)C3CC3)C=2)C)C=C1N1CCOCC1 PZAPAXHBQRINIV-UHFFFAOYSA-N 0.000 claims 1
- VVBFYEQXQNTMOO-UHFFFAOYSA-N 2-cyclopropyl-n-[6-methyl-5-(1-methyl-5-morpholin-4-yl-6-oxopyridazin-3-yl)pyridin-3-yl]pyridine-4-carboxamide Chemical compound C1=C(C2=NN(C)C(=O)C(N3CCOCC3)=C2)C(C)=NC=C1NC(=O)C(C=1)=CC=NC=1C1CC1 VVBFYEQXQNTMOO-UHFFFAOYSA-N 0.000 claims 1
- NNLHMYBDMYXIKH-UHFFFAOYSA-N 2-ethyl-N-[4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)phenyl]pyridine-4-carboxamide Chemical compound C(C)C=1C=C(C(=O)NC2=CC(=C(C=C2)C)C2=CN(C(C(=C2)N2CCOCC2)=O)C)C=CN=1 NNLHMYBDMYXIKH-UHFFFAOYSA-N 0.000 claims 1
- WZILZCPNZNQCRS-UHFFFAOYSA-N 2-ethyl-n-[4-methyl-3-(1-methyl-2-morpholin-4-yl-6-oxopyridin-4-yl)phenyl]pyridine-4-carboxamide Chemical compound C1=NC(CC)=CC(C(=O)NC=2C=C(C(C)=CC=2)C2=CC(=O)N(C)C(N3CCOCC3)=C2)=C1 WZILZCPNZNQCRS-UHFFFAOYSA-N 0.000 claims 1
- FTOQSSWEKQRPCE-UHFFFAOYSA-N 2-ethyl-n-[4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridazin-3-yl)phenyl]pyridine-4-carboxamide Chemical compound C1=NC(CC)=CC(C(=O)NC=2C=C(C(C)=CC=2)C2=NN(C)C(=O)C(N3CCOCC3)=C2)=C1 FTOQSSWEKQRPCE-UHFFFAOYSA-N 0.000 claims 1
- UKLZDUBISMZLGY-UHFFFAOYSA-N 2-methyl-N-[6-methyl-5-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)pyridin-3-yl]-5-(trifluoromethyl)pyrazole-3-carboxamide Chemical compound CN1C=C(C=C(C1=O)N1CCOCC1)C=1C(=NC=C(C=1)NC(=O)C1=CC(=NN1C)C(F)(F)F)C UKLZDUBISMZLGY-UHFFFAOYSA-N 0.000 claims 1
- SRMCYNSAIDBEID-UHFFFAOYSA-N 2-methyl-n-[4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)phenyl]-5-(trifluoromethyl)pyrazole-3-carboxamide Chemical compound C1=C(C2=CN(C)C(=O)C(N3CCOCC3)=C2)C(C)=CC=C1NC(=O)C1=CC(C(F)(F)F)=NN1C SRMCYNSAIDBEID-UHFFFAOYSA-N 0.000 claims 1
- UUTYQXMHXSFYES-UHFFFAOYSA-N 2-tert-butyl-N-[4-methyl-3-(8-morpholin-4-ylimidazo[1,2-b]pyridazin-6-yl)phenyl]pyridine-4-carboxamide Chemical compound C(C)(C)(C)C=1C=C(C(=O)NC2=CC(=C(C=C2)C)C=2C=C(C=3N(N=2)C=CN=3)N2CCOCC2)C=CN=1 UUTYQXMHXSFYES-UHFFFAOYSA-N 0.000 claims 1
- LHUBJYVIKMEHDQ-UHFFFAOYSA-N 2-tert-butyl-N-[6-methyl-5-(1-methyl-2-morpholin-4-yl-6-oxopyridin-4-yl)pyridin-3-yl]pyridine-4-carboxamide Chemical compound C(C)(C)(C)C=1C=C(C(=O)NC=2C=C(C(=NC=2)C)C2=CC(N(C(=C2)N2CCOCC2)C)=O)C=CN=1 LHUBJYVIKMEHDQ-UHFFFAOYSA-N 0.000 claims 1
- IBCHCVVUXNIOQD-UHFFFAOYSA-N 2-tert-butyl-N-[6-methyl-5-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)pyridin-3-yl]pyridine-4-carboxamide Chemical compound C(C)(C)(C)C=1C=C(C(=O)NC=2C=C(C(=NC=2)C)C2=CN(C(C(=C2)N2CCOCC2)=O)C)C=CN=1 IBCHCVVUXNIOQD-UHFFFAOYSA-N 0.000 claims 1
- HJDHSDNEEKJVKC-UHFFFAOYSA-N 2-tert-butyl-n-[3-[2-(ethylamino)-6-morpholin-4-ylpyrimidin-4-yl]-4-methylphenyl]pyridine-4-carboxamide Chemical compound N=1C(NCC)=NC(N2CCOCC2)=CC=1C(C(=CC=1)C)=CC=1NC(=O)C1=CC=NC(C(C)(C)C)=C1 HJDHSDNEEKJVKC-UHFFFAOYSA-N 0.000 claims 1
- RFCKZYSSGBSRJL-UHFFFAOYSA-N 2-tert-butyl-n-[4-methyl-3-(1-methyl-2-morpholin-4-yl-6-oxopyridin-4-yl)phenyl]pyridine-4-carboxamide Chemical compound C1=C(C2=CC(=O)N(C)C(N3CCOCC3)=C2)C(C)=CC=C1NC(=O)C1=CC=NC(C(C)(C)C)=C1 RFCKZYSSGBSRJL-UHFFFAOYSA-N 0.000 claims 1
- QKRZIJKGUSHRML-UHFFFAOYSA-N 2-tert-butyl-n-[4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)phenyl]pyridine-4-carboxamide Chemical compound C1=C(C2=CN(C)C(=O)C(N3CCOCC3)=C2)C(C)=CC=C1NC(=O)C1=CC=NC(C(C)(C)C)=C1 QKRZIJKGUSHRML-UHFFFAOYSA-N 0.000 claims 1
- INMAGDSAPQEPHY-UHFFFAOYSA-N 2-tert-butyl-n-[4-methyl-3-(2-morpholin-4-ylpyridin-4-yl)phenyl]pyridine-4-carboxamide Chemical compound C1=C(C=2C=C(N=CC=2)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CC=NC(C(C)(C)C)=C1 INMAGDSAPQEPHY-UHFFFAOYSA-N 0.000 claims 1
- CCLMBXZFMXSFCV-UHFFFAOYSA-N 2-tert-butyl-n-[6-methyl-5-(2-morpholin-4-ylpyridin-4-yl)pyridin-3-yl]pyridine-4-carboxamide Chemical compound C1=C(C=2C=C(N=CC=2)N2CCOCC2)C(C)=NC=C1NC(=O)C1=CC=NC(C(C)(C)C)=C1 CCLMBXZFMXSFCV-UHFFFAOYSA-N 0.000 claims 1
- MJQYXTISWVVIPU-UHFFFAOYSA-N 3-(1,1-difluoroethyl)-N-[6-methyl-5-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)pyridin-3-yl]benzamide Chemical compound FC(C)(F)C=1C=C(C(=O)NC=2C=C(C(=NC=2)C)C2=CN(C(C(=C2)N2CCOCC2)=O)C)C=CC=1 MJQYXTISWVVIPU-UHFFFAOYSA-N 0.000 claims 1
- SNYHPSCINXLEIQ-UHFFFAOYSA-N 3-(1,1-difluoroethyl)-n-[3-[2-(ethylamino)-6-morpholin-4-ylpyrimidin-4-yl]-4-methylphenyl]benzamide Chemical compound N=1C(NCC)=NC(N2CCOCC2)=CC=1C(C(=CC=1)C)=CC=1NC(=O)C1=CC=CC(C(C)(F)F)=C1 SNYHPSCINXLEIQ-UHFFFAOYSA-N 0.000 claims 1
- ZWLYLYAHGLYJPE-UHFFFAOYSA-N 3-(1,1-difluoroethyl)-n-[4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)phenyl]benzamide Chemical compound C1=C(C2=CN(C)C(=O)C(N3CCOCC3)=C2)C(C)=CC=C1NC(=O)C1=CC=CC(C(C)(F)F)=C1 ZWLYLYAHGLYJPE-UHFFFAOYSA-N 0.000 claims 1
- JMDULIJMVPCUQN-UHFFFAOYSA-N 3-(1,1-difluoroethyl)-n-[6-methyl-5-(2-morpholin-4-ylpyridin-4-yl)pyridin-3-yl]benzamide Chemical compound C1=C(C=2C=C(N=CC=2)N2CCOCC2)C(C)=NC=C1NC(=O)C1=CC=CC(C(C)(F)F)=C1 JMDULIJMVPCUQN-UHFFFAOYSA-N 0.000 claims 1
- XIEGUNPXGANEIU-UHFFFAOYSA-N 3-(2,6-dimorpholin-4-ylpyridin-4-yl)-4-methyl-n-[3-(trifluoromethyl)phenyl]benzamide Chemical compound CC1=CC=C(C(=O)NC=2C=C(C=CC=2)C(F)(F)F)C=C1C(C=1)=CC(N2CCOCC2)=NC=1N1CCOCC1 XIEGUNPXGANEIU-UHFFFAOYSA-N 0.000 claims 1
- ZNVCVMODGVQVMO-UHFFFAOYSA-N 3-(2,6-dimorpholin-4-ylpyrimidin-4-yl)-4-methyl-n-[3-(trifluoromethyl)phenyl]benzamide Chemical compound CC1=CC=C(C(=O)NC=2C=C(C=CC=2)C(F)(F)F)C=C1C(N=1)=CC(N2CCOCC2)=NC=1N1CCOCC1 ZNVCVMODGVQVMO-UHFFFAOYSA-N 0.000 claims 1
- JEGXUQBJZPCTIB-UHFFFAOYSA-N 3-(2-aminopropan-2-yl)-n-[4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)phenyl]-5-(trifluoromethyl)benzamide Chemical compound C1=C(C2=CN(C)C(=O)C(N3CCOCC3)=C2)C(C)=CC=C1NC(=O)C1=CC(C(C)(C)N)=CC(C(F)(F)F)=C1 JEGXUQBJZPCTIB-UHFFFAOYSA-N 0.000 claims 1
- NIOQRSFDCIBAAC-UHFFFAOYSA-N 3-(2-cyanopropan-2-yl)-N-[6-methyl-5-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)pyridin-3-yl]benzamide Chemical compound C(#N)C(C)(C)C=1C=C(C(=O)NC=2C=C(C(=NC=2)C)C2=CN(C(C(=C2)N2CCOCC2)=O)C)C=CC=1 NIOQRSFDCIBAAC-UHFFFAOYSA-N 0.000 claims 1
- FEJAQUKVYQVYED-UHFFFAOYSA-N 3-(2-cyanopropan-2-yl)-n-[3-(2,6-dimorpholin-4-ylpyrimidin-4-yl)-4-methylphenyl]benzamide Chemical compound C1=C(C=2N=C(N=C(C=2)N2CCOCC2)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CC=CC(C(C)(C)C#N)=C1 FEJAQUKVYQVYED-UHFFFAOYSA-N 0.000 claims 1
- ATBFVPIZYSUOTG-UHFFFAOYSA-N 3-(2-cyanopropan-2-yl)-n-[4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)phenyl]benzamide Chemical compound C1=C(C2=CN(C)C(=O)C(N3CCOCC3)=C2)C(C)=CC=C1NC(=O)C1=CC=CC(C(C)(C)C#N)=C1 ATBFVPIZYSUOTG-UHFFFAOYSA-N 0.000 claims 1
- XCURDAWHBBABCE-UHFFFAOYSA-N 3-(2-cyanopropan-2-yl)-n-[4-methyl-3-(8-morpholin-4-ylimidazo[1,2-b]pyridazin-6-yl)phenyl]benzamide Chemical compound C1=C(C2=NN3C=CN=C3C(N3CCOCC3)=C2)C(C)=CC=C1NC(=O)C1=CC=CC(C(C)(C)C#N)=C1 XCURDAWHBBABCE-UHFFFAOYSA-N 0.000 claims 1
- CJIKCAUEUGYYMV-UHFFFAOYSA-N 3-(2-cyanopropan-2-yl)-n-[4-methyl-3-[2-morpholin-4-yl-6-(oxan-4-yl)pyridin-4-yl]phenyl]benzamide Chemical compound C1=C(C=2C=C(N=C(C=2)C2CCOCC2)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CC=CC(C(C)(C)C#N)=C1 CJIKCAUEUGYYMV-UHFFFAOYSA-N 0.000 claims 1
- HKDMNDSYJYCJAJ-UHFFFAOYSA-N 3-(4,6-dimorpholin-4-ylpyrimidin-2-yl)-4-methyl-n-[3-(trifluoromethyl)phenyl]benzamide Chemical compound CC1=CC=C(C(=O)NC=2C=C(C=CC=2)C(F)(F)F)C=C1C(N=1)=NC(N2CCOCC2)=CC=1N1CCOCC1 HKDMNDSYJYCJAJ-UHFFFAOYSA-N 0.000 claims 1
- VRZMIGYJVATVCC-UHFFFAOYSA-N 3-(4-ethylpiperazin-1-yl)-N-[5-[2-(2-hydroxyethylamino)-6-morpholin-4-ylpyridin-4-yl]-6-methylpyridin-3-yl]-5-(trifluoromethyl)benzamide Chemical compound C(C)N1CCN(CC1)C=1C=C(C(=O)NC=2C=C(C(=NC=2)C)C2=CC(=NC(=C2)N2CCOCC2)NCCO)C=C(C=1)C(F)(F)F VRZMIGYJVATVCC-UHFFFAOYSA-N 0.000 claims 1
- NVNGYABROPSBFJ-UHFFFAOYSA-N 3-(4-ethylpiperazin-1-yl)-N-[5-[2-(3-hydroxyazetidin-1-yl)-6-morpholin-4-ylpyridin-4-yl]-6-methylpyridin-3-yl]-5-(trifluoromethyl)benzamide Chemical compound C(C)N1CCN(CC1)C=1C=C(C(=O)NC=2C=C(C(=NC=2)C)C2=CC(=NC(=C2)N2CCOCC2)N2CC(C2)O)C=C(C=1)C(F)(F)F NVNGYABROPSBFJ-UHFFFAOYSA-N 0.000 claims 1
- TYSVHXIZTMTDBA-UHFFFAOYSA-N 3-(4-ethylpiperazin-1-yl)-N-[6-methyl-5-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)pyridin-3-yl]-5-(trifluoromethyl)benzamide Chemical compound CN1C=C(C=C(C1=O)N1CCOCC1)C=1C(=NC=C(C=1)NC(C1=CC(=CC(=C1)C(F)(F)F)N1CCN(CC1)CC)=O)C TYSVHXIZTMTDBA-UHFFFAOYSA-N 0.000 claims 1
- KLBYYHFELNMOIO-UHFFFAOYSA-N 3-(4-ethylpiperazin-1-yl)-n-[4-methyl-3-(1-methyl-2-morpholin-4-yl-6-oxopyridin-4-yl)phenyl]-5-(trifluoromethyl)benzamide Chemical compound C1CN(CC)CCN1C1=CC(C(=O)NC=2C=C(C(C)=CC=2)C2=CC(=O)N(C)C(N3CCOCC3)=C2)=CC(C(F)(F)F)=C1 KLBYYHFELNMOIO-UHFFFAOYSA-N 0.000 claims 1
- UBSDYIUTQWQSLL-UHFFFAOYSA-N 3-(4-ethylpiperazin-1-yl)-n-[4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridazin-3-yl)phenyl]-5-(trifluoromethyl)benzamide Chemical compound C1CN(CC)CCN1C1=CC(C(=O)NC=2C=C(C(C)=CC=2)C2=NN(C)C(=O)C(N3CCOCC3)=C2)=CC(C(F)(F)F)=C1 UBSDYIUTQWQSLL-UHFFFAOYSA-N 0.000 claims 1
- JOXLYUZFRVVHOD-UHFFFAOYSA-N 3-(4-ethylpiperazin-1-yl)-n-[4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)phenyl]-5-(trifluoromethyl)benzamide Chemical compound C1CN(CC)CCN1C1=CC(C(=O)NC=2C=C(C(C)=CC=2)C2=CN(C)C(=O)C(N3CCOCC3)=C2)=CC(C(F)(F)F)=C1 JOXLYUZFRVVHOD-UHFFFAOYSA-N 0.000 claims 1
- QVRGGLLSYRKKJZ-UHFFFAOYSA-N 3-(4-ethylpiperazin-1-yl)-n-[4-methyl-3-(2-morpholin-4-ylpyridin-4-yl)phenyl]-5-(trifluoromethyl)benzamide Chemical compound C1CN(CC)CCN1C1=CC(C(=O)NC=2C=C(C(C)=CC=2)C=2C=C(N=CC=2)N2CCOCC2)=CC(C(F)(F)F)=C1 QVRGGLLSYRKKJZ-UHFFFAOYSA-N 0.000 claims 1
- CTUGLUQSZFLOBO-UHFFFAOYSA-N 3-(6-ethoxy-5-morpholin-4-ylpyridin-3-yl)-4-methyl-N-(3-methylsulfonylphenyl)benzamide Chemical compound C(C)OC1=C(C=C(C=N1)C=1C=C(C(=O)NC2=CC(=CC=C2)S(=O)(=O)C)C=CC=1C)N1CCOCC1 CTUGLUQSZFLOBO-UHFFFAOYSA-N 0.000 claims 1
- WRVIULGXAIWQCU-UHFFFAOYSA-N 3-(6-ethoxy-5-morpholin-4-ylpyridin-3-yl)-4-methyl-N-[2-(trifluoromethyl)pyridin-4-yl]benzamide Chemical compound CCOc1ncc(cc1N1CCOCC1)-c1cc(ccc1C)C(=O)Nc1ccnc(c1)C(F)(F)F WRVIULGXAIWQCU-UHFFFAOYSA-N 0.000 claims 1
- BFIKEOMNWKYYMI-UHFFFAOYSA-N 3-(6-ethoxy-5-morpholin-4-ylpyridin-3-yl)-4-methyl-N-[3-(trifluoromethyl)phenyl]benzamide Chemical compound C(C)OC1=C(C=C(C=N1)C=1C=C(C(=O)NC2=CC(=CC=C2)C(F)(F)F)C=CC=1C)N1CCOCC1 BFIKEOMNWKYYMI-UHFFFAOYSA-N 0.000 claims 1
- DVBQSUVLJKVUBQ-UHFFFAOYSA-N 3-(6-ethoxy-5-morpholin-4-ylpyridin-3-yl)-n-(2-fluoro-5-prop-1-en-2-ylphenyl)-4-methylbenzamide Chemical compound CCOC1=NC=C(C=2C(=CC=C(C=2)C(=O)NC=2C(=CC=C(C=2)C(C)=C)F)C)C=C1N1CCOCC1 DVBQSUVLJKVUBQ-UHFFFAOYSA-N 0.000 claims 1
- VKMQXZAOMUCLSD-UHFFFAOYSA-N 3-(6-ethoxy-5-morpholin-4-ylpyridin-3-yl)-n-[3-(2-hydroxypropan-2-yl)phenyl]-4-methylbenzamide Chemical compound CCOC1=NC=C(C=2C(=CC=C(C=2)C(=O)NC=2C=C(C=CC=2)C(C)(C)O)C)C=C1N1CCOCC1 VKMQXZAOMUCLSD-UHFFFAOYSA-N 0.000 claims 1
- ATMWTCHMTMDCOQ-UHFFFAOYSA-N 3-(6-ethoxy-5-morpholin-4-ylpyridin-3-yl)-n-[5-fluoro-2-(trifluoromethyl)pyridin-4-yl]-4-methylbenzamide Chemical compound CCOC1=NC=C(C=2C(=CC=C(C=2)C(=O)NC=2C(=CN=C(C=2)C(F)(F)F)F)C)C=C1N1CCOCC1 ATMWTCHMTMDCOQ-UHFFFAOYSA-N 0.000 claims 1
- HZGBRTKLYANMLH-UHFFFAOYSA-N 3-(6-methoxy-5-morpholin-4-ylpyridazin-3-yl)-4-methyl-N-[2-(trifluoromethyl)pyridin-4-yl]benzamide Chemical compound COc1nnc(cc1N1CCOCC1)-c1cc(ccc1C)C(=O)Nc1ccnc(c1)C(F)(F)F HZGBRTKLYANMLH-UHFFFAOYSA-N 0.000 claims 1
- XMLVZRHDUQGOLV-UHFFFAOYSA-N 3-(aminomethyl)-n-[4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)phenyl]-5-(trifluoromethyl)benzamide Chemical compound C1=C(C2=CN(C)C(=O)C(N3CCOCC3)=C2)C(C)=CC=C1NC(=O)C1=CC(CN)=CC(C(F)(F)F)=C1 XMLVZRHDUQGOLV-UHFFFAOYSA-N 0.000 claims 1
- JCEVZCKIBUDPHA-UHFFFAOYSA-N 3-(cyanomethyl)-n-[4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridazin-3-yl)phenyl]benzamide Chemical compound C1=C(C2=NN(C)C(=O)C(N3CCOCC3)=C2)C(C)=CC=C1NC(=O)C1=CC=CC(CC#N)=C1 JCEVZCKIBUDPHA-UHFFFAOYSA-N 0.000 claims 1
- JDPCVEAZOPBNQZ-UHFFFAOYSA-N 3-(cyanomethyl)-n-[4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)phenyl]benzamide Chemical compound C1=C(C2=CN(C)C(=O)C(N3CCOCC3)=C2)C(C)=CC=C1NC(=O)C1=CC=CC(CC#N)=C1 JDPCVEAZOPBNQZ-UHFFFAOYSA-N 0.000 claims 1
- ZPFKPMWFOSWJLV-UHFFFAOYSA-N 3-(difluoromethyl)-N-[5-(2,6-dimorpholin-4-ylpyridin-4-yl)-6-methylpyridin-3-yl]benzamide Chemical compound FC(C=1C=C(C(=O)NC=2C=C(C(=NC=2)C)C2=CC(=NC(=C2)N2CCOCC2)N2CCOCC2)C=CC=1)F ZPFKPMWFOSWJLV-UHFFFAOYSA-N 0.000 claims 1
- WNCYYCZFDZCRER-UHFFFAOYSA-N 3-(difluoromethyl)-N-[5-[2-(2-hydroxyethylamino)-6-morpholin-4-ylpyridin-4-yl]-6-methylpyridin-3-yl]benzamide Chemical compound FC(C=1C=C(C(=O)NC=2C=C(C(=NC=2)C)C2=CC(=NC(=C2)N2CCOCC2)NCCO)C=CC=1)F WNCYYCZFDZCRER-UHFFFAOYSA-N 0.000 claims 1
- VYUOKHWTDHUGIU-UHFFFAOYSA-N 3-(difluoromethyl)-N-[6-methyl-5-(1-methyl-2-morpholin-4-yl-6-oxopyridin-4-yl)pyridin-3-yl]benzamide Chemical compound FC(C=1C=C(C(=O)NC=2C=C(C(=NC=2)C)C2=CC(N(C(=C2)N2CCOCC2)C)=O)C=CC=1)F VYUOKHWTDHUGIU-UHFFFAOYSA-N 0.000 claims 1
- KVSNFDQHMJIXCF-UHFFFAOYSA-N 3-(difluoromethyl)-N-[6-methyl-5-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)pyridin-3-yl]benzamide Chemical compound FC(C=1C=C(C(=O)NC=2C=C(C(=NC=2)C)C2=CN(C(C(=C2)N2CCOCC2)=O)C)C=CC=1)F KVSNFDQHMJIXCF-UHFFFAOYSA-N 0.000 claims 1
- GWGGUTZJIZNMNO-UHFFFAOYSA-N 3-(difluoromethyl)-n-[3-(2,6-dimorpholin-4-ylpyridin-4-yl)-4-methylphenyl]benzamide Chemical compound C1=C(C=2C=C(N=C(C=2)N2CCOCC2)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CC=CC(C(F)F)=C1 GWGGUTZJIZNMNO-UHFFFAOYSA-N 0.000 claims 1
- YZPTWQLHPJJVQJ-UHFFFAOYSA-N 3-(difluoromethyl)-n-[3-(6-ethoxy-5-morpholin-4-ylpyridazin-3-yl)-4-methylphenyl]benzamide Chemical compound CCOC1=NN=C(C=2C(=CC=C(NC(=O)C=3C=C(C=CC=3)C(F)F)C=2)C)C=C1N1CCOCC1 YZPTWQLHPJJVQJ-UHFFFAOYSA-N 0.000 claims 1
- WZBZWEHLHGROSE-UHFFFAOYSA-N 3-(difluoromethyl)-n-[3-(6-ethoxy-5-morpholin-4-ylpyridin-3-yl)-4-methylphenyl]benzamide Chemical compound CCOC1=NC=C(C=2C(=CC=C(NC(=O)C=3C=C(C=CC=3)C(F)F)C=2)C)C=C1N1CCOCC1 WZBZWEHLHGROSE-UHFFFAOYSA-N 0.000 claims 1
- OEQUIGXPHVTTNQ-UHFFFAOYSA-N 3-(difluoromethyl)-n-[3-[2-(2-hydroxyethylamino)-6-morpholin-4-ylpyridin-4-yl]-4-methylphenyl]benzamide Chemical compound C1=C(C=2C=C(N=C(NCCO)C=2)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CC=CC(C(F)F)=C1 OEQUIGXPHVTTNQ-UHFFFAOYSA-N 0.000 claims 1
- AQEDEXWKMRFNFJ-UHFFFAOYSA-N 3-(difluoromethyl)-n-[3-[2-(3-hydroxyazetidin-1-yl)-6-morpholin-4-ylpyridin-4-yl]-4-methylphenyl]benzamide Chemical compound C1=C(C=2C=C(N=C(C=2)N2CC(O)C2)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CC=CC(C(F)F)=C1 AQEDEXWKMRFNFJ-UHFFFAOYSA-N 0.000 claims 1
- XASCATHLORIIEH-UHFFFAOYSA-N 3-(difluoromethyl)-n-[3-[2-(ethylamino)-6-morpholin-4-ylpyrimidin-4-yl]-4-methylphenyl]benzamide Chemical compound N=1C(NCC)=NC(N2CCOCC2)=CC=1C(C(=CC=1)C)=CC=1NC(=O)C1=CC=CC(C(F)F)=C1 XASCATHLORIIEH-UHFFFAOYSA-N 0.000 claims 1
- GWUWXAPVCNAQLC-UHFFFAOYSA-N 3-(difluoromethyl)-n-[4-fluoro-3-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)phenyl]benzamide Chemical compound O=C1N(C)C=C(C=2C(=CC=C(NC(=O)C=3C=C(C=CC=3)C(F)F)C=2)F)C=C1N1CCOCC1 GWUWXAPVCNAQLC-UHFFFAOYSA-N 0.000 claims 1
- XTEJDZLDLUSKQZ-UHFFFAOYSA-N 3-(difluoromethyl)-n-[4-methyl-3-(1-methyl-2-morpholin-4-yl-6-oxopyridin-4-yl)phenyl]benzamide Chemical compound C1=C(C2=CC(=O)N(C)C(N3CCOCC3)=C2)C(C)=CC=C1NC(=O)C1=CC=CC(C(F)F)=C1 XTEJDZLDLUSKQZ-UHFFFAOYSA-N 0.000 claims 1
- ISYANDALIHYXTG-UHFFFAOYSA-N 3-(difluoromethyl)-n-[4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)phenyl]benzamide Chemical compound C1=C(C2=CN(C)C(=O)C(N3CCOCC3)=C2)C(C)=CC=C1NC(=O)C1=CC=CC(C(F)F)=C1 ISYANDALIHYXTG-UHFFFAOYSA-N 0.000 claims 1
- JENDIFUUBSMNTQ-UHFFFAOYSA-N 3-(difluoromethyl)-n-[4-methyl-3-(2-morpholin-4-ylpyridin-4-yl)phenyl]benzamide Chemical compound C1=C(C=2C=C(N=CC=2)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CC=CC(C(F)F)=C1 JENDIFUUBSMNTQ-UHFFFAOYSA-N 0.000 claims 1
- ZZVJHMMNODGNHU-UHFFFAOYSA-N 3-(difluoromethyl)-n-[4-methyl-3-(4-morpholin-4-yl-5,5-dioxo-6,7-dihydrothieno[3,2-d]pyrimidin-2-yl)phenyl]benzamide Chemical compound C1=C(C=2N=C(C=3S(=O)(=O)CCC=3N=2)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CC=CC(C(F)F)=C1 ZZVJHMMNODGNHU-UHFFFAOYSA-N 0.000 claims 1
- USDDJVQBULIBKZ-UHFFFAOYSA-N 3-(difluoromethyl)-n-[5-(6-ethoxy-5-morpholin-4-ylpyridazin-3-yl)-6-methylpyridin-3-yl]benzamide Chemical compound CCOC1=NN=C(C=2C(=NC=C(NC(=O)C=3C=C(C=CC=3)C(F)F)C=2)C)C=C1N1CCOCC1 USDDJVQBULIBKZ-UHFFFAOYSA-N 0.000 claims 1
- QAANDEMVFNRZEX-UHFFFAOYSA-N 3-(difluoromethyl)-n-[5-(6-methoxy-5-morpholin-4-ylpyridazin-3-yl)-6-methylpyridin-3-yl]benzamide Chemical compound COC1=NN=C(C=2C(=NC=C(NC(=O)C=3C=C(C=CC=3)C(F)F)C=2)C)C=C1N1CCOCC1 QAANDEMVFNRZEX-UHFFFAOYSA-N 0.000 claims 1
- VCKMSNSWAZPWDD-UHFFFAOYSA-N 3-(difluoromethyl)-n-[5-[2-(3-hydroxyazetidin-1-yl)-6-morpholin-4-ylpyridin-4-yl]-6-methylpyridin-3-yl]benzamide Chemical compound C1=C(C=2C=C(N=C(C=2)N2CC(O)C2)N2CCOCC2)C(C)=NC=C1NC(=O)C1=CC=CC(C(F)F)=C1 VCKMSNSWAZPWDD-UHFFFAOYSA-N 0.000 claims 1
- ZRCWYLGCKSIUDR-UHFFFAOYSA-N 3-(difluoromethyl)-n-[6-methyl-5-(1-methyl-5-morpholin-4-yl-6-oxopyridazin-3-yl)pyridin-3-yl]benzamide Chemical compound C1=C(C2=NN(C)C(=O)C(N3CCOCC3)=C2)C(C)=NC=C1NC(=O)C1=CC=CC(C(F)F)=C1 ZRCWYLGCKSIUDR-UHFFFAOYSA-N 0.000 claims 1
- AUZAPTUBDQMDLQ-UHFFFAOYSA-N 3-(difluoromethyl)-n-[6-methyl-5-(2-morpholin-4-ylpyridin-4-yl)pyridin-3-yl]benzamide Chemical compound C1=C(C=2C=C(N=CC=2)N2CCOCC2)C(C)=NC=C1NC(=O)C1=CC=CC(C(F)F)=C1 AUZAPTUBDQMDLQ-UHFFFAOYSA-N 0.000 claims 1
- WOERSGXKJYKTFB-UHFFFAOYSA-N 3-(difluoromethyl)-n-[6-methyl-5-(7-morpholin-4-ylpyrazolo[1,5-a]pyrimidin-5-yl)pyridin-3-yl]benzamide Chemical compound C1=C(C2=NC3=CC=NN3C(N3CCOCC3)=C2)C(C)=NC=C1NC(=O)C1=CC=CC(C(F)F)=C1 WOERSGXKJYKTFB-UHFFFAOYSA-N 0.000 claims 1
- ZJIRCPUOQNBUEV-UHFFFAOYSA-N 3-(difluoromethyl)-n-[6-methyl-5-(8-morpholin-4-ylimidazo[1,2-a]pyridin-6-yl)pyridin-3-yl]benzamide Chemical compound C1=C(C2=CN3C=CN=C3C(N3CCOCC3)=C2)C(C)=NC=C1NC(=O)C1=CC=CC(C(F)F)=C1 ZJIRCPUOQNBUEV-UHFFFAOYSA-N 0.000 claims 1
- TUIBXKTXNDTECM-UHFFFAOYSA-N 3-(difluoromethyl)-n-[6-methyl-5-(8-morpholin-4-ylimidazo[1,2-b]pyridazin-6-yl)pyridin-3-yl]benzamide Chemical compound C1=C(C2=NN3C=CN=C3C(N3CCOCC3)=C2)C(C)=NC=C1NC(=O)C1=CC=CC(C(F)F)=C1 TUIBXKTXNDTECM-UHFFFAOYSA-N 0.000 claims 1
- UXBWGROUZUBLMS-UHFFFAOYSA-N 3-(hydroxymethyl)-n-[4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)phenyl]-5-(trifluoromethyl)benzamide Chemical compound C1=C(C2=CN(C)C(=O)C(N3CCOCC3)=C2)C(C)=CC=C1NC(=O)C1=CC(CO)=CC(C(F)(F)F)=C1 UXBWGROUZUBLMS-UHFFFAOYSA-N 0.000 claims 1
- CJKYJRDFCYFHLA-UHFFFAOYSA-N 3-(methylaminomethyl)-n-[4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)phenyl]-5-(trifluoromethyl)benzamide Chemical compound FC(F)(F)C1=CC(CNC)=CC(C(=O)NC=2C=C(C(C)=CC=2)C2=CN(C)C(=O)C(N3CCOCC3)=C2)=C1 CJKYJRDFCYFHLA-UHFFFAOYSA-N 0.000 claims 1
- BQHRXVBTMFSADY-UHFFFAOYSA-N 3-[(dimethylamino)methyl]-N-[4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridazin-3-yl)phenyl]-5-(trifluoromethyl)benzamide Chemical compound CN(C)CC=1C=C(C(=O)NC2=CC(=C(C=C2)C)C2=NN(C(C(=C2)N2CCOCC2)=O)C)C=C(C=1)C(F)(F)F BQHRXVBTMFSADY-UHFFFAOYSA-N 0.000 claims 1
- LFRYLTBUNLFVKS-UHFFFAOYSA-N 3-[(dimethylamino)methyl]-N-[5-(6-ethoxy-5-morpholin-4-ylpyridin-3-yl)-6-methylpyridin-3-yl]-5-(trifluoromethyl)benzamide Chemical compound CN(C)CC=1C=C(C(=O)NC=2C=C(C(=NC=2)C)C=2C=NC(=C(C=2)N2CCOCC2)OCC)C=C(C=1)C(F)(F)F LFRYLTBUNLFVKS-UHFFFAOYSA-N 0.000 claims 1
- BLJRHYHTJAMWHS-UHFFFAOYSA-N 3-[(dimethylamino)methyl]-N-[5-[2-(3-hydroxyazetidin-1-yl)-6-morpholin-4-ylpyridin-4-yl]-6-methylpyridin-3-yl]-5-(trifluoromethyl)benzamide Chemical compound CN(C)CC=1C=C(C(=O)NC=2C=C(C(=NC=2)C)C2=CC(=NC(=C2)N2CCOCC2)N2CC(C2)O)C=C(C=1)C(F)(F)F BLJRHYHTJAMWHS-UHFFFAOYSA-N 0.000 claims 1
- BHRMRRQALOPXNK-UHFFFAOYSA-N 3-[(dimethylamino)methyl]-N-[5-[6-(dimethylamino)-5-morpholin-4-ylpyridin-3-yl]-6-methylpyridin-3-yl]-5-(trifluoromethyl)benzamide Chemical compound CN(C1=C(C=C(C=N1)C=1C(=NC=C(C=1)NC(C1=CC(=CC(=C1)C(F)(F)F)CN(C)C)=O)C)N1CCOCC1)C BHRMRRQALOPXNK-UHFFFAOYSA-N 0.000 claims 1
- YJYYWWDRIBCBBQ-UHFFFAOYSA-N 3-[(dimethylamino)methyl]-N-[6-methyl-5-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)pyridin-3-yl]-5-(trifluoromethyl)benzamide Chemical compound CN1C=C(C=C(C1=O)N1CCOCC1)C=1C(=NC=C(C=1)NC(C1=CC(=CC(=C1)C(F)(F)F)CN(C)C)=O)C YJYYWWDRIBCBBQ-UHFFFAOYSA-N 0.000 claims 1
- AIPRPSWGJJAMMI-UHFFFAOYSA-N 3-[(dimethylamino)methyl]-n-[3-(2,6-dimorpholin-4-ylpyrimidin-4-yl)-4-methylphenyl]-5-(trifluoromethyl)benzamide Chemical compound FC(F)(F)C1=CC(CN(C)C)=CC(C(=O)NC=2C=C(C(C)=CC=2)C=2N=C(N=C(C=2)N2CCOCC2)N2CCOCC2)=C1 AIPRPSWGJJAMMI-UHFFFAOYSA-N 0.000 claims 1
- DFBCCQBTGPUPLI-UHFFFAOYSA-N 3-[(dimethylamino)methyl]-n-[4-methyl-3-(1-methyl-2-morpholin-4-yl-6-oxopyridin-4-yl)phenyl]-5-(trifluoromethyl)benzamide Chemical compound FC(F)(F)C1=CC(CN(C)C)=CC(C(=O)NC=2C=C(C(C)=CC=2)C2=CC(=O)N(C)C(N3CCOCC3)=C2)=C1 DFBCCQBTGPUPLI-UHFFFAOYSA-N 0.000 claims 1
- PPRLBIWEKOHUSJ-UHFFFAOYSA-N 3-[(dimethylamino)methyl]-n-[4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)phenyl]-5-(trifluoromethyl)benzamide Chemical compound FC(F)(F)C1=CC(CN(C)C)=CC(C(=O)NC=2C=C(C(C)=CC=2)C2=CN(C)C(=O)C(N3CCOCC3)=C2)=C1 PPRLBIWEKOHUSJ-UHFFFAOYSA-N 0.000 claims 1
- ZLZRDGLWVXQXQF-UHFFFAOYSA-N 3-[(dimethylamino)methyl]-n-[5-(5-ethoxy-6-morpholin-4-ylpyrazin-2-yl)-6-methylpyridin-3-yl]-5-(trifluoromethyl)benzamide Chemical compound CCOC1=NC=C(C=2C(=NC=C(NC(=O)C=3C=C(C=C(CN(C)C)C=3)C(F)(F)F)C=2)C)N=C1N1CCOCC1 ZLZRDGLWVXQXQF-UHFFFAOYSA-N 0.000 claims 1
- CGLYSDGZWISJAW-UHFFFAOYSA-N 3-[(dimethylamino)methyl]-n-[5-(5-methoxy-6-morpholin-4-ylpyrazin-2-yl)-6-methylpyridin-3-yl]-5-(trifluoromethyl)benzamide Chemical compound COC1=NC=C(C=2C(=NC=C(NC(=O)C=3C=C(C=C(CN(C)C)C=3)C(F)(F)F)C=2)C)N=C1N1CCOCC1 CGLYSDGZWISJAW-UHFFFAOYSA-N 0.000 claims 1
- KAAVGAUVTMYYBL-UHFFFAOYSA-N 3-[2-(1,1-dioxo-1,4-thiazinan-4-yl)-6-morpholin-4-ylpyrimidin-4-yl]-4-methyl-n-[3-(trifluoromethyl)phenyl]benzamide Chemical compound CC1=CC=C(C(=O)NC=2C=C(C=CC=2)C(F)(F)F)C=C1C(N=1)=CC(N2CCOCC2)=NC=1N1CCS(=O)(=O)CC1 KAAVGAUVTMYYBL-UHFFFAOYSA-N 0.000 claims 1
- DBWCYBFKPOSZQS-UHFFFAOYSA-N 3-[2-(ethylamino)-6-morpholin-4-ylpyrimidin-4-yl]-4-methyl-n-phenylbenzamide Chemical compound N=1C(NCC)=NC(N2CCOCC2)=CC=1C(C(=CC=1)C)=CC=1C(=O)NC1=CC=CC=C1 DBWCYBFKPOSZQS-UHFFFAOYSA-N 0.000 claims 1
- CJQHHPNKIQNPAX-UHFFFAOYSA-N 3-[6-(1,1-dioxo-1,4-thiazinan-4-yl)-2-morpholin-4-ylpyrimidin-4-yl]-4-methyl-n-[3-(trifluoromethyl)phenyl]benzamide Chemical compound CC1=CC=C(C(=O)NC=2C=C(C=CC=2)C(F)(F)F)C=C1C(N=1)=CC(N2CCS(=O)(=O)CC2)=NC=1N1CCOCC1 CJQHHPNKIQNPAX-UHFFFAOYSA-N 0.000 claims 1
- BTFUYTGIQWAGDR-UHFFFAOYSA-N 3-ethoxy-4-fluoro-N-[6-methyl-5-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)pyridin-3-yl]benzamide Chemical compound CN1C=C(C=C(C1=O)N1CCOCC1)C=1C(=NC=C(C=1)NC(C1=CC(=C(C=C1)F)OCC)=O)C BTFUYTGIQWAGDR-UHFFFAOYSA-N 0.000 claims 1
- VXZYBHGVCJHBFW-UHFFFAOYSA-N 3-ethoxy-4-fluoro-n-[4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)phenyl]benzamide Chemical compound C1=C(F)C(OCC)=CC(C(=O)NC=2C=C(C(C)=CC=2)C2=CN(C)C(=O)C(N3CCOCC3)=C2)=C1 VXZYBHGVCJHBFW-UHFFFAOYSA-N 0.000 claims 1
- JGGYYZVPHRDCPE-UHFFFAOYSA-N 3-ethoxy-N-[6-methyl-5-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)pyridin-3-yl]benzamide Chemical compound CN1C=C(C=C(C1=O)N1CCOCC1)C=1C(=NC=C(C=1)NC(C1=CC(=CC=C1)OCC)=O)C JGGYYZVPHRDCPE-UHFFFAOYSA-N 0.000 claims 1
- MRWHNPNVAJPUIX-UHFFFAOYSA-N 3-fluoro-n-[4-methyl-3-(1-methyl-2-morpholin-4-yl-6-oxopyridin-4-yl)phenyl]-5-morpholin-4-ylbenzamide Chemical compound C1=C(C2=CC(=O)N(C)C(N3CCOCC3)=C2)C(C)=CC=C1NC(=O)C(C=1)=CC(F)=CC=1N1CCOCC1 MRWHNPNVAJPUIX-UHFFFAOYSA-N 0.000 claims 1
- ZQUAIPSWHIEBAZ-UHFFFAOYSA-N 3-methyl-N-[6-methyl-5-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)pyridin-3-yl]-1-propan-2-ylpyrazole-4-carboxamide Chemical compound CN1C=C(C=C(C1=O)N1CCOCC1)C=1C(=NC=C(C=1)NC(=O)C=1C(=NN(C=1)C(C)C)C)C ZQUAIPSWHIEBAZ-UHFFFAOYSA-N 0.000 claims 1
- BGSLNEACJJGTHU-UHFFFAOYSA-N 3-methyl-n-[4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)phenyl]-1-propan-2-ylpyrazole-4-carboxamide Chemical compound CC1=NN(C(C)C)C=C1C(=O)NC1=CC=C(C)C(C2=CN(C)C(=O)C(N3CCOCC3)=C2)=C1 BGSLNEACJJGTHU-UHFFFAOYSA-N 0.000 claims 1
- PKUFHBXCQATYJD-UHFFFAOYSA-N 3-methyl-n-[4-methyl-3-(4-morpholin-4-yl-1h-imidazo[4,5-c]pyridin-6-yl)phenyl]-1-propan-2-ylpyrazole-4-carboxamide Chemical compound CC1=NN(C(C)C)C=C1C(=O)NC1=CC=C(C)C(C=2N=C(C=3N=CNC=3C=2)N2CCOCC2)=C1 PKUFHBXCQATYJD-UHFFFAOYSA-N 0.000 claims 1
- PNGGYMKHJMOIPI-UHFFFAOYSA-N 3-tert-butyl-n-[3-(2,6-dimorpholin-4-ylpyrimidin-4-yl)-4-methylphenyl]-1,2-oxazole-5-carboxamide Chemical compound C1=C(C=2N=C(N=C(C=2)N2CCOCC2)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CC(C(C)(C)C)=NO1 PNGGYMKHJMOIPI-UHFFFAOYSA-N 0.000 claims 1
- JVJGDEKMUWPKOW-UHFFFAOYSA-N 4-(1,1-difluoroethyl)-N-[4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)phenyl]pyridine-2-carboxamide Chemical compound Cc1ccc(NC(=O)c2cc(ccn2)C(C)(F)F)cc1-c1cc(N2CCOCC2)c(=O)n(C)c1 JVJGDEKMUWPKOW-UHFFFAOYSA-N 0.000 claims 1
- GDJZFWUNGJTSEK-UHFFFAOYSA-N 4-(1,1-difluoroethyl)-N-[5-[6-(2-hydroxyethoxy)-5-morpholin-4-ylpyridin-3-yl]-6-methylpyridin-3-yl]pyridine-2-carboxamide Chemical compound CC1=NC=C(NC(=O)C2=CC(=CC=N2)C(C)(F)F)C=C1C1=CC(N2CCOCC2)=C(OCCO)N=C1 GDJZFWUNGJTSEK-UHFFFAOYSA-N 0.000 claims 1
- MLQGCJFSMDPOAK-UHFFFAOYSA-N 4-(1,1-difluoroethyl)-N-[6-methyl-5-(5-morpholin-4-yl-6-propan-2-yloxypyridin-3-yl)pyridin-3-yl]pyridine-2-carboxamide Chemical compound CC(C)OC1=NC=C(C=C1N1CCOCC1)C1=C(C)N=CC(NC(=O)C2=CC(=CC=N2)C(C)(F)F)=C1 MLQGCJFSMDPOAK-UHFFFAOYSA-N 0.000 claims 1
- RPWFLXNBYHEIQO-UHFFFAOYSA-N 4-(1,2-dihydroxyethyl)-n-[6-methyl-5-(8-morpholin-4-ylimidazo[1,2-b]pyridazin-6-yl)pyridin-3-yl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C2=NN3C=CN=C3C(N3CCOCC3)=C2)C(C)=NC=C1NC(=O)C1=CC=C(C(O)CO)C(C(F)(F)F)=C1 RPWFLXNBYHEIQO-UHFFFAOYSA-N 0.000 claims 1
- PGZSUVJLXDYGNN-UHFFFAOYSA-N 4-(2-aminoethyl)-n-[4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)phenyl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C2=CN(C)C(=O)C(N3CCOCC3)=C2)C(C)=CC=C1NC(=O)C1=CC=C(CCN)C(C(F)(F)F)=C1 PGZSUVJLXDYGNN-UHFFFAOYSA-N 0.000 claims 1
- CHWJFCDCLIOMCQ-UHFFFAOYSA-N 4-(2-cyanopropan-2-yl)-N-[4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridazin-3-yl)phenyl]pyridine-2-carboxamide Chemical compound C(#N)C(C)(C)C1=CC(=NC=C1)C(=O)NC1=CC(=C(C=C1)C)C1=NN(C(C(=C1)N1CCOCC1)=O)C CHWJFCDCLIOMCQ-UHFFFAOYSA-N 0.000 claims 1
- ZTTNUMIPEUTZCZ-UHFFFAOYSA-N 4-(2-cyanopropan-2-yl)-N-[4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)phenyl]pyridine-2-carboxamide Chemical compound C(#N)C(C)(C)C1=CC(=NC=C1)C(=O)NC1=CC(=C(C=C1)C)C1=CN(C(C(=C1)N1CCOCC1)=O)C ZTTNUMIPEUTZCZ-UHFFFAOYSA-N 0.000 claims 1
- YICHIXRLSNXCNQ-UHFFFAOYSA-N 4-(2-cyanopropan-2-yl)-N-[5-[6-(2-hydroxyethoxy)-5-morpholin-4-ylpyridin-3-yl]-6-methylpyridin-3-yl]pyridine-2-carboxamide Chemical compound C(#N)C(C)(C)C1=CC(=NC=C1)C(=O)NC=1C=C(C(=NC=1)C)C=1C=NC(=C(C=1)N1CCOCC1)OCCO YICHIXRLSNXCNQ-UHFFFAOYSA-N 0.000 claims 1
- YNSRMAHHANADGG-UHFFFAOYSA-N 4-(2-cyanopropan-2-yl)-N-[5-[6-(difluoromethoxy)-5-morpholin-4-ylpyridin-3-yl]-6-methylpyridin-3-yl]pyridine-2-carboxamide Chemical compound C(#N)C(C)(C)C1=CC(=NC=C1)C(=O)NC=1C=C(C(=NC=1)C)C=1C=NC(=C(C=1)N1CCOCC1)OC(F)F YNSRMAHHANADGG-UHFFFAOYSA-N 0.000 claims 1
- CPMMCXWMKJDSBY-UHFFFAOYSA-N 4-(2-cyanopropan-2-yl)-N-[6-methyl-5-(5-morpholin-4-yl-6-propan-2-yloxypyridin-3-yl)pyridin-3-yl]pyridine-2-carboxamide Chemical compound C(#N)C(C)(C)C1=CC(=NC=C1)C(=O)NC=1C=C(C(=NC=1)C)C=1C=NC(=C(C=1)N1CCOCC1)OC(C)C CPMMCXWMKJDSBY-UHFFFAOYSA-N 0.000 claims 1
- LYWGFIJKKALRDM-UHFFFAOYSA-N 4-(2-cyanopropan-2-yl)-N-[6-methyl-5-[5-morpholin-4-yl-6-(2-oxaspiro[3.3]heptan-6-yloxy)pyridin-3-yl]pyridin-3-yl]pyridine-2-carboxamide Chemical compound C1OCC11CC(C1)OC1=C(C=C(C=N1)C=1C(=NC=C(C=1)NC(C1=NC=CC(=C1)C(C)(C)C#N)=O)C)N1CCOCC1 LYWGFIJKKALRDM-UHFFFAOYSA-N 0.000 claims 1
- BCBHGPKTOXXCOT-UHFFFAOYSA-N 4-(2-cyanopropan-2-yl)-N-[6-methyl-5-[5-morpholin-4-yl-6-(oxan-4-yloxy)pyridin-3-yl]pyridin-3-yl]pyridine-2-carboxamide Chemical compound C(#N)C(C)(C)C1=CC(=NC=C1)C(=O)NC=1C=C(C(=NC=1)C)C=1C=NC(=C(C=1)N1CCOCC1)OC1CCOCC1 BCBHGPKTOXXCOT-UHFFFAOYSA-N 0.000 claims 1
- BFXOUNGNTCJHHK-UHFFFAOYSA-N 4-(2-cyanopropan-2-yl)-n-[4-methyl-3-(1-methyl-2-morpholin-4-yl-6-oxopyridin-4-yl)phenyl]pyridine-2-carboxamide Chemical compound C1=C(C2=CC(=O)N(C)C(N3CCOCC3)=C2)C(C)=CC=C1NC(=O)C1=CC(C(C)(C)C#N)=CC=N1 BFXOUNGNTCJHHK-UHFFFAOYSA-N 0.000 claims 1
- NNWIDCYFQHTUBX-UHFFFAOYSA-N 4-(2-cyanopropan-2-yl)-n-[4-methyl-3-(5-morpholin-4-yl-6-propan-2-yloxypyridin-3-yl)phenyl]pyridine-2-carboxamide Chemical compound CC(C)OC1=NC=C(C=2C(=CC=C(NC(=O)C=3N=CC=C(C=3)C(C)(C)C#N)C=2)C)C=C1N1CCOCC1 NNWIDCYFQHTUBX-UHFFFAOYSA-N 0.000 claims 1
- HJXMUWPUYZZAKE-UHFFFAOYSA-N 4-(2-fluoropropan-2-yl)-N-[5-[6-(2-hydroxyethoxy)-5-morpholin-4-ylpyridin-3-yl]-6-methylpyridin-3-yl]pyridine-2-carboxamide Chemical compound CC1=NC=C(NC(=O)C2=CC(=CC=N2)C(C)(C)F)C=C1C1=CC(N2CCOCC2)=C(OCCO)N=C1 HJXMUWPUYZZAKE-UHFFFAOYSA-N 0.000 claims 1
- NFDIQKBIDWDWPV-UHFFFAOYSA-N 4-(2-fluoropropan-2-yl)-N-[6-methyl-5-(5-morpholin-4-yl-6-propan-2-yloxypyridin-3-yl)pyridin-3-yl]pyridine-2-carboxamide Chemical compound FC(C)(C)C1=CC(=NC=C1)C(=O)NC=1C=C(C(=NC=1)C)C=1C=NC(=C(C=1)N1CCOCC1)OC(C)C NFDIQKBIDWDWPV-UHFFFAOYSA-N 0.000 claims 1
- CCUAKNKGRBCZCZ-UHFFFAOYSA-N 4-(2-fluoropropan-2-yl)-N-[6-methyl-5-[5-morpholin-4-yl-6-(2-oxaspiro[3.3]heptan-6-yloxy)pyridin-3-yl]pyridin-3-yl]pyridine-2-carboxamide Chemical compound C1OCC11CC(C1)OC1=C(C=C(C=N1)C=1C(=NC=C(C=1)NC(C1=NC=CC(=C1)C(C)(C)F)=O)C)N1CCOCC1 CCUAKNKGRBCZCZ-UHFFFAOYSA-N 0.000 claims 1
- UJHLSQCUCRSAOO-UHFFFAOYSA-N 4-(2-fluoropropan-2-yl)-n-[4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)phenyl]pyridine-2-carboxamide Chemical compound C1=C(C2=CN(C)C(=O)C(N3CCOCC3)=C2)C(C)=CC=C1NC(=O)C1=CC(C(C)(C)F)=CC=N1 UJHLSQCUCRSAOO-UHFFFAOYSA-N 0.000 claims 1
- DPOYQQDATBVMPD-UHFFFAOYSA-N 4-(2-hydroxypropan-2-yl)-N-[4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)phenyl]pyridine-2-carboxamide Chemical compound Cc1ccc(NC(=O)c2cc(ccn2)C(C)(C)O)cc1-c1cc(N2CCOCC2)c(=O)n(C)c1 DPOYQQDATBVMPD-UHFFFAOYSA-N 0.000 claims 1
- BZWIKESOBDPPCU-UHFFFAOYSA-N 4-(2-hydroxypropan-2-yl)-N-[6-methyl-5-(5-morpholin-4-yl-6-propan-2-yloxypyridin-3-yl)pyridin-3-yl]pyridine-2-carboxamide Chemical compound OC(C)(C)C1=CC(=NC=C1)C(=O)NC=1C=C(C(=NC=1)C)C=1C=NC(=C(C=1)N1CCOCC1)OC(C)C BZWIKESOBDPPCU-UHFFFAOYSA-N 0.000 claims 1
- CGPFHJZAGKIEFK-UHFFFAOYSA-N 4-(2-hydroxypropan-2-yl)-N-[6-methyl-5-[5-morpholin-4-yl-6-(2-oxaspiro[3.3]heptan-6-yloxy)pyridin-3-yl]pyridin-3-yl]pyridine-2-carboxamide Chemical compound C1OCC11CC(C1)OC1=C(C=C(C=N1)C=1C(=NC=C(C=1)NC(C1=NC=CC(=C1)C(C)(C)O)=O)C)N1CCOCC1 CGPFHJZAGKIEFK-UHFFFAOYSA-N 0.000 claims 1
- VYGSNHHDLXCRSL-UHFFFAOYSA-N 4-(2-hydroxypropan-2-yl)-n-[4-methyl-3-(5-morpholin-4-yl-6-propan-2-yloxypyridin-3-yl)phenyl]pyridine-2-carboxamide Chemical compound CC(C)OC1=NC=C(C=2C(=CC=C(NC(=O)C=3N=CC=C(C=3)C(C)(C)O)C=2)C)C=C1N1CCOCC1 VYGSNHHDLXCRSL-UHFFFAOYSA-N 0.000 claims 1
- KWZCKQUVXXLQTC-UHFFFAOYSA-N 4-(5-amino-2-methylphenyl)-1-methyl-6-morpholin-4-ylpyridin-2-one Chemical compound Cc1ccc(N)cc1-c1cc(N2CCOCC2)n(C)c(=O)c1 KWZCKQUVXXLQTC-UHFFFAOYSA-N 0.000 claims 1
- DTQMZXFMSMGSRI-UHFFFAOYSA-N 4-(difluoromethyl)-3-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)-n-[3-(trifluoromethyl)phenyl]benzamide Chemical compound O=C1N(C)C=C(C=2C(=CC=C(C=2)C(=O)NC=2C=C(C=CC=2)C(F)(F)F)C(F)F)C=C1N1CCOCC1 DTQMZXFMSMGSRI-UHFFFAOYSA-N 0.000 claims 1
- IYANNOOOCLOAND-UHFFFAOYSA-N 4-(difluoromethyl)-3-(2-morpholin-4-ylpyridin-4-yl)-n-[3-(trifluoromethyl)phenyl]benzamide Chemical compound FC(F)C1=CC=C(C(=O)NC=2C=C(C=CC=2)C(F)(F)F)C=C1C(C=1)=CC=NC=1N1CCOCC1 IYANNOOOCLOAND-UHFFFAOYSA-N 0.000 claims 1
- HADQWOUFZYOCND-UHFFFAOYSA-N 4-(fluoromethyl)-3-(2-morpholin-4-ylpyridin-4-yl)-n-[3-(trifluoromethyl)phenyl]benzamide Chemical compound FCC1=CC=C(C(=O)NC=2C=C(C=CC=2)C(F)(F)F)C=C1C(C=1)=CC=NC=1N1CCOCC1 HADQWOUFZYOCND-UHFFFAOYSA-N 0.000 claims 1
- KHLFEDBCFCMGBK-UHFFFAOYSA-N 4-(hydroxymethyl)-3-(2-morpholin-4-ylpyridin-4-yl)-n-[3-(trifluoromethyl)phenyl]benzamide Chemical compound OCC1=CC=C(C(=O)NC=2C=C(C=CC=2)C(F)(F)F)C=C1C(C=1)=CC=NC=1N1CCOCC1 KHLFEDBCFCMGBK-UHFFFAOYSA-N 0.000 claims 1
- DMCRSXBHTRCMBL-UHFFFAOYSA-N 4-(hydroxymethyl)-n-[4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)phenyl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C2=CN(C)C(=O)C(N3CCOCC3)=C2)C(C)=CC=C1NC(=O)C1=CC=C(CO)C(C(F)(F)F)=C1 DMCRSXBHTRCMBL-UHFFFAOYSA-N 0.000 claims 1
- DNZNAPGFPHBLSO-UHFFFAOYSA-N 4-(methylaminomethyl)-n-[4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)phenyl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C(F)(F)F)C(CNC)=CC=C1C(=O)NC1=CC=C(C)C(C2=CN(C)C(=O)C(N3CCOCC3)=C2)=C1 DNZNAPGFPHBLSO-UHFFFAOYSA-N 0.000 claims 1
- MQGDEQVMSIDIEJ-UHFFFAOYSA-N 4-(methylaminomethyl)-n-[4-methyl-3-(8-morpholin-4-ylimidazo[1,2-a]pyridin-6-yl)phenyl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C(F)(F)F)C(CNC)=CC=C1C(=O)NC1=CC=C(C)C(C2=CN3C=CN=C3C(N3CCOCC3)=C2)=C1 MQGDEQVMSIDIEJ-UHFFFAOYSA-N 0.000 claims 1
- RUCARBKYQNJULD-UHFFFAOYSA-N 4-[(dimethylamino)methyl]-n-[3-(6-ethoxy-5-morpholin-4-ylpyridazin-3-yl)-4-methylphenyl]-3-(trifluoromethyl)benzamide Chemical compound CCOC1=NN=C(C=2C(=CC=C(NC(=O)C=3C=C(C(CN(C)C)=CC=3)C(F)(F)F)C=2)C)C=C1N1CCOCC1 RUCARBKYQNJULD-UHFFFAOYSA-N 0.000 claims 1
- LQZBVXAUJUDJCH-UHFFFAOYSA-N 4-chloro-3-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)-n-[3-(trifluoromethyl)phenyl]benzamide Chemical compound O=C1N(C)C=C(C=2C(=CC=C(C=2)C(=O)NC=2C=C(C=CC=2)C(F)(F)F)Cl)C=C1N1CCOCC1 LQZBVXAUJUDJCH-UHFFFAOYSA-N 0.000 claims 1
- QUIAXEVFTPGWBV-UHFFFAOYSA-N 4-chloro-N-[3-(2-cyanopropan-2-yl)phenyl]-3-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)benzamide Chemical compound ClC1=C(C=C(C(=O)NC2=CC(=CC=C2)C(C)(C)C#N)C=C1)C1=CN(C(C(=C1)N1CCOCC1)=O)C QUIAXEVFTPGWBV-UHFFFAOYSA-N 0.000 claims 1
- IGZMTFDIRCGUIB-UHFFFAOYSA-N 4-chloro-N-[3-(difluoromethyl)phenyl]-3-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)benzamide Chemical compound ClC1=C(C=C(C(=O)NC2=CC(=CC=C2)C(F)F)C=C1)C1=CN(C(C(=C1)N1CCOCC1)=O)C IGZMTFDIRCGUIB-UHFFFAOYSA-N 0.000 claims 1
- ZVBMMXKWTGFUPZ-UHFFFAOYSA-N 4-cyano-N-[6-methyl-5-(8-morpholin-4-ylimidazo[1,2-a]pyridin-6-yl)pyridin-3-yl]-3-(trifluoromethyl)benzamide Chemical compound C(#N)C1=C(C=C(C(=O)NC=2C=NC(=C(C=2)C=2C=C(C=3N(C=2)C=CN=3)N2CCOCC2)C)C=C1)C(F)(F)F ZVBMMXKWTGFUPZ-UHFFFAOYSA-N 0.000 claims 1
- NEPSBBSGLKFXGR-UHFFFAOYSA-N 4-fluoro-3-methoxy-n-[6-methyl-5-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)pyridin-3-yl]benzamide Chemical compound C1=C(F)C(OC)=CC(C(=O)NC=2C=C(C(C)=NC=2)C2=CN(C)C(=O)C(N3CCOCC3)=C2)=C1 NEPSBBSGLKFXGR-UHFFFAOYSA-N 0.000 claims 1
- VNTMVGFGGXWVQD-UHFFFAOYSA-N 4-fluoro-3-methoxy-n-[6-methyl-5-(2-morpholin-4-ylpyridin-4-yl)pyridin-3-yl]benzamide Chemical compound C1=C(F)C(OC)=CC(C(=O)NC=2C=C(C(C)=NC=2)C=2C=C(N=CC=2)N2CCOCC2)=C1 VNTMVGFGGXWVQD-UHFFFAOYSA-N 0.000 claims 1
- IFRANAVTWOWHFJ-UHFFFAOYSA-N 4-fluoro-N-[6-methyl-5-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)pyridin-3-yl]-3-propan-2-yloxybenzamide Chemical compound CN1C=C(C=C(C1=O)N1CCOCC1)C=1C(=NC=C(C=1)NC(C1=CC(=C(C=C1)F)OC(C)C)=O)C IFRANAVTWOWHFJ-UHFFFAOYSA-N 0.000 claims 1
- BGCVKYSWJAYBBI-UHFFFAOYSA-N 4-methoxy-n-[4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)phenyl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C(F)(F)F)C(OC)=CC=C1C(=O)NC1=CC=C(C)C(C2=CN(C)C(=O)C(N3CCOCC3)=C2)=C1 BGCVKYSWJAYBBI-UHFFFAOYSA-N 0.000 claims 1
- HTLLEJPPYZSTJI-UHFFFAOYSA-N 4-methoxy-n-[6-methyl-5-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)pyridin-3-yl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C(F)(F)F)C(OC)=CC=C1C(=O)NC1=CN=C(C)C(C2=CN(C)C(=O)C(N3CCOCC3)=C2)=C1 HTLLEJPPYZSTJI-UHFFFAOYSA-N 0.000 claims 1
- ICSXPPDQFDQGTE-UHFFFAOYSA-N 4-methoxy-n-[6-methyl-5-(2-morpholin-4-ylpyridin-4-yl)pyridin-3-yl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C(F)(F)F)C(OC)=CC=C1C(=O)NC1=CN=C(C)C(C=2C=C(N=CC=2)N2CCOCC2)=C1 ICSXPPDQFDQGTE-UHFFFAOYSA-N 0.000 claims 1
- LXRREFDETBYDJJ-UHFFFAOYSA-N 4-methyl-3-(1-methyl-2-morpholin-4-yl-6-oxopyridin-4-yl)-n-[3-(trifluoromethyl)phenyl]benzamide Chemical compound CC1=CC=C(C(=O)NC=2C=C(C=CC=2)C(F)(F)F)C=C1C(=CC(=O)N1C)C=C1N1CCOCC1 LXRREFDETBYDJJ-UHFFFAOYSA-N 0.000 claims 1
- UMGYXEKRPJZGTN-UHFFFAOYSA-N 4-methyl-3-(1-methyl-2-morpholin-4-yl-6-oxopyridin-4-yl)-n-phenylbenzamide Chemical compound CC1=CC=C(C(=O)NC=2C=CC=CC=2)C=C1C(=CC(=O)N1C)C=C1N1CCOCC1 UMGYXEKRPJZGTN-UHFFFAOYSA-N 0.000 claims 1
- VNHXGRWBLBLHBI-UHFFFAOYSA-N 4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)-n-(3-propan-2-ylphenyl)benzamide Chemical compound CC(C)C1=CC=CC(NC(=O)C=2C=C(C(C)=CC=2)C2=CN(C)C(=O)C(N3CCOCC3)=C2)=C1 VNHXGRWBLBLHBI-UHFFFAOYSA-N 0.000 claims 1
- FQYQKNAXBUCBOX-UHFFFAOYSA-N 4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)-n-[3-(1,3,4-oxadiazol-2-yl)phenyl]benzamide Chemical compound CC1=CC=C(C(=O)NC=2C=C(C=CC=2)C=2OC=NN=2)C=C1C(=CN(C)C1=O)C=C1N1CCOCC1 FQYQKNAXBUCBOX-UHFFFAOYSA-N 0.000 claims 1
- OYYJOGYUNRBWFA-UHFFFAOYSA-N 4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)-n-[3-(5-methyl-1,2,4-oxadiazol-3-yl)phenyl]benzamide Chemical compound O1C(C)=NC(C=2C=C(NC(=O)C=3C=C(C(C)=CC=3)C3=CN(C)C(=O)C(N4CCOCC4)=C3)C=CC=2)=N1 OYYJOGYUNRBWFA-UHFFFAOYSA-N 0.000 claims 1
- HSVUXYULKURGDR-UHFFFAOYSA-N 4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)-n-[3-(trifluoromethoxy)phenyl]benzamide Chemical compound CC1=CC=C(C(=O)NC=2C=C(OC(F)(F)F)C=CC=2)C=C1C(=CN(C)C1=O)C=C1N1CCOCC1 HSVUXYULKURGDR-UHFFFAOYSA-N 0.000 claims 1
- WMUYNQKBTHBDDB-UHFFFAOYSA-N 4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)-n-[3-(trifluoromethyl)phenyl]benzamide Chemical compound CC1=CC=C(C(=O)NC=2C=C(C=CC=2)C(F)(F)F)C=C1C(=CN(C)C1=O)C=C1N1CCOCC1 WMUYNQKBTHBDDB-UHFFFAOYSA-N 0.000 claims 1
- XMSLKTIAJDNGTJ-UHFFFAOYSA-N 4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)-n-[4-(trifluoromethyl)pyridin-2-yl]benzamide Chemical compound CC1=CC=C(C(=O)NC=2N=CC=C(C=2)C(F)(F)F)C=C1C(=CN(C)C1=O)C=C1N1CCOCC1 XMSLKTIAJDNGTJ-UHFFFAOYSA-N 0.000 claims 1
- HGXMOWBFPYFVJC-UHFFFAOYSA-N 4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)-n-phenylbenzamide Chemical compound CC1=CC=C(C(=O)NC=2C=CC=CC=2)C=C1C(=CN(C)C1=O)C=C1N1CCOCC1 HGXMOWBFPYFVJC-UHFFFAOYSA-N 0.000 claims 1
- YWOSFCQAAWFBOH-UHFFFAOYSA-N 4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)-n-pyridin-2-ylbenzamide Chemical compound CC1=CC=C(C(=O)NC=2N=CC=CC=2)C=C1C(=CN(C)C1=O)C=C1N1CCOCC1 YWOSFCQAAWFBOH-UHFFFAOYSA-N 0.000 claims 1
- WWIXZZQSUNHCQC-UHFFFAOYSA-N 4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)-n-pyridin-3-ylbenzamide Chemical compound CC1=CC=C(C(=O)NC=2C=NC=CC=2)C=C1C(=CN(C)C1=O)C=C1N1CCOCC1 WWIXZZQSUNHCQC-UHFFFAOYSA-N 0.000 claims 1
- LZHLFLLBTSFGEX-UHFFFAOYSA-N 4-methyl-3-(2-morpholin-4-ylpyridin-4-yl)-n-[3-(trifluoromethyl)phenyl]benzamide Chemical compound CC1=CC=C(C(=O)NC=2C=C(C=CC=2)C(F)(F)F)C=C1C(C=1)=CC=NC=1N1CCOCC1 LZHLFLLBTSFGEX-UHFFFAOYSA-N 0.000 claims 1
- HSLLXIXKFOCIQA-UHFFFAOYSA-N 4-methyl-3-(4-morpholin-4-yl-6,7-dihydro-5h-pyrrolo[3,4-d]pyrimidin-2-yl)-n-[3-(trifluoromethyl)phenyl]benzamide Chemical compound CC1=CC=C(C(=O)NC=2C=C(C=CC=2)C(F)(F)F)C=C1C(N=1)=NC=2CNCC=2C=1N1CCOCC1 HSLLXIXKFOCIQA-UHFFFAOYSA-N 0.000 claims 1
- KRNDDDCYLBZERO-UHFFFAOYSA-N 4-methyl-3-(4-morpholin-4-ylpyridin-2-yl)-n-[3-(trifluoromethyl)phenyl]benzamide Chemical compound CC1=CC=C(C(=O)NC=2C=C(C=CC=2)C(F)(F)F)C=C1C(N=CC=1)=CC=1N1CCOCC1 KRNDDDCYLBZERO-UHFFFAOYSA-N 0.000 claims 1
- XFHVGKYTPQEBHL-UHFFFAOYSA-N 4-methyl-3-(8-morpholin-4-ylimidazo[1,2-b]pyridazin-6-yl)-n-[3-(trifluoromethyl)phenyl]benzamide Chemical compound CC1=CC=C(C(=O)NC=2C=C(C=CC=2)C(F)(F)F)C=C1C(=NN1C=CN=C11)C=C1N1CCOCC1 XFHVGKYTPQEBHL-UHFFFAOYSA-N 0.000 claims 1
- DLWIMHBZAQYSDZ-UHFFFAOYSA-N 4-methyl-3-[1-(2-methylsulfonylethyl)-5-morpholin-4-yl-6-oxopyridin-3-yl]-n-[3-(trifluoromethyl)phenyl]benzamide Chemical compound CC1=CC=C(C(=O)NC=2C=C(C=CC=2)C(F)(F)F)C=C1C(=CN(CCS(C)(=O)=O)C1=O)C=C1N1CCOCC1 DLWIMHBZAQYSDZ-UHFFFAOYSA-N 0.000 claims 1
- FCNIJEGJNGSXDC-UHFFFAOYSA-N 4-methyl-3-[2-morpholin-4-yl-6-(3-oxomorpholin-4-yl)pyrimidin-4-yl]-n-[3-(trifluoromethyl)phenyl]benzamide Chemical compound CC1=CC=C(C(=O)NC=2C=C(C=CC=2)C(F)(F)F)C=C1C(N=1)=CC(N2C(COCC2)=O)=NC=1N1CCOCC1 FCNIJEGJNGSXDC-UHFFFAOYSA-N 0.000 claims 1
- SXMOLILLCFOALI-UHFFFAOYSA-N 4-methyl-N-[3-(4-methylimidazol-1-yl)-5-(trifluoromethyl)phenyl]-3-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)benzamide Chemical compound Cc1cn(cn1)-c1cc(NC(=O)c2ccc(C)c(c2)-c2cc(N3CCOCC3)c(=O)n(C)c2)cc(c1)C(F)(F)F SXMOLILLCFOALI-UHFFFAOYSA-N 0.000 claims 1
- GUQPFPRQSGIVCD-UHFFFAOYSA-N 5-(difluoromethyl)-n-[3-[2-(3-hydroxyazetidin-1-yl)-6-morpholin-4-ylpyridin-4-yl]-4-methylphenyl]pyridazine-4-carboxamide Chemical compound C1=C(C=2C=C(N=C(C=2)N2CC(O)C2)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CN=NC=C1C(F)F GUQPFPRQSGIVCD-UHFFFAOYSA-N 0.000 claims 1
- GIFXXPXSCMJGGJ-UHFFFAOYSA-N 5-(dimethylamino)-n-[3-(2,6-dimorpholin-4-ylpyrimidin-4-yl)-4-methylphenyl]pyridine-3-carboxamide Chemical compound CN(C)C1=CN=CC(C(=O)NC=2C=C(C(C)=CC=2)C=2N=C(N=C(C=2)N2CCOCC2)N2CCOCC2)=C1 GIFXXPXSCMJGGJ-UHFFFAOYSA-N 0.000 claims 1
- FRNMUZNDLUBORX-UHFFFAOYSA-N 5-(dimethylamino)-n-[4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)phenyl]pyridine-3-carboxamide Chemical compound CN(C)C1=CN=CC(C(=O)NC=2C=C(C(C)=CC=2)C2=CN(C)C(=O)C(N3CCOCC3)=C2)=C1 FRNMUZNDLUBORX-UHFFFAOYSA-N 0.000 claims 1
- NTPDQQPEZCMACA-UHFFFAOYSA-N 5-(dimethylamino)-n-[6-methyl-5-(2-morpholin-4-ylpyridin-4-yl)pyridin-3-yl]pyridine-3-carboxamide Chemical compound CN(C)C1=CN=CC(C(=O)NC=2C=C(C(C)=NC=2)C=2C=C(N=CC=2)N2CCOCC2)=C1 NTPDQQPEZCMACA-UHFFFAOYSA-N 0.000 claims 1
- KWHADXVUCUWEGW-UHFFFAOYSA-N 5-[5-[[2-(1,1-difluoroethyl)pyridine-4-carbonyl]amino]-2-methylphenyl]-n-methyl-3-morpholin-4-ylpyridine-2-carboxamide Chemical compound CNC(=O)C1=NC=C(C=2C(=CC=C(NC(=O)C=3C=C(N=CC=3)C(C)(F)F)C=2)C)C=C1N1CCOCC1 KWHADXVUCUWEGW-UHFFFAOYSA-N 0.000 claims 1
- RWNZENBIPDLIRS-UHFFFAOYSA-N 5-cyclopropyl-2-methyl-N-[6-methyl-5-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)pyridin-3-yl]pyrazole-3-carboxamide Chemical compound C1(CC1)C1=NN(C(=C1)C(=O)NC=1C=C(C(=NC=1)C)C1=CN(C(C(=C1)N1CCOCC1)=O)C)C RWNZENBIPDLIRS-UHFFFAOYSA-N 0.000 claims 1
- RCHAIBYRAXRPSL-UHFFFAOYSA-N 5-cyclopropyl-2-methyl-n-[4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)phenyl]pyrazole-3-carboxamide Chemical compound C1=C(C2=CN(C)C(=O)C(N3CCOCC3)=C2)C(C)=CC=C1NC(=O)C(N(N=1)C)=CC=1C1CC1 RCHAIBYRAXRPSL-UHFFFAOYSA-N 0.000 claims 1
- PELRAOUKKKUGBN-UHFFFAOYSA-N 5-cyclopropyl-N-[4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)phenyl]-1,2-oxazole-3-carboxamide Chemical compound C1(CC1)C1=CC(=NO1)C(=O)NC1=CC(=C(C=C1)C)C1=CN(C(C(=C1)N1CCOCC1)=O)C PELRAOUKKKUGBN-UHFFFAOYSA-N 0.000 claims 1
- UOLXDFIAGUDKAE-UHFFFAOYSA-N 5-cyclopropyl-N-[5-(6-ethoxy-5-morpholin-4-ylpyridin-3-yl)-6-methylpyridin-3-yl]-1,2-oxazole-3-carboxamide Chemical compound C1(CC1)C1=CC(=NO1)C(=O)NC=1C=C(C(=NC=1)C)C=1C=NC(=C(C=1)N1CCOCC1)OCC UOLXDFIAGUDKAE-UHFFFAOYSA-N 0.000 claims 1
- SRMSASQREDVNOF-UHFFFAOYSA-N 5-cyclopropyl-N-[5-[2-(3-hydroxyazetidin-1-yl)-6-morpholin-4-ylpyridin-4-yl]-6-methylpyridin-3-yl]-1,2-oxazole-3-carboxamide Chemical compound C1(CC1)C1=CC(=NO1)C(=O)NC=1C=C(C(=NC=1)C)C1=CC(=NC(=C1)N1CCOCC1)N1CC(C1)O SRMSASQREDVNOF-UHFFFAOYSA-N 0.000 claims 1
- UIXZDCVAVPKLJB-UHFFFAOYSA-N 5-cyclopropyl-N-[6-methyl-5-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)pyridin-3-yl]-1,2-oxazole-3-carboxamide Chemical compound C1(CC1)C1=CC(=NO1)C(=O)NC=1C=C(C(=NC=1)C)C1=CN(C(C(=C1)N1CCOCC1)=O)C UIXZDCVAVPKLJB-UHFFFAOYSA-N 0.000 claims 1
- XKGGRFGDCYJJJU-UHFFFAOYSA-N 5-cyclopropyl-n-[3-[2-(3-hydroxyazetidin-1-yl)-6-morpholin-4-ylpyridin-4-yl]-4-methylphenyl]-1,2-oxazole-3-carboxamide Chemical compound C1=C(C=2C=C(N=C(C=2)N2CC(O)C2)N2CCOCC2)C(C)=CC=C1NC(=O)C(=NO1)C=C1C1CC1 XKGGRFGDCYJJJU-UHFFFAOYSA-N 0.000 claims 1
- NDSLOCKPLCPXMM-UHFFFAOYSA-N 5-cyclopropyl-n-[4-methyl-3-(4-morpholin-4-yl-1h-imidazo[4,5-c]pyridin-6-yl)phenyl]-1,2-oxazole-3-carboxamide Chemical compound C1=C(C=2N=C(C=3N=CNC=3C=2)N2CCOCC2)C(C)=CC=C1NC(=O)C(=NO1)C=C1C1CC1 NDSLOCKPLCPXMM-UHFFFAOYSA-N 0.000 claims 1
- URECZFRBORHDEQ-UHFFFAOYSA-N 5-tert-butyl-n-[3-(2,6-dimorpholin-4-ylpyrimidin-4-yl)-4-methylphenyl]-1,2-oxazole-3-carboxamide Chemical compound C1=C(C=2N=C(N=C(C=2)N2CCOCC2)N2CCOCC2)C(C)=CC=C1NC(=O)C=1C=C(C(C)(C)C)ON=1 URECZFRBORHDEQ-UHFFFAOYSA-N 0.000 claims 1
- LDTUEQNAYCVAAO-UHFFFAOYSA-N 5-tert-butyl-n-[3-(2,6-dimorpholin-4-ylpyrimidin-4-yl)-4-methylphenyl]pyridine-3-carboxamide Chemical compound C1=C(C=2N=C(N=C(C=2)N2CCOCC2)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CN=CC(C(C)(C)C)=C1 LDTUEQNAYCVAAO-UHFFFAOYSA-N 0.000 claims 1
- SNYTXOITNJVRIS-UHFFFAOYSA-N 6-(1-cyanocyclopropyl)-N-[5-[6-(2,2-difluoroethoxy)-5-morpholin-4-ylpyridin-3-yl]-6-methylpyridin-3-yl]pyridazine-4-carboxamide Chemical compound C(#N)C1(CC1)C1=CC(=CN=N1)C(=O)NC=1C=C(C(=NC=1)C)C=1C=NC(=C(C=1)N1CCOCC1)OCC(F)F SNYTXOITNJVRIS-UHFFFAOYSA-N 0.000 claims 1
- XMFZTENNSQUAOJ-UHFFFAOYSA-N 6-(1-cyanocyclopropyl)-N-[6-methyl-5-[5-morpholin-4-yl-6-(oxan-4-yloxy)pyridin-3-yl]pyridin-3-yl]pyridazine-4-carboxamide Chemical compound C(#N)C1(CC1)C1=CC(=CN=N1)C(=O)NC=1C=C(C(=NC=1)C)C=1C=NC(=C(C=1)N1CCOCC1)OC1CCOCC1 XMFZTENNSQUAOJ-UHFFFAOYSA-N 0.000 claims 1
- HCXYJDIXGYPPPH-UHFFFAOYSA-N 6-(1-cyanocyclopropyl)-n-[4-methyl-3-(1-methyl-2-morpholin-4-yl-6-oxopyridin-4-yl)phenyl]pyridazine-4-carboxamide Chemical compound C1=C(C2=CC(=O)N(C)C(N3CCOCC3)=C2)C(C)=CC=C1NC(=O)C(C=1)=CN=NC=1C1(C#N)CC1 HCXYJDIXGYPPPH-UHFFFAOYSA-N 0.000 claims 1
- BUZHOVXFBISXQK-UHFFFAOYSA-N 6-(1-cyanocyclopropyl)-n-[4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)phenyl]pyridazine-4-carboxamide Chemical compound C1=C(C2=CN(C)C(=O)C(N3CCOCC3)=C2)C(C)=CC=C1NC(=O)C(C=1)=CN=NC=1C1(C#N)CC1 BUZHOVXFBISXQK-UHFFFAOYSA-N 0.000 claims 1
- NCCKYASQPHYXES-UHFFFAOYSA-N 6-(1-cyanocyclopropyl)-n-[4-methyl-3-[5-morpholin-4-yl-6-(oxan-4-yloxy)pyridin-3-yl]phenyl]pyridazine-4-carboxamide Chemical compound C1=C(C=2C=C(C(OC3CCOCC3)=NC=2)N2CCOCC2)C(C)=CC=C1NC(=O)C(C=1)=CN=NC=1C1(C#N)CC1 NCCKYASQPHYXES-UHFFFAOYSA-N 0.000 claims 1
- VTHNGQWBKWIXPC-UHFFFAOYSA-N 6-(2-cyanopropan-2-yl)-N-[3-(6-methoxy-5-morpholin-4-ylpyridazin-3-yl)-4-methylphenyl]pyridazine-4-carboxamide Chemical compound C(#N)C(C)(C)C1=CC(=CN=N1)C(=O)NC1=CC(=C(C=C1)C)C=1N=NC(=C(C=1)N1CCOCC1)OC VTHNGQWBKWIXPC-UHFFFAOYSA-N 0.000 claims 1
- BRIAZOQJCABKIH-UHFFFAOYSA-N 6-(2-cyanopropan-2-yl)-N-[4-methyl-3-(7-morpholin-4-ylpyrazolo[1,5-a]pyrimidin-5-yl)phenyl]pyridazine-4-carboxamide Chemical compound C(#N)C(C)(C)C1=CC(=CN=N1)C(=O)NC1=CC(=C(C=C1)C)C1=NC=2N(C(=C1)N1CCOCC1)N=CC=2 BRIAZOQJCABKIH-UHFFFAOYSA-N 0.000 claims 1
- IMKFQMQVYSGGDN-UHFFFAOYSA-N 6-(2-cyanopropan-2-yl)-N-[5-(6-ethoxy-5-morpholin-4-ylpyridin-3-yl)-6-methylpyridin-3-yl]pyridazine-4-carboxamide Chemical compound C(#N)C(C)(C)C1=CC(=CN=N1)C(=O)NC=1C=C(C(=NC=1)C)C=1C=NC(=C(C=1)N1CCOCC1)OCC IMKFQMQVYSGGDN-UHFFFAOYSA-N 0.000 claims 1
- HGVDXYGGURBFCP-UHFFFAOYSA-N 6-(2-cyanopropan-2-yl)-N-[5-[6-(2,2-difluoroethoxy)-5-morpholin-4-ylpyridin-3-yl]-6-methylpyridin-3-yl]pyridazine-4-carboxamide Chemical compound C(#N)C(C)(C)C1=CC(=CN=N1)C(=O)NC=1C=C(C(=NC=1)C)C=1C=NC(=C(C=1)N1CCOCC1)OCC(F)F HGVDXYGGURBFCP-UHFFFAOYSA-N 0.000 claims 1
- WDGFPRBGJXWPDA-QGZVFWFLSA-N 6-(2-cyanopropan-2-yl)-N-[5-[6-ethoxy-5-[(3R)-3-methylmorpholin-4-yl]pyridin-3-yl]-6-methylpyridin-3-yl]pyridazine-4-carboxamide Chemical compound C(#N)C(C)(C)C1=CC(=CN=N1)C(=O)NC=1C=C(C(=NC=1)C)C=1C=NC(=C(C=1)N1[C@@H](COCC1)C)OCC WDGFPRBGJXWPDA-QGZVFWFLSA-N 0.000 claims 1
- HJJAKXVUOALSEL-UHFFFAOYSA-N 6-(2-cyanopropan-2-yl)-N-[6-methyl-5-(5-morpholin-4-ylpyridin-3-yl)pyridin-3-yl]pyridazine-4-carboxamide Chemical compound C(#N)C(C)(C)C1=CC(=CN=N1)C(=O)NC=1C=C(C(=NC=1)C)C=1C=NC=C(C=1)N1CCOCC1 HJJAKXVUOALSEL-UHFFFAOYSA-N 0.000 claims 1
- QHSLCXBYKOFJMJ-UHFFFAOYSA-N 6-(2-cyanopropan-2-yl)-N-[6-methyl-5-(7-morpholin-4-ylpyrazolo[1,5-a]pyrimidin-5-yl)pyridin-3-yl]pyridazine-4-carboxamide Chemical compound C(#N)C(C)(C)C1=CC(=CN=N1)C(=O)NC=1C=NC(=C(C=1)C1=NC=2N(C(=C1)N1CCOCC1)N=CC=2)C QHSLCXBYKOFJMJ-UHFFFAOYSA-N 0.000 claims 1
- AMQHWJWSTZJMPB-UHFFFAOYSA-N 6-(2-cyanopropan-2-yl)-N-[6-methyl-5-[5-morpholin-4-yl-6-(oxan-4-yloxy)pyridazin-3-yl]pyridin-3-yl]pyridazine-4-carboxamide Chemical compound C(#N)C(C)(C)C1=CC(=CN=N1)C(=O)NC=1C=NC(=C(C=1)C=1N=NC(=C(C=1)N1CCOCC1)OC1CCOCC1)C AMQHWJWSTZJMPB-UHFFFAOYSA-N 0.000 claims 1
- WKHLVCIENFFXAL-UHFFFAOYSA-N 6-(2-cyanopropan-2-yl)-n-[3-(6-ethoxy-5-morpholin-4-ylpyridazin-3-yl)-4-methylphenyl]pyridazine-4-carboxamide Chemical compound CCOC1=NN=C(C=2C(=CC=C(NC(=O)C=3C=C(N=NC=3)C(C)(C)C#N)C=2)C)C=C1N1CCOCC1 WKHLVCIENFFXAL-UHFFFAOYSA-N 0.000 claims 1
- BBYSQEOZCZKTEU-UHFFFAOYSA-N 6-(2-cyanopropan-2-yl)-n-[3-(6-ethoxy-5-morpholin-4-ylpyridin-3-yl)-4-methylphenyl]pyridazine-4-carboxamide Chemical compound CCOC1=NC=C(C=2C(=CC=C(NC(=O)C=3C=C(N=NC=3)C(C)(C)C#N)C=2)C)C=C1N1CCOCC1 BBYSQEOZCZKTEU-UHFFFAOYSA-N 0.000 claims 1
- RPNDDICIPFCEDI-UHFFFAOYSA-N 6-(2-cyanopropan-2-yl)-n-[3-[2-(2-hydroxyethylamino)-6-morpholin-4-ylpyridin-4-yl]-4-methylphenyl]pyridazine-4-carboxamide Chemical compound C1=C(C=2C=C(N=C(NCCO)C=2)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CN=NC(C(C)(C)C#N)=C1 RPNDDICIPFCEDI-UHFFFAOYSA-N 0.000 claims 1
- AKWFTAMPLQCHAH-UHFFFAOYSA-N 6-(2-cyanopropan-2-yl)-n-[3-[2-(ethylamino)-6-morpholin-4-ylpyrimidin-4-yl]-4-methylphenyl]pyridazine-4-carboxamide Chemical compound N=1C(NCC)=NC(N2CCOCC2)=CC=1C(C(=CC=1)C)=CC=1NC(=O)C1=CN=NC(C(C)(C)C#N)=C1 AKWFTAMPLQCHAH-UHFFFAOYSA-N 0.000 claims 1
- DULDWOWMSFBGBX-UHFFFAOYSA-N 6-(2-cyanopropan-2-yl)-n-[3-[3-fluoro-6-(2-hydroxyethylamino)-2-morpholin-4-ylpyridin-4-yl]-4-methylphenyl]pyridazine-4-carboxamide Chemical compound C1=C(C=2C(=C(N3CCOCC3)N=C(NCCO)C=2)F)C(C)=CC=C1NC(=O)C1=CN=NC(C(C)(C)C#N)=C1 DULDWOWMSFBGBX-UHFFFAOYSA-N 0.000 claims 1
- SZGGBOKPWKZWLC-UHFFFAOYSA-N 6-(2-cyanopropan-2-yl)-n-[4-methyl-3-(1-methyl-2-morpholin-4-yl-6-oxopyridin-4-yl)phenyl]pyridazine-4-carboxamide Chemical compound C1=C(C2=CC(=O)N(C)C(N3CCOCC3)=C2)C(C)=CC=C1NC(=O)C1=CN=NC(C(C)(C)C#N)=C1 SZGGBOKPWKZWLC-UHFFFAOYSA-N 0.000 claims 1
- JBVJRGVLOBEGQX-UHFFFAOYSA-N 6-(2-cyanopropan-2-yl)-n-[4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridazin-3-yl)phenyl]pyridazine-4-carboxamide Chemical compound C1=C(C2=NN(C)C(=O)C(N3CCOCC3)=C2)C(C)=CC=C1NC(=O)C1=CN=NC(C(C)(C)C#N)=C1 JBVJRGVLOBEGQX-UHFFFAOYSA-N 0.000 claims 1
- VVPTUXFEQTZQOD-UHFFFAOYSA-N 6-(2-cyanopropan-2-yl)-n-[4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)phenyl]pyridazine-4-carboxamide Chemical compound C1=C(C2=CN(C)C(=O)C(N3CCOCC3)=C2)C(C)=CC=C1NC(=O)C1=CN=NC(C(C)(C)C#N)=C1 VVPTUXFEQTZQOD-UHFFFAOYSA-N 0.000 claims 1
- CEHTVFNNGVABII-UHFFFAOYSA-N 6-(2-cyanopropan-2-yl)-n-[4-methyl-3-[2-morpholin-4-yl-6-(oxan-4-yloxy)pyridin-4-yl]phenyl]pyridazine-4-carboxamide Chemical compound C1=C(C=2C=C(N=C(OC3CCOCC3)C=2)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CN=NC(C(C)(C)C#N)=C1 CEHTVFNNGVABII-UHFFFAOYSA-N 0.000 claims 1
- RWSDHIITPFFSRT-UHFFFAOYSA-N 6-(2-cyanopropan-2-yl)-n-[4-methyl-3-[5-morpholin-4-yl-6-(oxan-4-yloxy)pyridazin-3-yl]phenyl]pyridazine-4-carboxamide Chemical compound C1=C(C=2N=NC(OC3CCOCC3)=C(N3CCOCC3)C=2)C(C)=CC=C1NC(=O)C1=CN=NC(C(C)(C)C#N)=C1 RWSDHIITPFFSRT-UHFFFAOYSA-N 0.000 claims 1
- MPTQJSMHMFCYLA-UHFFFAOYSA-N 6-(2-fluoropropan-2-yl)-n-[4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)phenyl]pyridazine-4-carboxamide Chemical compound C1=C(C2=CN(C)C(=O)C(N3CCOCC3)=C2)C(C)=CC=C1NC(=O)C1=CN=NC(C(C)(C)F)=C1 MPTQJSMHMFCYLA-UHFFFAOYSA-N 0.000 claims 1
- DRUKQYOAKIEKNS-UHFFFAOYSA-N 6-chloro-5-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)-N-[3-(trifluoromethyl)phenyl]pyridine-3-carboxamide Chemical compound ClC1=NC=C(C=C1C1=CN(C(C(=C1)N1CCOCC1)=O)C)C(=O)NC1=CC(=CC=C1)C(F)(F)F DRUKQYOAKIEKNS-UHFFFAOYSA-N 0.000 claims 1
- WLDZUSIGSPZSCP-UHFFFAOYSA-N 6-chloro-N-[3-(2-hydroxypropan-2-yl)phenyl]-5-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)pyridine-3-carboxamide Chemical compound ClC1=NC=C(C=C1C1=CN(C(C(=C1)N1CCOCC1)=O)C)C(=O)NC1=CC(=CC=C1)C(C)(C)O WLDZUSIGSPZSCP-UHFFFAOYSA-N 0.000 claims 1
- AHAVAGXJMSMGRE-UHFFFAOYSA-N 6-cyclopropyl-N-[3-[2-(2-hydroxyethylamino)-6-morpholin-4-ylpyridin-4-yl]-4-methylphenyl]pyridazine-4-carboxamide Chemical compound C1(CC1)C1=CC(=CN=N1)C(=O)NC1=CC(=C(C=C1)C)C1=CC(=NC(=C1)N1CCOCC1)NCCO AHAVAGXJMSMGRE-UHFFFAOYSA-N 0.000 claims 1
- BKULACNYBXAEKS-UHFFFAOYSA-N 6-cyclopropyl-N-[5-[2-(2-hydroxyethylamino)-6-morpholin-4-ylpyridin-4-yl]-6-methylpyridin-3-yl]pyridazine-4-carboxamide Chemical compound C1(CC1)C1=CC(=CN=N1)C(=O)NC=1C=C(C(=NC=1)C)C1=CC(=NC(=C1)N1CCOCC1)NCCO BKULACNYBXAEKS-UHFFFAOYSA-N 0.000 claims 1
- PHRGSRZCTNNUGN-UHFFFAOYSA-N 6-cyclopropyl-N-[5-[2-(3-hydroxy-3-methylazetidin-1-yl)-6-morpholin-4-ylpyridin-4-yl]-6-methylpyridin-3-yl]pyridazine-4-carboxamide Chemical compound C1(CC1)C1=CC(=CN=N1)C(=O)NC=1C=C(C(=NC=1)C)C1=CC(=NC(=C1)N1CCOCC1)N1CC(C1)(C)O PHRGSRZCTNNUGN-UHFFFAOYSA-N 0.000 claims 1
- SHWXNUIJYINNCK-UHFFFAOYSA-N 6-cyclopropyl-N-[5-[6-(dimethylamino)-5-morpholin-4-ylpyridin-3-yl]-6-methylpyridin-3-yl]pyridazine-4-carboxamide Chemical compound C1(CC1)C1=CC(=CN=N1)C(=O)NC=1C=C(C(=NC=1)C)C=1C=NC(=C(C=1)N1CCOCC1)N(C)C SHWXNUIJYINNCK-UHFFFAOYSA-N 0.000 claims 1
- RQGAPFNBWMMRNO-UHFFFAOYSA-N 6-cyclopropyl-n-[3-[2-(3-hydroxy-3-methylazetidin-1-yl)-6-morpholin-4-ylpyridin-4-yl]-4-methylphenyl]pyridazine-4-carboxamide Chemical compound C1=C(C=2C=C(N=C(C=2)N2CC(C)(O)C2)N2CCOCC2)C(C)=CC=C1NC(=O)C(C=1)=CN=NC=1C1CC1 RQGAPFNBWMMRNO-UHFFFAOYSA-N 0.000 claims 1
- GDKAQFPZKOUPJE-UHFFFAOYSA-N 6-cyclopropyl-n-[4-methyl-3-(1-methyl-2-morpholin-4-yl-6-oxopyridin-4-yl)phenyl]pyridazine-4-carboxamide Chemical compound C1=C(C2=CC(=O)N(C)C(N3CCOCC3)=C2)C(C)=CC=C1NC(=O)C(C=1)=CN=NC=1C1CC1 GDKAQFPZKOUPJE-UHFFFAOYSA-N 0.000 claims 1
- PJJFTILWDHRZBR-UHFFFAOYSA-N 6-cyclopropyl-n-[4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridazin-3-yl)phenyl]pyridazine-4-carboxamide Chemical compound C1=C(C2=NN(C)C(=O)C(N3CCOCC3)=C2)C(C)=CC=C1NC(=O)C(C=1)=CN=NC=1C1CC1 PJJFTILWDHRZBR-UHFFFAOYSA-N 0.000 claims 1
- RBKHIPMFFYWVQE-UHFFFAOYSA-N 6-cyclopropyl-n-[4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)phenyl]pyridazine-4-carboxamide Chemical compound C1=C(C2=CN(C)C(=O)C(N3CCOCC3)=C2)C(C)=CC=C1NC(=O)C(C=1)=CN=NC=1C1CC1 RBKHIPMFFYWVQE-UHFFFAOYSA-N 0.000 claims 1
- OSIBRMJXILYOBA-UHFFFAOYSA-N 6-cyclopropyl-n-[4-methyl-3-[2-morpholin-4-yl-6-(oxan-4-yloxy)pyridin-4-yl]phenyl]pyridazine-4-carboxamide Chemical compound C1=C(C=2C=C(N=C(OC3CCOCC3)C=2)N2CCOCC2)C(C)=CC=C1NC(=O)C(C=1)=CN=NC=1C1CC1 OSIBRMJXILYOBA-UHFFFAOYSA-N 0.000 claims 1
- UFUQHYGKPCPABK-UHFFFAOYSA-N 6-methyl-5-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)-N-[3-(trifluoromethyl)phenyl]pyridine-3-carboxamide Chemical compound CN1C=C(C=C(C1=O)N1CCOCC1)C=1C(=NC=C(C=1)C(=O)NC1=CC(=CC=C1)C(F)(F)F)C UFUQHYGKPCPABK-UHFFFAOYSA-N 0.000 claims 1
- IEZYWAQNPCYLAP-UHFFFAOYSA-N C1(CC1)C1=CC(=CN=N1)C(=O)NC1=CC(=C(C=C1)C)C=1C=NC(=C(C=1)N1CCOCC1)OC1CCOCC1 Chemical compound C1(CC1)C1=CC(=CN=N1)C(=O)NC1=CC(=C(C=C1)C)C=1C=NC(=C(C=1)N1CCOCC1)OC1CCOCC1 IEZYWAQNPCYLAP-UHFFFAOYSA-N 0.000 claims 1
- QJZXTXHPAWISAC-UHFFFAOYSA-N C1(CC1)C1=NN(C(=C1)C(=O)NC1=CC(=C(C=C1)C)C1=CC2=C(C(=N1)N1CCOCC1)N=CN2)C Chemical compound C1(CC1)C1=NN(C(=C1)C(=O)NC1=CC(=C(C=C1)C)C1=CC2=C(C(=N1)N1CCOCC1)N=CN2)C QJZXTXHPAWISAC-UHFFFAOYSA-N 0.000 claims 1
- FYNMINFUAIDIFL-WBQFYUNPSA-N CC1=NC=C(C=C1C=1C=NC(=C(C=1)N1CCOCC1)OC1(CCOCC1)[2H])NC(C1=CC(=CC=C1)C(F)(F)F)=O Chemical compound CC1=NC=C(C=C1C=1C=NC(=C(C=1)N1CCOCC1)OC1(CCOCC1)[2H])NC(C1=CC(=CC=C1)C(F)(F)F)=O FYNMINFUAIDIFL-WBQFYUNPSA-N 0.000 claims 1
- XDBANTQPRGTFSC-UHFFFAOYSA-N CN1N=C(C(=C1)C(=O)NC1=CC(=C(C=C1)C)C1=CC2=C(C(=N1)N1CCOCC1)N=CN2)C Chemical compound CN1N=C(C(=C1)C(=O)NC1=CC(=C(C=C1)C)C1=CC2=C(C(=N1)N1CCOCC1)N=CN2)C XDBANTQPRGTFSC-UHFFFAOYSA-N 0.000 claims 1
- LGUASLAZZJOXSW-UHFFFAOYSA-N CN1N=C(C=C1C(=O)NC1=CC(=C(C=C1)C)C1=CC2=C(C(=N1)N1CCOCC1)N=CN2)C Chemical compound CN1N=C(C=C1C(=O)NC1=CC(=C(C=C1)C)C1=CC2=C(C(=N1)N1CCOCC1)N=CN2)C LGUASLAZZJOXSW-UHFFFAOYSA-N 0.000 claims 1
- AIUCDYHYCNUTCD-UHFFFAOYSA-N N-[3-(1-ethyl-2-morpholin-4-yl-6-oxopyridin-4-yl)-4-methylphenyl]-2-propan-2-ylpyridine-4-carboxamide Chemical compound C(C)N1C(C=C(C=C1N1CCOCC1)C=1C=C(C=CC=1C)NC(C1=CC(=NC=C1)C(C)C)=O)=O AIUCDYHYCNUTCD-UHFFFAOYSA-N 0.000 claims 1
- GGWPKGSCLAFAPH-UHFFFAOYSA-N N-[3-(2,6-dimorpholin-4-ylpyridin-4-yl)-4-methylphenyl]-1-ethyl-6-oxo-5-(trifluoromethyl)pyridine-3-carboxamide Chemical compound O1CCN(CC1)C1=NC(=CC(=C1)C=1C=C(C=CC=1C)NC(=O)C1=CN(C(C(=C1)C(F)(F)F)=O)CC)N1CCOCC1 GGWPKGSCLAFAPH-UHFFFAOYSA-N 0.000 claims 1
- QDHRVJSENVYTRB-UHFFFAOYSA-N N-[3-(2,6-dimorpholin-4-ylpyridin-4-yl)-4-methylphenyl]-2-(trifluoromethyl)pyridine-4-carboxamide Chemical compound O1CCN(CC1)C1=NC(=CC(=C1)C=1C=C(C=CC=1C)NC(C1=CC(=NC=C1)C(F)(F)F)=O)N1CCOCC1 QDHRVJSENVYTRB-UHFFFAOYSA-N 0.000 claims 1
- SFKJCDRNMOKSAF-UHFFFAOYSA-N N-[3-(2,6-dimorpholin-4-ylpyridin-4-yl)-4-methylphenyl]-2-methylsulfonylpyridine-4-carboxamide Chemical compound Cc1ccc(NC(=O)c2ccnc(c2)S(C)(=O)=O)cc1-c1cc(nc(c1)N1CCOCC1)N1CCOCC1 SFKJCDRNMOKSAF-UHFFFAOYSA-N 0.000 claims 1
- ZNHFSALJUQMPRP-UHFFFAOYSA-N N-[3-(2-cyanopropan-2-yl)phenyl]-6-methyl-5-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)pyridine-3-carboxamide Chemical compound C(#N)C(C)(C)C=1C=C(C=CC=1)NC(=O)C=1C=C(C(=NC=1)C)C1=CN(C(C(=C1)N1CCOCC1)=O)C ZNHFSALJUQMPRP-UHFFFAOYSA-N 0.000 claims 1
- YOOGGUOGZRQVCH-UHFFFAOYSA-N N-[3-(2-ethoxy-6-morpholin-4-ylpyridin-4-yl)-4-methylphenyl]-2-(trifluoromethyl)pyridine-4-carboxamide Chemical compound C(C)OC1=NC(=CC(=C1)C=1C=C(C=CC=1C)NC(C1=CC(=NC=C1)C(F)(F)F)=O)N1CCOCC1 YOOGGUOGZRQVCH-UHFFFAOYSA-N 0.000 claims 1
- JOFFPKFVUXJPEK-UHFFFAOYSA-N N-[3-(2-hydroxypropan-2-yl)phenyl]-4-methyl-3-(1-methyl-2-morpholin-4-yl-6-oxopyridin-4-yl)benzamide Chemical compound Cc1ccc(cc1-c1cc(N2CCOCC2)n(C)c(=O)c1)C(=O)Nc1cccc(c1)C(C)(C)O JOFFPKFVUXJPEK-UHFFFAOYSA-N 0.000 claims 1
- MVHXFUQJVBVHSA-UHFFFAOYSA-N N-[3-(2-hydroxypropan-2-yl)phenyl]-6-methyl-5-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)pyridine-3-carboxamide Chemical compound OC(C)(C)C=1C=C(C=CC=1)NC(=O)C=1C=C(C(=NC=1)C)C1=CN(C(C(=C1)N1CCOCC1)=O)C MVHXFUQJVBVHSA-UHFFFAOYSA-N 0.000 claims 1
- PDFHZXUSLMCZJH-UHFFFAOYSA-N N-[3-(5-methoxy-6-morpholin-4-ylpyrazin-2-yl)-4-methylphenyl]-2-methylsulfonylpyridine-4-carboxamide Chemical compound COC=1N=CC(=NC=1N1CCOCC1)C=1C=C(C=CC=1C)NC(C1=CC(=NC=C1)S(=O)(=O)C)=O PDFHZXUSLMCZJH-UHFFFAOYSA-N 0.000 claims 1
- DEIMEZAYCSFMIX-UHFFFAOYSA-N N-[3-(6-ethoxy-5-morpholin-4-ylpyridin-3-yl)-4-methylphenyl]-1-ethyl-6-oxo-5-(trifluoromethyl)pyridine-3-carboxamide Chemical compound C(C)OC1=C(C=C(C=N1)C=1C=C(C=CC=1C)NC(=O)C1=CN(C(C(=C1)C(F)(F)F)=O)CC)N1CCOCC1 DEIMEZAYCSFMIX-UHFFFAOYSA-N 0.000 claims 1
- GXCZMYTUQJAGAX-UHFFFAOYSA-N N-[3-(6-ethoxy-5-morpholin-4-ylpyridin-3-yl)-4-methylphenyl]-2-methylsulfonylpyridine-4-carboxamide Chemical compound C(C)OC1=C(C=C(C=N1)C=1C=C(C=CC=1C)NC(C1=CC(=NC=C1)S(=O)(=O)C)=O)N1CCOCC1 GXCZMYTUQJAGAX-UHFFFAOYSA-N 0.000 claims 1
- XQJXMKDWOQZRNQ-UHFFFAOYSA-N N-[3-(difluoromethyl)phenyl]-3-[2-(ethylamino)-6-morpholin-4-ylpyrimidin-4-yl]-4-methylbenzamide Chemical compound FC(C=1C=C(C=CC=1)NC(C1=CC(=C(C=C1)C)C1=NC(=NC(=C1)N1CCOCC1)NCC)=O)F XQJXMKDWOQZRNQ-UHFFFAOYSA-N 0.000 claims 1
- XVSAYPCSLPSSHB-UHFFFAOYSA-N N-[3-(difluoromethyl)phenyl]-6-methyl-5-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)pyridine-3-carboxamide Chemical compound FC(C=1C=C(C=CC=1)NC(=O)C=1C=C(C(=NC=1)C)C1=CN(C(C(=C1)N1CCOCC1)=O)C)F XVSAYPCSLPSSHB-UHFFFAOYSA-N 0.000 claims 1
- IGWCLHKLZSDPMB-UHFFFAOYSA-N N-[3-[2-(1,4-dioxan-2-yl)-6-morpholin-4-ylpyridin-4-yl]-4-methylphenyl]-2-(2-fluoropropan-2-yl)pyridine-4-carboxamide Chemical compound Cc1ccc(NC(=O)c2ccnc(c2)C(C)(C)F)cc1-c1cc(nc(c1)N1CCOCC1)C1COCCO1 IGWCLHKLZSDPMB-UHFFFAOYSA-N 0.000 claims 1
- XNRCMJSJCGGCPC-UHFFFAOYSA-N N-[3-[2-(2-hydroxyethylamino)-6-morpholin-4-ylpyridin-4-yl]-4-methylphenyl]-6-(trifluoromethyl)pyridazine-4-carboxamide Chemical compound Cc1ccc(NC(=O)c2cnnc(c2)C(F)(F)F)cc1-c1cc(NCCO)nc(c1)N1CCOCC1 XNRCMJSJCGGCPC-UHFFFAOYSA-N 0.000 claims 1
- XVOJUYXRFDBUCC-UHFFFAOYSA-N N-[3-[2-(2-hydroxypropanoylamino)-6-morpholin-4-ylpyridin-4-yl]-4-methylphenyl]-3-(trifluoromethyl)benzamide Chemical compound CC(O)C(=O)Nc1cc(cc(n1)N1CCOCC1)-c1cc(NC(=O)c2cccc(c2)C(F)(F)F)ccc1C XVOJUYXRFDBUCC-UHFFFAOYSA-N 0.000 claims 1
- LCQAZXVWRPHZDP-UHFFFAOYSA-N N-[3-[2-(3-hydroxyazetidin-1-yl)-6-morpholin-4-ylpyridin-4-yl]-4-methylphenyl]-6-(trifluoromethyl)pyridazine-4-carboxamide Chemical compound Cc1ccc(NC(=O)c2cnnc(c2)C(F)(F)F)cc1-c1cc(nc(c1)N1CCOCC1)N1CC(O)C1 LCQAZXVWRPHZDP-UHFFFAOYSA-N 0.000 claims 1
- CVWVXVQTEGXOGV-UHFFFAOYSA-N N-[3-[2-(dimethylamino)-6-morpholin-4-ylpyrimidin-4-yl]-4-methylphenyl]-2-methylsulfonylpyridine-4-carboxamide Chemical compound CN(C1=NC(=CC(=N1)C=1C=C(C=CC=1C)NC(C1=CC(=NC=C1)S(=O)(=O)C)=O)N1CCOCC1)C CVWVXVQTEGXOGV-UHFFFAOYSA-N 0.000 claims 1
- SXWKBCDVVZZEHR-UHFFFAOYSA-N N-[3-[2-(ethylamino)-6-morpholin-4-ylpyrimidin-4-yl]-4-methylphenyl]-3-methylsulfonylbenzamide Chemical compound C(C)NC1=NC(=CC(=N1)C=1C=C(C=CC=1C)NC(C1=CC(=CC=C1)S(=O)(=O)C)=O)N1CCOCC1 SXWKBCDVVZZEHR-UHFFFAOYSA-N 0.000 claims 1
- SWTUEFNNTINTDY-UHFFFAOYSA-N N-[3-[2-[(2-hydroxy-2-methylpropyl)amino]-6-morpholin-4-ylpyridin-4-yl]-4-methylphenyl]-3-(trifluoromethyl)benzamide Chemical compound Cc1ccc(NC(=O)c2cccc(c2)C(F)(F)F)cc1-c1cc(NCC(C)(C)O)nc(c1)N1CCOCC1 SWTUEFNNTINTDY-UHFFFAOYSA-N 0.000 claims 1
- LHQUZYBPZRBVPU-UHFFFAOYSA-N N-[3-[6-(2-hydroxyethoxy)-5-morpholin-4-ylpyridin-3-yl]-4-methylphenyl]-2-(trifluoromethyl)pyridine-4-carboxamide Chemical compound OCCOC1=C(C=C(C=N1)C=1C=C(C=CC=1C)NC(C1=CC(=NC=C1)C(F)(F)F)=O)N1CCOCC1 LHQUZYBPZRBVPU-UHFFFAOYSA-N 0.000 claims 1
- UAQQBERPAFEDMA-UHFFFAOYSA-N N-[3-[6-(2-hydroxyethoxy)-5-morpholin-4-ylpyridin-3-yl]-4-methylphenyl]-5-(trifluoromethyl)pyridine-3-carboxamide Chemical compound OCCOC1=C(C=C(C=N1)C=1C=C(C=CC=1C)NC(C1=CN=CC(=C1)C(F)(F)F)=O)N1CCOCC1 UAQQBERPAFEDMA-UHFFFAOYSA-N 0.000 claims 1
- ZNYCGIDJNUIIRX-UHFFFAOYSA-N N-[4-chloro-3-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)phenyl]-2-propan-2-ylpyridine-4-carboxamide Chemical compound CC(C)c1cc(ccn1)C(=O)Nc1ccc(Cl)c(c1)-c1cc(N2CCOCC2)c(=O)n(C)c1 ZNYCGIDJNUIIRX-UHFFFAOYSA-N 0.000 claims 1
- CPQCRZXCFJSDSG-UHFFFAOYSA-N N-[4-methyl-3-(1-methyl-2-morpholin-4-yl-6-oxopyridin-4-yl)phenyl]-3-methylsulfonylbenzamide Chemical compound Cc1ccc(NC(=O)c2cccc(c2)S(C)(=O)=O)cc1-c1cc(N2CCOCC2)n(C)c(=O)c1 CPQCRZXCFJSDSG-UHFFFAOYSA-N 0.000 claims 1
- IGGYTHFMLBLDCT-UHFFFAOYSA-N N-[4-methyl-3-(1-methyl-2-morpholin-4-yl-6-oxopyridin-4-yl)phenyl]benzamide Chemical compound CC1=C(C=C(C=C1)NC(C1=CC=CC=C1)=O)C1=CC(N(C(=C1)N1CCOCC1)C)=O IGGYTHFMLBLDCT-UHFFFAOYSA-N 0.000 claims 1
- QWFAGVZYNFCCRF-UHFFFAOYSA-N N-[4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridazin-3-yl)phenyl]-6-(trifluoromethyl)pyridazine-4-carboxamide Chemical compound CC1=C(C=C(C=C1)NC(=O)C1=CN=NC(=C1)C(F)(F)F)C1=NN(C(C(=C1)N1CCOCC1)=O)C QWFAGVZYNFCCRF-UHFFFAOYSA-N 0.000 claims 1
- XXXBUJVNZCURBM-UHFFFAOYSA-N N-[4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)phenyl]-3-(2-methylsulfonylpropan-2-yl)benzamide Chemical compound Cc1ccc(NC(=O)c2cccc(c2)C(C)(C)S(C)(=O)=O)cc1-c1cc(N2CCOCC2)c(=O)n(C)c1 XXXBUJVNZCURBM-UHFFFAOYSA-N 0.000 claims 1
- DYYPIZADEMWONV-UHFFFAOYSA-N N-[4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)phenyl]-3-(trifluoromethoxy)benzamide Chemical compound Cc1ccc(NC(=O)c2cccc(OC(F)(F)F)c2)cc1-c1cc(N2CCOCC2)c(=O)n(C)c1 DYYPIZADEMWONV-UHFFFAOYSA-N 0.000 claims 1
- FAGBSMFZVYYIHY-UHFFFAOYSA-N N-[4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)phenyl]benzamide Chemical compound CC1=C(C=C(C=C1)NC(C1=CC=CC=C1)=O)C1=CN(C(C(=C1)N1CCOCC1)=O)C FAGBSMFZVYYIHY-UHFFFAOYSA-N 0.000 claims 1
- RNUZVMFZRCWURM-UHFFFAOYSA-N N-[4-methyl-3-(2-morpholin-4-yl-6-piperazin-1-ylpyridin-4-yl)phenyl]-2-(trifluoromethyl)pyridine-4-carboxamide Chemical compound CC1=C(C=C(C=C1)NC(C1=CC(=NC=C1)C(F)(F)F)=O)C1=CC(=NC(=C1)N1CCNCC1)N1CCOCC1 RNUZVMFZRCWURM-UHFFFAOYSA-N 0.000 claims 1
- BBUFCXPVCSXMME-UHFFFAOYSA-N N-[4-methyl-3-(4-morpholin-4-yl-5,6,7,8-tetrahydropyrido[3,4-d]pyrimidin-2-yl)phenyl]-3-(trifluoromethyl)benzamide Chemical compound Cc1ccc(NC(=O)c2cccc(c2)C(F)(F)F)cc1-c1nc2CNCCc2c(n1)N1CCOCC1 BBUFCXPVCSXMME-UHFFFAOYSA-N 0.000 claims 1
- STXAIIZVDGCPMW-UHFFFAOYSA-N N-[4-methyl-3-(4-morpholin-4-yl-5,6,7,8-tetrahydropyrido[4,3-d]pyrimidin-2-yl)phenyl]-3-(trifluoromethyl)benzamide Chemical compound CC1=C(C=C(C=C1)NC(C1=CC(=CC=C1)C(F)(F)F)=O)C=1N=C(C2=C(N=1)CCNC2)N1CCOCC1 STXAIIZVDGCPMW-UHFFFAOYSA-N 0.000 claims 1
- ZJLHDNUYXKAUGC-UHFFFAOYSA-N N-[4-methyl-3-(5-morpholin-4-yl-6-propan-2-yloxypyridin-3-yl)phenyl]-2-methylsulfonylpyridine-4-carboxamide Chemical compound C(C)(C)OC1=C(C=C(C=N1)C=1C=C(C=CC=1C)NC(C1=CC(=NC=C1)S(=O)(=O)C)=O)N1CCOCC1 ZJLHDNUYXKAUGC-UHFFFAOYSA-N 0.000 claims 1
- JCXMPJHQZVZPHB-UHFFFAOYSA-N N-[4-methyl-3-(5-morpholin-4-yl-6-propan-2-yloxypyridin-3-yl)phenyl]-5-(trifluoromethyl)pyridine-3-carboxamide Chemical compound C(C)(C)OC1=C(C=C(C=N1)C=1C=C(C=CC=1C)NC(C1=CN=CC(=C1)C(F)(F)F)=O)N1CCOCC1 JCXMPJHQZVZPHB-UHFFFAOYSA-N 0.000 claims 1
- SFEFLTJYSOSQSS-UHFFFAOYSA-N N-[4-methyl-3-(6-methylsulfonyl-5-morpholin-4-ylpyridazin-3-yl)phenyl]-2-(trifluoromethyl)pyridine-4-carboxamide Chemical compound CC1=C(C=C(NC(=O)C2=CC(=NC=C2)C(F)(F)F)C=C1)C1=NN=C(C(=C1)N1CCOCC1)S(C)(=O)=O SFEFLTJYSOSQSS-UHFFFAOYSA-N 0.000 claims 1
- FMAPRDUFFLBURT-UHFFFAOYSA-N N-[4-methyl-3-(6-methylsulfonyl-5-morpholin-4-ylpyridazin-3-yl)phenyl]-4-(trifluoromethyl)pyridine-2-carboxamide Chemical compound CC1=C(C=C(C=C1)NC(C1=NC=CC(=C1)C(F)(F)F)=O)C=1N=NC(=C(C=1)N1CCOCC1)S(=O)(=O)C FMAPRDUFFLBURT-UHFFFAOYSA-N 0.000 claims 1
- CICNLUKXKLUNDO-UHFFFAOYSA-N N-[4-methyl-3-(7-morpholin-4-ylpyrazolo[1,5-a]pyrimidin-5-yl)phenyl]-2-methylsulfonylpyridine-4-carboxamide Chemical compound CC1=CC=C(NC(=O)C2=CC(=NC=C2)S(C)(=O)=O)C=C1C1=NC2=CC=NN2C(=C1)N1CCOCC1 CICNLUKXKLUNDO-UHFFFAOYSA-N 0.000 claims 1
- HEZCBUKLIMESEE-UHFFFAOYSA-N N-[4-methyl-3-(8-morpholin-4-ylimidazo[1,2-a]pyridin-6-yl)phenyl]-2-(trifluoromethyl)pyridine-4-carboxamide Chemical compound CC1=C(C=C(C=C1)NC(C1=CC(=NC=C1)C(F)(F)F)=O)C=1C=C(C=2N(C=1)C=CN=2)N1CCOCC1 HEZCBUKLIMESEE-UHFFFAOYSA-N 0.000 claims 1
- HWUXFYYLSPICMG-UHFFFAOYSA-N N-[4-methyl-3-(8-morpholin-4-ylimidazo[1,2-a]pyridin-6-yl)phenyl]-2-methylsulfonylpyridine-4-carboxamide Chemical compound CC1=C(C=C(NC(=O)C2=CC(=NC=C2)S(C)(=O)=O)C=C1)C1=CN2C=CN=C2C(=C1)N1CCOCC1 HWUXFYYLSPICMG-UHFFFAOYSA-N 0.000 claims 1
- NJKVYAPTPKCZKS-UHFFFAOYSA-N N-[4-methyl-3-[1-methyl-6-oxo-5-(3-oxomorpholin-4-yl)pyridin-3-yl]phenyl]-3-(trifluoromethyl)benzamide Chemical compound Cc1ccc(NC(=O)c2cccc(c2)C(F)(F)F)cc1-c1cc(N2CCOCC2=O)c(=O)n(C)c1 NJKVYAPTPKCZKS-UHFFFAOYSA-N 0.000 claims 1
- TWVXMRNQSUFFML-UHFFFAOYSA-N N-[4-methyl-3-[2-(3-oxomorpholin-4-yl)pyridin-4-yl]phenyl]-3-(trifluoromethyl)benzamide Chemical compound CC1=C(C=C(NC(=O)C2=CC=CC(=C2)C(F)(F)F)C=C1)C1=CC=NC(=C1)N1CCOCC1=O TWVXMRNQSUFFML-UHFFFAOYSA-N 0.000 claims 1
- ZTQWXNCZLXAKCL-UHFFFAOYSA-N N-[5-(2,6-dimorpholin-4-ylpyridin-4-yl)-6-methylpyridin-3-yl]-1-ethyl-6-oxo-5-(trifluoromethyl)pyridine-3-carboxamide Chemical compound C(C)N1C=C(C=C(C1=O)C(F)(F)F)C(=O)NC=1C=C(C(=NC=1)C)C1=CC(=NC(=C1)N1CCOCC1)N1CCOCC1 ZTQWXNCZLXAKCL-UHFFFAOYSA-N 0.000 claims 1
- JZVPNWVNWCDNRJ-UHFFFAOYSA-N N-[5-(2,6-dimorpholin-4-ylpyridin-4-yl)-6-methylpyridin-3-yl]-2-(trifluoromethyl)pyridine-4-carboxamide Chemical compound CC1=NC=C(C=C1C1=CC(=NC(=C1)N1CCOCC1)N1CCOCC1)NC(C1=CC(=NC=C1)C(F)(F)F)=O JZVPNWVNWCDNRJ-UHFFFAOYSA-N 0.000 claims 1
- HPHJAKGAYBGKAV-UHFFFAOYSA-N N-[5-(2,6-dimorpholin-4-ylpyridin-4-yl)-6-methylpyridin-3-yl]-2-methylsulfonylpyridine-4-carboxamide Chemical compound CC1=NC=C(C=C1C1=CC(=NC(=C1)N1CCOCC1)N1CCOCC1)NC(C1=CC(=NC=C1)S(=O)(=O)C)=O HPHJAKGAYBGKAV-UHFFFAOYSA-N 0.000 claims 1
- KYDSKCOSDPLKLI-UHFFFAOYSA-N N-[5-(2,6-dimorpholin-4-ylpyridin-4-yl)-6-methylpyridin-3-yl]-2-propan-2-ylpyridine-4-carboxamide Chemical compound C(C)(C)C=1C=C(C(=O)NC=2C=C(C(=NC=2)C)C2=CC(=NC(=C2)N2CCOCC2)N2CCOCC2)C=CN=1 KYDSKCOSDPLKLI-UHFFFAOYSA-N 0.000 claims 1
- LRLIRWUSZAJCJN-UHFFFAOYSA-N N-[5-(2-ethoxy-6-morpholin-4-ylpyridin-4-yl)-6-methylpyridin-3-yl]-2-(2-fluoropropan-2-yl)pyridine-4-carboxamide Chemical compound C(C)OC1=NC(=CC(=C1)C=1C(=NC=C(C=1)NC(C1=CC(=NC=C1)C(C)(C)F)=O)C)N1CCOCC1 LRLIRWUSZAJCJN-UHFFFAOYSA-N 0.000 claims 1
- QXKLMFJLPQQYAU-UHFFFAOYSA-N N-[5-(2-ethoxy-6-morpholin-4-ylpyridin-4-yl)-6-methylpyridin-3-yl]-2-(2-hydroxypropan-2-yl)pyridine-4-carboxamide Chemical compound C(C)OC1=NC(=CC(=C1)C=1C(=NC=C(C=1)NC(C1=CC(=NC=C1)C(C)(C)O)=O)C)N1CCOCC1 QXKLMFJLPQQYAU-UHFFFAOYSA-N 0.000 claims 1
- PZVHJGYHGMDVGJ-UHFFFAOYSA-N N-[5-(4-cyano-3-morpholin-4-ylphenyl)-6-methylpyridin-3-yl]-3-(trifluoromethyl)benzamide Chemical compound CC1=C(C=C(NC(=O)C2=CC=CC(=C2)C(F)(F)F)C=N1)C1=CC=C(C#N)C(=C1)N1CCOCC1 PZVHJGYHGMDVGJ-UHFFFAOYSA-N 0.000 claims 1
- GQOLTBJBTCUHNT-UHFFFAOYSA-N N-[5-(5-ethoxy-6-morpholin-4-ylpyrazin-2-yl)-6-methylpyridin-3-yl]-2-(2-fluoropropan-2-yl)pyridine-4-carboxamide Chemical compound CCOc1ncc(nc1N1CCOCC1)-c1cc(NC(=O)c2ccnc(c2)C(C)(C)F)cnc1C GQOLTBJBTCUHNT-UHFFFAOYSA-N 0.000 claims 1
- ULMMQBNQRGBPFX-UHFFFAOYSA-N N-[5-(5-ethoxy-6-morpholin-4-ylpyrazin-2-yl)-6-methylpyridin-3-yl]-2-(trifluoromethyl)pyridine-4-carboxamide Chemical compound C(C)OC=1N=CC(=NC=1N1CCOCC1)C=1C=C(C=NC=1C)NC(C1=CC(=NC=C1)C(F)(F)F)=O ULMMQBNQRGBPFX-UHFFFAOYSA-N 0.000 claims 1
- SOGUZGLOXPZWBH-UHFFFAOYSA-N N-[5-(5-ethoxy-6-morpholin-4-ylpyrazin-2-yl)-6-methylpyridin-3-yl]-3-(trifluoromethyl)benzamide Chemical compound C(C)OC=1N=CC(=NC=1N1CCOCC1)C=1C=C(C=NC=1C)NC(C1=CC(=CC=C1)C(F)(F)F)=O SOGUZGLOXPZWBH-UHFFFAOYSA-N 0.000 claims 1
- PFKBXQVHYCEILW-UHFFFAOYSA-N N-[5-(5-ethoxy-6-morpholin-4-ylpyridin-2-yl)-6-methylpyridin-3-yl]-2-(2-fluoropropan-2-yl)pyridine-4-carboxamide Chemical compound C(C)OC=1C=CC(=NC=1N1CCOCC1)C=1C(=NC=C(C=1)NC(C1=CC(=NC=C1)C(C)(C)F)=O)C PFKBXQVHYCEILW-UHFFFAOYSA-N 0.000 claims 1
- YUUAHDLDOXKCFE-UHFFFAOYSA-N N-[5-(6-chloro-5-morpholin-4-ylpyridin-3-yl)-6-methylpyridin-3-yl]-2-(1-cyanocyclopropyl)pyridine-4-carboxamide Chemical compound CC1=C(C=C(NC(=O)C2=CC(=NC=C2)C2(CC2)C#N)C=N1)C1=CN=C(Cl)C(=C1)N1CCOCC1 YUUAHDLDOXKCFE-UHFFFAOYSA-N 0.000 claims 1
- ZVGHQRKDLOSAQQ-UHFFFAOYSA-N N-[5-(6-chloro-5-morpholin-4-ylpyridin-3-yl)-6-methylpyridin-3-yl]-2-(2-cyanopropan-2-yl)pyridine-4-carboxamide Chemical compound ClC1=C(C=C(C=N1)C=1C(=NC=C(C=1)NC(C1=CC(=NC=C1)C(C)(C)C#N)=O)C)N1CCOCC1 ZVGHQRKDLOSAQQ-UHFFFAOYSA-N 0.000 claims 1
- GLHNIUWAOYTVDL-UHFFFAOYSA-N N-[5-(6-chloro-5-morpholin-4-ylpyridin-3-yl)-6-methylpyridin-3-yl]-2-(2-fluoropropan-2-yl)pyridine-4-carboxamide Chemical compound ClC1=C(C=C(C=N1)C=1C(=NC=C(C=1)NC(C1=CC(=NC=C1)C(C)(C)F)=O)C)N1CCOCC1 GLHNIUWAOYTVDL-UHFFFAOYSA-N 0.000 claims 1
- LMDLKOPJSLEMAM-UHFFFAOYSA-N N-[5-(6-chloro-5-morpholin-4-ylpyridin-3-yl)-6-methylpyridin-3-yl]-2-(trifluoromethyl)pyridine-4-carboxamide Chemical compound ClC1=C(C=C(C=N1)C=1C(=NC=C(C=1)NC(C1=CC(=NC=C1)C(F)(F)F)=O)C)N1CCOCC1 LMDLKOPJSLEMAM-UHFFFAOYSA-N 0.000 claims 1
- WSOBFSPTWJSRHQ-UHFFFAOYSA-N N-[5-(6-chloro-5-morpholin-4-ylpyridin-3-yl)-6-methylpyridin-3-yl]-6-(2-cyanopropan-2-yl)pyridazine-4-carboxamide Chemical compound ClC1=C(C=C(C=N1)C=1C(=NC=C(C=1)NC(=O)C1=CN=NC(=C1)C(C)(C)C#N)C)N1CCOCC1 WSOBFSPTWJSRHQ-UHFFFAOYSA-N 0.000 claims 1
- KPRVGPIJAMNICB-UHFFFAOYSA-N N-[5-(6-chloro-5-morpholin-4-ylpyridin-3-yl)-6-methylpyridin-3-yl]-6-(trifluoromethyl)pyridazine-4-carboxamide Chemical compound ClC1=C(C=C(C=N1)C=1C(=NC=C(C=1)NC(=O)C1=CN=NC(=C1)C(F)(F)F)C)N1CCOCC1 KPRVGPIJAMNICB-UHFFFAOYSA-N 0.000 claims 1
- XKSJFRKBNYMKAP-UHFFFAOYSA-N N-[5-(6-cyano-5-morpholin-4-ylpyridin-3-yl)-6-methylpyridin-3-yl]-2-(1,1-difluoroethyl)pyridine-4-carboxamide Chemical compound C(#N)C1=C(C=C(C=N1)C=1C(=NC=C(C=1)NC(C1=CC(=NC=C1)C(C)(F)F)=O)C)N1CCOCC1 XKSJFRKBNYMKAP-UHFFFAOYSA-N 0.000 claims 1
- PWBVWMJIGGXBMS-UHFFFAOYSA-N N-[5-(6-cyano-5-morpholin-4-ylpyridin-3-yl)-6-methylpyridin-3-yl]-2-propan-2-ylpyridine-4-carboxamide Chemical compound C(#N)C1=C(C=C(C=N1)C=1C(=NC=C(C=1)NC(C1=CC(=NC=C1)C(C)C)=O)C)N1CCOCC1 PWBVWMJIGGXBMS-UHFFFAOYSA-N 0.000 claims 1
- NKSQUOVDDZBTEQ-UHFFFAOYSA-N N-[5-(6-cyano-5-morpholin-4-ylpyridin-3-yl)-6-methylpyridin-3-yl]-3-(trifluoromethyl)benzamide Chemical compound C(#N)C1=C(C=C(C=N1)C=1C(=NC=C(C=1)NC(C1=CC(=CC=C1)C(F)(F)F)=O)C)N1CCOCC1 NKSQUOVDDZBTEQ-UHFFFAOYSA-N 0.000 claims 1
- VGCFGAKJDCTXHH-UHFFFAOYSA-N N-[5-(6-cyano-5-morpholin-4-ylpyridin-3-yl)-6-methylpyridin-3-yl]-3-[(dimethylamino)methyl]-5-(trifluoromethyl)benzamide Chemical compound C(#N)C1=C(C=C(C=N1)C=1C(=NC=C(C=1)NC(C1=CC(=CC(=C1)C(F)(F)F)CN(C)C)=O)C)N1CCOCC1 VGCFGAKJDCTXHH-UHFFFAOYSA-N 0.000 claims 1
- CTNPMQXPGPPUPD-UHFFFAOYSA-N N-[5-(6-ethoxy-5-morpholin-4-ylpyridazin-3-yl)-6-methylpyridin-3-yl]-3-(trifluoromethyl)benzamide Chemical compound CCOc1nnc(cc1N1CCOCC1)-c1cc(NC(=O)c2cccc(c2)C(F)(F)F)cnc1C CTNPMQXPGPPUPD-UHFFFAOYSA-N 0.000 claims 1
- DNVOAFYMQFEYOK-UHFFFAOYSA-N N-[5-(6-ethoxy-5-morpholin-4-ylpyridazin-3-yl)-6-methylpyridin-3-yl]-3-methylsulfonylbenzamide Chemical compound CCOc1nnc(cc1N1CCOCC1)-c1cc(NC(=O)c2cccc(c2)S(C)(=O)=O)cnc1C DNVOAFYMQFEYOK-UHFFFAOYSA-N 0.000 claims 1
- DJHHDDQGUWRHJM-UHFFFAOYSA-N N-[5-(6-ethoxy-5-morpholin-4-ylpyridin-3-yl)-6-methylpyridin-3-yl]-1-ethyl-6-oxo-5-(trifluoromethyl)pyridine-3-carboxamide Chemical compound C(C)OC1=C(C=C(C=N1)C=1C(=NC=C(C=1)NC(=O)C1=CN(C(C(=C1)C(F)(F)F)=O)CC)C)N1CCOCC1 DJHHDDQGUWRHJM-UHFFFAOYSA-N 0.000 claims 1
- PMMOWPSBOXULDG-UHFFFAOYSA-N N-[5-(6-ethoxy-5-morpholin-4-ylpyridin-3-yl)-6-methylpyridin-3-yl]-2-(2-hydroxypropan-2-yl)pyridine-4-carboxamide Chemical compound C(C)OC1=C(C=C(C=N1)C=1C(=NC=C(C=1)NC(C1=CC(=NC=C1)C(C)(C)O)=O)C)N1CCOCC1 PMMOWPSBOXULDG-UHFFFAOYSA-N 0.000 claims 1
- HQENBUABWFWVHO-UHFFFAOYSA-N N-[5-(6-ethoxy-5-morpholin-4-ylpyridin-3-yl)-6-methylpyridin-3-yl]-2-(oxetan-3-yl)pyridine-4-carboxamide Chemical compound C(C)OC1=C(C=C(C=N1)C=1C(=NC=C(C=1)NC(C1=CC(=NC=C1)C1COC1)=O)C)N1CCOCC1 HQENBUABWFWVHO-UHFFFAOYSA-N 0.000 claims 1
- GQDKSXFQIIYQAD-UHFFFAOYSA-N N-[5-(6-ethoxy-5-morpholin-4-ylpyridin-3-yl)-6-methylpyridin-3-yl]-2-(trifluoromethyl)pyridine-4-carboxamide Chemical compound C(C)OC1=C(C=C(C=N1)C=1C(=NC=C(C=1)NC(C1=CC(=NC=C1)C(F)(F)F)=O)C)N1CCOCC1 GQDKSXFQIIYQAD-UHFFFAOYSA-N 0.000 claims 1
- QZWVXLZIZWVAMS-UHFFFAOYSA-N N-[5-(6-ethoxy-5-morpholin-4-ylpyridin-3-yl)-6-methylpyridin-3-yl]-2-methylsulfonylpyridine-4-carboxamide Chemical compound C(C)OC1=C(C=C(C=N1)C=1C(=NC=C(C=1)NC(C1=CC(=NC=C1)S(=O)(=O)C)=O)C)N1CCOCC1 QZWVXLZIZWVAMS-UHFFFAOYSA-N 0.000 claims 1
- NTXUBXJELAXAPR-UHFFFAOYSA-N N-[5-(6-ethoxy-5-morpholin-4-ylpyridin-3-yl)-6-methylpyridin-3-yl]-2-propan-2-ylpyridine-4-carboxamide Chemical compound C(C)OC1=C(C=C(C=N1)C=1C(=NC=C(C=1)NC(C1=CC(=NC=C1)C(C)C)=O)C)N1CCOCC1 NTXUBXJELAXAPR-UHFFFAOYSA-N 0.000 claims 1
- FEIWRUPEMJFAMR-UHFFFAOYSA-N N-[5-(6-ethoxy-5-morpholin-4-ylpyridin-3-yl)-6-methylpyridin-3-yl]-3-(1,3,4-oxadiazol-2-yl)benzamide Chemical compound C(C)OC1=C(C=C(C=N1)C=1C(=NC=C(C=1)NC(C1=CC(=CC=C1)C=1OC=NN=1)=O)C)N1CCOCC1 FEIWRUPEMJFAMR-UHFFFAOYSA-N 0.000 claims 1
- YIEOHGPEBJJUMF-UHFFFAOYSA-N N-[5-(6-ethoxy-5-morpholin-4-ylpyridin-3-yl)-6-methylpyridin-3-yl]-3-(4-ethylpiperazin-1-yl)-5-(trifluoromethyl)benzamide Chemical compound CCOc1ncc(cc1N1CCOCC1)-c1cc(NC(=O)c2cc(cc(c2)C(F)(F)F)N2CCN(CC)CC2)cnc1C YIEOHGPEBJJUMF-UHFFFAOYSA-N 0.000 claims 1
- BNFJEUXJTJPVDW-UHFFFAOYSA-N N-[5-(6-ethoxy-5-morpholin-4-ylpyridin-3-yl)-6-methylpyridin-3-yl]-3-(methylsulfonimidoyl)benzamide Chemical compound C(C)OC1=C(C=C(C=N1)C=1C(=NC=C(C=1)NC(C1=CC(=CC=C1)S(=O)(=N)C)=O)C)N1CCOCC1 BNFJEUXJTJPVDW-UHFFFAOYSA-N 0.000 claims 1
- LZXNILKTKRIYAA-UHFFFAOYSA-N N-[5-(6-ethoxy-5-morpholin-4-ylpyridin-3-yl)-6-methylpyridin-3-yl]-3-(trifluoromethyl)benzamide Chemical compound C(C)OC1=C(C=C(C=N1)C=1C(=NC=C(C=1)NC(C1=CC(=CC=C1)C(F)(F)F)=O)C)N1CCOCC1 LZXNILKTKRIYAA-UHFFFAOYSA-N 0.000 claims 1
- JZTQQPSBEINRGR-UHFFFAOYSA-N N-[5-(6-ethoxy-5-morpholin-4-ylpyridin-3-yl)-6-methylpyridin-3-yl]-3-methylsulfonylbenzamide Chemical compound C(C)OC1=C(C=C(C=N1)C=1C(=NC=C(C=1)NC(C1=CC(=CC=C1)S(=O)(=O)C)=O)C)N1CCOCC1 JZTQQPSBEINRGR-UHFFFAOYSA-N 0.000 claims 1
- MVZFQGXYOCECAW-UHFFFAOYSA-N N-[5-(6-ethoxy-5-morpholin-4-ylpyridin-3-yl)-6-methylpyridin-3-yl]-6-(2-fluoropropan-2-yl)pyridazine-4-carboxamide Chemical compound C(C)OC1=C(C=C(C=N1)C=1C(=NC=C(C=1)NC(=O)C1=CN=NC(=C1)C(C)(C)F)C)N1CCOCC1 MVZFQGXYOCECAW-UHFFFAOYSA-N 0.000 claims 1
- WNBAOVOWNKRVEC-UHFFFAOYSA-N N-[5-(6-ethoxy-5-morpholin-4-ylpyridin-3-yl)-6-methylpyridin-3-yl]-6-(trifluoromethyl)pyridazine-4-carboxamide Chemical compound C(C)OC1=C(C=C(C=N1)C=1C(=NC=C(C=1)NC(=O)C1=CN=NC(=C1)C(F)(F)F)C)N1CCOCC1 WNBAOVOWNKRVEC-UHFFFAOYSA-N 0.000 claims 1
- OYJPPFDCYLHVLO-UHFFFAOYSA-N N-[5-(6-fluoro-5-morpholin-4-ylpyridin-3-yl)-6-methylpyridin-3-yl]-2-(2-fluoropropan-2-yl)pyridine-4-carboxamide Chemical compound FC1=C(C=C(C=N1)C=1C(=NC=C(C=1)NC(C1=CC(=NC=C1)C(C)(C)F)=O)C)N1CCOCC1 OYJPPFDCYLHVLO-UHFFFAOYSA-N 0.000 claims 1
- RFALUMLNPJBSHH-UHFFFAOYSA-N N-[5-(6-methoxy-5-morpholin-4-ylpyridin-3-yl)-6-methylpyridin-3-yl]-2-(trifluoromethyl)pyridine-4-carboxamide Chemical compound COC1=C(C=C(C=N1)C=1C(=NC=C(C=1)NC(C1=CC(=NC=C1)C(F)(F)F)=O)C)N1CCOCC1 RFALUMLNPJBSHH-UHFFFAOYSA-N 0.000 claims 1
- CIHQURDPODDAOS-UHFFFAOYSA-N N-[5-[1-(2-cyanoethyl)-5-morpholin-4-yl-6-oxopyridin-3-yl]-6-methylpyridin-3-yl]-3-(trifluoromethyl)benzamide Chemical compound C(#N)CCN1C=C(C=C(C1=O)N1CCOCC1)C=1C(=NC=C(C=1)NC(C1=CC(=CC=C1)C(F)(F)F)=O)C CIHQURDPODDAOS-UHFFFAOYSA-N 0.000 claims 1
- NCAZJOFYHIHFAQ-UHFFFAOYSA-N N-[5-[2-(1,4-dioxan-2-yl)-6-morpholin-4-ylpyridin-4-yl]-6-methylpyridin-3-yl]-2-(2-fluoropropan-2-yl)pyridine-4-carboxamide Chemical compound O1C(COCC1)C1=NC(=CC(=C1)C=1C(=NC=C(C=1)NC(C1=CC(=NC=C1)C(C)(C)F)=O)C)N1CCOCC1 NCAZJOFYHIHFAQ-UHFFFAOYSA-N 0.000 claims 1
- BXTLEMLLAJCMKK-UHFFFAOYSA-N N-[5-[2-(1,4-dioxan-2-yl)-6-morpholin-4-ylpyridin-4-yl]-6-methylpyridin-3-yl]-2-(trifluoromethyl)pyridine-4-carboxamide Chemical compound O1C(COCC1)C1=NC(=CC(=C1)C=1C(=NC=C(C=1)NC(C1=CC(=NC=C1)C(F)(F)F)=O)C)N1CCOCC1 BXTLEMLLAJCMKK-UHFFFAOYSA-N 0.000 claims 1
- XQVFVYLAOBUEPN-OAHLLOKOSA-N N-[5-[2-(2-hydroxyethylamino)-6-[(3R)-3-methylmorpholin-4-yl]pyridin-4-yl]-6-methylpyridin-3-yl]-2-(trifluoromethyl)pyridine-4-carboxamide Chemical compound OCCNC1=NC(=CC(=C1)C=1C(=NC=C(C=1)NC(C1=CC(=NC=C1)C(F)(F)F)=O)C)N1[C@@H](COCC1)C XQVFVYLAOBUEPN-OAHLLOKOSA-N 0.000 claims 1
- CEKWCFPBLIREBY-UHFFFAOYSA-N N-[5-[2-(2-hydroxyethylamino)-6-morpholin-4-ylpyridin-4-yl]-6-methylpyridin-3-yl]-2-(2-hydroxypropan-2-yl)pyridine-4-carboxamide Chemical compound OCCNC1=NC(=CC(=C1)C=1C(=NC=C(C=1)NC(C1=CC(=NC=C1)C(C)(C)O)=O)C)N1CCOCC1 CEKWCFPBLIREBY-UHFFFAOYSA-N 0.000 claims 1
- ROXFIYCNQGIOKL-UHFFFAOYSA-N N-[5-[2-(2-hydroxyethylamino)-6-morpholin-4-ylpyridin-4-yl]-6-methylpyridin-3-yl]-2-(trifluoromethyl)pyridine-4-carboxamide Chemical compound OCCNC1=NC(=CC(=C1)C=1C(=NC=C(C=1)NC(C1=CC(=NC=C1)C(F)(F)F)=O)C)N1CCOCC1 ROXFIYCNQGIOKL-UHFFFAOYSA-N 0.000 claims 1
- WJNVIJRIPDUILD-UHFFFAOYSA-N N-[5-[2-(2-hydroxyethylamino)-6-morpholin-4-ylpyridin-4-yl]-6-methylpyridin-3-yl]-6-(trifluoromethyl)pyridazine-4-carboxamide Chemical compound OCCNC1=NC(=CC(=C1)C=1C(=NC=C(C=1)NC(=O)C1=CN=NC(=C1)C(F)(F)F)C)N1CCOCC1 WJNVIJRIPDUILD-UHFFFAOYSA-N 0.000 claims 1
- NMDPUDHWDDVMOD-UHFFFAOYSA-N N-[5-[2-(3-hydroxy-3-methylazetidin-1-yl)-6-morpholin-4-ylpyridin-4-yl]-6-methylpyridin-3-yl]-2-(trifluoromethyl)pyridine-4-carboxamide Chemical compound OC1(CN(C1)C1=NC(=CC(=C1)C=1C(=NC=C(C=1)NC(C1=CC(=NC=C1)C(F)(F)F)=O)C)N1CCOCC1)C NMDPUDHWDDVMOD-UHFFFAOYSA-N 0.000 claims 1
- BUDNSYJHOCUHPV-UHFFFAOYSA-N N-[5-[2-(3-hydroxy-3-methylazetidin-1-yl)-6-morpholin-4-ylpyridin-4-yl]-6-methylpyridin-3-yl]-6-(trifluoromethyl)pyridazine-4-carboxamide Chemical compound OC1(CN(C1)C1=NC(=CC(=C1)C=1C(=NC=C(C=1)NC(=O)C1=CN=NC(=C1)C(F)(F)F)C)N1CCOCC1)C BUDNSYJHOCUHPV-UHFFFAOYSA-N 0.000 claims 1
- IQTYZITZDLDRLV-UHFFFAOYSA-N N-[5-[2-(3-hydroxyazetidin-1-yl)-6-morpholin-4-ylpyridin-4-yl]-6-methylpyridin-3-yl]-2-(2-hydroxypropan-2-yl)pyridine-4-carboxamide Chemical compound OC1CN(C1)C1=NC(=CC(=C1)C=1C(=NC=C(C=1)NC(C1=CC(=NC=C1)C(C)(C)O)=O)C)N1CCOCC1 IQTYZITZDLDRLV-UHFFFAOYSA-N 0.000 claims 1
- UNVNJAFTCKAAMY-UHFFFAOYSA-N N-[5-[2-(3-hydroxyazetidin-1-yl)-6-morpholin-4-ylpyridin-4-yl]-6-methylpyridin-3-yl]-2-methylsulfonylpyridine-4-carboxamide Chemical compound OC1CN(C1)C1=NC(=CC(=C1)C=1C(=NC=C(C=1)NC(C1=CC(=NC=C1)S(=O)(=O)C)=O)C)N1CCOCC1 UNVNJAFTCKAAMY-UHFFFAOYSA-N 0.000 claims 1
- SZOXDFSQPBDNAT-UHFFFAOYSA-N N-[5-[2-(3-hydroxyazetidin-1-yl)-6-morpholin-4-ylpyridin-4-yl]-6-methylpyridin-3-yl]-2-propan-2-ylpyridine-4-carboxamide Chemical compound OC1CN(C1)C1=NC(=CC(=C1)C=1C(=NC=C(C=1)NC(C1=CC(=NC=C1)C(C)C)=O)C)N1CCOCC1 SZOXDFSQPBDNAT-UHFFFAOYSA-N 0.000 claims 1
- NUVUVVDOSUXUQZ-UHFFFAOYSA-N N-[5-[2-(3-hydroxyazetidin-1-yl)-6-morpholin-4-ylpyridin-4-yl]-6-methylpyridin-3-yl]-3-(1,3,4-oxadiazol-2-yl)benzamide Chemical compound OC1CN(C1)C1=NC(=CC(=C1)C=1C(=NC=C(C=1)NC(C1=CC(=CC=C1)C=1OC=NN=1)=O)C)N1CCOCC1 NUVUVVDOSUXUQZ-UHFFFAOYSA-N 0.000 claims 1
- VCHCOTIFDALUPC-UHFFFAOYSA-N N-[5-[2-(3-hydroxyazetidin-1-yl)-6-morpholin-4-ylpyridin-4-yl]-6-methylpyridin-3-yl]-3-(2-methylsulfonylpropan-2-yl)benzamide Chemical compound OC1CN(C1)C1=NC(=CC(=C1)C=1C(=NC=C(C=1)NC(C1=CC(=CC=C1)C(C)(C)S(=O)(=O)C)=O)C)N1CCOCC1 VCHCOTIFDALUPC-UHFFFAOYSA-N 0.000 claims 1
- UXRCCXULWCOSCI-UHFFFAOYSA-N N-[5-[2-(3-hydroxyazetidin-1-yl)-6-morpholin-4-ylpyridin-4-yl]-6-methylpyridin-3-yl]-3-(trifluoromethyl)benzamide Chemical compound OC1CN(C1)C1=NC(=CC(=C1)C=1C(=NC=C(C=1)NC(C1=CC(=CC=C1)C(F)(F)F)=O)C)N1CCOCC1 UXRCCXULWCOSCI-UHFFFAOYSA-N 0.000 claims 1
- PSNAJFKTSOQKNR-UHFFFAOYSA-N N-[5-[2-(3-hydroxyazetidin-1-yl)-6-morpholin-4-ylpyridin-4-yl]-6-methylpyridin-3-yl]-3-methylsulfonylbenzamide Chemical compound OC1CN(C1)C1=NC(=CC(=C1)C=1C(=NC=C(C=1)NC(C1=CC(=CC=C1)S(=O)(=O)C)=O)C)N1CCOCC1 PSNAJFKTSOQKNR-UHFFFAOYSA-N 0.000 claims 1
- UEGPFRZAQXWYCA-UHFFFAOYSA-N N-[5-[2-(3-hydroxypyrrolidin-1-yl)-6-morpholin-4-ylpyridin-4-yl]-6-methylpyridin-3-yl]-3-(trifluoromethyl)benzamide Chemical compound OC1CN(CC1)C1=NC(=CC(=C1)C=1C(=NC=C(C=1)NC(C1=CC(=CC=C1)C(F)(F)F)=O)C)N1CCOCC1 UEGPFRZAQXWYCA-UHFFFAOYSA-N 0.000 claims 1
- OQVUDDGTYDCRPY-UHFFFAOYSA-N N-[5-[2-(dimethylamino)-6-morpholin-4-ylpyrimidin-4-yl]-6-methylpyridin-3-yl]-3-(trifluoromethyl)benzamide Chemical compound CN(C)c1nc(cc(n1)-c1cc(NC(=O)c2cccc(c2)C(F)(F)F)cnc1C)N1CCOCC1 OQVUDDGTYDCRPY-UHFFFAOYSA-N 0.000 claims 1
- HXMAODVOOCBYKA-UHFFFAOYSA-N N-[5-[6-(1,1-dioxothian-4-yl)oxy-5-morpholin-4-ylpyridin-3-yl]-6-methylpyridin-3-yl]-3-(trifluoromethyl)benzamide Chemical compound O=S1(CCC(CC1)OC1=C(C=C(C=N1)C=1C(=NC=C(C=1)NC(C1=CC(=CC=C1)C(F)(F)F)=O)C)N1CCOCC1)=O HXMAODVOOCBYKA-UHFFFAOYSA-N 0.000 claims 1
- BASYRTWYANPNGP-UHFFFAOYSA-N N-[5-[6-(2,2-difluoroethoxy)-5-morpholin-4-ylpyridazin-3-yl]-6-methylpyridin-3-yl]-2-(1,1-difluoroethyl)pyridine-4-carboxamide Chemical compound FC(COC1=C(C=C(N=N1)C=1C=C(C=NC=1C)NC(C1=CC(=NC=C1)C(C)(F)F)=O)N1CCOCC1)F BASYRTWYANPNGP-UHFFFAOYSA-N 0.000 claims 1
- GQKRUHLMMBPTEC-UHFFFAOYSA-N N-[5-[6-(2,2-difluoroethoxy)-5-morpholin-4-ylpyridin-3-yl]-6-methylpyridin-3-yl]-3-(trifluoromethyl)benzamide Chemical compound FC(COC1=C(C=C(C=N1)C=1C(=NC=C(C=1)NC(C1=CC(=CC=C1)C(F)(F)F)=O)C)N1CCOCC1)F GQKRUHLMMBPTEC-UHFFFAOYSA-N 0.000 claims 1
- GJZPUXPLFRPKSX-UHFFFAOYSA-N N-[5-[6-(2,2-difluoroethoxy)-5-morpholin-4-ylpyridin-3-yl]-6-methylpyridin-3-yl]-5-(trifluoromethyl)pyridine-3-carboxamide Chemical compound FC(COC1=C(C=C(C=N1)C=1C(=NC=C(C=1)NC(C1=CN=CC(=C1)C(F)(F)F)=O)C)N1CCOCC1)F GJZPUXPLFRPKSX-UHFFFAOYSA-N 0.000 claims 1
- CBMYEWZXTJTCKW-UHFFFAOYSA-N N-[5-[6-(2-hydroxyethoxy)-5-morpholin-4-ylpyridin-3-yl]-6-methylpyridin-3-yl]-4-(2-hydroxypropan-2-yl)pyridine-2-carboxamide Chemical compound CC1=NC=C(NC(=O)C2=CC(=CC=N2)C(C)(C)O)C=C1C1=CC(N2CCOCC2)=C(OCCO)N=C1 CBMYEWZXTJTCKW-UHFFFAOYSA-N 0.000 claims 1
- VCUUPWHNBYAQAR-UHFFFAOYSA-N N-[5-[6-(2-hydroxyethoxy)-5-morpholin-4-ylpyridin-3-yl]-6-methylpyridin-3-yl]-4-(trifluoromethyl)pyridine-2-carboxamide Chemical compound OCCOC1=C(C=C(C=N1)C=1C(=NC=C(C=1)NC(C1=NC=CC(=C1)C(F)(F)F)=O)C)N1CCOCC1 VCUUPWHNBYAQAR-UHFFFAOYSA-N 0.000 claims 1
- NAAWGNMNBSLIFA-UHFFFAOYSA-N N-[5-[6-(2-methoxyethoxy)-5-morpholin-4-ylpyridin-3-yl]-6-methylpyridin-3-yl]-3-(trifluoromethyl)benzamide Chemical compound COCCOC1=C(C=C(C=N1)C=1C(=NC=C(C=1)NC(C1=CC(=CC=C1)C(F)(F)F)=O)C)N1CCOCC1 NAAWGNMNBSLIFA-UHFFFAOYSA-N 0.000 claims 1
- BFOACAOHDXZAEA-UHFFFAOYSA-N N-[5-[6-(3-hydroxycyclohexyl)oxy-5-morpholin-4-ylpyridin-3-yl]-6-methylpyridin-3-yl]-3-(trifluoromethyl)benzamide Chemical compound Cc1ncc(NC(=O)c2cccc(c2)C(F)(F)F)cc1-c1cnc(OC2CCCC(O)C2)c(c1)N1CCOCC1 BFOACAOHDXZAEA-UHFFFAOYSA-N 0.000 claims 1
- ZMFDJIBBQLCZFU-UHFFFAOYSA-N N-[5-[6-(difluoromethoxy)-5-morpholin-4-ylpyridin-3-yl]-6-methylpyridin-3-yl]-2-(1,1-difluoropropyl)pyridine-4-carboxamide Chemical compound CCC(F)(F)C1=NC=CC(=C1)C(=O)NC1=CN=C(C)C(=C1)C1=CC(N2CCOCC2)=C(OC(F)F)N=C1 ZMFDJIBBQLCZFU-UHFFFAOYSA-N 0.000 claims 1
- KCAUUMYHLOPFHT-UHFFFAOYSA-N N-[5-[6-(difluoromethoxy)-5-morpholin-4-ylpyridin-3-yl]-6-methylpyridin-3-yl]-2-(2-hydroxypropan-2-yl)pyridine-4-carboxamide Chemical compound FC(OC1=C(C=C(C=N1)C=1C(=NC=C(C=1)NC(C1=CC(=NC=C1)C(C)(C)O)=O)C)N1CCOCC1)F KCAUUMYHLOPFHT-UHFFFAOYSA-N 0.000 claims 1
- DQLIICNVZCVITO-UHFFFAOYSA-N N-[5-[6-(difluoromethoxy)-5-morpholin-4-ylpyridin-3-yl]-6-methylpyridin-3-yl]-2-(difluoromethyl)pyridine-4-carboxamide Chemical compound FC(OC1=C(C=C(C=N1)C=1C(=NC=C(C=1)NC(C1=CC(=NC=C1)C(F)F)=O)C)N1CCOCC1)F DQLIICNVZCVITO-UHFFFAOYSA-N 0.000 claims 1
- AUMCDHXOXBVWPP-UHFFFAOYSA-N N-[5-[6-(difluoromethoxy)-5-morpholin-4-ylpyridin-3-yl]-6-methylpyridin-3-yl]-2-(trifluoromethyl)pyridine-4-carboxamide Chemical compound CC1=NC=C(NC(=O)C2=CC(=NC=C2)C(F)(F)F)C=C1C1=CC(N2CCOCC2)=C(OC(F)F)N=C1 AUMCDHXOXBVWPP-UHFFFAOYSA-N 0.000 claims 1
- BNGUXDZKPAUDJD-UHFFFAOYSA-N N-[5-[6-(difluoromethoxy)-5-morpholin-4-ylpyridin-3-yl]-6-methylpyridin-3-yl]-3-(trifluoromethyl)benzamide Chemical compound FC(OC1=C(C=C(C=N1)C=1C(=NC=C(C=1)NC(C1=CC(=CC=C1)C(F)(F)F)=O)C)N1CCOCC1)F BNGUXDZKPAUDJD-UHFFFAOYSA-N 0.000 claims 1
- VQESRMRLARJHIC-UHFFFAOYSA-N N-[5-[6-(dimethylamino)-5-morpholin-4-ylpyridin-3-yl]-6-methylpyridin-3-yl]-2-(2-fluoropropan-2-yl)pyridine-4-carboxamide Chemical compound CN(C)C1=NC=C(C=C1N1CCOCC1)C1=C(C)N=CC(NC(=O)C2=CC=NC(=C2)C(C)(C)F)=C1 VQESRMRLARJHIC-UHFFFAOYSA-N 0.000 claims 1
- BSPOTOGQWINOGT-UHFFFAOYSA-N N-[5-[6-(dimethylamino)-5-morpholin-4-ylpyridin-3-yl]-6-methylpyridin-3-yl]-2-propan-2-ylpyridine-4-carboxamide Chemical compound CN(C1=C(C=C(C=N1)C=1C(=NC=C(C=1)NC(C1=CC(=NC=C1)C(C)C)=O)C)N1CCOCC1)C BSPOTOGQWINOGT-UHFFFAOYSA-N 0.000 claims 1
- RXIUWLLWTXRNAY-UHFFFAOYSA-N N-[5-[6-(dimethylamino)-5-morpholin-4-ylpyridin-3-yl]-6-methylpyridin-3-yl]-6-(trifluoromethyl)pyridazine-4-carboxamide Chemical compound CN(C1=C(C=C(C=N1)C=1C(=NC=C(C=1)NC(=O)C1=CN=NC(=C1)C(F)(F)F)C)N1CCOCC1)C RXIUWLLWTXRNAY-UHFFFAOYSA-N 0.000 claims 1
- PCPBCWBSNIULDF-PKTZIBPZSA-N N-[5-[6-[(1S,3R)-3-hydroxycyclopentyl]oxy-5-morpholin-4-ylpyridin-3-yl]-6-methylpyridin-3-yl]-3-(trifluoromethyl)benzamide Chemical compound CC1=NC=C(NC(=O)C2=CC(=CC=C2)C(F)(F)F)C=C1C1=CC(N2CCOCC2)=C(O[C@H]2CC[C@@H](O)C2)N=C1 PCPBCWBSNIULDF-PKTZIBPZSA-N 0.000 claims 1
- BALNMMOLSVQPFQ-MRXNPFEDSA-N N-[5-[6-[(2R)-1-hydroxypropan-2-yl]oxy-5-morpholin-4-ylpyridin-3-yl]-6-methylpyridin-3-yl]-3-(trifluoromethyl)benzamide Chemical compound C[C@H](CO)Oc1ncc(cc1N1CCOCC1)-c1cc(NC(=O)c2cccc(c2)C(F)(F)F)cnc1C BALNMMOLSVQPFQ-MRXNPFEDSA-N 0.000 claims 1
- BALNMMOLSVQPFQ-INIZCTEOSA-N N-[5-[6-[(2S)-1-hydroxypropan-2-yl]oxy-5-morpholin-4-ylpyridin-3-yl]-6-methylpyridin-3-yl]-3-(trifluoromethyl)benzamide Chemical compound OC[C@H](C)OC1=C(C=C(C=N1)C=1C(=NC=C(C=1)NC(C1=CC(=CC=C1)C(F)(F)F)=O)C)N1CCOCC1 BALNMMOLSVQPFQ-INIZCTEOSA-N 0.000 claims 1
- HVTUZZBOLLPTQC-NOZRDPDXSA-N N-[5-[6-[(3R,4S)-3-fluorooxan-4-yl]oxy-5-morpholin-4-ylpyridin-3-yl]-6-methylpyridin-3-yl]-3-(trifluoromethyl)benzamide Chemical compound F[C@@H]1COCC[C@@H]1OC1=C(C=C(C=N1)C=1C(=NC=C(C=1)NC(C1=CC(=CC=C1)C(F)(F)F)=O)C)N1CCOCC1 HVTUZZBOLLPTQC-NOZRDPDXSA-N 0.000 claims 1
- HVTUZZBOLLPTQC-UKILVPOCSA-N N-[5-[6-[(3S,4R)-3-fluorooxan-4-yl]oxy-5-morpholin-4-ylpyridin-3-yl]-6-methylpyridin-3-yl]-3-(trifluoromethyl)benzamide Chemical compound F[C@H]1COCC[C@H]1OC1=C(C=C(C=N1)C=1C(=NC=C(C=1)NC(C1=CC(=CC=C1)C(F)(F)F)=O)C)N1CCOCC1 HVTUZZBOLLPTQC-UKILVPOCSA-N 0.000 claims 1
- ZGUMGEWKRSSPDW-UHFFFAOYSA-N N-[5-[6-[2-hydroxyethyl(methyl)amino]-5-morpholin-4-ylpyridin-3-yl]-6-methylpyridin-3-yl]-3-(trifluoromethyl)benzamide Chemical compound CN(CCO)c1ncc(cc1N1CCOCC1)-c1cc(NC(=O)c2cccc(c2)C(F)(F)F)cnc1C ZGUMGEWKRSSPDW-UHFFFAOYSA-N 0.000 claims 1
- XGWAWSZKPLTUCQ-UHFFFAOYSA-N N-[5-[6-ethoxy-5-(3-oxa-8-azabicyclo[3.2.1]octan-8-yl)pyridin-3-yl]-6-methylpyridin-3-yl]-6-(trifluoromethyl)pyridazine-4-carboxamide Chemical compound C12COCC(CC1)N2C=1C=C(C=NC=1OCC)C=1C(=NC=C(C=1)NC(=O)C1=CN=NC(=C1)C(F)(F)F)C XGWAWSZKPLTUCQ-UHFFFAOYSA-N 0.000 claims 1
- IXMQJHUTKRYITA-CQSZACIVSA-N N-[5-[6-ethoxy-5-[(3R)-3-methylmorpholin-4-yl]pyridin-3-yl]-6-methylpyridin-3-yl]-6-(trifluoromethyl)pyridazine-4-carboxamide Chemical compound CCOC1=C(C=C(C=N1)C1=CC(NC(=O)C2=CC(=NN=C2)C(F)(F)F)=CN=C1C)N1CCOC[C@H]1C IXMQJHUTKRYITA-CQSZACIVSA-N 0.000 claims 1
- IXMQJHUTKRYITA-AWEZNQCLSA-N N-[5-[6-ethoxy-5-[(3S)-3-methylmorpholin-4-yl]pyridin-3-yl]-6-methylpyridin-3-yl]-6-(trifluoromethyl)pyridazine-4-carboxamide Chemical compound C(C)OC1=C(C=C(C=N1)C=1C(=NC=C(C=1)NC(=O)C1=CN=NC(=C1)C(F)(F)F)C)N1[C@H](COCC1)C IXMQJHUTKRYITA-AWEZNQCLSA-N 0.000 claims 1
- AOORIVYIOYRSJJ-UHFFFAOYSA-N N-[6-chloro-5-(1-methyl-2-morpholin-4-yl-6-oxopyridin-4-yl)pyridin-3-yl]-2-(1,1-difluoroethyl)pyridine-4-carboxamide Chemical compound ClC1=NC=C(C=C1C1=CC(N(C(=C1)N1CCOCC1)C)=O)NC(C1=CC(=NC=C1)C(C)(F)F)=O AOORIVYIOYRSJJ-UHFFFAOYSA-N 0.000 claims 1
- PERROQKBQPKOKX-UHFFFAOYSA-N N-[6-chloro-5-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)pyridin-3-yl]-2-(1,1-difluoroethyl)pyridine-4-carboxamide Chemical compound ClC1=NC=C(C=C1C1=CN(C(C(=C1)N1CCOCC1)=O)C)NC(C1=CC(=NC=C1)C(C)(F)F)=O PERROQKBQPKOKX-UHFFFAOYSA-N 0.000 claims 1
- MVMGGIIYTFZMKR-UHFFFAOYSA-N N-[6-chloro-5-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)pyridin-3-yl]-2-(trifluoromethyl)pyridine-4-carboxamide Chemical compound ClC1=NC=C(C=C1C1=CN(C(C(=C1)N1CCOCC1)=O)C)NC(C1=CC(=NC=C1)C(F)(F)F)=O MVMGGIIYTFZMKR-UHFFFAOYSA-N 0.000 claims 1
- VHSCHNMBMZYMOY-UHFFFAOYSA-N N-[6-chloro-5-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)pyridin-3-yl]-2-propan-2-ylpyridine-4-carboxamide Chemical compound ClC1=NC=C(C=C1C1=CN(C(C(=C1)N1CCOCC1)=O)C)NC(C1=CC(=NC=C1)C(C)C)=O VHSCHNMBMZYMOY-UHFFFAOYSA-N 0.000 claims 1
- DZVUMQLQVYBRHR-UHFFFAOYSA-N N-[6-chloro-5-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)pyridin-3-yl]-3-(difluoromethyl)benzamide Chemical compound ClC1=NC=C(C=C1C1=CN(C(C(=C1)N1CCOCC1)=O)C)NC(C1=CC(=CC=C1)C(F)F)=O DZVUMQLQVYBRHR-UHFFFAOYSA-N 0.000 claims 1
- UDHXRVPPXWJDAN-UHFFFAOYSA-N N-[6-chloro-5-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)pyridin-3-yl]-3-(trifluoromethyl)benzamide Chemical compound ClC1=NC=C(C=C1C1=CN(C(C(=C1)N1CCOCC1)=O)C)NC(C1=CC(=CC=C1)C(F)(F)F)=O UDHXRVPPXWJDAN-UHFFFAOYSA-N 0.000 claims 1
- VNXRWZBTUGPJJF-UHFFFAOYSA-N N-[6-chloro-5-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)pyridin-3-yl]-4-methoxy-3-(trifluoromethyl)benzamide Chemical compound ClC1=NC=C(C=C1C1=CN(C(C(=C1)N1CCOCC1)=O)C)NC(C1=CC(=C(C=C1)OC)C(F)(F)F)=O VNXRWZBTUGPJJF-UHFFFAOYSA-N 0.000 claims 1
- KUWINQJYGACLDX-UHFFFAOYSA-N N-[6-chloro-5-(6-methoxy-5-morpholin-4-ylpyridin-3-yl)pyridin-3-yl]-2-(1,1-difluoroethyl)pyridine-4-carboxamide Chemical compound ClC1=NC=C(C=C1C=1C=NC(=C(C=1)N1CCOCC1)OC)NC(C1=CC(=NC=C1)C(C)(F)F)=O KUWINQJYGACLDX-UHFFFAOYSA-N 0.000 claims 1
- UAJZPLBEEKUXLS-UHFFFAOYSA-N N-[6-chloro-5-(6-methoxy-5-morpholin-4-ylpyridin-3-yl)pyridin-3-yl]-2-(1-cyanocyclopropyl)pyridine-4-carboxamide Chemical compound ClC1=NC=C(C=C1C=1C=NC(=C(C=1)N1CCOCC1)OC)NC(C1=CC(=NC=C1)C1(CC1)C#N)=O UAJZPLBEEKUXLS-UHFFFAOYSA-N 0.000 claims 1
- YIMLFNGJFIUBFX-UHFFFAOYSA-N N-[6-chloro-5-(6-methoxy-5-morpholin-4-ylpyridin-3-yl)pyridin-3-yl]-2-(2-cyanopropan-2-yl)pyridine-4-carboxamide Chemical compound ClC1=NC=C(C=C1C=1C=NC(=C(C=1)N1CCOCC1)OC)NC(C1=CC(=NC=C1)C(C)(C)C#N)=O YIMLFNGJFIUBFX-UHFFFAOYSA-N 0.000 claims 1
- ZMRHXBKEKVVDSO-UHFFFAOYSA-N N-[6-chloro-5-(6-methoxy-5-morpholin-4-ylpyridin-3-yl)pyridin-3-yl]-2-(2-fluoropropan-2-yl)pyridine-4-carboxamide Chemical compound ClC1=NC=C(C=C1C=1C=NC(=C(C=1)N1CCOCC1)OC)NC(C1=CC(=NC=C1)C(C)(C)F)=O ZMRHXBKEKVVDSO-UHFFFAOYSA-N 0.000 claims 1
- TVAZZBBGPAWQMQ-UHFFFAOYSA-N N-[6-chloro-5-(6-methoxy-5-morpholin-4-ylpyridin-3-yl)pyridin-3-yl]-6-(trifluoromethyl)pyridazine-4-carboxamide Chemical compound ClC1=NC=C(C=C1C=1C=NC(=C(C=1)N1CCOCC1)OC)NC(=O)C1=CN=NC(=C1)C(F)(F)F TVAZZBBGPAWQMQ-UHFFFAOYSA-N 0.000 claims 1
- AOBDORAYRRAJKK-UHFFFAOYSA-N N-[6-chloro-5-[1-methyl-2-(3-oxa-8-azabicyclo[3.2.1]octan-8-yl)-6-oxopyridin-4-yl]pyridin-3-yl]-2-(1,1-difluoroethyl)pyridine-4-carboxamide Chemical compound C12COCC(CC1)N2C1=CC(=CC(N1C)=O)C=1C(=NC=C(C=1)NC(C1=CC(=NC=C1)C(C)(F)F)=O)Cl AOBDORAYRRAJKK-UHFFFAOYSA-N 0.000 claims 1
- MUEHAHDRQYKWNJ-UHFFFAOYSA-N N-[6-methyl-5-(1-methyl-2-morpholin-4-yl-6-oxopyridin-4-yl)pyridin-3-yl]-2-(trifluoromethyl)pyridine-4-carboxamide Chemical compound CN1C(=O)C=C(C=C1N1CCOCC1)C1=C(C)N=CC(NC(=O)C2=CC=NC(=C2)C(F)(F)F)=C1 MUEHAHDRQYKWNJ-UHFFFAOYSA-N 0.000 claims 1
- SQKXBPQMYKDIMA-UHFFFAOYSA-N N-[6-methyl-5-(1-methyl-2-morpholin-4-yl-6-oxopyridin-4-yl)pyridin-3-yl]-2-methylsulfonylpyridine-4-carboxamide Chemical compound CN1C(C=C(C=C1N1CCOCC1)C=1C(=NC=C(C=1)NC(C1=CC(=NC=C1)S(=O)(=O)C)=O)C)=O SQKXBPQMYKDIMA-UHFFFAOYSA-N 0.000 claims 1
- NHQJGHRZADMTAL-UHFFFAOYSA-N N-[6-methyl-5-(1-methyl-2-morpholin-4-yl-6-oxopyridin-4-yl)pyridin-3-yl]-2-propan-2-ylpyridine-4-carboxamide Chemical compound CN1C(C=C(C=C1N1CCOCC1)C=1C(=NC=C(C=1)NC(C1=CC(=NC=C1)C(C)C)=O)C)=O NHQJGHRZADMTAL-UHFFFAOYSA-N 0.000 claims 1
- RRUNJLDIPKMNLZ-UHFFFAOYSA-N N-[6-methyl-5-(1-methyl-2-morpholin-4-yl-6-oxopyridin-4-yl)pyridin-3-yl]-3-(2-methylsulfonylpropan-2-yl)benzamide Chemical compound CN1C(C=C(C=C1N1CCOCC1)C=1C(=NC=C(C=1)NC(C1=CC(=CC=C1)C(C)(C)S(=O)(=O)C)=O)C)=O RRUNJLDIPKMNLZ-UHFFFAOYSA-N 0.000 claims 1
- YKVKIUOZWOSARU-UHFFFAOYSA-N N-[6-methyl-5-(1-methyl-2-morpholin-4-yl-6-oxopyridin-4-yl)pyridin-3-yl]-3-methylsulfonylbenzamide Chemical compound CN1C(C=C(C=C1N1CCOCC1)C=1C(=NC=C(C=1)NC(C1=CC(=CC=C1)S(=O)(=O)C)=O)C)=O YKVKIUOZWOSARU-UHFFFAOYSA-N 0.000 claims 1
- VUVMZPGWFLWKSV-UHFFFAOYSA-N N-[6-methyl-5-(1-methyl-2-morpholin-4-yl-6-oxopyridin-4-yl)pyridin-3-yl]benzamide Chemical compound CN1C(C=C(C=C1N1CCOCC1)C=1C(=NC=C(C=1)NC(C1=CC=CC=C1)=O)C)=O VUVMZPGWFLWKSV-UHFFFAOYSA-N 0.000 claims 1
- XLSXRBXIDDFQIY-UHFFFAOYSA-N N-[6-methyl-5-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)pyridin-3-yl]-2-(trifluoromethyl)pyridine-4-carboxamide Chemical compound CN1C=C(C=C(C1=O)N1CCOCC1)C=1C(=NC=C(C=1)NC(C1=CC(=NC=C1)C(F)(F)F)=O)C XLSXRBXIDDFQIY-UHFFFAOYSA-N 0.000 claims 1
- GQAKWDGWDHTDMG-GOSISDBHSA-N N-[6-methyl-5-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)pyridin-3-yl]-2-[(2R)-oxolan-2-yl]acetamide Chemical compound CN1C=C(C=C(C1=O)N1CCOCC1)C=1C(=NC=C(C=1)NC(C[C@@H]1OCCC1)=O)C GQAKWDGWDHTDMG-GOSISDBHSA-N 0.000 claims 1
- GQAKWDGWDHTDMG-SFHVURJKSA-N N-[6-methyl-5-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)pyridin-3-yl]-2-[(2S)-oxolan-2-yl]acetamide Chemical compound CN1C=C(C=C(C1=O)N1CCOCC1)C=1C(=NC=C(C=1)NC(C[C@H]1OCCC1)=O)C GQAKWDGWDHTDMG-SFHVURJKSA-N 0.000 claims 1
- HYHBGXONJXJIBK-UHFFFAOYSA-N N-[6-methyl-5-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)pyridin-3-yl]-2-propan-2-ylpyridine-4-carboxamide Chemical compound CN1C=C(C=C(C1=O)N1CCOCC1)C=1C(=NC=C(C=1)NC(C1=CC(=NC=C1)C(C)C)=O)C HYHBGXONJXJIBK-UHFFFAOYSA-N 0.000 claims 1
- AIEBIELPPOUNST-UHFFFAOYSA-N N-[6-methyl-5-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)pyridin-3-yl]-3-propan-2-yloxybenzamide Chemical compound CN1C=C(C=C(C1=O)N1CCOCC1)C=1C(=NC=C(C=1)NC(C1=CC(=CC=C1)OC(C)C)=O)C AIEBIELPPOUNST-UHFFFAOYSA-N 0.000 claims 1
- VVQJVQYFDYAYFO-UHFFFAOYSA-N N-[6-methyl-5-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)pyridin-3-yl]-5-propan-2-yl-1,2-oxazole-3-carboxamide Chemical compound CN1C=C(C=C(C1=O)N1CCOCC1)C=1C(=NC=C(C=1)NC(=O)C1=NOC(=C1)C(C)C)C VVQJVQYFDYAYFO-UHFFFAOYSA-N 0.000 claims 1
- AUZTXNXFVOPUFB-UHFFFAOYSA-N N-[6-methyl-5-(2-morpholin-4-yl-6-piperazin-1-ylpyridin-4-yl)pyridin-3-yl]-3-(trifluoromethyl)benzamide Chemical compound CC1=NC=C(C=C1C1=CC(=NC(=C1)N1CCNCC1)N1CCOCC1)NC(C1=CC(=CC=C1)C(F)(F)F)=O AUZTXNXFVOPUFB-UHFFFAOYSA-N 0.000 claims 1
- GMYDKQWTIUVCNT-UHFFFAOYSA-N N-[6-methyl-5-(2-morpholin-4-ylpyridin-4-yl)pyridin-3-yl]-2-propan-2-ylpyridine-4-carboxamide Chemical compound C(C)(C)C=1C=C(C(=O)NC=2C=C(C(=NC=2)C)C2=CC(=NC=C2)N2CCOCC2)C=CN=1 GMYDKQWTIUVCNT-UHFFFAOYSA-N 0.000 claims 1
- QVCPOQFCEWSFDK-UHFFFAOYSA-N N-[6-methyl-5-(4-methylsulfonyl-3-morpholin-4-ylphenyl)pyridin-3-yl]-3-(trifluoromethyl)benzamide Chemical compound Cc1ncc(NC(=O)c2cccc(c2)C(F)(F)F)cc1-c1ccc(c(c1)N1CCOCC1)S(C)(=O)=O QVCPOQFCEWSFDK-UHFFFAOYSA-N 0.000 claims 1
- CHNRFCDALGFXRN-UHFFFAOYSA-N N-[6-methyl-5-(5-morpholin-4-yl-6-oxo-1H-pyridin-3-yl)pyridin-3-yl]-3-(trifluoromethyl)benzamide Chemical compound CC1=NC=C(C=C1C1=CNC(C(=C1)N1CCOCC1)=O)NC(C1=CC(=CC=C1)C(F)(F)F)=O CHNRFCDALGFXRN-UHFFFAOYSA-N 0.000 claims 1
- YVYDWGRZZHQZER-UHFFFAOYSA-N N-[6-methyl-5-(5-morpholin-4-yl-6-propan-2-yloxypyridin-3-yl)pyridin-3-yl]-5-(trifluoromethyl)pyridine-3-carboxamide Chemical compound C(C)(C)OC1=C(C=C(C=N1)C=1C(=NC=C(C=1)NC(C1=CN=CC(=C1)C(F)(F)F)=O)C)N1CCOCC1 YVYDWGRZZHQZER-UHFFFAOYSA-N 0.000 claims 1
- YSJXSRJVNHZORQ-UHFFFAOYSA-N N-[6-methyl-5-(5-morpholin-4-ylpyridin-3-yl)pyridin-3-yl]-2-(trifluoromethyl)pyridine-4-carboxamide Chemical compound CC1=C(C=C(NC(=O)C2=CC(=NC=C2)C(F)(F)F)C=N1)C1=CN=CC(=C1)N1CCOCC1 YSJXSRJVNHZORQ-UHFFFAOYSA-N 0.000 claims 1
- AQIDKHWQXOCWRH-UHFFFAOYSA-N N-[6-methyl-5-(6-methylsulfonyl-5-morpholin-4-ylpyridazin-3-yl)pyridin-3-yl]-2-(trifluoromethyl)pyridine-4-carboxamide Chemical compound CC1=C(C=C(C=N1)NC(C1=CC(=NC=C1)C(F)(F)F)=O)C=1N=NC(=C(C=1)N1CCOCC1)S(=O)(=O)C AQIDKHWQXOCWRH-UHFFFAOYSA-N 0.000 claims 1
- BNCCEMXOBQMNGX-UHFFFAOYSA-N N-[6-methyl-5-(6-methylsulfonyl-5-morpholin-4-ylpyridazin-3-yl)pyridin-3-yl]-3-(trifluoromethyl)benzamide Chemical compound Cc1ncc(NC(=O)c2cccc(c2)C(F)(F)F)cc1-c1cc(N2CCOCC2)c(nn1)S(C)(=O)=O BNCCEMXOBQMNGX-UHFFFAOYSA-N 0.000 claims 1
- GDQORUHUAZQWQJ-UHFFFAOYSA-N N-[6-methyl-5-(6-morpholin-4-ylpyrazin-2-yl)pyridin-3-yl]-2-(trifluoromethyl)pyridine-4-carboxamide Chemical compound CC1=C(C=C(C=N1)NC(C1=CC(=NC=C1)C(F)(F)F)=O)C1=NC(=CN=C1)N1CCOCC1 GDQORUHUAZQWQJ-UHFFFAOYSA-N 0.000 claims 1
- QIKQYKNREYQNEP-UHFFFAOYSA-N N-[6-methyl-5-(7-morpholin-4-ylpyrazolo[1,5-a]pyrimidin-5-yl)pyridin-3-yl]-2-(trifluoromethyl)pyridine-4-carboxamide Chemical compound CC1=C(C=C(C=N1)NC(C1=CC(=NC=C1)C(F)(F)F)=O)C1=NC=2N(C(=C1)N1CCOCC1)N=CC=2 QIKQYKNREYQNEP-UHFFFAOYSA-N 0.000 claims 1
- KTRIZHDRBCDKNT-UHFFFAOYSA-N N-[6-methyl-5-(7-morpholin-4-ylpyrazolo[1,5-a]pyrimidin-5-yl)pyridin-3-yl]-2-methylsulfonylpyridine-4-carboxamide Chemical compound CC1=C(C=C(C=N1)NC(C1=CC(=NC=C1)S(=O)(=O)C)=O)C1=NC=2N(C(=C1)N1CCOCC1)N=CC=2 KTRIZHDRBCDKNT-UHFFFAOYSA-N 0.000 claims 1
- PYONYXZCUHOXDY-UHFFFAOYSA-N N-[6-methyl-5-(7-morpholin-4-ylpyrazolo[1,5-a]pyrimidin-5-yl)pyridin-3-yl]-3-(trifluoromethyl)benzamide Chemical compound CC1=NC=C(NC(=O)C2=CC(=CC=C2)C(F)(F)F)C=C1C1=NC2=CC=NN2C(=C1)N1CCOCC1 PYONYXZCUHOXDY-UHFFFAOYSA-N 0.000 claims 1
- BTYBKVCFADKILK-UHFFFAOYSA-N N-[6-methyl-5-(7-morpholin-4-ylpyrazolo[1,5-a]pyrimidin-5-yl)pyridin-3-yl]-4-(trifluoromethyl)pyridine-2-carboxamide Chemical compound CC1=C(C=C(C=N1)NC(C1=NC=CC(=C1)C(F)(F)F)=O)C1=NC=2N(C(=C1)N1CCOCC1)N=CC=2 BTYBKVCFADKILK-UHFFFAOYSA-N 0.000 claims 1
- RJYWRJSAZYVNNO-UHFFFAOYSA-N N-[6-methyl-5-(8-morpholin-4-ylimidazo[1,2-b]pyridazin-6-yl)pyridin-3-yl]-2-propan-2-ylpyridine-4-carboxamide Chemical compound C(C)(C)C=1C=C(C(=O)NC=2C=NC(=C(C=2)C=2C=C(C=3N(N=2)C=CN=3)N2CCOCC2)C)C=CN=1 RJYWRJSAZYVNNO-UHFFFAOYSA-N 0.000 claims 1
- RVFUBYUMMVMIMP-UHFFFAOYSA-N N-[6-methyl-5-[2-(3-oxomorpholin-4-yl)pyridin-4-yl]pyridin-3-yl]-3-(trifluoromethyl)benzamide Chemical compound CC1=NC=C(C=C1C1=CC(=NC=C1)N1C(COCC1)=O)NC(C1=CC(=CC=C1)C(F)(F)F)=O RVFUBYUMMVMIMP-UHFFFAOYSA-N 0.000 claims 1
- VNIUCIBNMKUPSK-UHFFFAOYSA-N N-[6-methyl-5-[5-(3-oxa-8-azabicyclo[3.2.1]octan-8-yl)-6-(oxan-4-yloxy)pyridin-3-yl]pyridin-3-yl]-2-(trifluoromethyl)pyridine-4-carboxamide Chemical compound C12COCC(CC1)N2C=1C=C(C=NC=1OC1CCOCC1)C=1C(=NC=C(C=1)NC(C1=CC(=NC=C1)C(F)(F)F)=O)C VNIUCIBNMKUPSK-UHFFFAOYSA-N 0.000 claims 1
- YQWYOOFOVOSYHX-UHFFFAOYSA-N N-[6-methyl-5-[5-morpholin-4-yl-6-(oxan-4-ylidenemethyl)pyridin-3-yl]pyridin-3-yl]-3-(trifluoromethyl)benzamide Chemical compound Cc1ncc(NC(=O)c2cccc(c2)C(F)(F)F)cc1-c1cnc(C=C2CCOCC2)c(c1)N1CCOCC1 YQWYOOFOVOSYHX-UHFFFAOYSA-N 0.000 claims 1
- QMDQSLNRBYVBCO-UHFFFAOYSA-N N-[6-methyl-5-[5-morpholin-4-yl-6-(oxan-4-yloxy)pyridin-3-yl]pyridin-3-yl]-2-(trifluoromethyl)pyridine-4-carboxamide Chemical compound CC1=NC=C(C=C1C=1C=NC(=C(C=1)N1CCOCC1)OC1CCOCC1)NC(C1=CC(=NC=C1)C(F)(F)F)=O QMDQSLNRBYVBCO-UHFFFAOYSA-N 0.000 claims 1
- RKFIVKWJVOSHFY-UHFFFAOYSA-N N-[6-methyl-5-[5-morpholin-4-yl-6-(oxan-4-yloxy)pyridin-3-yl]pyridin-3-yl]-3-(2,2,2-trifluoro-1-hydroxyethyl)benzamide Chemical compound CC1=NC=C(C=C1C=1C=NC(=C(C=1)N1CCOCC1)OC1CCOCC1)NC(C1=CC(=CC=C1)C(C(F)(F)F)O)=O RKFIVKWJVOSHFY-UHFFFAOYSA-N 0.000 claims 1
- VIXOLWKUXBMMQN-UHFFFAOYSA-N N-[6-methyl-5-[5-morpholin-4-yl-6-(oxan-4-yloxy)pyridin-3-yl]pyridin-3-yl]-3-methylsulfonylbenzamide Chemical compound CC1=NC=C(C=C1C=1C=NC(=C(C=1)N1CCOCC1)OC1CCOCC1)NC(C1=CC(=CC=C1)S(=O)(=O)C)=O VIXOLWKUXBMMQN-UHFFFAOYSA-N 0.000 claims 1
- CMTVLOPAPBQCRJ-UHFFFAOYSA-N N-[6-methyl-5-[5-morpholin-4-yl-6-(oxan-4-yloxy)pyridin-3-yl]pyridin-3-yl]-4-(trifluoromethyl)pyridine-2-carboxamide Chemical compound CC1=NC=C(C=C1C=1C=NC(=C(C=1)N1CCOCC1)OC1CCOCC1)NC(C1=NC=CC(=C1)C(F)(F)F)=O CMTVLOPAPBQCRJ-UHFFFAOYSA-N 0.000 claims 1
- LINYELHXLRSDKZ-UHFFFAOYSA-N N-[6-methyl-5-[5-morpholin-4-yl-6-(oxan-4-yloxy)pyridin-3-yl]pyridin-3-yl]-N-propyl-3-(trifluoromethyl)benzamide Chemical compound CC1=NC=C(C=C1C=1C=NC(=C(C=1)N1CCOCC1)OC1CCOCC1)N(C(C1=CC(=CC=C1)C(F)(F)F)=O)CCC LINYELHXLRSDKZ-UHFFFAOYSA-N 0.000 claims 1
- KOHWMDVRLFFKNM-JOCHJYFZSA-N N-[6-methyl-5-[5-morpholin-4-yl-6-[(3R)-oxolan-3-yl]oxypyridin-3-yl]pyridin-3-yl]-3-(trifluoromethyl)benzamide Chemical compound CC1=NC=C(C=C1C=1C=NC(=C(C=1)N1CCOCC1)O[C@H]1COCC1)NC(C1=CC(=CC=C1)C(F)(F)F)=O KOHWMDVRLFFKNM-JOCHJYFZSA-N 0.000 claims 1
- AETAXDFDNBAHMD-UHFFFAOYSA-N N-[6-methyl-5-[6-(1-methylazetidin-3-yl)oxy-5-morpholin-4-ylpyridin-3-yl]pyridin-3-yl]-3-(trifluoromethyl)benzamide Chemical compound CN1CC(C1)Oc1ncc(cc1N1CCOCC1)-c1cc(NC(=O)c2cccc(c2)C(F)(F)F)cnc1C AETAXDFDNBAHMD-UHFFFAOYSA-N 0.000 claims 1
- MNYDHGKTDIEVIG-UHFFFAOYSA-N N-ethyl-N-[6-methyl-5-[5-morpholin-4-yl-6-(oxan-4-yloxy)pyridin-3-yl]pyridin-3-yl]-3-(trifluoromethyl)benzamide Chemical compound C(C)N(C(C1=CC(=CC=C1)C(F)(F)F)=O)C=1C=C(C(=NC=1)C)C=1C=NC(=C(C=1)N1CCOCC1)OC1CCOCC1 MNYDHGKTDIEVIG-UHFFFAOYSA-N 0.000 claims 1
- KRAKJGFWCBETHP-UHFFFAOYSA-N OCCNC1=NC(=CC(=C1)C=1C(=NC=C(C=1)NC(C1=CC(=NC=C1)S(=O)(=O)C)=O)C)N1CCOCC1 Chemical compound OCCNC1=NC(=CC(=C1)C=1C(=NC=C(C=1)NC(C1=CC(=NC=C1)S(=O)(=O)C)=O)C)N1CCOCC1 KRAKJGFWCBETHP-UHFFFAOYSA-N 0.000 claims 1
- YNOJZMGJHBXBNH-QGZVFWFLSA-N methyl N-[(2R)-2-[5-[2-methyl-5-[[3-(trifluoromethyl)benzoyl]amino]pyridin-3-yl]-3-morpholin-4-ylpyridin-2-yl]oxypropyl]carbamate Chemical compound COC(NC[C@@H](C)OC1=C(C=C(C=N1)C=1C(=NC=C(C=1)NC(C1=CC(=CC=C1)C(F)(F)F)=O)C)N1CCOCC1)=O YNOJZMGJHBXBNH-QGZVFWFLSA-N 0.000 claims 1
- KFFCNUUBQXOSPH-UHFFFAOYSA-N methyl n-[2-[5-[2-methyl-5-[[3-(trifluoromethyl)benzoyl]amino]phenyl]-3-morpholin-4-yl-2-oxopyridin-1-yl]ethyl]carbamate Chemical compound O=C1N(CCNC(=O)OC)C=C(C=2C(=CC=C(NC(=O)C=3C=C(C=CC=3)C(F)(F)F)C=2)C)C=C1N1CCOCC1 KFFCNUUBQXOSPH-UHFFFAOYSA-N 0.000 claims 1
- LYWNHHSMUZTLKZ-UHFFFAOYSA-N methyl n-[2-[5-[2-methyl-5-[[3-(trifluoromethyl)benzoyl]amino]pyridin-3-yl]-3-morpholin-4-yl-2-oxopyridin-1-yl]ethyl]carbamate Chemical compound O=C1N(CCNC(=O)OC)C=C(C=2C(=NC=C(NC(=O)C=3C=C(C=CC=3)C(F)(F)F)C=2)C)C=C1N1CCOCC1 LYWNHHSMUZTLKZ-UHFFFAOYSA-N 0.000 claims 1
- IPWUKCMMNPEWPT-OAQYLSRUSA-N methyl n-[[(2r)-4-[4-[2-methyl-5-[[3-(trifluoromethyl)benzoyl]amino]pyridin-3-yl]pyridin-2-yl]morpholin-2-yl]methyl]carbamate Chemical compound C1CO[C@H](CNC(=O)OC)CN1C1=CC(C=2C(=NC=C(NC(=O)C=3C=C(C=CC=3)C(F)(F)F)C=2)C)=CC=N1 IPWUKCMMNPEWPT-OAQYLSRUSA-N 0.000 claims 1
- NPKHELDIJGDMGO-UHFFFAOYSA-N n-(3-ethylphenyl)-4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)benzamide Chemical compound CCC1=CC=CC(NC(=O)C=2C=C(C(C)=CC=2)C2=CN(C)C(=O)C(N3CCOCC3)=C2)=C1 NPKHELDIJGDMGO-UHFFFAOYSA-N 0.000 claims 1
- LOYKGYNUAKEAGH-UHFFFAOYSA-N n-(3-methoxyphenyl)-4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)benzamide Chemical compound COC1=CC=CC(NC(=O)C=2C=C(C(C)=CC=2)C2=CN(C)C(=O)C(N3CCOCC3)=C2)=C1 LOYKGYNUAKEAGH-UHFFFAOYSA-N 0.000 claims 1
- HAWJEUPJDSDRMP-UHFFFAOYSA-N n-(5-methoxypyridin-3-yl)-4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)benzamide Chemical compound COC1=CN=CC(NC(=O)C=2C=C(C(C)=CC=2)C2=CN(C)C(=O)C(N3CCOCC3)=C2)=C1 HAWJEUPJDSDRMP-UHFFFAOYSA-N 0.000 claims 1
- RGCAJEYNPZGLMH-UHFFFAOYSA-N n-[2-(1,1-difluoroethyl)pyridin-4-yl]-3-(6-ethoxy-5-morpholin-4-ylpyridazin-3-yl)-4-methylbenzamide Chemical compound CCOC1=NN=C(C=2C(=CC=C(C=2)C(=O)NC=2C=C(N=CC=2)C(C)(F)F)C)C=C1N1CCOCC1 RGCAJEYNPZGLMH-UHFFFAOYSA-N 0.000 claims 1
- PALWFNXLARYKAG-UHFFFAOYSA-N n-[2-(1,1-difluoroethyl)pyridin-4-yl]-3-(6-methoxy-5-morpholin-4-ylpyridazin-3-yl)-4-methylbenzamide Chemical compound COC1=NN=C(C=2C(=CC=C(C=2)C(=O)NC=2C=C(N=CC=2)C(C)(F)F)C)C=C1N1CCOCC1 PALWFNXLARYKAG-UHFFFAOYSA-N 0.000 claims 1
- YVUMPWVUGVZHEE-UHFFFAOYSA-N n-[3-(1-ethyl-2-morpholin-4-yl-6-oxopyridin-4-yl)-4-methylphenyl]-2-(2-fluoropropan-2-yl)pyridine-4-carboxamide Chemical compound C=1C(=O)N(CC)C(N2CCOCC2)=CC=1C(C(=CC=1)C)=CC=1NC(=O)C1=CC=NC(C(C)(C)F)=C1 YVUMPWVUGVZHEE-UHFFFAOYSA-N 0.000 claims 1
- UDVFQNCDNUGGGY-UHFFFAOYSA-N n-[3-(1-ethyl-5-morpholin-4-yl-6-oxopyridin-3-yl)-4-methylphenyl]-2-(trifluoromethyl)pyridine-4-carboxamide Chemical compound O=C1N(CC)C=C(C=2C(=CC=C(NC(=O)C=3C=C(N=CC=3)C(F)(F)F)C=2)C)C=C1N1CCOCC1 UDVFQNCDNUGGGY-UHFFFAOYSA-N 0.000 claims 1
- OIVLQHCLBDDPPE-UHFFFAOYSA-N n-[3-(2,6-dimorpholin-4-ylpyridin-4-yl)-4-methylphenyl]-2-propan-2-ylpyridine-4-carboxamide Chemical compound C1=NC(C(C)C)=CC(C(=O)NC=2C=C(C(C)=CC=2)C=2C=C(N=C(C=2)N2CCOCC2)N2CCOCC2)=C1 OIVLQHCLBDDPPE-UHFFFAOYSA-N 0.000 claims 1
- JBZRRAJGJPIOCP-UHFFFAOYSA-N n-[3-(2,6-dimorpholin-4-ylpyridin-4-yl)-4-methylphenyl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C=2C=C(N=C(C=2)N2CCOCC2)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 JBZRRAJGJPIOCP-UHFFFAOYSA-N 0.000 claims 1
- RVPQVKRCGLMTMT-UHFFFAOYSA-N n-[3-(2,6-dimorpholin-4-ylpyrimidin-4-yl)-4-methylphenyl]-2-(trifluoromethyl)-1,3-thiazole-4-carboxamide Chemical compound C1=C(C=2N=C(N=C(C=2)N2CCOCC2)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CSC(C(F)(F)F)=N1 RVPQVKRCGLMTMT-UHFFFAOYSA-N 0.000 claims 1
- XODKNGBNTMFKRE-UHFFFAOYSA-N n-[3-(2,6-dimorpholin-4-ylpyrimidin-4-yl)-4-methylphenyl]-3-(4-ethylpiperazin-1-yl)-5-(trifluoromethyl)benzamide Chemical compound C1CN(CC)CCN1C1=CC(C(=O)NC=2C=C(C(C)=CC=2)C=2N=C(N=C(C=2)N2CCOCC2)N2CCOCC2)=CC(C(F)(F)F)=C1 XODKNGBNTMFKRE-UHFFFAOYSA-N 0.000 claims 1
- ZPMMEQLJGQJSKJ-UHFFFAOYSA-N n-[3-(2,6-dimorpholin-4-ylpyrimidin-4-yl)-4-methylphenyl]-3-(trifluoromethoxy)benzamide Chemical compound C1=C(C=2N=C(N=C(C=2)N2CCOCC2)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CC=CC(OC(F)(F)F)=C1 ZPMMEQLJGQJSKJ-UHFFFAOYSA-N 0.000 claims 1
- ZHNCJARBTUXWNB-UHFFFAOYSA-N n-[3-(2,6-dimorpholin-4-ylpyrimidin-4-yl)-4-methylphenyl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C=2N=C(N=C(C=2)N2CCOCC2)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 ZHNCJARBTUXWNB-UHFFFAOYSA-N 0.000 claims 1
- XXJULQHALWBMRS-UHFFFAOYSA-N n-[3-(2,6-dimorpholin-4-ylpyrimidin-4-yl)-4-methylphenyl]-3-methylsulfonylbenzamide Chemical compound C1=C(C=2N=C(N=C(C=2)N2CCOCC2)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CC=CC(S(C)(=O)=O)=C1 XXJULQHALWBMRS-UHFFFAOYSA-N 0.000 claims 1
- BYOVYFARSYCHOS-UHFFFAOYSA-N n-[3-(2-amino-6-morpholin-4-ylpyridin-4-yl)-4-methylphenyl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C=2C=C(N=C(N)C=2)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 BYOVYFARSYCHOS-UHFFFAOYSA-N 0.000 claims 1
- DEFBACDLTQLHSG-UHFFFAOYSA-N n-[3-(2-amino-6-morpholin-4-ylpyrimidin-4-yl)-4-methylphenyl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C=2N=C(N)N=C(C=2)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 DEFBACDLTQLHSG-UHFFFAOYSA-N 0.000 claims 1
- ZBSTZRHQMRALBD-UHFFFAOYSA-N n-[3-(2-cyanopropan-2-yl)phenyl]-3-[2-(ethylamino)-6-morpholin-4-ylpyrimidin-4-yl]-4-methylbenzamide Chemical compound N=1C(NCC)=NC(N2CCOCC2)=CC=1C(C(=CC=1)C)=CC=1C(=O)NC1=CC=CC(C(C)(C)C#N)=C1 ZBSTZRHQMRALBD-UHFFFAOYSA-N 0.000 claims 1
- GSKMGKUYBZJMCB-UHFFFAOYSA-N n-[3-(2-cyanopropan-2-yl)phenyl]-4-methyl-3-(1-methyl-2-morpholin-4-yl-6-oxopyridin-4-yl)benzamide Chemical compound CC1=CC=C(C(=O)NC=2C=C(C=CC=2)C(C)(C)C#N)C=C1C(=CC(=O)N1C)C=C1N1CCOCC1 GSKMGKUYBZJMCB-UHFFFAOYSA-N 0.000 claims 1
- WVHCKCUBQCOPRJ-UHFFFAOYSA-N n-[3-(2-cyanopropan-2-yl)phenyl]-4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)benzamide Chemical compound CC1=CC=C(C(=O)NC=2C=C(C=CC=2)C(C)(C)C#N)C=C1C(=CN(C)C1=O)C=C1N1CCOCC1 WVHCKCUBQCOPRJ-UHFFFAOYSA-N 0.000 claims 1
- MMTYLLNPEQOIKW-UHFFFAOYSA-N n-[3-(2-ethoxy-6-morpholin-4-ylpyrimidin-4-yl)-4-methylphenyl]-2-propan-2-ylpyridine-4-carboxamide Chemical compound N=1C(OCC)=NC(N2CCOCC2)=CC=1C(C(=CC=1)C)=CC=1NC(=O)C1=CC=NC(C(C)C)=C1 MMTYLLNPEQOIKW-UHFFFAOYSA-N 0.000 claims 1
- VBPQTQFHGSCEAO-UHFFFAOYSA-N n-[3-(2-hydroxypropan-2-yl)phenyl]-4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)benzamide Chemical compound CC1=CC=C(C(=O)NC=2C=C(C=CC=2)C(C)(C)O)C=C1C(=CN(C)C1=O)C=C1N1CCOCC1 VBPQTQFHGSCEAO-UHFFFAOYSA-N 0.000 claims 1
- ZAYWARVMFZWGAP-UHFFFAOYSA-N n-[3-(2-imidazol-1-yl-6-morpholin-4-ylpyrimidin-4-yl)-4-methylphenyl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C=2N=C(N=C(C=2)N2CCOCC2)N2C=NC=C2)C(C)=CC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 ZAYWARVMFZWGAP-UHFFFAOYSA-N 0.000 claims 1
- UZEQVEDIWADYDO-UHFFFAOYSA-N n-[3-(2-methoxy-5-morpholin-4-ylpyridin-3-yl)-4-methylphenyl]-3-(trifluoromethyl)benzamide Chemical compound COC1=NC=C(N2CCOCC2)C=C1C(C(=CC=1)C)=CC=1NC(=O)C1=CC=CC(C(F)(F)F)=C1 UZEQVEDIWADYDO-UHFFFAOYSA-N 0.000 claims 1
- HMDOKKUHHDRRAK-UHFFFAOYSA-N n-[3-(4,6-dimorpholin-4-ylpyrimidin-2-yl)-4-methylphenyl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C=2N=C(C=C(N=2)N2CCOCC2)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 HMDOKKUHHDRRAK-UHFFFAOYSA-N 0.000 claims 1
- XQNRCPXMLMNNPS-UHFFFAOYSA-N n-[3-(4-ethyl-6-morpholin-4-yl-5-oxopyrazin-2-yl)-4-methylphenyl]-3-(trifluoromethyl)benzamide Chemical compound O=C1N(CC)C=C(C=2C(=CC=C(NC(=O)C=3C=C(C=CC=3)C(F)(F)F)C=2)C)N=C1N1CCOCC1 XQNRCPXMLMNNPS-UHFFFAOYSA-N 0.000 claims 1
- DCKPXKUYFVTZND-UHFFFAOYSA-N n-[3-(4-methoxy-6-morpholin-4-ylpyridin-2-yl)-4-methylphenyl]-3-(trifluoromethyl)benzamide Chemical compound C=1C(OC)=CC(N2CCOCC2)=NC=1C(C(=CC=1)C)=CC=1NC(=O)C1=CC=CC(C(F)(F)F)=C1 DCKPXKUYFVTZND-UHFFFAOYSA-N 0.000 claims 1
- ZHOGCJWDDJEERU-UHFFFAOYSA-N n-[3-(5-ethoxy-6-morpholin-4-ylpyrazin-2-yl)-4-methylphenyl]-3-(trifluoromethyl)benzamide Chemical compound CCOC1=NC=C(C=2C(=CC=C(NC(=O)C=3C=C(C=CC=3)C(F)(F)F)C=2)C)N=C1N1CCOCC1 ZHOGCJWDDJEERU-UHFFFAOYSA-N 0.000 claims 1
- HWTGCLPVSGXZOV-UHFFFAOYSA-N n-[3-(6-amino-4-morpholin-4-ylpyridin-2-yl)-4-methylphenyl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C=2N=C(N)C=C(C=2)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 HWTGCLPVSGXZOV-UHFFFAOYSA-N 0.000 claims 1
- PLAKXVXPMSXNCB-UHFFFAOYSA-N n-[3-(6-ethoxy-5-morpholin-4-ylpyridazin-3-yl)-4-methylphenyl]-2-(2-fluoropropan-2-yl)pyridine-4-carboxamide Chemical compound CCOC1=NN=C(C=2C(=CC=C(NC(=O)C=3C=C(N=CC=3)C(C)(C)F)C=2)C)C=C1N1CCOCC1 PLAKXVXPMSXNCB-UHFFFAOYSA-N 0.000 claims 1
- LMLLCUJOTYKZQL-UHFFFAOYSA-N n-[3-(6-ethoxy-5-morpholin-4-ylpyridazin-3-yl)-4-methylphenyl]-2-(2-hydroxypropan-2-yl)pyridine-4-carboxamide Chemical compound CCOC1=NN=C(C=2C(=CC=C(NC(=O)C=3C=C(N=CC=3)C(C)(C)O)C=2)C)C=C1N1CCOCC1 LMLLCUJOTYKZQL-UHFFFAOYSA-N 0.000 claims 1
- NSQSHHMJVMLITG-UHFFFAOYSA-N n-[3-(6-ethoxy-5-morpholin-4-ylpyridazin-3-yl)-4-methylphenyl]-2-(trifluoromethyl)pyridine-4-carboxamide Chemical compound CCOC1=NN=C(C=2C(=CC=C(NC(=O)C=3C=C(N=CC=3)C(F)(F)F)C=2)C)C=C1N1CCOCC1 NSQSHHMJVMLITG-UHFFFAOYSA-N 0.000 claims 1
- QCXLSMOFUZBIOO-UHFFFAOYSA-N n-[3-(6-ethoxy-5-morpholin-4-ylpyridazin-3-yl)-4-methylphenyl]-3-methylsulfonylbenzamide Chemical compound CCOC1=NN=C(C=2C(=CC=C(NC(=O)C=3C=C(C=CC=3)S(C)(=O)=O)C=2)C)C=C1N1CCOCC1 QCXLSMOFUZBIOO-UHFFFAOYSA-N 0.000 claims 1
- UGARRQIEMICCRK-UHFFFAOYSA-N n-[3-(6-ethoxy-5-morpholin-4-ylpyridazin-3-yl)-4-methylphenyl]-4-(ethylaminomethyl)-3-(trifluoromethyl)benzamide Chemical compound C1=C(C(F)(F)F)C(CNCC)=CC=C1C(=O)NC1=CC=C(C)C(C=2N=NC(OCC)=C(N3CCOCC3)C=2)=C1 UGARRQIEMICCRK-UHFFFAOYSA-N 0.000 claims 1
- ZAOMDELYPOSTSG-UHFFFAOYSA-N n-[3-(6-ethoxy-5-morpholin-4-ylpyridazin-3-yl)-4-methylphenyl]-4-(methylaminomethyl)-3-(trifluoromethyl)benzamide Chemical compound CCOC1=NN=C(C=2C(=CC=C(NC(=O)C=3C=C(C(CNC)=CC=3)C(F)(F)F)C=2)C)C=C1N1CCOCC1 ZAOMDELYPOSTSG-UHFFFAOYSA-N 0.000 claims 1
- DMOUEXIMXNPRQR-UHFFFAOYSA-N n-[3-(6-ethoxy-5-morpholin-4-ylpyridazin-3-yl)-4-methylphenyl]-6-(trifluoromethyl)pyridazine-4-carboxamide Chemical compound CCOC1=NN=C(C=2C(=CC=C(NC(=O)C=3C=C(N=NC=3)C(F)(F)F)C=2)C)C=C1N1CCOCC1 DMOUEXIMXNPRQR-UHFFFAOYSA-N 0.000 claims 1
- YEJHEWNOBBCKFK-UHFFFAOYSA-N n-[3-(6-ethoxy-5-morpholin-4-ylpyridin-3-yl)-4-methylphenyl]-2-(trifluoromethyl)pyridine-4-carboxamide Chemical compound CCOC1=NC=C(C=2C(=CC=C(NC(=O)C=3C=C(N=CC=3)C(F)(F)F)C=2)C)C=C1N1CCOCC1 YEJHEWNOBBCKFK-UHFFFAOYSA-N 0.000 claims 1
- WDFPENAKPUARAY-UHFFFAOYSA-N n-[3-(6-ethoxy-5-morpholin-4-ylpyridin-3-yl)-4-methylphenyl]-3-(1,3,4-oxadiazol-2-yl)benzamide Chemical compound CCOC1=NC=C(C=2C(=CC=C(NC(=O)C=3C=C(C=CC=3)C=3OC=NN=3)C=2)C)C=C1N1CCOCC1 WDFPENAKPUARAY-UHFFFAOYSA-N 0.000 claims 1
- IURUCQHKNQXJDY-UHFFFAOYSA-N n-[3-(6-ethoxy-5-morpholin-4-ylpyridin-3-yl)-4-methylphenyl]-3-(methylsulfonimidoyl)benzamide Chemical compound CCOC1=NC=C(C=2C(=CC=C(NC(=O)C=3C=C(C=CC=3)S(C)(=N)=O)C=2)C)C=C1N1CCOCC1 IURUCQHKNQXJDY-UHFFFAOYSA-N 0.000 claims 1
- LSEPPTJNAQFEES-UHFFFAOYSA-N n-[3-(6-ethoxy-5-morpholin-4-ylpyridin-3-yl)-4-methylphenyl]-3-(trifluoromethyl)benzamide Chemical compound CCOC1=NC=C(C=2C(=CC=C(NC(=O)C=3C=C(C=CC=3)C(F)(F)F)C=2)C)C=C1N1CCOCC1 LSEPPTJNAQFEES-UHFFFAOYSA-N 0.000 claims 1
- KEMDLZNSHOZIMO-UHFFFAOYSA-N n-[3-(6-ethoxy-5-morpholin-4-ylpyridin-3-yl)-4-methylphenyl]-3-methylsulfonylbenzamide Chemical compound CCOC1=NC=C(C=2C(=CC=C(NC(=O)C=3C=C(C=CC=3)S(C)(=O)=O)C=2)C)C=C1N1CCOCC1 KEMDLZNSHOZIMO-UHFFFAOYSA-N 0.000 claims 1
- LSLALUAEWYZHTB-UHFFFAOYSA-N n-[3-(6-ethoxy-5-morpholin-4-ylpyridin-3-yl)-4-methylphenyl]-6-(2-fluoropropan-2-yl)pyridazine-4-carboxamide Chemical compound CCOC1=NC=C(C=2C(=CC=C(NC(=O)C=3C=C(N=NC=3)C(C)(C)F)C=2)C)C=C1N1CCOCC1 LSLALUAEWYZHTB-UHFFFAOYSA-N 0.000 claims 1
- BFOXOBQAFQGJLK-UHFFFAOYSA-N n-[3-(6-ethoxy-5-morpholin-4-ylpyridin-3-yl)-4-methylphenyl]-6-(trifluoromethyl)pyridazine-4-carboxamide Chemical compound CCOC1=NC=C(C=2C(=CC=C(NC(=O)C=3C=C(N=NC=3)C(F)(F)F)C=2)C)C=C1N1CCOCC1 BFOXOBQAFQGJLK-UHFFFAOYSA-N 0.000 claims 1
- GWLBAKVUQIRRHZ-UHFFFAOYSA-N n-[3-(6-methoxy-5-morpholin-4-ylpyridazin-3-yl)-4-methylphenyl]-2-(trifluoromethyl)pyridine-4-carboxamide Chemical compound COC1=NN=C(C=2C(=CC=C(NC(=O)C=3C=C(N=CC=3)C(F)(F)F)C=2)C)C=C1N1CCOCC1 GWLBAKVUQIRRHZ-UHFFFAOYSA-N 0.000 claims 1
- KTVVJONHPNVZMG-UHFFFAOYSA-N n-[3-(6-methoxy-5-morpholin-4-ylpyridazin-3-yl)-4-methylphenyl]-3-methylsulfonylbenzamide Chemical compound COC1=NN=C(C=2C(=CC=C(NC(=O)C=3C=C(C=CC=3)S(C)(=O)=O)C=2)C)C=C1N1CCOCC1 KTVVJONHPNVZMG-UHFFFAOYSA-N 0.000 claims 1
- BHICALKRKYZBTH-UHFFFAOYSA-N n-[3-(6-methoxy-5-morpholin-4-ylpyridin-3-yl)-4-methylphenyl]-3-(trifluoromethyl)benzamide Chemical compound COC1=NC=C(C=2C(=CC=C(NC(=O)C=3C=C(C=CC=3)C(F)(F)F)C=2)C)C=C1N1CCOCC1 BHICALKRKYZBTH-UHFFFAOYSA-N 0.000 claims 1
- YQMMKGYFCJXQJL-UHFFFAOYSA-N n-[3-(difluoromethyl)phenyl]-4-methyl-3-(1-methyl-2-morpholin-4-yl-6-oxopyridin-4-yl)benzamide Chemical compound CC1=CC=C(C(=O)NC=2C=C(C=CC=2)C(F)F)C=C1C(=CC(=O)N1C)C=C1N1CCOCC1 YQMMKGYFCJXQJL-UHFFFAOYSA-N 0.000 claims 1
- FAFSJPCFIBDSIA-UHFFFAOYSA-N n-[3-(difluoromethyl)phenyl]-4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)benzamide Chemical compound CC1=CC=C(C(=O)NC=2C=C(C=CC=2)C(F)F)C=C1C(=CN(C)C1=O)C=C1N1CCOCC1 FAFSJPCFIBDSIA-UHFFFAOYSA-N 0.000 claims 1
- KARKXYOHJUTQHZ-UHFFFAOYSA-N n-[3-[1-(2-cyanoethyl)-5-morpholin-4-yl-6-oxopyridin-3-yl]-4-methylphenyl]-2-(1,1-difluoroethyl)pyridine-4-carboxamide Chemical compound C1=C(C2=CN(CCC#N)C(=O)C(N3CCOCC3)=C2)C(C)=CC=C1NC(=O)C1=CC=NC(C(C)(F)F)=C1 KARKXYOHJUTQHZ-UHFFFAOYSA-N 0.000 claims 1
- TWRUBQMUNSJLAP-UHFFFAOYSA-N n-[3-[1-(2-cyanoethyl)-5-morpholin-4-yl-6-oxopyridin-3-yl]-4-methylphenyl]-2-(2-cyanopropan-2-yl)pyridine-4-carboxamide Chemical compound C1=C(C2=CN(CCC#N)C(=O)C(N3CCOCC3)=C2)C(C)=CC=C1NC(=O)C1=CC=NC(C(C)(C)C#N)=C1 TWRUBQMUNSJLAP-UHFFFAOYSA-N 0.000 claims 1
- SXRJXTBWQKFVJE-UHFFFAOYSA-N n-[3-[1-(2-cyanoethyl)-5-morpholin-4-yl-6-oxopyridin-3-yl]-4-methylphenyl]-3-(difluoromethyl)benzamide Chemical compound C1=C(C2=CN(CCC#N)C(=O)C(N3CCOCC3)=C2)C(C)=CC=C1NC(=O)C1=CC=CC(C(F)F)=C1 SXRJXTBWQKFVJE-UHFFFAOYSA-N 0.000 claims 1
- BQIZJHQAWBIMRZ-UHFFFAOYSA-N n-[3-[1-(2-hydroxyethyl)-5-morpholin-4-yl-6-oxopyridin-3-yl]-4-methylphenyl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C2=CN(CCO)C(=O)C(N3CCOCC3)=C2)C(C)=CC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 BQIZJHQAWBIMRZ-UHFFFAOYSA-N 0.000 claims 1
- GLQHXZGNENSPJX-UHFFFAOYSA-N n-[3-[1-(cyanomethyl)-5-morpholin-4-yl-6-oxopyridin-3-yl]-4-methylphenyl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C2=CN(CC#N)C(=O)C(N3CCOCC3)=C2)C(C)=CC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 GLQHXZGNENSPJX-UHFFFAOYSA-N 0.000 claims 1
- YBVLKMMGWXPQRX-GOSISDBHSA-N n-[3-[1-[(1r)-1-cyanoethyl]-5-morpholin-4-yl-6-oxopyridin-3-yl]-4-methylphenyl]-3-(trifluoromethyl)benzamide Chemical compound O=C1N([C@@H](C#N)C)C=C(C=2C(=CC=C(NC(=O)C=3C=C(C=CC=3)C(F)(F)F)C=2)C)C=C1N1CCOCC1 YBVLKMMGWXPQRX-GOSISDBHSA-N 0.000 claims 1
- YBVLKMMGWXPQRX-SFHVURJKSA-N n-[3-[1-[(1s)-1-cyanoethyl]-5-morpholin-4-yl-6-oxopyridin-3-yl]-4-methylphenyl]-3-(trifluoromethyl)benzamide Chemical compound O=C1N([C@H](C#N)C)C=C(C=2C(=CC=C(NC(=O)C=3C=C(C=CC=3)C(F)(F)F)C=2)C)C=C1N1CCOCC1 YBVLKMMGWXPQRX-SFHVURJKSA-N 0.000 claims 1
- POLYTOCMNSPOHH-UHFFFAOYSA-N n-[3-[2-(1,1-dioxo-1,4-thiazinan-4-yl)-6-morpholin-4-ylpyrimidin-4-yl]-4-methylphenyl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C=2N=C(N=C(C=2)N2CCOCC2)N2CCS(=O)(=O)CC2)C(C)=CC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 POLYTOCMNSPOHH-UHFFFAOYSA-N 0.000 claims 1
- JCQCZVGYVYKECZ-UHFFFAOYSA-N n-[3-[2-(1,3-dihydroxypropan-2-ylamino)-6-morpholin-4-ylpyrimidin-4-yl]-4-methylphenyl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C=2N=C(NC(CO)CO)N=C(C=2)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 JCQCZVGYVYKECZ-UHFFFAOYSA-N 0.000 claims 1
- JOXHQDCNYIRBSA-UHFFFAOYSA-N n-[3-[2-(1,4-dioxan-2-yl)-6-morpholin-4-ylpyridin-4-yl]-4-methylphenyl]-2-(trifluoromethyl)piperidine-4-carboxamide Chemical compound C1=C(C=2C=C(N=C(C=2)C2OCCOC2)N2CCOCC2)C(C)=CC=C1NC(=O)C1CCNC(C(F)(F)F)C1 JOXHQDCNYIRBSA-UHFFFAOYSA-N 0.000 claims 1
- QXYGLZYBRPGUEW-UHFFFAOYSA-N n-[3-[2-(2-hydroxyethoxy)-6-morpholin-4-ylpyridin-4-yl]-4-methylphenyl]-6-(trifluoromethyl)pyridazine-4-carboxamide Chemical compound C1=C(C=2C=C(N=C(OCCO)C=2)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CN=NC(C(F)(F)F)=C1 QXYGLZYBRPGUEW-UHFFFAOYSA-N 0.000 claims 1
- JALUVCXDDMPCDN-UHFFFAOYSA-N n-[3-[2-(2-hydroxyethylamino)-6-morpholin-4-ylpyridin-4-yl]-4-methylphenyl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C=2C=C(N=C(NCCO)C=2)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 JALUVCXDDMPCDN-UHFFFAOYSA-N 0.000 claims 1
- GZEIUQBPVOBYNA-UHFFFAOYSA-N n-[3-[2-(2-hydroxyethylamino)-6-morpholin-4-ylpyrimidin-4-yl]-4-methylphenyl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C=2N=C(NCCO)N=C(C=2)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 GZEIUQBPVOBYNA-UHFFFAOYSA-N 0.000 claims 1
- NRIIVZIVGFDQHT-UHFFFAOYSA-N n-[3-[2-(3,5-dimethyl-1h-pyrazol-4-yl)-6-morpholin-4-ylpyridin-4-yl]-4-methylphenyl]-2-(trifluoromethyl)pyridine-4-carboxamide Chemical compound CC1=NNC(C)=C1C1=CC(C=2C(=CC=C(NC(=O)C=3C=C(N=CC=3)C(F)(F)F)C=2)C)=CC(N2CCOCC2)=N1 NRIIVZIVGFDQHT-UHFFFAOYSA-N 0.000 claims 1
- LZGGFVXWAVXQLA-UHFFFAOYSA-N n-[3-[2-(3-hydroxy-3-methylazetidin-1-yl)-6-morpholin-4-ylpyridin-4-yl]-4-methylphenyl]-3-methylsulfonylbenzamide Chemical compound C1=C(C=2C=C(N=C(C=2)N2CC(C)(O)C2)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CC=CC(S(C)(=O)=O)=C1 LZGGFVXWAVXQLA-UHFFFAOYSA-N 0.000 claims 1
- CMIJHFNTDXDDTO-UHFFFAOYSA-N n-[3-[2-(3-hydroxy-3-methylazetidin-1-yl)-6-morpholin-4-ylpyridin-4-yl]-4-methylphenyl]-6-(trifluoromethyl)pyridazine-4-carboxamide Chemical compound C1=C(C=2C=C(N=C(C=2)N2CC(C)(O)C2)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CN=NC(C(F)(F)F)=C1 CMIJHFNTDXDDTO-UHFFFAOYSA-N 0.000 claims 1
- FFJJRBIOBOJMIH-UHFFFAOYSA-N n-[3-[2-(3-hydroxyazetidin-1-yl)-6-morpholin-4-ylpyridin-4-yl]-4-methylphenyl]-2-(2-hydroxypropan-2-yl)pyridine-4-carboxamide Chemical compound C1=C(C=2C=C(N=C(C=2)N2CC(O)C2)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CC=NC(C(C)(C)O)=C1 FFJJRBIOBOJMIH-UHFFFAOYSA-N 0.000 claims 1
- DGZXTVVVWSSJAD-UHFFFAOYSA-N n-[3-[2-(3-hydroxyazetidin-1-yl)-6-morpholin-4-ylpyridin-4-yl]-4-methylphenyl]-2-(trifluoromethyl)pyridine-4-carboxamide Chemical compound C1=C(C=2C=C(N=C(C=2)N2CC(O)C2)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CC=NC(C(F)(F)F)=C1 DGZXTVVVWSSJAD-UHFFFAOYSA-N 0.000 claims 1
- AXVHKZQTEYGGNZ-UHFFFAOYSA-N n-[3-[2-(3-hydroxyazetidin-1-yl)-6-morpholin-4-ylpyridin-4-yl]-4-methylphenyl]-2-methylsulfonylpyridine-4-carboxamide Chemical compound C1=C(C=2C=C(N=C(C=2)N2CC(O)C2)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CC=NC(S(C)(=O)=O)=C1 AXVHKZQTEYGGNZ-UHFFFAOYSA-N 0.000 claims 1
- KIBYUDYZOOXCSS-UHFFFAOYSA-N n-[3-[2-(3-hydroxyazetidin-1-yl)-6-morpholin-4-ylpyridin-4-yl]-4-methylphenyl]-2-propan-2-ylpyridine-4-carboxamide Chemical compound C1=NC(C(C)C)=CC(C(=O)NC=2C=C(C(C)=CC=2)C=2C=C(N=C(C=2)N2CC(O)C2)N2CCOCC2)=C1 KIBYUDYZOOXCSS-UHFFFAOYSA-N 0.000 claims 1
- BPVQKHCLLAUPHS-UHFFFAOYSA-N n-[3-[2-(3-hydroxyazetidin-1-yl)-6-morpholin-4-ylpyridin-4-yl]-4-methylphenyl]-3-(1,3,4-oxadiazol-2-yl)benzamide Chemical compound C1=C(C=2C=C(N=C(C=2)N2CC(O)C2)N2CCOCC2)C(C)=CC=C1NC(=O)C(C=1)=CC=CC=1C1=NN=CO1 BPVQKHCLLAUPHS-UHFFFAOYSA-N 0.000 claims 1
- PEWFKJHCOBGVKT-UHFFFAOYSA-N n-[3-[2-(3-hydroxyazetidin-1-yl)-6-morpholin-4-ylpyridin-4-yl]-4-methylphenyl]-3-(2-methylsulfonylpropan-2-yl)benzamide Chemical compound C1=C(C=2C=C(N=C(C=2)N2CC(O)C2)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CC=CC(C(C)(C)S(C)(=O)=O)=C1 PEWFKJHCOBGVKT-UHFFFAOYSA-N 0.000 claims 1
- WUNPJNPKZVFAEX-UHFFFAOYSA-N n-[3-[2-(3-hydroxyazetidin-1-yl)-6-morpholin-4-ylpyridin-4-yl]-4-methylphenyl]-3-methylsulfonylbenzamide Chemical compound C1=C(C=2C=C(N=C(C=2)N2CC(O)C2)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CC=CC(S(C)(=O)=O)=C1 WUNPJNPKZVFAEX-UHFFFAOYSA-N 0.000 claims 1
- DNDOIYBDRFLWFJ-UHFFFAOYSA-N n-[3-[2-(3-hydroxyazetidin-1-yl)-6-morpholin-4-ylpyrimidin-4-yl]-4-methylphenyl]-2-propan-2-ylpyridine-4-carboxamide Chemical compound C1=NC(C(C)C)=CC(C(=O)NC=2C=C(C(C)=CC=2)C=2N=C(N=C(C=2)N2CCOCC2)N2CC(O)C2)=C1 DNDOIYBDRFLWFJ-UHFFFAOYSA-N 0.000 claims 1
- GVGXLHDLBAGKKC-UHFFFAOYSA-N n-[3-[2-(3-hydroxypyrrolidin-1-yl)-6-morpholin-4-ylpyridin-4-yl]-4-methylphenyl]-2-(trifluoromethyl)pyridine-4-carboxamide Chemical compound C1=C(C=2C=C(N=C(C=2)N2CC(O)CC2)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CC=NC(C(F)(F)F)=C1 GVGXLHDLBAGKKC-UHFFFAOYSA-N 0.000 claims 1
- UFJILEUJRRXOHJ-UHFFFAOYSA-N n-[3-[2-(3-hydroxypyrrolidin-1-yl)-6-morpholin-4-ylpyrimidin-4-yl]-4-methylphenyl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C=2N=C(N=C(C=2)N2CCOCC2)N2CC(O)CC2)C(C)=CC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 UFJILEUJRRXOHJ-UHFFFAOYSA-N 0.000 claims 1
- TVRHCGFYBVGWPJ-UHFFFAOYSA-N n-[3-[2-(azetidin-3-yloxy)-6-morpholin-4-ylpyrimidin-4-yl]-4-methylphenyl]-2-(1,1-difluoroethyl)pyridine-4-carboxamide Chemical compound C1=C(C=2N=C(OC3CNC3)N=C(C=2)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CC=NC(C(C)(F)F)=C1 TVRHCGFYBVGWPJ-UHFFFAOYSA-N 0.000 claims 1
- HEMWVKFSGVMMGX-UHFFFAOYSA-N n-[3-[2-(azetidin-3-yloxy)-6-morpholin-4-ylpyrimidin-4-yl]-4-methylphenyl]-2-propan-2-ylpyridine-4-carboxamide Chemical compound C1=NC(C(C)C)=CC(C(=O)NC=2C=C(C(C)=CC=2)C=2N=C(OC3CNC3)N=C(C=2)N2CCOCC2)=C1 HEMWVKFSGVMMGX-UHFFFAOYSA-N 0.000 claims 1
- PABZMNZFBMSMPR-UHFFFAOYSA-N n-[3-[2-(dimethylamino)-6-morpholin-4-ylpyridin-4-yl]-4-methylphenyl]-3-(trifluoromethyl)benzamide Chemical compound N=1C(N(C)C)=CC(C=2C(=CC=C(NC(=O)C=3C=C(C=CC=3)C(F)(F)F)C=2)C)=CC=1N1CCOCC1 PABZMNZFBMSMPR-UHFFFAOYSA-N 0.000 claims 1
- PIPBCYVCPKJDKP-UHFFFAOYSA-N n-[3-[2-(ethylamino)-6-morpholin-4-ylpyrimidin-4-yl]-4-methylphenyl]-2-(2-hydroxypropan-2-yl)pyridine-4-carboxamide Chemical compound N=1C(NCC)=NC(N2CCOCC2)=CC=1C(C(=CC=1)C)=CC=1NC(=O)C1=CC=NC(C(C)(C)O)=C1 PIPBCYVCPKJDKP-UHFFFAOYSA-N 0.000 claims 1
- IQARZQCIIDWYSQ-UHFFFAOYSA-N n-[3-[2-(ethylamino)-6-morpholin-4-ylpyrimidin-4-yl]-4-methylphenyl]-2-(oxetan-3-yl)pyridine-4-carboxamide Chemical compound N=1C(NCC)=NC(N2CCOCC2)=CC=1C(C(=CC=1)C)=CC=1NC(=O)C(C=1)=CC=NC=1C1COC1 IQARZQCIIDWYSQ-UHFFFAOYSA-N 0.000 claims 1
- WPPDGRKASKIQAT-UHFFFAOYSA-N n-[3-[2-(ethylamino)-6-morpholin-4-ylpyrimidin-4-yl]-4-methylphenyl]-2-methylsulfonylpyridine-4-carboxamide Chemical compound N=1C(NCC)=NC(N2CCOCC2)=CC=1C(C(=CC=1)C)=CC=1NC(=O)C1=CC=NC(S(C)(=O)=O)=C1 WPPDGRKASKIQAT-UHFFFAOYSA-N 0.000 claims 1
- NCMZDKQKMPBEIV-UHFFFAOYSA-N n-[3-[2-(ethylamino)-6-morpholin-4-ylpyrimidin-4-yl]-4-methylphenyl]-2-propan-2-ylpyridine-4-carboxamide Chemical compound N=1C(NCC)=NC(N2CCOCC2)=CC=1C(C(=CC=1)C)=CC=1NC(=O)C1=CC=NC(C(C)C)=C1 NCMZDKQKMPBEIV-UHFFFAOYSA-N 0.000 claims 1
- BHSNGSBPODQPHU-UHFFFAOYSA-N n-[3-[2-(ethylamino)-6-morpholin-4-ylpyrimidin-4-yl]-4-methylphenyl]-3-(1,3,4-oxadiazol-2-yl)benzamide Chemical compound N=1C(NCC)=NC(N2CCOCC2)=CC=1C(C(=CC=1)C)=CC=1NC(=O)C(C=1)=CC=CC=1C1=NN=CO1 BHSNGSBPODQPHU-UHFFFAOYSA-N 0.000 claims 1
- RXSOMFNCTBYYMX-UHFFFAOYSA-N n-[3-[2-(ethylamino)-6-morpholin-4-ylpyrimidin-4-yl]-4-methylphenyl]-3-(trifluoromethyl)benzamide Chemical compound N=1C(NCC)=NC(N2CCOCC2)=CC=1C(C(=CC=1)C)=CC=1NC(=O)C1=CC=CC(C(F)(F)F)=C1 RXSOMFNCTBYYMX-UHFFFAOYSA-N 0.000 claims 1
- UVVNJOQFAWSBPY-UHFFFAOYSA-N n-[3-[2-(ethylamino)-6-morpholin-4-ylpyrimidin-4-yl]-4-methylphenyl]benzamide Chemical compound N=1C(NCC)=NC(N2CCOCC2)=CC=1C(C(=CC=1)C)=CC=1NC(=O)C1=CC=CC=C1 UVVNJOQFAWSBPY-UHFFFAOYSA-N 0.000 claims 1
- CWPVMCLRIZDTFY-UHFFFAOYSA-N n-[3-[2-(methanesulfonamido)-6-morpholin-4-ylpyrimidin-4-yl]-4-methylphenyl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C=2N=C(NS(C)(=O)=O)N=C(C=2)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 CWPVMCLRIZDTFY-UHFFFAOYSA-N 0.000 claims 1
- HFNOOFKUMLMGGI-XMMPIXPASA-N n-[3-[2-[(2r)-2-(acetamidomethyl)morpholin-4-yl]pyridin-4-yl]-4-methylphenyl]-2-(2-cyanopropan-2-yl)pyridine-4-carboxamide Chemical compound C1CO[C@H](CNC(=O)C)CN1C1=CC(C=2C(=CC=C(NC(=O)C=3C=C(N=CC=3)C(C)(C)C#N)C=2)C)=CC=N1 HFNOOFKUMLMGGI-XMMPIXPASA-N 0.000 claims 1
- RGBVEWZJKRSQCA-NRFANRHFSA-N n-[3-[2-[(2s)-2-(hydroxymethyl)morpholin-4-yl]pyridin-4-yl]-4-methylphenyl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C=2C=C(N=CC=2)N2C[C@@H](CO)OCC2)C(C)=CC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 RGBVEWZJKRSQCA-NRFANRHFSA-N 0.000 claims 1
- KSBSUKHFYJLKDB-HSZRJFAPSA-N n-[3-[2-[(3r)-3-hydroxy-2-oxopyrrolidin-1-yl]-6-morpholin-4-ylpyridin-4-yl]-4-methylphenyl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C=2C=C(N=C(C=2)N2C([C@H](O)CC2)=O)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 KSBSUKHFYJLKDB-HSZRJFAPSA-N 0.000 claims 1
- UFRNWXTUQZQHEB-JOCHJYFZSA-N n-[3-[2-[(4r)-4-hydroxy-2-oxopyrrolidin-1-yl]-6-morpholin-4-ylpyridin-4-yl]-4-methylphenyl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C=2C=C(N=C(C=2)N2C(C[C@@H](O)C2)=O)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 UFRNWXTUQZQHEB-JOCHJYFZSA-N 0.000 claims 1
- YFGBLRZGYKYFOK-UHFFFAOYSA-N n-[3-[2-[4-(2-hydroxypropan-2-yl)triazol-1-yl]-6-morpholin-4-ylpyrimidin-4-yl]-4-methylphenyl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C=2N=C(N=C(C=2)N2CCOCC2)N2N=NC(=C2)C(C)(C)O)C(C)=CC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 YFGBLRZGYKYFOK-UHFFFAOYSA-N 0.000 claims 1
- QCVNSOAKXBGMJM-QGZVFWFLSA-N n-[3-[2-[[(2r)-2-hydroxypropyl]amino]-6-morpholin-4-ylpyridin-4-yl]-4-methylphenyl]-2-(trifluoromethyl)pyridine-4-carboxamide Chemical compound N=1C(NC[C@H](O)C)=CC(C=2C(=CC=C(NC(=O)C=3C=C(N=CC=3)C(F)(F)F)C=2)C)=CC=1N1CCOCC1 QCVNSOAKXBGMJM-QGZVFWFLSA-N 0.000 claims 1
- UJJADPRWRPRXLB-UHFFFAOYSA-N n-[3-[3,5-difluoro-2-(2-hydroxyethylamino)-6-morpholin-4-ylpyridin-4-yl]-4-methylphenyl]-2-(trifluoromethyl)pyridine-4-carboxamide Chemical compound C1=C(C=2C(=C(N3CCOCC3)N=C(NCCO)C=2F)F)C(C)=CC=C1NC(=O)C1=CC=NC(C(F)(F)F)=C1 UJJADPRWRPRXLB-UHFFFAOYSA-N 0.000 claims 1
- FPKGSLNJOUYQHF-UHFFFAOYSA-N n-[3-[3,5-difluoro-2-(2-hydroxyethylamino)-6-morpholin-4-ylpyridin-4-yl]-4-methylphenyl]-6-(trifluoromethyl)pyridazine-4-carboxamide Chemical compound C1=C(C=2C(=C(N3CCOCC3)N=C(NCCO)C=2F)F)C(C)=CC=C1NC(=O)C1=CN=NC(C(F)(F)F)=C1 FPKGSLNJOUYQHF-UHFFFAOYSA-N 0.000 claims 1
- HEOYBSUVRGFOTO-UHFFFAOYSA-N n-[3-[3-fluoro-2-(2-hydroxyethylamino)-6-morpholin-4-ylpyridin-4-yl]-4-methylphenyl]-2-(trifluoromethyl)pyridine-4-carboxamide Chemical compound C1=C(C=2C(=C(NCCO)N=C(C=2)N2CCOCC2)F)C(C)=CC=C1NC(=O)C1=CC=NC(C(F)(F)F)=C1 HEOYBSUVRGFOTO-UHFFFAOYSA-N 0.000 claims 1
- UOVYAWVIDKVQHM-UHFFFAOYSA-N n-[3-[3-fluoro-2-(2-hydroxyethylamino)-6-morpholin-4-ylpyridin-4-yl]-4-methylphenyl]-6-(trifluoromethyl)pyridazine-4-carboxamide Chemical compound C1=C(C=2C(=C(NCCO)N=C(C=2)N2CCOCC2)F)C(C)=CC=C1NC(=O)C1=CN=NC(C(F)(F)F)=C1 UOVYAWVIDKVQHM-UHFFFAOYSA-N 0.000 claims 1
- CMEVTYASRCCPHH-UHFFFAOYSA-N n-[3-[3-fluoro-6-(2-hydroxyethylamino)-2-morpholin-4-ylpyridin-4-yl]-4-methylphenyl]-2-(2-hydroxypropan-2-yl)pyridine-4-carboxamide Chemical compound C1=C(C=2C(=C(N3CCOCC3)N=C(NCCO)C=2)F)C(C)=CC=C1NC(=O)C1=CC=NC(C(C)(C)O)=C1 CMEVTYASRCCPHH-UHFFFAOYSA-N 0.000 claims 1
- ZOZFYGDIJOEDTF-UHFFFAOYSA-N n-[3-[3-fluoro-6-(2-hydroxyethylamino)-2-morpholin-4-ylpyridin-4-yl]-4-methylphenyl]-2-(trifluoromethyl)pyridine-4-carboxamide Chemical compound C1=C(C=2C(=C(N3CCOCC3)N=C(NCCO)C=2)F)C(C)=CC=C1NC(=O)C1=CC=NC(C(F)(F)F)=C1 ZOZFYGDIJOEDTF-UHFFFAOYSA-N 0.000 claims 1
- WOXJCAPOAILHMF-UHFFFAOYSA-N n-[3-[3-fluoro-6-(2-hydroxyethylamino)-2-morpholin-4-ylpyridin-4-yl]-4-methylphenyl]-6-(trifluoromethyl)pyridazine-4-carboxamide Chemical compound C1=C(C=2C(=C(N3CCOCC3)N=C(NCCO)C=2)F)C(C)=CC=C1NC(=O)C1=CN=NC(C(F)(F)F)=C1 WOXJCAPOAILHMF-UHFFFAOYSA-N 0.000 claims 1
- PBQWRGLSSGUZOA-UHFFFAOYSA-N n-[3-[4-(2,2-difluoroethyl)-6-morpholin-4-yl-5-oxopyrazin-2-yl]-4-methylphenyl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C=2N=C(C(=O)N(CC(F)F)C=2)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 PBQWRGLSSGUZOA-UHFFFAOYSA-N 0.000 claims 1
- NYGHBLLQUHCWDT-UHFFFAOYSA-N n-[3-[5-(2,2-dimethylmorpholin-4-yl)-1-methyl-6-oxopyridazin-3-yl]-4-methylphenyl]-2-(2-fluoropropan-2-yl)pyridine-4-carboxamide Chemical compound C1=C(C2=NN(C)C(=O)C(N3CC(C)(C)OCC3)=C2)C(C)=CC=C1NC(=O)C1=CC=NC(C(C)(C)F)=C1 NYGHBLLQUHCWDT-UHFFFAOYSA-N 0.000 claims 1
- CASQHERFADFEPM-UHFFFAOYSA-N n-[3-[6-(1,1-dioxo-1,4-thiazinan-4-yl)-2-morpholin-4-ylpyrimidin-4-yl]-4-methylphenyl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C=2N=C(N=C(C=2)N2CCS(=O)(=O)CC2)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 CASQHERFADFEPM-UHFFFAOYSA-N 0.000 claims 1
- YVIVLTLRRXEVQB-UHFFFAOYSA-N n-[3-[6-(2,2-dimethylmorpholin-4-yl)-2-morpholin-4-ylpyrimidin-4-yl]-4-methylphenyl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C=2N=C(N=C(C=2)N2CC(C)(C)OCC2)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 YVIVLTLRRXEVQB-UHFFFAOYSA-N 0.000 claims 1
- XLQXGWVZMIFIPR-UHFFFAOYSA-N n-[3-[6-(2-hydroxyethoxy)-5-morpholin-4-ylpyridazin-3-yl]-4-methylphenyl]-2-(trifluoromethyl)pyridine-4-carboxamide Chemical compound C1=C(C=2N=NC(OCCO)=C(N3CCOCC3)C=2)C(C)=CC=C1NC(=O)C1=CC=NC(C(F)(F)F)=C1 XLQXGWVZMIFIPR-UHFFFAOYSA-N 0.000 claims 1
- ZUTBFIUGERXPPP-UHFFFAOYSA-N n-[3-[6-(2-hydroxyethoxy)-5-morpholin-4-ylpyridazin-3-yl]-4-methylphenyl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C=2N=NC(OCCO)=C(N3CCOCC3)C=2)C(C)=CC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 ZUTBFIUGERXPPP-UHFFFAOYSA-N 0.000 claims 1
- GBXAKHYDTFYYJH-UHFFFAOYSA-N n-[3-[6-(2-hydroxyethoxy)-5-morpholin-4-ylpyridazin-3-yl]-4-methylphenyl]-4-(trifluoromethyl)pyridine-2-carboxamide Chemical compound C1=C(C=2N=NC(OCCO)=C(N3CCOCC3)C=2)C(C)=CC=C1NC(=O)C1=CC(C(F)(F)F)=CC=N1 GBXAKHYDTFYYJH-UHFFFAOYSA-N 0.000 claims 1
- TYKMBBSNBRBFQR-UHFFFAOYSA-N n-[3-[6-(2-methoxyethoxy)-5-morpholin-4-ylpyridazin-3-yl]-4-methylphenyl]-4-(trifluoromethyl)pyridine-2-carboxamide Chemical compound COCCOC1=NN=C(C=2C(=CC=C(NC(=O)C=3N=CC=C(C=3)C(F)(F)F)C=2)C)C=C1N1CCOCC1 TYKMBBSNBRBFQR-UHFFFAOYSA-N 0.000 claims 1
- UIDLNSPVAIBRJS-UHFFFAOYSA-N n-[3-[6-(difluoromethoxy)-5-morpholin-4-ylpyridin-3-yl]-4-methylphenyl]-2-(2-hydroxypropan-2-yl)pyridine-4-carboxamide Chemical compound C1=C(C=2C=C(C(OC(F)F)=NC=2)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CC=NC(C(C)(C)O)=C1 UIDLNSPVAIBRJS-UHFFFAOYSA-N 0.000 claims 1
- VXMIFMXPRCRODA-GOSISDBHSA-N n-[3-[6-[(1r)-1-cyanoethoxy]-5-morpholin-4-ylpyridin-3-yl]-4-methylphenyl]-3-(trifluoromethyl)benzamide Chemical compound N#C[C@@H](C)OC1=NC=C(C=2C(=CC=C(NC(=O)C=3C=C(C=CC=3)C(F)(F)F)C=2)C)C=C1N1CCOCC1 VXMIFMXPRCRODA-GOSISDBHSA-N 0.000 claims 1
- VXMIFMXPRCRODA-SFHVURJKSA-N n-[3-[6-[(1s)-1-cyanoethoxy]-5-morpholin-4-ylpyridin-3-yl]-4-methylphenyl]-3-(trifluoromethyl)benzamide Chemical compound N#C[C@H](C)OC1=NC=C(C=2C(=CC=C(NC(=O)C=3C=C(C=CC=3)C(F)(F)F)C=2)C)C=C1N1CCOCC1 VXMIFMXPRCRODA-SFHVURJKSA-N 0.000 claims 1
- NMGUFZZZFPOLHX-SFHVURJKSA-N n-[3-[6-[(2s)-2-hydroxypropoxy]-5-morpholin-4-ylpyridin-3-yl]-4-methylphenyl]-2-methylsulfonylpyridine-4-carboxamide Chemical compound C[C@H](O)COC1=NC=C(C=2C(=CC=C(NC(=O)C=3C=C(N=CC=3)S(C)(=O)=O)C=2)C)C=C1N1CCOCC1 NMGUFZZZFPOLHX-SFHVURJKSA-N 0.000 claims 1
- WQOBMKLNZZRYPF-JOCHJYFZSA-N n-[3-[6-[(3r)-3-(hydroxymethyl)morpholin-4-yl]-2-morpholin-4-ylpyrimidin-4-yl]-4-methylphenyl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C=2N=C(N=C(C=2)N2[C@@H](COCC2)CO)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 WQOBMKLNZZRYPF-JOCHJYFZSA-N 0.000 claims 1
- PBIZISQFBZYPKF-MRXNPFEDSA-N n-[3-[6-[[(2r)-2-hydroxypropyl]amino]-2-morpholin-4-ylpyrimidin-4-yl]-4-methylphenyl]-2-(trifluoromethyl)pyridine-4-carboxamide Chemical compound N=1C(NC[C@H](O)C)=CC(C=2C(=CC=C(NC(=O)C=3C=C(N=CC=3)C(F)(F)F)C=2)C)=NC=1N1CCOCC1 PBIZISQFBZYPKF-MRXNPFEDSA-N 0.000 claims 1
- WOJPREYHVIGOEV-UHFFFAOYSA-N n-[4-(aminomethyl)-3-(trifluoromethyl)phenyl]-4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)benzamide Chemical compound CC1=CC=C(C(=O)NC=2C=C(C(CN)=CC=2)C(F)(F)F)C=C1C(=CN(C)C1=O)C=C1N1CCOCC1 WOJPREYHVIGOEV-UHFFFAOYSA-N 0.000 claims 1
- PEVAEYPAACQFLC-UHFFFAOYSA-N n-[4-chloro-3-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)phenyl]-2-(1,1-difluoroethyl)pyridine-4-carboxamide Chemical compound O=C1N(C)C=C(C=2C(=CC=C(NC(=O)C=3C=C(N=CC=3)C(C)(F)F)C=2)Cl)C=C1N1CCOCC1 PEVAEYPAACQFLC-UHFFFAOYSA-N 0.000 claims 1
- YLSYFNYUEVXQIB-UHFFFAOYSA-N n-[4-chloro-3-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)phenyl]-2-(trifluoromethyl)pyridine-4-carboxamide Chemical compound O=C1N(C)C=C(C=2C(=CC=C(NC(=O)C=3C=C(N=CC=3)C(F)(F)F)C=2)Cl)C=C1N1CCOCC1 YLSYFNYUEVXQIB-UHFFFAOYSA-N 0.000 claims 1
- OCCGPFVCKGXCHU-UHFFFAOYSA-N n-[4-chloro-3-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)phenyl]-3-(difluoromethyl)benzamide Chemical compound O=C1N(C)C=C(C=2C(=CC=C(NC(=O)C=3C=C(C=CC=3)C(F)F)C=2)Cl)C=C1N1CCOCC1 OCCGPFVCKGXCHU-UHFFFAOYSA-N 0.000 claims 1
- VBZJFSBBAVSRJZ-UHFFFAOYSA-N n-[4-cyano-3-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)phenyl]-2-(1,1-difluoroethyl)pyridine-4-carboxamide Chemical compound O=C1N(C)C=C(C=2C(=CC=C(NC(=O)C=3C=C(N=CC=3)C(C)(F)F)C=2)C#N)C=C1N1CCOCC1 VBZJFSBBAVSRJZ-UHFFFAOYSA-N 0.000 claims 1
- CPZZYTFXLXMSIC-UHFFFAOYSA-N n-[4-cyano-3-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)phenyl]-3-(difluoromethyl)benzamide Chemical compound O=C1N(C)C=C(C=2C(=CC=C(NC(=O)C=3C=C(C=CC=3)C(F)F)C=2)C#N)C=C1N1CCOCC1 CPZZYTFXLXMSIC-UHFFFAOYSA-N 0.000 claims 1
- OFSKUEPPYVVKTJ-UHFFFAOYSA-N n-[4-cyano-3-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)phenyl]-3-(trifluoromethyl)benzamide Chemical compound O=C1N(C)C=C(C=2C(=CC=C(NC(=O)C=3C=C(C=CC=3)C(F)(F)F)C=2)C#N)C=C1N1CCOCC1 OFSKUEPPYVVKTJ-UHFFFAOYSA-N 0.000 claims 1
- PFJLTKCYVIORAP-UHFFFAOYSA-N n-[4-methyl-3-(1-methyl-2-morpholin-4-yl-6-oxopyridin-4-yl)phenyl]-2-(oxetan-3-yl)pyridine-4-carboxamide Chemical compound C1=C(C2=CC(=O)N(C)C(N3CCOCC3)=C2)C(C)=CC=C1NC(=O)C(C=1)=CC=NC=1C1COC1 PFJLTKCYVIORAP-UHFFFAOYSA-N 0.000 claims 1
- CRNMRBXHDKNNKK-UHFFFAOYSA-N n-[4-methyl-3-(1-methyl-2-morpholin-4-yl-6-oxopyridin-4-yl)phenyl]-2-(trifluoromethyl)pyridine-4-carboxamide Chemical compound C1=C(C2=CC(=O)N(C)C(N3CCOCC3)=C2)C(C)=CC=C1NC(=O)C1=CC=NC(C(F)(F)F)=C1 CRNMRBXHDKNNKK-UHFFFAOYSA-N 0.000 claims 1
- MXJXUZKHZBGZGX-UHFFFAOYSA-N n-[4-methyl-3-(1-methyl-2-morpholin-4-yl-6-oxopyridin-4-yl)phenyl]-2-methylsulfonylpyridine-4-carboxamide Chemical compound C1=C(C2=CC(=O)N(C)C(N3CCOCC3)=C2)C(C)=CC=C1NC(=O)C1=CC=NC(S(C)(=O)=O)=C1 MXJXUZKHZBGZGX-UHFFFAOYSA-N 0.000 claims 1
- OGIKZKDRUHMPSK-UHFFFAOYSA-N n-[4-methyl-3-(1-methyl-2-morpholin-4-yl-6-oxopyridin-4-yl)phenyl]-2-propan-2-ylpyridine-4-carboxamide Chemical compound C1=NC(C(C)C)=CC(C(=O)NC=2C=C(C(C)=CC=2)C2=CC(=O)N(C)C(N3CCOCC3)=C2)=C1 OGIKZKDRUHMPSK-UHFFFAOYSA-N 0.000 claims 1
- AXDZMXRNSBBOTK-UHFFFAOYSA-N n-[4-methyl-3-(1-methyl-2-morpholin-4-yl-6-oxopyridin-4-yl)phenyl]-3-(1,3,4-oxadiazol-2-yl)benzamide Chemical compound C1=C(C2=CC(=O)N(C)C(N3CCOCC3)=C2)C(C)=CC=C1NC(=O)C(C=1)=CC=CC=1C1=NN=CO1 AXDZMXRNSBBOTK-UHFFFAOYSA-N 0.000 claims 1
- ACUZCRBYKQDOGT-UHFFFAOYSA-N n-[4-methyl-3-(1-methyl-2-morpholin-4-yl-6-oxopyridin-4-yl)phenyl]-3-(2-methylsulfonylpropan-2-yl)benzamide Chemical compound C1=C(C2=CC(=O)N(C)C(N3CCOCC3)=C2)C(C)=CC=C1NC(=O)C1=CC=CC(C(C)(C)S(C)(=O)=O)=C1 ACUZCRBYKQDOGT-UHFFFAOYSA-N 0.000 claims 1
- HAEKQRSCPWONOU-UHFFFAOYSA-N n-[4-methyl-3-(1-methyl-2-morpholin-4-yl-6-oxopyridin-4-yl)phenyl]-3-(oxetan-3-yl)benzamide Chemical compound C1=C(C2=CC(=O)N(C)C(N3CCOCC3)=C2)C(C)=CC=C1NC(=O)C(C=1)=CC=CC=1C1COC1 HAEKQRSCPWONOU-UHFFFAOYSA-N 0.000 claims 1
- OREGPRREBGYGBQ-UHFFFAOYSA-N n-[4-methyl-3-(1-methyl-2-morpholin-4-yl-6-oxopyridin-4-yl)phenyl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C2=CC(=O)N(C)C(N3CCOCC3)=C2)C(C)=CC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 OREGPRREBGYGBQ-UHFFFAOYSA-N 0.000 claims 1
- NAKWVFQLIVIFBL-UHFFFAOYSA-N n-[4-methyl-3-(1-methyl-2-morpholin-4-yl-6-oxopyridin-4-yl)phenyl]-5-(trifluoromethyl)pyridine-3-carboxamide Chemical compound C1=C(C2=CC(=O)N(C)C(N3CCOCC3)=C2)C(C)=CC=C1NC(=O)C1=CN=CC(C(F)(F)F)=C1 NAKWVFQLIVIFBL-UHFFFAOYSA-N 0.000 claims 1
- XRVSBZIKEKTPSG-UHFFFAOYSA-N n-[4-methyl-3-(1-methyl-2-morpholin-4-yl-6-oxopyridin-4-yl)phenyl]-6-(trifluoromethyl)pyridazine-4-carboxamide Chemical compound C1=C(C2=CC(=O)N(C)C(N3CCOCC3)=C2)C(C)=CC=C1NC(=O)C1=CN=NC(C(F)(F)F)=C1 XRVSBZIKEKTPSG-UHFFFAOYSA-N 0.000 claims 1
- WQXYUSBTQMBASI-UHFFFAOYSA-N n-[4-methyl-3-(1-methyl-4-morpholin-4-ylpyrazolo[3,4-d]pyrimidin-6-yl)phenyl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C=2N=C3N(C)N=CC3=C(N3CCOCC3)N=2)C(C)=CC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 WQXYUSBTQMBASI-UHFFFAOYSA-N 0.000 claims 1
- MILCLACBBNYLMZ-UHFFFAOYSA-N n-[4-methyl-3-(1-methyl-5-morpholin-4-yl-2-oxopyridin-3-yl)phenyl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C=2C(N(C)C=C(C=2)N2CCOCC2)=O)C(C)=CC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 MILCLACBBNYLMZ-UHFFFAOYSA-N 0.000 claims 1
- NIRSIPOPYLZQPU-UHFFFAOYSA-N n-[4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridazin-3-yl)phenyl]-2-(oxetan-3-yl)pyridine-4-carboxamide Chemical compound C1=C(C2=NN(C)C(=O)C(N3CCOCC3)=C2)C(C)=CC=C1NC(=O)C(C=1)=CC=NC=1C1COC1 NIRSIPOPYLZQPU-UHFFFAOYSA-N 0.000 claims 1
- IYYMFWZKQUUEMP-UHFFFAOYSA-N n-[4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridazin-3-yl)phenyl]-2-(trifluoromethyl)pyridine-4-carboxamide Chemical compound C1=C(C2=NN(C)C(=O)C(N3CCOCC3)=C2)C(C)=CC=C1NC(=O)C1=CC=NC(C(F)(F)F)=C1 IYYMFWZKQUUEMP-UHFFFAOYSA-N 0.000 claims 1
- ZDAOYMCBWRVRPH-UHFFFAOYSA-N n-[4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridazin-3-yl)phenyl]-2-propan-2-ylpyridine-4-carboxamide Chemical compound C1=NC(C(C)C)=CC(C(=O)NC=2C=C(C(C)=CC=2)C2=NN(C)C(=O)C(N3CCOCC3)=C2)=C1 ZDAOYMCBWRVRPH-UHFFFAOYSA-N 0.000 claims 1
- BGRWAVAWNSQMGI-UHFFFAOYSA-N n-[4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridazin-3-yl)phenyl]-3-(1,3,4-oxadiazol-2-yl)benzamide Chemical compound C1=C(C2=NN(C)C(=O)C(N3CCOCC3)=C2)C(C)=CC=C1NC(=O)C(C=1)=CC=CC=1C1=NN=CO1 BGRWAVAWNSQMGI-UHFFFAOYSA-N 0.000 claims 1
- BOBFQQKUQYYMJG-UHFFFAOYSA-N n-[4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridazin-3-yl)phenyl]-3-(2-methylsulfonylpropan-2-yl)benzamide Chemical compound C1=C(C2=NN(C)C(=O)C(N3CCOCC3)=C2)C(C)=CC=C1NC(=O)C1=CC=CC(C(C)(C)S(C)(=O)=O)=C1 BOBFQQKUQYYMJG-UHFFFAOYSA-N 0.000 claims 1
- HSDDNNQIPLXBIA-UHFFFAOYSA-N n-[4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridazin-3-yl)phenyl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C2=NN(C)C(=O)C(N3CCOCC3)=C2)C(C)=CC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 HSDDNNQIPLXBIA-UHFFFAOYSA-N 0.000 claims 1
- ZCLTTZZAFRHYQD-UHFFFAOYSA-N n-[4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridazin-3-yl)phenyl]-5-(trifluoromethyl)pyridine-3-carboxamide Chemical compound C1=C(C2=NN(C)C(=O)C(N3CCOCC3)=C2)C(C)=CC=C1NC(=O)C1=CN=CC(C(F)(F)F)=C1 ZCLTTZZAFRHYQD-UHFFFAOYSA-N 0.000 claims 1
- UHYXSDJJXRHBRH-UHFFFAOYSA-N n-[4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)phenyl]-2-(oxetan-3-yl)pyridine-4-carboxamide Chemical compound C1=C(C2=CN(C)C(=O)C(N3CCOCC3)=C2)C(C)=CC=C1NC(=O)C(C=1)=CC=NC=1C1COC1 UHYXSDJJXRHBRH-UHFFFAOYSA-N 0.000 claims 1
- CYQSREZKCOHNRE-UHFFFAOYSA-N n-[4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)phenyl]-2-(trifluoromethyl)pyridine-4-carboxamide Chemical compound C1=C(C2=CN(C)C(=O)C(N3CCOCC3)=C2)C(C)=CC=C1NC(=O)C1=CC=NC(C(F)(F)F)=C1 CYQSREZKCOHNRE-UHFFFAOYSA-N 0.000 claims 1
- FSMKYSURAWMOEK-UHFFFAOYSA-N n-[4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)phenyl]-2-methylsulfonylpyridine-4-carboxamide Chemical compound C1=C(C2=CN(C)C(=O)C(N3CCOCC3)=C2)C(C)=CC=C1NC(=O)C1=CC=NC(S(C)(=O)=O)=C1 FSMKYSURAWMOEK-UHFFFAOYSA-N 0.000 claims 1
- HEFRTEWREAEQQV-UHFFFAOYSA-N n-[4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)phenyl]-2-propan-2-ylpyridine-4-carboxamide Chemical compound C1=NC(C(C)C)=CC(C(=O)NC=2C=C(C(C)=CC=2)C2=CN(C)C(=O)C(N3CCOCC3)=C2)=C1 HEFRTEWREAEQQV-UHFFFAOYSA-N 0.000 claims 1
- XISUWQDYBBLLLH-UHFFFAOYSA-N n-[4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)phenyl]-3-(1,3,4-oxadiazol-2-yl)benzamide Chemical compound C1=C(C2=CN(C)C(=O)C(N3CCOCC3)=C2)C(C)=CC=C1NC(=O)C(C=1)=CC=CC=1C1=NN=CO1 XISUWQDYBBLLLH-UHFFFAOYSA-N 0.000 claims 1
- XDVONRSXGIAKCT-UHFFFAOYSA-N n-[4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)phenyl]-3-(oxetan-3-yl)benzamide Chemical compound C1=C(C2=CN(C)C(=O)C(N3CCOCC3)=C2)C(C)=CC=C1NC(=O)C(C=1)=CC=CC=1C1COC1 XDVONRSXGIAKCT-UHFFFAOYSA-N 0.000 claims 1
- IINLTCRAWJXNKT-UHFFFAOYSA-N n-[4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)phenyl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C2=CN(C)C(=O)C(N3CCOCC3)=C2)C(C)=CC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 IINLTCRAWJXNKT-UHFFFAOYSA-N 0.000 claims 1
- FFRQDGGNVABUME-UHFFFAOYSA-N n-[4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)phenyl]-3-methylsulfonyl-5-(trifluoromethyl)benzamide Chemical compound C1=C(C2=CN(C)C(=O)C(N3CCOCC3)=C2)C(C)=CC=C1NC(=O)C1=CC(C(F)(F)F)=CC(S(C)(=O)=O)=C1 FFRQDGGNVABUME-UHFFFAOYSA-N 0.000 claims 1
- HJEAPQLJRHRRQR-UHFFFAOYSA-N n-[4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)phenyl]-3-methylsulfonylbenzamide Chemical compound C1=C(C2=CN(C)C(=O)C(N3CCOCC3)=C2)C(C)=CC=C1NC(=O)C1=CC=CC(S(C)(=O)=O)=C1 HJEAPQLJRHRRQR-UHFFFAOYSA-N 0.000 claims 1
- PQOYWULWAJZHJZ-UHFFFAOYSA-N n-[4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)phenyl]-3-propan-2-yloxybenzamide Chemical compound CC(C)OC1=CC=CC(C(=O)NC=2C=C(C(C)=CC=2)C2=CN(C)C(=O)C(N3CCOCC3)=C2)=C1 PQOYWULWAJZHJZ-UHFFFAOYSA-N 0.000 claims 1
- USCMQZYHWRMJCB-UHFFFAOYSA-N n-[4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)phenyl]-4-(trifluoromethyl)pyridine-2-carboxamide Chemical compound C1=C(C2=CN(C)C(=O)C(N3CCOCC3)=C2)C(C)=CC=C1NC(=O)C1=CC(C(F)(F)F)=CC=N1 USCMQZYHWRMJCB-UHFFFAOYSA-N 0.000 claims 1
- ZFEIDQHEBUDXPF-UHFFFAOYSA-N n-[4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)phenyl]-5-(trifluoromethyl)pyridine-3-carboxamide Chemical compound C1=C(C2=CN(C)C(=O)C(N3CCOCC3)=C2)C(C)=CC=C1NC(=O)C1=CN=CC(C(F)(F)F)=C1 ZFEIDQHEBUDXPF-UHFFFAOYSA-N 0.000 claims 1
- ZEDGADXCYUSDJB-UHFFFAOYSA-N n-[4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)phenyl]-5-propan-2-yl-1,2-oxazole-3-carboxamide Chemical compound O1C(C(C)C)=CC(C(=O)NC=2C=C(C(C)=CC=2)C2=CN(C)C(=O)C(N3CCOCC3)=C2)=N1 ZEDGADXCYUSDJB-UHFFFAOYSA-N 0.000 claims 1
- HJZOLMWTAJVUIP-UHFFFAOYSA-N n-[4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)phenyl]-6-(trifluoromethyl)pyridazine-4-carboxamide Chemical compound C1=C(C2=CN(C)C(=O)C(N3CCOCC3)=C2)C(C)=CC=C1NC(=O)C1=CN=NC(C(F)(F)F)=C1 HJZOLMWTAJVUIP-UHFFFAOYSA-N 0.000 claims 1
- NTWKXFKERDWCRW-UHFFFAOYSA-N n-[4-methyl-3-(1-methyl-7-morpholin-4-ylpyrazolo[4,3-d]pyrimidin-5-yl)phenyl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C=2N=C3C=NN(C)C3=C(N3CCOCC3)N=2)C(C)=CC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 NTWKXFKERDWCRW-UHFFFAOYSA-N 0.000 claims 1
- BDMRXFODCGLAFM-UHFFFAOYSA-N n-[4-methyl-3-(2-methylsulfonyl-6-morpholin-4-ylpyrimidin-4-yl)phenyl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C=2N=C(N=C(C=2)N2CCOCC2)S(C)(=O)=O)C(C)=CC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 BDMRXFODCGLAFM-UHFFFAOYSA-N 0.000 claims 1
- BNEUFTPBYFEBMT-UHFFFAOYSA-N n-[4-methyl-3-(2-morpholin-4-yl-1,3-thiazol-4-yl)phenyl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C=2N=C(SC=2)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 BNEUFTPBYFEBMT-UHFFFAOYSA-N 0.000 claims 1
- XEYZNMHSYXXOIB-UHFFFAOYSA-N n-[4-methyl-3-(2-morpholin-4-yl-1,3-thiazol-5-yl)phenyl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C=2SC(=NC=2)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 XEYZNMHSYXXOIB-UHFFFAOYSA-N 0.000 claims 1
- NZQDZMBWHLVRCS-UHFFFAOYSA-N n-[4-methyl-3-(2-morpholin-4-yl-6-prop-1-en-2-ylpyrimidin-4-yl)phenyl]-3-(trifluoromethyl)benzamide Chemical compound N=1C(C(=C)C)=CC(C=2C(=CC=C(NC(=O)C=3C=C(C=CC=3)C(F)(F)F)C=2)C)=NC=1N1CCOCC1 NZQDZMBWHLVRCS-UHFFFAOYSA-N 0.000 claims 1
- IHBLFXPNFUIIDO-UHFFFAOYSA-N n-[4-methyl-3-(2-morpholin-4-yl-6-propan-2-ylpyrimidin-4-yl)phenyl]-3-(trifluoromethyl)benzamide Chemical compound N=1C(C(C)C)=CC(C=2C(=CC=C(NC(=O)C=3C=C(C=CC=3)C(F)(F)F)C=2)C)=NC=1N1CCOCC1 IHBLFXPNFUIIDO-UHFFFAOYSA-N 0.000 claims 1
- OJBDIEWQHBNHTP-UHFFFAOYSA-N n-[4-methyl-3-(2-morpholin-4-ylpyridin-4-yl)phenyl]-2-methylsulfonylpyridine-4-carboxamide Chemical compound C1=C(C=2C=C(N=CC=2)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CC=NC(S(C)(=O)=O)=C1 OJBDIEWQHBNHTP-UHFFFAOYSA-N 0.000 claims 1
- NOPNJPVZJCPTKV-UHFFFAOYSA-N n-[4-methyl-3-(2-morpholin-4-ylpyridin-4-yl)phenyl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C=2C=C(N=CC=2)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 NOPNJPVZJCPTKV-UHFFFAOYSA-N 0.000 claims 1
- OYRCPJFWDDYQRG-UHFFFAOYSA-N n-[4-methyl-3-(2-morpholin-4-ylpyridin-4-yl)phenyl]-3-methylsulfonylbenzamide Chemical compound C1=C(C=2C=C(N=CC=2)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CC=CC(S(C)(=O)=O)=C1 OYRCPJFWDDYQRG-UHFFFAOYSA-N 0.000 claims 1
- BCZWXKUETCZJNL-UHFFFAOYSA-N n-[4-methyl-3-(2-morpholin-4-ylpyridin-4-yl)phenyl]pyrazine-2-carboxamide Chemical compound C1=C(C=2C=C(N=CC=2)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CN=CC=N1 BCZWXKUETCZJNL-UHFFFAOYSA-N 0.000 claims 1
- QFSJWERPFONKIA-UHFFFAOYSA-N n-[4-methyl-3-(2-morpholin-4-ylpyridin-4-yl)phenyl]pyridazine-3-carboxamide Chemical compound C1=C(C=2C=C(N=CC=2)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CC=CN=N1 QFSJWERPFONKIA-UHFFFAOYSA-N 0.000 claims 1
- WCAXSOQUZPXMLC-UHFFFAOYSA-N n-[4-methyl-3-(2-morpholin-4-ylpyridin-4-yl)phenyl]pyridazine-4-carboxamide Chemical compound C1=C(C=2C=C(N=CC=2)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CC=NN=C1 WCAXSOQUZPXMLC-UHFFFAOYSA-N 0.000 claims 1
- BQBDNEAPPRMBAP-UHFFFAOYSA-N n-[4-methyl-3-(2-morpholin-4-ylpyridin-4-yl)phenyl]pyrimidine-5-carboxamide Chemical compound C1=C(C=2C=C(N=CC=2)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CN=CN=C1 BQBDNEAPPRMBAP-UHFFFAOYSA-N 0.000 claims 1
- VUCDTBXJRRGGMN-UHFFFAOYSA-N n-[4-methyl-3-(4-methyl-6-morpholin-4-yl-5-oxopyrazin-2-yl)phenyl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C=2N=C(C(=O)N(C)C=2)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 VUCDTBXJRRGGMN-UHFFFAOYSA-N 0.000 claims 1
- LNZZUSNZSMMZOS-UHFFFAOYSA-N n-[4-methyl-3-(4-morpholin-4-yl-1h-imidazo[4,5-c]pyridin-6-yl)phenyl]-2-methylsulfonylpyridine-4-carboxamide Chemical compound C1=C(C=2N=C(C=3N=CNC=3C=2)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CC=NC(S(C)(=O)=O)=C1 LNZZUSNZSMMZOS-UHFFFAOYSA-N 0.000 claims 1
- NZYSPTVKYJVVKS-UHFFFAOYSA-N n-[4-methyl-3-(4-morpholin-4-yl-1h-imidazo[4,5-c]pyridin-6-yl)phenyl]-3-(1,3,4-oxadiazol-2-yl)benzamide Chemical compound C1=C(C=2N=C(C=3N=CNC=3C=2)N2CCOCC2)C(C)=CC=C1NC(=O)C(C=1)=CC=CC=1C1=NN=CO1 NZYSPTVKYJVVKS-UHFFFAOYSA-N 0.000 claims 1
- SIPHDDWBTBYNTO-UHFFFAOYSA-N n-[4-methyl-3-(4-morpholin-4-yl-1h-imidazo[4,5-c]pyridin-6-yl)phenyl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C=2N=C(C=3N=CNC=3C=2)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 SIPHDDWBTBYNTO-UHFFFAOYSA-N 0.000 claims 1
- NQEJHIYKONTMHA-UHFFFAOYSA-N n-[4-methyl-3-(4-morpholin-4-yl-1h-imidazo[4,5-c]pyridin-6-yl)phenyl]-3-methylsulfonylbenzamide Chemical compound C1=C(C=2N=C(C=3N=CNC=3C=2)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CC=CC(S(C)(=O)=O)=C1 NQEJHIYKONTMHA-UHFFFAOYSA-N 0.000 claims 1
- DPNUITNEMBFUTB-UHFFFAOYSA-N n-[4-methyl-3-(4-morpholin-4-yl-5,5-dioxo-6,7-dihydrothieno[3,2-d]pyrimidin-2-yl)phenyl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C=2N=C(C=3S(=O)(=O)CCC=3N=2)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 DPNUITNEMBFUTB-UHFFFAOYSA-N 0.000 claims 1
- GCLAVHRBISLBFV-UHFFFAOYSA-N n-[4-methyl-3-(4-morpholin-4-yl-5h-pyrrolo[3,2-d]pyrimidin-2-yl)phenyl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C=2N=C3C=CNC3=C(N3CCOCC3)N=2)C(C)=CC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 GCLAVHRBISLBFV-UHFFFAOYSA-N 0.000 claims 1
- DUSJGQQKHPLAEP-UHFFFAOYSA-N n-[4-methyl-3-(4-morpholin-4-yl-6,7-dihydro-5h-pyrrolo[3,4-d]pyrimidin-2-yl)phenyl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C=2N=C(C=3CNCC=3N=2)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 DUSJGQQKHPLAEP-UHFFFAOYSA-N 0.000 claims 1
- OJMHBRGTXHCAEY-UHFFFAOYSA-N n-[4-methyl-3-(4-morpholin-4-yl-6-prop-1-en-2-ylpyrimidin-2-yl)phenyl]-3-(trifluoromethyl)benzamide Chemical compound N=1C(C(=C)C)=CC(N2CCOCC2)=NC=1C(C(=CC=1)C)=CC=1NC(=O)C1=CC=CC(C(F)(F)F)=C1 OJMHBRGTXHCAEY-UHFFFAOYSA-N 0.000 claims 1
- LKDOTYAMIILGBT-UHFFFAOYSA-N n-[4-methyl-3-(4-morpholin-4-yl-6-propan-2-ylpyrimidin-2-yl)phenyl]-3-(trifluoromethyl)benzamide Chemical compound N=1C(C(C)C)=CC(N2CCOCC2)=NC=1C(C(=CC=1)C)=CC=1NC(=O)C1=CC=CC(C(F)(F)F)=C1 LKDOTYAMIILGBT-UHFFFAOYSA-N 0.000 claims 1
- PEMGBJKQLVWMRD-UHFFFAOYSA-N n-[4-methyl-3-(4-morpholin-4-ylfuro[3,2-d]pyrimidin-2-yl)phenyl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C=2N=C3C=COC3=C(N3CCOCC3)N=2)C(C)=CC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 PEMGBJKQLVWMRD-UHFFFAOYSA-N 0.000 claims 1
- IQQLLSYZIGEGPW-UHFFFAOYSA-N n-[4-methyl-3-(4-morpholin-4-ylpyridin-2-yl)phenyl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C=2N=CC=C(C=2)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 IQQLLSYZIGEGPW-UHFFFAOYSA-N 0.000 claims 1
- SWYMZYAYCOOLSG-UHFFFAOYSA-N n-[4-methyl-3-(4-morpholin-4-ylpyrido[2,3-d]pyrimidin-2-yl)phenyl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C=2N=C3N=CC=CC3=C(N3CCOCC3)N=2)C(C)=CC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 SWYMZYAYCOOLSG-UHFFFAOYSA-N 0.000 claims 1
- FKUBKOPNAZUGDL-UHFFFAOYSA-N n-[4-methyl-3-(4-morpholin-4-ylthieno[3,2-d]pyrimidin-2-yl)phenyl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C=2N=C3C=CSC3=C(N3CCOCC3)N=2)C(C)=CC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 FKUBKOPNAZUGDL-UHFFFAOYSA-N 0.000 claims 1
- BVIRREIIKKWRDP-UHFFFAOYSA-N n-[4-methyl-3-(5-methyl-2,6-dimorpholin-4-ylpyrimidin-4-yl)phenyl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C=2C(=C(N3CCOCC3)N=C(N=2)N2CCOCC2)C)C(C)=CC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 BVIRREIIKKWRDP-UHFFFAOYSA-N 0.000 claims 1
- BVFVIFLOVGLFJR-UHFFFAOYSA-N n-[4-methyl-3-(5-morpholin-4-yl-2-oxo-1h-pyridin-3-yl)phenyl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C=2C(NC=C(C=2)N2CCOCC2)=O)C(C)=CC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 BVFVIFLOVGLFJR-UHFFFAOYSA-N 0.000 claims 1
- NSUYTCKRYLDDHP-UHFFFAOYSA-N n-[4-methyl-3-(5-morpholin-4-yl-2-oxo-3h-1,3-benzoxazol-7-yl)phenyl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C=2C=3OC(=O)NC=3C=C(C=2)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 NSUYTCKRYLDDHP-UHFFFAOYSA-N 0.000 claims 1
- QGEZANVCDSIDGU-UHFFFAOYSA-N n-[4-methyl-3-(5-morpholin-4-yl-6-oxo-1-propan-2-ylpyridin-3-yl)phenyl]-3-(trifluoromethyl)benzamide Chemical compound O=C1N(C(C)C)C=C(C=2C(=CC=C(NC(=O)C=3C=C(C=CC=3)C(F)(F)F)C=2)C)C=C1N1CCOCC1 QGEZANVCDSIDGU-UHFFFAOYSA-N 0.000 claims 1
- WQAAGADGLQVCDN-UHFFFAOYSA-N n-[4-methyl-3-(5-morpholin-4-yl-6-oxo-1h-pyrazin-3-yl)phenyl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C=2N=C(C(=O)NC=2)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 WQAAGADGLQVCDN-UHFFFAOYSA-N 0.000 claims 1
- SBHUAUMYQMOGOC-UHFFFAOYSA-N n-[4-methyl-3-(5-morpholin-4-yl-6-oxo-1h-pyridin-3-yl)phenyl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C=2C=C(C(=O)NC=2)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 SBHUAUMYQMOGOC-UHFFFAOYSA-N 0.000 claims 1
- RSTXFOXHTPABQN-UHFFFAOYSA-N n-[4-methyl-3-(5-morpholin-4-yl-6-propan-2-yloxypyridazin-3-yl)phenyl]-4-(trifluoromethyl)pyridine-2-carboxamide Chemical compound CC(C)OC1=NN=C(C=2C(=CC=C(NC(=O)C=3N=CC=C(C=3)C(F)(F)F)C=2)C)C=C1N1CCOCC1 RSTXFOXHTPABQN-UHFFFAOYSA-N 0.000 claims 1
- RINDPRPVBOGYGN-UHFFFAOYSA-N n-[4-methyl-3-(5-morpholin-4-yl-6-propan-2-yloxypyridin-3-yl)phenyl]-3-(trifluoromethyl)benzamide Chemical compound CC(C)OC1=NC=C(C=2C(=CC=C(NC(=O)C=3C=C(C=CC=3)C(F)(F)F)C=2)C)C=C1N1CCOCC1 RINDPRPVBOGYGN-UHFFFAOYSA-N 0.000 claims 1
- CDBQKPKEEIZUOR-UHFFFAOYSA-N n-[4-methyl-3-(5-morpholin-4-ylimidazo[1,2-c]pyrimidin-7-yl)phenyl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C=2N=C(N3C=CN=C3C=2)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 CDBQKPKEEIZUOR-UHFFFAOYSA-N 0.000 claims 1
- QCEVVVDVWXYHGN-UHFFFAOYSA-N n-[4-methyl-3-(5-morpholin-4-ylpyridazin-3-yl)phenyl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C=2N=NC=C(C=2)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 QCEVVVDVWXYHGN-UHFFFAOYSA-N 0.000 claims 1
- LPNQQFUIZZVMMW-UHFFFAOYSA-N n-[4-methyl-3-(6-methylsulfonyl-5-morpholin-4-ylpyridazin-3-yl)phenyl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C=2N=NC(=C(N3CCOCC3)C=2)S(C)(=O)=O)C(C)=CC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 LPNQQFUIZZVMMW-UHFFFAOYSA-N 0.000 claims 1
- WWBHJFPEMPJRTI-UHFFFAOYSA-N n-[4-methyl-3-(6-morpholin-4-yl-4-oxo-1h-pyridin-2-yl)phenyl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C=2NC(=CC(=O)C=2)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 WWBHJFPEMPJRTI-UHFFFAOYSA-N 0.000 claims 1
- IVNFWAVJWXWTLH-UHFFFAOYSA-N n-[4-methyl-3-(6-morpholin-4-ylpyrazin-2-yl)phenyl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C=2N=C(C=NC=2)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 IVNFWAVJWXWTLH-UHFFFAOYSA-N 0.000 claims 1
- RZBDOVUMWNDQMO-UHFFFAOYSA-N n-[4-methyl-3-(6-morpholin-4-ylpyrimidin-4-yl)phenyl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C=2N=CN=C(C=2)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 RZBDOVUMWNDQMO-UHFFFAOYSA-N 0.000 claims 1
- ZQVAYYPNZFAWMA-UHFFFAOYSA-N n-[4-methyl-3-(7-morpholin-4-yl-2-oxo-3h-1,3-benzoxazol-5-yl)phenyl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C=2C=C3NC(=O)OC3=C(N3CCOCC3)C=2)C(C)=CC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 ZQVAYYPNZFAWMA-UHFFFAOYSA-N 0.000 claims 1
- XSVKRHSFWQKQDN-UHFFFAOYSA-N n-[4-methyl-3-(7-morpholin-4-yl-[1,3]thiazolo[5,4-d]pyrimidin-5-yl)phenyl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C=2N=C3SC=NC3=C(N3CCOCC3)N=2)C(C)=CC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 XSVKRHSFWQKQDN-UHFFFAOYSA-N 0.000 claims 1
- QUBAZPBETZNQAE-UHFFFAOYSA-N n-[4-methyl-3-(8-morpholin-4-ylimidazo[1,2-a]pyrazin-6-yl)phenyl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C=2N=C(C3=NC=CN3C=2)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 QUBAZPBETZNQAE-UHFFFAOYSA-N 0.000 claims 1
- NKVPTHCZFKPFLR-UHFFFAOYSA-N n-[4-methyl-3-(8-morpholin-4-ylimidazo[1,2-a]pyridin-6-yl)phenyl]-6-(trifluoromethyl)pyridazine-4-carboxamide Chemical compound C1=C(C2=CN3C=CN=C3C(N3CCOCC3)=C2)C(C)=CC=C1NC(=O)C1=CN=NC(C(F)(F)F)=C1 NKVPTHCZFKPFLR-UHFFFAOYSA-N 0.000 claims 1
- MILPDEPRDAKOOR-UHFFFAOYSA-N n-[4-methyl-3-(8-morpholin-4-ylimidazo[1,2-b]pyridazin-6-yl)phenyl]-2-propan-2-ylpyridine-4-carboxamide Chemical compound C1=NC(C(C)C)=CC(C(=O)NC=2C=C(C(C)=CC=2)C2=NN3C=CN=C3C(N3CCOCC3)=C2)=C1 MILPDEPRDAKOOR-UHFFFAOYSA-N 0.000 claims 1
- DAPUTCXAHDOMMA-UHFFFAOYSA-N n-[4-methyl-3-(8-morpholin-4-ylimidazo[1,2-b]pyridazin-6-yl)phenyl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C2=NN3C=CN=C3C(N3CCOCC3)=C2)C(C)=CC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 DAPUTCXAHDOMMA-UHFFFAOYSA-N 0.000 claims 1
- JYESOJFCWIWKCG-UHFFFAOYSA-N n-[4-methyl-3-[1-(2-methylsulfonylethyl)-5-morpholin-4-yl-6-oxopyridin-3-yl]phenyl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C2=CN(CCS(C)(=O)=O)C(=O)C(N3CCOCC3)=C2)C(C)=CC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 JYESOJFCWIWKCG-UHFFFAOYSA-N 0.000 claims 1
- VRJWTLOQZAIDSH-UHFFFAOYSA-N n-[4-methyl-3-[1-[(3-methyloxetan-3-yl)methyl]-5-morpholin-4-yl-6-oxopyridin-3-yl]phenyl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C2=CN(CC3(C)COC3)C(=O)C(N3CCOCC3)=C2)C(C)=CC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 VRJWTLOQZAIDSH-UHFFFAOYSA-N 0.000 claims 1
- GYEBSMWPNKRNAF-UHFFFAOYSA-N n-[4-methyl-3-[1-methyl-5-(6-oxa-3-azabicyclo[3.1.1]heptan-3-yl)-6-oxopyridin-3-yl]phenyl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C2=CN(C)C(=O)C(N3CC4CC(O4)C3)=C2)C(C)=CC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 GYEBSMWPNKRNAF-UHFFFAOYSA-N 0.000 claims 1
- ZMPLUUUXFORXDW-UHFFFAOYSA-N n-[4-methyl-3-[2-(1-methylpyrazol-4-yl)-6-morpholin-4-ylpyridin-4-yl]phenyl]-2-(trifluoromethyl)pyridine-4-carboxamide Chemical compound C1=C(C=2C=C(N=C(C=2)N2CCOCC2)C2=CN(C)N=C2)C(C)=CC=C1NC(=O)C1=CC=NC(C(F)(F)F)=C1 ZMPLUUUXFORXDW-UHFFFAOYSA-N 0.000 claims 1
- BRHVOQCQIFRMBJ-UHFFFAOYSA-N n-[4-methyl-3-[2-(1-methylpyrazol-4-yl)-6-morpholin-4-ylpyridin-4-yl]phenyl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C=2C=C(N=C(C=2)N2CCOCC2)C2=CN(C)N=C2)C(C)=CC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 BRHVOQCQIFRMBJ-UHFFFAOYSA-N 0.000 claims 1
- TYRBFDFCWLLXCF-UHFFFAOYSA-N n-[4-methyl-3-[2-(methylamino)-6-morpholin-4-ylpyrimidin-4-yl]phenyl]-3-(trifluoromethyl)benzamide Chemical compound N=1C(NC)=NC(N2CCOCC2)=CC=1C(C(=CC=1)C)=CC=1NC(=O)C1=CC=CC(C(F)(F)F)=C1 TYRBFDFCWLLXCF-UHFFFAOYSA-N 0.000 claims 1
- WQNJLMVKMKGYHJ-UHFFFAOYSA-N n-[4-methyl-3-[2-morpholin-4-yl-6-(1,4-oxazepan-4-yl)pyrimidin-4-yl]phenyl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C=2N=C(N=C(C=2)N2CCOCCC2)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 WQNJLMVKMKGYHJ-UHFFFAOYSA-N 0.000 claims 1
- IZBMEXQVTDDEFG-UHFFFAOYSA-N n-[4-methyl-3-[2-morpholin-4-yl-6-(2-oxa-5-azabicyclo[2.2.1]heptan-5-yl)pyrimidin-4-yl]phenyl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C=2N=C(N=C(C=2)N2C3CC(OC3)C2)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 IZBMEXQVTDDEFG-UHFFFAOYSA-N 0.000 claims 1
- JSNUOUDTFPPBCQ-UHFFFAOYSA-N n-[4-methyl-3-[2-morpholin-4-yl-6-(2-oxa-6-azaspiro[3.3]heptan-6-yl)pyrimidin-4-yl]phenyl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C=2N=C(N=C(C=2)N2CC3(COC3)C2)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 JSNUOUDTFPPBCQ-UHFFFAOYSA-N 0.000 claims 1
- VWZRDTLPMXJTFJ-UHFFFAOYSA-N n-[4-methyl-3-[2-morpholin-4-yl-6-(3-oxomorpholin-4-yl)pyrimidin-4-yl]phenyl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C=2N=C(N=C(C=2)N2C(COCC2)=O)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 VWZRDTLPMXJTFJ-UHFFFAOYSA-N 0.000 claims 1
- VPFGZMRBOWQVQS-UHFFFAOYSA-N n-[4-methyl-3-[2-morpholin-4-yl-6-(8-oxa-3-azabicyclo[3.2.1]octan-3-yl)pyrimidin-4-yl]phenyl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C=2N=C(N=C(C=2)N2CC3CCC(O3)C2)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 VPFGZMRBOWQVQS-UHFFFAOYSA-N 0.000 claims 1
- DJEJCPKGTQTKTH-UHFFFAOYSA-N n-[4-methyl-3-[2-morpholin-4-yl-6-(oxan-4-yl)pyridin-4-yl]phenyl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C=2C=C(N=C(C=2)C2CCOCC2)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 DJEJCPKGTQTKTH-UHFFFAOYSA-N 0.000 claims 1
- NBTHXUSRXBOARD-UHFFFAOYSA-N n-[4-methyl-3-[2-morpholin-4-yl-6-(oxan-4-yloxy)pyridin-4-yl]phenyl]-6-(trifluoromethyl)pyridazine-4-carboxamide Chemical compound C1=C(C=2C=C(N=C(OC3CCOCC3)C=2)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CN=NC(C(F)(F)F)=C1 NBTHXUSRXBOARD-UHFFFAOYSA-N 0.000 claims 1
- GQHAIYPRZGYSET-UHFFFAOYSA-N n-[4-methyl-3-[2-morpholin-4-yl-6-(oxan-4-yloxy)pyrimidin-4-yl]phenyl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C=2N=C(N=C(OC3CCOCC3)C=2)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 GQHAIYPRZGYSET-UHFFFAOYSA-N 0.000 claims 1
- FOGNLUOMZWHCJL-UHFFFAOYSA-N n-[4-methyl-3-[2-morpholin-4-yl-6-(oxolan-3-ylamino)pyridin-4-yl]phenyl]-2-(trifluoromethyl)pyridine-4-carboxamide Chemical compound C1=C(C=2C=C(N=C(NC3COCC3)C=2)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CC=NC(C(F)(F)F)=C1 FOGNLUOMZWHCJL-UHFFFAOYSA-N 0.000 claims 1
- RXHCQJSVKSFKKA-UHFFFAOYSA-N n-[4-methyl-3-[2-morpholin-4-yl-6-(oxolan-3-ylmethylamino)pyridin-4-yl]phenyl]-2-(trifluoromethyl)pyridine-4-carboxamide Chemical compound C1=C(C=2C=C(N=C(NCC3COCC3)C=2)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CC=NC(C(F)(F)F)=C1 RXHCQJSVKSFKKA-UHFFFAOYSA-N 0.000 claims 1
- OSOVXTBDOUWVIM-UHFFFAOYSA-N n-[4-methyl-3-[2-morpholin-4-yl-6-(trifluoromethyl)pyrimidin-4-yl]phenyl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C=2N=C(N=C(C=2)C(F)(F)F)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 OSOVXTBDOUWVIM-UHFFFAOYSA-N 0.000 claims 1
- VQVHBBKOZXGEBY-UHFFFAOYSA-N n-[4-methyl-3-[2-morpholin-4-yl-6-[(3,3,3-trifluoro-2-hydroxypropyl)amino]pyridin-4-yl]phenyl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C=2C=C(N=C(NCC(O)C(F)(F)F)C=2)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 VQVHBBKOZXGEBY-UHFFFAOYSA-N 0.000 claims 1
- BBXBZRCZNLRJMB-MRXNPFEDSA-N n-[4-methyl-3-[4-[(3r)-3-methylmorpholin-4-yl]-1h-imidazo[4,5-c]pyridin-6-yl]phenyl]-3-(trifluoromethyl)benzamide Chemical compound C[C@@H]1COCCN1C1=NC(C=2C(=CC=C(NC(=O)C=3C=C(C=CC=3)C(F)(F)F)C=2)C)=CC2=C1N=CN2 BBXBZRCZNLRJMB-MRXNPFEDSA-N 0.000 claims 1
- UEPHFBVVASDYFP-UHFFFAOYSA-N n-[4-methyl-3-[5-morpholin-4-yl-6-(oxan-4-yloxy)pyridazin-3-yl]phenyl]-2-methylsulfonylpyridine-4-carboxamide Chemical compound C1=C(C=2N=NC(OC3CCOCC3)=C(N3CCOCC3)C=2)C(C)=CC=C1NC(=O)C1=CC=NC(S(C)(=O)=O)=C1 UEPHFBVVASDYFP-UHFFFAOYSA-N 0.000 claims 1
- NRNGEHBPDHSOOR-UHFFFAOYSA-N n-[4-methyl-3-[5-morpholin-4-yl-6-(oxan-4-yloxy)pyridazin-3-yl]phenyl]-4-(trifluoromethyl)pyridine-2-carboxamide Chemical compound C1=C(C=2N=NC(OC3CCOCC3)=C(N3CCOCC3)C=2)C(C)=CC=C1NC(=O)C1=CC(C(F)(F)F)=CC=N1 NRNGEHBPDHSOOR-UHFFFAOYSA-N 0.000 claims 1
- NHRDFGIYVIKRAG-UHFFFAOYSA-N n-[4-methyl-3-[5-morpholin-4-yl-6-(oxan-4-yloxy)pyridazin-3-yl]phenyl]-6-(trifluoromethyl)pyridazine-4-carboxamide Chemical compound C1=C(C=2N=NC(OC3CCOCC3)=C(N3CCOCC3)C=2)C(C)=CC=C1NC(=O)C1=CN=NC(C(F)(F)F)=C1 NHRDFGIYVIKRAG-UHFFFAOYSA-N 0.000 claims 1
- KHSZTGIXNYRJRU-UHFFFAOYSA-N n-[4-methyl-3-[5-morpholin-4-yl-6-(oxan-4-yloxy)pyridin-3-yl]phenyl]-2-methylsulfonylpyridine-4-carboxamide Chemical compound C1=C(C=2C=C(C(OC3CCOCC3)=NC=2)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CC=NC(S(C)(=O)=O)=C1 KHSZTGIXNYRJRU-UHFFFAOYSA-N 0.000 claims 1
- NWUJNMRBRDSYBD-UHFFFAOYSA-N n-[4-methyl-3-[5-morpholin-4-yl-6-(oxan-4-yloxy)pyridin-3-yl]phenyl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C=2C=C(C(OC3CCOCC3)=NC=2)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 NWUJNMRBRDSYBD-UHFFFAOYSA-N 0.000 claims 1
- BYMCFCWJXIQKBB-UHFFFAOYSA-N n-[4-methyl-3-[5-morpholin-4-yl-6-(oxan-4-yloxy)pyridin-3-yl]phenyl]-6-(trifluoromethyl)pyridazine-4-carboxamide Chemical compound C1=C(C=2C=C(C(OC3CCOCC3)=NC=2)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CN=NC(C(F)(F)F)=C1 BYMCFCWJXIQKBB-UHFFFAOYSA-N 0.000 claims 1
- COVZIQFEGYGTDK-LJQANCHMSA-N n-[4-methyl-3-[6-[(2r)-2-methylmorpholin-4-yl]-2-morpholin-4-ylpyrimidin-4-yl]phenyl]-3-(trifluoromethyl)benzamide Chemical compound C1CO[C@H](C)CN1C1=CC(C=2C(=CC=C(NC(=O)C=3C=C(C=CC=3)C(F)(F)F)C=2)C)=NC(N2CCOCC2)=N1 COVZIQFEGYGTDK-LJQANCHMSA-N 0.000 claims 1
- COVZIQFEGYGTDK-IBGZPJMESA-N n-[4-methyl-3-[6-[(2s)-2-methylmorpholin-4-yl]-2-morpholin-4-ylpyrimidin-4-yl]phenyl]-3-(trifluoromethyl)benzamide Chemical compound C1CO[C@@H](C)CN1C1=CC(C=2C(=CC=C(NC(=O)C=3C=C(C=CC=3)C(F)(F)F)C=2)C)=NC(N2CCOCC2)=N1 COVZIQFEGYGTDK-IBGZPJMESA-N 0.000 claims 1
- NHIDIWOUTDGPHN-UHFFFAOYSA-N n-[4-methyl-3-[6-morpholin-4-yl-2-(2-oxa-6-azaspiro[3.3]heptan-6-yl)pyrimidin-4-yl]phenyl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C=2N=C(N=C(C=2)N2CCOCC2)N2CC3(COC3)C2)C(C)=CC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 NHIDIWOUTDGPHN-UHFFFAOYSA-N 0.000 claims 1
- OFHHKPCWLMSMEO-UHFFFAOYSA-N n-[4-methyl-3-[6-morpholin-4-yl-2-(2-oxopyrrolidin-1-yl)pyrimidin-4-yl]phenyl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C=2N=C(N=C(C=2)N2CCOCC2)N2C(CCC2)=O)C(C)=CC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 OFHHKPCWLMSMEO-UHFFFAOYSA-N 0.000 claims 1
- XWQFRYNHIVMONA-QGZVFWFLSA-N n-[4-methyl-3-[8-[(3r)-3-methylmorpholin-4-yl]imidazo[1,2-a]pyrazin-6-yl]phenyl]-3-(trifluoromethyl)benzamide Chemical compound C[C@@H]1COCCN1C1=NC(C=2C(=CC=C(NC(=O)C=3C=C(C=CC=3)C(F)(F)F)C=2)C)=CN2C1=NC=C2 XWQFRYNHIVMONA-QGZVFWFLSA-N 0.000 claims 1
- JWYJIGNOHJBRAT-UHFFFAOYSA-N n-[5-(1-ethyl-5-morpholin-4-yl-6-oxopyridin-3-yl)-6-methylpyridin-3-yl]-3-(trifluoromethyl)benzamide Chemical compound O=C1N(CC)C=C(C=2C(=NC=C(NC(=O)C=3C=C(C=CC=3)C(F)(F)F)C=2)C)C=C1N1CCOCC1 JWYJIGNOHJBRAT-UHFFFAOYSA-N 0.000 claims 1
- AQZNVPIHZFYWPU-UHFFFAOYSA-N n-[5-(2,6-dimorpholin-4-ylpyridin-4-yl)-6-methylpyridin-3-yl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C=2C=C(N=C(C=2)N2CCOCC2)N2CCOCC2)C(C)=NC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 AQZNVPIHZFYWPU-UHFFFAOYSA-N 0.000 claims 1
- VCRWYFQGTCFZDJ-UHFFFAOYSA-N n-[5-(2,6-dimorpholin-4-ylpyrimidin-4-yl)-6-methylpyridin-3-yl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C=2N=C(N=C(C=2)N2CCOCC2)N2CCOCC2)C(C)=NC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 VCRWYFQGTCFZDJ-UHFFFAOYSA-N 0.000 claims 1
- TYGWPUNSOFXZIP-UHFFFAOYSA-N n-[5-(4-cyano-3-morpholin-4-ylphenyl)-6-methylpyridin-3-yl]-2-propan-2-ylpyridine-4-carboxamide Chemical compound C1=NC(C(C)C)=CC(C(=O)NC=2C=C(C(C)=NC=2)C=2C=C(C(C#N)=CC=2)N2CCOCC2)=C1 TYGWPUNSOFXZIP-UHFFFAOYSA-N 0.000 claims 1
- IAVYEAKXVRACLX-UHFFFAOYSA-N n-[5-(4-cyano-3-morpholin-4-ylphenyl)-6-methylpyridin-3-yl]-3-[(dimethylamino)methyl]-5-(trifluoromethyl)benzamide Chemical compound FC(F)(F)C1=CC(CN(C)C)=CC(C(=O)NC=2C=C(C(C)=NC=2)C=2C=C(C(C#N)=CC=2)N2CCOCC2)=C1 IAVYEAKXVRACLX-UHFFFAOYSA-N 0.000 claims 1
- OPRPJWWMBWFCMQ-UHFFFAOYSA-N n-[5-(5-ethoxy-6-morpholin-4-ylpyrazin-2-yl)-6-methylpyridin-3-yl]-4-(trifluoromethyl)pyridine-2-carboxamide Chemical compound CCOC1=NC=C(C=2C(=NC=C(NC(=O)C=3N=CC=C(C=3)C(F)(F)F)C=2)C)N=C1N1CCOCC1 OPRPJWWMBWFCMQ-UHFFFAOYSA-N 0.000 claims 1
- ZEYMPFAQERSDBF-UHFFFAOYSA-N n-[5-(6-ethoxy-5-morpholin-4-ylpyridazin-3-yl)-6-methylpyridin-3-yl]-2-(2-fluoropropan-2-yl)pyridine-4-carboxamide Chemical compound CCOC1=NN=C(C=2C(=NC=C(NC(=O)C=3C=C(N=CC=3)C(C)(C)F)C=2)C)C=C1N1CCOCC1 ZEYMPFAQERSDBF-UHFFFAOYSA-N 0.000 claims 1
- QMAKKWAGBXUGSO-UHFFFAOYSA-N n-[5-(6-ethoxy-5-morpholin-4-ylpyridazin-3-yl)-6-methylpyridin-3-yl]-2-(trifluoromethyl)pyridine-4-carboxamide Chemical compound CCOC1=NN=C(C=2C(=NC=C(NC(=O)C=3C=C(N=CC=3)C(F)(F)F)C=2)C)C=C1N1CCOCC1 QMAKKWAGBXUGSO-UHFFFAOYSA-N 0.000 claims 1
- IODGBFCCDJEFEY-UHFFFAOYSA-N n-[5-(6-ethoxy-5-morpholin-4-ylpyridazin-3-yl)-6-methylpyridin-3-yl]-2-methylsulfonylpyridine-4-carboxamide Chemical compound CCOC1=NN=C(C=2C(=NC=C(NC(=O)C=3C=C(N=CC=3)S(C)(=O)=O)C=2)C)C=C1N1CCOCC1 IODGBFCCDJEFEY-UHFFFAOYSA-N 0.000 claims 1
- UTUZIZXLPNRJES-UHFFFAOYSA-N n-[5-(6-ethoxy-5-morpholin-4-ylpyridazin-3-yl)-6-methylpyridin-3-yl]-2-propan-2-ylpyridine-4-carboxamide Chemical compound CCOC1=NN=C(C=2C(=NC=C(NC(=O)C=3C=C(N=CC=3)C(C)C)C=2)C)C=C1N1CCOCC1 UTUZIZXLPNRJES-UHFFFAOYSA-N 0.000 claims 1
- DKSXJUGWOSILKD-UHFFFAOYSA-N n-[5-(6-ethoxy-5-morpholin-4-ylpyridazin-3-yl)-6-methylpyridin-3-yl]-4-(hydroxymethyl)-3-(trifluoromethyl)benzamide Chemical compound CCOC1=NN=C(C=2C(=NC=C(NC(=O)C=3C=C(C(CO)=CC=3)C(F)(F)F)C=2)C)C=C1N1CCOCC1 DKSXJUGWOSILKD-UHFFFAOYSA-N 0.000 claims 1
- OYIUFYWYJGKVHW-UHFFFAOYSA-N n-[5-(6-ethoxy-5-morpholin-4-ylpyridazin-3-yl)-6-methylpyridin-3-yl]-4-(methylaminomethyl)-3-(trifluoromethyl)benzamide Chemical compound CCOC1=NN=C(C=2C(=NC=C(NC(=O)C=3C=C(C(CNC)=CC=3)C(F)(F)F)C=2)C)C=C1N1CCOCC1 OYIUFYWYJGKVHW-UHFFFAOYSA-N 0.000 claims 1
- UWPBXWOCFRZZEJ-UHFFFAOYSA-N n-[5-(6-ethoxy-5-morpholin-4-ylpyridazin-3-yl)-6-methylpyridin-3-yl]-4-(trifluoromethyl)pyridine-2-carboxamide Chemical compound CCOC1=NN=C(C=2C(=NC=C(NC(=O)C=3N=CC=C(C=3)C(F)(F)F)C=2)C)C=C1N1CCOCC1 UWPBXWOCFRZZEJ-UHFFFAOYSA-N 0.000 claims 1
- UKBOEXKSQMHNGF-UHFFFAOYSA-N n-[5-(6-ethoxy-5-morpholin-4-ylpyridazin-3-yl)-6-methylpyridin-3-yl]-6-(trifluoromethyl)pyridazine-4-carboxamide Chemical compound CCOC1=NN=C(C=2C(=NC=C(NC(=O)C=3C=C(N=NC=3)C(F)(F)F)C=2)C)C=C1N1CCOCC1 UKBOEXKSQMHNGF-UHFFFAOYSA-N 0.000 claims 1
- AXYSXWAMTHMJIN-UHFFFAOYSA-N n-[5-(6-methoxy-5-morpholin-4-ylpyridazin-3-yl)-6-methylpyridin-3-yl]-2-(trifluoromethyl)pyridine-4-carboxamide Chemical compound COC1=NN=C(C=2C(=NC=C(NC(=O)C=3C=C(N=CC=3)C(F)(F)F)C=2)C)C=C1N1CCOCC1 AXYSXWAMTHMJIN-UHFFFAOYSA-N 0.000 claims 1
- MWOBJWPJWFGNFV-UHFFFAOYSA-N n-[5-(6-methoxy-5-morpholin-4-ylpyridin-3-yl)-6-methylpyridazin-3-yl]-3-(trifluoromethyl)benzamide Chemical compound COC1=NC=C(C=2C(=NN=C(NC(=O)C=3C=C(C=CC=3)C(F)(F)F)C=2)C)C=C1N1CCOCC1 MWOBJWPJWFGNFV-UHFFFAOYSA-N 0.000 claims 1
- DNPKEYPGRLYOMT-UHFFFAOYSA-N n-[5-(6-methoxy-5-morpholin-4-ylpyridin-3-yl)-6-methylpyridin-3-yl]-2-propan-2-ylpyridine-4-carboxamide Chemical compound COC1=NC=C(C=2C(=NC=C(NC(=O)C=3C=C(N=CC=3)C(C)C)C=2)C)C=C1N1CCOCC1 DNPKEYPGRLYOMT-UHFFFAOYSA-N 0.000 claims 1
- BSUIIPUXGLKINZ-UHFFFAOYSA-N n-[5-(6-methoxy-5-morpholin-4-ylpyridin-3-yl)-6-methylpyridin-3-yl]-3-(trifluoromethyl)benzamide Chemical compound COC1=NC=C(C=2C(=NC=C(NC(=O)C=3C=C(C=CC=3)C(F)(F)F)C=2)C)C=C1N1CCOCC1 BSUIIPUXGLKINZ-UHFFFAOYSA-N 0.000 claims 1
- ZZGNSUMQZJSOAK-UHFFFAOYSA-N n-[5-[1-(2-hydroxyethyl)-5-morpholin-4-yl-6-oxopyridin-3-yl]-6-methylpyridin-3-yl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C2=CN(CCO)C(=O)C(N3CCOCC3)=C2)C(C)=NC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 ZZGNSUMQZJSOAK-UHFFFAOYSA-N 0.000 claims 1
- CXUHGZMQYCGDDE-UHFFFAOYSA-N n-[5-[2-(2-hydroxypropan-2-yl)-6-morpholin-4-ylpyrimidin-4-yl]-6-methylpyridin-3-yl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C=2N=C(N=C(C=2)N2CCOCC2)C(C)(C)O)C(C)=NC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 CXUHGZMQYCGDDE-UHFFFAOYSA-N 0.000 claims 1
- XBUYJNSUEWENMF-UHFFFAOYSA-N n-[5-[2-(3-hydroxyazetidin-1-yl)-6-morpholin-4-ylpyrimidin-4-yl]-6-methylpyridin-3-yl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C=2N=C(N=C(C=2)N2CCOCC2)N2CC(O)C2)C(C)=NC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 XBUYJNSUEWENMF-UHFFFAOYSA-N 0.000 claims 1
- OKTYEAXGHPNKJI-UHFFFAOYSA-N n-[5-[2-(ethylamino)-6-morpholin-4-ylpyrimidin-4-yl]-6-methylpyridin-3-yl]-3-(trifluoromethyl)benzamide Chemical compound N=1C(NCC)=NC(N2CCOCC2)=CC=1C(C(=NC=1)C)=CC=1NC(=O)C1=CC=CC(C(F)(F)F)=C1 OKTYEAXGHPNKJI-UHFFFAOYSA-N 0.000 claims 1
- XNMKLOSTCLYASB-UHFFFAOYSA-N n-[5-[2-[(1-hydroxy-2-methylpropan-2-yl)amino]-6-morpholin-4-ylpyrimidin-4-yl]-6-methylpyridin-3-yl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C=2N=C(NC(C)(C)CO)N=C(C=2)N2CCOCC2)C(C)=NC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 XNMKLOSTCLYASB-UHFFFAOYSA-N 0.000 claims 1
- OZOULXXAHRUJJL-OAQYLSRUSA-N n-[5-[2-[(2r)-2-[[(2-hydroxyacetyl)amino]methyl]morpholin-4-yl]pyridin-4-yl]-6-methylpyridin-3-yl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C=2C=C(N=CC=2)N2C[C@@H](CNC(=O)CO)OCC2)C(C)=NC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 OZOULXXAHRUJJL-OAQYLSRUSA-N 0.000 claims 1
- FQWJGIJPCCXPIV-UHFFFAOYSA-N n-[5-[3-fluoro-6-(2-hydroxyethylamino)-2-morpholin-4-ylpyridin-4-yl]-6-methylpyridin-3-yl]-6-(trifluoromethyl)pyridazine-4-carboxamide Chemical compound C1=C(C=2C(=C(N3CCOCC3)N=C(NCCO)C=2)F)C(C)=NC=C1NC(=O)C1=CN=NC(C(F)(F)F)=C1 FQWJGIJPCCXPIV-UHFFFAOYSA-N 0.000 claims 1
- HZEMIVICCSKEOU-UHFFFAOYSA-N n-[5-[6-(1,4-dioxan-2-ylmethoxy)-5-morpholin-4-ylpyridin-3-yl]-6-methylpyridin-3-yl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C=2C=C(C(OCC3OCCOC3)=NC=2)N2CCOCC2)C(C)=NC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 HZEMIVICCSKEOU-UHFFFAOYSA-N 0.000 claims 1
- NTQDRNKJUSQTEG-UHFFFAOYSA-N n-[5-[6-(2,2-difluoroethoxy)-5-morpholin-4-ylpyridazin-3-yl]-6-methylpyridin-3-yl]-2-(1,1-difluoropropyl)pyridine-4-carboxamide Chemical compound C1=NC(C(F)(F)CC)=CC(C(=O)NC=2C=C(C(C)=NC=2)C=2N=NC(OCC(F)F)=C(N3CCOCC3)C=2)=C1 NTQDRNKJUSQTEG-UHFFFAOYSA-N 0.000 claims 1
- YFCGZSBLRQTQCQ-UHFFFAOYSA-N n-[5-[6-(2,2-difluoroethoxy)-5-morpholin-4-ylpyridazin-3-yl]-6-methylpyridin-3-yl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C=2N=NC(OCC(F)F)=C(N3CCOCC3)C=2)C(C)=NC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 YFCGZSBLRQTQCQ-UHFFFAOYSA-N 0.000 claims 1
- OULIDKUUWCWYAF-UHFFFAOYSA-N n-[5-[6-(2,2-difluoroethoxy)-5-morpholin-4-ylpyridazin-3-yl]-6-methylpyridin-3-yl]-4-(trifluoromethyl)pyridine-2-carboxamide Chemical compound C1=C(C=2N=NC(OCC(F)F)=C(N3CCOCC3)C=2)C(C)=NC=C1NC(=O)C1=CC(C(F)(F)F)=CC=N1 OULIDKUUWCWYAF-UHFFFAOYSA-N 0.000 claims 1
- DZYQLRIKVLHQEF-UHFFFAOYSA-N n-[5-[6-(2,2-difluoroethoxy)-5-morpholin-4-ylpyridazin-3-yl]-6-methylpyridin-3-yl]-5-(trifluoromethyl)pyridine-3-carboxamide Chemical compound C1=C(C=2N=NC(OCC(F)F)=C(N3CCOCC3)C=2)C(C)=NC=C1NC(=O)C1=CN=CC(C(F)(F)F)=C1 DZYQLRIKVLHQEF-UHFFFAOYSA-N 0.000 claims 1
- PDBWYQWHOPVYTM-UHFFFAOYSA-N n-[5-[6-(2-cyanopropan-2-yl)-5-morpholin-4-ylpyridin-3-yl]-6-methylpyridin-3-yl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C=2C=C(C(=NC=2)C(C)(C)C#N)N2CCOCC2)C(C)=NC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 PDBWYQWHOPVYTM-UHFFFAOYSA-N 0.000 claims 1
- YQOYAEIODQJLFI-UHFFFAOYSA-N n-[5-[6-(2-hydroxyethoxy)-5-morpholin-4-ylpyridin-3-yl]-6-methylpyridin-3-yl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C=2C=C(C(OCCO)=NC=2)N2CCOCC2)C(C)=NC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 YQOYAEIODQJLFI-UHFFFAOYSA-N 0.000 claims 1
- HVTUZZBOLLPTQC-ZPJDWWTCSA-N n-[5-[6-(4-deuterio-3-fluorooxan-4-yl)oxy-5-morpholin-4-ylpyridin-3-yl]-6-methylpyridin-3-yl]-3-(trifluoromethyl)benzamide Chemical compound N=1C=C(C=2C(=NC=C(NC(=O)C=3C=C(C=CC=3)C(F)(F)F)C=2)C)C=C(N2CCOCC2)C=1OC1([2H])CCOCC1F HVTUZZBOLLPTQC-ZPJDWWTCSA-N 0.000 claims 1
- HHYACKVEAKDZKO-UHFFFAOYSA-N n-[5-[6-(azetidin-3-yloxy)-5-morpholin-4-ylpyridin-3-yl]-6-methylpyridin-3-yl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C=2C=C(C(OC3CNC3)=NC=2)N2CCOCC2)C(C)=NC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 HHYACKVEAKDZKO-UHFFFAOYSA-N 0.000 claims 1
- IJFWZMGJVQXAHT-UHFFFAOYSA-N n-[5-[6-(dimethylamino)-5-morpholin-4-ylpyridin-3-yl]-6-methylpyridin-3-yl]-3-(trifluoromethyl)benzamide Chemical compound CN(C)C1=NC=C(C=2C(=NC=C(NC(=O)C=3C=C(C=CC=3)C(F)(F)F)C=2)C)C=C1N1CCOCC1 IJFWZMGJVQXAHT-UHFFFAOYSA-N 0.000 claims 1
- WIXHYXLSQXWVLT-MRXNPFEDSA-N n-[5-[6-[(2r)-2-hydroxypropoxy]-5-morpholin-4-ylpyridin-3-yl]-6-methylpyridin-3-yl]-3-(trifluoromethyl)benzamide Chemical compound C[C@@H](O)COC1=NC=C(C=2C(=NC=C(NC(=O)C=3C=C(C=CC=3)C(F)(F)F)C=2)C)C=C1N1CCOCC1 WIXHYXLSQXWVLT-MRXNPFEDSA-N 0.000 claims 1
- WIXHYXLSQXWVLT-INIZCTEOSA-N n-[5-[6-[(2s)-2-hydroxypropoxy]-5-morpholin-4-ylpyridin-3-yl]-6-methylpyridin-3-yl]-3-(trifluoromethyl)benzamide Chemical compound C[C@H](O)COC1=NC=C(C=2C(=NC=C(NC(=O)C=3C=C(C=CC=3)C(F)(F)F)C=2)C)C=C1N1CCOCC1 WIXHYXLSQXWVLT-INIZCTEOSA-N 0.000 claims 1
- ORMPSJWTGTYLFN-UHFFFAOYSA-N n-[5-[6-[(4-hydroxyoxan-4-yl)methyl]-5-morpholin-4-ylpyridin-3-yl]-6-methylpyridin-3-yl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C=2C=C(C(CC3(O)CCOCC3)=NC=2)N2CCOCC2)C(C)=NC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 ORMPSJWTGTYLFN-UHFFFAOYSA-N 0.000 claims 1
- UOSJJLNSEIPARI-UHFFFAOYSA-N n-[5-[6-[2-(2-hydroxyethoxy)ethoxy]-5-morpholin-4-ylpyridin-3-yl]-6-methylpyridin-3-yl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C=2C=C(C(OCCOCCO)=NC=2)N2CCOCC2)C(C)=NC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 UOSJJLNSEIPARI-UHFFFAOYSA-N 0.000 claims 1
- AVCSALJGNCFOMF-OAHLLOKOSA-N n-[5-[6-ethoxy-5-[(3r)-3-methylmorpholin-4-yl]pyridazin-3-yl]-6-methylpyridin-3-yl]-3-(trifluoromethyl)benzamide Chemical compound CCOC1=NN=C(C=2C(=NC=C(NC(=O)C=3C=C(C=CC=3)C(F)(F)F)C=2)C)C=C1N1CCOC[C@H]1C AVCSALJGNCFOMF-OAHLLOKOSA-N 0.000 claims 1
- AVCSALJGNCFOMF-HNNXBMFYSA-N n-[5-[6-ethoxy-5-[(3s)-3-methylmorpholin-4-yl]pyridazin-3-yl]-6-methylpyridin-3-yl]-3-(trifluoromethyl)benzamide Chemical compound CCOC1=NN=C(C=2C(=NC=C(NC(=O)C=3C=C(C=CC=3)C(F)(F)F)C=2)C)C=C1N1CCOC[C@@H]1C AVCSALJGNCFOMF-HNNXBMFYSA-N 0.000 claims 1
- PGYAPWSQANKWNH-UHFFFAOYSA-N n-[5-[6-ethoxy-5-[2-(1h-imidazol-2-yl)morpholin-4-yl]pyridazin-3-yl]-6-methylpyridin-3-yl]-3-(trifluoromethyl)benzamide Chemical compound CCOC1=NN=C(C=2C(=NC=C(NC(=O)C=3C=C(C=CC=3)C(F)(F)F)C=2)C)C=C1N(C1)CCOC1C1=NC=CN1 PGYAPWSQANKWNH-UHFFFAOYSA-N 0.000 claims 1
- SDAJBZGJYRQNNN-UHFFFAOYSA-N n-[5-[8-[2-(1h-imidazol-2-yl)morpholin-4-yl]imidazo[1,2-b]pyridazin-6-yl]-6-methylpyridin-3-yl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C2=NN3C=CN=C3C(N3CC(OCC3)C=3NC=CN=3)=C2)C(C)=NC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 SDAJBZGJYRQNNN-UHFFFAOYSA-N 0.000 claims 1
- PHWHELVHLQDYNV-UHFFFAOYSA-N n-[6-methyl-5-(1-methyl-5-morpholin-4-yl-2-oxopyridin-3-yl)pyridin-3-yl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C=2C(N(C)C=C(C=2)N2CCOCC2)=O)C(C)=NC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 PHWHELVHLQDYNV-UHFFFAOYSA-N 0.000 claims 1
- NLRKKGQQNSZMJI-UHFFFAOYSA-N n-[6-methyl-5-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)pyridin-3-yl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C2=CN(C)C(=O)C(N3CCOCC3)=C2)C(C)=NC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 NLRKKGQQNSZMJI-UHFFFAOYSA-N 0.000 claims 1
- UDAKXGQSHNCYDD-UHFFFAOYSA-N n-[6-methyl-5-(2-morpholin-4-ylpyridin-4-yl)pyridin-3-yl]-2-methylsulfonylpyridine-4-carboxamide Chemical compound C1=C(C=2C=C(N=CC=2)N2CCOCC2)C(C)=NC=C1NC(=O)C1=CC=NC(S(C)(=O)=O)=C1 UDAKXGQSHNCYDD-UHFFFAOYSA-N 0.000 claims 1
- ITCUYRPGRFYIBZ-UHFFFAOYSA-N n-[6-methyl-5-(2-morpholin-4-ylpyridin-4-yl)pyridin-3-yl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C=2C=C(N=CC=2)N2CCOCC2)C(C)=NC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 ITCUYRPGRFYIBZ-UHFFFAOYSA-N 0.000 claims 1
- BOFJGENBYWHBQW-UHFFFAOYSA-N n-[6-methyl-5-(2-morpholin-4-ylpyridin-4-yl)pyridin-3-yl]-3-methylsulfonylbenzamide Chemical compound C1=C(C=2C=C(N=CC=2)N2CCOCC2)C(C)=NC=C1NC(=O)C1=CC=CC(S(C)(=O)=O)=C1 BOFJGENBYWHBQW-UHFFFAOYSA-N 0.000 claims 1
- TWXVUSFQVYIQDU-UHFFFAOYSA-N n-[6-methyl-5-(4-morpholin-4-yl-6,6-dioxo-5,7-dihydrothieno[3,4-d]pyrimidin-2-yl)-1-oxidopyridin-1-ium-3-yl]-3-(trifluoromethyl)benzamide Chemical compound C1=[N+]([O-])C(C)=C(C=2N=C(C=3CS(=O)(=O)CC=3N=2)N2CCOCC2)C=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 TWXVUSFQVYIQDU-UHFFFAOYSA-N 0.000 claims 1
- DZXHQPSNWGYPHD-UHFFFAOYSA-N n-[6-methyl-5-(4-morpholin-4-yl-6,6-dioxo-5,7-dihydrothieno[3,4-d]pyrimidin-2-yl)pyridin-3-yl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C=2N=C(C=3CS(=O)(=O)CC=3N=2)N2CCOCC2)C(C)=NC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 DZXHQPSNWGYPHD-UHFFFAOYSA-N 0.000 claims 1
- LFXMCPPFKLHZKO-UHFFFAOYSA-N n-[6-methyl-5-(5-morpholin-4-yl-6-oxo-1-propan-2-ylpyridin-3-yl)pyridin-3-yl]-3-(trifluoromethyl)benzamide Chemical compound O=C1N(C(C)C)C=C(C=2C(=NC=C(NC(=O)C=3C=C(C=CC=3)C(F)(F)F)C=2)C)C=C1N1CCOCC1 LFXMCPPFKLHZKO-UHFFFAOYSA-N 0.000 claims 1
- YJAQBROIDYROSH-UHFFFAOYSA-N n-[6-methyl-5-(5-morpholin-4-yl-6-oxo-1h-pyrazin-3-yl)pyridin-3-yl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C=2N=C(C(=O)NC=2)N2CCOCC2)C(C)=NC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 YJAQBROIDYROSH-UHFFFAOYSA-N 0.000 claims 1
- HSMGIQDGRRTVOS-UHFFFAOYSA-N n-[6-methyl-5-(5-morpholin-4-yl-6-propan-2-yloxypyridin-3-yl)pyridin-3-yl]-3-(trifluoromethyl)benzamide Chemical compound CC(C)OC1=NC=C(C=2C(=NC=C(NC(=O)C=3C=C(C=CC=3)C(F)(F)F)C=2)C)C=C1N1CCOCC1 HSMGIQDGRRTVOS-UHFFFAOYSA-N 0.000 claims 1
- CHLVIYONHNDXJY-UHFFFAOYSA-N n-[6-methyl-5-(5-morpholin-4-ylpyridazin-3-yl)pyridin-3-yl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C=2N=NC=C(C=2)N2CCOCC2)C(C)=NC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 CHLVIYONHNDXJY-UHFFFAOYSA-N 0.000 claims 1
- LBUYYJBOWFZOGS-UHFFFAOYSA-N n-[6-methyl-5-(6-methylsulfonyl-5-morpholin-4-ylpyridazin-3-yl)pyridin-3-yl]-4-(trifluoromethyl)pyridine-2-carboxamide Chemical compound C1=C(C=2N=NC(=C(N3CCOCC3)C=2)S(C)(=O)=O)C(C)=NC=C1NC(=O)C1=CC(C(F)(F)F)=CC=N1 LBUYYJBOWFZOGS-UHFFFAOYSA-N 0.000 claims 1
- HMYPLUBRLSAURN-UHFFFAOYSA-N n-[6-methyl-5-(6-morpholin-4-ylpyridazin-4-yl)pyridin-3-yl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C=2C=C(N=NC=2)N2CCOCC2)C(C)=NC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 HMYPLUBRLSAURN-UHFFFAOYSA-N 0.000 claims 1
- DEBLQFYQFFNANE-UHFFFAOYSA-N n-[6-methyl-5-(7-morpholin-4-ylpyrazolo[1,5-a]pyrimidin-5-yl)pyridin-3-yl]-6-(trifluoromethyl)pyridazine-4-carboxamide Chemical compound C1=C(C2=NC3=CC=NN3C(N3CCOCC3)=C2)C(C)=NC=C1NC(=O)C1=CN=NC(C(F)(F)F)=C1 DEBLQFYQFFNANE-UHFFFAOYSA-N 0.000 claims 1
- FGGWDCWMIGTGKR-UHFFFAOYSA-N n-[6-methyl-5-(8-morpholin-4-ylimidazo[1,2-a]pyridin-6-yl)pyridin-3-yl]-2-propan-2-ylpyridine-4-carboxamide Chemical compound C1=NC(C(C)C)=CC(C(=O)NC=2C=C(C(C)=NC=2)C2=CN3C=CN=C3C(N3CCOCC3)=C2)=C1 FGGWDCWMIGTGKR-UHFFFAOYSA-N 0.000 claims 1
- IXHQJQAHYPCKSY-UHFFFAOYSA-N n-[6-methyl-5-(8-morpholin-4-ylimidazo[1,2-a]pyridin-6-yl)pyridin-3-yl]-4-(trifluoromethyl)pyridine-2-carboxamide Chemical compound C1=C(C2=CN3C=CN=C3C(N3CCOCC3)=C2)C(C)=NC=C1NC(=O)C1=CC(C(F)(F)F)=CC=N1 IXHQJQAHYPCKSY-UHFFFAOYSA-N 0.000 claims 1
- CNBQFGVLNIZYEV-UHFFFAOYSA-N n-[6-methyl-5-(8-morpholin-4-ylimidazo[1,2-b]pyridazin-6-yl)pyridin-3-yl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C2=NN3C=CN=C3C(N3CCOCC3)=C2)C(C)=NC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 CNBQFGVLNIZYEV-UHFFFAOYSA-N 0.000 claims 1
- AHSWXYMNZRQFGL-UHFFFAOYSA-N n-[6-methyl-5-(8-morpholin-4-ylimidazo[1,2-b]pyridazin-6-yl)pyridin-3-yl]-4-(trifluoromethyl)pyridine-2-carboxamide Chemical compound C1=C(C2=NN3C=CN=C3C(N3CCOCC3)=C2)C(C)=NC=C1NC(=O)C1=CC(C(F)(F)F)=CC=N1 AHSWXYMNZRQFGL-UHFFFAOYSA-N 0.000 claims 1
- IDNUSGHEJHHPPA-UHFFFAOYSA-N n-[6-methyl-5-[1-(2-methylsulfonylethyl)-5-morpholin-4-yl-6-oxopyridin-3-yl]pyridin-3-yl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C2=CN(CCS(C)(=O)=O)C(=O)C(N3CCOCC3)=C2)C(C)=NC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 IDNUSGHEJHHPPA-UHFFFAOYSA-N 0.000 claims 1
- PTVOALIUHBHIKV-UHFFFAOYSA-N n-[6-methyl-5-[2-morpholin-4-yl-6-(3-oxomorpholin-4-yl)pyrimidin-4-yl]pyridin-3-yl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C=2N=C(N=C(C=2)N2C(COCC2)=O)N2CCOCC2)C(C)=NC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 PTVOALIUHBHIKV-UHFFFAOYSA-N 0.000 claims 1
- HQVKJIWNVNEHBE-UHFFFAOYSA-N n-[6-methyl-5-[5-morpholin-4-yl-1-(oxan-4-yl)-6-oxopyridin-3-yl]pyridin-3-yl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C2=CN(C(=O)C(N3CCOCC3)=C2)C2CCOCC2)C(C)=NC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 HQVKJIWNVNEHBE-UHFFFAOYSA-N 0.000 claims 1
- YMLMZIAYGCZUDE-UHFFFAOYSA-N n-[6-methyl-5-[5-morpholin-4-yl-6-(2-oxaspiro[3.3]heptan-6-yloxy)pyridin-3-yl]pyridin-3-yl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C=2C=C(C(OC3CC4(COC4)C3)=NC=2)N2CCOCC2)C(C)=NC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 YMLMZIAYGCZUDE-UHFFFAOYSA-N 0.000 claims 1
- ARVSAMQNIPCJRG-UHFFFAOYSA-N n-[6-methyl-5-[5-morpholin-4-yl-6-(oxan-4-yloxy)pyridazin-3-yl]pyridin-3-yl]-2-methylsulfonylpyridine-4-carboxamide Chemical compound C1=C(C=2N=NC(OC3CCOCC3)=C(N3CCOCC3)C=2)C(C)=NC=C1NC(=O)C1=CC=NC(S(C)(=O)=O)=C1 ARVSAMQNIPCJRG-UHFFFAOYSA-N 0.000 claims 1
- FLNNBUNPCWDUJJ-UHFFFAOYSA-N n-[6-methyl-5-[5-morpholin-4-yl-6-(oxan-4-yloxy)pyridazin-3-yl]pyridin-3-yl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C=2N=NC(OC3CCOCC3)=C(N3CCOCC3)C=2)C(C)=NC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 FLNNBUNPCWDUJJ-UHFFFAOYSA-N 0.000 claims 1
- JTEANFGHGBODHM-UHFFFAOYSA-N n-[6-methyl-5-[5-morpholin-4-yl-6-(oxan-4-yloxy)pyridazin-3-yl]pyridin-3-yl]-4-(trifluoromethyl)pyridine-2-carboxamide Chemical compound C1=C(C=2N=NC(OC3CCOCC3)=C(N3CCOCC3)C=2)C(C)=NC=C1NC(=O)C1=CC(C(F)(F)F)=CC=N1 JTEANFGHGBODHM-UHFFFAOYSA-N 0.000 claims 1
- AWTBVIRWXQYTRR-UHFFFAOYSA-N n-[6-methyl-5-[5-morpholin-4-yl-6-(oxan-4-yloxy)pyridazin-3-yl]pyridin-3-yl]-6-(trifluoromethyl)pyridazine-4-carboxamide Chemical compound C1=C(C=2N=NC(OC3CCOCC3)=C(N3CCOCC3)C=2)C(C)=NC=C1NC(=O)C1=CN=NC(C(F)(F)F)=C1 AWTBVIRWXQYTRR-UHFFFAOYSA-N 0.000 claims 1
- YQWBEKOJNUDWRO-UHFFFAOYSA-N n-[6-methyl-5-[5-morpholin-4-yl-6-(oxan-4-yloxy)pyridin-3-yl]pyridin-3-yl]-2-propan-2-ylpyridine-4-carboxamide Chemical compound C1=NC(C(C)C)=CC(C(=O)NC=2C=C(C(C)=NC=2)C=2C=C(C(OC3CCOCC3)=NC=2)N2CCOCC2)=C1 YQWBEKOJNUDWRO-UHFFFAOYSA-N 0.000 claims 1
- UEFADVPYCZXKGV-UHFFFAOYSA-N n-[6-methyl-5-[5-morpholin-4-yl-6-(oxetan-3-yloxy)pyridin-3-yl]pyridin-3-yl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C=2C=C(C(OC3COC3)=NC=2)N2CCOCC2)C(C)=NC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 UEFADVPYCZXKGV-UHFFFAOYSA-N 0.000 claims 1
- BSUIIPUXGLKINZ-BMSJAHLVSA-N n-[6-methyl-5-[5-morpholin-4-yl-6-(trideuteriomethoxy)pyridin-3-yl]pyridin-3-yl]-3-(trifluoromethyl)benzamide Chemical compound [2H]C([2H])([2H])OC1=NC=C(C=2C(=NC=C(NC(=O)C=3C=C(C=CC=3)C(F)(F)F)C=2)C)C=C1N1CCOCC1 BSUIIPUXGLKINZ-BMSJAHLVSA-N 0.000 claims 1
- KOHWMDVRLFFKNM-QFIPXVFZSA-N n-[6-methyl-5-[5-morpholin-4-yl-6-[(3s)-oxolan-3-yl]oxypyridin-3-yl]pyridin-3-yl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C=2C=C(C(O[C@@H]3COCC3)=NC=2)N2CCOCC2)C(C)=NC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 KOHWMDVRLFFKNM-QFIPXVFZSA-N 0.000 claims 1
- VQXOZZKSJPNFDD-UHFFFAOYSA-N n-[6-methyl-5-[6-(methylsulfonylmethyl)-5-morpholin-4-ylpyridin-3-yl]pyridin-3-yl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C=2C=C(C(CS(C)(=O)=O)=NC=2)N2CCOCC2)C(C)=NC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 VQXOZZKSJPNFDD-UHFFFAOYSA-N 0.000 claims 1
- QMONQMQMEHCYRF-UHFFFAOYSA-N n-[6-methyl-5-[6-(oxan-4-yloxy)-5-(3-oxomorpholin-4-yl)pyridin-3-yl]pyridin-3-yl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C=2C=C(C(OC3CCOCC3)=NC=2)N2C(COCC2)=O)C(C)=NC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 QMONQMQMEHCYRF-UHFFFAOYSA-N 0.000 claims 1
- ZWDFTCLGYJOUCA-UHFFFAOYSA-N n-methyl-n-[6-methyl-5-[5-morpholin-4-yl-6-(oxan-4-yloxy)pyridin-3-yl]pyridin-3-yl]-3-(trifluoromethyl)benzamide Chemical compound C=1N=C(C)C(C=2C=C(C(OC3CCOCC3)=NC=2)N2CCOCC2)=CC=1N(C)C(=O)C1=CC=CC(C(F)(F)F)=C1 ZWDFTCLGYJOUCA-UHFFFAOYSA-N 0.000 claims 1
- NSNZKQTYQWHCDN-UHFFFAOYSA-N tert-butyl 2-[5-[[2-(2-cyanopropan-2-yl)pyridine-4-carbonyl]amino]-2-methylphenyl]-4-morpholin-4-yl-7,8-dihydro-5h-pyrido[4,3-d]pyrimidine-6-carboxylate Chemical compound C1=C(C=2N=C(C=3CN(CCC=3N=2)C(=O)OC(C)(C)C)N2CCOCC2)C(C)=CC=C1NC(=O)C1=CC=NC(C(C)(C)C#N)=C1 NSNZKQTYQWHCDN-UHFFFAOYSA-N 0.000 claims 1
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 483
- 238000004895 liquid chromatography mass spectrometry Methods 0.000 description 188
- 235000019439 ethyl acetate Nutrition 0.000 description 179
- 239000000243 solution Substances 0.000 description 169
- 239000000203 mixture Substances 0.000 description 162
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 147
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 144
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 122
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 110
- 230000015572 biosynthetic process Effects 0.000 description 107
- 238000003786 synthesis reaction Methods 0.000 description 105
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical group C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 94
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 80
- 238000006243 chemical reaction Methods 0.000 description 79
- 239000011541 reaction mixture Substances 0.000 description 77
- 238000000034 method Methods 0.000 description 73
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 67
- 229910052938 sodium sulfate Inorganic materials 0.000 description 67
- 239000012267 brine Substances 0.000 description 64
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 64
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 62
- 239000007787 solid Substances 0.000 description 57
- 235000011152 sodium sulphate Nutrition 0.000 description 52
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 48
- 239000000741 silica gel Substances 0.000 description 47
- 229910002027 silica gel Inorganic materials 0.000 description 47
- 229960001866 silicon dioxide Drugs 0.000 description 47
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 47
- 238000003818 flash chromatography Methods 0.000 description 43
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 40
- 239000000047 product Substances 0.000 description 39
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 37
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 37
- 238000005160 1H NMR spectroscopy Methods 0.000 description 36
- HEMHJVSKTPXQMS-UHFFFAOYSA-M sodium hydroxide Inorganic materials [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 35
- 125000000217 alkyl group Chemical group 0.000 description 34
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 32
- KKVYYGGCHJGEFJ-UHFFFAOYSA-N 1-n-(4-chlorophenyl)-6-methyl-5-n-[3-(7h-purin-6-yl)pyridin-2-yl]isoquinoline-1,5-diamine Chemical compound N=1C=CC2=C(NC=3C(=CC=CN=3)C=3C=4N=CNC=4N=CN=3)C(C)=CC=C2C=1NC1=CC=C(Cl)C=C1 KKVYYGGCHJGEFJ-UHFFFAOYSA-N 0.000 description 31
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 31
- 101100381978 Mus musculus Braf gene Proteins 0.000 description 31
- 239000003921 oil Substances 0.000 description 30
- 235000019198 oils Nutrition 0.000 description 30
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-dimethylformamide Substances CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 28
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical compound C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 26
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 26
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 26
- 238000010898 silica gel chromatography Methods 0.000 description 26
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 25
- 235000019341 magnesium sulphate Nutrition 0.000 description 25
- 239000012044 organic layer Substances 0.000 description 25
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 24
- 201000010099 disease Diseases 0.000 description 24
- 239000012074 organic phase Substances 0.000 description 24
- 239000013058 crude material Substances 0.000 description 23
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 22
- 238000007792 addition Methods 0.000 description 22
- 238000000746 purification Methods 0.000 description 22
- 238000003756 stirring Methods 0.000 description 21
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 20
- 239000003814 drug Substances 0.000 description 20
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 19
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 19
- 125000004432 carbon atom Chemical group C* 0.000 description 19
- KZPYGQFFRCFCPP-UHFFFAOYSA-N 1,1'-bis(diphenylphosphino)ferrocene Chemical compound [Fe+2].C1=CC=C[C-]1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=C[C-]1P(C=1C=CC=CC=1)C1=CC=CC=C1 KZPYGQFFRCFCPP-UHFFFAOYSA-N 0.000 description 18
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 18
- 229910052805 deuterium Inorganic materials 0.000 description 17
- 239000002253 acid Substances 0.000 description 16
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical group [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 description 15
- 239000007832 Na2SO4 Substances 0.000 description 15
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 15
- 125000006413 ring segment Chemical group 0.000 description 15
- 230000001225 therapeutic effect Effects 0.000 description 15
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 14
- 125000000753 cycloalkyl group Chemical group 0.000 description 14
- 230000000694 effects Effects 0.000 description 14
- 239000003112 inhibitor Substances 0.000 description 14
- 239000010410 layer Substances 0.000 description 14
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 14
- 239000002904 solvent Substances 0.000 description 14
- 239000007858 starting material Substances 0.000 description 14
- NUENXCSIJJQHSW-UHFFFAOYSA-N 5-bromo-3-morpholin-4-yl-1h-pyridin-2-one Chemical compound BrC1=CNC(=O)C(N2CCOCC2)=C1 NUENXCSIJJQHSW-UHFFFAOYSA-N 0.000 description 13
- 229910002666 PdCl2 Inorganic materials 0.000 description 13
- CSJLBAMHHLJAAS-UHFFFAOYSA-N diethylaminosulfur trifluoride Chemical compound CCN(CC)S(F)(F)F CSJLBAMHHLJAAS-UHFFFAOYSA-N 0.000 description 13
- 208000035475 disorder Diseases 0.000 description 13
- PIBWKRNGBLPSSY-UHFFFAOYSA-L palladium(II) chloride Chemical compound Cl[Pd]Cl PIBWKRNGBLPSSY-UHFFFAOYSA-L 0.000 description 13
- 229910000027 potassium carbonate Inorganic materials 0.000 description 13
- 229920006395 saturated elastomer Polymers 0.000 description 13
- 229910000029 sodium carbonate Inorganic materials 0.000 description 13
- 229910000104 sodium hydride Inorganic materials 0.000 description 13
- NHGTZCOELVOPGK-UHFFFAOYSA-N 6-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-3-amine Chemical compound CC1=NC=C(N)C=C1B1OC(C)(C)C(C)(C)O1 NHGTZCOELVOPGK-UHFFFAOYSA-N 0.000 description 12
- 235000017550 sodium carbonate Nutrition 0.000 description 12
- 239000000725 suspension Substances 0.000 description 12
- JGFZNNIVVJXRND-UHFFFAOYSA-N N,N-Diisopropylethylamine (DIPEA) Chemical compound CCN(C(C)C)C(C)C JGFZNNIVVJXRND-UHFFFAOYSA-N 0.000 description 11
- 239000004480 active ingredient Substances 0.000 description 11
- 239000000706 filtrate Substances 0.000 description 11
- 230000037361 pathway Effects 0.000 description 11
- 229940124597 therapeutic agent Drugs 0.000 description 11
- 150000001412 amines Chemical class 0.000 description 10
- 238000010348 incorporation Methods 0.000 description 10
- 239000000543 intermediate Substances 0.000 description 10
- 239000002244 precipitate Substances 0.000 description 10
- 238000002360 preparation method Methods 0.000 description 10
- 235000017557 sodium bicarbonate Nutrition 0.000 description 10
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 9
- 125000003545 alkoxy group Chemical group 0.000 description 9
- 239000008346 aqueous phase Substances 0.000 description 9
- 229910052799 carbon Inorganic materials 0.000 description 9
- 239000000460 chlorine Substances 0.000 description 9
- 229910052736 halogen Inorganic materials 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 230000001404 mediated effect Effects 0.000 description 9
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 9
- 239000003826 tablet Substances 0.000 description 9
- RBQLFQDAQLBVBX-UHFFFAOYSA-N 4-(5-bromo-2-fluoropyridin-3-yl)morpholine Chemical compound Fc1ncc(Br)cc1N1CCOCC1 RBQLFQDAQLBVBX-UHFFFAOYSA-N 0.000 description 8
- ZOAZWUYIMFFCOB-UHFFFAOYSA-N 4-(5-bromo-2-methoxypyridin-3-yl)morpholine Chemical compound COC1=NC=C(Br)C=C1N1CCOCC1 ZOAZWUYIMFFCOB-UHFFFAOYSA-N 0.000 description 8
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 8
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical class OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 8
- 239000002585 base Substances 0.000 description 8
- 239000013078 crystal Substances 0.000 description 8
- 229910052731 fluorine Inorganic materials 0.000 description 8
- 150000002430 hydrocarbons Chemical group 0.000 description 8
- QLUONRASUYQGSK-UHFFFAOYSA-N 4-(5-bromo-2-ethoxypyridin-3-yl)morpholine Chemical compound CCOC1=NC=C(Br)C=C1N1CCOCC1 QLUONRASUYQGSK-UHFFFAOYSA-N 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 7
- 235000019270 ammonium chloride Nutrition 0.000 description 7
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 7
- 238000004587 chromatography analysis Methods 0.000 description 7
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 7
- 125000001188 haloalkyl group Chemical group 0.000 description 7
- 150000002367 halogens Chemical class 0.000 description 7
- 229910052739 hydrogen Inorganic materials 0.000 description 7
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 7
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 7
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 7
- 239000012286 potassium permanganate Substances 0.000 description 7
- FOZVXADQAHVUSV-UHFFFAOYSA-N 1-bromo-2-(2-bromoethoxy)ethane Chemical compound BrCCOCCBr FOZVXADQAHVUSV-UHFFFAOYSA-N 0.000 description 6
- VHYFNPMBLIVWCW-UHFFFAOYSA-N 4-Dimethylaminopyridine Chemical compound CN(C)C1=CC=NC=C1 VHYFNPMBLIVWCW-UHFFFAOYSA-N 0.000 description 6
- WHPZKGURRGZGAQ-UHFFFAOYSA-N 4-[5-bromo-2-(oxan-4-yloxy)pyridin-3-yl]morpholine Chemical compound C1COCCN1C1=CC(Br)=CN=C1OC1CCOCC1 WHPZKGURRGZGAQ-UHFFFAOYSA-N 0.000 description 6
- HPNBWHDRLCVZFV-UHFFFAOYSA-N 4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline Chemical compound CC1=CC=C(N)C=C1B1OC(C)(C)C(C)(C)O1 HPNBWHDRLCVZFV-UHFFFAOYSA-N 0.000 description 6
- 101150019464 ARAF gene Proteins 0.000 description 6
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- 108091000080 Phosphotransferase Proteins 0.000 description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 6
- 230000004913 activation Effects 0.000 description 6
- 229910052801 chlorine Inorganic materials 0.000 description 6
- 238000001816 cooling Methods 0.000 description 6
- 125000002147 dimethylamino group Chemical group [H]C([H])([H])N(*)C([H])([H])[H] 0.000 description 6
- 239000001257 hydrogen Substances 0.000 description 6
- 239000005457 ice water Substances 0.000 description 6
- 238000001727 in vivo Methods 0.000 description 6
- 230000005764 inhibitory process Effects 0.000 description 6
- INQOMBQAUSQDDS-UHFFFAOYSA-N iodomethane Chemical compound IC INQOMBQAUSQDDS-UHFFFAOYSA-N 0.000 description 6
- 125000002950 monocyclic group Chemical group 0.000 description 6
- 208000002154 non-small cell lung carcinoma Diseases 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 6
- 239000000546 pharmaceutical excipient Substances 0.000 description 6
- 239000012071 phase Substances 0.000 description 6
- 102000020233 phosphotransferase Human genes 0.000 description 6
- SCVFZCLFOSHCOH-UHFFFAOYSA-M potassium acetate Chemical compound [K+].CC([O-])=O SCVFZCLFOSHCOH-UHFFFAOYSA-M 0.000 description 6
- 239000003755 preservative agent Substances 0.000 description 6
- 108010077182 raf Kinases Proteins 0.000 description 6
- 102000009929 raf Kinases Human genes 0.000 description 6
- 238000002560 therapeutic procedure Methods 0.000 description 6
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 6
- 208000029729 tumor suppressor gene on chromosome 11 Diseases 0.000 description 6
- 125000006273 (C1-C3) alkyl group Chemical group 0.000 description 5
- 125000004769 (C1-C4) alkylsulfonyl group Chemical group 0.000 description 5
- FPIRBHDGWMWJEP-UHFFFAOYSA-N 1-hydroxy-7-azabenzotriazole Chemical compound C1=CN=C2N(O)N=NC2=C1 FPIRBHDGWMWJEP-UHFFFAOYSA-N 0.000 description 5
- XBLKYGVQHXXTDM-UHFFFAOYSA-N 2-(difluoromethyl)pyridine-4-carboxylic acid Chemical compound OC(=O)C1=CC=NC(C(F)F)=C1 XBLKYGVQHXXTDM-UHFFFAOYSA-N 0.000 description 5
- GXBWRBSCBONTKK-UHFFFAOYSA-N 3-chloro-5-methylpyridazine Chemical compound CC1=CN=NC(Cl)=C1 GXBWRBSCBONTKK-UHFFFAOYSA-N 0.000 description 5
- DSXNMUOXQSHBOH-UHFFFAOYSA-N 5-(6-fluoro-5-morpholin-4-ylpyridin-3-yl)-6-methylpyridin-3-amine Chemical compound CC1=NC=C(N)C=C1C1=CN=C(F)C(N2CCOCC2)=C1 DSXNMUOXQSHBOH-UHFFFAOYSA-N 0.000 description 5
- KLZXHRLOSHLEDS-UHFFFAOYSA-N 5-bromo-2-ethoxy-3-iodopyridine Chemical compound CCOC1=NC=C(Br)C=C1I KLZXHRLOSHLEDS-UHFFFAOYSA-N 0.000 description 5
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 description 5
- IAZDPXIOMUYVGZ-WFGJKAKNSA-N Dimethyl sulfoxide Chemical compound [2H]C([2H])([2H])S(=O)C([2H])([2H])[2H] IAZDPXIOMUYVGZ-WFGJKAKNSA-N 0.000 description 5
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 5
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 5
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 5
- OKJPEAGHQZHRQV-UHFFFAOYSA-N Triiodomethane Natural products IC(I)I OKJPEAGHQZHRQV-UHFFFAOYSA-N 0.000 description 5
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 5
- 125000002947 alkylene group Chemical group 0.000 description 5
- 239000007864 aqueous solution Substances 0.000 description 5
- 125000002619 bicyclic group Chemical group 0.000 description 5
- FJDQFPXHSGXQBY-UHFFFAOYSA-L caesium carbonate Chemical compound [Cs+].[Cs+].[O-]C([O-])=O FJDQFPXHSGXQBY-UHFFFAOYSA-L 0.000 description 5
- 239000003153 chemical reaction reagent Substances 0.000 description 5
- 235000015165 citric acid Nutrition 0.000 description 5
- 150000002431 hydrogen Chemical class 0.000 description 5
- 238000000338 in vitro Methods 0.000 description 5
- 230000000155 isotopic effect Effects 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 230000035772 mutation Effects 0.000 description 5
- 238000010992 reflux Methods 0.000 description 5
- JPJALAQPGMAKDF-UHFFFAOYSA-N selenium dioxide Chemical compound O=[Se]=O JPJALAQPGMAKDF-UHFFFAOYSA-N 0.000 description 5
- 230000019491 signal transduction Effects 0.000 description 5
- 239000012312 sodium hydride Substances 0.000 description 5
- 239000012453 solvate Substances 0.000 description 5
- 239000003381 stabilizer Substances 0.000 description 5
- 208000024891 symptom Diseases 0.000 description 5
- MTMBHUYOIZWQAJ-MRVPVSSYSA-N tert-butyl (2r)-2-(aminomethyl)morpholine-4-carboxylate Chemical compound CC(C)(C)OC(=O)N1CCO[C@H](CN)C1 MTMBHUYOIZWQAJ-MRVPVSSYSA-N 0.000 description 5
- 239000003039 volatile agent Substances 0.000 description 5
- STNFYMLYILKETE-UHFFFAOYSA-N 2-(1,1-difluoroethyl)pyridine-4-carboxylic acid Chemical compound CC(F)(F)C1=CC(C(O)=O)=CC=N1 STNFYMLYILKETE-UHFFFAOYSA-N 0.000 description 4
- YYROPELSRYBVMQ-UHFFFAOYSA-N 4-toluenesulfonyl chloride Chemical compound CC1=CC=C(S(Cl)(=O)=O)C=C1 YYROPELSRYBVMQ-UHFFFAOYSA-N 0.000 description 4
- JKGZUVLDAOAVAL-UHFFFAOYSA-N 5-bromo-1-methyl-3-morpholin-4-ylpyridin-2-one Chemical compound O=C1N(C)C=C(Br)C=C1N1CCOCC1 JKGZUVLDAOAVAL-UHFFFAOYSA-N 0.000 description 4
- UCLLYIVDXZGQSZ-UHFFFAOYSA-N 5-bromo-6-methylpyridin-3-amine Chemical compound CC1=NC=C(N)C=C1Br UCLLYIVDXZGQSZ-UHFFFAOYSA-N 0.000 description 4
- 208000010507 Adenocarcinoma of Lung Diseases 0.000 description 4
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 4
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 4
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 4
- 238000005481 NMR spectroscopy Methods 0.000 description 4
- 235000019502 Orange oil Nutrition 0.000 description 4
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 4
- NFHFRUOZVGFOOS-UHFFFAOYSA-N Pd(PPh3)4 Substances [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 4
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 4
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical compound C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 description 4
- 238000006069 Suzuki reaction reaction Methods 0.000 description 4
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 4
- 230000002378 acidificating effect Effects 0.000 description 4
- 125000004414 alkyl thio group Chemical group 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- IPWKHHSGDUIRAH-UHFFFAOYSA-N bis(pinacolato)diboron Chemical compound O1C(C)(C)C(C)(C)OB1B1OC(C)(C)C(C)(C)O1 IPWKHHSGDUIRAH-UHFFFAOYSA-N 0.000 description 4
- 239000000872 buffer Substances 0.000 description 4
- 229910000024 caesium carbonate Inorganic materials 0.000 description 4
- 239000012230 colorless oil Substances 0.000 description 4
- 238000002425 crystallisation Methods 0.000 description 4
- 230000008025 crystallization Effects 0.000 description 4
- 125000004093 cyano group Chemical group *C#N 0.000 description 4
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 4
- 239000002552 dosage form Substances 0.000 description 4
- 239000000284 extract Substances 0.000 description 4
- 238000000605 extraction Methods 0.000 description 4
- SURQXAFEQWPFPV-UHFFFAOYSA-L iron(2+) sulfate heptahydrate Chemical compound O.O.O.O.O.O.O.[Fe+2].[O-]S([O-])(=O)=O SURQXAFEQWPFPV-UHFFFAOYSA-L 0.000 description 4
- 239000000314 lubricant Substances 0.000 description 4
- 201000005249 lung adenocarcinoma Diseases 0.000 description 4
- 125000004170 methylsulfonyl group Chemical group [H]C([H])([H])S(*)(=O)=O 0.000 description 4
- 150000002780 morpholines Chemical class 0.000 description 4
- SYSQUGFVNFXIIT-UHFFFAOYSA-N n-[4-(1,3-benzoxazol-2-yl)phenyl]-4-nitrobenzenesulfonamide Chemical class C1=CC([N+](=O)[O-])=CC=C1S(=O)(=O)NC1=CC=C(C=2OC3=CC=CC=C3N=2)C=C1 SYSQUGFVNFXIIT-UHFFFAOYSA-N 0.000 description 4
- CLPJDDCWLJOIBI-UHFFFAOYSA-N n-[4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(B2OC(C)(C)C(C)(C)O2)C(C)=CC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 CLPJDDCWLJOIBI-UHFFFAOYSA-N 0.000 description 4
- 239000010502 orange oil Substances 0.000 description 4
- LMYJGUNNJIDROI-UHFFFAOYSA-N oxan-4-ol Chemical compound OC1CCOCC1 LMYJGUNNJIDROI-UHFFFAOYSA-N 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 230000000803 paradoxical effect Effects 0.000 description 4
- XHXFXVLFKHQFAL-UHFFFAOYSA-N phosphoryl trichloride Chemical compound ClP(Cl)(Cl)=O XHXFXVLFKHQFAL-UHFFFAOYSA-N 0.000 description 4
- VVWRJUBEIPHGQF-MDZDMXLPSA-N propan-2-yl (ne)-n-propan-2-yloxycarbonyliminocarbamate Chemical compound CC(C)OC(=O)\N=N\C(=O)OC(C)C VVWRJUBEIPHGQF-MDZDMXLPSA-N 0.000 description 4
- 229910052708 sodium Inorganic materials 0.000 description 4
- 239000011734 sodium Substances 0.000 description 4
- LPXPTNMVRIOKMN-UHFFFAOYSA-M sodium nitrite Chemical compound [Na+].[O-]N=O LPXPTNMVRIOKMN-UHFFFAOYSA-M 0.000 description 4
- GEHJYWRUCIMESM-UHFFFAOYSA-L sodium sulfite Chemical compound [Na+].[Na+].[O-]S([O-])=O GEHJYWRUCIMESM-UHFFFAOYSA-L 0.000 description 4
- MFRIHAYPQRLWNB-UHFFFAOYSA-N sodium tert-butoxide Chemical compound [Na+].CC(C)(C)[O-] MFRIHAYPQRLWNB-UHFFFAOYSA-N 0.000 description 4
- 241000894007 species Species 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 230000000699 topical effect Effects 0.000 description 4
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 4
- CXNIUSPIQKWYAI-UHFFFAOYSA-N xantphos Chemical compound C=12OC3=C(P(C=4C=CC=CC=4)C=4C=CC=CC=4)C=CC=C3C(C)(C)C2=CC=CC=1P(C=1C=CC=CC=1)C1=CC=CC=C1 CXNIUSPIQKWYAI-UHFFFAOYSA-N 0.000 description 4
- 229910052725 zinc Inorganic materials 0.000 description 4
- 239000011701 zinc Substances 0.000 description 4
- DEYHOVFKHLVTJB-SECBINFHSA-N (3r)-4-(5-bromo-2-ethoxypyridin-3-yl)-3-methylmorpholine Chemical compound CCOC1=NC=C(Br)C=C1N1[C@H](C)COCC1 DEYHOVFKHLVTJB-SECBINFHSA-N 0.000 description 3
- 125000004214 1-pyrrolidinyl group Chemical group [H]C1([H])N(*)C([H])([H])C([H])([H])C1([H])[H] 0.000 description 3
- 125000004206 2,2,2-trifluoroethyl group Chemical group [H]C([H])(*)C(F)(F)F 0.000 description 3
- WMRFYBUIWVQBAG-UHFFFAOYSA-N 2-(1,1-difluoropropyl)pyridine-4-carboxylic acid Chemical compound CCC(F)(F)C1=CC(C(O)=O)=CC=N1 WMRFYBUIWVQBAG-UHFFFAOYSA-N 0.000 description 3
- OUNRSRBCTDBKTD-UHFFFAOYSA-N 2-(2-cyanopropan-2-yl)pyridine-4-carboxylic acid Chemical compound N#CC(C)(C)C1=CC(C(O)=O)=CC=N1 OUNRSRBCTDBKTD-UHFFFAOYSA-N 0.000 description 3
- BCNGYLBMMXNFCY-UHFFFAOYSA-N 2-(5-bromo-3-morpholin-4-yl-2-oxopyridin-1-yl)propanenitrile Chemical compound O=C1N(C(C#N)C)C=C(Br)C=C1N1CCOCC1 BCNGYLBMMXNFCY-UHFFFAOYSA-N 0.000 description 3
- GDWWCGSKFKUPOS-UHFFFAOYSA-N 2-(5-bromo-3-morpholin-4-ylpyridin-2-yl)oxypropanenitrile Chemical compound N#CC(C)OC1=NC=C(Br)C=C1N1CCOCC1 GDWWCGSKFKUPOS-UHFFFAOYSA-N 0.000 description 3
- APOYTRAZFJURPB-UHFFFAOYSA-N 2-methoxy-n-(2-methoxyethyl)-n-(trifluoro-$l^{4}-sulfanyl)ethanamine Chemical compound COCCN(S(F)(F)F)CCOC APOYTRAZFJURPB-UHFFFAOYSA-N 0.000 description 3
- FEKFXKVQYUKQMX-UHFFFAOYSA-N 4-(5-bromo-2-chloropyridin-3-yl)morpholine Chemical compound ClC1=NC=C(Br)C=C1N1CCOCC1 FEKFXKVQYUKQMX-UHFFFAOYSA-N 0.000 description 3
- COIOXTGXIQKWBH-UHFFFAOYSA-N 4-(5-bromopyridin-3-yl)morpholine Chemical compound BrC1=CN=CC(N2CCOCC2)=C1 COIOXTGXIQKWBH-UHFFFAOYSA-N 0.000 description 3
- PWJULGUKQACHMI-UHFFFAOYSA-N 4-[2-methoxy-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-3-yl]morpholine Chemical compound COC1=NC=C(B2OC(C)(C)C(C)(C)O2)C=C1N1CCOCC1 PWJULGUKQACHMI-UHFFFAOYSA-N 0.000 description 3
- 125000004487 4-tetrahydropyranyl group Chemical group [H]C1([H])OC([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 3
- IQPXDUNQMPRRCP-UHFFFAOYSA-N 5-bromo-2-ethoxypyridin-3-amine Chemical compound CCOC1=NC=C(Br)C=C1N IQPXDUNQMPRRCP-UHFFFAOYSA-N 0.000 description 3
- WKYHLPYRPCMEKS-UHFFFAOYSA-N 5-bromo-3-morpholin-4-ylpyridine-2-carbonitrile Chemical compound BrC1=CN=C(C#N)C(N2CCOCC2)=C1 WKYHLPYRPCMEKS-UHFFFAOYSA-N 0.000 description 3
- ZLVKJPISTZMFOP-UHFFFAOYSA-N 5-bromo-n,n-dimethyl-3-morpholin-4-ylpyridin-2-amine Chemical compound CN(C)C1=NC=C(Br)C=C1N1CCOCC1 ZLVKJPISTZMFOP-UHFFFAOYSA-N 0.000 description 3
- YYOFRMLMFDBYEH-UHFFFAOYSA-N 6-chloro-5-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)pyridine-3-carboxylic acid Chemical compound O=C1N(C)C=C(C=2C(=NC=C(C=2)C(O)=O)Cl)C=C1N1CCOCC1 YYOFRMLMFDBYEH-UHFFFAOYSA-N 0.000 description 3
- CEBSJVGFMSBFFB-UHFFFAOYSA-N 8-(5-bromo-2-ethoxypyridin-3-yl)-3-oxa-8-azabicyclo[3.2.1]octane Chemical compound CCOc1ncc(Br)cc1N1C2CCC1COC2 CEBSJVGFMSBFFB-UHFFFAOYSA-N 0.000 description 3
- WYUASXNUQIXBSK-UHFFFAOYSA-N 8-[5-bromo-2-(oxan-4-yloxy)pyridin-3-yl]-3-oxa-8-azabicyclo[3.2.1]octane Chemical compound C1OCC2CCC1N2C1=CC(Br)=CN=C1OC1CCOCC1 WYUASXNUQIXBSK-UHFFFAOYSA-N 0.000 description 3
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 3
- MLDQJTXFUGDVEO-UHFFFAOYSA-N BAY-43-9006 Chemical compound C1=NC(C(=O)NC)=CC(OC=2C=CC(NC(=O)NC=3C=C(C(Cl)=CC=3)C(F)(F)F)=CC=2)=C1 MLDQJTXFUGDVEO-UHFFFAOYSA-N 0.000 description 3
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 3
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 3
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 3
- ROSDSFDQCJNGOL-UHFFFAOYSA-N Dimethylamine Chemical compound CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 description 3
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 3
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 3
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 3
- 102000043136 MAP kinase family Human genes 0.000 description 3
- 108091054455 MAP kinase family Proteins 0.000 description 3
- 241000124008 Mammalia Species 0.000 description 3
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 3
- 102100024193 Mitogen-activated protein kinase 1 Human genes 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 3
- RWRDLPDLKQPQOW-UHFFFAOYSA-N Pyrrolidine Chemical compound C1CCNC1 RWRDLPDLKQPQOW-UHFFFAOYSA-N 0.000 description 3
- 102100033479 RAF proto-oncogene serine/threonine-protein kinase Human genes 0.000 description 3
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 description 3
- 229920002472 Starch Polymers 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 230000003213 activating effect Effects 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- 238000006254 arylation reaction Methods 0.000 description 3
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 239000011575 calcium Substances 0.000 description 3
- 229910052791 calcium Inorganic materials 0.000 description 3
- 125000001309 chloro group Chemical group Cl* 0.000 description 3
- 125000004122 cyclic group Chemical group 0.000 description 3
- 239000000839 emulsion Substances 0.000 description 3
- PYULWDRAUODNFI-UHFFFAOYSA-N ethyl 4-(2-hydroxypropan-2-yl)pyridine-2-carboxylate Chemical compound CCOC(=O)C1=CC(C(C)(C)O)=CC=N1 PYULWDRAUODNFI-UHFFFAOYSA-N 0.000 description 3
- LHZOLNKTOSTVQK-UHFFFAOYSA-N ethyl 4-acetylpyridine-2-carboxylate Chemical compound CCOC(=O)C1=CC(C(C)=O)=CC=N1 LHZOLNKTOSTVQK-UHFFFAOYSA-N 0.000 description 3
- 239000000796 flavoring agent Substances 0.000 description 3
- 239000011737 fluorine Substances 0.000 description 3
- 125000001153 fluoro group Chemical group F* 0.000 description 3
- VUWZPRWSIVNGKG-UHFFFAOYSA-N fluoromethane Chemical compound F[CH2] VUWZPRWSIVNGKG-UHFFFAOYSA-N 0.000 description 3
- 235000003599 food sweetener Nutrition 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- 238000001640 fractional crystallisation Methods 0.000 description 3
- 239000007903 gelatin capsule Substances 0.000 description 3
- 238000004128 high performance liquid chromatography Methods 0.000 description 3
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 3
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 3
- CBOIHMRHGLHBPB-UHFFFAOYSA-N hydroxymethyl Chemical compound O[CH2] CBOIHMRHGLHBPB-UHFFFAOYSA-N 0.000 description 3
- LRDFRRGEGBBSRN-UHFFFAOYSA-N isobutyronitrile Chemical compound CC(C)C#N LRDFRRGEGBBSRN-UHFFFAOYSA-N 0.000 description 3
- 239000008101 lactose Substances 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 125000005322 morpholin-1-yl group Chemical group 0.000 description 3
- QJLVEWAOLGCGGL-UHFFFAOYSA-N n-[6-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-3-yl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(B2OC(C)(C)C(C)(C)O2)C(C)=NC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 QJLVEWAOLGCGGL-UHFFFAOYSA-N 0.000 description 3
- 238000007339 nucleophilic aromatic substitution reaction Methods 0.000 description 3
- 230000000269 nucleophilic effect Effects 0.000 description 3
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 3
- 125000006684 polyhaloalkyl group Polymers 0.000 description 3
- 235000011056 potassium acetate Nutrition 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 230000002285 radioactive effect Effects 0.000 description 3
- 102000016914 ras Proteins Human genes 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 229960003787 sorafenib Drugs 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- 235000019698 starch Nutrition 0.000 description 3
- 239000003765 sweetening agent Substances 0.000 description 3
- 125000001712 tetrahydronaphthyl group Chemical group C1(CCCC2=CC=CC=C12)* 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 3
- QBYIENPQHBMVBV-HFEGYEGKSA-N (2R)-2-hydroxy-2-phenylacetic acid Chemical compound O[C@@H](C(O)=O)c1ccccc1.O[C@@H](C(O)=O)c1ccccc1 QBYIENPQHBMVBV-HFEGYEGKSA-N 0.000 description 2
- NWZSZGALRFJKBT-KNIFDHDWSA-N (2s)-2,6-diaminohexanoic acid;(2s)-2-hydroxybutanedioic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O.NCCCC[C@H](N)C(O)=O NWZSZGALRFJKBT-KNIFDHDWSA-N 0.000 description 2
- DEYHOVFKHLVTJB-VIFPVBQESA-N (3S)-4-(5-bromo-2-ethoxypyridin-3-yl)-3-methylmorpholine Chemical compound CCOc1ncc(Br)cc1N1CCOC[C@@H]1C DEYHOVFKHLVTJB-VIFPVBQESA-N 0.000 description 2
- 125000006650 (C2-C4) alkynyl group Chemical group 0.000 description 2
- 125000006645 (C3-C4) cycloalkyl group Chemical group 0.000 description 2
- WQADWIOXOXRPLN-UHFFFAOYSA-N 1,3-dithiane Chemical compound C1CSCSC1 WQADWIOXOXRPLN-UHFFFAOYSA-N 0.000 description 2
- LOZWAPSEEHRYPG-UHFFFAOYSA-N 1,4-dithiane Chemical compound C1CSCCS1 LOZWAPSEEHRYPG-UHFFFAOYSA-N 0.000 description 2
- QWZHXFOQXYUKBQ-UHFFFAOYSA-N 1-(4-methylpyridin-2-yl)cyclopropane-1-carbonitrile Chemical compound CC1=CC=NC(C2(CC2)C#N)=C1 QWZHXFOQXYUKBQ-UHFFFAOYSA-N 0.000 description 2
- OSWXBLAFWOMUQJ-UHFFFAOYSA-N 1-(5-methylpyridazin-3-yl)cyclopropane-1-carbonitrile Chemical compound CC1=CN=NC(C2(CC2)C#N)=C1 OSWXBLAFWOMUQJ-UHFFFAOYSA-N 0.000 description 2
- TXARBQYFKFARLC-UHFFFAOYSA-N 1-(5-methylpyridazin-3-yl)ethanone Chemical compound CC(=O)C1=CC(C)=CN=N1 TXARBQYFKFARLC-UHFFFAOYSA-N 0.000 description 2
- BIPVDJPEOOVAAR-SNVBAGLBSA-N 1-[(2r)-4-(4-bromopyridin-2-yl)morpholin-2-yl]-n-methylmethanamine Chemical compound C1CO[C@H](CNC)CN1C1=CC(Br)=CC=N1 BIPVDJPEOOVAAR-SNVBAGLBSA-N 0.000 description 2
- QRDVYKCUUSFJJZ-UHFFFAOYSA-N 1-ethyl-6-oxo-5-(trifluoromethyl)pyridine-3-carboxylic acid Chemical compound CCN1C=C(C(O)=O)C=C(C(F)(F)F)C1=O QRDVYKCUUSFJJZ-UHFFFAOYSA-N 0.000 description 2
- XXHFEVZXOCHQBF-UHFFFAOYSA-N 1-methyl-3-morpholin-4-yl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-2-one Chemical compound O=C1N(C)C=C(B2OC(C)(C)C(C)(C)O2)C=C1N1CCOCC1 XXHFEVZXOCHQBF-UHFFFAOYSA-N 0.000 description 2
- YABJJWZLRMPFSI-UHFFFAOYSA-N 1-methyl-5-[[2-[5-(trifluoromethyl)-1H-imidazol-2-yl]-4-pyridinyl]oxy]-N-[4-(trifluoromethyl)phenyl]-2-benzimidazolamine Chemical compound N=1C2=CC(OC=3C=C(N=CC=3)C=3NC(=CN=3)C(F)(F)F)=CC=C2N(C)C=1NC1=CC=C(C(F)(F)F)C=C1 YABJJWZLRMPFSI-UHFFFAOYSA-N 0.000 description 2
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 2
- HWLQXIHEWAKVBC-UHFFFAOYSA-N 2-(1,1-difluoroethyl)-4-methylpyridine Chemical compound CC1=CC=NC(C(C)(F)F)=C1 HWLQXIHEWAKVBC-UHFFFAOYSA-N 0.000 description 2
- RMOMZKCWZBUWCH-UHFFFAOYSA-N 2-(1,1-difluoroethyl)pyridin-4-amine Chemical compound CC(F)(F)C1=CC(N)=CC=N1 RMOMZKCWZBUWCH-UHFFFAOYSA-N 0.000 description 2
- GFGKZWSSOHQYGG-UHFFFAOYSA-N 2-(1,1-difluoropropyl)-4-methylpyridine Chemical compound CCC(F)(F)C1=CC(C)=CC=N1 GFGKZWSSOHQYGG-UHFFFAOYSA-N 0.000 description 2
- GRFCEQJJEABMPE-UHFFFAOYSA-N 2-(1-cyanocyclopropyl)pyridine-4-carboxylic acid Chemical compound OC(=O)C1=CC=NC(C2(CC2)C#N)=C1 GRFCEQJJEABMPE-UHFFFAOYSA-N 0.000 description 2
- OASKIJASFDGATP-UHFFFAOYSA-N 2-(2-cyanopropan-2-yl)-n-[4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]pyridine-4-carboxamide Chemical compound C1=C(B2OC(C)(C)C(C)(C)O2)C(C)=CC=C1NC(=O)C1=CC=NC(C(C)(C)C#N)=C1 OASKIJASFDGATP-UHFFFAOYSA-N 0.000 description 2
- OPTDDSBDAURTGM-UHFFFAOYSA-N 2-(2-cyanopropan-2-yl)-n-[6-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-3-yl]pyridine-4-carboxamide Chemical compound C1=C(B2OC(C)(C)C(C)(C)O2)C(C)=NC=C1NC(=O)C1=CC=NC(C(C)(C)C#N)=C1 OPTDDSBDAURTGM-UHFFFAOYSA-N 0.000 description 2
- MWWPCLWNBBMZKK-UHFFFAOYSA-N 2-(2-fluoropropan-2-yl)-4-methylpyridine Chemical compound CC1=CC=NC(C(C)(C)F)=C1 MWWPCLWNBBMZKK-UHFFFAOYSA-N 0.000 description 2
- DQVCCKMPXZEJCM-UHFFFAOYSA-N 2-(2-fluoropropan-2-yl)pyridine-4-carboxylic acid Chemical compound CC(C)(F)C1=CC(C(O)=O)=CC=N1 DQVCCKMPXZEJCM-UHFFFAOYSA-N 0.000 description 2
- GDDQYVJKADMDFF-UHFFFAOYSA-N 2-(2-hydroxypropan-2-yl)pyridine-4-carboxylic acid Chemical compound CC(C)(O)C1=CC(C(O)=O)=CC=N1 GDDQYVJKADMDFF-UHFFFAOYSA-N 0.000 description 2
- JEMARLRZQMPEEW-UHFFFAOYSA-N 2-(4-methylpyridin-2-yl)propan-2-ol Chemical compound CC1=CC=NC(C(C)(C)O)=C1 JEMARLRZQMPEEW-UHFFFAOYSA-N 0.000 description 2
- QDZDQZANHXXBJY-UHFFFAOYSA-N 2-(5-bromo-3-morpholin-4-yl-2-oxopyridin-1-yl)acetonitrile Chemical compound O=C1N(CC#N)C=C(Br)C=C1N1CCOCC1 QDZDQZANHXXBJY-UHFFFAOYSA-N 0.000 description 2
- PPJYWWBMHYQAGB-UHFFFAOYSA-N 2-(5-bromo-3-morpholin-4-ylpyridin-2-yl)oxyacetonitrile Chemical compound BrC1=CN=C(OCC#N)C(N2CCOCC2)=C1 PPJYWWBMHYQAGB-UHFFFAOYSA-N 0.000 description 2
- ZDWDZNXLVKYSBA-UHFFFAOYSA-N 2-(5-bromo-3-morpholin-4-ylpyridin-2-yl)oxyethanol Chemical compound OCCOC1=NC=C(Br)C=C1N1CCOCC1 ZDWDZNXLVKYSBA-UHFFFAOYSA-N 0.000 description 2
- VRXCIIFUNFHWIU-UHFFFAOYSA-N 2-(5-methylpyridazin-3-yl)acetonitrile Chemical compound CC1=CN=NC(CC#N)=C1 VRXCIIFUNFHWIU-UHFFFAOYSA-N 0.000 description 2
- MKTLWEQFYRJYTH-UHFFFAOYSA-N 2-(5-methylpyridazin-3-yl)propan-2-ol Chemical compound CC1=CN=NC(C(C)(C)O)=C1 MKTLWEQFYRJYTH-UHFFFAOYSA-N 0.000 description 2
- XDUCMNDYGKMGJS-UHFFFAOYSA-N 2-(oxetan-3-yl)pyridine-4-carboxylic acid Chemical compound OC(=O)c1ccnc(c1)C1COC1 XDUCMNDYGKMGJS-UHFFFAOYSA-N 0.000 description 2
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- GMLDXAVAXSGGGL-UHFFFAOYSA-N 2-[5-(5-amino-2-methylpyridin-3-yl)-3-morpholin-4-ylpyridin-2-yl]oxyethanol Chemical compound CC1=NC=C(N)C=C1C1=CN=C(OCCO)C(N2CCOCC2)=C1 GMLDXAVAXSGGGL-UHFFFAOYSA-N 0.000 description 2
- LLHXYVSSJFNGLL-UHFFFAOYSA-N 2-[[4-(5-amino-2-methylpyridin-3-yl)-6-fluoropyridin-2-yl]amino]ethanol Chemical compound CC1=NC=C(N)C=C1C1=CC(F)=NC(NCCO)=C1 LLHXYVSSJFNGLL-UHFFFAOYSA-N 0.000 description 2
- RKFROIVVUMKJFY-UHFFFAOYSA-N 2-[[4-(5-amino-2-methylpyridin-3-yl)-6-morpholin-4-ylpyridin-2-yl]amino]ethanol Chemical compound CC1=NC=C(N)C=C1C1=CC(NCCO)=NC(N2CCOCC2)=C1 RKFROIVVUMKJFY-UHFFFAOYSA-N 0.000 description 2
- NKYRSYFRCRGILM-UHFFFAOYSA-N 2-cyclopropylpyridine-4-carbonitrile Chemical compound N#CC1=CC=NC(C2CC2)=C1 NKYRSYFRCRGILM-UHFFFAOYSA-N 0.000 description 2
- QFUFLFJZHFCDLM-UHFFFAOYSA-N 2-cyclopropylpyridine-4-carboxylic acid Chemical compound OC(=O)C1=CC=NC(C2CC2)=C1 QFUFLFJZHFCDLM-UHFFFAOYSA-N 0.000 description 2
- ZBFAXMKJADVOGH-UHFFFAOYSA-N 2-fluoro-4-methylpyridine Chemical compound CC1=CC=NC(F)=C1 ZBFAXMKJADVOGH-UHFFFAOYSA-N 0.000 description 2
- IZHVBANLECCAGF-UHFFFAOYSA-N 2-hydroxy-3-(octadecanoyloxy)propyl octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)COC(=O)CCCCCCCCCCCCCCCCC IZHVBANLECCAGF-UHFFFAOYSA-N 0.000 description 2
- IMBHEBGVRGZCMA-LURJTMIESA-N 2-hydroxy-n-[[(2s)-morpholin-2-yl]methyl]acetamide Chemical compound OCC(=O)NC[C@@H]1CNCCO1 IMBHEBGVRGZCMA-LURJTMIESA-N 0.000 description 2
- DXDXQVLZEURDHT-UHFFFAOYSA-N 2-methyl-2-(5-methylpyridazin-3-yl)propanenitrile Chemical compound CC1=CN=NC(C(C)(C)C#N)=C1 DXDXQVLZEURDHT-UHFFFAOYSA-N 0.000 description 2
- HPJALMWOZYIZGE-UHFFFAOYSA-N 2-oxa-6-azaspiro[3.3]heptane Chemical compound C1NCC11COC1 HPJALMWOZYIZGE-UHFFFAOYSA-N 0.000 description 2
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 2
- RESVROQGVNYVCZ-UHFFFAOYSA-N 2-tert-butyl-n-[4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]pyridine-4-carboxamide Chemical compound C1=C(B2OC(C)(C)C(C)(C)O2)C(C)=CC=C1NC(=O)C1=CC=NC(C(C)(C)C)=C1 RESVROQGVNYVCZ-UHFFFAOYSA-N 0.000 description 2
- MJPAHMZEXVECGY-UHFFFAOYSA-N 3-(1,3,4-oxadiazol-2-yl)benzoic acid Chemical compound OC(=O)C1=CC=CC(C=2OC=NN=2)=C1 MJPAHMZEXVECGY-UHFFFAOYSA-N 0.000 description 2
- NJMNOIZJNOZPGK-UHFFFAOYSA-N 3-(2,2,2-trifluoro-1-hydroxyethyl)benzoic acid Chemical compound FC(F)(F)C(O)C1=CC=CC(C(O)=O)=C1 NJMNOIZJNOZPGK-UHFFFAOYSA-N 0.000 description 2
- VSCTXXVTZNQKAX-UHFFFAOYSA-N 3-(2-cyanopropan-2-yl)benzoic acid Chemical compound N#CC(C)(C)C1=CC=CC(C(O)=O)=C1 VSCTXXVTZNQKAX-UHFFFAOYSA-N 0.000 description 2
- LKERDKGZTDYCKO-UHFFFAOYSA-N 3-(2-fluoropropan-2-yl)-5-methylpyridazine Chemical compound CC1=CN=NC(C(C)(C)F)=C1 LKERDKGZTDYCKO-UHFFFAOYSA-N 0.000 description 2
- KAJTVTAKVKWFJA-UHFFFAOYSA-N 3-(2-methylsulfonylpropan-2-yl)benzoic acid Chemical compound CS(=O)(=O)C(C)(C)C1=CC=CC(C(O)=O)=C1 KAJTVTAKVKWFJA-UHFFFAOYSA-N 0.000 description 2
- BTGIBGANYYRADL-UHFFFAOYSA-N 3-(6-ethoxy-5-morpholin-4-ylpyridin-3-yl)-4-methylaniline Chemical compound CCOC1=NC=C(C=2C(=CC=C(N)C=2)C)C=C1N1CCOCC1 BTGIBGANYYRADL-UHFFFAOYSA-N 0.000 description 2
- IVMDZIZLYUCRJH-UHFFFAOYSA-N 3-(6-ethoxy-5-morpholin-4-ylpyridin-3-yl)-4-methylbenzoic acid Chemical compound CCOC1=NC=C(C=2C(=CC=C(C=2)C(O)=O)C)C=C1N1CCOCC1 IVMDZIZLYUCRJH-UHFFFAOYSA-N 0.000 description 2
- LIACRDFNWIGRCX-UHFFFAOYSA-N 3-(difluoromethyl)benzoic acid Chemical compound OC(=O)C1=CC=CC(C(F)F)=C1 LIACRDFNWIGRCX-UHFFFAOYSA-N 0.000 description 2
- QPUVFEMYORGPAE-UHFFFAOYSA-N 3-(hydrazinecarbonyl)benzoic acid Chemical compound NNC(=O)C1=CC=CC(C(O)=O)=C1 QPUVFEMYORGPAE-UHFFFAOYSA-N 0.000 description 2
- LUKGLCOJCPIZRG-UHFFFAOYSA-N 3-(methylsulfonimidoyl)benzoic acid Chemical compound CS(=N)(=O)C1=CC=CC(C(O)=O)=C1 LUKGLCOJCPIZRG-UHFFFAOYSA-N 0.000 description 2
- RUJYJCANMOTJMO-UHFFFAOYSA-N 3-(trifluoromethyl)benzoyl chloride Chemical compound FC(F)(F)C1=CC=CC(C(Cl)=O)=C1 RUJYJCANMOTJMO-UHFFFAOYSA-N 0.000 description 2
- AUTYSSYMDLHHNV-UHFFFAOYSA-N 3-bromo-1-methyl-5-morpholin-4-ylpyridin-2-one Chemical compound C1=C(Br)C(=O)N(C)C=C1N1CCOCC1 AUTYSSYMDLHHNV-UHFFFAOYSA-N 0.000 description 2
- ADCXKALVZQYLTJ-UHFFFAOYSA-N 3-bromo-4-methyl-n-[3-(trifluoromethyl)phenyl]benzamide Chemical compound C1=C(Br)C(C)=CC=C1C(=O)NC1=CC=CC(C(F)(F)F)=C1 ADCXKALVZQYLTJ-UHFFFAOYSA-N 0.000 description 2
- JCKLCXZYAVBAFX-UHFFFAOYSA-N 3-bromo-5-morpholin-4-yl-1h-pyridin-2-one Chemical compound C1=C(Br)C(O)=NC=C1N1CCOCC1 JCKLCXZYAVBAFX-UHFFFAOYSA-N 0.000 description 2
- VTXKMQSHSSNEJF-UHFFFAOYSA-N 3-methylsulfinylbenzoic acid Chemical compound CS(=O)C1=CC=CC(C(O)=O)=C1 VTXKMQSHSSNEJF-UHFFFAOYSA-N 0.000 description 2
- MNILDQSRDHCFJG-UHFFFAOYSA-N 3-oxa-8-azabicyclo[3.2.1]octane Chemical compound C1OCC2CCC1N2 MNILDQSRDHCFJG-UHFFFAOYSA-N 0.000 description 2
- FKLBBOIDPFGQMF-UHFFFAOYSA-N 4-(1,1-difluoroethyl)pyridine-2-carboxylic acid Chemical compound CC(F)(F)C1=CC=NC(C(O)=O)=C1 FKLBBOIDPFGQMF-UHFFFAOYSA-N 0.000 description 2
- BIWIGCXIJOHGAW-UHFFFAOYSA-N 4-(2-cyanopropan-2-yl)pyridine-2-carboxylic acid Chemical compound N#CC(C)(C)C1=CC=NC(C(O)=O)=C1 BIWIGCXIJOHGAW-UHFFFAOYSA-N 0.000 description 2
- XVGBKEAJZLFADZ-UHFFFAOYSA-N 4-(2-fluoropropan-2-yl)pyridine-2-carboxylic acid Chemical compound CC(C)(F)C1=CC=NC(C(O)=O)=C1 XVGBKEAJZLFADZ-UHFFFAOYSA-N 0.000 description 2
- GZLPANPPXPXHDW-UHFFFAOYSA-N 4-(2-hydroxypropan-2-yl)pyridine-2-carboxylic acid Chemical compound CC(C)(O)C1=CC=NC(C(O)=O)=C1 GZLPANPPXPXHDW-UHFFFAOYSA-N 0.000 description 2
- WFFZYSMXLRCXTB-UHFFFAOYSA-N 4-(4-bromo-6-chloro-3-fluoropyridin-2-yl)morpholine Chemical compound FC1=C(Br)C=C(Cl)N=C1N1CCOCC1 WFFZYSMXLRCXTB-UHFFFAOYSA-N 0.000 description 2
- CRFFLOHTUCWWIA-UHFFFAOYSA-N 4-(5-bromo-2-propan-2-yloxypyridin-3-yl)morpholine Chemical compound CC(C)OC1=NC=C(Br)C=C1N1CCOCC1 CRFFLOHTUCWWIA-UHFFFAOYSA-N 0.000 description 2
- JOHDUESOKYUNEP-UHFFFAOYSA-N 4-(5-bromo-6-methoxypyridin-3-yl)morpholine Chemical compound C1=C(Br)C(OC)=NC=C1N1CCOCC1 JOHDUESOKYUNEP-UHFFFAOYSA-N 0.000 description 2
- AVZHUCQUCHGNJF-UHFFFAOYSA-N 4-(6-chloropyrazin-2-yl)morpholine Chemical compound ClC1=CN=CC(N2CCOCC2)=N1 AVZHUCQUCHGNJF-UHFFFAOYSA-N 0.000 description 2
- GBTJDAVORWONEW-UHFFFAOYSA-N 4-amino-2-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)benzonitrile Chemical compound O=C1N(C)C=C(C=2C(=CC=C(N)C=2)C#N)C=C1N1CCOCC1 GBTJDAVORWONEW-UHFFFAOYSA-N 0.000 description 2
- BVKAUTUQYVWHKN-UHFFFAOYSA-N 4-bromo-1-methyl-6-morpholin-4-ylpyridin-2-one Chemical compound BrC1=CC(=O)N(C)C(N2CCOCC2)=C1 BVKAUTUQYVWHKN-UHFFFAOYSA-N 0.000 description 2
- MXSNWDSLQFPZRL-UHFFFAOYSA-N 4-bromo-6-chloro-1-methylpyridin-2-one Chemical compound CN1C(Cl)=CC(Br)=CC1=O MXSNWDSLQFPZRL-UHFFFAOYSA-N 0.000 description 2
- WVVCZQWMMAULSY-UHFFFAOYSA-N 4-bromo-6-chloro-1h-pyridin-2-one Chemical compound OC1=CC(Br)=CC(Cl)=N1 WVVCZQWMMAULSY-UHFFFAOYSA-N 0.000 description 2
- HXCPMIRSWJJTGV-UHFFFAOYSA-N 4-bromo-6-chloro-2-methylpyridazin-3-one Chemical compound CN1N=C(Cl)C=C(Br)C1=O HXCPMIRSWJJTGV-UHFFFAOYSA-N 0.000 description 2
- FGOWNGCSUSKHQI-UHFFFAOYSA-N 4-bromo-6-chloropyridazin-3-amine Chemical compound NC1=NN=C(Cl)C=C1Br FGOWNGCSUSKHQI-UHFFFAOYSA-N 0.000 description 2
- MMDFKVYPOQFQHP-UHFFFAOYSA-N 4-methyl-1h-pyridazin-6-one Chemical compound CC=1C=NNC(=O)C=1 MMDFKVYPOQFQHP-UHFFFAOYSA-N 0.000 description 2
- LUOGJOZNXUHJEG-UHFFFAOYSA-N 4-methyl-3-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)benzoic acid Chemical compound CC1=CC=C(C(O)=O)C=C1C1=CN(C)C(=O)C(N2CCOCC2)=C1 LUOGJOZNXUHJEG-UHFFFAOYSA-N 0.000 description 2
- IZAXNORGVXABLU-UHFFFAOYSA-N 4-methyl-3-[5-morpholin-4-yl-6-(oxan-4-yloxy)pyridin-3-yl]aniline Chemical compound CC1=CC=C(N)C=C1C(C=C1N2CCOCC2)=CN=C1OC1CCOCC1 IZAXNORGVXABLU-UHFFFAOYSA-N 0.000 description 2
- SQQSZINDJYZRJM-UHFFFAOYSA-N 5-(5-amino-2-chlorophenyl)-1-methyl-3-morpholin-4-ylpyridin-2-one Chemical compound Cn1cc(cc(N2CCOCC2)c1=O)-c1cc(N)ccc1Cl SQQSZINDJYZRJM-UHFFFAOYSA-N 0.000 description 2
- GOHAVOAWYJUHDB-UHFFFAOYSA-N 5-(5-amino-2-chloropyridin-3-yl)-1-methyl-3-morpholin-4-ylpyridin-2-one Chemical compound Cn1cc(cc(N2CCOCC2)c1=O)-c1cc(N)cnc1Cl GOHAVOAWYJUHDB-UHFFFAOYSA-N 0.000 description 2
- SIMJGOXKTAAICO-UHFFFAOYSA-N 5-(5-amino-2-fluorophenyl)-1-methyl-3-morpholin-4-ylpyridin-2-one Chemical compound Cn1cc(cc(N2CCOCC2)c1=O)-c1cc(N)ccc1F SIMJGOXKTAAICO-UHFFFAOYSA-N 0.000 description 2
- OPWIXUPAFREIGM-UHFFFAOYSA-N 5-(5-amino-2-methylpyridin-3-yl)-3-morpholin-4-ylpyridine-2-carbonitrile Chemical compound Cc1ncc(N)cc1-c1cnc(C#N)c(c1)N1CCOCC1 OPWIXUPAFREIGM-UHFFFAOYSA-N 0.000 description 2
- PFCRHTSTKPKPAY-UHFFFAOYSA-N 5-(5-amino-2-methylpyridin-3-yl)-n,n-dimethyl-3-morpholin-4-ylpyridin-2-amine Chemical compound CN(C)C1=NC=C(C=2C(=NC=C(N)C=2)C)C=C1N1CCOCC1 PFCRHTSTKPKPAY-UHFFFAOYSA-N 0.000 description 2
- YGTKTVKZEJAYGG-UHFFFAOYSA-N 5-(6-chloro-5-morpholin-4-ylpyridin-3-yl)-6-methylpyridin-3-amine Chemical compound CC1=NC=C(N)C=C1C1=CN=C(Cl)C(N2CCOCC2)=C1 YGTKTVKZEJAYGG-UHFFFAOYSA-N 0.000 description 2
- GFDNMCPQOHRWOG-UHFFFAOYSA-N 5-(6-ethoxy-5-morpholin-4-ylpyridin-3-yl)-6-methylpyridin-3-amine Chemical compound CCOC1=NC=C(C=2C(=NC=C(N)C=2)C)C=C1N1CCOCC1 GFDNMCPQOHRWOG-UHFFFAOYSA-N 0.000 description 2
- NROVTTMDDYESLN-UHFFFAOYSA-N 5-[6-ethoxy-5-(3-oxa-8-azabicyclo[3.2.1]octan-8-yl)pyridin-3-yl]-6-methylpyridin-3-amine Chemical compound C1=C(N2C3CCC2COC3)C(OCC)=NC=C1C1=CC(N)=CN=C1C NROVTTMDDYESLN-UHFFFAOYSA-N 0.000 description 2
- PHGPXAOWFWFTFR-GFCCVEGCSA-N 5-[6-ethoxy-5-[(3r)-3-methylmorpholin-4-yl]pyridin-3-yl]-6-methylpyridin-3-amine Chemical compound CCOC1=NC=C(C=2C(=NC=C(N)C=2)C)C=C1N1CCOC[C@H]1C PHGPXAOWFWFTFR-GFCCVEGCSA-N 0.000 description 2
- PHGPXAOWFWFTFR-LBPRGKRZSA-N 5-[6-ethoxy-5-[(3s)-3-methylmorpholin-4-yl]pyridin-3-yl]-6-methylpyridin-3-amine Chemical compound CCOC1=NC=C(C=2C(=NC=C(N)C=2)C)C=C1N1CCOC[C@@H]1C PHGPXAOWFWFTFR-LBPRGKRZSA-N 0.000 description 2
- SUBJNGDQVDJWQL-UHFFFAOYSA-N 5-bromo-1-(2-hydroxyethyl)-3-morpholin-4-ylpyridin-2-one Chemical compound O=C1N(CCO)C=C(Br)C=C1N1CCOCC1 SUBJNGDQVDJWQL-UHFFFAOYSA-N 0.000 description 2
- QWIZQRKXEMQHBZ-UHFFFAOYSA-N 5-bromo-1-(2-methylsulfonylethyl)-3-morpholin-4-ylpyridin-2-one Chemical compound O=C1N(CCS(=O)(=O)C)C=C(Br)C=C1N1CCOCC1 QWIZQRKXEMQHBZ-UHFFFAOYSA-N 0.000 description 2
- GNAQAXVAQKNSRL-UHFFFAOYSA-N 5-bromo-1-ethyl-3-(trifluoromethyl)pyridin-2-one Chemical compound CCN1C=C(Br)C=C(C(F)(F)F)C1=O GNAQAXVAQKNSRL-UHFFFAOYSA-N 0.000 description 2
- ZIQGOMSEMFVFMB-UHFFFAOYSA-N 5-bromo-1-ethyl-3-morpholin-4-ylpyridin-2-one Chemical compound O=C1N(CC)C=C(Br)C=C1N1CCOCC1 ZIQGOMSEMFVFMB-UHFFFAOYSA-N 0.000 description 2
- WWQQPSDIIVXFOX-UHFFFAOYSA-N 5-bromo-2-chloro-3-nitropyridine Chemical compound [O-][N+](=O)C1=CC(Br)=CN=C1Cl WWQQPSDIIVXFOX-UHFFFAOYSA-N 0.000 description 2
- ZSEZSALOLWCCGT-UHFFFAOYSA-N 5-bromo-2-chloropyridin-3-amine Chemical compound NC1=CC(Br)=CN=C1Cl ZSEZSALOLWCCGT-UHFFFAOYSA-N 0.000 description 2
- AWRLZJJDHWCYKN-UHFFFAOYSA-N 5-bromo-2-ethoxy-3-nitropyridine Chemical compound CCOC1=NC=C(Br)C=C1[N+]([O-])=O AWRLZJJDHWCYKN-UHFFFAOYSA-N 0.000 description 2
- YUPQAGSTMGZXNO-UHFFFAOYSA-N 5-bromo-3-chloro-1h-pyridazin-6-one Chemical compound ClC=1C=C(Br)C(=O)NN=1 YUPQAGSTMGZXNO-UHFFFAOYSA-N 0.000 description 2
- SNBBCDWMCXAOOV-UHFFFAOYSA-N 5-bromo-3-iodo-2-(oxan-4-yloxy)pyridine Chemical compound IC1=CC(Br)=CN=C1OC1CCOCC1 SNBBCDWMCXAOOV-UHFFFAOYSA-N 0.000 description 2
- PZCIPYYQUYZZIK-UHFFFAOYSA-N 5-bromo-3-morpholin-4-yl-1-propan-2-ylpyridin-2-one Chemical compound O=C1N(C(C)C)C=C(Br)C=C1N1CCOCC1 PZCIPYYQUYZZIK-UHFFFAOYSA-N 0.000 description 2
- MTJLRFVMAGIKFJ-UHFFFAOYSA-N 5-bromo-3-morpholin-4-yl-1h-pyrazin-2-one Chemical compound OC1=NC=C(Br)N=C1N1CCOCC1 MTJLRFVMAGIKFJ-UHFFFAOYSA-N 0.000 description 2
- ISKBXMMELYRESC-UHFFFAOYSA-N 5-bromo-6-chloropyridin-3-amine Chemical compound NC1=CN=C(Cl)C(Br)=C1 ISKBXMMELYRESC-UHFFFAOYSA-N 0.000 description 2
- UXLQUFVYDUXVTJ-UHFFFAOYSA-N 5-fluoro-2-(trifluoromethyl)pyridin-4-amine Chemical compound NC1=CC(C(F)(F)F)=NC=C1F UXLQUFVYDUXVTJ-UHFFFAOYSA-N 0.000 description 2
- XYUNQVCBLPRKIC-UHFFFAOYSA-N 5-methyl-3-prop-1-en-2-ylpyridazine Chemical compound CC(=C)C1=CC(C)=CN=N1 XYUNQVCBLPRKIC-UHFFFAOYSA-N 0.000 description 2
- LWRIAMPEBVEGDJ-UHFFFAOYSA-N 6-(1-cyanocyclopropyl)pyridazine-4-carboxylic acid Chemical compound OC(=O)C1=CN=NC(C2(CC2)C#N)=C1 LWRIAMPEBVEGDJ-UHFFFAOYSA-N 0.000 description 2
- LSTYPAWYSJRRSZ-UHFFFAOYSA-N 6-(2-cyanopropan-2-yl)pyridazine-4-carboxylic acid Chemical compound N#CC(C)(C)C1=CC(C(O)=O)=CN=N1 LSTYPAWYSJRRSZ-UHFFFAOYSA-N 0.000 description 2
- LOPHRKPRERDRFT-UHFFFAOYSA-N 6-(trifluoromethyl)pyridazine-4-carboxylic acid Chemical compound OC(=O)C1=CN=NC(C(F)(F)F)=C1 LOPHRKPRERDRFT-UHFFFAOYSA-N 0.000 description 2
- CYNHETLKBXAIEE-UHFFFAOYSA-N 6-chloro-1-methyl-4-morpholin-4-ylpyridin-2-one Chemical compound O=C1N(C)C(Cl)=CC(N2CCOCC2)=C1 CYNHETLKBXAIEE-UHFFFAOYSA-N 0.000 description 2
- QFZHISBLDVHMKQ-UHFFFAOYSA-N 6-chloro-2-methyl-4-morpholin-4-ylpyridazin-3-one Chemical compound O=C1N(C)N=C(Cl)C=C1N1CCOCC1 QFZHISBLDVHMKQ-UHFFFAOYSA-N 0.000 description 2
- MOLRJMZERWOFGK-UHFFFAOYSA-N 6-cyclopropylpyridazine-4-carboxylic acid Chemical compound OC(=O)C1=CN=NC(C2CC2)=C1 MOLRJMZERWOFGK-UHFFFAOYSA-N 0.000 description 2
- CDXBAERKOZKRRH-UHFFFAOYSA-N 6-methyl-5-(5-morpholin-4-ylpyridin-3-yl)pyridin-3-amine Chemical compound Cc1ncc(N)cc1-c1cncc(c1)N1CCOCC1 CDXBAERKOZKRRH-UHFFFAOYSA-N 0.000 description 2
- QUWZLQWJOPBPBO-UHFFFAOYSA-N 6-methyl-5-[5-(3-oxa-8-azabicyclo[3.2.1]octan-8-yl)-6-(oxan-4-yloxy)pyridin-3-yl]pyridin-3-amine Chemical compound CC1=NC=C(N)C=C1C(C=C1N2C3CCC2COC3)=CN=C1OC1CCOCC1 QUWZLQWJOPBPBO-UHFFFAOYSA-N 0.000 description 2
- OVOJXRQHVOXDRA-UHFFFAOYSA-N 6-methyl-5-[5-morpholin-4-yl-6-(oxan-4-yloxy)pyridin-3-yl]pyridin-3-amine Chemical compound CC1=NC=C(N)C=C1C(C=C1N2CCOCC2)=CN=C1OC1CCOCC1 OVOJXRQHVOXDRA-UHFFFAOYSA-N 0.000 description 2
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 2
- 125000003830 C1- C4 alkylcarbonylamino group Chemical group 0.000 description 2
- RREYHMYAEBEUHP-UHFFFAOYSA-N COC(=O)c1ccc(C)c(c1)-c1cc(N2CCOCC2)c(=O)n(C)c1 Chemical compound COC(=O)c1ccc(C)c(c1)-c1cc(N2CCOCC2)c(=O)n(C)c1 RREYHMYAEBEUHP-UHFFFAOYSA-N 0.000 description 2
- NMMWJYNIOPZLDA-UHFFFAOYSA-N COC(=O)c1cnnc(c1)C(F)(F)F Chemical compound COC(=O)c1cnnc(c1)C(F)(F)F NMMWJYNIOPZLDA-UHFFFAOYSA-N 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- 241000282472 Canis lupus familiaris Species 0.000 description 2
- LCJLILSONDJXFL-UHFFFAOYSA-N Cc1ncc(N)cc1-c1cc(F)nc(F)c1 Chemical compound Cc1ncc(N)cc1-c1cc(F)nc(F)c1 LCJLILSONDJXFL-UHFFFAOYSA-N 0.000 description 2
- 108010010803 Gelatin Proteins 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 239000005511 L01XE05 - Sorafenib Substances 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 2
- 241000699670 Mus sp. Species 0.000 description 2
- 102000038030 PI3Ks Human genes 0.000 description 2
- 108091007960 PI3Ks Proteins 0.000 description 2
- 229910019213 POCl3 Inorganic materials 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- 241000288906 Primates Species 0.000 description 2
- 102000001788 Proto-Oncogene Proteins c-raf Human genes 0.000 description 2
- 108010029869 Proto-Oncogene Proteins c-raf Proteins 0.000 description 2
- IWYDHOAUDWTVEP-UHFFFAOYSA-N R-2-phenyl-2-hydroxyacetic acid Natural products OC(=O)C(O)C1=CC=CC=C1 IWYDHOAUDWTVEP-UHFFFAOYSA-N 0.000 description 2
- 241000700159 Rattus Species 0.000 description 2
- PXIPVTKHYLBLMZ-UHFFFAOYSA-N Sodium azide Chemical compound [Na+].[N-]=[N+]=[N-] PXIPVTKHYLBLMZ-UHFFFAOYSA-N 0.000 description 2
- WQDUMFSSJAZKTM-UHFFFAOYSA-N Sodium methoxide Chemical compound [Na+].[O-]C WQDUMFSSJAZKTM-UHFFFAOYSA-N 0.000 description 2
- 235000021355 Stearic acid Nutrition 0.000 description 2
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 2
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 2
- GYUOOGKALXKAPI-HNNXBMFYSA-N [(2s)-4-(4-bromopyridin-2-yl)morpholin-2-yl]methyl 4-methylbenzenesulfonate Chemical compound C1=CC(C)=CC=C1S(=O)(=O)OC[C@H]1OCCN(C=2N=CC=C(Br)C=2)C1 GYUOOGKALXKAPI-HNNXBMFYSA-N 0.000 description 2
- 229960000583 acetic acid Drugs 0.000 description 2
- 239000002671 adjuvant Substances 0.000 description 2
- 239000000443 aerosol Substances 0.000 description 2
- 239000000783 alginic acid Substances 0.000 description 2
- 235000010443 alginic acid Nutrition 0.000 description 2
- 229920000615 alginic acid Polymers 0.000 description 2
- 229960001126 alginic acid Drugs 0.000 description 2
- 150000004781 alginic acids Chemical class 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 125000003342 alkenyl group Chemical group 0.000 description 2
- 125000003282 alkyl amino group Chemical group 0.000 description 2
- 125000004390 alkyl sulfonyl group Chemical group 0.000 description 2
- 125000000304 alkynyl group Chemical group 0.000 description 2
- MDFFNEOEWAXZRQ-UHFFFAOYSA-N aminyl Chemical compound [NH2] MDFFNEOEWAXZRQ-UHFFFAOYSA-N 0.000 description 2
- 150000003863 ammonium salts Chemical class 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 235000006708 antioxidants Nutrition 0.000 description 2
- 150000001540 azides Chemical class 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 2
- 229910052794 bromium Inorganic materials 0.000 description 2
- 125000001246 bromo group Chemical group Br* 0.000 description 2
- XJHCXCQVJFPJIK-UHFFFAOYSA-M caesium fluoride Chemical compound [F-].[Cs+] XJHCXCQVJFPJIK-UHFFFAOYSA-M 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- 235000010216 calcium carbonate Nutrition 0.000 description 2
- 239000001506 calcium phosphate Substances 0.000 description 2
- 229910000389 calcium phosphate Inorganic materials 0.000 description 2
- 235000011010 calcium phosphates Nutrition 0.000 description 2
- 239000002775 capsule Substances 0.000 description 2
- 150000001721 carbon Chemical group 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 230000003915 cell function Effects 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 238000004296 chiral HPLC Methods 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 238000004440 column chromatography Methods 0.000 description 2
- 238000002648 combination therapy Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 239000006071 cream Substances 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- 208000035250 cutaneous malignant susceptibility to 1 melanoma Diseases 0.000 description 2
- DIOQZVSQGTUSAI-UHFFFAOYSA-N decane Chemical compound CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 150000001975 deuterium Chemical group 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 125000004982 dihaloalkyl group Chemical group 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000003480 eluent Substances 0.000 description 2
- 239000003995 emulsifying agent Substances 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- PHTCPCSTKJJVJF-UHFFFAOYSA-N ethyl 2-(oxetan-3-yl)pyridine-4-carboxylate Chemical compound CCOC(=O)C1=CC=NC(C2COC2)=C1 PHTCPCSTKJJVJF-UHFFFAOYSA-N 0.000 description 2
- DLRVHGARHHPPDO-UHFFFAOYSA-N ethyl 4-(1,1-difluoroethyl)pyridine-2-carboxylate Chemical compound CCOC(=O)C1=CC(C(C)(F)F)=CC=N1 DLRVHGARHHPPDO-UHFFFAOYSA-N 0.000 description 2
- KRJNLMQVZDIDJL-UHFFFAOYSA-N ethyl 4-(2-fluoropropan-2-yl)pyridine-2-carboxylate Chemical compound CCOC(=O)C1=CC(C(C)(C)F)=CC=N1 KRJNLMQVZDIDJL-UHFFFAOYSA-N 0.000 description 2
- MCRPKBUFXAKDKI-UHFFFAOYSA-N ethyl pyridine-4-carboxylate Chemical compound CCOC(=O)C1=CC=NC=C1 MCRPKBUFXAKDKI-UHFFFAOYSA-N 0.000 description 2
- 125000000031 ethylamino group Chemical group [H]C([H])([H])C([H])([H])N([H])[*] 0.000 description 2
- 239000012065 filter cake Substances 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 235000013355 food flavoring agent Nutrition 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 239000008273 gelatin Substances 0.000 description 2
- 229920000159 gelatin Polymers 0.000 description 2
- 235000019322 gelatine Nutrition 0.000 description 2
- 235000011852 gelatine desserts Nutrition 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 229940093915 gynecological organic acid Drugs 0.000 description 2
- 125000004438 haloalkoxy group Chemical group 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 150000004677 hydrates Chemical class 0.000 description 2
- IKDUDTNKRLTJSI-UHFFFAOYSA-N hydrazine monohydrate Substances O.NN IKDUDTNKRLTJSI-UHFFFAOYSA-N 0.000 description 2
- 235000011167 hydrochloric acid Nutrition 0.000 description 2
- 239000003701 inert diluent Substances 0.000 description 2
- HVTICUPFWKNHNG-UHFFFAOYSA-N iodoethane Chemical compound CCI HVTICUPFWKNHNG-UHFFFAOYSA-N 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- NXPHGHWWQRMDIA-UHFFFAOYSA-M magnesium;carbanide;bromide Chemical compound [CH3-].[Mg+2].[Br-] NXPHGHWWQRMDIA-UHFFFAOYSA-M 0.000 description 2
- VFZXMEQGIIWBFJ-UHFFFAOYSA-M magnesium;cyclopropane;bromide Chemical compound [Mg+2].[Br-].C1C[CH-]1 VFZXMEQGIIWBFJ-UHFFFAOYSA-M 0.000 description 2
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 2
- BJEPYKJPYRNKOW-UHFFFAOYSA-N malic acid Chemical compound OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 2
- 230000036210 malignancy Effects 0.000 description 2
- 229960002510 mandelic acid Drugs 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 230000002503 metabolic effect Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- PAQTWTFBFZHJTI-UHFFFAOYSA-N methyl 1-ethyl-6-oxo-5-(trifluoromethyl)pyridine-3-carboxylate Chemical compound CCn1cc(cc(c1=O)C(F)(F)F)C(=O)OC PAQTWTFBFZHJTI-UHFFFAOYSA-N 0.000 description 2
- GXYZIIZPZSMKTI-UHFFFAOYSA-N methyl 2-(2-hydroxypropan-2-yl)pyridine-4-carboxylate Chemical compound COC(=O)c1ccnc(c1)C(C)(C)O GXYZIIZPZSMKTI-UHFFFAOYSA-N 0.000 description 2
- AYUZKLJHRMNISM-UHFFFAOYSA-N methyl 3-(2,2,2-trifluoro-1-hydroxyethyl)benzoate Chemical compound COC(=O)C1=CC=CC(C(O)C(F)(F)F)=C1 AYUZKLJHRMNISM-UHFFFAOYSA-N 0.000 description 2
- FKRJEXVTBGQAMO-UHFFFAOYSA-N methyl 3-(2-cyanopropan-2-yl)benzoate Chemical compound COC(=O)C1=CC=CC(C(C)(C)C#N)=C1 FKRJEXVTBGQAMO-UHFFFAOYSA-N 0.000 description 2
- IGZUAVWONMKOLC-UHFFFAOYSA-N methyl 3-(2-methylsulfonylpropan-2-yl)benzoate Chemical compound COC(=O)C1=CC=CC(C(C)(C)S(C)(=O)=O)=C1 IGZUAVWONMKOLC-UHFFFAOYSA-N 0.000 description 2
- NJQLNMRJXQNZJU-UHFFFAOYSA-N methyl 3-(6-ethoxy-5-morpholin-4-ylpyridin-3-yl)-4-methylbenzoate Chemical compound CCOc1ncc(cc1N1CCOCC1)-c1cc(ccc1C)C(=O)OC NJQLNMRJXQNZJU-UHFFFAOYSA-N 0.000 description 2
- XSNUGLQVCGENEM-UHFFFAOYSA-N methyl 3-(cyanomethyl)benzoate Chemical compound COC(=O)C1=CC=CC(CC#N)=C1 XSNUGLQVCGENEM-UHFFFAOYSA-N 0.000 description 2
- CXANHLQYPHXUHB-UHFFFAOYSA-N methyl 3-(difluoromethyl)benzoate Chemical compound COC(=O)C1=CC=CC(C(F)F)=C1 CXANHLQYPHXUHB-UHFFFAOYSA-N 0.000 description 2
- IFCOWPDXFKPDGS-UHFFFAOYSA-N methyl 3-(methylsulfonylmethyl)benzoate Chemical compound COC(=O)C1=CC=CC(CS(C)(=O)=O)=C1 IFCOWPDXFKPDGS-UHFFFAOYSA-N 0.000 description 2
- SQLBGTZUXFODQK-UHFFFAOYSA-N methyl 3-[s-methyl-n-(2,2,2-trifluoroacetyl)sulfonimidoyl]benzoate Chemical compound COC(=O)C1=CC=CC(S(C)(=O)=NC(=O)C(F)(F)F)=C1 SQLBGTZUXFODQK-UHFFFAOYSA-N 0.000 description 2
- DLNGPWIBRFPAHI-UHFFFAOYSA-N methyl 3-methylsulfinylbenzoate Chemical compound COC(=O)C1=CC=CC(S(C)=O)=C1 DLNGPWIBRFPAHI-UHFFFAOYSA-N 0.000 description 2
- HAPIXNBOBZHNCA-UHFFFAOYSA-N methyl 4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzoate Chemical compound COC(=O)C1=CC=C(C)C(B2OC(C)(C)C(C)(C)O2)=C1 HAPIXNBOBZHNCA-UHFFFAOYSA-N 0.000 description 2
- ZETSMCPWXVINRK-UHFFFAOYSA-N methyl 6-chloro-5-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)pyridine-3-carboxylate Chemical compound COC(=O)c1cnc(Cl)c(c1)-c1cc(N2CCOCC2)c(=O)n(C)c1 ZETSMCPWXVINRK-UHFFFAOYSA-N 0.000 description 2
- QYQHGLKSLGUINZ-UHFFFAOYSA-N methyl 6-chloropyridazine-4-carboxylate Chemical compound COC(=O)C1=CN=NC(Cl)=C1 QYQHGLKSLGUINZ-UHFFFAOYSA-N 0.000 description 2
- IJYYBVNJXJKEOO-UHFFFAOYSA-N methyl 6-cyclopropylpyridazine-4-carboxylate Chemical compound COC(=O)C1=CN=NC(C2CC2)=C1 IJYYBVNJXJKEOO-UHFFFAOYSA-N 0.000 description 2
- UTZREAAZTCWXSY-UHFFFAOYSA-N methyl 6-iodopyridazine-4-carboxylate Chemical compound COC(=O)C1=CN=NC(I)=C1 UTZREAAZTCWXSY-UHFFFAOYSA-N 0.000 description 2
- 125000006533 methyl amino methyl group Chemical group [H]N(C([H])([H])[H])C([H])([H])* 0.000 description 2
- UKTHYMDEAKZDIM-LURJTMIESA-N methyl n-[[(2s)-morpholin-2-yl]methyl]carbamate Chemical compound COC(=O)NC[C@@H]1CNCCO1 UKTHYMDEAKZDIM-LURJTMIESA-N 0.000 description 2
- 125000000250 methylamino group Chemical group [H]N(*)C([H])([H])[H] 0.000 description 2
- 150000007522 mineralic acids Chemical class 0.000 description 2
- 239000001788 mono and diglycerides of fatty acids Substances 0.000 description 2
- 125000006682 monohaloalkyl group Chemical group 0.000 description 2
- YVOUEOITICLYPU-UHFFFAOYSA-N n-(5-bromo-6-methylpyridin-3-yl)-2-(2-cyanopropan-2-yl)pyridine-4-carboxamide Chemical compound C1=C(Br)C(C)=NC=C1NC(=O)C1=CC=NC(C(C)(C)C#N)=C1 YVOUEOITICLYPU-UHFFFAOYSA-N 0.000 description 2
- YUFBMPKQRHEJAW-UHFFFAOYSA-N n-(5-bromo-6-methylpyridin-3-yl)-3-(trifluoromethyl)benzamide Chemical compound C1=C(Br)C(C)=NC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 YUFBMPKQRHEJAW-UHFFFAOYSA-N 0.000 description 2
- CUYGWXGMUVMIAB-UHFFFAOYSA-N n-[4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]-2-(trifluoromethyl)pyridine-4-carboxamide Chemical compound C1=C(B2OC(C)(C)C(C)(C)O2)C(C)=CC=C1NC(=O)C1=CC=NC(C(F)(F)F)=C1 CUYGWXGMUVMIAB-UHFFFAOYSA-N 0.000 description 2
- IUBLICBXPOXOFN-UHFFFAOYSA-N n-[5-(6-fluoro-5-morpholin-4-ylpyridin-3-yl)-6-methylpyridin-3-yl]-2-(trifluoromethyl)pyridine-4-carboxamide Chemical compound C1=C(C=2C=C(C(F)=NC=2)N2CCOCC2)C(C)=NC=C1NC(=O)C1=CC=NC(C(F)(F)F)=C1 IUBLICBXPOXOFN-UHFFFAOYSA-N 0.000 description 2
- VAPUARNDJJGWKW-UHFFFAOYSA-N n-[5-(6-fluoro-5-morpholin-4-ylpyridin-3-yl)-6-methylpyridin-3-yl]-2-propan-2-ylpyridine-4-carboxamide Chemical compound C1=NC(C(C)C)=CC(C(=O)NC=2C=C(C(C)=NC=2)C=2C=C(C(F)=NC=2)N2CCOCC2)=C1 VAPUARNDJJGWKW-UHFFFAOYSA-N 0.000 description 2
- OYTGWJWEKKXRIF-UHFFFAOYSA-N n-[5-(6-fluoro-5-morpholin-4-ylpyridin-3-yl)-6-methylpyridin-3-yl]-3-(trifluoromethyl)benzamide Chemical compound C1=C(C=2C=C(C(F)=NC=2)N2CCOCC2)C(C)=NC=C1NC(=O)C1=CC=CC(C(F)(F)F)=C1 OYTGWJWEKKXRIF-UHFFFAOYSA-N 0.000 description 2
- UGPSGKBXOZVVCV-ZETCQYMHSA-N n-[[(2s)-morpholin-2-yl]methyl]acetamide Chemical compound CC(=O)NC[C@@H]1CNCCO1 UGPSGKBXOZVVCV-ZETCQYMHSA-N 0.000 description 2
- 125000001624 naphthyl group Chemical group 0.000 description 2
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 2
- 239000012038 nucleophile Substances 0.000 description 2
- 238000010534 nucleophilic substitution reaction Methods 0.000 description 2
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 235000005985 organic acids Nutrition 0.000 description 2
- 150000007530 organic bases Chemical class 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- 229960005141 piperazine Drugs 0.000 description 2
- 125000003367 polycyclic group Chemical group 0.000 description 2
- 238000002600 positron emission tomography Methods 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- IUBQJLUDMLPAGT-UHFFFAOYSA-N potassium bis(trimethylsilyl)amide Chemical compound C[Si](C)(C)N([K])[Si](C)(C)C IUBQJLUDMLPAGT-UHFFFAOYSA-N 0.000 description 2
- 230000002062 proliferating effect Effects 0.000 description 2
- UFUASNAHBMBJIX-UHFFFAOYSA-N propan-1-one Chemical compound CC[C]=O UFUASNAHBMBJIX-UHFFFAOYSA-N 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- UBQKCCHYAOITMY-UHFFFAOYSA-N pyridin-2-ol Chemical group OC1=CC=CC=N1 UBQKCCHYAOITMY-UHFFFAOYSA-N 0.000 description 2
- 150000003222 pyridines Chemical class 0.000 description 2
- 125000000714 pyrimidinyl group Chemical group 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000012047 saturated solution Substances 0.000 description 2
- 239000012363 selectfluor Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000002603 single-photon emission computed tomography Methods 0.000 description 2
- 159000000000 sodium salts Chemical class 0.000 description 2
- 235000010265 sodium sulphite Nutrition 0.000 description 2
- 238000000638 solvent extraction Methods 0.000 description 2
- 230000006641 stabilisation Effects 0.000 description 2
- 238000011105 stabilization Methods 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 239000008117 stearic acid Substances 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- 125000000547 substituted alkyl group Chemical group 0.000 description 2
- 125000003107 substituted aryl group Chemical group 0.000 description 2
- 125000005346 substituted cycloalkyl group Chemical group 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 239000000829 suppository Substances 0.000 description 2
- 239000000454 talc Substances 0.000 description 2
- 235000012222 talc Nutrition 0.000 description 2
- 229910052623 talc Inorganic materials 0.000 description 2
- 239000011975 tartaric acid Substances 0.000 description 2
- 235000002906 tartaric acid Nutrition 0.000 description 2
- USHLYLGSZJRTJY-SNVBAGLBSA-N tert-butyl (2r)-2-(acetamidomethyl)morpholine-4-carboxylate Chemical compound CC(=O)NC[C@@H]1CN(C(=O)OC(C)(C)C)CCO1 USHLYLGSZJRTJY-SNVBAGLBSA-N 0.000 description 2
- VVLJAVUTWKCSTH-SECBINFHSA-N tert-butyl (2r)-2-[(methoxycarbonylamino)methyl]morpholine-4-carboxylate Chemical compound COC(=O)NC[C@@H]1CN(C(=O)OC(C)(C)C)CCO1 VVLJAVUTWKCSTH-SECBINFHSA-N 0.000 description 2
- NHABBAZJIRPNIV-SECBINFHSA-N tert-butyl (2r)-2-[[(2-hydroxyacetyl)amino]methyl]morpholine-4-carboxylate Chemical compound CC(C)(C)OC(=O)N1CCO[C@H](CNC(=O)CO)C1 NHABBAZJIRPNIV-SECBINFHSA-N 0.000 description 2
- FJYBLMJHXRWDAQ-QMMMGPOBSA-N tert-butyl (2s)-2-(hydroxymethyl)morpholine-4-carboxylate Chemical compound CC(C)(C)OC(=O)N1CCO[C@H](CO)C1 FJYBLMJHXRWDAQ-QMMMGPOBSA-N 0.000 description 2
- LOBHRXDXENCDIZ-AWEZNQCLSA-N tert-butyl (2s)-2-[(4-methylphenyl)sulfonyloxymethyl]morpholine-4-carboxylate Chemical compound C1=CC(C)=CC=C1S(=O)(=O)OC[C@H]1OCCN(C(=O)OC(C)(C)C)C1 LOBHRXDXENCDIZ-AWEZNQCLSA-N 0.000 description 2
- ZSCNGFVOLMNTQG-UHFFFAOYSA-N tert-butyl 2-cyano-2-(5-methylpyridazin-3-yl)acetate Chemical compound CC1=CN=NC(C(C#N)C(=O)OC(C)(C)C)=C1 ZSCNGFVOLMNTQG-UHFFFAOYSA-N 0.000 description 2
- DYLRDWOKULATKH-UHFFFAOYSA-N tert-butyl N-[2-(1,1-difluoroethyl)pyridin-4-yl]carbamate Chemical compound CC(C)(C)OC(=O)Nc1ccnc(c1)C(C)(F)F DYLRDWOKULATKH-UHFFFAOYSA-N 0.000 description 2
- FCWHJJVJQWOTCQ-UHFFFAOYSA-N tert-butyl n-[2-(5-bromo-3-morpholin-4-yl-2-oxopyridin-1-yl)ethyl]carbamate Chemical compound O=C1N(CCNC(=O)OC(C)(C)C)C=C(Br)C=C1N1CCOCC1 FCWHJJVJQWOTCQ-UHFFFAOYSA-N 0.000 description 2
- BCNZYOJHNLTNEZ-UHFFFAOYSA-N tert-butyldimethylsilyl chloride Chemical compound CC(C)(C)[Si](C)(C)Cl BCNZYOJHNLTNEZ-UHFFFAOYSA-N 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 150000003573 thiols Chemical class 0.000 description 2
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- 239000000080 wetting agent Substances 0.000 description 2
- 239000011592 zinc chloride Substances 0.000 description 2
- DTGKSKDOIYIVQL-WEDXCCLWSA-N (+)-borneol Chemical group C1C[C@@]2(C)[C@@H](O)C[C@@H]1C2(C)C DTGKSKDOIYIVQL-WEDXCCLWSA-N 0.000 description 1
- XFQNWPYGEGCIMF-HCUGAJCMSA-N (1e,4e)-1,5-diphenylpenta-1,4-dien-3-one;palladium Chemical compound [Pd].[Pd].[Pd].[Pd].C=1C=CC=CC=1\C=C\C(=O)\C=C\C1=CC=CC=C1.C=1C=CC=CC=1\C=C\C(=O)\C=C\C1=CC=CC=C1.C=1C=CC=CC=1\C=C\C(=O)\C=C\C1=CC=CC=C1.C=1C=CC=CC=1\C=C\C(=O)\C=C\C1=CC=CC=C1.C=1C=CC=CC=1\C=C\C(=O)\C=C\C1=CC=CC=C1.C=1C=CC=CC=1\C=C\C(=O)\C=C\C1=CC=CC=C1 XFQNWPYGEGCIMF-HCUGAJCMSA-N 0.000 description 1
- KMEJCVYIVUQTSP-UHFFFAOYSA-N (2,6-difluoropyridin-4-yl)boronic acid Chemical compound OB(O)C1=CC(F)=NC(F)=C1 KMEJCVYIVUQTSP-UHFFFAOYSA-N 0.000 description 1
- UFDULEKOJAEIRI-UHFFFAOYSA-N (2-acetyloxy-3-iodophenyl) acetate Chemical compound CC(=O)OC1=CC=CC(I)=C1OC(C)=O UFDULEKOJAEIRI-UHFFFAOYSA-N 0.000 description 1
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 1
- BCNGYLBMMXNFCY-SECBINFHSA-N (2r)-2-(5-bromo-3-morpholin-4-yl-2-oxopyridin-1-yl)propanenitrile Chemical compound O=C1N([C@@H](C#N)C)C=C(Br)C=C1N1CCOCC1 BCNGYLBMMXNFCY-SECBINFHSA-N 0.000 description 1
- GDWWCGSKFKUPOS-SECBINFHSA-N (2r)-2-(5-bromo-3-morpholin-4-ylpyridin-2-yl)oxypropanenitrile Chemical compound N#C[C@@H](C)OC1=NC=C(Br)C=C1N1CCOCC1 GDWWCGSKFKUPOS-SECBINFHSA-N 0.000 description 1
- OBETXYAYXDNJHR-SSDOTTSWSA-M (2r)-2-ethylhexanoate Chemical compound CCCC[C@@H](CC)C([O-])=O OBETXYAYXDNJHR-SSDOTTSWSA-M 0.000 description 1
- DNISEZBAYYIQFB-PHDIDXHHSA-N (2r,3r)-2,3-diacetyloxybutanedioic acid Chemical compound CC(=O)O[C@@H](C(O)=O)[C@H](C(O)=O)OC(C)=O DNISEZBAYYIQFB-PHDIDXHHSA-N 0.000 description 1
- BCNGYLBMMXNFCY-VIFPVBQESA-N (2s)-2-(5-bromo-3-morpholin-4-yl-2-oxopyridin-1-yl)propanenitrile Chemical compound O=C1N([C@H](C#N)C)C=C(Br)C=C1N1CCOCC1 BCNGYLBMMXNFCY-VIFPVBQESA-N 0.000 description 1
- GDWWCGSKFKUPOS-VIFPVBQESA-N (2s)-2-(5-bromo-3-morpholin-4-ylpyridin-2-yl)oxypropanenitrile Chemical compound N#C[C@H](C)OC1=NC=C(Br)C=C1N1CCOCC1 GDWWCGSKFKUPOS-VIFPVBQESA-N 0.000 description 1
- SFWWGMKXCYLZEG-RXMQYKEDSA-N (3r)-3-methylmorpholine Chemical compound C[C@@H]1COCCN1 SFWWGMKXCYLZEG-RXMQYKEDSA-N 0.000 description 1
- SFWWGMKXCYLZEG-YFKPBYRVSA-N (3s)-3-methylmorpholine Chemical compound C[C@H]1COCCN1 SFWWGMKXCYLZEG-YFKPBYRVSA-N 0.000 description 1
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 description 1
- MIOPJNTWMNEORI-GMSGAONNSA-N (S)-camphorsulfonic acid Chemical compound C1C[C@@]2(CS(O)(=O)=O)C(=O)C[C@@H]1C2(C)C MIOPJNTWMNEORI-GMSGAONNSA-N 0.000 description 1
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 1
- PAAZPARNPHGIKF-UHFFFAOYSA-N 1,2-dibromoethane Chemical compound BrCCBr PAAZPARNPHGIKF-UHFFFAOYSA-N 0.000 description 1
- QACMXJJLQXUOPQ-UHFFFAOYSA-N 1,2-dichloroethane;3-(ethyliminomethylideneamino)-n,n-dimethylpropan-1-amine Chemical compound ClCCCl.CCN=C=NCCCN(C)C QACMXJJLQXUOPQ-UHFFFAOYSA-N 0.000 description 1
- HANPIZQMFCWPKY-UHFFFAOYSA-N 1,2-oxazol-4-ylboronic acid Chemical compound OB(O)C=1C=NOC=1 HANPIZQMFCWPKY-UHFFFAOYSA-N 0.000 description 1
- VDFVNEFVBPFDSB-UHFFFAOYSA-N 1,3-dioxane Chemical compound C1COCOC1 VDFVNEFVBPFDSB-UHFFFAOYSA-N 0.000 description 1
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 1
- IMLSAISZLJGWPP-UHFFFAOYSA-N 1,3-dithiolane Chemical compound C1CSCS1 IMLSAISZLJGWPP-UHFFFAOYSA-N 0.000 description 1
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical group CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 1
- MICMHFIQSAMEJG-UHFFFAOYSA-N 1-bromopyrrolidine-2,5-dione Chemical compound BrN1C(=O)CCC1=O.BrN1C(=O)CCC1=O MICMHFIQSAMEJG-UHFFFAOYSA-N 0.000 description 1
- AFFLGGQVNFXPEV-UHFFFAOYSA-N 1-decene Chemical group CCCCCCCCC=C AFFLGGQVNFXPEV-UHFFFAOYSA-N 0.000 description 1
- WUIJTQZXUURFQU-UHFFFAOYSA-N 1-methylsulfonylethene Chemical compound CS(=O)(=O)C=C WUIJTQZXUURFQU-UHFFFAOYSA-N 0.000 description 1
- LNETULKMXZVUST-UHFFFAOYSA-N 1-naphthoic acid Chemical compound C1=CC=C2C(C(=O)O)=CC=CC2=C1 LNETULKMXZVUST-UHFFFAOYSA-N 0.000 description 1
- WMQUKDQWMMOHSA-UHFFFAOYSA-N 1-pyridin-4-ylethanone Chemical compound CC(=O)C1=CC=NC=C1 WMQUKDQWMMOHSA-UHFFFAOYSA-N 0.000 description 1
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 1
- UJIBOGAQJRDRES-UHFFFAOYSA-N 1h-pyridin-2-one Chemical group OC1=CC=CC=N1.O=C1C=CC=CN1 UJIBOGAQJRDRES-UHFFFAOYSA-N 0.000 description 1
- NRKYWOKHZRQRJR-UHFFFAOYSA-N 2,2,2-trifluoroacetamide Chemical compound NC(=O)C(F)(F)F NRKYWOKHZRQRJR-UHFFFAOYSA-N 0.000 description 1
- VOGSDFLJZPNWHY-UHFFFAOYSA-N 2,2-difluoroethanol Chemical compound OCC(F)F VOGSDFLJZPNWHY-UHFFFAOYSA-N 0.000 description 1
- 125000003562 2,2-dimethylpentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- JKTCBAGSMQIFNL-UHFFFAOYSA-N 2,3-dihydrofuran Chemical compound C1CC=CO1 JKTCBAGSMQIFNL-UHFFFAOYSA-N 0.000 description 1
- FITNPEDFWSPOMU-UHFFFAOYSA-N 2,3-dihydrotriazolo[4,5-b]pyridin-5-one Chemical compound OC1=CC=C2NN=NC2=N1 FITNPEDFWSPOMU-UHFFFAOYSA-N 0.000 description 1
- 125000003660 2,3-dimethylpentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(C([H])([H])[H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- DPVIABCMTHHTGB-UHFFFAOYSA-N 2,4,6-trichloropyrimidine Chemical compound ClC1=CC(Cl)=NC(Cl)=N1 DPVIABCMTHHTGB-UHFFFAOYSA-N 0.000 description 1
- LSEAAPGIZCDEEH-UHFFFAOYSA-N 2,6-dichloropyrazine Chemical compound ClC1=CN=CC(Cl)=N1 LSEAAPGIZCDEEH-UHFFFAOYSA-N 0.000 description 1
- LYNBZRJTRHTSKI-UHFFFAOYSA-N 2-(trifluoromethyl)pyridin-4-amine Chemical compound NC1=CC=NC(C(F)(F)F)=C1 LYNBZRJTRHTSKI-UHFFFAOYSA-N 0.000 description 1
- BZFGKBQHQJVAHS-UHFFFAOYSA-N 2-(trifluoromethyl)pyridine-4-carboxylic acid Chemical compound OC(=O)C1=CC=NC(C(F)(F)F)=C1 BZFGKBQHQJVAHS-UHFFFAOYSA-N 0.000 description 1
- HRVQMQWVGKYDCF-UHFFFAOYSA-N 2-Acetyl-4-methylpyridine Chemical compound CC(=O)C1=CC(C)=CC=N1 HRVQMQWVGKYDCF-UHFFFAOYSA-N 0.000 description 1
- LBLYYCQCTBFVLH-UHFFFAOYSA-N 2-Methylbenzenesulfonic acid Chemical compound CC1=CC=CC=C1S(O)(=O)=O LBLYYCQCTBFVLH-UHFFFAOYSA-N 0.000 description 1
- WXHLLJAMBQLULT-UHFFFAOYSA-N 2-[[6-[4-(2-hydroxyethyl)piperazin-1-yl]-2-methylpyrimidin-4-yl]amino]-n-(2-methyl-6-sulfanylphenyl)-1,3-thiazole-5-carboxamide;hydrate Chemical compound O.C=1C(N2CCN(CCO)CC2)=NC(C)=NC=1NC(S1)=NC=C1C(=O)NC1=C(C)C=CC=C1S WXHLLJAMBQLULT-UHFFFAOYSA-N 0.000 description 1
- KMGUEILFFWDGFV-UHFFFAOYSA-N 2-benzoyl-2-benzoyloxy-3-hydroxybutanedioic acid Chemical compound C=1C=CC=CC=1C(=O)C(C(C(O)=O)O)(C(O)=O)OC(=O)C1=CC=CC=C1 KMGUEILFFWDGFV-UHFFFAOYSA-N 0.000 description 1
- LSZMVESSGLHDJE-UHFFFAOYSA-N 2-bromo-4-methylpyridine Chemical compound CC1=CC=NC(Br)=C1 LSZMVESSGLHDJE-UHFFFAOYSA-N 0.000 description 1
- REXUYBKPWIPONM-UHFFFAOYSA-N 2-bromoacetonitrile Chemical compound BrCC#N REXUYBKPWIPONM-UHFFFAOYSA-N 0.000 description 1
- NAMYKGVDVNBCFQ-UHFFFAOYSA-N 2-bromopropane Chemical compound CC(C)Br NAMYKGVDVNBCFQ-UHFFFAOYSA-N 0.000 description 1
- PYNYHMRMZOGVML-UHFFFAOYSA-N 2-bromopropanenitrile Chemical compound CC(Br)C#N PYNYHMRMZOGVML-UHFFFAOYSA-N 0.000 description 1
- QRXBTPFMCTXCRD-UHFFFAOYSA-N 2-chloropyridine-4-carbonitrile Chemical compound ClC1=CC(C#N)=CC=N1 QRXBTPFMCTXCRD-UHFFFAOYSA-N 0.000 description 1
- 125000002941 2-furyl group Chemical group O1C([*])=C([H])C([H])=C1[H] 0.000 description 1
- QSECPQCFCWVBKM-UHFFFAOYSA-N 2-iodoethanol Chemical compound OCCI QSECPQCFCWVBKM-UHFFFAOYSA-N 0.000 description 1
- DIUDJVQMGJPEAJ-UHFFFAOYSA-N 2-methyl-2-(4-methylpyridin-2-yl)propanenitrile Chemical compound CC1=CC=NC(C(C)(C)C#N)=C1 DIUDJVQMGJPEAJ-UHFFFAOYSA-N 0.000 description 1
- XEAKNFPXTFNCLF-UHFFFAOYSA-N 2-propan-2-ylpyridine-4-carboxylic acid Chemical compound CC(C)C1=CC(C(O)=O)=CC=N1 XEAKNFPXTFNCLF-UHFFFAOYSA-N 0.000 description 1
- 125000004105 2-pyridyl group Chemical group N1=C([*])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- RSEBUVRVKCANEP-UHFFFAOYSA-N 2-pyrroline Chemical compound C1CC=CN1 RSEBUVRVKCANEP-UHFFFAOYSA-N 0.000 description 1
- 125000000389 2-pyrrolyl group Chemical group [H]N1C([*])=C([H])C([H])=C1[H] 0.000 description 1
- ZVXZKPSVWZIJNW-UHFFFAOYSA-N 2-tert-butylpyridine-4-carboxylic acid Chemical compound CC(C)(C)C1=CC(C(O)=O)=CC=N1 ZVXZKPSVWZIJNW-UHFFFAOYSA-N 0.000 description 1
- 125000000175 2-thienyl group Chemical group S1C([*])=C([H])C([H])=C1[H] 0.000 description 1
- LGCYVLDNGBSOOW-UHFFFAOYSA-N 2H-benzotriazol-4-ol 1-hydroxybenzotriazole Chemical compound OC1=CC=CC2=C1N=NN2.C1=CC=C2N(O)N=NC2=C1 LGCYVLDNGBSOOW-UHFFFAOYSA-N 0.000 description 1
- DTXVKPOKPFWSFF-UHFFFAOYSA-N 3(S)-hydroxy-13-cis-eicosenoyl-CoA Chemical compound NC1=CC=C(Cl)N=N1 DTXVKPOKPFWSFF-UHFFFAOYSA-N 0.000 description 1
- NHVGHXUOFWEOSN-UHFFFAOYSA-N 3,5-dibromo-1h-pyrazin-2-one Chemical compound BrC1=CNC(=O)C(Br)=N1 NHVGHXUOFWEOSN-UHFFFAOYSA-N 0.000 description 1
- FPQQSJJWHUJYPU-UHFFFAOYSA-N 3-(dimethylamino)propyliminomethylidene-ethylazanium;chloride Chemical compound Cl.CCN=C=NCCCN(C)C FPQQSJJWHUJYPU-UHFFFAOYSA-N 0.000 description 1
- VIUDTWATMPPKEL-UHFFFAOYSA-N 3-(trifluoromethyl)aniline Chemical compound NC1=CC=CC(C(F)(F)F)=C1 VIUDTWATMPPKEL-UHFFFAOYSA-N 0.000 description 1
- BMYNFMYTOJXKLE-UHFFFAOYSA-N 3-azaniumyl-2-hydroxypropanoate Chemical compound NCC(O)C(O)=O BMYNFMYTOJXKLE-UHFFFAOYSA-N 0.000 description 1
- KESUTBOSNOHAMK-UHFFFAOYSA-N 3-bromo-2-fluoropyridine Chemical class FC1=NC=CC=C1Br KESUTBOSNOHAMK-UHFFFAOYSA-N 0.000 description 1
- ZFJOMUKPDWNRFI-UHFFFAOYSA-N 3-bromo-4-methylbenzoic acid Chemical compound CC1=CC=C(C(O)=O)C=C1Br ZFJOMUKPDWNRFI-UHFFFAOYSA-N 0.000 description 1
- 125000003682 3-furyl group Chemical group O1C([H])=C([*])C([H])=C1[H] 0.000 description 1
- KBEIFKMKVCDETC-UHFFFAOYSA-N 3-iodooxetane Chemical compound IC1COC1 KBEIFKMKVCDETC-UHFFFAOYSA-N 0.000 description 1
- WMZNGTSLFSJHMZ-UHFFFAOYSA-N 3-methoxycarbonylbenzoic acid Chemical compound COC(=O)C1=CC=CC(C(O)=O)=C1 WMZNGTSLFSJHMZ-UHFFFAOYSA-N 0.000 description 1
- 125000003469 3-methylhexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 1
- PZGADOOBMVLBJE-UHFFFAOYSA-N 3-methylsulfanylbenzoic acid Chemical compound CSC1=CC=CC(C(O)=O)=C1 PZGADOOBMVLBJE-UHFFFAOYSA-N 0.000 description 1
- 125000003349 3-pyridyl group Chemical group N1=C([H])C([*])=C([H])C([H])=C1[H] 0.000 description 1
- 125000001397 3-pyrrolyl group Chemical group [H]N1C([H])=C([*])C([H])=C1[H] 0.000 description 1
- 125000001541 3-thienyl group Chemical group S1C([H])=C([*])C([H])=C1[H] 0.000 description 1
- FQXQBFUUVCDIRK-UHFFFAOYSA-N 3-trifluoromethylbenzoic acid Chemical compound OC(=O)C1=CC=CC(C(F)(F)F)=C1 FQXQBFUUVCDIRK-UHFFFAOYSA-N 0.000 description 1
- SVSUYEJKNSMKKW-UHFFFAOYSA-N 4,4,5,5-tetramethyl-2-prop-1-en-2-yl-1,3,2-dioxaborolane Chemical compound CC(=C)B1OC(C)(C)C(C)(C)O1 SVSUYEJKNSMKKW-UHFFFAOYSA-N 0.000 description 1
- WXNDAHXQXXJKNI-UHFFFAOYSA-N 4-(4-bromo-6-chloro-5-fluoropyridin-2-yl)morpholine Chemical compound N1=C(Cl)C(F)=C(Br)C=C1N1CCOCC1 WXNDAHXQXXJKNI-UHFFFAOYSA-N 0.000 description 1
- LOPGEJOMAWTVPC-UHFFFAOYSA-N 4-(4-bromo-6-chloropyridin-2-yl)morpholine Chemical compound Clc1cc(Br)cc(n1)N1CCOCC1 LOPGEJOMAWTVPC-UHFFFAOYSA-N 0.000 description 1
- ZSZIHBAJWOIJGZ-UHFFFAOYSA-N 4-[5-bromo-2-(2,2-difluoroethoxy)pyridin-3-yl]morpholine Chemical compound FC(F)COC1=NC=C(Br)C=C1N1CCOCC1 ZSZIHBAJWOIJGZ-UHFFFAOYSA-N 0.000 description 1
- MGAWEKBLMMVIID-UHFFFAOYSA-N 4-[5-bromo-2-(difluoromethoxy)pyridin-3-yl]morpholine Chemical compound FC(F)OC1=NC=C(Br)C=C1N1CCOCC1 MGAWEKBLMMVIID-UHFFFAOYSA-N 0.000 description 1
- GUBXTQINPBZVJP-UHFFFAOYSA-N 4-bromo-2,6-dichloropyridine Chemical compound ClC1=CC(Br)=CC(Cl)=N1 GUBXTQINPBZVJP-UHFFFAOYSA-N 0.000 description 1
- GXGLIHCPYNPIPE-UHFFFAOYSA-N 4-chloro-3-(1-methyl-5-morpholin-4-yl-6-oxopyridin-3-yl)benzoic acid Chemical compound O=C1N(C)C=C(C=2C(=CC=C(C=2)C(O)=O)Cl)C=C1N1CCOCC1 GXGLIHCPYNPIPE-UHFFFAOYSA-N 0.000 description 1
- NNMYRMGMVLMQAY-UHFFFAOYSA-N 4-chloropyridine-2-carboxylic acid Chemical compound OC(=O)C1=CC(Cl)=CC=N1 NNMYRMGMVLMQAY-UHFFFAOYSA-N 0.000 description 1
- LQAWSWUFSHYCHP-UHFFFAOYSA-N 4-methylpyridine-2-carbonitrile Chemical compound CC1=CC=NC(C#N)=C1 LQAWSWUFSHYCHP-UHFFFAOYSA-N 0.000 description 1
- KDDQRKBRJSGMQE-UHFFFAOYSA-N 4-thiazolyl Chemical compound [C]1=CSC=N1 KDDQRKBRJSGMQE-UHFFFAOYSA-N 0.000 description 1
- KSZOHQNGHRFPLM-UHFFFAOYSA-N 5-(6-chloro-3-fluoro-2-morpholin-4-ylpyridin-4-yl)-6-methylpyridin-3-amine Chemical compound Cc1ncc(N)cc1-c1cc(Cl)nc(N2CCOCC2)c1F KSZOHQNGHRFPLM-UHFFFAOYSA-N 0.000 description 1
- LALVVIDAJMQDIT-UHFFFAOYSA-N 5-(6-methoxy-5-morpholin-4-ylpyridin-3-yl)-6-methylpyridin-3-amine Chemical compound COC1=C(C=C(C=N1)C=1C(=NC=C(C1)N)C)N1CCOCC1 LALVVIDAJMQDIT-UHFFFAOYSA-N 0.000 description 1
- DFOSMTBZQDLHFV-UHFFFAOYSA-N 5-bromo-1-methyl-3-morpholin-4-ylpyrazin-2-one Chemical compound O=C1N(C)C=C(Br)N=C1N1CCOCC1 DFOSMTBZQDLHFV-UHFFFAOYSA-N 0.000 description 1
- CLYOMCMDBNNGSM-UHFFFAOYSA-N 5-bromo-2-fluoropyridin-3-amine Chemical compound NC1=CC(Br)=CN=C1F CLYOMCMDBNNGSM-UHFFFAOYSA-N 0.000 description 1
- HJOOFLFWIISCAI-UHFFFAOYSA-N 5-bromo-2-methoxypyridin-3-amine Chemical compound COC1=NC=C(Br)C=C1N HJOOFLFWIISCAI-UHFFFAOYSA-N 0.000 description 1
- OPLCXLXORZDTMX-UHFFFAOYSA-N 5-bromo-3-(trifluoromethyl)-1h-pyridin-2-one Chemical compound OC1=NC=C(Br)C=C1C(F)(F)F OPLCXLXORZDTMX-UHFFFAOYSA-N 0.000 description 1
- HMURQOFNWZWERT-UHFFFAOYSA-N 5-bromo-3-fluoropyridine-2-carbonitrile Chemical compound FC1=CC(Br)=CN=C1C#N HMURQOFNWZWERT-UHFFFAOYSA-N 0.000 description 1
- WAUPPDAXWKLNNU-UHFFFAOYSA-N 5-bromo-3-iodo-1h-pyridin-2-one Chemical compound BrC1=CNC(=O)C(I)=C1 WAUPPDAXWKLNNU-UHFFFAOYSA-N 0.000 description 1
- HQVDKZTXGNRJMJ-UHFFFAOYSA-N 5-bromo-3-morpholin-4-yl-1-(oxan-4-yl)pyridin-2-one Chemical compound O=C1N(C2CCOCC2)C=C(Br)C=C1N1CCOCC1 HQVDKZTXGNRJMJ-UHFFFAOYSA-N 0.000 description 1
- YWYVVGOHQBANQI-UHFFFAOYSA-N 5-bromo-6-methoxypyridin-3-amine Chemical compound COC1=NC=C(N)C=C1Br YWYVVGOHQBANQI-UHFFFAOYSA-N 0.000 description 1
- MDQXGHBCDCOOSM-UHFFFAOYSA-N 5-bromopyridin-3-amine Chemical compound NC1=CN=CC(Br)=C1 MDQXGHBCDCOOSM-UHFFFAOYSA-N 0.000 description 1
- CWDWFSXUQODZGW-UHFFFAOYSA-N 5-thiazolyl Chemical group [C]1=CN=CS1 CWDWFSXUQODZGW-UHFFFAOYSA-N 0.000 description 1
- HXFLZWAZSSPLCO-UHFFFAOYSA-N 6,6-dimethylbicyclo[3.1.1]heptyl Chemical group C1[C-]2C([CH2+])([CH2-])[C+]1CCC2 HXFLZWAZSSPLCO-UHFFFAOYSA-N 0.000 description 1
- JUCLTSPERQTCMM-UHFFFAOYSA-N 6-(2-fluoropropan-2-yl)pyridazine-4-carboxylic acid Chemical compound CC(C)(F)C1=CC(C(O)=O)=CN=N1 JUCLTSPERQTCMM-UHFFFAOYSA-N 0.000 description 1
- JIJXKFKREAWUOO-UHFFFAOYSA-N 6-chloro-5-(6-methoxy-5-morpholin-4-ylpyridin-3-yl)pyridin-3-amine Chemical compound COC1=NC=C(C=2C(=NC=C(N)C=2)Cl)C=C1N1CCOCC1 JIJXKFKREAWUOO-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 241000251468 Actinopterygii Species 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 244000144730 Amygdalus persica Species 0.000 description 1
- 241000416162 Astragalus gummifer Species 0.000 description 1
- 241000271566 Aves Species 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 241000282693 Cercopithecidae Species 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- RGHNJXZEOKUKBD-SQOUGZDYSA-M D-gluconate Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O RGHNJXZEOKUKBD-SQOUGZDYSA-M 0.000 description 1
- AEMOLEFTQBMNLQ-AQKNRBDQSA-N D-glucopyranuronic acid Chemical compound OC1O[C@H](C(O)=O)[C@@H](O)[C@H](O)[C@H]1O AEMOLEFTQBMNLQ-AQKNRBDQSA-N 0.000 description 1
- BUDQDWGNQVEFAC-UHFFFAOYSA-N Dihydropyran Chemical compound C1COC=CC1 BUDQDWGNQVEFAC-UHFFFAOYSA-N 0.000 description 1
- 206010061818 Disease progression Diseases 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- XXRCUYVCPSWGCC-UHFFFAOYSA-N Ethyl pyruvate Chemical compound CCOC(=O)C(C)=O XXRCUYVCPSWGCC-UHFFFAOYSA-N 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- DEZZLWQELQORIU-RELWKKBWSA-N GDC-0879 Chemical compound N=1N(CCO)C=C(C=2C=C3CCC(/C3=CC=2)=N\O)C=1C1=CC=NC=C1 DEZZLWQELQORIU-RELWKKBWSA-N 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-ZSJDYOACSA-N Heavy water Chemical compound [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical compound Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 1
- WRYCSMQKUKOKBP-UHFFFAOYSA-N Imidazolidine Chemical compound C1CNCN1 WRYCSMQKUKOKBP-UHFFFAOYSA-N 0.000 description 1
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical group CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 1
- 206010069755 K-ras gene mutation Diseases 0.000 description 1
- 101150105104 Kras gene Proteins 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 1
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 1
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 description 1
- 240000007472 Leucaena leucocephala Species 0.000 description 1
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-L Malonate Chemical compound [O-]C(=O)CC([O-])=O OFOBLEOULBTSOW-UHFFFAOYSA-L 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 238000003820 Medium-pressure liquid chromatography Methods 0.000 description 1
- 102000004232 Mitogen-Activated Protein Kinase Kinases Human genes 0.000 description 1
- ZKGNPQKYVKXMGJ-UHFFFAOYSA-N N,N-dimethylacetamide Chemical compound CN(C)C(C)=O.CN(C)C(C)=O ZKGNPQKYVKXMGJ-UHFFFAOYSA-N 0.000 description 1
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 1
- QIAFMBKCNZACKA-UHFFFAOYSA-N N-benzoylglycine Chemical compound OC(=O)CNC(=O)C1=CC=CC=C1 QIAFMBKCNZACKA-UHFFFAOYSA-N 0.000 description 1
- MBBZMMPHUWSWHV-BDVNFPICSA-N N-methylglucamine Chemical compound CNC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO MBBZMMPHUWSWHV-BDVNFPICSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- PVNIIMVLHYAWGP-UHFFFAOYSA-N Niacin Chemical compound OC(=O)C1=CC=CN=C1 PVNIIMVLHYAWGP-UHFFFAOYSA-N 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- YZDJQTHVDDOVHR-UHFFFAOYSA-N PLX-4720 Chemical compound CCCS(=O)(=O)NC1=CC=C(F)C(C(=O)C=2C3=CC(Cl)=CN=C3NC=2)=C1F YZDJQTHVDDOVHR-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- YNPNZTXNASCQKK-UHFFFAOYSA-N Phenanthrene Natural products C1=CC=C2C3=CC=CC=C3C=CC2=C1 YNPNZTXNASCQKK-UHFFFAOYSA-N 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-L Phosphate ion(2-) Chemical compound OP([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-L 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 102000001253 Protein Kinase Human genes 0.000 description 1
- 235000006040 Prunus persica var persica Nutrition 0.000 description 1
- 101710141955 RAF proto-oncogene serine/threonine-protein kinase Proteins 0.000 description 1
- 229910018162 SeO2 Inorganic materials 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 208000000453 Skin Neoplasms Diseases 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- DHXVGJBLRPWPCS-UHFFFAOYSA-N Tetrahydropyran Chemical compound C1CCOCC1 DHXVGJBLRPWPCS-UHFFFAOYSA-N 0.000 description 1
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 1
- 239000004473 Threonine Substances 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- QONVNSCBMAGRFQ-VIFPVBQESA-N [(2s)-4-(4-bromopyridin-2-yl)morpholin-2-yl]methanol Chemical compound C1CO[C@H](CO)CN1C1=CC(Br)=CC=N1 QONVNSCBMAGRFQ-VIFPVBQESA-N 0.000 description 1
- VLAZLCVSFAYIIL-YFKPBYRVSA-N [(2s)-morpholin-2-yl]methanol Chemical compound OC[C@@H]1CNCCO1 VLAZLCVSFAYIIL-YFKPBYRVSA-N 0.000 description 1
- DGEZNRSVGBDHLK-UHFFFAOYSA-N [1,10]phenanthroline Chemical compound C1=CN=C2C3=NC=CC=C3C=CC2=C1 DGEZNRSVGBDHLK-UHFFFAOYSA-N 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000003070 absorption delaying agent Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000000370 acceptor Substances 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- CXBNMPMLFONTPO-UHFFFAOYSA-N acetic benzoic anhydride Chemical compound CC(=O)OC(=O)C1=CC=CC=C1 CXBNMPMLFONTPO-UHFFFAOYSA-N 0.000 description 1
- CSCPPACGZOOCGX-WFGJKAKNSA-N acetone d6 Chemical compound [2H]C([2H])([2H])C(=O)C([2H])([2H])[2H] CSCPPACGZOOCGX-WFGJKAKNSA-N 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 125000005073 adamantyl group Chemical group C12(CC3CC(CC(C1)C3)C2)* 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 235000010419 agar Nutrition 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 150000001341 alkaline earth metal compounds Chemical class 0.000 description 1
- 125000004183 alkoxy alkyl group Chemical group 0.000 description 1
- 125000004453 alkoxycarbonyl group Chemical group 0.000 description 1
- 125000005078 alkoxycarbonylalkyl group Chemical group 0.000 description 1
- 125000004457 alkyl amino carbonyl group Chemical group 0.000 description 1
- 125000005210 alkyl ammonium group Chemical group 0.000 description 1
- 230000029936 alkylation Effects 0.000 description 1
- 238000005804 alkylation reaction Methods 0.000 description 1
- IYABWNGZIDDRAK-UHFFFAOYSA-N allene Chemical group C=C=C IYABWNGZIDDRAK-UHFFFAOYSA-N 0.000 description 1
- OBETXYAYXDNJHR-UHFFFAOYSA-N alpha-ethylcaproic acid Natural products CCCCC(CC)C(O)=O OBETXYAYXDNJHR-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- SNAAJJQQZSMGQD-UHFFFAOYSA-N aluminum magnesium Chemical compound [Mg].[Al] SNAAJJQQZSMGQD-UHFFFAOYSA-N 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 125000004397 aminosulfonyl group Chemical group NS(=O)(=O)* 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000005349 anion exchange Methods 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 239000012223 aqueous fraction Substances 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 125000002029 aromatic hydrocarbon group Chemical group 0.000 description 1
- 150000001499 aryl bromides Chemical class 0.000 description 1
- 150000001502 aryl halides Chemical class 0.000 description 1
- 125000005160 aryl oxy alkyl group Chemical group 0.000 description 1
- 125000005161 aryl oxy carbonyl group Chemical group 0.000 description 1
- 125000004104 aryloxy group Chemical group 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 229940009098 aspartate Drugs 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 150000007514 bases Chemical class 0.000 description 1
- JUHORIMYRDESRB-UHFFFAOYSA-N benzathine Chemical compound C=1C=CC=CC=1CNCCNCC1=CC=CC=C1 JUHORIMYRDESRB-UHFFFAOYSA-N 0.000 description 1
- SRSXLGNVWSONIS-UHFFFAOYSA-M benzenesulfonate Chemical compound [O-]S(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-M 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 230000031018 biological processes and functions Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 239000006172 buffering agent Substances 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 229940043430 calcium compound Drugs 0.000 description 1
- 150000001674 calcium compounds Chemical class 0.000 description 1
- 159000000007 calcium salts Chemical class 0.000 description 1
- MIOPJNTWMNEORI-UHFFFAOYSA-N camphorsulfonic acid Chemical compound C1CC2(CS(O)(=O)=O)C(=O)CC1C2(C)C MIOPJNTWMNEORI-UHFFFAOYSA-N 0.000 description 1
- 208000035269 cancer or benign tumor Diseases 0.000 description 1
- 125000000609 carbazolyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3NC12)* 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical class OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000012069 chiral reagent Substances 0.000 description 1
- 125000004218 chloromethyl group Chemical group [H]C([H])(Cl)* 0.000 description 1
- 238000013375 chromatographic separation Methods 0.000 description 1
- 238000003181 co-melting Methods 0.000 description 1
- 239000013066 combination product Substances 0.000 description 1
- 229940127555 combination product Drugs 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 239000012050 conventional carrier Substances 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000008120 corn starch Substances 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 238000006352 cycloaddition reaction Methods 0.000 description 1
- 125000000000 cycloalkoxy group Chemical group 0.000 description 1
- 125000004858 cycloalkoxyalkyl group Chemical group 0.000 description 1
- 125000005144 cycloalkylsulfonyl group Chemical group 0.000 description 1
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000000596 cyclohexenyl group Chemical group C1(=CCCCC1)* 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000002433 cyclopentenyl group Chemical group C1(=CCCC1)* 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- AUQDITHEDVOTCU-UHFFFAOYSA-N cyclopropyl cyanide Chemical compound N#CC1CC1 AUQDITHEDVOTCU-UHFFFAOYSA-N 0.000 description 1
- DEZRYPDIMOWBDS-UHFFFAOYSA-N dcm dichloromethane Chemical compound ClCCl.ClCCl DEZRYPDIMOWBDS-UHFFFAOYSA-N 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000036576 dermal application Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 125000006003 dichloroethyl group Chemical group 0.000 description 1
- 125000004774 dichlorofluoromethyl group Chemical group FC(Cl)(Cl)* 0.000 description 1
- 125000004772 dichloromethyl group Chemical group [H]C(Cl)(Cl)* 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 description 1
- 125000006001 difluoroethyl group Chemical group 0.000 description 1
- SVKJOUIZQRKDAI-UHFFFAOYSA-N difluoromethanesulfinic acid;zinc Chemical compound [Zn].OS(=O)C(F)F.OS(=O)C(F)F SVKJOUIZQRKDAI-UHFFFAOYSA-N 0.000 description 1
- 125000001028 difluoromethyl group Chemical group [H]C(F)(F)* 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-M dihydrogenphosphate Chemical compound OP(O)([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-M 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- 238000006471 dimerization reaction Methods 0.000 description 1
- UXGNZZKBCMGWAZ-UHFFFAOYSA-N dimethylformamide dmf Chemical compound CN(C)C=O.CN(C)C=O UXGNZZKBCMGWAZ-UHFFFAOYSA-N 0.000 description 1
- MKRTXPORKIRPDG-UHFFFAOYSA-N diphenylphosphoryl azide Chemical compound C=1C=CC=CC=1P(=O)(N=[N+]=[N-])C1=CC=CC=C1 MKRTXPORKIRPDG-UHFFFAOYSA-N 0.000 description 1
- 230000005750 disease progression Effects 0.000 description 1
- 239000007884 disintegrant Substances 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- UZZWBUYVTBPQIV-UHFFFAOYSA-N dme dimethoxyethane Chemical compound COCCOC.COCCOC UZZWBUYVTBPQIV-UHFFFAOYSA-N 0.000 description 1
- MOTZDAYCYVMXPC-UHFFFAOYSA-N dodecyl hydrogen sulfate Chemical compound CCCCCCCCCCCCOS(O)(=O)=O MOTZDAYCYVMXPC-UHFFFAOYSA-N 0.000 description 1
- 229940043264 dodecyl sulfate Drugs 0.000 description 1
- 229940000406 drug candidate Drugs 0.000 description 1
- 238000007876 drug discovery Methods 0.000 description 1
- 229940112141 dry powder inhaler Drugs 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 239000012039 electrophile Substances 0.000 description 1
- 238000003821 enantio-separation Methods 0.000 description 1
- AFAXGSQYZLGZPG-UHFFFAOYSA-L ethanedisulfonate group Chemical group C(CS(=O)(=O)[O-])S(=O)(=O)[O-] AFAXGSQYZLGZPG-UHFFFAOYSA-L 0.000 description 1
- CCIVGXIOQKPBKL-UHFFFAOYSA-M ethanesulfonate Chemical compound CCS([O-])(=O)=O CCIVGXIOQKPBKL-UHFFFAOYSA-M 0.000 description 1
- LJQKCYFTNDAAPC-UHFFFAOYSA-N ethanol;ethyl acetate Chemical compound CCO.CCOC(C)=O LJQKCYFTNDAAPC-UHFFFAOYSA-N 0.000 description 1
- DQYBDCGIPTYXML-UHFFFAOYSA-N ethoxyethane;hydrate Chemical compound O.CCOCC DQYBDCGIPTYXML-UHFFFAOYSA-N 0.000 description 1
- OYERJNILKIFGKX-UHFFFAOYSA-N ethyl 2-(difluoromethyl)pyridine-4-carboxylate Chemical compound CCOC(=O)C1=CC=NC(C(F)F)=C1 OYERJNILKIFGKX-UHFFFAOYSA-N 0.000 description 1
- DEQYTNZJHKPYEZ-UHFFFAOYSA-N ethyl acetate;heptane Chemical compound CCOC(C)=O.CCCCCCC DEQYTNZJHKPYEZ-UHFFFAOYSA-N 0.000 description 1
- MVEAAGBEUOMFRX-UHFFFAOYSA-N ethyl acetate;hydrochloride Chemical compound Cl.CCOC(C)=O MVEAAGBEUOMFRX-UHFFFAOYSA-N 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 235000019634 flavors Nutrition 0.000 description 1
- 125000004785 fluoromethoxy group Chemical group [H]C([H])(F)O* 0.000 description 1
- 125000004216 fluoromethyl group Chemical group [H]C([H])(F)* 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000012458 free base Substances 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 229940050411 fumarate Drugs 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 235000011087 fumaric acid Nutrition 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 229960001731 gluceptate Drugs 0.000 description 1
- KWMLJOLKUYYJFJ-VFUOTHLCSA-N glucoheptonic acid Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)[C@@H](O)C(O)=O KWMLJOLKUYYJFJ-VFUOTHLCSA-N 0.000 description 1
- 229940050410 gluconate Drugs 0.000 description 1
- 229940097042 glucuronate Drugs 0.000 description 1
- 229940074045 glyceryl distearate Drugs 0.000 description 1
- 229940075507 glyceryl monostearate Drugs 0.000 description 1
- 229960004275 glycolic acid Drugs 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 125000005347 halocycloalkyl group Chemical group 0.000 description 1
- 150000005694 halopyrimidines Chemical class 0.000 description 1
- 239000007902 hard capsule Substances 0.000 description 1
- 125000006343 heptafluoro propyl group Chemical group 0.000 description 1
- 125000005326 heteroaryloxy alkyl group Chemical group 0.000 description 1
- 125000005553 heteroaryloxy group Chemical group 0.000 description 1
- 125000005226 heteroaryloxycarbonyl group Chemical group 0.000 description 1
- 125000005844 heterocyclyloxy group Chemical group 0.000 description 1
- IPCSVZSSVZVIGE-UHFFFAOYSA-M hexadecanoate Chemical compound CCCCCCCCCCCCCCCC([O-])=O IPCSVZSSVZVIGE-UHFFFAOYSA-M 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-M hydrogensulfate Chemical compound OS([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-M 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- NPZTUJOABDZTLV-UHFFFAOYSA-N hydroxybenzotriazole Substances O=C1C=CC=C2NNN=C12 NPZTUJOABDZTLV-UHFFFAOYSA-N 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- MTNDZQHUAFNZQY-UHFFFAOYSA-N imidazoline Chemical compound C1CN=CN1 MTNDZQHUAFNZQY-UHFFFAOYSA-N 0.000 description 1
- 125000001841 imino group Chemical group [H]N=* 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000001965 increasing effect Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 239000007972 injectable composition Substances 0.000 description 1
- 150000007529 inorganic bases Chemical class 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 1
- 125000002346 iodo group Chemical group I* 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- SUMDYPCJJOFFON-UHFFFAOYSA-N isethionic acid Chemical compound OCCS(O)(=O)=O SUMDYPCJJOFFON-UHFFFAOYSA-N 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 1
- JJWLVOIRVHMVIS-UHFFFAOYSA-N isopropylamine Chemical compound CC(C)N JJWLVOIRVHMVIS-UHFFFAOYSA-N 0.000 description 1
- 239000000644 isotonic solution Substances 0.000 description 1
- 239000007951 isotonicity adjuster Substances 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 229940001447 lactate Drugs 0.000 description 1
- 229940099584 lactobionate Drugs 0.000 description 1
- JYTUSYBCFIZPBE-AMTLMPIISA-N lactobionic acid Chemical compound OC(=O)[C@H](O)[C@@H](O)[C@@H]([C@H](O)CO)O[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O JYTUSYBCFIZPBE-AMTLMPIISA-N 0.000 description 1
- 229940057995 liquid paraffin Drugs 0.000 description 1
- YNESATAKKCNGOF-UHFFFAOYSA-N lithium bis(trimethylsilyl)amide Chemical compound [Li+].C[Si](C)(C)[N-][Si](C)(C)C YNESATAKKCNGOF-UHFFFAOYSA-N 0.000 description 1
- DLEDOFVPSDKWEF-UHFFFAOYSA-N lithium butane Chemical compound [Li+].CCC[CH2-] DLEDOFVPSDKWEF-UHFFFAOYSA-N 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 239000006210 lotion Substances 0.000 description 1
- 239000007937 lozenge Substances 0.000 description 1
- 229960003646 lysine Drugs 0.000 description 1
- 159000000003 magnesium salts Chemical class 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- FRIJBUGBVQZNTB-UHFFFAOYSA-M magnesium;ethane;bromide Chemical compound [Mg+2].[Br-].[CH2-]C FRIJBUGBVQZNTB-UHFFFAOYSA-M 0.000 description 1
- 229940049920 malate Drugs 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 229940098895 maleic acid Drugs 0.000 description 1
- 239000001630 malic acid Substances 0.000 description 1
- 235000011090 malic acid Nutrition 0.000 description 1
- IWYDHOAUDWTVEP-UHFFFAOYSA-M mandelate Chemical compound [O-]C(=O)C(O)C1=CC=CC=C1 IWYDHOAUDWTVEP-UHFFFAOYSA-M 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- BCVXHSPFUWZLGQ-UHFFFAOYSA-N mecn acetonitrile Chemical compound CC#N.CC#N BCVXHSPFUWZLGQ-UHFFFAOYSA-N 0.000 description 1
- 229960003194 meglumine Drugs 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- COTNUBDHGSIOTA-UHFFFAOYSA-N meoh methanol Chemical compound OC.OC COTNUBDHGSIOTA-UHFFFAOYSA-N 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229940098779 methanesulfonic acid Drugs 0.000 description 1
- VKPFTQQVEGRJCF-UHFFFAOYSA-N methyl 2-acetylpyridine-4-carboxylate Chemical compound COC(=O)C1=CC=NC(C(C)=O)=C1 VKPFTQQVEGRJCF-UHFFFAOYSA-N 0.000 description 1
- YUHSMQQNPRLEEJ-UHFFFAOYSA-N methyl 3-(bromomethyl)benzoate Chemical compound COC(=O)C1=CC=CC(CBr)=C1 YUHSMQQNPRLEEJ-UHFFFAOYSA-N 0.000 description 1
- KMFJVYMFCAIRAN-UHFFFAOYSA-N methyl 3-bromobenzoate Chemical compound COC(=O)C1=CC=CC(Br)=C1 KMFJVYMFCAIRAN-UHFFFAOYSA-N 0.000 description 1
- UVSBCUAQEZINCQ-UHFFFAOYSA-N methyl 3-formylbenzoate Chemical compound COC(=O)C1=CC=CC(C=O)=C1 UVSBCUAQEZINCQ-UHFFFAOYSA-N 0.000 description 1
- WINGWVOUOFMOJQ-UHFFFAOYSA-N methyl 5-bromo-6-chloropyridine-3-carboxylate Chemical compound COC(=O)C1=CN=C(Cl)C(Br)=C1 WINGWVOUOFMOJQ-UHFFFAOYSA-N 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- XMJHPCRAQCTCFT-UHFFFAOYSA-N methyl chloroformate Chemical compound COC(Cl)=O XMJHPCRAQCTCFT-UHFFFAOYSA-N 0.000 description 1
- JZMJDSHXVKJFKW-UHFFFAOYSA-M methyl sulfate(1-) Chemical compound COS([O-])(=O)=O JZMJDSHXVKJFKW-UHFFFAOYSA-M 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- DVSDBMFJEQPWNO-UHFFFAOYSA-N methyllithium Chemical compound C[Li] DVSDBMFJEQPWNO-UHFFFAOYSA-N 0.000 description 1
- 238000004452 microanalysis Methods 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- PEECTLLHENGOKU-UHFFFAOYSA-N n,n-dimethylpyridin-4-amine Chemical compound CN(C)C1=CC=NC=C1.CN(C)C1=CC=NC=C1 PEECTLLHENGOKU-UHFFFAOYSA-N 0.000 description 1
- MZRVEZGGRBJDDB-UHFFFAOYSA-N n-Butyllithium Substances [Li]CCCC MZRVEZGGRBJDDB-UHFFFAOYSA-N 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000003136 n-heptyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 1
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 239000006199 nebulizer Substances 0.000 description 1
- 125000001971 neopentyl group Chemical group [H]C([*])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 235000001968 nicotinic acid Nutrition 0.000 description 1
- 239000011664 nicotinic acid Substances 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- VWBWQOUWDOULQN-UHFFFAOYSA-N nmp n-methylpyrrolidone Chemical compound CN1CCCC1=O.CN1CCCC1=O VWBWQOUWDOULQN-UHFFFAOYSA-N 0.000 description 1
- 239000012457 nonaqueous media Substances 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-M octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC([O-])=O QIQXTHQIDYTFRH-UHFFFAOYSA-M 0.000 description 1
- 239000002674 ointment Substances 0.000 description 1
- 229940049964 oleate Drugs 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 239000004006 olive oil Substances 0.000 description 1
- 235000008390 olive oil Nutrition 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 229940116315 oxalic acid Drugs 0.000 description 1
- IVMHDOBGNQOUHO-UHFFFAOYSA-N oxathiane Chemical compound C1CCSOC1 IVMHDOBGNQOUHO-UHFFFAOYSA-N 0.000 description 1
- OOFGXDQWDNJDIS-UHFFFAOYSA-N oxathiolane Chemical compound C1COSC1 OOFGXDQWDNJDIS-UHFFFAOYSA-N 0.000 description 1
- KJIFKLIQANRMOU-UHFFFAOYSA-N oxidanium;4-methylbenzenesulfonate Chemical compound O.CC1=CC=C(S(O)(=O)=O)C=C1 KJIFKLIQANRMOU-UHFFFAOYSA-N 0.000 description 1
- 239000006174 pH buffer Substances 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 239000006072 paste Substances 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- 235000019371 penicillin G benzathine Nutrition 0.000 description 1
- 125000006340 pentafluoro ethyl group Chemical group FC(F)(F)C(F)(F)* 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 229940021222 peritoneal dialysis isotonic solution Drugs 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 150000003904 phospholipids Chemical class 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 239000006187 pill Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 239000011698 potassium fluoride Substances 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 239000003380 propellant Substances 0.000 description 1
- 230000000069 prophylactic effect Effects 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- 229940095574 propionic acid Drugs 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 230000004952 protein activity Effects 0.000 description 1
- 108060006633 protein kinase Proteins 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 125000004307 pyrazin-2-yl group Chemical group [H]C1=C([H])N=C(*)C([H])=N1 0.000 description 1
- 125000003373 pyrazinyl group Chemical group 0.000 description 1
- 125000002206 pyridazin-3-yl group Chemical group [H]C1=C([H])C([H])=C(*)N=N1 0.000 description 1
- 125000004940 pyridazin-4-yl group Chemical group N1=NC=C(C=C1)* 0.000 description 1
- 150000004892 pyridazines Chemical class 0.000 description 1
- 125000004076 pyridyl group Chemical group 0.000 description 1
- 125000000246 pyrimidin-2-yl group Chemical group [H]C1=NC(*)=NC([H])=C1[H] 0.000 description 1
- 125000004527 pyrimidin-4-yl group Chemical group N1=CN=C(C=C1)* 0.000 description 1
- 125000004528 pyrimidin-5-yl group Chemical group N1=CN=CC(=C1)* 0.000 description 1
- 150000003230 pyrimidines Chemical class 0.000 description 1
- ZVJHJDDKYZXRJI-UHFFFAOYSA-N pyrroline Natural products C1CC=NC1 ZVJHJDDKYZXRJI-UHFFFAOYSA-N 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- VUPQHSHTKBZVML-UHFFFAOYSA-J rhodium(3+);tetraacetate Chemical compound [Rh+3].[Rh+3].CC([O-])=O.CC([O-])=O.CC([O-])=O.CC([O-])=O VUPQHSHTKBZVML-UHFFFAOYSA-J 0.000 description 1
- MOODSJOROWROTO-UHFFFAOYSA-N salicylsulfuric acid Chemical compound OC(=O)C1=CC=CC=C1OS(O)(=O)=O MOODSJOROWROTO-UHFFFAOYSA-N 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 150000003335 secondary amines Chemical class 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 201000000849 skin cancer Diseases 0.000 description 1
- 229910001467 sodium calcium phosphate Inorganic materials 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- QDRKDTQENPPHOJ-UHFFFAOYSA-N sodium ethoxide Chemical compound [Na+].CC[O-] QDRKDTQENPPHOJ-UHFFFAOYSA-N 0.000 description 1
- 235000010288 sodium nitrite Nutrition 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- MRTAVLDNYYEJHK-UHFFFAOYSA-M sodium;2-chloro-2,2-difluoroacetate Chemical compound [Na+].[O-]C(=O)C(F)(F)Cl MRTAVLDNYYEJHK-UHFFFAOYSA-M 0.000 description 1
- KKVTYAVXTDIPAP-UHFFFAOYSA-M sodium;methanesulfonate Chemical compound [Na+].CS([O-])(=O)=O KKVTYAVXTDIPAP-UHFFFAOYSA-M 0.000 description 1
- 239000007901 soft capsule Substances 0.000 description 1
- 239000011877 solvent mixture Substances 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 229940114926 stearate Drugs 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 125000005415 substituted alkoxy group Chemical group 0.000 description 1
- 229940086735 succinate Drugs 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 229940071103 sulfosalicylate Drugs 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 239000001117 sulphuric acid Substances 0.000 description 1
- 235000011149 sulphuric acid Nutrition 0.000 description 1
- 238000004808 supercritical fluid chromatography Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 229940095064 tartrate Drugs 0.000 description 1
- BFNYNEMRWHFIMR-UHFFFAOYSA-N tert-butyl 2-cyanoacetate Chemical compound CC(C)(C)OC(=O)CC#N BFNYNEMRWHFIMR-UHFFFAOYSA-N 0.000 description 1
- TZRQZPMQUXEZMC-UHFFFAOYSA-N tert-butyl n-(2-bromoethyl)carbamate Chemical compound CC(C)(C)OC(=O)NCCBr TZRQZPMQUXEZMC-UHFFFAOYSA-N 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- CIHOLLKRGTVIJN-UHFFFAOYSA-N tert‐butyl hydroperoxide Chemical compound CC(C)(C)OO CIHOLLKRGTVIJN-UHFFFAOYSA-N 0.000 description 1
- WHRNULOCNSKMGB-UHFFFAOYSA-N tetrahydrofuran thf Chemical compound C1CCOC1.C1CCOC1 WHRNULOCNSKMGB-UHFFFAOYSA-N 0.000 description 1
- 125000001412 tetrahydropyranyl group Chemical group 0.000 description 1
- 231100001274 therapeutic index Toxicity 0.000 description 1
- 125000000335 thiazolyl group Chemical group 0.000 description 1
- 125000004001 thioalkyl group Chemical group 0.000 description 1
- BRNULMACUQOKMR-UHFFFAOYSA-N thiomorpholine Chemical compound C1CSCCN1 BRNULMACUQOKMR-UHFFFAOYSA-N 0.000 description 1
- 238000003354 tissue distribution assay Methods 0.000 description 1
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 1
- 239000012443 tonicity enhancing agent Substances 0.000 description 1
- 239000000196 tragacanth Substances 0.000 description 1
- 235000010487 tragacanth Nutrition 0.000 description 1
- 229940116362 tragacanth Drugs 0.000 description 1
- 230000037317 transdermal delivery Effects 0.000 description 1
- 125000003866 trichloromethyl group Chemical group ClC(Cl)(Cl)* 0.000 description 1
- GKASDNZWUGIAMG-UHFFFAOYSA-N triethyl orthoformate Chemical compound CCOC(OCC)OCC GKASDNZWUGIAMG-UHFFFAOYSA-N 0.000 description 1
- MWKJTNBSKNUMFN-UHFFFAOYSA-N trifluoromethyltrimethylsilane Chemical compound C[Si](C)(C)C(F)(F)F MWKJTNBSKNUMFN-UHFFFAOYSA-N 0.000 description 1
- 125000004385 trihaloalkyl group Chemical group 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- 229960000281 trometamol Drugs 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 238000004704 ultra performance liquid chromatography Methods 0.000 description 1
- 238000003828 vacuum filtration Methods 0.000 description 1
- GPXBXXGIAQBQNI-UHFFFAOYSA-N vemurafenib Chemical compound CCCS(=O)(=O)NC1=CC=C(F)C(C(=O)C=2C3=CC(=CN=C3NC=2)C=2C=CC(Cl)=CC=2)=C1F GPXBXXGIAQBQNI-UHFFFAOYSA-N 0.000 description 1
- 229960003862 vemurafenib Drugs 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 235000005074 zinc chloride Nutrition 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/535—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
- A61K31/5375—1,4-Oxazines, e.g. morpholine
- A61K31/5377—1,4-Oxazines, e.g. morpholine not condensed and containing further heterocyclic rings, e.g. timolol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/44—Non condensed pyridines; Hydrogenated derivatives thereof
- A61K31/4427—Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
- A61K31/444—Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems containing a six-membered ring with nitrogen as a ring heteroatom, e.g. amrinone
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
- A61K31/50—Pyridazines; Hydrogenated pyridazines
- A61K31/501—Pyridazines; Hydrogenated pyridazines not condensed and containing further heterocyclic rings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/535—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
- A61K31/5375—1,4-Oxazines, e.g. morpholine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/54—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one sulfur as the ring hetero atoms, e.g. sulthiame
- A61K31/541—Non-condensed thiazines containing further heterocyclic rings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B59/00—Introduction of isotopes of elements into organic compounds ; Labelled organic compounds per se
- C07B59/002—Heterocyclic compounds
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D213/00—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
- C07D213/02—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
- C07D213/04—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D213/60—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D213/72—Nitrogen atoms
- C07D213/74—Amino or imino radicals substituted by hydrocarbon or substituted hydrocarbon radicals
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D213/00—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
- C07D213/02—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
- C07D213/04—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D213/60—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D213/72—Nitrogen atoms
- C07D213/75—Amino or imino radicals, acylated by carboxylic or carbonic acids, or by sulfur or nitrogen analogues thereof, e.g. carbamates
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D213/00—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
- C07D213/02—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
- C07D213/04—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D213/60—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D213/78—Carbon atoms having three bonds to hetero atoms, with at the most one bond to halogen, e.g. ester or nitrile radicals
- C07D213/81—Amides; Imides
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D213/00—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
- C07D213/02—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
- C07D213/04—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D213/60—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D213/78—Carbon atoms having three bonds to hetero atoms, with at the most one bond to halogen, e.g. ester or nitrile radicals
- C07D213/81—Amides; Imides
- C07D213/82—Amides; Imides in position 3
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D213/00—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
- C07D213/02—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
- C07D213/04—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D213/60—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D213/78—Carbon atoms having three bonds to hetero atoms, with at the most one bond to halogen, e.g. ester or nitrile radicals
- C07D213/84—Nitriles
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D233/00—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
- C07D233/54—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
- C07D233/66—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D233/88—Nitrogen atoms, e.g. allantoin
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D237/00—Heterocyclic compounds containing 1,2-diazine or hydrogenated 1,2-diazine rings
- C07D237/02—Heterocyclic compounds containing 1,2-diazine or hydrogenated 1,2-diazine rings not condensed with other rings
- C07D237/06—Heterocyclic compounds containing 1,2-diazine or hydrogenated 1,2-diazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
- C07D237/10—Heterocyclic compounds containing 1,2-diazine or hydrogenated 1,2-diazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D237/20—Nitrogen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D237/00—Heterocyclic compounds containing 1,2-diazine or hydrogenated 1,2-diazine rings
- C07D237/02—Heterocyclic compounds containing 1,2-diazine or hydrogenated 1,2-diazine rings not condensed with other rings
- C07D237/06—Heterocyclic compounds containing 1,2-diazine or hydrogenated 1,2-diazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
- C07D237/10—Heterocyclic compounds containing 1,2-diazine or hydrogenated 1,2-diazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D237/22—Nitrogen and oxygen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D237/00—Heterocyclic compounds containing 1,2-diazine or hydrogenated 1,2-diazine rings
- C07D237/02—Heterocyclic compounds containing 1,2-diazine or hydrogenated 1,2-diazine rings not condensed with other rings
- C07D237/06—Heterocyclic compounds containing 1,2-diazine or hydrogenated 1,2-diazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
- C07D237/10—Heterocyclic compounds containing 1,2-diazine or hydrogenated 1,2-diazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D237/24—Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D239/00—Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
- C07D239/02—Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
- C07D239/24—Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
- C07D239/28—Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to ring carbon atoms
- C07D239/32—One oxygen, sulfur or nitrogen atom
- C07D239/42—One nitrogen atom
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D239/00—Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
- C07D239/02—Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
- C07D239/24—Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
- C07D239/28—Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to ring carbon atoms
- C07D239/46—Two or more oxygen, sulphur or nitrogen atoms
- C07D239/47—One nitrogen atom and one oxygen or sulfur atom, e.g. cytosine
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D239/00—Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
- C07D239/02—Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
- C07D239/24—Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
- C07D239/28—Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to ring carbon atoms
- C07D239/46—Two or more oxygen, sulphur or nitrogen atoms
- C07D239/48—Two nitrogen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D241/00—Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings
- C07D241/02—Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings not condensed with other rings
- C07D241/10—Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
- C07D241/14—Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D241/20—Nitrogen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D263/00—Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings
- C07D263/52—Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings condensed with carbocyclic rings or ring systems
- C07D263/54—Benzoxazoles; Hydrogenated benzoxazoles
- C07D263/58—Benzoxazoles; Hydrogenated benzoxazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached in position 2
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D277/00—Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
- C07D277/02—Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings
- C07D277/20—Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
- C07D277/32—Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D277/38—Nitrogen atoms
- C07D277/42—Amino or imino radicals substituted by hydrocarbon or substituted hydrocarbon radicals
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D401/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
- C07D401/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
- C07D401/04—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D401/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
- C07D401/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
- C07D401/12—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D401/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
- C07D401/14—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D403/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
- C07D403/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
- C07D403/04—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D403/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
- C07D403/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
- C07D403/12—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D405/00—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
- C07D405/02—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
- C07D405/04—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D405/00—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
- C07D405/02—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
- C07D405/12—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a chain containing hetero atoms as chain links
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D405/00—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
- C07D405/14—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D409/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
- C07D409/14—Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D413/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
- C07D413/02—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
- C07D413/04—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D413/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
- C07D413/02—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
- C07D413/12—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D413/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
- C07D413/14—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D417/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
- C07D417/02—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
- C07D417/12—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D471/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
- C07D471/02—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
- C07D471/04—Ortho-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D487/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
- C07D487/02—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
- C07D487/04—Ortho-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D491/00—Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
- C07D491/02—Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
- C07D491/04—Ortho-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D491/00—Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
- C07D491/02—Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
- C07D491/04—Ortho-condensed systems
- C07D491/044—Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring
- C07D491/048—Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring the oxygen-containing ring being five-membered
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D491/00—Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
- C07D491/02—Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
- C07D491/08—Bridged systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D491/00—Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
- C07D491/02—Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
- C07D491/10—Spiro-condensed systems
- C07D491/107—Spiro-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D493/00—Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
- C07D493/02—Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
- C07D493/04—Ortho-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D493/00—Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
- C07D493/02—Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
- C07D493/10—Spiro-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D495/00—Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
- C07D495/02—Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
- C07D495/04—Ortho-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D498/00—Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms
- C07D498/02—Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
- C07D498/08—Bridged systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D513/00—Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00
- C07D513/02—Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00 in which the condensed system contains two hetero rings
- C07D513/04—Ortho-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B2200/00—Indexing scheme relating to specific properties of organic compounds
- C07B2200/05—Isotopically modified compounds, e.g. labelled
Definitions
- the invention provides compounds that inhibit Raf kinases, and are accordingly useful for treating certain disorders associated with excessive Raf kinase activity, including cell proliferation disorders such as cancers.
- the invention further provides pharmaceutical compositions containing these compounds and methods of using these compounds to treat conditions including cancer.
- Protein Kinases are involved in very complex signaling cascades that regulate most cellular functions, including cell survival and proliferation. These signaling pathways have been heavily studied, particularly in the context of disorders caused by dysregulated cellular function, such as cancer.
- the mitogen-activated protein kinase (MAPK) cascade has been studied extensively, for example, and kinases in this pathway (e.g., RAS, RAF, MEK, and ERK) have been exploited as target sites for drug discovery.
- MAPK mitogen-activated protein kinase
- Mutated B-Raf is found in a significant fraction of malignancies (over 30% of all tumors and 40% of melanomas), and several drug candidates that inhibit a common B-Raf mutant (V600E, an activating mutation found in many cancers, particularly in cutaneous malignant melanoma, thyroid cancer, colorectal cancer, and ovarian cancer) have been reported, including GDC-0879, PLX4032, and PLX4720, while other inhibitors targeting C-Raf or B-Raf (or both) include sorafenib, XL281 RAF265, and BAY43-9006. These examples demonstrate that compounds that inhibit B-Raf or C-Raf are useful to treat various cancers.
- the MAPK signaling cascade includes RAS, Raf, MEK and ERK kinases, each of which is actually a group of related proteins. Because they function collectively as a signal transduction cascade, the number of distinct kinases and their varying substrate specificities create a complex and highly branched pathway. Roskoski, Biochem. Biophys. Res. Comm., 399, 313-17 (2010 ).
- Raf for example, consists of monomers referred to as A-Raf, B-Raf, and C-Raf (also called Raf-1), each of which functions primarily as a dimer.
- the RAF complex includes heterodimers as well as homodimers of these three species, bringing the total number of dimeric species in the Raf group to six, and each of these has a number of sites where phosphorylation at serine, threonine or tyrosine can cause either activation or inhibition.
- Matallanas et al., Genes and Cancer 2:232 (2011, published online 10 May 2011 ). Due to the complexity of the pathway and its regulation, it has been reported that inhibitors of B-Raf can cause paradoxical activation of the pathway, apparently due to conformational effects on the kinase domain of Raf that affect dimerization, membrane localization, and interaction with RAS-GTP. Hatzivassiliou, et al., Nature, vol.
- ATP-competitive inhibitors can exhibit opposing effects on the signaling pathway, as either inhibitors or activators, depending on the cellular context.
- B-Raf inhibitors effective against tumors having the activating B-Raf mutation V600E may not be as effective as expected in tumors having wild-type B-Raf or KRas mutations. Id.
- the present invention provides novel inhibitors of Raf kinases, including A-Raf, B-Raf and/or C-Raf, and use of these compounds to treat disorders associated with excessive or undesired levels of Raf activity, such as certain cancers.
- the compounds of the invention minimize undesired pathway activation effects, and thus can be more efficacious and more predictable in vivo than the B-Raf inhibitors that cause paradoxical pathway activation even when they have similar in vitro potency.
- the compounds of the invention bind in a DFG-out mode, making them type 2 inhibitors, which have been reported to be less prone to induce paradoxical activation. They are also quite different in structure from known type 2 inhibitors like sorafenib and RAF265. J. Med. Chem. 2012, vol. 55, 3452-78 .
- the compounds are thus suited for treatment of BRaf wild-type and KRas mutant tumors, as well as B-Raf V600E mutant tumors.
- the invention provides compounds of the formula (I): as further described herein, including the pharmaceutically acceptable salts of these compounds.
- the compounds of Formula (I) are inhibitors of Raf kinases as shown by data herein, and are accordingly useful to treat conditions such as melanoma, breast cancer, sarcoma, GI tumors such as gastrointestinal stromal tumors, ovarian cancer, sarcoma, GI tumors such as gastrointestinal stromal tumors, and other malignancies associated with excessive Raf pathway activity, particularly in cancers driven by Ras mutations.
- the compounds of the invention exhibit low levels of paradoxical activation of the Raf pathway.
- the invention provides pharmaceutical compositions comprising a compound of Formula (I) admixed with at least one pharmaceutically acceptable carrier or excipient, optionally admixed with two or more pharmaceutically acceptable carriers or excipients.
- the invention includes combinations of a compound of Formula (I) with a co-therapeutic agent, optionally including one or more pharmaceutically acceptable carriers, and methods of treatment using a compound of Formula (I) in combination with a co-therapeutic agent.
- Suitable co-therapeutic agents for use in the invention include, for example, cancer chemotherapeutics including but not limited to inhibitors of PI3K, other inhibitors of the Raf pathway, paclitaxel, docetaxel, temozolomide, platins, doxorubicins, vinblastins, cyclophosphamide, topotecan, gemcitabine, ifosfamide, etoposide, irinotecan, and the like.
- cancer chemotherapeutics including but not limited to inhibitors of PI3K, other inhibitors of the Raf pathway, paclitaxel, docetaxel, temozolomide, platins, doxorubicins, vinblastins, cyclophosphamide, topotecan, gemcitabine, ifosfamide, etoposide, irinotecan, and the like.
- the invention provides compounds for use in a method to treat a condition characterized by excessive or undesired levels of activity of Raf, especially B-Raf and/or C-Raf, which comprises administering to a subject in need of such treatment an effective amount of a compound of Formula (I) or any subgenus thereof as described herein, or a pharmaceutical composition comprising such compound.
- the subject can be a mammal, and is preferably a human.
- Conditions treatable by the compounds and methods described herein include various forms of cancer, such as solid tumors, melanoma, breast cancer, lung cancer (e.g., non-small cell lung cancer), sarcoma, GI tumors such as gastrointestinal stromal tumors, ovarian cancer, colorectal cancer, thyroid cancer, and pancreatic cancer.
- cancer such as solid tumors, melanoma, breast cancer, lung cancer (e.g., non-small cell lung cancer), sarcoma, GI tumors such as gastrointestinal stromal tumors, ovarian cancer, colorectal cancer, thyroid cancer, and pancreatic cancer.
- the invention thus includes compounds of Formula (I) and the subgenera thereof that are disclosed herein, including each species disclosed herein, for use in therapy, particularly for use to treat cancers such as melanoma, breast cancer, lung cancer, liver cancer, sarcoma, GI tumors such as gastrointestinal stromal tumors, sarcoma, GI tumors such as gastrointestinal stromal tumors, ovarian cancer, colorectal cancer, thyroid cancer, and pancreatic cancer.
- the invention also includes use of such compounds for manufacture of a medicament for treating these conditions.
- the invention includes compounds of Formula (I) and the subgenera of Formula (I) described herein, and all stereoisomers (including diastereoisomers and enantiomers), tautomers and isotopically enriched versions thereof (including deuterium substitutions), as well as pharmaceutically acceptable salts of these compounds.
- a heteroaryl ring containing N as a ring atom is optionally substituted with hydroxyl, e.g., a 2-hydroxypyridine ring
- tautomers where the hydroxyl is depicted as a carbonyl (e.g., 2-pyridone) are included.
- Compounds of the present invention also comprise polymorphs of compounds of formula I (or sub-formulae thereof) and salts thereof.
- halogen refers to fluorine, bromine, chlorine or iodine, in particular fluorine or chlorine.
- Halogen-substituted groups and moieties, such as alkyl substituted by halogen (haloalkyl) can be mono-, poly- or per-halogenated.
- hetero atoms refers to nitrogen (N), oxygen (O) or sulfur (S) atoms, in particular nitrogen or oxygen, unless otherwise provided.
- alkyl refers to a fully saturated branched or unbranched hydrocarbon moiety having up to 20 carbon atoms. Unless otherwise provided, alkyl refers to hydrocarbon moieties having 1 to 10 carbon atoms, 1 to 6 carbon atoms, or 1 to 4 carbon atoms. Typically, alkyl groups have 1-6 carbon atoms. "Lower alkyl” refers to alkyl groups having 1-4 carbon atoms.
- alkyl include, but are not limited to, methyl, ethyl, n-propyl, iso-propyl, n-butyl, sec-butyl, iso-butyl, tert-butyl, n-pentyl, isopentyl, neopentyl, n-hexyl, 3-methylhexyl, 2,2- dimethylpentyl, 2,3-dimethylpentyl, n-heptyl, n-octyl, n-nonyl, n-decyl and the like.
- a substituted alkyl is an alkyl group containing one or more substituents in place of hydrogen, such as one, two or three substituents, or 1-4 substituents, up to the number of hydrogens present on the unsubstituted alkyl group.
- alkylene refers to a divalent alkyl group having 1 to 10 carbon atoms, and two open valences to attach to other features. Unless otherwise provided, alkylene refers to moieties having 1 to 10 carbon atoms, 1 to 6 carbon atoms, or 1 to 4 carbon atoms.
- alkylene examples include, but are not limited to, methylene, ethylene, n-propylene, iso-propylene, n-butylene, sec-butylene, iso-butylene, tert-butylene, n-pentylene, isopentylene, neopentylene, n-hexylene, 3-methylhexylene, 2,2- dimethylpentylene, 2,3-dimethylpentylene, n-heptylene, n-octylene, n-nonylene, n-decylene and the like.
- a substituted alkylene is an alkylene group containing one or more, such as one, two or three substituents; unless otherwise specified, suitable and preferred substituents are selected from the substituents described as suitable and preferred for alkyl groups.
- haloalkyl refers to an alkyl as defined herein, which is substituted by one or more halo groups as defined herein.
- the haloalkyl can be monohaloalkyl, dihaloalkyl, trihaloalkyl, or polyhaloalkyl including perhaloalkyl.
- a monohaloalkyl can have one iodo, bromo, chloro or fluoro within the alkyl group. Chloro and fluoro are preferred on alkyl or cycloalkyl groups; fluoro, chloro and bromo are often preferred on aryl or heteroaryl groups.
- Dihaloalkyl and polyhaloalkyl groups can have two or more of the same halo atoms or a combination of different halo groups within the alkyl.
- the polyhaloalkyl contains up to 12, or 10, or 8, or 6, or 4, or 3, or 2 halo groups.
- Non-limiting examples of haloalkyl include fluoromethyl, difluoromethyl, trifluoromethyl, chloromethyl, dichloromethyl, trichloromethyl, pentafluoroethyl, heptafluoropropyl, difluorochloromethyl, dichlorofluoromethyl, difluoroethyl, difluoropropyl, dichloroethyl and dichloropropyl.
- a perhalo-alkyl refers to an alkyl having all hydrogen atoms replaced with halo atoms, e.g, trifluoromethyl.
- alkoxy refers to alkyl-O-, wherein alkyl is defined above.
- Representative examples of alkoxy include, but are not limited to, methoxy, ethoxy, propoxy, 2-propoxy, butoxy, tert-butoxy, pentyloxy, hexyloxy, and the like.
- alkoxy groups typically have 1-10, or 1-6 carbons, more commonly 1-4 carbon atoms.
- a "substituted alkoxy” is an alkoxy group containing one or more, such as one, two or three substituents on the alkyl portion of the alkoxy. Unless otherwise specified, suitable and preferred substituents are selected from the substituents listed above for alkyl groups, except that hydroxyl and amino are not normally present on the carbon that is directly attached to the oxygen of the substituted 'alkyl-O' group.
- each alkyl part of other groups like “alkylaminocarbonyl”, “alkoxyalkyl”, “alkoxycarbonyl”, “alkoxy-carbonylalkyl”, “alkylsulfonyl”, “alkylsulfoxyl”, “alkylamino”, “haloalkyl” shall have the same meaning as described in the above-mentioned definition of "alkyl”.
- the alkyl group is often a 1-4 carbon alkyl and is not further substituted by groups other than the component named.
- suitable substituents are selected from the suitable or preferred substituents named above for alkyl groups unless otherwise specified.
- haloalkoxy refers to haloalkyl-O-, wherein haloalkyl is defined above.
- Representative examples of haloalkoxy include, but are not limited to, fluoromethoxy, difluoromethoxy, trifluoromethoxy, trichloromethoxy, 2-chloroethoxy, 2,2,2-trifluoroethoxy, 1,1,1,3,3,3-hexafluoro-2-propoxy, and the like.
- haloalkyl groups have 1-4 carbon atoms.
- cycloalkyl refers to saturated or unsaturated non-aromatic monocyclic, bicyclic, tricyclic or spirocyclic hydrocarbon groups of 3-12 carbon atoms: the cycloalkyl group may be unsaturated, and may be fused to another ring that can be saturated, unsaturated or aromatic, provided the ring atom of the cycloalkyl group that is connected to the molecular formula of interest is not an aromatic ring atom.
- cycloalkyl refers to cyclic hydrocarbon groups having between 3 and 9 ring carbon atoms or between 3 and 7 ring carbon atoms.
- cycloalkyl groups are saturated monocyclic rings having 3-7 ring atoms unless otherwise specified.
- a substituted cycloalkyl is a cycloalkyl group substituted by one, or two, or three, or more than three substituents, up to the number of hydrogens on the unsubstituted group.
- a substituted cycloalkyl will have 1-4 or 1-2 substituents.
- Suitable substituents are independently selected from the group consisting of halogen, hydroxyl, thiol, cyano, nitro, oxo, C 1-4 -alkylimino, C 1-4 -alkoximino, hydroxyimino, C 1-4 -alkyl, C 2-4 -alkenyl, C 2-4 -alkynyl, C 1-4 -alkoxy, C 1-4 -thioalkyl, C 2-4 -alkenyloxy, C 2-4 -alkynyloxy, C 1-4 -alkylcarbonyl, carboxy, C 1-4 -alkoxycarbonyl, amino, C 1-4 -alkylamino, di-C 1-4 -alkylamino, C 1-4 -alkylaminocarbonyl, di-C 1-4 -alkylaminocarbonyl, C 1-4 -alkylcarbonylamino, C 1-4 -alkylcarbonylamino, C 1-4
- Exemplary monocyclic hydrocarbon groups include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclopentenyl, cyclohexyl and cyclohexenyl and the like.
- Exemplary bicyclic hydrocarbon groups include bornyl, indyl, hexahydroindyl, tetrahydronaphthyl, decahydronaphthyl, bicyclo[2.1.1]hexyl, bicyclo[2.2.1]heptyl, bicyclo[2.2.1]heptenyl, 6,6-dimethylbicyclo[3.1.1]heptyl, 2,6,6-trimethylbicyclo[3.1.1]heptyl, bicyclo[2.2.2]octyl and the like.
- Exemplary tricyclic hydrocarbon groups include adamantyl and the like.
- each cycloalkyl part of other groups like “cycloalkyloxy”, “cycloalkoxyalkyl”, “cycloalkoxycarbonyl”, “cycloalkoxy-carbonylalkyl”, “cycloalkylsulfonyl”, “halocycloalkyl” shall have the same meaning as described in the above-mentioned definition of "cycloalkyl”.
- the cycloalkyl is typically a monocyclic 3-7 carbon ring, that is unsubstituted or substituted with 1-2 groups.
- the substituents are typically selected from C 1-4 alkyl and those set forth above as suitable or preferred substituents for alkyl groups.
- aryl refers to an aromatic hydrocarbon group having 6-14 carbon atoms in the ring portion. Typically, aryl is monocyclic, bicyclic or tricyclic aryl having 6-14 carbon atoms, often 6-10 carbon atoms, e.g., phenyl or naphthyl. Furthermore, the term “aryl” as used herein, refers to an aromatic substituent which can be a single aromatic ring, or multiple aromatic rings that are fused together.
- Non-limiting examples include phenyl, naphthyl and 1,2,3,4-tetrahydronaphthyl, provided the tetrahydronaphthyl is connected to the formula being described through a carbon of the aromatic ring of the tetrahydronaphthyl group.
- a substituted aryl is an aryl group substituted by 1-5 (such as one, or two, or three) substituents independently selected from the group consisting of hydroxyl, thiol, cyano, nitro, C 1-4 -alkyl, C 2-4 -alkenyl, C 2-4 -alkynyl, C 1-4 -alkoxy, C 1-4 -thioalkyl, C 2-4 -alkenyloxy, C 2-4 -alkynyloxy, halogen, C 1-4 -alkylcarbonyl, carboxy, C 1-4 -alkoxycarbonyl, amino, C 1-4 -alkylamino, di-C 1-4 -alkylamino, C 1-4 -alkylaminocarbonyl, di-C 1-4 -alkylaminocarbonyl, C 1-4 -alkylcarbonylamino, C 1-4 -alkylcarbonylamino, C 1-4 -alkylcarbonyl
- each aryl part of other groups like “aryloxy”, “aryloxyalkyl”, “aryloxycarbonyl”, “aryloxy-carbonylalkyl” shall have the same meaning as described in the above-mentioned definition of "aryl”.
- heterocyclyl or “heterocycloalkyl” refers to a heterocyclic radical that is saturated or partially unsaturated but not aromatic, and can be a monocyclic or a polycyclic ring, including a bicyclic, tricyclic or spirocyclic ring system; and has 3 to 14, more commonly 4 to 10, and most preferably 5 to 7 ring atoms; wherein one or more, preferably one to four, especially one or two ring atoms are heteroatoms independently selected from O, S and N (the remaining ring atoms therefore being carbon).
- a heterocycle contains at least one heteroatom as a ring atom and has the total number of ring atoms stated, e.g. 5 or 6 in this example.
- a heterocyclyl group has one or two such heteroatoms as ring atoms, and preferably the heteroatoms are not directly connected to each other.
- the bonding ring i.e. the ring connecting to the Formula of interest
- the heterocyclic group can be fused to an aromatic ring, provided the atom of the heterocyclic group attached to the Formula of interest is not aromatic.
- the heterocyclic group can be attached to the Formula of interest via a heteroatom (typically nitrogen) or a carbon atom of the heterocyclic group.
- the heterocyclyl can comprise fused or bridged rings as well as spirocyclic ring systems (e.g., 2-oxa-6-azaspiro[3.3]heptane), and only one ring of a polycyclic heterocyclic group needs to contain a heteroatom as a ring atom.
- heterocycles include tetrahydrofuran (THF), dihydrofuran, 1,4-dioxane, morpholine, 1,4-dithiane, piperazine, piperidine, 1,3-dioxolane, imidazolidine, imidazoline, pyrroline, pyrrolidine, tetrahydropyran, dihydropyran, oxathiolane, dithiolane, 1,3-dioxane, 1,3-dithiane, oxathiane, thiomorpholine, and the like.
- THF tetrahydrofuran
- dihydrofuran 1,4-dioxane
- morpholine 1,4-dithiane
- 1,4-dithiane piperazine
- piperidine 1,3-dioxolane
- imidazolidine imidazoline
- pyrroline pyrrolidine
- tetrahydropyran dihydropyran
- a substituted heterocyclyl is a heterocyclyl group independently substituted by 1-5 (such as one, or two, or three) substituents selected from the substituents described above as suitable or preferred for a cycloalkyl group.
- heterocyclyl part of other groups like “heterocyclyloxy”, “heterocyclyloxyalkyl”, “heterocyclyloxycarbonyl” shall have the same meaning as described in the above-mentioned definition of “heterocyclyl”.
- heteroaryl refers to a 5-14 membered monocyclic- or bicyclic- or tricyclic-aromatic ring system, having 1 to 8 heteroatoms as ring members; the heteroatoms are selected from N, O and S.
- the heteroaryl is a 5-10 membered ring system, e.g., a 5-6 membered monocyclic or an 8-10 membered bicyclic group.
- Typical heteroaryl groups include 2- or 3-thienyl, 2- or 3-furyl, 2- or 3-pyrrolyl, 2-, 4-, or 5-imidazolyl, 1-, 3-, 4-, or 5- pyrazolyl, 2-, 4-, or 5-thiazolyl, 3-, 4-, or 5-isothiazolyl, 2-, 4-, or 5-oxazolyl, 3-, 4-, or 5-isoxazolyl, 3- or 5-1,2,4-triazolyl, 4- or 5-1,2, 3-triazolyl, 1- or 2-tetrazolyl, 2-, 3-, or 4-pyridyl, 3- or 4-pyridazinyl, 3-, 4-, or 5-pyrazinyl, 2-pyrazinyl, and 2-, 4-, or 5-pyrimidinyl.
- heteroaryl also refers to a group in which a heteroaromatic ring is fused to one or more aryl, cycloalkyl, or heterocyclyl rings, where the radical or point of attachment to the Formula of interest is on a heteroaromatic ring.
- Nonlimiting examples include 1-, 2-, 3-, 5-, 6-, 7-, or 8- indolizinyl, 1-, 3-, 4-, 5-, 6-, or 7-isoindolyl, 2-, 3-, 4-, 5-, 6-, or 7-indolyl, 2-, 3-, 4-, 5-, 6-, or 7-indazolyl, 2-, 4-, 5-, 6-, 7-, or 8- purinyl, 1-, 2-, 3-, 4-, 6-, 7-, 8-, or 9-quinolizinyl, 2-, 3-, 4-, 5-, 6-, 7-, or 8-quinoliyl, 1-, 3-, 4-, 5-, 6-, 7-, or 8-isoquinoliyl, 1-, 4-, 5-, 6-, 7-, or 8-phthalazinyl, 2-, 3-, 4-, 5-, or 6-naphthyridinyl, 2-, 3-, 5-, 6-, 7-, or 8-quinazolinyl, 3-, 4-, 5-, 6-, 7-, or 8-c
- Typical fused heteroaryl groups include, but are not limited to 2-, 3-, 4-, 5-, 6-, 7-, or 8-quinolinyl, 1-, 3-, 4-, 5-, 6-, 7-, or 8-isoquinolinyl, 2-, 3-, 4-, 5-, 6-, or 7-indolyl, 2-, 3-, 4-, 5-, 6-, or 7-benzo[b]thienyl, 2-, 4-, 5-, 6-, or 7-benzoxazolyl, 2-, 4-, 5-, 6-, or 7-benzimidazolyl, and 2-, 4-, 5-, 6-, or 7-benzothiazolyl.
- a substituted heteroaryl is a heteroaryl group containing one or more substituents, typically 1, 2 or 3 substituents, selected from the substituents described above as suitable or preferred for an aryl group.
- heteroaryl part of other groups like “heteroaryloxy”, “heteroaryloxyalkyl”, “heteroaryloxycarbonyl” shall have the same meaning as described in the above-mentioned definition of “heteroaryl”.
- Example compounds having a measured IC-50 (B-Raf) of less than or equal to 0.01 ⁇ M, and a measured IC-50 (c-Raf) of less than 0.005 ⁇ M as shown in Table 2 is a preferred compound of the invention.
- the compounds of Examples having a measured IC-50 (B-Raf) of less than or equal to 0.01 ⁇ M and measured IC-50 (c-Raf) less than or equal to 0.002 ⁇ M according to Table 2 are especially preferred.
- any one of these compounds for treatment of a condition selected from melanoma, breast cancer, lung cancer (e.g., non-small cell lung cancer, lung adenocarcinoma), sarcoma, GI tumors such as gastrointestinal stromal tumors, ovarian cancer, colorectal cancer, thyroid cancer, and pancreatic cancer is an embodiment of the invention.
- lung cancer e.g., non-small cell lung cancer, lung adenocarcinoma
- sarcoma e.g., GI tumors such as gastrointestinal stromal tumors, ovarian cancer, colorectal cancer, thyroid cancer, and pancreatic cancer.
- Ring A can be unsubstituted morpholine or a substituted morpholine derivative as described for Formula (I) above.
- Ring A is selected from the following morpholinic groups
- Ring A is unsubstituted morpholine.
- Ring B is selected from phenyl, pyridine, pyrimidine, pyrazine, pyridone, pyrimidone, pyrazinone, pyridazinone, and thiazole. In certain of these embodiments, Ring B is selected from pyrazine, pyridazine, pyridone, pyrimidone, pyrazinone, and pyridazinone.
- Ring B in any of these embodiments can be substituted as described above for Formula (I); in some embodiments, Ring B is a six-membered ring that is substituted at positions 1, 3 and 5, where the N of ring A is at position 1 and Z 2 is at position 6. Where Ring B includes an oxo group (pyridone, pyridazinone, pyrazinone), oxo is sometimes at position 2 using this numbering.
- Ring B includes an oxo group (pyridone, pyridazinone, pyrazinone), oxo is sometimes at position 2 using this numbering.
- Ring B is substituted by a group selected from methyl, ethyl, isopropyl, amino, hydroxyl, -NHMe, -NHEt, -NMe 2 , -NHSO 2 Me, -NH-CH 2 CH 2 OH, 4-tetrahydropyranyl, -O-4-tetrahydropyranyl, 1-pyrrolidinyl, 1-morpholinyl, -NH-CH(CH 2 OH) 2 , 1-pyrrolidin-2-one, 4-morpholin-3-one, 2-oxa-6-aza[3.3]heptan-6-yl, -CH 2 CH 2 OH, CF 3 , SO 2 Me, 2-propenyl, -CH 2 CN, and -CH 2 CH 2 NHCOOMe.
- Ring B is selected from pyridine, pyrimidine, pyrazine, pyridone, pyrimidone, pyrazinone, and pyridazinone, optionally substituted and/or fused as described for Formula (I).
- Ring B is fused, the additional fused ring can be substituted as described, typically with up to two (0, 1 or 2) of the substituents described above.
- Ring B is pyridone, it is preferably a 2-pyridone (pyridin-2-one), and optionally is N-alkylated with a C 1-4 alkyl, which may be substituted with one to three groups selected from OH, OMe, halo, and CN.
- Ring B is substituted by a group selected from methyl, ethyl, isopropyl, amino, hydroxyl, -NHMe, - NHEt, -NMe 2 , -NHSO 2 Me, -NH-CH 2 CH 2 OH, 4-tetrahydropyranyl, -O-4-tetrahydropyranyl, 1-pyrrolidinyl, 1-morpholinyl, -NH-CH(CH 2 OH) 2 , 1-pyrrolidin-2-one, 4-morpholin-3-one, 2-oxa-6-aza[3.3]heptan-6-yl, 1-imidazolyl, 4-methyl-1,2,3-triazol-1-yl, 4-ethyl-1,2,3-triazol-1-yl, 4-isopropyl-1,2,3-triazol-1-yl, 4-(1-hydroxy-2-propyl)-1,2,3-triazol-1-yl, -CH 2 CH 2 OH, CF 3
- Ring B Preferred embodiments of Ring B include where [N] indicates the position attached to Ring A; R B is selected from amino, hydroxyl, - NHMe, -NHEt, -NMe 2 , -NHSO 2 Me, -NH-CH 2 CH 2 OH, -O-4-tetrahydropyranyl, 1-pyrrolidinyl,1-morpholinyl, -NH-CH(CH 2 OH) 2 , 1-pyrrolidin-2-one, 4-morpholin-3-one, and 2-oxa-6-aza[3.3]heptan-6-yl; and R B2 is selected from methyl, ethyl, isopropyl, - CH 2 CH 2 OH, 4-tetrahydropyranyl, CH 2 CN, and -CH 2 CH 2 NHCOOMe.
- Ring C is phenyl or pyridine.
- Ring C is pyridine, preferably Z 4 is N.
- R 1 is often methyl or CF 3 .
- R 1 a substituent such as methyl rather than hydrogen, significantly affects the conformation of the compound, favoring a highly active conformation. The methyl group thereby enhances in vitro activity significantly.
- CY can be substituted with 1 or 2 groups selected from methyl, ethyl, isopropyl, CF 3 , -CHF 2 , CH 2 F, CF 2 CH 3 , CH 2 CF 3 , 1-piperazinyl, 4-methyl-1-piperazinyl, 4-ethyl-1-piperazinyl, cyclopropyl, 1-cyanocyclopropyl, -CH 2 CN, -CHMeCN, -CMe 2 CN, OMe, OEt, F, Cl, -SO 2 Me, -SO 2 NMe 2 , -CH 2 NH 2 , -CH 2 NMe 2 , -CH 2 NHMe, and -CH 2 OMe.
- 1 or 2 groups selected from methyl, ethyl, isopropyl, CF 3 , -CHF 2 , CH 2 F, CF 2 CH 3 , CH 2 CF 3 , 1-piperazinyl, 4-methyl-1-
- CY is phenyl or 4-pyridinyl, and at least one substituent is at position 3.
- CY is a group of the formula where [L] indicates which position is attached to L in Formula (I); Z CY is N or CH; R* is selected from methyl, ethyl, isopropyl, CF 3 , -CHF 2 , CH 2 F, CF 2 CH 3 , CH 2 CF 3 , 1-piperazinyl, 4-methyl-1-piperazinyl, 4-ethyl-1-piperazinyl, cyclopropyl, 1-cyanocyclopropyl, -CH 2 CN, - CHMeCN, -CMe 2 CN, OMe, OEt, F, Cl, -SO 2 Me, -SO 2 NMe 2 , -CH 2 NH 2 , -CH 2 NMe 2 , - CH 2 NHMe, and -CH 2 OMe; and R
- the compound of Formula (I) has this formula:
- the invention provides compounds of this formula: wherein:
- Z 7 is NR 20
- Z 8 is CH.
- Z 4 is N; in alternative embodiments, Z 4 is CH.
- Z 9 is N; in other embodiments, Z 9 is CH.
- R 10 is trifluoromethyl. In preferred embodiments of these compounds, R 1 is methyl.
- the compound of Formula (I) is of this formula:
- an optical isomer or "a stereoisomer” refers to any of the various stereo isomeric configurations which may exist for a given compound of the present invention and includes geometric isomers. It is understood that a substituent may be attached at a chiral center of a carbon atom.
- the term “chiral” refers to molecules which have the property of non-superimposability on their mirror image partner, while the term “achiral” refers to molecules which are superimposable on their mirror image partner. Therefore, the invention includes enantiomers, diastereomers or racemates of the compound. "Enantiomers” are a pair of stereoisomers that are non- superimposable mirror images of each other.
- a 1:1 mixture of a pair of enantiomers is a "racemic" mixture.
- the term is used to designate a racemic mixture where appropriate.
- "Diastereoisomers” are stereoisomers that have at least two asymmetric atoms, but which are not mirror-images of each other.
- the absolute stereochemistry is specified according to the Cahn-Ingold-Prelog 'R-S' system. When a compound is a pure enantiomer, the stereochemistry at each chiral carbon may be specified by either R or S.
- Resolved compounds whose absolute configuration is unknown can be designated (+) or (-) depending on the direction (dextro- or levorotatory) which they rotate plane polarized light at the wavelength of the sodium D line.
- Certain compounds described herein contain one or more asymmetric centers or axes and may thus give rise to enantiomers, diastereomers, and other stereoisomeric forms that may be defined, in terms of absolute stereochemistry, as (R)- or (S)-.
- the compounds can be present in the form of one of the possible isomers or as mixtures thereof, for example as pure optical isomers, or as isomer mixtures, such as racemates and diastereoisomer mixtures, depending on the number of asymmetric carbon atoms.
- the present invention is meant to include all such possible isomers, including racemic mixtures, diasteriomeric mixtures and optically pure forms.
- Optically active (R)- and (S)-isomers may be prepared using chiral synthons or chiral reagents, or resolved using conventional techniques. If the compound contains a double bond, the substituent may be E or Z configuration unless specified. If the compound contains a disubstituted cycloalkyl, the cycloalkyl substituent may have a cis- or trans-configuration, unless otherwise specified. All tautomeric forms are also intended to be included.
- the compounds of the present invention are capable of forming acid and/or base salts by virtue of the presence of amino and/or carboxyl groups or groups similar thereto.
- salt or “salts” refers to an acid addition or base addition salt of a compound of the invention.
- Salts include in particular “pharmaceutical acceptable salts”.
- pharmaceutically acceptable salts refers to salts that retain the biological effectiveness and properties of the compounds of this invention and, which typically are not biologically or otherwise undesirable.
- Pharmaceutically acceptable acid addition salts can be formed with inorganic acids and organic acids, e.g., acetate, aspartate, benzoate, besylate, bromide/hydrobromide, bicarbonate/carbonate, bisulfate/sulfate, camphorsulfonate, chloride/hydrochloride, chlorotheophyllonate, citrate, ethandisulfonate, fumarate, gluceptate, gluconate, glucuronate, hippurate, hydroiodide/iodide, isethionate, lactate, lactobionate, laurylsulfate, malate, maleate, malonate, mandelate, mesylate, methylsulphate, naphthoate, napsylate, nicotinate, nitrate, octadecanoate, oleate, oxalate, palmitate, pamoate, phosphate/hydrogen phosphate/dihydr
- Inorganic acids from which salts can be derived include, for example, hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, and the like.
- Organic acids from which salts can be derived include, for example, acetic acid, propionic acid, glycolic acid, oxalic acid, maleic acid, malonic acid, succinic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, toluenesulfonic acid, sulfosalicylic acid, and the like.
- Pharmaceutically acceptable base addition salts can be formed with inorganic or organic bases and can have inorganic or organic counterions.
- Inorganic counterions for such base salts include, for example, ammonium salts and metals from columns I to XII of the periodic table.
- the counterion is selected from sodium, potassium, ammonium, alkylammonium having one to four C1-C4 alkyl groups, calcium, magnesium, iron, silver, zinc, and copper; particularly suitable salts include ammonium, potassium, sodium, calcium and magnesium salts.
- Organic bases from which salts can be derived include, for example, primary, secondary, and tertiary amines, substituted amines including naturally occurring substituted amines, cyclic amines, basic ion exchange resins, and the like.
- Suitable organic amines include isopropylamine, benzathine, cholinate, diethanolamine, diethylamine, lysine, meglumine, piperazine and tromethamine.
- the pharmaceutically acceptable salts of the present invention can be synthesized from a basic or acidic moiety, by conventional chemical methods. Generally, such salts can be prepared by reacting free acid forms of these compounds with a stoichiometric amount of the appropriate base (such as Na, Ca, Mg, or K hydroxide, carbonate, bicarbonate or the like), or by reacting free base forms of these compounds with a stoichiometric amount of the appropriate acid. Such reactions are typically carried out in water or in an organic solvent, or in a mixture of the two.
- a stoichiometric amount of the appropriate base such as Na, Ca, Mg, or K hydroxide, carbonate, bicarbonate or the like
- non-aqueous media like ether, ethyl acetate, tetrahydrofuran, toluene, chloroform, dichloromethane, methanol, ethanol, isopropanol, or acetonitrile is desirable, where practicable.
- any formula given herein is also intended to represent unlabeled forms (i.e., compounds wherein all atoms are present at natural isotopic abundances, and not isotopically enriched) as well as isotopically enriched or labeled forms of the compounds.
- Isotopically enriched or labeled compounds have structures depicted by the formulas given herein except that at least one atom of the compound is replaced by an atom having an atomic mass or mass number different from the atomic mass or the atomic mass distribution that occurs naturally.
- isotopes that can be incorporated into enriched or labeled compounds of the invention include isotopes of hydrogen, carbon, nitrogen, oxygen, phosphorous, fluorine, and chlorine, such as 2 H, 3 H, 11 C, 13 C, 14 C, 15 N, 18 F 31 P, 32 P, 35 S, 36 Cl, 125 I respectively.
- the invention includes various isotopically labeled compounds as defined herein, for example those in which radioactive isotopes, such as 3 H and 14 C, or those in which non-radioactive isotopes, such as 2 H and 13 C, are present at levels significantly above the natural abundance for these isotopes.
- isotopically labeled compounds are useful in metabolic studies (with 14 C), reaction kinetic studies (with, for example 2 H or 3 H), detection or imaging techniques, such as positron emission tomography (PET) or single-photon emission computed tomography (SPECT) including drug or substrate tissue distribution assays, or in radioactive treatment of patients.
- PET positron emission tomography
- SPECT single-photon emission computed tomography
- an 18 F or labeled compound may be particularly desirable for PET or SPECT studies.
- Isotopically-labeled compounds of formula (I) can generally be prepared by conventional techniques known to those skilled in the art or by processes analogous to those described in the accompanying Examples and Preparations using an appropriate isotopically-labeled reagents in place of the non-labeled reagent previously employed.
- isotopic enrichment factor means the ratio between the isotopic abundance and the natural abundance of a specified isotope.
- a substituent in a compound of this invention is denoted deuterium, such compound has an isotopic enrichment factor for each designated deuterium atom of at least 3500 (52.5% deuterium incorporation at each designated deuterium atom), at least 4000 (60% deuterium incorporation), at least 4500 (67.5% deuterium incorporation), at least 5000 (75% deuterium incorporation), at least 5500 (82.5% deuterium incorporation), at least 6000 (90% deuterium incorporation), at least 6333.3 (95% deuterium incorporation), at least 6466.7 (97% deuterium incorporation), at least 6600 (99% deuterium incorporation), or at least 6633.3 (99.5% deuterium incorporation).
- solvates in accordance with the invention include those wherein the solvent of crystallization may be isotopically substituted, e.g. D 2 O, d 6 -acetone, d 6 -DMSO, as well as solvates with non-enriched solvents.
- Compounds of the invention i.e. compounds of formula (I) that contain groups capable of acting as donors and/or acceptors for hydrogen bonds may be capable of forming co-crystals with suitable co-crystal formers.
- These co-crystals may be prepared from compounds of formula (I) by known co-crystal forming procedures. Such procedures include grinding, heating, co-subliming, co-melting, or contacting in solution compounds of formula (I) with the co-crystal former under crystallization conditions and isolating co-crystals thereby formed.
- Suitable co-crystal formers include those described in WO 2004/078163 .
- the invention further provides co-crystals comprising a compound of formula (I).
- the term "pharmaceutically acceptable carrier” includes any and all solvents, dispersion media, coatings, surfactants, antioxidants, preservatives (e.g., antibacterial agents, antifungal agents), isotonic agents, absorption delaying agents, salts, preservatives, drug stabilizers, binders, excipients, disintegration agents, lubricants, sweetening agents, flavoring agents, dyes, and the like and combinations thereof, as would be known to those skilled in the art (see, for example, Remington's Pharmaceutical Sciences, 18th Ed. Mack Printing Company, 1990, pp. 1289- 1329 ). Except insofar as any conventional carrier is incompatible with the active ingredient, its use in the therapeutic or pharmaceutical compositions is contemplated.
- a therapeutically effective amount of a compound of the present invention refers to an amount of the compound of the present invention that will elicit the biological or medical response of a subject, for example, reduction or inhibition of an enzyme or a protein activity, or ameliorate symptoms, alleviate conditions, slow or delay disease progression, or prevent a disease, etc.
- a therapeutically effective amount refers to the amount of the compound of the present invention that, when administered to a subject, is effective to (1) at least partially alleviate, inhibit, prevent and/or ameliorate a condition, or a disorder or a disease mediated by a Raf kinase such as B-Raf or C-Raf, or associated with activity of a kinase such as B-Raf or C-Raf, or (2) reduce or inhibit the activity of a kinase such as B-Raf or C-Raf in vivo.
- a Raf kinase such as B-Raf or C-Raf
- a therapeutically effective amount refers to the amount of the compound of the present invention that, when administered to a cell, or a tissue, or a non-cellular biological material, or a medium, is effective to at least partially reduce or inhibit the activity of a kinase such as B-Raf or C-Raf, or at least partially reduce or alleviate a symptom or a condition associated with excessive Raf kinase activity.
- a kinase such as B-Raf or C-Raf
- the term "subject" refers to an animal. Typically the animal is a mammal. A subject also refers to for example, primates (e.g., humans, male or female), cows, sheep, goats, horses, dogs, cats, rabbits, rats, mice, fish, birds and the like. In certain embodiments, the subject is a primate. In specific embodiments, the subject is a human.
- primates e.g., humans, male or female
- the subject is a primate.
- the subject is a human.
- the term “inhibit”, “inhibition” or “inhibiting” refers to the reduction or suppression of a given condition, symptom, or disorder, or disease, or a significant decrease in the baseline activity of a biological activity or process.
- the term “treat”, “treating” or “treatment” of any disease or disorder refers in one embodiment, to ameliorating the disease or disorder (i.e., slowing or arresting or reducing the development of the disease or at least one of the clinical symptoms thereof).
- “treat”, “treating” or “treatment” refers to alleviating or ameliorating at least one physical parameter including those which may not be discernible by the patient.
- “treat”, “treating” or “treatment” refers to modulating the disease or disorder, either physically, (e.g., stabilization of a discernible symptom), physiologically, (e.g., stabilization of a physical parameter), or both.
- “treat”, “treating” or “treatment” refers to preventing or delaying the development or progression of the disease or disorder.
- a subject is "in need of” a treatment if such subject would benefit biologically, medically or in quality of life from such treatment.
- Any asymmetric atom (e.g., carbon or the like) of the compound(s) of the present invention can be present in racemic or enantiomerically enriched, for example the (R)-, (S)- or (R,S)- configuration.
- each asymmetric atom has at least 50 % enantiomeric excess, at least 60 % enantiomeric excess, at least 70 % enantiomeric excess, at least 80 % enantiomeric excess, at least 90 % enantiomeric excess, at least 95 % enantiomeric excess, or at least 99 % enantiomeric excess of either the (R)- or (S)-configuration; i.e., for optically active compounds, it is often preferred to use one enantiomer to the substantial exclusion of the other enantiomer.
- Substituents at atoms with unsaturated double bonds may, if possible, be present in cis- (Z)- or trans- (E)- form.
- a compound of the present invention can be in the form of one of the possible isomers, rotamers, atropisomers, tautomers or mixtures thereof, for example, as substantially pure geometric (cis or trans) isomers, diastereomers, optical isomers (antipodes), racemates or mixtures thereof.
- substantially pure geometric cis or trans
- optical isomers antipodes
- racemates or mixtures thereof.
- 'Substantially pure' or 'substantially free of other isomers' as used herein means the product contains less than 5%, and preferably less than 2%, of other isomers relative to the amount of the preferred isomer, by weight.
- Any resulting mixtures of isomers can be separated on the basis of the physicochemical differences of the constituents, into the pure or substantially pure geometric or optical isomers, diastereomers, racemates, for example, by chromatography and/or fractional crystallization.
- any resulting racemates of final products or intermediates can be resolved into the optical antipodes by known methods, e.g., by separation of the diastereomeric salts thereof, obtained with an optically active acid or base, and liberating the optically active acidic or basic compound.
- a basic moiety may thus be employed to resolve the compounds of the present invention into their optical antipodes, e.g., by fractional crystallization of a salt formed with an optically active acid, e.g., tartaric acid, dibenzoyl tartaric acid, diacetyl tartaric acid, di-O,O'-p-toluoyl tartaric acid, mandelic acid, malic acid or camphor-10-sulfonic acid.
- Racemic products can also be resolved by chiral chromatography, e.g., high pressure liquid chromatography (HPLC) using a chiral adsorbent.
- HPLC high pressure liquid chromatography
- the compounds of the present invention can also be obtained in the form of their hydrates, or include other solvents used for their crystallization.
- the compounds of the present invention may inherently or by design form solvates with pharmaceutically acceptable solvents (including water); therefore, it is intended that the invention embrace both solvated and unsolvated forms.
- solvate refers to a molecular complex of a compound of the present invention (including pharmaceutically acceptable salts thereof) with one or more solvent molecules.
- solvent molecules are those commonly used in the pharmaceutical art, which are known to be innocuous to the recipient, e.g., water, ethanol, and the like.
- hydrate refers to the complex where the solvent molecule is water.
- the compounds of the present invention including salts, hydrates and solvates thereof, may inherently or by design form polymorphs.
- the present invention provides a pharmaceutical composition
- a pharmaceutical composition comprising a compound of the present invention, or a pharmaceutically acceptable salt thereof, and at least one pharmaceutically acceptable carrier.
- the pharmaceutical composition can be formulated for particular routes of administration such as oral administration, parenteral administration, and rectal administration, and the like.
- the pharmaceutical compositions of the present invention can be made up in a solid form (including without limitation capsules, tablets, pills, granules, powders or suppositories), or in a liquid form (including without limitation solutions, suspensions or emulsions).
- compositions can be subjected to conventional pharmaceutical operations such as sterilization and/or can contain conventional inert diluents, lubricating agents, or buffering agents, as well as adjuvants, such as preservatives, stabilizers, wetting agents, emulsifiers and buffers, etc.
- compositions for compounds of Formula (I) are tablets or gelatin capsules comprising an active ingredient of Formula (I) together with at least one of the following pharmaceutically acceptable excipients:
- Tablets may be either film coated or enteric coated according to methods known in the art.
- compositions for oral administration include an effective amount of a compound of the invention in the form of tablets, lozenges, aqueous or oily suspensions, dispersible powders or granules, emulsion, hard or soft capsules, or syrups or elixirs.
- Compositions intended for oral use are prepared according to any method known in the art for the manufacture of pharmaceutical compositions and such compositions can contain one or more agents selected from the group consisting of sweetening agents, flavoring agents, coloring agents and preserving agents in order to provide pharmaceutically elegant and palatable preparations. Tablets may contain the active ingredient in admixture with nontoxic pharmaceutically acceptable excipients which are suitable for the manufacture of tablets.
- excipients are, for example, inert diluents, such as calcium carbonate, sodium carbonate, lactose, calcium phosphate or sodium phosphate; granulating and disintegrating agents, for example, corn starch, or alginic acid; binding agents, for example, starch, gelatin or acacia; and lubricating agents, for example magnesium stearate, stearic acid or talc.
- the tablets are uncoated or coated by known techniques to delay disintegration and absorption in the gastrointestinal tract and thereby provide a sustained action over a longer period.
- a time delay material such as glyceryl monostearate or glyceryl distearate can be employed.
- Formulations for oral use can be presented as hard gelatin capsules wherein the active ingredient is mixed with an inert solid diluent, for example, calcium carbonate, calcium phosphate or kaolin, or as soft gelatin capsules wherein the active ingredient is mixed with water or an oil medium, for example, peanut oil, liquid paraffin or olive oil.
- an inert solid diluent for example, calcium carbonate, calcium phosphate or kaolin
- water or an oil medium for example, peanut oil, liquid paraffin or olive oil.
- compositions are aqueous isotonic solutions or suspensions, and suppositories are advantageously prepared from fatty emulsions or suspensions.
- Said compositions may be sterilized and/or contain adjuvants, such as preserving, stabilizing, wetting or emulsifying agents, solution promoters, salts for regulating the osmotic pressure and/or buffers. In addition, they may also contain other therapeutically valuable substances.
- Said compositions are prepared according to conventional mixing, granulating or coating methods, respectively, and contain about 0.1-75%, or contain about 1-50%, of the active ingredient.
- compositions for transdermal application include an effective amount of a compound of the invention with a suitable carrier.
- Carriers suitable for transdermal delivery include absorbable pharmacologically acceptable solvents to assist passage through the skin of the host.
- transdermal devices are in the form of a bandage comprising a backing member, a reservoir containing the compound optionally with carriers, optionally a rate controlling barrier to deliver the compound of the skin of the host at a controlled and predetermined rate over a prolonged period of time, and means to secure the device to the skin.
- compositions for topical application include aqueous solutions, suspensions, ointments, creams, gels or sprayable formulations, e.g., for delivery by aerosol or the like.
- topical delivery systems will in particular be appropriate for dermal application, e.g., for the treatment of skin cancer, e.g., for prophylactic use in sun creams, lotions, sprays and the like. They are thus particularly suited for use in topical, including cosmetic, formulations well-known in the art.
- Such may contain solubilizers, stabilizers, tonicity enhancing agents, buffers and preservatives.
- a topical application may also pertain to an inhalation or to an intranasal application. They may be conveniently delivered in the form of a dry powder (either alone, as a mixture, for example a dry blend with lactose, or a mixed component particle, for example with phospholipids) from a dry powder inhaler or an aerosol spray presentation from a pressurized container, pump, spray, atomizer or nebulizer, with or without the use of a suitable propellant.
- a dry powder either alone, as a mixture, for example a dry blend with lactose, or a mixed component particle, for example with phospholipids
- the present invention further provides anhydrous pharmaceutical compositions and dosage forms comprising the compounds of the present invention as active ingredients, since water may facilitate the degradation of certain compounds.
- Anhydrous pharmaceutical compositions and dosage forms of the invention can be prepared using anhydrous or low moisture containing ingredients and low moisture or low humidity conditions.
- An anhydrous pharmaceutical composition may be prepared and stored such that its anhydrous nature is maintained. Accordingly, anhydrous compositions are packaged using materials known to prevent exposure to water such that they can be included in suitable formulary kits. Examples of suitable packaging include, but are not limited to, hermetically sealed foils, plastics, unit dose containers (e. g., vials), blister packs, and strip packs.
- compositions and dosage forms that comprise one or more agents that reduce the rate by which the compound of the present invention as an active ingredient will decompose.
- agents which are referred to herein as “stabilizers,” include, but are not limited to, antioxidants such as ascorbic acid, pH buffers, or salt buffers, etc.
- the compounds of formula I in free form or in salt form exhibit valuable pharmacological activities, e.g. they modulate or inhibit activity of A-Raf, B-Raf and/or C-Raf, as indicated by test data provided in the next sections, and are therefore indicated for therapy or for use as research chemicals, e.g. as tool compounds.
- These compounds are especially useful for treatment of cancers driven by mutations in the Raf/Raf/MEK/ERK pathway, including cancers characterized by an activating Raf mutation such as Raf V600E, including but not limited to melanoma (e.g., malignant melanoma), breast cancer, lung cancer (e.g., non-small cell lung cancer), sarcoma, GI tumors such as gastrointestinal stromal tumors, ovarian cancer, colorectal cancer, thyroid cancer, and pancreatic cancer.
- melanoma e.g., malignant melanoma
- breast cancer e.g., breast cancer
- lung cancer e.g., non-small cell lung cancer
- sarcoma GI tumors such as gastrointestinal stromal tumors, ovarian cancer, colorectal cancer, thyroid cancer, and pancreatic cancer.
- the present invention discloses the use of a compound of formula (I) or any of the embodiments within the scope of Formula (I) as described herein, in therapy.
- the therapy is for a disease which may be treated by inhibition of A-Raf, B-Raf or C-Raf.
- the compounds of the invention are useful to treat cancers, including but not limited to melanoma, breast cancer, lung cancer, sarcoma, GI tumors such as gastrointestinal stromal tumors, ovarian cancer, colorectal cancer, thyroid cancer, and pancreatic cancer.
- the invention provides a compounds for use in a method of treating a disease which is treatable by inhibition of A-Raf, B-Raf or C-Raf, or a combination thereof, comprising administration of a therapeutically effective amount of a compound of formula (I) or any of the embodiments within the scope of Formula (I) as described herein.
- the disease is selected from the afore-mentioned list, suitably melanoma, breast cancer, lung cancer, sarcoma, GI tumors such as gastrointestinal stromal tumors, ovarian cancer, colorectal cancer, thyroid cancer, and pancreatic cancer.
- the method typically comprises administering an effective amount of a compound as described herein or a pharmaceutical composition comprising such compound to a subject in need of such treatment.
- the compound may be administered by any suitable method such as those described herein, and the administration may be repeated at intervals selected by a treating physician.
- the present invention provides the use of a compound of formula (I) or any of the embodiments of such compounds described herein for the manufacture of a medicament.
- the medicament is for treatment of a disease which may be treated by inhibition of A-Raf, B-Raf or C-Raf.
- the disease is a cancer, e.g., a cancer selected from the afore-mentioned list, including melanoma, breast cancer, lung cancer, sarcoma, GI tumors such as gastrointestinal stromal tumors, ovarian cancer, colorectal cancer, thyroid cancer, and pancreatic cancer.
- the pharmaceutical composition or combination of the present invention can be in unit dosage of about 1-1000 mg of active ingredient(s) for a subject of about 50-70 kg, or about 1-500 mg or about 1-250 mg or about 1-150 mg or about 0.5-100 mg, or about 1-50 mg of active ingredients.
- the therapeutically effective dosage of a compound, the pharmaceutical composition, or the combinations thereof is dependent on the species of the subject, the body weight, age and individual condition, the disorder or disease or the severity thereof being treated. A physician, clinician or veterinarian of ordinary skill can readily determine the effective amount of each of the active ingredients necessary to prevent, treat or inhibit the progress of the disorder or disease.
- the above-cited dosage properties are demonstrable in vitro and in vivo tests using advantageously mammals, e.g., mice, rats, dogs, monkeys or isolated organs, tissues and preparations thereof.
- the compounds of the present invention can be applied in vitro in the form of solutions, e.g., aqueous solutions, and in vivo either enterally, parenterally, advantageously intravenously, e.g., as a suspension or in aqueous solution.
- the dosage in vitro may range between about 10 -3 molar and 10 -9 molar concentrations.
- a therapeutically effective amount in vivo may range depending on the route of administration, between about 0.1-500 mg/kg, or between about 1-100 mg/kg.
- the compound of the present invention may be administered either simultaneously with, or before or after, one or more therapeutic co-agent(s) (co-therapeutic agents).
- suitable co-therapeutic agents for use in the invention include, for example, cancer chemotherapeutics including but not limited to inhibitors of PI3K, other inhibitors of the Raf pathway, paclitaxel, docetaxel, temozolomide, platins, doxorubicins, vinblastins, cyclophosphamide, topotecan, gemcitabine, ifosfamide, etoposide, irinotecan, and the like.
- the compound of the present invention may be administered separately, by the same or different route of administration, or together in the same pharmaceutical composition as the co-agent(s).
- the invention provides a product comprising a compound of formula (I) and at least one other therapeutic co-agent as a combined preparation for simultaneous, separate or sequential use in therapy.
- the therapy is the treatment of a disease or condition mediated by B-Raf or C-Raf, such as cancer.
- Products provided as a combined preparation include a composition comprising the compound of formula (I) and the other therapeutic co-agent(s) together in the same pharmaceutical composition, or the compound of formula (I) and the other therapeutic co-agent(s) in separate form, e.g. in the form of a kit.
- the invention provides a pharmaceutical composition
- a pharmaceutical composition comprising a compound of formula (I) and another therapeutic co-agent(s).
- the pharmaceutical composition may comprise a pharmaceutically acceptable carrier, as described above.
- the invention provides a kit comprising two or more separate pharmaceutical compositions, at least one of which contains a compound of formula (I).
- the kit comprises means for separately retaining said compositions, such as a container, divided bottle, or divided foil packet.
- a container, divided bottle, or divided foil packet An example of such a kit is a blister pack, as typically used for the packaging of tablets, capsules and the like.
- the kit of the invention may be used for administering different dosage forms, for example, oral and parenteral, for administering the separate compositions at different dosage intervals, or for titrating the separate compositions against one another.
- the kit of the invention typically comprises directions for administration.
- the compound of the invention and the other therapeutic co-agent may be manufactured and/or formulated by the same or different manufacturers. Moreover, the compound of the invention and the other therapeutic may be brought together into a combination therapy: (i) prior to release of the combination product to physicians (e.g. in the case of a kit comprising the compound of the invention and the other therapeutic agent); (ii) by the physician themselves (or under the guidance of the physician) shortly before administration; (iii) in the patient themselves, e.g. during sequential administration of the compound of the invention and the other therapeutic agent.
- the invention provides the use of a compound of formula (I) for treating a disease or condition mediated by B-Raf or C-Raf, wherein the medicament is prepared for administration with another therapeutic agent.
- the invention also provides the use of another therapeutic co-agent for treating a disease or condition, wherein the medicament is administered with a compound of formula (I).
- the invention also provides a compound of formula (I) for use in a method of treating a disease or condition mediated by B-Raf or C-Raf, wherein the compound of formula (I) is prepared for administration with another therapeutic agent.
- the invention also provides another therapeutic co-agent for use in a method of treating a disease or condition mediated by B-Raf or C-Raf, wherein the other therapeutic co-agent is prepared for administration with a compound of formula (I).
- the invention also provides a compound of formula (I) for use in a method of treating a disease or condition mediated by B-Raf or C-Raf, wherein the compound of formula (I) is administered with another therapeutic co-agent.
- the invention also provides another therapeutic co-agent for use in a method of treating a disease or condition mediated by B-Raf or C-Raf, wherein the other therapeutic co-agent is administered with a compound of formula (I).
- the invention also discloses the use of a compound of formula (I) for treating a disease or condition mediated by B-Raf or C-Raf, wherein the patient has previously (e.g. within 24 hours) been treated with another therapeutic agent.
- the invention also discloses the use of another therapeutic agent for treating a disease or condition mediated by B-Raf or C-Raf, wherein the patient has previously (e.g. within 24 hours) been treated with a compound of formula (I).
- Compounds of Formula (I) where ring B is a pyrimidine can be prepared from known halopyrimidine intermediates, introducing ring C by a Suzuki or similar arylation reactions.
- the group -L-CY can be attached to Ring C before it is installed, or a protected amine can be present at the position corresponding to L for the Suzuki, and can be converted into the amide linker to form -L-CY after the Suzuki reaction.
- Compounds having different groups on Ring B instead of two morpholine groups, can be prepared by using thioalkyl-substituted pyrimidines, as exemplified in the following scheme.
- a desired A-ring morpholine group (see Formula (I)) can be attached using nucleophilic aromatic substitution chemistry, and a Suzuki or similar arylation can be used to attach Ring C.
- the thioalkyl group can then be activated toward nucleophilic displacement by oxidation to an alkylsulfonyl group, which can be displaced by various nucleophilic groups.
- the oxidation can be done before the Suzuki reaction.
- This sequence can be used to install a heterocyclic or heteroaryl group on the B ring, or it can be used to introduce other nucleophiles such as alkoxy, amine or azide at this position.
- nucleophiles such as alkoxy, amine or azide at this position.
- amine alkylation above or, e.g., if azide is used as the nucleophile, a cycloaddition reaction can be used to make a heteroaryl substituent on Ring B as shown below.
- Ring B is pyrimidine
- Other compounds of Formula (I) wherein Ring B is pyrimidine can be made from 2,4,6-trichloropyrimidine by starting with a Suzuki reaction to introduce one group (R 1 ), providing a mixture of isomeric products, as shown in Scheme 4.
- a morpholine A-ring can then be attached by aromatic nucleophilic substitution chemistry, followed by another Suzuki reaction.
- Compounds of Formula (I) wherein the B-ring is pyridazine can be made similarly, using known halogenated pyridazine starting materials with nucleophilic aromatic substitution reactions to attach Ring A (and/or other substituents on the B-ring), and Suzuki chemistry to attach Ring C.
- Salts of compounds of the present invention having at least one salt-forming group may be prepared in a manner known to those skilled in the art.
- salts of compounds of the present invention having acid groups may be formed, for example, by treating the compounds with metal compounds, such as alkali metal salts of suitable organic carboxylic acids, e.g . the sodium salt of 2-ethylhexanoic acid, with organic alkali metal or alkaline earth metal compounds, such as the corresponding hydroxides, carbonates or hydrogen carbonates, such as sodium or potassium hydroxide, carbonate or hydrogen carbonate, with corresponding calcium compounds or with ammonia or a suitable organic amine, stoichiometric amounts or only a small excess of the salt-forming agent preferably being used.
- metal compounds such as alkali metal salts of suitable organic carboxylic acids, e.g . the sodium salt of 2-ethylhexanoic acid
- organic alkali metal or alkaline earth metal compounds such as the corresponding hydroxides, carbonates or hydrogen
- Acid addition salts of compounds of the present invention are obtained in customary manner, e.g . by treating the compounds with an acid or a suitable anion exchange reagent.
- Internal salts of compounds of the present invention containing acid and basic salt-forming groups, e.g . a free carboxy group and a free amino group, may be formed, e.g . by the neutralization of salts, such as acid addition salts, to the isoelectric point, e.g . with weak bases, or by treatment with ion exchangers.
- Salts can be converted into the free compounds in accordance with methods known to those skilled in the art.
- Metal and ammonium salts can be converted, for example, by treatment with suitable acids, and acid addition salts, for example, by treatment with a suitable basic agent.
- diastereoisomers can be separated, for example, by partitioning between polyphasic solvent mixtures, recrystallization and/or chromatographic separation, for example over silica gel or by e.g . medium pressure liquid chromatography over a reversed phase column, and racemates can be separated, for example, by the formation of salts with optically pure salt-forming reagents and separation of the mixture of diastereoisomers so obtainable, for example by means of fractional crystallization, or by chromatography over optically active column materials.
- Intermediates and final products can be worked up and/or purified according to standard methods, e .g. using chromatographic methods, distribution methods, (re-) crystallization, and the like.
- Mass spectrometric analysis was performed on LCMS instruments: Waters System (Acuity UPLC and a Micromass ZQ mass spectrometer; Column: Acuity HSS C18 1.8-micron, 2.1 x 50 mm; gradient: 5-95 % acetonitrile in water with 0.05 % TFA over a 1.8 min period ; flow rate 1.2 mL/min; molecular weight range 200-1500; cone Voltage 20 V; column temperature 50 °C). All masses were reported as those of the protonated parent ions.
- NMR Nuclear magnetic resonance
- Step 1 To a solution of ethyl 2-oxopropanoate (15 equiv.) at 0 °C was added dropwise H 2 O 2 (10 equiv.) . The cold mixture (still stirred at 0 °C) was cannulated into a mixture of 1-(pyridin-4-yl)ethanone (1.0 equiv.), H 2 SO 4 (1.0 equiv.) and FeSO 4 .7H 2 O (10 equiv.) in DCM/water (15:1, 0.08 M) at rt over 3 h. The resulting reaction mixture was stirred at rt for additional 30 min.
- Step 2 Ethyl 4-acetylpicolinate (1.0 equiv.) was dissolved in THF (0.1 M) and the solution was cooled to - 78 °C. Methyllithium (1.2 equiv.) was added over the period of 5 min and the mixture was stirred at - 78 °C for an additional 5 min. The reaction was poured into ice-water and extracted twice with ethyl acetate. The organic layer was washed with brine, dried over sodium sulfate, filtered and concentrated.
- Step 1 A solution of ethyl 4-acetylpicolinate (1.0 equiv.) in 1.0 equiv. of DeoxoFluor (50% in toluene) was stirred for 12 h at 85 °C. The reaction mixture was then added to a NaCl(sat) solution. The aqueous mixture was extracted with EtOAc. The organics were dried, and the resulting material was purified by column chromatography utilizing an ISCO system (heptane-EtOAc) to yield ethyl 4-(1,1-difluoroethyl)picolinate in 72 % yield.
- Step 2 To solution of 3-(methylsulfinyl)benzoic acid (1.0 equiv.) in THF (0.2 M) at 25 °C was added CDI (1.2 equiv.) and the mixture was stirred for 15 min. MeOH (8.0 equiv.) was then added and the reaction was briefly warmed to near reflux and then allowed to cool back to room temperature. LCMS shows about near complete, clean conversion to product. The reaction mixture was poured onto a mix of saturated aqueous sodium bicarbonate and brine and exttracted two times with ethyl acetate. The combined organics were washed with brine, dilute HCI, and brine again, and then dried over magnesium sulfate, filtered, and concentrated.
- CDI 1.2 equiv.
- Step 3 To solution of methyl 3-(methylsulfinyl)benzoate (1.0 equiv.) in DCM (0.1 M) at 25 °C under Ar were added 2,2,2-trifluoroacetamide (2.0 equiv.), MgO (4.0 equiv.), rhodium(II) acetate dimer (0.05 equiv.), and diacetoxyiodobenzene (1.5 equiv.) and the mixture was stirred overnight.
- the reaction mixture was filtered through Celite, washing with DCM, and concentrated.
- Step 4 To a stirred solution of methyl 3-(S-methyl-N-(2,2,2 trifluoroacetyl)sulfonimidoyl)benzoate (1.0 equiv.) in THF and MeOH (2:1, 0.09 M) at 25 °C was added LiOH (2 M aq.) (3.5 equiv.) and the mixture was stirred for 3 h. LCMS shows complete consumption of starting material and clean conversion to product. Most of the THF/MeOH was removed by concentration and then the mixture was acidified using 1 M HCl.
- Step 1 Trimethyl(trifluoromethyl)silane (1.3 quiv.) and cesium fluoride (0.1 equiv.) were added to a solution of methylformylbenzoate (1.0 equiv.) in THF (0.3 M)at room temperature under nitrogen and the mixture was sonicated for 30 min to initiate the reaction, which was indicated by the appearance of a pale yellow colour. The mixture was stirred at room temp for 5 h, after which HCl(aq) (1M) was added and the mixture stirred for a further 15 min. The mixture was then extracted with EtOAc, washed (saturated NaHCO 3 , brine), dried (MgSO 4 ) and evaporated in vacuo.
- Step 2 Lithium hydroxide (5.0 equiv, 2M aqueous solution) was added to methyl 3-(2,2,2-trifluoro-1-hydroxyethyl)benzoate (1.0 equiv.) in Acetonitrile and Water (2:1, 0.001M) at 0 °C and then the mixture was brought to RT and stirred for 6h. The mixture was acidified with 1N HCl and extracted with ethyl acetate to give 3-(2,2,2-trifluoro-1-hydroxyethyl)benzoic acid in 91% yield.
- Step 1 To a solution of 2-(1,1-difluoroethyl)isonicotinic acid (1.0 equiv.) in Dioxane (0.3 M) was added diphenyl phosphoryl azide (1.8 equiv.), t-butyl alcohol (6.0 equiv.), and TEA (1.8 equiv.). The rxn was degassed for 1 min, then heated at 110 °C for 3.0 hr. The dioxane was evaporated in vacuo, and the residue partioned between EtOAc and 10% citric acid. The organic layer was separated and the aqueous layer further extracted with EtOAc. The combined organics were dired over Na 2 SO 4 , filtered and concentrated.
- Step 2 To a solution of tert-butyl (2-(1,1-difluoroethyl)pyridin-4-yl)carbamate (1.0 equiv.) in DCM (0.25 M) was added TFA (10 equiv.) and allowed to stir at RT for 6 hrs. The volaties were removed in vacuo , and the residue was taken up in DCM and pushed through a carbonate column to remove the TFA salt, the column was washed several times with DCM. The combined organics were concentrated to yield 2-(1,1-difluoroethyl)pyridin-4-amine in 54 % yield.
- Step 1 To a 0.4 M solution of 5-bromo-6-methylpyridin-3-amine (1.00 equiv.) in DCM was added DIEA (1.00 equiv.) and 3-(trifluoromethyl)benzoyl chloride (1.00 equiv.). The mixture was stirred at ambient temperature for 3 hr. The reaction mixture was diluted with DCM, washed with saturated aqueous sodium bicarbonate, dried over sodium sulfate, filtered, and concentrated to give N-(5-bromo-6-methylpyridin-3-yl)-3-(trifluoromethyl)benzamide as an off-white solid in 98% yield.
- Step 2 To a 0.27 M solution N-(5-bromo-6-methylpyridin-3-yl)-3-(trifluoromethyl)benzamide (1.00 equiv.) in 1,4-dioxane was added bis(pinacolato)diboron (1.50 equiv.), potassium acetate (2.00 equiv.) and PdCl 2 (dppf).CH 2 Cl 2 adduct (0.10 equiv.). The reaction was irradiated at 120°C for 20 min. The cooled reaction mixture was diluted with ethyl acetate and filtered through Celite.
- Step 3 EDC (1.3 equiv.) was added to a solution of 4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline (1.0 equiv.), 2-(2-cyanopropan-2-yl)isonicotinic acid (1.2 equiv.), HOAt (1.3 equiv.) in DMF (0.19 M ). The mixture was stirred at ambient temperature 3 hrs. The reaction mixture was diluted with water and extracted with ethyl acetate.
- Step 1 To a solution of 3-bromo-4-methylbenzoic acid (1.0 equiv.) in DMF (1.2M) was added EDC (1.0 equiv.) and HOBt (1.0 equiv.) followed by 3-trifluoromethylaniline (1.0 equiv.) and the reaction was stirred at ambient temperature for 48 h. The reaction mixture was partitioned between ethyl acetate and water. The separated organic layer was dried with sodium sulfate and concentrated under vacuo.
- Step 2 To 3-bromo-4-methyl-N-(3-(trifluoromethyl) phenyl) benzamide (1.0 equiv.) in a microwave vial equipped with a stir bar was added dioxane (0.5M) was added 4,4,4',4',5,5,5',5'-octamethyl-2,2'-bi(1,3,2-dioxaborolane) (3 equiv.) and potassium acetate (6 equiv.) and nitrogen was bubbled through the reaction mixture for 5 min. To it was added PdCl 2 (dppf)-DCM adduct (0.1 equiv) and the vial was sealed and heated to 120 °C for 16h.
- dioxane 0.5M
- 4',4',5,5,5',5'-octamethyl-2,2'-bi(1,3,2-dioxaborolane) 3 equiv.
- potassium acetate 6 equiv.
- Step 1 EDC (1.3 equiv.) was added to a solution of 5-bromo-6-methylpyridin-3-amine (1.05 equiv), 2-(2-cyanopropan-2-yl)isonicotinic acid (1.0 equiv), HOAt (1.3 equiv) in DMF (0.17 M ). The mixture was stirred at ambient temperature 3 hrs. The reaction mixture was diluted with water and extracted with ethyl acetate. The combined extracts were washed sequentially with 1 M aqueous sodium hydroxide and brine, dried over sodium sulfate, filtered, and concentrated. The crude was purified by ISCO(50% EtOAc/Heptane).
- Step 2 To a solution of N-(5-bromo-6-methylpyridin-3-yl)-2-(2-cyanopropan-2-yl)isonicotinamide (1.0 equiv.) in dioxane (0.18 M ) was added potassium acetate (5.0 equiv.) and 4,4,4',4',5,5,5',5'-octamethyl-2,2'-bi(1,3,2-dioxaborolane) (1.5 equiv.). The solution was degassed with nitrogen and Pd(dppf)Cl 2 -DCM was added. The reaction was then heated to 80 °C overnight. The mixture was concentrated and diluted with EtOAc, washed with H 2 O, brine.
- Step 1 To a 0.3M solution of 5-bromo-6-methylpyridin-3-amine (1.00 equiv.) in DME was added (2,6-difluoropyridin-4-yl)boronic acid (1.30 equiv.), PdCl2(dppf).CH2Cl2 adduct (0.05 equiv.), and 2M aqueous sodium carbonate (3.00 equiv.). The reaction mixture was heated at 60 °C for 18 hrs in an oil bath. The cooled reaction mixture was partitioned between water and EtOAc (3x100mL). The combined organics were washed with brine, dried over MgSO 4 , filtered and concentrated.
- Step 3 To a 0.5M suspension of 2-((5-amino-6'-fluoro-2-methyl-[3,4'-bipyridin]-2'-yl)amino)ethanol (1.00 equiv.) and potassium carbonate (1.20eq) in DMSO was added morpholine (5eq). The reaction mixture was irradiated at 150 °C for 30 min in the microwave. The cooled reaction mixture was partitioned between water and EtOAc (3x75mL). The combined organics were washed with brine, dried over MgSO 4 , filtered and concentrated.
- Step 1 In a high pressure vial, a solution of methyl 3-formylbenzoate (1 equiv.) in DCM/EtOH (867:1, 0.40 M ) was added DeoxoFluor (2.0 equiv.). The reation was purged with N 2 , the vessel was sealed and heated at 60 °C. After 18hrs of stirring additional DeoxoFluor (2.0 equiv.) was added and allowed to stir for 42hrs. The reaction was followed by TLC (25% EtOAc in heptanes). The reaction was partitioned between brine and EtOAc.
- Step 1 In a high pressure vial charged with a solution of 1-(4-methylpyridin-2-yl)ethanone (1.0 equiv.) and EtOH (0.1 equiv) in DCM (2.0M) was added DAST (2.5 equiv.). The reaction was heated to 30 oC and heated for 48 hrs. LCMS analysis indicated the formation of the desired product (MH+ - 157.9, Rt - 0.54 min). The reaction was diluted with DCM and quenched with NaHCO3, slowly at 0oC. The phases were separated and the aqueous layer was washed with DCM (2x). The combined organics were dried over MgSO 4 , filtered, and concentrated.
- Step 1 To a vial with a stir bar was added methyl 3-bromobenzoate (1.0 equiv.) 4-isoxazoleboronic acid (1.2 equiv.), PdCl 2 (dppf).CH 2 Cl 2 adduct (0.1 equiv.), 1 M KF (2.0) and DMSO (0.10 M ). The reaction mixture was degassed with bubbling nitrogen and the vial capped and heated at 130 °C for 18 hr. LCMS analysis indicated the formation of the desired product (MH + - 176, Rt - 0.62 min). The reaction mixture was diluted with a saturated solution of NH 4 Cl and extracted with EtOAc (2x).
- Step 2 To a solution of methyl 3-(cyanomethyl)benzoate (1.0 equiv.) in DMSO (0.50 M ) was slowly added NaH (3 equiv.) at 0 °C and allowed to stir for 20 mins. To the mixture was added Mel (3.0 equiv.) and allowed to stir 18 hrs at RT. LCMS analysis indicated the formation of the desired product (MH + - 204, Rt - 0.78 min). Under ice-cooling, the reaction mixture was diluted with water and extracted with EtOAc. The organics were washed with water and brine, dried over MgSO 4 , filtered, and concentrated.
- Step 1 A solution of (S)-tert-butyl 2-(hydroxymethyl)morpholine-4-carboxylate (1.0 equiv.), tosyl chloride (1.10 equiv.), triethylamine (1.40 equiv.) and N,N-dimethylpyridin-4-amine (0.1 equiv.) in dichloromethane (0.1 M) at RT. The resulting mixture was stirred at RT for 2 hours.
- Step 2 To a solution of (S)-tert-butyl 2-((tosyloxy)methyl)morpholine-4-carboxylate (1.0 equiv.) in DMF (0.1 M) at RT was added sodium azide (2.00). The resulting mixture was heated to 60 °C for 24 h. The reaction then cooled to RT and partitioned between water and diethyl ether. The organic layer was separated then washed with water followed by brine then dried over sodium sulfate. The organic layer was then concentrated in vaccuo to yield (S)-tert-butyl 2-(azidomethyl)morpholine-4-carboxylateas a white solid oil in 83% yield.
- Step 3 A solution of (S)-tert-butyl 2-(azidomethyl)morpholine-4-carboxylateas (1.0 equiv.) in ethanol (0.1 M) was evactuated and back filled with argon (x3). To the solution was then added Pd/C (0.20 eq.) and the mixture was evacuated and back filled with hydrogen (x 3). The mixture was then stirred at RT under a positive pressure of atmospheric hydrogen (balloon) for 24 h. The hydrogen gas was removed by evacuation and the reaction backfilled with argon.
- Step 1 To a solution of (R)-tert-butyl 2-(aminomethyl)morpholine-4-carboxylate (1.0 equiv.) and triethylamine (3.0 equiv.) in dichloromethane (0.1 M) was added methyl chloroformate (1.1 equiv.). The resulting mixture was stirred at RT for 45 min. After concentration, the residue was partitioned between EtOAc and water. The organic phase was washed with water and then with brine.
- Step 2 To a 4:1 solution of dichloromethane and TFA (0.1 M) was added (R)-tert-butyl 2-(((methoxycarbonyl)amino)methyl)morpholine-4-carboxylate. After 1 h the solution was then concentrated in vaccuo to give crude (S)-methyl (morpholin-2-ylmethyl)carbamate which was used in the next step without further purification.
- Step 1 To a solution of (R)-tert-butyl 2-(aminomethyl)morpholine-4-carboxylate (1.0 equiv.) and triethylamine (1.5 equiv.) in dichloromethane (0.1 M) was added acetic anhydride (1.1 equiv.). The resulting mixture was stirred at RT for 45 min. After concentration, the residue was partitioned between EtOAc and water. The organic phase was washed with water and then with brine. After drying over sodium sulfate the solution was concentrated in vaccuo to give crude (R)-tert-butyl 2-(acetamidomethyl)morpholine-4-carboxylate which was used in the next step without further purification.
- Step 2 To a 4:1 solution of dichloromethane and TFA (0.1 M) was added (R)-tert-butyl 2-(acetamidomethyl)morpholine-4-carboxylate. After 1 h the solution was then concentrated in vacuo to give crude (S)-N-(morpholin-2-ylmethyl)acetamide which was used in the next step without further purification.
- Step 1 A mixture of (R) -tert-butyl 2-(aminomethyl)morpholine-4-carboxylate (1.0 equiv.), 2-hydroxyacetic acid (1.80 equiv.), N1-((ethylimino)methylene)-N3,N3-dimethylpropane-1,3-diamine hydrochloride (2.0 equiv.), and N,N-dimethylpyridin-4-amine (0.20 equiv.) was stirred in DCM (0.1 M) at room temperature overnight. The reaction was quenched with water and washed (3X) with water.
- Step 1 To a 4:1 solution of dichloromethane and TFA (0.1 M) was added (S)-tert-butyl 2-(hydroxymethyl)morpholine-4-carboxylate. After 1 h the solution was then concentrated in vaccuo to give crude (S)-morpholin-2-ylmethanol which was used in the next step without further purification.
- Step 2 Refer to standard.
- Step 3 A solution of (S)-(4-(4-bromopyridin-2-yl)morpholin-2-yl)methanol (1.0 equiv.), tosyl chloride (1.0 equiv.), triethylamine (1.40 equiv.) and N,N-dimethylpyridin-4-amine (0.1 equiv.) in dichloromethane (0.1 M) at RT. The resulting mixture was stirred at RT for 18 hours.
- Step 1 To a solution of 5-bromo-2-methoxypyridin-3-amine (1.0 equiv.) in DMF was added 1-bromo-2-(2-bromoethoxy)ethane (1.2 equiv.), followed by DIEA (3.0 equiv.). The solution was heated at 120 °C for 24 hours. Cooled to room temperature and partitioned between ethyl acetate and water. The organic phase was washed with brine, dried over sodium sulfate, filtered and concentrated. The crude material was purified via flash chromatography over silica gel eluting with heptanes and 0-25% ethyl acetate gradient).
- Step 2 To a solution of 4-(5-bromo-2-methoxypyridin-3-yl)morpholine (1.0 equiv.) in 1,4-dioxane (0.3 M) was added concentrated HCl (5 equiv.) and the solution was heated to 100 °C for 1 h. Upon cooling to room temperature, the solution was concentrated to dryness under vacuo, then dissolved in water and neutralized with solid sodium bicarbonate. The precipitate was filtered, washed with water and dried under vacuo to give 5-bromo-3-morpholinopyridin-2(1H)-one as a beige solid in 93% yield.
- Step 2 To a solution of 5-bromo-3-morpholinopyrazin-2(1H)-one (1.0 equiv.) in DMF (0.1 M) was added potassium carbonate (2.0 equiv.) and iodomethane (1.0 equiv.) at 0 °C and the solution was allowed to warm to room temperature and stirred for 2 hours. Upon completion, the reaction was partitioned between water and ethyl acetate, the organic phase was washed with brine, dried with sodium sulfate, filtered and concentrated. The crude material was used for the next step without further purification. Isolated 5-bromo-1-methyl-3-morpholinopyrazin-2(1H)-one in 91% yield.
- Step 1 To a solution of 5-bromo-6-methoxypyridin-3-amine (1.0 equiv.) in DMF was added DIEA (3.0 equiv.) and 1-bromo-2-(2-bromoethoxy)ethane (1.0 equiv.). The solution was heated to 120 °C for 24 hours. Upon cooling to room temperature, the reaction was partitioned between water and ethyl acetate, the aqueous phase was extracted three times with ethyl acetate, the organics were combined, dried with sodium sulfate, filtered and concentrated. The crude material was purified via silica gel column chromatography eluting with 0-50% ethyl acetate in heptanes.
- Step 2 A solution of 4-(5-bromo-6-methoxypyridin-3-yl)morpholine (1.0 equiv.) in 4M HCI in dioxane (20 equiv.) was heated to 110 °C for 24 hours. Upon cooling to room temperature, the reaction was neutralized with aqueous NaOH to pH ⁇ 6 then extracted with ethyl acetate three times. The organic phase was dried with sodium sulfate, filtered and concentrated. Isolated 3-bromo-5-morpholinopyridin-2-ol as the desired product in 32% yield.
- Step 2 To a solution of 4-bromo-6-chloropyridin-2-ol (1.0 equiv.) in DMF (0.16 M) was added potassium carbonate (2.0 equiv.) and iodomethane (1.2 equiv.) at room temperature. The solution was stirred for 2 hours, then partitioned between water and ethyl acetate. The aqueous phase was extracted with ethyl acetate two more times, the organic phase was washed with brine, dried with sodium sulfate, filtered and concentrated. The crude material was purified via silica gel column chromatography eluting with ethyl acetate and heptanes (0-50% ethyl acetate).
- Step 3 To a solution of 4-bromo-6-chloro-1-methylpyridin-2(1H)-one (1.0 equiv.) in NMP (0.18 M) was added morpholine (1.1 equiv.) and DIEA (1.1 equiv). The solution was stirred at 100 °C for 4 hours. Upon cooling to room temperature, the solution was partitioned between water and ethyl acetate. The organic phase was washed with water, then brine, dried with sodium sulfate, filtered and concentrated.
- Step 1 To a solution of 6-chloropyridazin-3-amine (1.0 equiv) in MeOH (1M) at room temperature was added sodium bicarbonate (2.0 equiv.) and the resulting suspension was stirred at room temperature for 30 min before the dropwise addition of bromine (1.0 equiv.). The reaction mixture was stirred for 20 h. Upon concentration under vacuo, the crude residue was purified via silica gel column chromatography eluting with 100% heptanes to 80% ethyl acetate:heptanes to yield 4-bromo-6-chloropyridazin-3-amine in 50% yield.
- Step 2 To a cooled solution (0-5 °C) of NaNO 2 (2.4 equiv.) in H 2 SO 4 conc. (23 equiv.) was added 4-bromo-6-chloropyridazin-3-amine (1.0 equiv.) in acetic acid (0.25 M). The reaction mixture was stirred at 0 °C for 30 min before warming to room temperature and stirring for 1 hour. Water was added and stirred at room temperature for a further 4 hours. The reaction mixture was then extracted with ethyl acetate, dried over MgSO 4 and concentrated in vacuo to yield a brown oil.
- Step 3 To a solution of 4-bromo-6-chloropyridazin-3(2H)-one (1.0 equiv.) and Cs 2 CO 3 (1.2 equiv.) in DMF (0.07 M) was added iodomethane (1.5 equiv.) drop-wise over 20 min. The resulting mixture was stirred for 3 h. The reaction mixture was then diluted with ammonium chloride, then extracted with ethyl acetate, dried over MgSO 4 and concentrated in vacuo to yield as a brown solid.
- the material was purified by flash chromatography over silica gel (heptanes with 0-100% ethyl acetate gradient) to give both the O-alkylated isomer (88% yield) and the N-alkylated isomer (11% yield).
- the crude material was purified by flash chromatography over silica gel (heptanes with 20-100% ethyl acetate gradient) to give both the O-alkylated isomer (56% yield) and the N-alkylated isomer (26% yield).
- the material could be used for the next step without further purification as a mixture of isomers or it could be purified via silica gel column chromatography eluting with 0-100% ethyl acetate in heptanes to afford 5-bromo-1-methyl-3-morpholinopyridin-2(1H)-one in 71% yield
- Method 1 was followed using 5-bromo-3-morpholinopyridin-2(1H)-one (1.0 equiv.), (methylsulfonyl)ethene (1.2 equiv.) and cesium carbonate (1.2 equiv.) at room temperature to give 5-bromo-1-(2-(methylsulfonyl)ethyl)-3-morpholinopyridin-2(1H)-one in 98% yield.
- Method 1 was followed using 5-bromo-3-morpholinopyridin-2(1H)-one (1.0 equiv.), iodoethane (1.0 equiv.) and cesium carbonate (1.0 equiv.) at 50 °C to afford a mixture of 5-bromo-1-ethyl-3-morpholinopyridin-2(1H)-one and 4-(5-bromo-2-ethoxypyridin-3-yl)morpholine in about 2:1 ratio.
- Step 1 To a solution of ethyl isonicotinate (1.0 eq) and bis(((difluoromethyl)sulfinyl)oxy)zinc (2.7eq) in DCM /Water (1:0.4) was cooled to 0 °C followed by the slow addition of t-butylhydroperoxide (6 M in decane) (5 eq) with vigorous stirring. The reaction was warmed to RT and stirred for 18 hrs. TLC (4:1 EtOAc in Heptanes) indicates compete consumption of SM. The reaction was partiontioned between DCM and NaHCO 3(sat) . The organic phase was separated and the aqueous layer was extracted with DCM (3x).
- Step 2 To a solution of 2-(difluoromethyl)isonicotinate (1 eq) in THF (0.25 M ) was added 2 M LiOH (2.5 eq) and allowed to stir at RT. Upon initial addition of LiOH, the solution turned from clear to burnt orange. After 2 hrs of stirring, the solution is light yellow in color. The reaction stirred for 18 hrs. The volatiles were removed in vacuo, and the aqueous phase was acidified to ⁇ pH 3. A white ppt formed and was filtered and dried. Some product remained in the aqueous layer which was extracted with BuOH (2x).
- Step 1 To a solution of 2-bromo-4-methylpyridine (1.0 equiv) in toluene (0.3 M) at -78 °C was slowly added n -BuLi (1.15 equiv) and the mixture was allowed to stir for 45 min. Acetone (3 equiv) was then added, and the reaction was allowed to warm to 25 °C over 30 min. The reaction was quenched with saturated aqueous ammonium chloride and extracted three times with ethyl acetate The combined organics were washed with brine, dried over magnesium sulfate, filtered and concentrated.
- Step 3 To a solution of 2-(2-fluoropropan-2-yl)-4-methylpyridine (1.0 equiv.) in water (0.2 M) was added KMnO 4 (3.0 equiv) and the reaction heated to 80 °C for 1.5 hrs. More KMnO 4 (1.5 equiv) was added and the reaction heated at 80 °C for an additional 1.5 hrs. The reaction was cooled to room temperature, acidified to pH 3 with 1 M HCl, and then extracted three times with ethyl acetate. The combined organics were dried over magnesium sulfate, filtered and concentrated. Isolated 2-(2-fluoropropan-2-yl)isonicotinic acid as a white solid in 43% yield.
- Step 1 Monomethyl isophthalate (1.0 equiv) and hydrazine hydrate (4 equiv) were combined in MeOH (1.0 M) and heated to reflux for 4 h. More hydrazine hydrate (4 equiv) was added and the reaction was continued refluxing for another 3 h. The mixture was cooled and concentrated, providing 3-(hydrazinecarbonyl)benzoic acid which was used without further purification.
- Step 2 A mixture of 3-(hydrazinecarbonyl)benzoic acid (1.0 equiv), triethyl orthoformate (12 equiv), and TsOH.H 2 O (0.1 equiv) was heated at 60 °C overnight, and then further heated to 120 °C for 1.5 h. The mixture was cooled to room temp and poured onto water. The precipitated solid was filtered, washed with water, and dried to give 3-(1,3,4-oxadiazol-2-yl)benzoic acid as a white solid in 61% yield.
- Step 1 In a round bottom flask equiped with a stir bar and purged with nitrogen was added 5-bromo-3-(trifluoromethyl)pyridin-2-ol (1.0 equiv.), potassium carbonate (2.0 equiv.) and DMF (0.2 M). The mixture was stirred at room temperature and iodoethane (1.2 equiv.) was added via syringe. The mixture was warmed to 30 °C for 4 hours at which time LCMS indicated full conversion.
- LiOH lithium hydroxide
- Step 1 To a flame dried flask and 2-cyano-4-methylpyridine (1.0 equiv.) in THF (0.5 M) at -78 °C was added 3M ethylmagnesiumbromide in diethyl ether (1.2 equiv.) and the mixture was stirred at that temperature for 20 mins and then warmed to room temperature. The reaction mixture was acidified with aqueous citric acid and then partitioned between ethyl acetate and water. The separated organic layer was dried with sodium sulfate and concentrated under vacuo.
- Step 2 To 1-(4-methylpyridinyl-2-yl)propan-1-one (1 eq) in DCM (0.46 M) was added DAST (3 eq) and ethanol (0.8 eq) and the mixture was refluxed under nitrogen atmosphere. After 5 h another portion of ethanol (0.8 eq) was added and the mixture was refluxed for 16h. The reaction mixture was partitioned between ethyl acetate and saturated sodium bicarbonate solution and the separated organic layer was dried with sodium sulfate and concentrated under vacuo.
- Step 3 To 2-(1,1-difluoropropyl)-4-methylpyridine (1 eq) in water (0.36M) was added potassium permanganate (3eq) and the mixture was heated to 80°C for 6h. To the reaction mixture was added another portion of potassium permanganate (1.5 eq) and after 1 h the reaction mixture was cooled to ambient temperature and was then acidified with 6N HCI and the product was extracted with ethyl acetate and the separated organic layer was dried with sodium sulfate and concentrated under vacuo to give 2-(1,1-difluoropropyl)isonicotinic acid in 23% yield.
- Step 1 To a solution of methyl-2-acetylisonicotinate (1.0 equiv.) in THF (0.089M) at-78 °C was added 3M solution of methyl magnesiumbromide in diethyl ether (6 eq) drop-wise over 10 min. The reaction mixture was quenched with water at that temperature and brought to ambient temperature. The reaction mixture was partitioned between ethyl acetate and water. The separated organic layer was dried with sodium sulfate and concentrated under vacuo.
- Step 1 To a dry round bottom flask was added a solution of ZnCl 2 (0.5 M in THF) (1.50 equiv.) followed by cyclopropylmagnesium bromide (0.5 M in THF) (1.50 equiv.) at room temperature under Argon. The resulting solution was stirred for 30 min before the addition of methyl 6-chloropyridazine-4-carboxylate (1.0 equiv.), PdCl 2 (dppf)-DCM (0.05 equiv.), and zinc dust (0.15 equiv.). The resulting mixture was then heated to 55 °C overnight.
- Step 1 To an oven dried round-bottomed flask was added a solution of zinc chloride (0.5 M in THF, 1.5 equiv.) followed by cyclopropylmagnesium bromide (0.5 M in THF, 1.5 equiv.) at room temperature and the resulting solution was stirred at room temperature for 30 min before the portionwise sequential addition of 2-chloroisonicotinonitrile (1.0 equiv.), dppf (0.12 equiv.) and Pd 2 (dba) 3 (0.06 equiv.) at room temperature. The resulting mixture was heated to 60 °C for 23 hours. At this point, LC/MS indicated complete consumption of the starting material and formation of the desired product.
- Step 1 To a solution of ethyl isonicotinate (1.0 equiv.) in DMSO (0.1M) was added sulphuric acid (2.0 equiv.), iron(II) sulfate heptahydrate (0.3 equiv.), 3-iodooxetane (2.0 equiv.). Heated to 40 °C and then added hydrogen peroxide (30% in water, 3.0 equiv.). After 2 min, another 0.3 equiv. of iron (II) sulfate heptahydrate was added and stirred for 30 min.
- sulphuric acid 2.0 equiv.
- iron(II) sulfate heptahydrate 0.3 equiv.
- 3-iodooxetane 2.0 equiv.
- Step 2 To a solution of ethyl 2-(oxetan-3-yl)isonicotinate (1.0 equiv.) in THF and Water (1:1, 0.45 M) was added lithium hydroxide (2.0 equiv.) at room temperature. The mixture was stirred for 4 hours at rt. The reaction was quenched with 2M HCI and diluted with ethyl acetate. The organic phase was dried over magnesium sulfate, filtered and concentrated under vacuo to yield 2-(oxetan-3-yl)isonicotinic acid as an off-white solid in 41% yield.
- Step 5 To a solution of 1-(5-methylpyridazin-3-yl)cyclopropanecarbonitrile (1.0 equiv.) in pyridine (0.38 M) under Ar was added selenium dioxide (4 eq). After heating at 90 °C for 2 days, the reaction mixture was cooled in an ice bath and water was added. After washing with ethyl acetate, the aqueous phase was acidified to pH 3 with 6 N HCI and then extracted with ethyl acetate. The combined organics were dried over Na 2 SO 4 and concentrated to give 6-(1-cyanocyclopropyl)pyridazine-4-carboxylic acid in 36 % yield.
- Step 2 To methyl 3-((methylsulfonyl)methyl)benzoate (1.0 equiv.) in THF (0.16M) at rt was added sodium t-butoxide (3.0 equiv.) and 2.0 M methyl iodide in diethyl ether (2.2 equiv.). The reaction mixture was stirred at rt for 18 h. The reaction mixture was partitioned between ethyl acetate and water. The separated organic layer was dried with sodium sulfate and concentrated under vacuo.
- Step1 To 3-chloro-5-methylpyridazine (1.0 equiv.) in DME (0.5M) at rt was added 4,4,5,5-tetramethyl-2-(prop-1-en-2-yl)-1,3,2-dioxaborolane (1.4 equiv.), 2.0 M sodium carbonate (3.0 equiv.), Pd(PPh 3 ) 4 (0.02 equiv.). The mixture was stirred at 70 °C for 18 h then cooled to ambient temperature. The reaction mixture was partitioned between ethyl acetate and water. The separated organic layer was dried with sodium sulfate and concentrated under vacuo.
- Step 3 To 1-(5-methylpyridazin-3-yl)ethanone (1.0 equiv.) in THF (0.5M) at -0°C was added 3.0 M methylmagnesiumbromide in diethyl ether (1.1 eq) and the mixture was stirred at that temperature for 2 h. The reaction mixture was acidified with aqueous citric acid and then partitioned between ethyl acetate and water. The separated organic layer was dried with sodium sulfate and concentrated under vacuo.
- Step 1 A solution of 5-methylpyridazin-3(2H)-one (1.0 equiv.) in POCl 3 (2 M) was heated up to 90°C for 2 h. After completion of the reaction (TLC monitoring), reaction mass was poured into crushed ice and pH was neutralized by using solid NaHCO 3 . The compound was extracted with EtOAc (3x); combined organics were washed with brine and dried over anhydrous Na 2 SO 4 . The solvent was evaporated and crude residue was purified over silica gel by using eluents 30% EtOAc:hexanes to afford 3-chloro-5-methylpyridazine as yellowish liquid in 93% yield .
- Step 2 A solution of LDA (2M in THF, 2.5 equiv.) in THF (1M) was cooled up to -78°C followed by the drop wise addition of isobutyronitrile (2.5 equiv.). The resulting reaction mixture was stirred at 0 °C for 30 minutes and again cooled up to -78 °C followed by the addition of a solution of 3-chloro-5-methylpyridazine (1.0 equiv.) in THF. The resulting reaction mixture temperature was slowly raised up to room temperature and left for stirring for 16 h. After completion of the reaction (TLC monitoring), reaction mass was quenched with saturated solution of NH 4 Cl followed by the extraction with EtOAc (3 x).
- Step 3 To a solution of 2-methyl-2-(5-methylpyridazin-3-yl)propanenitrile (1.0 equiv.) in pyridine (1.2 M) was added SeO 2 (2.5 equiv.). The resulting reaction mass was stirred at 90 °C for 24 h. After completion of the reaction (TLC monitoring), reaction mixture was cooled up to room temperature and poured into crushed ice followed by the extraction with EtOAc (2 x). The organics were discarded and the pH of the aqueous layer was adjusted up to 3-4 by using 6N HCl followed by the extraction with EtOAc (3 x). The combined organics were washed with brine, dried over anhydrous Na 2 SO 4 , filtered and evaporated under reduced pressure.
- Step 2 To a solution of 5-bromo-2-ethoxy-3-nitropyridine (1.0 equiv) in MeOH and DCM (1:10; 0.3 M) at 25 °C were added zinc (5.5 equiv) and ammonium chloride (5 equiv) and the mixture was heated to 75 °C and stirred for 4 hours. The reaction was cooled to room temperature and filtered through a short plug of Celite, washing with DCM, and then concentrated. The residue was taken up in ethyl acetate, washed with water and brine and then dried over magnesium sulfate, filtered and concentrated.
- Step 3 To a solution of 5-bromo-2-ethoxypyridin-3-amine (1.0 equiv.) in DMF (0.5 M) at 0 °C was slowly added NaH (1.5 equiv.) and the mixture was allowed to warm to room temperature over 15 min followed by the addition of bis(2-bromoethyl) ether (4 equiv.). The mixture was heated to 90 °C and stirred for 48 hours. The mixture was poured onto ice water and extracted three times with ethyl acetate. The combined organics were washed with water, brine, dried over magnesium sulfate, filtered and concentrated.
- Step 1 To a solution of 5-bromo-2-chloro-3-nitropyridine (1.0 equiv) in MeOH and DCM (1:10; 0.45 M) at 25 °C were added zinc (5.5 equiv) and ammonium chloride (5 equiv) and the mixture was heated to 65 °C and stirred for 5 hours. More zinc (2.5 equiv) and ammonium chloride (2.5 equiv) was added and the mixture was stirred at 65 °C for an additional 3 hours. The reaction was cooled to room temperature and filtered through a short plug of Celite. The filtrate was washed with water and brine and then dried over magnesium sulfate, filtered and concentrated.
- Step 2 To a solution of 5-bromo-2-chloropyridin-3-amine (1.0 equiv.) in DMF (0.2 M) at 0 °C was slowly added NaH (1.5 equiv.) and the mixture was allowed to warm to room temperature over 15 min followed by the addition of bis(2-bromoethyl) ether (3 equiv.). The mixture was heated to 80 °C and stirred for 2 hours. The mixture was poured onto water and extracted three times with ethyl acetate. The combined organics were washed with water, brine, dried over magnesium sulfate, filtered and concentrated.
- Step 1 To a solution of 5-bromo-3-iodo-2-hydroxypyridine (1.0 equiv.) in THF (0.18 M) at 25 °C were added 4-hydroxytetrahydropyran (1.2 equiv.), PPh 3 (1.25 equiv.) and DIAD (1.2 equiv.) and the mixture was stirred for 2 hours. More 4-hydroxytetrahydropyran (1.2 equiv.), PPh 3 (1.25 equiv.), and DIAD (1.2 equiv.) was added, and the reaction was stirred for another 2 hours.
- Step 2 To a solution of 5-bromo-3-iodo-2-((tetrahydro-2H-pyran-4-yl)oxy)pyridine (1.0 equiv.) in toluene (0.15 M) in a microwave vial was added 3-oxa-8-azabicyclo[3.2.1]octane (1.3 equiv.), NaOtBu (3 equiv.), and Xantphos (0.1 equiv.) and the mixture was degassed with Ar. Pd(dba) 2 (0.05 equiv) was added, and the mixture was degassed again and then sealed and heated at 90 °C for 18 hours.
- Step 1 To a solution of 4-(5-bromo-2-methoxypyridin-3-yl)morpholine (1.0 equiv.) in 1,4-dioxane (0.15 M) was added bis(pinacolato)diboron (1.5 equiv.), PdCl 2 (dppf).CH 2 Cl 2 adduct (0.1 equiv.), and 2M aqueous sodium carbonate (3.0 equiv.). The reaction mixture was irradiated at 120 °C for 18 min in the microwave. The cooled reaction mixture was diluted with DCM and filtered.
- Step 2 To a solution of 4-(2-methoxy-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-3-yl)morpholine (1.0 equiv.) in DME (0.15 M) was added 5-bromo-6-chloropyridin-3-amine (1.0 equiv.), PdCl 2 (dppf).CH 2 Cl 2 adduct (0.1 equiv.), and 2M aqueous sodium carbonate (3.0 equiv.). The reaction mixture was irradiated at 120 °C for 15 min in the microwave. The cooled reaction mixture was diluted with 2:1 DCM:MeOH and filtered.
- the crude residue was purified via flash chromatography over silica gel eluting with either heptane and 0-100% ethyl acetate gradient or DCM and 0-15% methanol gradiant, or in other cases the crude residue was used without further purification.
- Step 1 Method 5 was followed using 4-(5-bromo-2-ethoxypyridin-3-yl)morpholine and methyl 4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzoate.
- the crude residue was purified via flash chromatography over silica gel eluting with heptane and 0-100% ethyl acetate gradient. Isolated methyl 3-(6-ethoxy-5-morpholinopyridin-3-yl)-4-methylbenzoate as a white solid in 57% yield.
- Method 5 was followed using 8-(5-bromo-2-((tetrahydro-2H-pyran-4-yl)oxy)pyridin-3-yl)-3-oxa-8-azabicyclo[3.2.1]octane and 6-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-3-amine.
- the crude residue was purified via flash chromatography over silica gel eluting with DCM and 0-15% methanol gradient.
- Step 1 To a 0.15M solution of 1-methyl-3-morpholino-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-2(1H)-one (1.00 equiv.) in DME was added methyl 5-bromo-6-chloronicotinate (1.00 equiv.), PdCl 2 (dppf).CH 2 Cl 2 adduct (0.10 equiv.), and 2M aqueous sodium carbonate (3.00 equiv.). The reaction mixture was irradiated at 120 °C for 15 min in the microwave. The cooled reaction mixture was diluted with 2:1 DCM:MeOH and filtered.
- Step 1 To a solution of 5-bromo-1-methyl-3-morpholinopyridin-2(1H)-one (1.0 equiv.) in DME (0.18 M) was added methyl 4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzoate (1.5 equiv.), PdCl 2 (dppf).CH 2 Cl 2 adduct (0.10 equiv.), and 2M aqueous sodium carbonate (3.00 equiv.). The reaction was heated to 90 C for 2 hours. Cooled to room temperature, partitioned between water and ethyl acetate, the organic phase was dried with sodium sulfate, filtered and concentrated.
- Step 1 4-(4-bromo-6-chloropyridin-2-yl)morpholine (1.0 equiv.) was dissolved in acetonitrile (0.1 M). Selectfluor (1.1 equiv.) was added at rt and stirred for 18 hours. The reaction was diluted with ethyl acetate and washed with water, brine, dried over sodium sulfate, filtered and concentrated.
- Step 2 To a solution of 4-(4-bromo-6-chloro-3-fluoropyridin-2-yl)morpholine (1.0 euqiv.) and 6-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-3-amine (1.7 equiv.) in DME (0.04 M) and sodium carbonate (2M, 3.0 equiv.) was added Pd(PPh 3 ) 4 (0.03 equiv.) and the reaction was heated at 100 °C for 2 hours. The mixture was poured onto ice water and extracted with ethyl acetate.
- Step 1 To a solution of 4-(4-bromo-6-chloro-5-fluoropyridin-2-yl)morpholine (1.0 equiv.) and 4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline (1.2 equiv.) in DME (0.1 M) and Na 2 CO 3 (2 M aq.) (3.0 equiv.) was added Pd(PPh 3 ) 4 and heated (thermally) at 100 °C for 2 h. LCMS shows complete consumption of starting material with fairly clean conversion to desired product. The mixture was poured onto ice-water and extracted with EtOAc (3 X).
- Step 2 In a microwave vial was added 3-(2-chloro-3-fluoro-6-morpholinopyridin-4-yl)-4-methylaniline (1.0 equiv.), 2-aminoethanol (50 equiv.), DIPEA (2.0 equiv.) in NMP (0.2). The vial was sealed with a crimp top. The reaction was then heated to 250 °C for 30 min heated by microwave. LC-MS showed completion of the reaction. The reaction mixture was diluted with ethyl acetate, washed with water, brine then dried over sodium sulfate. Concentrated to yield crude.
- Step 1 To a solution of 4,6-dichloropyrimidine (1.0 equiv.) in EtOH (0.44 M) was added morpholine (1.0 equiv.) followed by triethylamine (1.10 equiv.). The resulting mixture was stirred at RT for 16 hours. The reaction mixture was then concentrated in vacuo and dried under high vacuum over 20 h to yield 4-(6-chloropyrimidin-4-yl)morpholine as a white solid in 93% yield.
- Step 2 To a solution of 4-(6-chloropyrimidin-4-yl)morpholine (1.0 equiv.) and Intermediate A (1.1 equiv.) in DME and 2M sodium carbonate (3:1, 0.2 M) was added PdCl 2 (dppf)-DCM adduct (0.500 equiv.) in a microwave vial equipped with a stir bar. The reaction was heated to 120 °C for 20 min in the microwave. The organic phase was dried with sodium sulfate, filtered and concentrated. The crude material was purified via preparative reverse phase HPLC.
- Step 1 To a solution 4-(4,6-dichloropyrimidin-2-yl)morpholine (1.0 equiv.), morpholin-3-one (1.2 equiv.), tribasic potassium phosphate (4.00 equiv), (9,9-dimethyl-9H-xanthene-4,5-diyl)bis(diphenylphosphine) (0.16 equiv) and Rd 2 (dba) 3 .HCCl 3 (20 mol %) in dioxane (0.5 M) was heated to 100 °C for 90 min. The reaction mixture was then cooled to room temperature and diluted with EtOAc (20 ml) and water (20 ml).
- Step 2 To a solution of 4-(6-chloro-2-morpholinopyrimidin-4-yl)morpholin-3-one (1.0 equiv.) and Intermediate A (1.1 equiv.) in DME and 2M sodium carbonate (3:1, 0.2 M) was added PdCl 2 (dppf)-DCM adduct (0.500 equiv.) in a microwave vial equipped with a stir bar. The reaction was heated to 120 °C for 20 min in the microwave. The organic phase was dried with sodium sulfate, filtered and concentrated. The crude material was purified via preparative reverse phase HPLC.
- Step 2 To a solution of 4-(6-chloro-2-morpholinopyrimidin-4-yl)thiomorpholine 1,1-dioxide (1.0 equiv.) and Intermediate A (1.1 equiv.) in DME and 2M sodium carbonate (3:1, 0.2 M) was added PdCl 2 (dppf)-DCM adduct (0.500 equiv.) in a microwave vial equipped with a stir bar. The reaction was heated to 120 °C for 20 min in the microwave. The organic phase was dried with sodium sulfate, filtered and concentrated. The crude material was purified via preparative reverse phase HPLC.
- N-(3-(6-(1,1-dioxidothiomorpholino)-2-morpholinopyrimidin-4-yl)-4-methylphenyl)-3-(trifluoromethyl)benzamide was isolated as the TFA salt in 35% yield.
- Step 1 To a solution of 4,4'-(6-chloropyrimidine-2,4-diyl)dimorpholine (1.0 equiv.) and Intermediate A (1.1 equiv.) in DME and 2M sodium carbonate (3:1, 0.2 M) was added PdCl 2 (dppf)-DCM adduct (0.500 equiv.) in a microwave vial equipped with a stir bar. The reaction was heated to 120 °C for 20 min in the microwave. The organic phase was dried with sodium sulfate, filtered and concentrated. The crude material was purified via preparative reverse phase HPLC.
- N-(3-(4,6-dimorpholinopyrimidin-2-yl)-4-methylphenyl)-3-(trifluoromethyl)benzamide was isolated as the TFA salt in 35% yield.
- Step 1 To a solution of 4,4'-(6-chloropyrimidine-2,4-diyl)dimorpholine (1.0 equiv.) and 4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline (1.5 equiv.) in DME and 2M sodium carbonate (3:1, 0.2 M) was added PdCl 2 (dppf)-DCM adduct (0.100 equiv.) in a microwave vial equipped with a stir bar. The reaction was heated to 120 °C for 20 min in the microwave. The reaction mixture qas quenched with water and the aqueous layer was separated and extracted with EtOAc (x 3).
- Step 2 To a solution of 3-(2,6-dimorpholinopyrimidin-4-yl)-4-methylaniline (1.0 equiv.) in DMF (0.10 M ) was added 2-(2-cyanopropan-2-yl)isonicotinic acid (1.2 equiv.), EDC-HCl (1.2 equiv.) and aza-HOBt (1.2 equiv.). The reaction was stirred at room temperature for 6 hours. Upon completion, the solution was filtered through a HPLC filter and purified via reverse phase preparative HPLC.
- Step 2 To a solution of 4-(6-chloro-2-(methylthio)pyrimidin-4-yl)morpholine (1.0 equiv.), N-(4methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-3-(trifluoromethyl)benzamide (1.05 equiv.) in DME/2 M sodium carbonate (3:1, 0.20 M ) was added PdCl 2 (dppf).CH 2 Cl 2 adduct (0.1 equiv.). The reaction was purged with N 2 for 5 mins, the vial was sealed and subjected to microwave irradiation for 10min at 120 °C. LCMS shows complete formation of desired product.
- Step 3 To a solution of N-(4-methyl-3-(2-(methylthio)-6-morpholinopyrimidin-4-yl)phenyl)-3-(trifluoromethyl)benzamide (1.0 equiv.) in DCM (0.1 M ) was added m-CPBA (2.2 equiv.) portion wise. The reaction was stirred at RT for 4 hours. After which time LCMS shows complete oxidation to desired product. The reaction was diluted with DCM and washed with 0.5 M Na 2 CO 3 . The resulting emulsion was filtered through a pad of celite and the cake was washed with DCM. The organics were dried over MgSO 4 , filtered and concentrated. The material was purified via preparative reverse phase HPLC.
- Step 1 To a solution of N-(4-methyl-3-(2-(methylsulfonyl)-6-morpholinopyrimidin-4-yl)phenyl)-3-(trifluoromethyl)benzamide (1.0 equiv.) and 2-oxa-6-azaspiro[3.3]heptane (1.0 equiv.) in THF (0.20 M ) was added triethylamine (3.5 equiv.) and the allowed to stir at 75 °C for 48 hours. LCMS analysis indicated formation of the desired product. The volatiles were removed in vacuo. The crude material was purified via preparative reverse phase HPLC.
- N-(3-(2-(ethylamino)-6-morpholinopyrimidin-4-yl)-4-methylphenyl)-3-(trifluoromethyl)benzamide was isolated as the TFA salt in 21% yield.
- N-(4-methyl-3-(2-(methylsulfonamido)-6-morpholinopyrimidin-4-yl)phenyl)-3-(trifluoromethyl)benzamide was isolated as the TFA salt in 6% yield.
- Step 2 To a mixture of N-(3-(2-azido-6-morpholinopyrimidin-4-yl)-4-methylphenyl)-3-(trifluoromethyl)benzamide (1.0 equiv.), 2-methylbut-3-yn-2-ol (5.0 equiv.) and triethylamine (2.0 equiv.) in dioxane (0.25 M) was added Copper (I) Oxide on carbon (0.2 equiv.). The resulting mixture was heated to 90 °C for 3 hours. The reaction mixture was then cooled to room temperature and filtered, concentrated in vacuo. The crude material was purified via preparative reverse phase HPLC.
- N-(3-(2-(4-(2-hydroxypropan-2-yl)-1H-1,2,3-triazol-1-yl)-6-morpholinopyrimidin-4-yl)-4-methylphenyl)-3-(trifluoromethyl)benzamide was isolated as the TFA salt in 14% yield.
- N-(4-methyl-3-(2-(methylsulfonyl)-6-morpholinopyrimidin-4-yl)phenyl)-3-(trifluoromethyl)benzamide 1.0 equiv.
- DMSO 0.05 M
- ammonium acetate 2 equiv.
- the reaction was heated to 100 °C for 15 min in the microwave.
- the crude material was purified via preparative reverse phase HPLC. Upon lyophilization of the pure fractions, N-(3-(2-amino-6-morpholinopyrimidin-4-yl)-4-methylphenyl)-3-(trifluoromethyl)benzamide was isolated as the TFA salt in 23% yield.
- Step 3 To a solution of 4-(6-chloro-2-(methylsulfonyl)pyrimidin-4-yl)morpholine (1.0 equiv) in dioxane (0.20 M ) was added ethane-1,2-diol (90 equiv.). To this stirring solution was added 60% NaH (1.0 equiv.) at 0 °C. The reaction was allowed to warm to room temperature stirring for 24 hours. LCMS analysis indicated the formation of the desired product. The reaction was partitioned between NH 4 Cl and EtOAc. The organics were washed with brine, water, then dried over MgSO 4 filtered and concentrated.
- Example 42 and Example 43 Synthesis of N-(4-methyl-3-(2-morpholino-6-(prop-1-en-2-yl)pyrimidin-4-yl)phenyl)-3-(trifluoromethyl)benzamide and N-(4-methyl-3-(4-morpholino-6-(prop-1-en-2-yl)pyrimidin-2-yl)phenyl)-3-(trifluoromethyl)benzamide
- Step 3 To a solution of 4-(2-chloro-6-(prop-1-en-2-yl)pyrimidin-4-yl)morpholine and 4-(4-chloro-6-(prop-1-en-2-yl)pyrimidin-2-yl)morpholine (total 1.0 equiv.) and Intermediate A (1.1 equiv.) in dioxane and 2M sodium carbonate (4:1, 0.17 M) was added PdCl 2 (dppf)-DCM adduct (0.150 equiv.) in a microwave vial equipped with a stir bar. The reaction was heated to 120 °C for 20 min in the microwave. The organic phase was dried with sodium sulfate, filtered and concentrated.
- Step 2 A mixture of 4-(6-chloro-2-morpholinopyrimidin-4-yl)-2,2-dimethylmorpholine (1.0 equiv.), N-(4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-3-(trifluoromethyl)benzamide (1.2 equiv.), sodium carbonate (2 M, 8 equiv.) and PdCl 2 (dppf) (0.5 equiv.) in DME (0.1 M) were heated to 108 °C for 13 min in the microwave. After removing the DME soluble portion and concentrating, the resulting solid was partitioned between EtOAc and water.
- Step 1 To a solution of 4-(4,6-dichloro-5-methylpyrimidin-2-yl)morpholine in EtOH (0.15 M) was added morpholine (2.0 equiv.) followed by triethylamine (4.00 equiv.). The resulting mixture was heated under microwave irradiation at 125 °C for 50 min (2 x 25 min). The reaction mixture was then concentrated in vacuo to yield 4,4'-(6-chloro-5-methylpyrimidine-2,4-diyl)dimorpholine as a white solid in 96% yield which was utilized without further purification in the subsequent reaction.
- Step 2 To a solution of 4,4'-(6-chloro-5-methylpyrimidine-2,4-diyl)dimorpholine (1.0 equiv.) and Intermediate A (1.20 equiv.) in DME and 2M sodium carbonate (3:1, 0.2 M) was added PdCl 2 (dppf)-DCM adduct (0.500 equiv.) in a microwave vial equipped with a stir bar. The reaction was heated to 110 °C for 10 min under microwave irradiation. The organic phase was dried with sodium sulfate, filtered and concentrated. The crude material was purified via preparative reverse phase HPLC.
- N-(4-methyl-3-(5-methyl-2,6-dimorpholinopyrimidin-4-yl)phenyl)-3-(trifluoromethyl)benzamide was isolated as the TFA salt in 6% yield.
- Step 1 A mixture of 5-bromo-3-chloropyridazine (1.0 equiv.), N-(6-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-3-yl)-3-(trifluoromethyl)benzamide (1.2 equiv.), sodium carbonate (2 M, 8 equiv.) and PdCl 2 (dppf) (0.5 equiv.) in DME (0.1 M) were heated to 108 °C for 13 min in the microwave. After removing the DME soluble portion and concentrating, the resulting solid was partitioned between EtOAc and water.
- Step 2 A mixture of N-(5-(6-chloropyridazin-4-yl)-6-methylpyridin-3-yl)-3-(trifluoromethyl)benzamide (1.0 equiv.), morpholine (5 equiv.) and potassium carbonate (10 equiv.) in NMP (0.15 M) were heated to 130 °C for 18 h in an oil bath. The reaction mixture was centrifuged and the soluble portion was removed from solids. The soluble portion was purified via preparative reverse phase HPLC.
- N-(6-methyl-5-(6-morpholinopyridazin-4-yl)pyridin-3-yl)-3-(trifluoromethyl)benzamide was isolated as the TFA salt in 1% yield.
- Step 2 A mixture of 4-(6-chloropyridazin-4-yl)morpholine (1.0 equiv.), N-(4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-3-(trifluoromethyl)benzamide (1.0 equiv.), sodium carbonate (2 M, 10 equiv.) and PdCl 2 (dppf) (0.5 equiv.) in DME (0.1 M) were heated to 110 °C for 15 min in the microwave. After removing the DME soluble portion and concentrating, the resulting solid was partitioned between EtOAc and water.
- Example 62 The compounds listed below were prepared using methods similar to those described for the preparation of Example 62 using the appropriate starting materials.
- Example 80 2-(2-cyanopropan-2-yl)-N-(3-(2-((2S,5S)-2-((dimethylamino)methyl)-5-methylmorpholino)pyridin-4-yl)-4-methylphenyl)isonicotinamide
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Medicinal Chemistry (AREA)
- Animal Behavior & Ethology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Nitrogen Condensed Heterocyclic Rings (AREA)
- Plural Heterocyclic Compounds (AREA)
- Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
- Thiazole And Isothizaole Compounds (AREA)
- Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)
- Pyridine Compounds (AREA)
- Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Description
- The invention provides compounds that inhibit Raf kinases, and are accordingly useful for treating certain disorders associated with excessive Raf kinase activity, including cell proliferation disorders such as cancers. The invention further provides pharmaceutical compositions containing these compounds and methods of using these compounds to treat conditions including cancer.
- Protein Kinases are involved in very complex signaling cascades that regulate most cellular functions, including cell survival and proliferation. These signaling pathways have been heavily studied, particularly in the context of disorders caused by dysregulated cellular function, such as cancer. The mitogen-activated protein kinase (MAPK) cascade has been studied extensively, for example, and kinases in this pathway (e.g., RAS, RAF, MEK, and ERK) have been exploited as target sites for drug discovery. Mutated B-Raf is found in a significant fraction of malignancies (over 30% of all tumors and 40% of melanomas), and several drug candidates that inhibit a common B-Raf mutant (V600E, an activating mutation found in many cancers, particularly in cutaneous malignant melanoma, thyroid cancer, colorectal cancer, and ovarian cancer) have been reported, including GDC-0879, PLX4032, and PLX4720, while other inhibitors targeting C-Raf or B-Raf (or both) include sorafenib, XL281 RAF265, and BAY43-9006. These examples demonstrate that compounds that inhibit B-Raf or C-Raf are useful to treat various cancers.
- The MAPK signaling cascade includes RAS, Raf, MEK and ERK kinases, each of which is actually a group of related proteins. Because they function collectively as a signal transduction cascade, the number of distinct kinases and their varying substrate specificities create a complex and highly branched pathway. Roskoski, Biochem. Biophys. Res. Comm., 399, 313-17 (2010). Raf, for example, consists of monomers referred to as A-Raf, B-Raf, and C-Raf (also called Raf-1), each of which functions primarily as a dimer. The RAF complex includes heterodimers as well as homodimers of these three species, bringing the total number of dimeric species in the Raf group to six, and each of these has a number of sites where phosphorylation at serine, threonine or tyrosine can cause either activation or inhibition. Matallanas, et al., Genes and Cancer 2:232 (2011, published online 10 May 2011). Due to the complexity of the pathway and its regulation, it has been reported that inhibitors of B-Raf can cause paradoxical activation of the pathway, apparently due to conformational effects on the kinase domain of Raf that affect dimerization, membrane localization, and interaction with RAS-GTP. Hatzivassiliou, et al., Nature, vol. 464, 431-36 (18 March 2010). In particular, ATP-competitive inhibitors can exhibit opposing effects on the signaling pathway, as either inhibitors or activators, depending on the cellular context. As a result, B-Raf inhibitors effective against tumors having the activating B-Raf mutation V600E may not be as effective as expected in tumors having wild-type B-Raf or KRas mutations. Id.
- The present invention provides novel inhibitors of Raf kinases, including A-Raf, B-Raf and/or C-Raf, and use of these compounds to treat disorders associated with excessive or undesired levels of Raf activity, such as certain cancers. The compounds of the invention minimize undesired pathway activation effects, and thus can be more efficacious and more predictable in vivo than the B-Raf inhibitors that cause paradoxical pathway activation even when they have similar in vitro potency. The compounds of the invention bind in a DFG-out mode, making them type 2 inhibitors, which have been reported to be less prone to induce paradoxical activation. They are also quite different in structure from known type 2 inhibitors like sorafenib and RAF265. J. Med. Chem. 2012, vol. 55, 3452-78. The compounds are thus suited for treatment of BRaf wild-type and KRas mutant tumors, as well as B-Raf V600E mutant tumors.
- In one aspect, the invention provides compounds of the formula (I):
- In another aspect, the invention provides pharmaceutical compositions comprising a compound of Formula (I) admixed with at least one pharmaceutically acceptable carrier or excipient, optionally admixed with two or more pharmaceutically acceptable carriers or excipients. In addition, the invention includes combinations of a compound of Formula (I) with a co-therapeutic agent, optionally including one or more pharmaceutically acceptable carriers, and methods of treatment using a compound of Formula (I) in combination with a co-therapeutic agent. Suitable co-therapeutic agents for use in the invention include, for example, cancer chemotherapeutics including but not limited to inhibitors of PI3K, other inhibitors of the Raf pathway, paclitaxel, docetaxel, temozolomide, platins, doxorubicins, vinblastins, cyclophosphamide, topotecan, gemcitabine, ifosfamide, etoposide, irinotecan, and the like.
- In another aspect, the invention provides compounds for use in a method to treat a condition characterized by excessive or undesired levels of activity of Raf, especially B-Raf and/or C-Raf, which comprises administering to a subject in need of such treatment an effective amount of a compound of Formula (I) or any subgenus thereof as described herein, or a pharmaceutical composition comprising such compound. The subject can be a mammal, and is preferably a human. Conditions treatable by the compounds and methods described herein include various forms of cancer, such as solid tumors, melanoma, breast cancer, lung cancer (e.g., non-small cell lung cancer), sarcoma, GI tumors such as gastrointestinal stromal tumors, ovarian cancer, colorectal cancer, thyroid cancer, and pancreatic cancer. The invention thus includes compounds of Formula (I) and the subgenera thereof that are disclosed herein, including each species disclosed herein, for use in therapy, particularly for use to treat cancers such as melanoma, breast cancer, lung cancer, liver cancer, sarcoma, GI tumors such as gastrointestinal stromal tumors, sarcoma, GI tumors such as gastrointestinal stromal tumors, ovarian cancer, colorectal cancer, thyroid cancer, and pancreatic cancer. The invention also includes use of such compounds for manufacture of a medicament for treating these conditions.
- The invention includes compounds of Formula (I) and the subgenera of Formula (I) described herein, and all stereoisomers (including diastereoisomers and enantiomers), tautomers and isotopically enriched versions thereof (including deuterium substitutions), as well as pharmaceutically acceptable salts of these compounds. In particular, where a heteroaryl ring containing N as a ring atom is optionally substituted with hydroxyl, e.g., a 2-hydroxypyridine ring, tautomers where the hydroxyl is depicted as a carbonyl (e.g., 2-pyridone) are included. Compounds of the present invention also comprise polymorphs of compounds of formula I (or sub-formulae thereof) and salts thereof.
- The following definitions apply unless otherwise expressly provided.
- As used herein, the term "halogen" (or halo) refers to fluorine, bromine, chlorine or iodine, in particular fluorine or chlorine. Halogen-substituted groups and moieties, such as alkyl substituted by halogen (haloalkyl) can be mono-, poly- or per-halogenated.
- As used herein, the term "hetero atoms" refers to nitrogen (N), oxygen (O) or sulfur (S) atoms, in particular nitrogen or oxygen, unless otherwise provided.
- As used herein, the term "alkyl" refers to a fully saturated branched or unbranched hydrocarbon moiety having up to 20 carbon atoms. Unless otherwise provided, alkyl refers to hydrocarbon moieties having 1 to 10 carbon atoms, 1 to 6 carbon atoms, or 1 to 4 carbon atoms. Typically, alkyl groups have 1-6 carbon atoms. "Lower alkyl" refers to alkyl groups having 1-4 carbon atoms. Representative examples of alkyl include, but are not limited to, methyl, ethyl, n-propyl, iso-propyl, n-butyl, sec-butyl, iso-butyl, tert-butyl, n-pentyl, isopentyl, neopentyl, n-hexyl, 3-methylhexyl, 2,2- dimethylpentyl, 2,3-dimethylpentyl, n-heptyl, n-octyl, n-nonyl, n-decyl and the like.
- A substituted alkyl is an alkyl group containing one or more substituents in place of hydrogen, such as one, two or three substituents, or 1-4 substituents, up to the number of hydrogens present on the unsubstituted alkyl group. Suitable substituents for alkyl groups, if not otherwise specified, may be selected from halogen, CN, oxo, hydroxy, substituted or unsubstituted C1-4 alkoxy, substituted or unsubstituted C3-6 cycloalkyl, substituted or unsubstituted C3-6 heterocycloalkyl, substituted or unsubstituted phenyl, amino, (C1-4 alkyl)amino, di(C1-4 alkyl)amino, C1-4 alkylthio, C1-4 alkylsulfonyl, -C(=O)- C1-4 alkyl, COOH, COO(C1-4 alkyl), -O(C=O)- C1-4 alkyl, -NHC(=O)C1-4 alkyl and - NHC(=O)OC1-4 alkyl groups; wherein the substituents for substituted C1-4 alkoxy, substituted C3-6 cycloalkyl, C3-6 heterocycloalkyl, and substituted phenyl are up to three groups selected from halo, C1-4 alkyl, C1-4 haloalkyl, C1-4 alkoxy, amino, hydroxy, and CN. Preferred substituents for alkyl groups include halogen, CN, oxo, hydroxy, C1-4 alkoxy, C3-6 cycloalkyl, phenyl, amino, (C1-4 alkyl)amino, di(C1-4 alkyl)amino, C1-4 alkylthio, C1-4 alkylsulfonyl, -C(=O)- C1-4 alkyl, COOH, -COO(C1-4 alkyl), -O(C=O)- C1-4 alkyl, -NHC(=O) C1-4 alkyl and -NHC(=O)O C1-4 alkyl groups.
- As used herein, the term "alkylene" refers to a divalent alkyl group having 1 to 10 carbon atoms, and two open valences to attach to other features. Unless otherwise provided, alkylene refers to moieties having 1 to 10 carbon atoms, 1 to 6 carbon atoms, or 1 to 4 carbon atoms. Representative examples of alkylene include, but are not limited to, methylene, ethylene, n-propylene, iso-propylene, n-butylene, sec-butylene, iso-butylene, tert-butylene, n-pentylene, isopentylene, neopentylene, n-hexylene, 3-methylhexylene, 2,2- dimethylpentylene, 2,3-dimethylpentylene, n-heptylene, n-octylene, n-nonylene, n-decylene and the like. A substituted alkylene is an alkylene group containing one or more, such as one, two or three substituents; unless otherwise specified, suitable and preferred substituents are selected from the substituents described as suitable and preferred for alkyl groups.
- As used herein, the term "haloalkyl" refers to an alkyl as defined herein, which is substituted by one or more halo groups as defined herein. The haloalkyl can be monohaloalkyl, dihaloalkyl, trihaloalkyl, or polyhaloalkyl including perhaloalkyl. A monohaloalkyl can have one iodo, bromo, chloro or fluoro within the alkyl group. Chloro and fluoro are preferred on alkyl or cycloalkyl groups; fluoro, chloro and bromo are often preferred on aryl or heteroaryl groups. Dihaloalkyl and polyhaloalkyl groups can have two or more of the same halo atoms or a combination of different halo groups within the alkyl. Typically the polyhaloalkyl contains up to 12, or 10, or 8, or 6, or 4, or 3, or 2 halo groups. Non-limiting examples of haloalkyl include fluoromethyl, difluoromethyl, trifluoromethyl, chloromethyl, dichloromethyl, trichloromethyl, pentafluoroethyl, heptafluoropropyl, difluorochloromethyl, dichlorofluoromethyl, difluoroethyl, difluoropropyl, dichloroethyl and dichloropropyl. A perhalo-alkyl refers to an alkyl having all hydrogen atoms replaced with halo atoms, e.g, trifluoromethyl.
- As used herein, the term "alkoxy" refers to alkyl-O-, wherein alkyl is defined above. Representative examples of alkoxy include, but are not limited to, methoxy, ethoxy, propoxy, 2-propoxy, butoxy, tert-butoxy, pentyloxy, hexyloxy, and the like. Typically, alkoxy groups have 1-10, or 1-6 carbons, more commonly 1-4 carbon atoms.
- A "substituted alkoxy" is an alkoxy group containing one or more, such as one, two or three substituents on the alkyl portion of the alkoxy. Unless otherwise specified, suitable and preferred substituents are selected from the substituents listed above for alkyl groups, except that hydroxyl and amino are not normally present on the carbon that is directly attached to the oxygen of the substituted 'alkyl-O' group.
- Similarly, each alkyl part of other groups like "alkylaminocarbonyl", "alkoxyalkyl", "alkoxycarbonyl", "alkoxy-carbonylalkyl", "alkylsulfonyl", "alkylsulfoxyl", "alkylamino", "haloalkyl" shall have the same meaning as described in the above-mentioned definition of "alkyl". When used in this way, unless otherwise indicated, the alkyl group is often a 1-4 carbon alkyl and is not further substituted by groups other than the component named. When such alkyl groups are substituted, suitable substituents are selected from the suitable or preferred substituents named above for alkyl groups unless otherwise specified.
- As used herein, the term "haloalkoxy" refers to haloalkyl-O-, wherein haloalkyl is defined above. Representative examples of haloalkoxy include, but are not limited to, fluoromethoxy, difluoromethoxy, trifluoromethoxy, trichloromethoxy, 2-chloroethoxy, 2,2,2-trifluoroethoxy, 1,1,1,3,3,3-hexafluoro-2-propoxy, and the like. Typically, haloalkyl groups have 1-4 carbon atoms.
- As used herein, the term "cycloalkyl" refers to saturated or unsaturated non-aromatic monocyclic, bicyclic, tricyclic or spirocyclic hydrocarbon groups of 3-12 carbon atoms: the cycloalkyl group may be unsaturated, and may be fused to another ring that can be saturated, unsaturated or aromatic, provided the ring atom of the cycloalkyl group that is connected to the molecular formula of interest is not an aromatic ring atom. Unless otherwise provided, cycloalkyl refers to cyclic hydrocarbon groups having between 3 and 9 ring carbon atoms or between 3 and 7 ring carbon atoms. Preferably, cycloalkyl groups are saturated monocyclic rings having 3-7 ring atoms unless otherwise specified.
- A substituted cycloalkyl is a cycloalkyl group substituted by one, or two, or three, or more than three substituents, up to the number of hydrogens on the unsubstituted group. Typically, a substituted cycloalkyl will have 1-4 or 1-2 substituents. Suitable substituents, unless otherwise specified, are independently selected from the group consisting of halogen, hydroxyl, thiol, cyano, nitro, oxo, C1-4-alkylimino, C1-4-alkoximino, hydroxyimino, C1-4-alkyl, C2-4-alkenyl, C2-4-alkynyl, C1-4-alkoxy, C1-4-thioalkyl, C2-4-alkenyloxy, C2-4-alkynyloxy, C1-4-alkylcarbonyl, carboxy, C1-4-alkoxycarbonyl, amino, C1-4-alkylamino, di-C1-4-alkylamino, C1-4-alkylaminocarbonyl, di-C1-4-alkylaminocarbonyl, C1-4-alkylcarbonylamino, C1-4-alkylcarbonyl(C1-4-alkyl)amino, C1-4-alkylsulfonyl, C1-4-alkylsulfamoyl, and C1-4-alkylaminosulfonyl, where each of the aforementioned hydrocarbon groups (e.g., alkyl, alkenyl, alkynyl, alkoxy residues) may be further substituted by one or more groups independently selected at each occurrence from the list of substituents for 'alkyl' groups herein. Preferred substituents include C1-4 alkyl and the substituent groups listed above as preferred substituents for alkyl groups.
- Exemplary monocyclic hydrocarbon groups include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclopentenyl, cyclohexyl and cyclohexenyl and the like. Exemplary bicyclic hydrocarbon groups include bornyl, indyl, hexahydroindyl, tetrahydronaphthyl, decahydronaphthyl, bicyclo[2.1.1]hexyl, bicyclo[2.2.1]heptyl, bicyclo[2.2.1]heptenyl, 6,6-dimethylbicyclo[3.1.1]heptyl, 2,6,6-trimethylbicyclo[3.1.1]heptyl, bicyclo[2.2.2]octyl and the like. Exemplary tricyclic hydrocarbon groups include adamantyl and the like.
- Similarly, each cycloalkyl part of other groups like "cycloalkyloxy", "cycloalkoxyalkyl", "cycloalkoxycarbonyl", "cycloalkoxy-carbonylalkyl", "cycloalkylsulfonyl", "halocycloalkyl" shall have the same meaning as described in the above-mentioned definition of "cycloalkyl". When used in these terms, the cycloalkyl is typically a monocyclic 3-7 carbon ring, that is unsubstituted or substituted with 1-2 groups. When optionally substituted, the substituents are typically selected from C1-4 alkyl and those set forth above as suitable or preferred substituents for alkyl groups.
- As used herein, the term "aryl" refers to an aromatic hydrocarbon group having 6-14 carbon atoms in the ring portion. Typically, aryl is monocyclic, bicyclic or tricyclic aryl having 6-14 carbon atoms, often 6-10 carbon atoms, e.g., phenyl or naphthyl. Furthermore, the term "aryl" as used herein, refers to an aromatic substituent which can be a single aromatic ring, or multiple aromatic rings that are fused together. Non-limiting examples include phenyl, naphthyl and 1,2,3,4-tetrahydronaphthyl, provided the tetrahydronaphthyl is connected to the formula being described through a carbon of the aromatic ring of the tetrahydronaphthyl group.
- A substituted aryl is an aryl group substituted by 1-5 (such as one, or two, or three) substituents independently selected from the group consisting of hydroxyl, thiol, cyano, nitro, C1-4-alkyl, C2-4-alkenyl, C2-4-alkynyl, C1-4-alkoxy, C1-4-thioalkyl, C2-4-alkenyloxy, C2-4-alkynyloxy, halogen, C1-4-alkylcarbonyl, carboxy, C1-4-alkoxycarbonyl, amino, C1-4-alkylamino, di-C1-4-alkylamino, C1-4-alkylaminocarbonyl, di-C1-4-alkylaminocarbonyl, C1-4-alkylcarbonylamino, C1-4-alkylcarbonyl(C1-4-alkyl)amino, C1-4-alkylsulfonyl, sulfamoyl, C1-4-alkylsulfamoyl, and C1-4-alkylaminosulfonyl where each of the afore-mentioned hydrocarbon groups (e.g., alkyl, alkenyl, alkynyl, alkoxy residues) may be further substituted by one or more groups independently selected at each occurrence from the groups listed above as suitable substituents for alkyl groups. Preferred substituents for a substituted aryl group are C1-4 alkyl, halogen, CN, hydroxy, substituted or unsubstituted C1-4 alkyl, substituted or unsubstituted C1-4 alkoxy, substituted or unsubstituted C3-6 cycloalkyl, substituted or unsubstituted C3-6 heterocycloalkyl, amino, (C1-4 alkyl)amino, di(C1-4 alkyl)amino, C1-4 alkylthio, C1-4 alkylsulfonyl, -C(=O)- C1-4 alkyl, COOH, COO(C1-4 alkyl), -O(C=O)- C1-4 alkyl, -NHC(=O)C1-4 alkyl and -NHC(=O)OC1-4 alkyl groups; wherein the substituents for substituted C1-4 alkoxy, substituted C3-6 cycloalkyl, C3-6 heterocycloalkyl, and substituted alkyl are up to three groups selected from halo, oxo, C1-4 alkyl, C1-4 haloalkyl, C1-4 alkoxy, amino, hydroxy, and CN.
- Similarly, each aryl part of other groups like "aryloxy", "aryloxyalkyl", "aryloxycarbonyl", "aryloxy-carbonylalkyl" shall have the same meaning as described in the above-mentioned definition of "aryl".
- As used herein, the term "heterocyclyl" or "heterocycloalkyl" refers to a heterocyclic radical that is saturated or partially unsaturated but not aromatic, and can be a monocyclic or a polycyclic ring, including a bicyclic, tricyclic or spirocyclic ring system; and has 3 to 14, more commonly 4 to 10, and most preferably 5 to 7 ring atoms; wherein one or more, preferably one to four, especially one or two ring atoms are heteroatoms independently selected from O, S and N (the remaining ring atoms therefore being carbon). Even though described as, e.g., a C5-6 atom ring, a heterocycle contains at least one heteroatom as a ring atom and has the total number of ring atoms stated, e.g. 5 or 6 in this example. Preferably, a heterocyclyl group has one or two such heteroatoms as ring atoms, and preferably the heteroatoms are not directly connected to each other. The bonding ring (i.e. the ring connecting to the Formula of interest) preferably has 4 to 12, especially 5 to 7 ring atoms. The heterocyclic group can be fused to an aromatic ring, provided the atom of the heterocyclic group attached to the Formula of interest is not aromatic. The heterocyclic group can be attached to the Formula of interest via a heteroatom (typically nitrogen) or a carbon atom of the heterocyclic group. The heterocyclyl can comprise fused or bridged rings as well as spirocyclic ring systems (e.g., 2-oxa-6-azaspiro[3.3]heptane), and only one ring of a polycyclic heterocyclic group needs to contain a heteroatom as a ring atom. Examples of heterocycles include tetrahydrofuran (THF), dihydrofuran, 1,4-dioxane, morpholine, 1,4-dithiane, piperazine, piperidine, 1,3-dioxolane, imidazolidine, imidazoline, pyrroline, pyrrolidine, tetrahydropyran, dihydropyran, oxathiolane, dithiolane, 1,3-dioxane, 1,3-dithiane, oxathiane, thiomorpholine, and the like.
- A substituted heterocyclyl is a heterocyclyl group independently substituted by 1-5 (such as one, or two, or three) substituents selected from the substituents described above as suitable or preferred for a cycloalkyl group.
- Similarly, each heterocyclyl part of other groups like "heterocyclyloxy", "heterocyclyloxyalkyl", "heterocyclyloxycarbonyl" shall have the same meaning as described in the above-mentioned definition of "heterocyclyl".
- As used herein, the term "heteroaryl" refers to a 5-14 membered monocyclic- or bicyclic- or tricyclic-aromatic ring system, having 1 to 8 heteroatoms as ring members; the heteroatoms are selected from N, O and S. Typically, the heteroaryl is a 5-10 membered ring system, e.g., a 5-6 membered monocyclic or an 8-10 membered bicyclic group. Typical heteroaryl groups include 2- or 3-thienyl, 2- or 3-furyl, 2- or 3-pyrrolyl, 2-, 4-, or 5-imidazolyl, 1-, 3-, 4-, or 5- pyrazolyl, 2-, 4-, or 5-thiazolyl, 3-, 4-, or 5-isothiazolyl, 2-, 4-, or 5-oxazolyl, 3-, 4-, or 5-isoxazolyl, 3- or 5-1,2,4-triazolyl, 4- or 5-1,2, 3-triazolyl, 1- or 2-tetrazolyl, 2-, 3-, or 4-pyridyl, 3- or 4-pyridazinyl, 3-, 4-, or 5-pyrazinyl, 2-pyrazinyl, and 2-, 4-, or 5-pyrimidinyl.
- The term "heteroaryl" also refers to a group in which a heteroaromatic ring is fused to one or more aryl, cycloalkyl, or heterocyclyl rings, where the radical or point of attachment to the Formula of interest is on a heteroaromatic ring. Nonlimiting examples include 1-, 2-, 3-, 5-, 6-, 7-, or 8- indolizinyl, 1-, 3-, 4-, 5-, 6-, or 7-isoindolyl, 2-, 3-, 4-, 5-, 6-, or 7-indolyl, 2-, 3-, 4-, 5-, 6-, or 7-indazolyl, 2-, 4-, 5-, 6-, 7-, or 8- purinyl, 1-, 2-, 3-, 4-, 6-, 7-, 8-, or 9-quinolizinyl, 2-, 3-, 4-, 5-, 6-, 7-, or 8-quinoliyl, 1-, 3-, 4-, 5-, 6-, 7-, or 8-isoquinoliyl, 1-, 4-, 5-, 6-, 7-, or 8-phthalazinyl, 2-, 3-, 4-, 5-, or 6-naphthyridinyl, 2-, 3- , 5-, 6-, 7-, or 8-quinazolinyl, 3-, 4-, 5-, 6-, 7-, or 8-cinnolinyl, 2-, 4-, 6-, or 7-pteridinyl, 1-, 2-, 3-, 4-, 5-, 6-, 7-, or 8-4aH carbazolyl, 1-, 2-, 3-, 4-, 5-, 6-, 7-, or 8-carbzaolyl, 1-, 3-, 4-, 5-, 6-, 7-, 8-, or 9-carbolinyl, 1-, 2-, 3-, 4-, 6-, 7-, 8-, 9-, or 10-phenanthridinyl, 1- , 2-, 3-, 4-, 5-, 6-, 7-, 8-, or 9-acridinyl, 1-, 2-, 4-, 5-, 6-, 7-, 8-, or 9-perimidinyl, 2-, 3-, 4-, 5-, 6-, 8-, 9-, or 10-phenathrolinyl, 1-, 2-, 3-, 4-, 6-, 7-, 8-, or 9-phenazinyl, 1-, 2-, 3-, 4-, 6-, 7-, 8-, 9-, or 10-phenothiazinyl, 1-, 2-, 3-, 4-, 6-, 7-, 8-, 9-, or 10-phenoxazinyl, 2-, 3-, 4-, 5-, 6-, or I-, 3-, 4-, 5-, 6-, 7-, 8-, 9-, or 10- benzisoqinolinyl, 2-, 3-, 4-, or thieno[2,3-b]furanyl, 2-, 3-, 5-, 6-, 7-, 8-, 9-, 10 -, or 11-7H-pyrazino[2,3-c]carbazolyl,2-, 3-, 5-, 6-, or 7-2H- furo[3,2-b]-pyranyl, 2-, 3-, 4-, 5-, 7-, or 8-5H-pyrido[2,3-d]-o-oxazinyl, 1-, 3-, or 5-1H-pyrazolo[4,3-d]-oxazolyl, 2-, 4-, or 54H-imidazo[4,5-d] thiazolyl, 3-, 5-, or 8-pyrazino[2,3-d]pyridazinyl, 2-, 3-, 5-, or 6- imidazo[2,1-b] thiazolyl, 1-, 3-, 6-, 7-, 8-, or 9-furo[3,4-c]cinnolinyl, 1-, 2-, 3-, 4-, 5-, 6-, 8-, 9-, 10, or 11-4H-pyrido[2,3-c]carbazolyl, 2-, 3-, 6-, or 7-imidazo[1,2-b][1,2,4]triazinyl, 7-benzo[b]thienyl, 2-, 4-, 5- , 6-, or 7-benzoxazolyl, 2-, 4-, 5-, 6-, or 7-benzimidazolyl, 2-, 4-, 4-, 5-, 6-, or 7-benzothiazolyl, 1-, 2-, 4-, 5-, 6-, 7-, 8-, or 9- benzoxapinyl, 2-, 4-, 5-, 6-, 7-, or 8-benzoxazinyl, 1-, 2-, 3-, 5-, 6-, 7-, 8-, 9-, 10-, or 11-1H-pyrrolo[1,2-b][2]benzazapinyl. Typical fused heteroaryl groups include, but are not limited to 2-, 3-, 4-, 5-, 6-, 7-, or 8-quinolinyl, 1-, 3-, 4-, 5-, 6-, 7-, or 8-isoquinolinyl, 2-, 3-, 4-, 5-, 6-, or 7-indolyl, 2-, 3-, 4-, 5-, 6-, or 7-benzo[b]thienyl, 2-, 4-, 5-, 6-, or 7-benzoxazolyl, 2-, 4-, 5-, 6-, or 7-benzimidazolyl, and 2-, 4-, 5-, 6-, or 7-benzothiazolyl.
- A substituted heteroaryl is a heteroaryl group containing one or more substituents, typically 1, 2 or 3 substituents, selected from the substituents described above as suitable or preferred for an aryl group.
- Similarly, each heteroaryl part of other groups like "heteroaryloxy", "heteroaryloxyalkyl", "heteroaryloxycarbonyl" shall have the same meaning as described in the above-mentioned definition of "heteroaryl".
- Various embodiments of the invention are described herein. It will be recognized that features specified in each embodiment may be combined with other specified features to provide further embodiments of the present invention. The following enumerated embodiments are representative of the invention:
- 1. In certain embodiments, the invention provides a compound of Formula (I)
- Z1 is O, S, S(=O) or SO2;
- Z2 is N, S or CRa, where Ra is H, halo, C1-4 alkyl or C1-4 haloalkyl;
- R1 is CN, halo, OH, C1-4 alkoxy, or C1-4 alkyl that is optionally substituted with one to three groups selected from halo, C1-4 alkoxy, CN, and hydroxyl;
- Ring B is selected from phenyl, pyridine, pyrimidine, pyrazine, pyridazine, pyridone, pyrimidone, pyrazinone, pyridazinone, and thiazole, each of which is optionally substituted with up to two groups selected from halo, OH, CN, C1-4 alkyl, C2-4 alkenyl, -O-(C1-4alkyl), NH2, NH-(C1-4alkyl), -N(C1-4 alkyl)2, -SO2R2, NHSO2R2, NHC(O)R2, NHCO2R2, C3-6 cycloalkyl, 5-6 membered heteroaryl, -O-C3-6 cycloalkyl, -O-(5-6-membered heteroaryl), C4-8 heterocycloalkyl, and -O-(4-8 membered heterocycloalkyl), where each heterocycloalkyl and heteroaryl contains up to three heteroatoms selected from N, O and S as ring members,
- where each C1-4 alkyl, C2-4 alkenyl, C3-6 cycloalkyl, 5-6 membered heteroaryl, and 4-8 membered heterocycloalkyl is each optionally substituted with up to three groups selected from oxo, hydroxyl, halo, C1-4 alkyl, C1-4 haloalkyl, C1-4 alkoxy, and -(CH2)1-2Q where Q is OH, C1-4 alkoxy, -CN, NH2, -NHR3, -N(R3)2, - SO2R3, NHSO2R3, NHC(O)OR3, or NHC(O)R3; each R2 and R3 is independently C1-4 alkyl; and
- Ring B is optionally fused to a 5-6 membered aromatic or nonaromatic ring containing up to two heteroatoms selected from N, O and S, where the 5-6 membered ring can be substituted with halo, C1-4 alkyl, C1-4 haloalkyl, or C1-4 alkoxy, and optionally, if the fused ring is non-aromatic the substituent options can further include oxo;
- each Y is independently selected from C1-4 alkyl, C1-4 alkoxy, CN, halo, oxo, - (CH2)pOR4, -(CH2)p N(R4)2, -(CH2)pNHC(O)R4, -(CH2)pNHCOO(C1-4 alkyl),and imidazole,
- or two Y groups on Ring A are optionally taken together to form a ring fused to or bridging Ring A, where said fused or bridging ring optionally contains a heteroatom selected from N, O and S as a ring member, and is optionally substituted with up to two groups selected from C1-4 alkyl, C1-4 alkoxy, CN, halo, oxo, -(CH2)pOR4, -(CH2)p N(R4)2, - (CH2)pNHC(O)R4, and -(CH2)pNHCOO(C1-4 alkyl);
- each R4 is independently H or C1-4 alkyl;
- each p is independently 0, 1, or 2;
- q is 0, 1 or 2;
- Z3, Z4, and Z5 are independently selected from CH and N and optionally NO;
- L is -C(=O)-NR4-[CY] or -NR4-C(=O)-[CY], where [CY] indicates which atom of L is attached to CY; and
- CY is an aromatic ring selected from phenyl, pyridine, pyrimidine, pyrazine, pyridazine, pyridone, thiazole, isothiazole, oxazole, pyrazole, and isoxazole, wherein the ring is optionally fused to a thiophene, imidazole, oxazolone, or pyrrole ring;
- and CY is substituted with up to two groups selected from halo, CN, R5, OR5, SO2R5, -S(=NH)(=O)R5, OH, NH2, NHR5, and -N(R5)2,
- wherein each R5 is independently C1-4 alkyl, C2-4 alkenyl, C4-6 heterocyclyl, 5-membered heteroaryl containing up to three heteroatoms selected from N, O and S as ring members, or C3-8 cycloalkyl, and R5 is optionally substituted with up to four groups selected from oxo, halo, CN, R6, OH, OR6, SO2R6, NH2, NHR6, N(R6)2, NHSO2R6, NHCOOR6, NHC(=O)R6, -CH2OR7, -CH2N(R7)2, wherein each R6 is independently C1-4 alkyl, and each R7 is independently H or C1-4 alkyl;
- and two R4, R5, R6, or R7 on the same nitrogen atom can be taken together to form a 5-6 membered heterocyclic ring optionally containing an additional N, O or S as a ring member and optionally substituted with up to two groups selected from C1-4 alkyl, oxo, halo, OH, and C1-4 alkoxy.
- Z1 is O, S, S(=O) or SO2;
- Z2 is N, S or CRa, where Ra is H, C1-4 alkyl or C1-4 haloalkyl;
- R1 is CN, halo, OH, C1-4 alkoxy, or C1-4 alkyl that is optionally substituted with one to three groups selected from halo, C1-4 alkoxy, CN, and hydroxyl;
- Ring B is selected from phenyl, pyridine, pyrimidine, pyrazine, pyridone, pyrimidone, pyrazinone, pyridazinone, and thiazole, each of which is optionally substituted with up to two groups selected from halo, OH, CN, C1-4 alkyl, C2-4 alkenyl, -O-(C1-4alkyl), NH2, NH-(C1-4alkyl), -N(C1-4 alkyl)2, -SO2R2, NHSO2R2, NHC(O)R2, NHCO2R2, C3-6 cycloalkyl, 5-6 membered heteroaryl, -O-C3-6 cycloalkyl, -O-(5-6-membered heteroaryl), C4-8 heterocycloalkyl, and -O-(4-8 membered heterocycloalkyl), where each heterocycloalkyl and heteroaryl contains up to three heteroatoms selected from N, O and S as ring members,
- where each C1-4 alkyl, C2-4 alkenyl, C3-6 cycloalkyl, 5-6 membered heteroaryl, and 4-8 membered heterocycloalkyl is each optionally substituted with up to three groups selected from oxo, hydroxyl, halo, C1-4 alkyl, C1-4haloalkyl, C1-4 alkoxy, and - (CH2)1-2Q where Q is OH, C1-4 alkoxy, -CN, NH2, -NHR3, -N(R3)2, -SO2R3, NHSO2R3, NHC(O)OR3, or NHC(O)R3;
- each R2 and R3 is independently C1-4 alkyl; and
- Ring B is optionally fused to a 5-6 membered aromatic or nonaromatic ring containing up to two heteroatoms selected from N, O and S, where the 5-6 membered ring can be substituted with halo, C1-4 alkyl, C1-4 haloalkyl, or C1-4 alkoxy;
- each Y is independently selected from C1-4 alkyl, C1-4 alkoxy, CN, halo, oxo, - (CH2)pOR4, -(CH2)p N(R4)2, -(CH2)pNHC(O)R4, -(CH2)pNHCOO(C1-4 alkyl),
- or two Y groups on Ring A are optionally taken together to form a ring fused to or bridging Ring A, where said fused or bridging ring optionally contains a heteroatom selected from N, O and S as a ring member, and is optionally substituted with up to two groups selected from C1-4 alkyl, C1-4 alkoxy, CN, halo, oxo, -(CH2)pOR4, -(CH2)p N(R4)2, - (CH2)pNHC(O)R4, and -(CH2)pNHCOO(C1-4alkyl);
- each R4 is independently H or C1-4 alkyl;
- each p is independently 0, 1, or 2;
- q is 0, 1 or 2;
- Z3, Z4, and Z5 are independently selected from CH and N;
- L is -C(=O)-NH-[CY] or -NH-C(=O)-[CY], where [CY] indicates which atom of L is attached to CY; and
- CY is an aromatic ring selected from phenyl, pyridine, pyrimidine, pyrazine, pyridazine, pyridone, thiazole, isothiazole, oxazole, pyrazole, and isoxazole, wherein the ring is optionally fused to a thiophene, imidazole, oxazolone, or pyrrole ring;
- and CY is substituted with up to two groups selected from halo, CN, R5, OR5, SO2R5, OH, NH2, NHR5, and -N(R5)2,
- wherein each R5 is independently C1-4 alkyl, C4-6 heterocyclyl, or C3-8 cycloalkyl, and R5 is optionally substituted with up to three groups selected from oxo, halo, CN, R6, OH, OR6, SO2R6, NH2, NHR6, N(R6)2, NHSO2R6, NHCOOR6, NHC(=O)R6, -CH2OR7, -CH2N(R7)2, wherein each R6 is independently C1-4 alkyl, and each R7 is independently H or C1-4 alkyl;
- and two R4, R5, R6, or R7 on the same nitrogen atom can be taken together to form a 5-6 membered heterocyclic ring optionally containing an additional N, O or S as a ring member and optionally substituted with up to two groups selected from C1-4 alkyl, oxo, halo, OH, and C1-4 alkoxy.
- 2. A compound according to embodiment 1 or a pharmaceutically acceptable salt thereof, wherein Z1 is O.
- 3 (a). A compound according to embodiment 1 or embodiment 2 or a pharmaceutically acceptable salt thereof, wherein Z2 is CH.
- 3 (b). In an alternative, a compound according to embodiment 1 or embodiment 2 or a pharmaceutically acceptable salt thereof, wherein , Z2 is N.
- 4. A compound according to any one of embodiments 1 to 3 or a pharmaceutically acceptable salt thereof, wherein CY is selected from phenyl, pyridine, pyrimidine, pyrazine, pyridazine, pyridone, thiazole, isothiazole, oxazole, and isoxazole, each of which is optionally substituted as described for embodiment 1. In some of these embodiments, CY is phenyl or 4-pyridinyl.
- 5. A compound according to any of the preceding embodiments or a pharmaceutically acceptable salt thereof, wherein R1 is methyl or CF3.
- 6. A compound according to any of the preceding embodiments or a pharmaceutically acceptable salt thereof, wherein Ring B is pyridine or pyrimidine or pyridone.
- 7. A compound according to any of the preceding embodiments or a pharmaceutically acceptable salt thereof, wherein CY is phenyl or pyridin-4-yl, and is optionally substituted with one or two groups selected from methyl, ethyl, isopropyl, CF3, -CHF2, CH2F, CF2CH3, CH2CF3, 1-piperazinyl, 4-methyl-1-piperazinyl, 4-ethyl-1-piperazinyl, cyclopropyl, 1-cyanocyclopropyl, -CH2CN, -CHMeCN, -CMe2CN, OMe, OEt, F, Cl, -SO2Me, -SO2NMe2, -CH2NH2, -CH2NMe2, -CH2NHMe, and -CH2OMe. In some of these embodiments, CY has one or two substituents at ring atom 3 or ring atom 5 relative to the point of attachment of CY to L.
- 8. A compound according to any of the preceding embodiments or a pharmaceutically acceptable salt thereof, wherein CY is substituted with at least one group selected from CF3, OCF3, t-butyl, -C(Me)2CN, and -SO2Me.
In some embodiments, CY is substituted with -CF(Me)2 or -CHF2.
In some of these embodiments, CY has one or two substituents at ring atom 3 or ring atom 5 relative to the point of attachment of CY to L. - 9. A compound according to any of the preceding embodiments or a pharmaceutically acceptable salt thereof, wherein Z4 is CH.
- 10. A compound according to any of embodiments 1-8 or a pharmaceutically acceptable salt thereof, wherein Z4 is N.
- 11. A compound according to any of the preceding embodiments or a pharmaceutically acceptable salt thereof, wherein L is -C(=O)-NH-[CY], where [CY] indicates which atom of L is attached to ring CY.
- 12. A compound according to any of embodiments 1-10 or a pharmaceutically acceptable salt thereof, wherein L is -NH-C(=O)-[CY], where [CY] indicates which atom of L is attached to ring CY.
- 13. A compound according to any of the preceding embodiments or a pharmaceutically acceptable salt thereof, wherein Z3 is N.
- 14. A compound of any of the preceding embodiments, wherein ring B is selected from
- 15. A compound of any of the preceding embodiments, wherein q is 0.
- 16. A compound of any of the preceding embodiments, wherein ring B is selected from
- 17. A compound of any of the preceding embodiments, wherein Z3 and Z5 are both CH.
- 18. A compound of any of the preceding embodiments wherein Z4 is N and R1 is methyl.
- 19. A compound of any of embodiments 1-17, wherein Z4 is CH and R1 is methyl.
- 20. A compound of any of the preceding embodiments, wherein L is -NH-C(=O)-[CY] and CY is phenyl or 4-pyridinyl, and CY is substituted with one or two groups selected from halo, CF3, CF2H, CFH2, CFMe2, and -CH2NMe2.
- 21. A compound of embodiment 1, which is selected from the compounds of Examples 1-1175 and compounds in Table A and the pharmaceutically acceptable salts thereof.
- 22. A pharmaceutical composition comprising a compound of any of the preceding embodiments or a pharmaceutically acceptable salt thereof and one or more pharmaceutically acceptable carriers.
- 23. A combination comprising a therapeutically effective amount of a compound according to any one of embodiments 1 to 21 or a pharmaceutically acceptable salt thereof and one or more therapeutically active co-agents.
- 24. A compounds for use in a method of treating a proliferative disorder, comprising administering to a subject in need thereof a therapeutically effective amount of a compound of any of embodiments 1-21 or a pharmaceutically acceptable salt thereof. In some embodiments, the proliferative disorder is a cancer, e.g., a condition selected from solid tumors, melanoma, breast cancer, lung cancer (e.g., non-small cell lung cancer, lung adenocarcinoma), sarcoma, GI tumors such as gastrointestinal stromal tumors, ovarian cancer, colorectal cancer, thyroid cancer, and pancreatic cancer.
- 25. A compound according to any one of embodiments 1 to 21 or a pharmaceutically acceptable salt thereof, for use as a medicament.
- 26. A compound according to any one of embodiments 1 to 21 or a pharmaceutically acceptable salt thereof, for use in the treatment of cancer. In some embodiments, the cancer is selected from solid tumors, melanoma, breast cancer, lung cancer (e.g., non-small cell lung cancer, lung adenocarcinoma), sarcoma, GI tumors such as gastrointestinal stromal tumors, ovarian cancer, colorectal cancer, thyroid cancer, and pancreatic cancer.
- 27. Use of a compound according to any one of embodiments 1 to 21 or a pharmaceutically acceptable salt thereof in the manufacture of a medicament for the treatment of cancer. In some embodiments, the cancer is selected from solid tumors, melanoma, breast cancer, lung cancer (e.g., non-small cell lung cancer, lung adenocarcinoma), sarcoma, GI tumors such as gastrointestinal stromal tumors, ovarian cancer, colorectal cancer, thyroid cancer, and pancreatic cancer.
- Each of the Example compounds having a measured IC-50 (B-Raf) of less than or equal to 0.01 µM, and a measured IC-50 (c-Raf) of less than 0.005 µM as shown in Table 2 is a preferred compound of the invention. The compounds of Examples having a measured IC-50 (B-Raf) of less than or equal to 0.01 µM and measured IC-50 (c-Raf) less than or equal to 0.002 µM according to Table 2 are especially preferred. Thus the use of any one of these compounds for treatment of a condition selected from melanoma, breast cancer, lung cancer (e.g., non-small cell lung cancer, lung adenocarcinoma), sarcoma, GI tumors such as gastrointestinal stromal tumors, ovarian cancer, colorectal cancer, thyroid cancer, and pancreatic cancer is an embodiment of the invention.
- Unless otherwise specified, in any of the foregoing enumerated embodiments, Ring A can be unsubstituted morpholine or a substituted morpholine derivative as described for Formula (I) above. In specific embodiments, Ring A is selected from the following morpholinic groups
- In the foregoing enumerated embodiments, unless otherwise stated, Ring B is selected from phenyl, pyridine, pyrimidine, pyrazine, pyridone, pyrimidone, pyrazinone, pyridazinone, and thiazole. In certain of these embodiments, Ring B is selected from pyrazine, pyridazine, pyridone, pyrimidone, pyrazinone, and pyridazinone. Ring B in any of these embodiments can be substituted as described above for Formula (I); in some embodiments, Ring B is a six-membered ring that is substituted at positions 1, 3 and 5, where the N of ring A is at position 1 and Z2 is at position 6. Where Ring B includes an oxo group (pyridone, pyridazinone, pyrazinone), oxo is sometimes at position 2 using this numbering. In some embodiments, Ring B is substituted by a group selected from methyl, ethyl, isopropyl, amino, hydroxyl, -NHMe, -NHEt, -NMe2, -NHSO2Me, -NH-CH2CH2OH, 4-tetrahydropyranyl, -O-4-tetrahydropyranyl, 1-pyrrolidinyl, 1-morpholinyl, -NH-CH(CH2OH)2, 1-pyrrolidin-2-one, 4-morpholin-3-one, 2-oxa-6-aza[3.3]heptan-6-yl, -CH2CH2OH, CF3, SO2Me, 2-propenyl, -CH2CN, and -CH2CH2NHCOOMe.
- Preferably, Ring B is selected from pyridine, pyrimidine, pyrazine, pyridone, pyrimidone, pyrazinone, and pyridazinone, optionally substituted and/or fused as described for Formula (I). When Ring B is fused, the additional fused ring can be substituted as described, typically with up to two (0, 1 or 2) of the substituents described above.
- Where Ring B is pyridone, it is preferably a 2-pyridone (pyridin-2-one), and optionally is N-alkylated with a C1-4 alkyl, which may be substituted with one to three groups selected from OH, OMe, halo, and CN. In some embodiments, Ring B is substituted by a group selected from methyl, ethyl, isopropyl, amino, hydroxyl, -NHMe, - NHEt, -NMe2, -NHSO2Me, -NH-CH2CH2OH, 4-tetrahydropyranyl, -O-4-tetrahydropyranyl, 1-pyrrolidinyl, 1-morpholinyl, -NH-CH(CH2OH)2, 1-pyrrolidin-2-one, 4-morpholin-3-one, 2-oxa-6-aza[3.3]heptan-6-yl, 1-imidazolyl, 4-methyl-1,2,3-triazol-1-yl, 4-ethyl-1,2,3-triazol-1-yl, 4-isopropyl-1,2,3-triazol-1-yl, 4-(1-hydroxy-2-propyl)-1,2,3-triazol-1-yl, -CH2CH2OH, CF3, SO2Me, 2-propenyl, -CH2CN, and -CH2CH2NHCOOMe.
- Preferred embodiments of Ring B include
- In some of the foregoing embodiments, Ring C is phenyl or pyridine. When Ring C is pyridine, preferably Z4 is N. Unless otherwise stated, R1 is often methyl or CF3. The presence of R1, a substituent such as methyl rather than hydrogen, significantly affects the conformation of the compound, favoring a highly active conformation. The methyl group thereby enhances in vitro activity significantly.
- In the enumerated embodiments where not otherwise specified, CY can be substituted with 1 or 2 groups selected from methyl, ethyl, isopropyl, CF3, -CHF2, CH2F, CF2CH3, CH2CF3, 1-piperazinyl, 4-methyl-1-piperazinyl, 4-ethyl-1-piperazinyl, cyclopropyl, 1-cyanocyclopropyl, -CH2CN, -CHMeCN, -CMe2CN, OMe, OEt, F, Cl, -SO2Me, -SO2NMe2, -CH2NH2, -CH2NMe2, -CH2NHMe, and -CH2OMe. It some of these embodiments, CY is phenyl or 4-pyridinyl, and at least one substituent is at position 3. In some embodiments, CY is a group of the formula
-
- wherein Z2 is N or CH;
- Z4 is N or CH;
- Z6 is C=O and Z7 is NRQ, where RQ is H or C1-4 alkyl optionally substituted by OH, CN, OMe, SO2Me, or 1-3 halogens;
or Z6 is CH and Z7 is C-Q; - Z8 is CH or N (and preferably Z8 and Z2 are not both simultaneously N);
- Q is selected from H, C1-4 alkyl, C1-4 haloalkyl, C3-6 cycloalkyl, C5-6 heteroaryl, C4-7 heterocycloalkyl, including morpholine or any of the morpholinic groups shown above as options for Ring A, as well as 2-oxa-6-azaspiro[3.3]heptane, e.g.,
- and R1, Y, q, L, and CY are as defined for Formula (I) or any of the subgenera of Formula (I) described herein.
-
- Y is oxo, C1-4 alkyl, or -CH2T, where T is selected from hydroxyl, C1-4 alkoxy, amino, C1-4 alkylamino, di(C1-4 alkyl)amino, -NHC(=O)(C1-4 alkyl) and -NHC(=O)-O(C1-4 alkyl);
- q is 0, 1 or 2;
- Z2 is CH or N;
- Z4 is CH or N;
- Z6 is C=O, Z7 is NR20, and Z8 is CH;
- or Z6 is N, Z7 is CR21, and Z8 is CH;
- or Z6 is N, Z7 is CR22, and Z8 is N, provided Z2 and Z8 are not both N;
- Z9 is N or CH;
- R1 is Me or CF3;
- L is -C(=O)NH- or -NH-C(=O)- ;
- R10 is selected from C1-4 alkyl, -O-C1-3 alkyl, -SO2-C1-3 alkyl, and C3-4 cycloalkyl, wherein each C1-3 alkyl, -O-C1-3 alkyl, -SO2-C1-3 alkyl, and C3-4 cycloalkyl is optionally substituted with up to three groups selected from halo, CN, Me, CF3, OH and OMe; and
- R20, R21, and R22 are each selected from H, C1-4 alkyl and C4-8 heterocycloalkyl, wherein the C1-4 alkyl and C4-8 heterocycloalkyl are each optionally substituted with 1-2 groups selected from C1-4 alkyl, oxo, halo, and -(CH2)1-2Q wherein Q is OH, C1-4 alkoxy, - CN, NH2, -NHR3, -N(R3)2, -SO2R3, NHSO2R3, or NHC(O)R3;
- or a pharmaceutically acceptable salt thereof.
- In specific embodiments of these compounds, Z6 is C=O, Z7 is NR20, and Z8 is CH. In some such embodiments, L is -NH-C(=O)-; in alternative embodiments, L is - C(=O)NH-. In some of these embodiments, Z4 is N; in alternative embodiments, Z4 is CH. In some of these embodiments, Z9 is N; in other embodiments, Z9 is CH. In some of these embodiments, R10 is trifluoromethyl. In preferred embodiments of these compounds, R1 is methyl.
-
- wherein Z4 is CH or N;
- Z6 is CH or N;
- R10 is selected from F, CN, OH, -OMe, and -NMe2;
- each R11 is independently selected from H, F, and Me;
- R12 is selected from H, halo, CF3, and -CH2R13, where R13 is selected from F, -OH, -OMe, NH2, NHMe, NMe2; and
- Ring B is selected from
- R13 is selected from C1-4 alkyl, tetrahydropyranyl, and C1-4 haloalkyl, wherein the C1-4 alkyl group is optionally substituted with up to three groups selected from halo, CN, - N(R15)2, and -OR15;
- R14 is C1-6 alkyl optionally substituted with up to three groups selected from halo, CN, -N(R15)2, and -OR15; and
- each R15 is selected from H and Me,
- including the pharmaceutically acceptable salts of these compounds.
- As used herein, the term "an optical isomer" or "a stereoisomer" refers to any of the various stereo isomeric configurations which may exist for a given compound of the present invention and includes geometric isomers. It is understood that a substituent may be attached at a chiral center of a carbon atom. The term "chiral" refers to molecules which have the property of non-superimposability on their mirror image partner, while the term "achiral" refers to molecules which are superimposable on their mirror image partner. Therefore, the invention includes enantiomers, diastereomers or racemates of the compound. "Enantiomers" are a pair of stereoisomers that are non- superimposable mirror images of each other. A 1:1 mixture of a pair of enantiomers is a "racemic" mixture. The term is used to designate a racemic mixture where appropriate. "Diastereoisomers" are stereoisomers that have at least two asymmetric atoms, but which are not mirror-images of each other. The absolute stereochemistry is specified according to the Cahn-Ingold-Prelog 'R-S' system. When a compound is a pure enantiomer, the stereochemistry at each chiral carbon may be specified by either R or S. Resolved compounds whose absolute configuration is unknown can be designated (+) or (-) depending on the direction (dextro- or levorotatory) which they rotate plane polarized light at the wavelength of the sodium D line. Certain compounds described herein contain one or more asymmetric centers or axes and may thus give rise to enantiomers, diastereomers, and other stereoisomeric forms that may be defined, in terms of absolute stereochemistry, as (R)- or (S)-.
- Depending on the choice of the starting materials and synthesis procedures, the compounds can be present in the form of one of the possible isomers or as mixtures thereof, for example as pure optical isomers, or as isomer mixtures, such as racemates and diastereoisomer mixtures, depending on the number of asymmetric carbon atoms. The present invention is meant to include all such possible isomers, including racemic mixtures, diasteriomeric mixtures and optically pure forms. Optically active (R)- and (S)-isomers may be prepared using chiral synthons or chiral reagents, or resolved using conventional techniques. If the compound contains a double bond, the substituent may be E or Z configuration unless specified. If the compound contains a disubstituted cycloalkyl, the cycloalkyl substituent may have a cis- or trans-configuration, unless otherwise specified. All tautomeric forms are also intended to be included.
- In many cases, the compounds of the present invention are capable of forming acid and/or base salts by virtue of the presence of amino and/or carboxyl groups or groups similar thereto. As used herein, the terms "salt" or "salts" refers to an acid addition or base addition salt of a compound of the invention. "Salts" include in particular "pharmaceutical acceptable salts". The term "pharmaceutically acceptable salts" refers to salts that retain the biological effectiveness and properties of the compounds of this invention and, which typically are not biologically or otherwise undesirable.
- Pharmaceutically acceptable acid addition salts can be formed with inorganic acids and organic acids, e.g., acetate, aspartate, benzoate, besylate, bromide/hydrobromide, bicarbonate/carbonate, bisulfate/sulfate, camphorsulfonate, chloride/hydrochloride, chlorotheophyllonate, citrate, ethandisulfonate, fumarate, gluceptate, gluconate, glucuronate, hippurate, hydroiodide/iodide, isethionate, lactate, lactobionate, laurylsulfate, malate, maleate, malonate, mandelate, mesylate, methylsulphate, naphthoate, napsylate, nicotinate, nitrate, octadecanoate, oleate, oxalate, palmitate, pamoate, phosphate/hydrogen phosphate/dihydrogen phosphate, polygalacturonate, propionate, stearate, succinate, sulfosalicylate, tartrate, tosylate and trifluoroacetate salts. Lists of additional suitable salts can be found, e.g., in "Remington's Pharmaceutical Sciences", 20th ed., Mack Publishing Company, Easton, Pa., (1985); and in "Handbook of Pharmaceutical Salts: Properties, Selection, and Use" by Stahl and Wermuth (Wiley-VCH, Weinheim, Germany, 2002).
- Inorganic acids from which salts can be derived include, for example, hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, and the like.
- Organic acids from which salts can be derived include, for example, acetic acid, propionic acid, glycolic acid, oxalic acid, maleic acid, malonic acid, succinic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, toluenesulfonic acid, sulfosalicylic acid, and the like.
- Pharmaceutically acceptable base addition salts can be formed with inorganic or organic bases and can have inorganic or organic counterions.
- Inorganic counterions for such base salts include, for example, ammonium salts and metals from columns I to XII of the periodic table. In certain embodiments, the counterion is selected from sodium, potassium, ammonium, alkylammonium having one to four C1-C4 alkyl groups, calcium, magnesium, iron, silver, zinc, and copper; particularly suitable salts include ammonium, potassium, sodium, calcium and magnesium salts.
- Organic bases from which salts can be derived include, for example, primary, secondary, and tertiary amines, substituted amines including naturally occurring substituted amines, cyclic amines, basic ion exchange resins, and the like. Suitable organic amines include isopropylamine, benzathine, cholinate, diethanolamine, diethylamine, lysine, meglumine, piperazine and tromethamine.
- The pharmaceutically acceptable salts of the present invention can be synthesized from a basic or acidic moiety, by conventional chemical methods. Generally, such salts can be prepared by reacting free acid forms of these compounds with a stoichiometric amount of the appropriate base (such as Na, Ca, Mg, or K hydroxide, carbonate, bicarbonate or the like), or by reacting free base forms of these compounds with a stoichiometric amount of the appropriate acid. Such reactions are typically carried out in water or in an organic solvent, or in a mixture of the two. Generally, use of non-aqueous media like ether, ethyl acetate, tetrahydrofuran, toluene, chloroform, dichloromethane, methanol, ethanol, isopropanol, or acetonitrile is desirable, where practicable.
- Any formula given herein is also intended to represent unlabeled forms (i.e., compounds wherein all atoms are present at natural isotopic abundances, and not isotopically enriched) as well as isotopically enriched or labeled forms of the compounds. Isotopically enriched or labeled compounds have structures depicted by the formulas given herein except that at least one atom of the compound is replaced by an atom having an atomic mass or mass number different from the atomic mass or the atomic mass distribution that occurs naturally. Examples of isotopes that can be incorporated into enriched or labeled compounds of the invention include isotopes of hydrogen, carbon, nitrogen, oxygen, phosphorous, fluorine, and chlorine, such as 2H, 3H, 11C, 13C, 14C, 15N, 18F 31P, 32P, 35S, 36Cl, 125I respectively. The invention includes various isotopically labeled compounds as defined herein, for example those in which radioactive isotopes, such as 3H and 14C, or those in which non-radioactive isotopes, such as 2H and 13C, are present at levels significantly above the natural abundance for these isotopes. These isotopically labeled compounds are useful in metabolic studies (with 14C), reaction kinetic studies (with, for example 2H or 3H), detection or imaging techniques, such as positron emission tomography (PET) or single-photon emission computed tomography (SPECT) including drug or substrate tissue distribution assays, or in radioactive treatment of patients. In particular, an 18F or labeled compound may be particularly desirable for PET or SPECT studies. Isotopically-labeled compounds of formula (I) can generally be prepared by conventional techniques known to those skilled in the art or by processes analogous to those described in the accompanying Examples and Preparations using an appropriate isotopically-labeled reagents in place of the non-labeled reagent previously employed.
- Further, substitution with heavier isotopes, particularly deuterium (i.e., 2H or D) may afford certain therapeutic advantages resulting from greater metabolic stability, for example increased in vivo half-life or reduced dosage requirements or an improvement in therapeutic index. It is understood that deuterium in this context is regarded as a substituent of a compound of the formula (I). The concentration of such a heavier isotope, specifically deuterium, may be defined by the isotopic enrichment factor. The term "isotopic enrichment factor" as used herein means the ratio between the isotopic abundance and the natural abundance of a specified isotope. If a substituent in a compound of this invention is denoted deuterium, such compound has an isotopic enrichment factor for each designated deuterium atom of at least 3500 (52.5% deuterium incorporation at each designated deuterium atom), at least 4000 (60% deuterium incorporation), at least 4500 (67.5% deuterium incorporation), at least 5000 (75% deuterium incorporation), at least 5500 (82.5% deuterium incorporation), at least 6000 (90% deuterium incorporation), at least 6333.3 (95% deuterium incorporation), at least 6466.7 (97% deuterium incorporation), at least 6600 (99% deuterium incorporation), or at least 6633.3 (99.5% deuterium incorporation).
- Pharmaceutically acceptable solvates in accordance with the invention include those wherein the solvent of crystallization may be isotopically substituted, e.g. D2O, d6-acetone, d6-DMSO, as well as solvates with non-enriched solvents.
- Compounds of the invention, i.e. compounds of formula (I) that contain groups capable of acting as donors and/or acceptors for hydrogen bonds may be capable of forming co-crystals with suitable co-crystal formers. These co-crystals may be prepared from compounds of formula (I) by known co-crystal forming procedures. Such procedures include grinding, heating, co-subliming, co-melting, or contacting in solution compounds of formula (I) with the co-crystal former under crystallization conditions and isolating co-crystals thereby formed. Suitable co-crystal formers include those described in
WO 2004/078163 . Hence the invention further provides co-crystals comprising a compound of formula (I). - As used herein, the term "pharmaceutically acceptable carrier" includes any and all solvents, dispersion media, coatings, surfactants, antioxidants, preservatives (e.g., antibacterial agents, antifungal agents), isotonic agents, absorption delaying agents, salts, preservatives, drug stabilizers, binders, excipients, disintegration agents, lubricants, sweetening agents, flavoring agents, dyes, and the like and combinations thereof, as would be known to those skilled in the art (see, for example, Remington's Pharmaceutical Sciences, 18th Ed. Mack Printing Company, 1990, pp. 1289- 1329). Except insofar as any conventional carrier is incompatible with the active ingredient, its use in the therapeutic or pharmaceutical compositions is contemplated.
- The term "a therapeutically effective amount" of a compound of the present invention refers to an amount of the compound of the present invention that will elicit the biological or medical response of a subject, for example, reduction or inhibition of an enzyme or a protein activity, or ameliorate symptoms, alleviate conditions, slow or delay disease progression, or prevent a disease, etc. In one non-limiting embodiment, the term "a therapeutically effective amount" refers to the amount of the compound of the present invention that, when administered to a subject, is effective to (1) at least partially alleviate, inhibit, prevent and/or ameliorate a condition, or a disorder or a disease mediated by a Raf kinase such as B-Raf or C-Raf, or associated with activity of a kinase such as B-Raf or C-Raf, or (2) reduce or inhibit the activity of a kinase such as B-Raf or C-Raf in vivo.
- In another non-limiting embodiment, the term "a therapeutically effective amount" refers to the amount of the compound of the present invention that, when administered to a cell, or a tissue, or a non-cellular biological material, or a medium, is effective to at least partially reduce or inhibit the activity of a kinase such as B-Raf or C-Raf, or at least partially reduce or alleviate a symptom or a condition associated with excessive Raf kinase activity.
- As used herein, the term "subject" refers to an animal. Typically the animal is a mammal. A subject also refers to for example, primates (e.g., humans, male or female), cows, sheep, goats, horses, dogs, cats, rabbits, rats, mice, fish, birds and the like. In certain embodiments, the subject is a primate. In specific embodiments, the subject is a human.
- As used herein, the term "inhibit", "inhibition" or "inhibiting" refers to the reduction or suppression of a given condition, symptom, or disorder, or disease, or a significant decrease in the baseline activity of a biological activity or process.
- As used herein, the term "treat", "treating" or "treatment" of any disease or disorder refers in one embodiment, to ameliorating the disease or disorder (i.e., slowing or arresting or reducing the development of the disease or at least one of the clinical symptoms thereof). In another embodiment "treat", "treating" or "treatment" refers to alleviating or ameliorating at least one physical parameter including those which may not be discernible by the patient. In yet another embodiment, "treat", "treating" or "treatment" refers to modulating the disease or disorder, either physically, (e.g., stabilization of a discernible symptom), physiologically, (e.g., stabilization of a physical parameter), or both. In yet another embodiment, "treat", "treating" or "treatment" refers to preventing or delaying the development or progression of the disease or disorder.
- As used herein, a subject is "in need of" a treatment if such subject would benefit biologically, medically or in quality of life from such treatment.
- As used herein, the term "a," "an," "the" and similar terms used in the context of the present invention (especially in the context of the claims) are to be construed to cover both the singular and plural unless otherwise indicated herein or clearly contradicted by the context.
- All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g. "such as") provided herein is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention otherwise claimed.
- Any asymmetric atom (e.g., carbon or the like) of the compound(s) of the present invention can be present in racemic or enantiomerically enriched, for example the (R)-, (S)- or (R,S)- configuration. In certain embodiments, each asymmetric atom has at least 50 % enantiomeric excess, at least 60 % enantiomeric excess, at least 70 % enantiomeric excess, at least 80 % enantiomeric excess, at least 90 % enantiomeric excess, at least 95 % enantiomeric excess, or at least 99 % enantiomeric excess of either the (R)- or (S)-configuration; i.e., for optically active compounds, it is often preferred to use one enantiomer to the substantial exclusion of the other enantiomer. Substituents at atoms with unsaturated double bonds may, if possible, be present in cis- (Z)- or trans- (E)- form.
- Accordingly, as used herein a compound of the present invention can be in the form of one of the possible isomers, rotamers, atropisomers, tautomers or mixtures thereof, for example, as substantially pure geometric (cis or trans) isomers, diastereomers, optical isomers (antipodes), racemates or mixtures thereof. 'Substantially pure' or 'substantially free of other isomers' as used herein means the product contains less than 5%, and preferably less than 2%, of other isomers relative to the amount of the preferred isomer, by weight.
- Any resulting mixtures of isomers can be separated on the basis of the physicochemical differences of the constituents, into the pure or substantially pure geometric or optical isomers, diastereomers, racemates, for example, by chromatography and/or fractional crystallization.
- Any resulting racemates of final products or intermediates can be resolved into the optical antipodes by known methods, e.g., by separation of the diastereomeric salts thereof, obtained with an optically active acid or base, and liberating the optically active acidic or basic compound. In particular, a basic moiety may thus be employed to resolve the compounds of the present invention into their optical antipodes, e.g., by fractional crystallization of a salt formed with an optically active acid, e.g., tartaric acid, dibenzoyl tartaric acid, diacetyl tartaric acid, di-O,O'-p-toluoyl tartaric acid, mandelic acid, malic acid or camphor-10-sulfonic acid. Racemic products can also be resolved by chiral chromatography, e.g., high pressure liquid chromatography (HPLC) using a chiral adsorbent.
- Furthermore, the compounds of the present invention, including their salts, can also be obtained in the form of their hydrates, or include other solvents used for their crystallization. The compounds of the present invention may inherently or by design form solvates with pharmaceutically acceptable solvents (including water); therefore, it is intended that the invention embrace both solvated and unsolvated forms. The term "solvate" refers to a molecular complex of a compound of the present invention (including pharmaceutically acceptable salts thereof) with one or more solvent molecules. Such solvent molecules are those commonly used in the pharmaceutical art, which are known to be innocuous to the recipient, e.g., water, ethanol, and the like. The term "hydrate" refers to the complex where the solvent molecule is water.
- The compounds of the present invention, including salts, hydrates and solvates thereof, may inherently or by design form polymorphs.
- In another aspect, the present invention provides a pharmaceutical composition comprising a compound of the present invention, or a pharmaceutically acceptable salt thereof, and at least one pharmaceutically acceptable carrier. The pharmaceutical composition can be formulated for particular routes of administration such as oral administration, parenteral administration, and rectal administration, and the like. In addition, the pharmaceutical compositions of the present invention can be made up in a solid form (including without limitation capsules, tablets, pills, granules, powders or suppositories), or in a liquid form (including without limitation solutions, suspensions or emulsions). The pharmaceutical compositions can be subjected to conventional pharmaceutical operations such as sterilization and/or can contain conventional inert diluents, lubricating agents, or buffering agents, as well as adjuvants, such as preservatives, stabilizers, wetting agents, emulsifiers and buffers, etc.
- Typically, the pharmaceutical compositions for compounds of Formula (I) are tablets or gelatin capsules comprising an active ingredient of Formula (I) together with at least one of the following pharmaceutically acceptable excipients:
- a) diluents, e.g., lactose, dextrose, sucrose, mannitol, sorbitol, cellulose and/or glycine;
- b) lubricants, e.g., silica, talcum, stearic acid, its magnesium or calcium salt and/or polyethyleneglycol; for tablets also
- c) binders, e.g., magnesium aluminum silicate, starch paste, gelatin, tragacanth, methylcellulose, sodium carboxymethylcellulose and/or polyvinylpyrrolidone; if desired
- d) disintegrants, e.g., starches, agar, alginic acid or its sodium salt, or effervescent mixtures; and/or
- e) absorbents, colorants, flavors and sweeteners.
- Tablets may be either film coated or enteric coated according to methods known in the art.
- Suitable compositions for oral administration include an effective amount of a compound of the invention in the form of tablets, lozenges, aqueous or oily suspensions, dispersible powders or granules, emulsion, hard or soft capsules, or syrups or elixirs. Compositions intended for oral use are prepared according to any method known in the art for the manufacture of pharmaceutical compositions and such compositions can contain one or more agents selected from the group consisting of sweetening agents, flavoring agents, coloring agents and preserving agents in order to provide pharmaceutically elegant and palatable preparations. Tablets may contain the active ingredient in admixture with nontoxic pharmaceutically acceptable excipients which are suitable for the manufacture of tablets. These excipients are, for example, inert diluents, such as calcium carbonate, sodium carbonate, lactose, calcium phosphate or sodium phosphate; granulating and disintegrating agents, for example, corn starch, or alginic acid; binding agents, for example, starch, gelatin or acacia; and lubricating agents, for example magnesium stearate, stearic acid or talc. The tablets are uncoated or coated by known techniques to delay disintegration and absorption in the gastrointestinal tract and thereby provide a sustained action over a longer period. For example, a time delay material such as glyceryl monostearate or glyceryl distearate can be employed. Formulations for oral use can be presented as hard gelatin capsules wherein the active ingredient is mixed with an inert solid diluent, for example, calcium carbonate, calcium phosphate or kaolin, or as soft gelatin capsules wherein the active ingredient is mixed with water or an oil medium, for example, peanut oil, liquid paraffin or olive oil.
- Certain injectable compositions are aqueous isotonic solutions or suspensions, and suppositories are advantageously prepared from fatty emulsions or suspensions. Said compositions may be sterilized and/or contain adjuvants, such as preserving, stabilizing, wetting or emulsifying agents, solution promoters, salts for regulating the osmotic pressure and/or buffers. In addition, they may also contain other therapeutically valuable substances. Said compositions are prepared according to conventional mixing, granulating or coating methods, respectively, and contain about 0.1-75%, or contain about 1-50%, of the active ingredient.
- Suitable compositions for transdermal application include an effective amount of a compound of the invention with a suitable carrier. Carriers suitable for transdermal delivery include absorbable pharmacologically acceptable solvents to assist passage through the skin of the host. For example, transdermal devices are in the form of a bandage comprising a backing member, a reservoir containing the compound optionally with carriers, optionally a rate controlling barrier to deliver the compound of the skin of the host at a controlled and predetermined rate over a prolonged period of time, and means to secure the device to the skin.
- Suitable compositions for topical application, e.g., to the skin and eyes, include aqueous solutions, suspensions, ointments, creams, gels or sprayable formulations, e.g., for delivery by aerosol or the like. Such topical delivery systems will in particular be appropriate for dermal application, e.g., for the treatment of skin cancer, e.g., for prophylactic use in sun creams, lotions, sprays and the like. They are thus particularly suited for use in topical, including cosmetic, formulations well-known in the art. Such may contain solubilizers, stabilizers, tonicity enhancing agents, buffers and preservatives.
- As used herein a topical application may also pertain to an inhalation or to an intranasal application. They may be conveniently delivered in the form of a dry powder (either alone, as a mixture, for example a dry blend with lactose, or a mixed component particle, for example with phospholipids) from a dry powder inhaler or an aerosol spray presentation from a pressurized container, pump, spray, atomizer or nebulizer, with or without the use of a suitable propellant.
- The present invention further provides anhydrous pharmaceutical compositions and dosage forms comprising the compounds of the present invention as active ingredients, since water may facilitate the degradation of certain compounds.
- Anhydrous pharmaceutical compositions and dosage forms of the invention can be prepared using anhydrous or low moisture containing ingredients and low moisture or low humidity conditions. An anhydrous pharmaceutical composition may be prepared and stored such that its anhydrous nature is maintained. Accordingly, anhydrous compositions are packaged using materials known to prevent exposure to water such that they can be included in suitable formulary kits. Examples of suitable packaging include, but are not limited to, hermetically sealed foils, plastics, unit dose containers (e. g., vials), blister packs, and strip packs.
- The invention further provides pharmaceutical compositions and dosage forms that comprise one or more agents that reduce the rate by which the compound of the present invention as an active ingredient will decompose. Such agents, which are referred to herein as "stabilizers," include, but are not limited to, antioxidants such as ascorbic acid, pH buffers, or salt buffers, etc.
- The compounds of formula I in free form or in salt form, exhibit valuable pharmacological activities, e.g. they modulate or inhibit activity of A-Raf, B-Raf and/or C-Raf, as indicated by test data provided in the next sections, and are therefore indicated for therapy or for use as research chemicals, e.g. as tool compounds. These compounds are especially useful for treatment of cancers driven by mutations in the Raf/Raf/MEK/ERK pathway, including cancers characterized by an activating Raf mutation such as Raf V600E, including but not limited to melanoma (e.g., malignant melanoma), breast cancer, lung cancer (e.g., non-small cell lung cancer), sarcoma, GI tumors such as gastrointestinal stromal tumors, ovarian cancer, colorectal cancer, thyroid cancer, and pancreatic cancer.
- Thus, as a further embodiment, the present invention discloses the use of a compound of formula (I) or any of the embodiments within the scope of Formula (I) as described herein, in therapy. In a further embodiment, the therapy is for a disease which may be treated by inhibition of A-Raf, B-Raf or C-Raf. In another embodiment, the compounds of the invention are useful to treat cancers, including but not limited to melanoma, breast cancer, lung cancer, sarcoma, GI tumors such as gastrointestinal stromal tumors, ovarian cancer, colorectal cancer, thyroid cancer, and pancreatic cancer.
- In another embodiment, the invention provides a compounds for use in a method of treating a disease which is treatable by inhibition of A-Raf, B-Raf or C-Raf, or a combination thereof, comprising administration of a therapeutically effective amount of a compound of formula (I) or any of the embodiments within the scope of Formula (I) as described herein. In a further embodiment, the disease is selected from the afore-mentioned list, suitably melanoma, breast cancer, lung cancer, sarcoma, GI tumors such as gastrointestinal stromal tumors, ovarian cancer, colorectal cancer, thyroid cancer, and pancreatic cancer. The method typically comprises administering an effective amount of a compound as described herein or a pharmaceutical composition comprising such compound to a subject in need of such treatment. The compound may be administered by any suitable method such as those described herein, and the administration may be repeated at intervals selected by a treating physician.
- Thus, as a further embodiment, the present invention provides the use of a compound of formula (I) or any of the embodiments of such compounds described herein for the manufacture of a medicament. In a further embodiment, the medicament is for treatment of a disease which may be treated by inhibition of A-Raf, B-Raf or C-Raf. In another embodiment, the disease is a cancer, e.g., a cancer selected from the afore-mentioned list, including melanoma, breast cancer, lung cancer, sarcoma, GI tumors such as gastrointestinal stromal tumors, ovarian cancer, colorectal cancer, thyroid cancer, and pancreatic cancer.
- The pharmaceutical composition or combination of the present invention can be in unit dosage of about 1-1000 mg of active ingredient(s) for a subject of about 50-70 kg, or about 1-500 mg or about 1-250 mg or about 1-150 mg or about 0.5-100 mg, or about 1-50 mg of active ingredients. The therapeutically effective dosage of a compound, the pharmaceutical composition, or the combinations thereof, is dependent on the species of the subject, the body weight, age and individual condition, the disorder or disease or the severity thereof being treated. A physician, clinician or veterinarian of ordinary skill can readily determine the effective amount of each of the active ingredients necessary to prevent, treat or inhibit the progress of the disorder or disease.
- The above-cited dosage properties are demonstrable in vitro and in vivo tests using advantageously mammals, e.g., mice, rats, dogs, monkeys or isolated organs, tissues and preparations thereof. The compounds of the present invention can be applied in vitro in the form of solutions, e.g., aqueous solutions, and in vivo either enterally, parenterally, advantageously intravenously, e.g., as a suspension or in aqueous solution. The dosage in vitro may range between about 10-3 molar and 10-9 molar concentrations. A therapeutically effective amount in vivo may range depending on the route of administration, between about 0.1-500 mg/kg, or between about 1-100 mg/kg.
- The compound of the present invention may be administered either simultaneously with, or before or after, one or more therapeutic co-agent(s) (co-therapeutic agents). Suitable co-therapeutic agents for use in the invention include, for example, cancer chemotherapeutics including but not limited to inhibitors of PI3K, other inhibitors of the Raf pathway, paclitaxel, docetaxel, temozolomide, platins, doxorubicins, vinblastins, cyclophosphamide, topotecan, gemcitabine, ifosfamide, etoposide, irinotecan, and the like. The compound of the present invention may be administered separately, by the same or different route of administration, or together in the same pharmaceutical composition as the co-agent(s).
- In one embodiment, the invention provides a product comprising a compound of formula (I) and at least one other therapeutic co-agent as a combined preparation for simultaneous, separate or sequential use in therapy. In one embodiment, the therapy is the treatment of a disease or condition mediated by B-Raf or C-Raf, such as cancer. Products provided as a combined preparation include a composition comprising the compound of formula (I) and the other therapeutic co-agent(s) together in the same pharmaceutical composition, or the compound of formula (I) and the other therapeutic co-agent(s) in separate form, e.g. in the form of a kit.
- In one embodiment, the invention provides a pharmaceutical composition comprising a compound of formula (I) and another therapeutic co-agent(s). Optionally, the pharmaceutical composition may comprise a pharmaceutically acceptable carrier, as described above.
- In one embodiment, the invention provides a kit comprising two or more separate pharmaceutical compositions, at least one of which contains a compound of formula (I). In one embodiment, the kit comprises means for separately retaining said compositions, such as a container, divided bottle, or divided foil packet. An example of such a kit is a blister pack, as typically used for the packaging of tablets, capsules and the like.
- The kit of the invention may be used for administering different dosage forms, for example, oral and parenteral, for administering the separate compositions at different dosage intervals, or for titrating the separate compositions against one another. To assist compliance, the kit of the invention typically comprises directions for administration.
- In the combination therapies of the invention, the compound of the invention and the other therapeutic co-agent may be manufactured and/or formulated by the same or different manufacturers. Moreover, the compound of the invention and the other therapeutic may be brought together into a combination therapy: (i) prior to release of the combination product to physicians (e.g. in the case of a kit comprising the compound of the invention and the other therapeutic agent); (ii) by the physician themselves (or under the guidance of the physician) shortly before administration; (iii) in the patient themselves, e.g. during sequential administration of the compound of the invention and the other therapeutic agent.
- Accordingly, the invention provides the use of a compound of formula (I) for treating a disease or condition mediated by B-Raf or C-Raf, wherein the medicament is prepared for administration with another therapeutic agent. The invention also provides the use of another therapeutic co-agent for treating a disease or condition, wherein the medicament is administered with a compound of formula (I).
- The invention also provides a compound of formula (I) for use in a method of treating a disease or condition mediated by B-Raf or C-Raf, wherein the compound of formula (I) is prepared for administration with another therapeutic agent. The invention also provides another therapeutic co-agent for use in a method of treating a disease or condition mediated by B-Raf or C-Raf, wherein the other therapeutic co-agent is prepared for administration with a compound of formula (I). The invention also provides a compound of formula (I) for use in a method of treating a disease or condition mediated by B-Raf or C-Raf, wherein the compound of formula (I) is administered with another therapeutic co-agent. The invention also provides another therapeutic co-agent for use in a method of treating a disease or condition mediated by B-Raf or C-Raf, wherein the other therapeutic co-agent is administered with a compound of formula (I).
- The invention also discloses the use of a compound of formula (I) for treating a disease or condition mediated by B-Raf or C-Raf, wherein the patient has previously (e.g. within 24 hours) been treated with another therapeutic agent. The invention also discloses the use of another therapeutic agent for treating a disease or condition mediated by B-Raf or C-Raf, wherein the patient has previously (e.g. within 24 hours) been treated with a compound of formula (I).
- The following Schemes and Examples illustrate representative methods useful for making the compounds of Formula (I).
- Compounds of Formula (I) where ring B is a pyrimidine can be prepared from known halopyrimidine intermediates, introducing ring C by a Suzuki or similar arylation reactions. The group -L-CY can be attached to Ring C before it is installed, or a protected amine can be present at the position corresponding to L for the Suzuki, and can be converted into the amide linker to form -L-CY after the Suzuki reaction.
- Compounds having different groups on Ring B, instead of two morpholine groups, can be prepared by using thioalkyl-substituted pyrimidines, as exemplified in the following scheme. A desired A-ring morpholine group (see Formula (I)) can be attached using nucleophilic aromatic substitution chemistry, and a Suzuki or similar arylation can be used to attach Ring C. The thioalkyl group can then be activated toward nucleophilic displacement by oxidation to an alkylsulfonyl group, which can be displaced by various nucleophilic groups.
- Alternatively, the oxidation can be done before the Suzuki reaction. This sequence can be used to install a heterocyclic or heteroaryl group on the B ring, or it can be used to introduce other nucleophiles such as alkoxy, amine or azide at this position. These can then be further modified as exemplified by amine alkylation (above) or, e.g., if azide is used as the nucleophile, a cycloaddition reaction can be used to make a heteroaryl substituent on Ring B as shown below.
- Other compounds of Formula (I) wherein Ring B is pyrimidine can be made from 2,4,6-trichloropyrimidine by starting with a Suzuki reaction to introduce one group (R1), providing a mixture of isomeric products, as shown in Scheme 4. A morpholine A-ring can then be attached by aromatic nucleophilic substitution chemistry, followed by another Suzuki reaction.
-
- Various other substituent groups can be introduced onto pyridinyl B-ring compounds by introducing only one optionally substituted morpholine on a 2,4,6-trihalopyridine, then sequentially replacing the other two halogens with suitable groups as illustrated in the following schemes. Scheme 6 illustrates introduction of an aryl or heteroaryl group on the B ring, using Suzuki chemistry; Scheme 7 illustrates use of aromatic nucleophilic substitution chemistry to introduce other nucleophilic substituents such as amines, alkoxy groups, and alkylthio groups.
-
-
-
- Salts of compounds of the present invention having at least one salt-forming group may be prepared in a manner known to those skilled in the art. For example, salts of compounds of the present invention having acid groups may be formed, for example, by treating the compounds with metal compounds, such as alkali metal salts of suitable organic carboxylic acids, e.g. the sodium salt of 2-ethylhexanoic acid, with organic alkali metal or alkaline earth metal compounds, such as the corresponding hydroxides, carbonates or hydrogen carbonates, such as sodium or potassium hydroxide, carbonate or hydrogen carbonate, with corresponding calcium compounds or with ammonia or a suitable organic amine, stoichiometric amounts or only a small excess of the salt-forming agent preferably being used. Acid addition salts of compounds of the present invention are obtained in customary manner, e.g. by treating the compounds with an acid or a suitable anion exchange reagent. Internal salts of compounds of the present invention containing acid and basic salt-forming groups, e.g. a free carboxy group and a free amino group, may be formed, e.g. by the neutralization of salts, such as acid addition salts, to the isoelectric point, e.g. with weak bases, or by treatment with ion exchangers.
- Salts can be converted into the free compounds in accordance with methods known to those skilled in the art. Metal and ammonium salts can be converted, for example, by treatment with suitable acids, and acid addition salts, for example, by treatment with a suitable basic agent.
- Mixtures of isomers obtainable according to the invention can be separated in a manner known to those skilled in the art into the individual isomers; diastereoisomers can be separated, for example, by partitioning between polyphasic solvent mixtures, recrystallization and/or chromatographic separation, for example over silica gel or by e.g. medium pressure liquid chromatography over a reversed phase column, and racemates can be separated, for example, by the formation of salts with optically pure salt-forming reagents and separation of the mixture of diastereoisomers so obtainable, for example by means of fractional crystallization, or by chromatography over optically active column materials.
- Intermediates and final products can be worked up and/or purified according to standard methods, e.g. using chromatographic methods, distribution methods, (re-) crystallization, and the like.
- Compounds of the invention and intermediates can also be converted into each other according to methods generally known to those skilled in the art.
- Terms used herein have their ordinary meaning to those of skill in the art unless otherwise defined. The following abbreviations may be used herein:
DAST (diethylamino)sulfurtrifluoride DCM Dichloromethane DIAD diisopropylazodicarboxylate DIEA diisopropylethylamine DMA Dimethylacetamide DMAP 4-dimethylaminopyridine DME 1,2-dimethoxyethane DMF N,N-dimethylformamide DPPF 1,1'-bis(diphenylphosphino)ferrocene EDC 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride EtOAc ethyl acetate EtOH Ethanol HOAT Hydroxyazabenzotriazole HOBt Hydroxybenzotriazole K2CO3 Potassium carbonate MeCN Acetonitrile MgSO4 Magnesium sulfate MeOH Methanol Na2CO3 sodium carbonate NaCl Sodium chloride NaHCO3 sodium bicarbonate NBS N-bromosuccinimide NMP N-methyl-2-pyrrolidone Pd2(dba)3 Tris(dibenzylideneacetone)dipalladium(0) Pd(PPh3)4 Tetrakis(triphenylphospine)palladium(0) Pd(dppf)Cl2-DCM Dichloro-(1,2-bis(diphenylphosphino)ethan)-Palladium(II) - dichloromothethane adduct RT or rt room temperature TBDMSCl tert-butyldimethylsilylchloride TEA Triethylamine THF tetrahydrofuran - The following examples are intended to illustrate the invention and are not to be construed as being limitations thereon. Temperatures are given in degrees Celsius. If not mentioned otherwise, all evaporations are performed under reduced pressure, typically between about 15 mm Hg and 100 mm Hg (= 20-133 mbar). The structure of final products, intermediates and starting materials is confirmed by standard analytical methods, e.g., microanalysis and spectroscopic characteristics, e.g., MS, IR, NMR. Abbreviations used are those conventional in the art.
- Mass spectrometric analysis was performed on LCMS instruments: Waters System (Acuity UPLC and a Micromass ZQ mass spectrometer; Column: Acuity HSS C18 1.8-micron, 2.1 x 50 mm; gradient: 5-95 % acetonitrile in water with 0.05 % TFA over a 1.8 min period ; flow rate 1.2 mL/min; molecular weight range 200-1500; cone Voltage 20 V; column temperature 50 °C). All masses were reported as those of the protonated parent ions.
- Nuclear magnetic resonance (NMR) analysis was performed on some of the compounds with a Varian 400 MHz NMR (Palo Alto, CA). The spectral reference was either TMS or the known chemical shift of the solvent.
- All starting materials, building blocks, reagents, acids, bases, dehydrating agents, solvents, and catalysts utilized to synthesize the compounds of the present invention are either commercially available or can be produced by organic synthesis methods known to one of ordinary skill in the art (Houben-Weyl 4th Ed. 1952, Methods of Organic Synthesis, Thieme, Volume 21). Further, the compounds of the present invention can be produced by organic synthesis methods known to one of ordinary skill in the art in view of the following examples.
- Compounds of the invention can be prepared using methods known in the art, along with methods disclosed herein, starting with known materials.
- The syntheses of certain intermediates are outlined here, followed by description of syntheses of examples of compounds of Formula (I).
-
- To a suspension of 4-chloropicolinic acid (1.0 equiv.) in THF (0.95 M) at rt was added isobutyronitrile (3.2 equiv.) and LiHMDS (1M solution in THF, 3.1 equiv.). The mixture was stirred at 100 °C for 10 min in the microwave. The cooled solution was quenched with sat. ammonium chloride and acidified with 6N HCl to pH = 4. The solution was extracted with IPA/Chloroform (1:3) three times. The combined organic layer was washed with brine, dried over sodium sulfate, filtered and concentrated to give 4-(2-cyanopropan-2-yl)picolinic acid in 72% yield. 1H NMR (400 MHz, <dmso>) δ ppm 1.71 (s, 6 H) 7.76 (dd, J=5.48, 1.96 Hz, 1 H) 8.12 (d, J=1.57 Hz, 1 H) 8.73 (d, J=5.09 Hz, 1 H). LCMS m/z (M+H) = 190.9, Rt = 0.31 min.
-
- Step 1: To a solution of ethyl 2-oxopropanoate (15 equiv.) at 0 °C was added dropwise H2O2 (10 equiv.) . The cold mixture (still stirred at 0 °C) was cannulated into a mixture of 1-(pyridin-4-yl)ethanone (1.0 equiv.), H2SO4 (1.0 equiv.) and FeSO4.7H2O (10 equiv.) in DCM/water (15:1, 0.08 M) at rt over 3 h. The resulting reaction mixture was stirred at rt for additional 30 min. The aqueous layer was extracted with DCM and the combined organic DCM layers were washed with 5% sodium sulfite, brine, dried over sodium sulfate and concentrated. Purification via silica gel column chromatography (ISCO, 0-60%EtOAc/Heptane) gave ethyl 4-acetylpicolinate in 46% yield. LCMS m/z (M+H) = 193.9, Rt = 0.51 min.
- Step 2: Ethyl 4-acetylpicolinate (1.0 equiv.) was dissolved in THF (0.1 M) and the solution was cooled to - 78 °C. Methyllithium (1.2 equiv.) was added over the period of 5 min and the mixture was stirred at - 78 °C for an additional 5 min. The reaction was poured into ice-water and extracted twice with ethyl acetate. The organic layer was washed with brine, dried over sodium sulfate, filtered and concentrated. The residue was purified via silica gel chromatography (ISCO, 0-100% ethyl acetate/heptanes) to give ethyl 4-(2-hydroxypropan-2-yl)picolinate in 47% yield. LCMS m/z (M+H) = 210.2, Rt = 0.43 min.
- Step 3: To a solution of ethyl 4-(2-hydroxypropan-2-yl)picolinate (1.0 equiv.) in THF (0.13 M) was added LiOH (3.0 equiv.). The mixture was stirred at rt for 4 hr. Concentrated to remove most of THF and the residue was neutralized with 6 N HCI to pH=3. Dilute the mixture with water and MeCN, then lyophilized give 4-(2-hydroxypropan-2-yl)picolinic acid containing 3.0 equiv. of LiCI. LCMS m/z (M+H) = 181.9, Rt = 0.18 min.
-
- Step 1: To a solution of ethyl 4-(2-hydroxypropan-2-yl)picolinate (1.0 equiv.) in DCM (0.1 M) at -78 °C was added DAST (1.2 equiv.). The mixture was stirred at -78 °C for 1 h and warmed up to rt and stirred at rt for 1 h. LC-Ms indicated completed conversion. An aqueous saturated NaHCO3 solution was added and the mixture was stirred for 15 minutes, then the mixture was extracted with EtOAc. The organic layer was washed with brine, dried over sodium sulfate and concentrated to give ethyl 4-(2-fluoropropan-2-yl)picolinate in 98% yield. LCMS m/z (M+H) = 211.9, Rt = 0.69 min.
- Step 2: To a solution of ethyl 4-(2-fluoropropan-2-yl)picolinate (1.0 equiv.) in THF (0.19 M) was added LiOH (3.8 equiv.). The mixture was stirred at rt for 4 hr. Concentrated to remove most of THF and the residue was neutralized with 6 N HCI to pH=3 and extracted with EtOAc. The organic layer was washed with brine, dried over sodium sulfate and concentrated to yield 4-(2-fluoropropan-2-yl)picolinic acid in 71% yield. LCMS m/z (M+H) = 183.9, Rt = 0.32 min.
-
- Step 1: A solution of ethyl 4-acetylpicolinate (1.0 equiv.) in 1.0 equiv. of DeoxoFluor (50% in toluene) was stirred for 12 h at 85 °C. The reaction mixture was then added to a NaCl(sat) solution. The aqueous mixture was extracted with EtOAc. The organics were dried, and the resulting material was purified by column chromatography utilizing an ISCO system (heptane-EtOAc) to yield ethyl 4-(1,1-difluoroethyl)picolinate in 72 % yield. LCMS m/z (M+H) = 216.1, Rt = 0.70 min.
- Step 2: To a solution of ethyl 4-(1,1-difluoroethyl)picolinate (1.0 equiv.) in THF (0.2 M) was added LiOH (3.9 equiv.). The mixture was stirred at rt for 4 hr. Concentrated to remove most of THF and the residue was neutralized with 6N HCI to pH=3 and extracted with EtOAc. The organic layer was washed with brine, dried with sodium sulfate and concentrated to yield 4-(1,1-difluoroethyl)picolinic acid in 86 % yield. LCMS m/z (M+H) = 187.9, Rt = 0.41 min.
-
- Step 1: A solution of NalO4 (1.0 equiv.) in Water (0.11 M) was prepared and then added dropwise to a stirred solution of 3-(methylthio)benzoic acid (1.0 equiv.) in MeOH (0.11 M) at 0 °C. After the addition was complete the mixture was allowed to warm to 25 °C and stirred for 1 h. LCMS shows about 20% complete, clean conversion to product. Stirring was continued at 25 °C overnight. The reaction mixture was filtered, the filter cake washed with MeOH. The filtrate was concentrated to a peach solid and 3-(methylsulfinyl)benzoic acid was obtained in quantitative yield. LCMS (m/z) (M+H) = 185.1, Rt = 0.35 min.
- Step 2: To solution of 3-(methylsulfinyl)benzoic acid (1.0 equiv.) in THF (0.2 M) at 25 °C was added CDI (1.2 equiv.) and the mixture was stirred for 15 min. MeOH (8.0 equiv.) was then added and the reaction was briefly warmed to near reflux and then allowed to cool back to room temperature. LCMS shows about near complete, clean conversion to product. The reaction mixture was poured onto a mix of saturated aqueous sodium bicarbonate and brine and exttracted two times with ethyl acetate. The combined organics were washed with brine, dilute HCI, and brine again, and then dried over magnesium sulfate, filtered, and concentrated. The crude reside was purified by Grace flash column chromatography over silica gel eluting with heptane and 0-100% EtOAc gradient. Product fractions elute around 75% EtOAc and were concentrated to to give methyl 3-(methylsulfinyl)benzoate as a pale yellow oil in 70% yield. 1H NMR (400 MHz, <cdcl3>) δ ppm 2.76 (s, 3 H) 3.96 (s, 3 H) 7.65 (t, J=7.83 Hz, 1 H) 7.90 (d, J=7.83 Hz, 1 H) 8.18 (d, J=7.83 Hz, 1 H) 8.28 (s, 1 H). LCMS (m/z) (M+H) = 198.9, Rt = 0.47 min.
- Step 3: To solution of methyl 3-(methylsulfinyl)benzoate (1.0 equiv.) in DCM (0.1 M) at 25 °C under Ar were added 2,2,2-trifluoroacetamide (2.0 equiv.), MgO (4.0 equiv.), rhodium(II) acetate dimer (0.05 equiv.), and diacetoxyiodobenzene (1.5 equiv.) and the mixture was stirred overnight. LCMS shows near complete consumption of starting material and clean conversion to product (M+1=310, Rt=0.76). The reaction mixture was filtered through Celite, washing with DCM, and concentrated. The residue was purified by Grace flash column chromatography over silica gel, eluting with heptane and 0-75% EtOAc gradient. Product fractions elute around 40% EtOAc and were concentrated to give methyl 3-(S-methyl-N-(2,2,2-trifluoroacetyl)sulfonimidoyl)benzoate in 90 % yield as a colorless oil. 1H NMR (400 MHz, <cdcl3>) δ ppm 3.50 (s, 3 H) 4.00 (s, 3 H) 7.78 (t, J=8.02 Hz, 1 H) 8.17 - 8.23 (m, 1 H) 8.41 (d, J=7.83 Hz, 1 H) 8.63 (s, 1 H). LCMS (m/z) (M+H) = 310.0, Rt = 0.76 min.
- Step 4: To a stirred solution of methyl 3-(S-methyl-N-(2,2,2 trifluoroacetyl)sulfonimidoyl)benzoate (1.0 equiv.) in THF and MeOH (2:1, 0.09 M) at 25 °C was added LiOH (2 M aq.) (3.5 equiv.) and the mixture was stirred for 3 h. LCMS shows complete consumption of starting material and clean conversion to product. Most of the THF/MeOH was removed by concentration and then the mixture was acidified using 1 M HCl. Product could not be extracted from the aqueous with organic solvents, so the acidic aqueous layer was diluted with some acetonitrile and then lyophilized to give 3-(S-methylsulfonimidoyl)benzoic acid as a white solid which likely contains approx. 3.5 eq of LiCl. This calculates to a 99% calculated yield of desired product. LCMS (m/z) (M+H) = 199.9, Rt = 0.25 min
-
- Step 1: Trimethyl(trifluoromethyl)silane (1.3 quiv.) and cesium fluoride (0.1 equiv.) were added to a solution of methylformylbenzoate (1.0 equiv.) in THF (0.3 M)at room temperature under nitrogen and the mixture was sonicated for 30 min to initiate the reaction, which was indicated by the appearance of a pale yellow colour. The mixture was stirred at room temp for 5 h, after which HCl(aq) (1M) was added and the mixture stirred for a further 15 min. The mixture was then extracted with EtOAc, washed (saturated NaHCO3, brine), dried (MgSO4) and evaporated in vacuo. The product was purified by ISCO and eluted with 0 to 70% ethyl acetate in heptane to give methyl 3-(2,2,2-trifluoro-1-hydroxyethyl)benzoate in 81% yield. LCMS (m/z) (M+H) = 234.9, Rt = 0.74 min.
- Step 2: Lithium hydroxide (5.0 equiv, 2M aqueous solution) was added to methyl 3-(2,2,2-trifluoro-1-hydroxyethyl)benzoate (1.0 equiv.) in Acetonitrile and Water (2:1, 0.001M) at 0 °C and then the mixture was brought to RT and stirred for 6h. The mixture was acidified with 1N HCl and extracted with ethyl acetate to give 3-(2,2,2-trifluoro-1-hydroxyethyl)benzoic acid in 91% yield. LCMS (m/z) (M+H) = 219.1, Rt = 0.3 min.
-
- 2-(trifluoromethyl)pyridin-4-amine (1.0 equiv.) was dissolved in ACN (0.06). Selectfluor (2.2 equiv.) was added and the reaction mixture was stirred at rt for 2 days. Sat. sodium bicarbonate solution added to quench reaction, partitioned with ethyl acetate, the organic phase was concentrated to dryness and purified by ISCO flash chromatograph (0-70% ethyl acetate in heptane) to yield 5-fluoro-2-(trifluoromethyl)pyridin-4-amine in 23 % yield. 1H NMR (400 MHz, <cdcl3>) δ ppm 4.52 (br. s., 2 H) 6.97 - 7.16 (m, 1 H) 8.27 (d, J=2.35 Hz, 1 H).
-
- Step 1: To a solution of 2-(1,1-difluoroethyl)isonicotinic acid (1.0 equiv.) in Dioxane (0.3 M) was added diphenyl phosphoryl azide (1.8 equiv.), t-butyl alcohol (6.0 equiv.), and TEA (1.8 equiv.). The rxn was degassed for 1 min, then heated at 110 °C for 3.0 hr. The dioxane was evaporated in vacuo, and the residue partioned between EtOAc and 10% citric acid. The organic layer was separated and the aqueous layer further extracted with EtOAc. The combined organics were dired over Na2SO4, filtered and concentrated. The crude was loaded onto silica gel and purified by column chromatography (ISCO, 0-50% EtOAc in Heptanes). Pure fractions were combined and concentrated to yield tert-butyl (2-(1,1-difluoroethyl)pyridin-4-yl)carbamate in 44 % yield as a clear oil. LCMS (m/z) (M+H) = 259, Rt = 0.68.
- Step 2: To a solution of tert-butyl (2-(1,1-difluoroethyl)pyridin-4-yl)carbamate (1.0 equiv.) in DCM (0.25 M) was added TFA (10 equiv.) and allowed to stir at RT for 6 hrs. The volaties were removed in vacuo, and the residue was taken up in DCM and pushed through a carbonate column to remove the TFA salt, the column was washed several times with DCM. The combined organics were concentrated to yield 2-(1,1-difluoroethyl)pyridin-4-amine in 54 % yield. LCMS (m/z) (M+H) = 158.9, Rt = 0.29.
-
- To a solution of 4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline (1.0 equiv.) in THF (0.1 M) at 0 °C was added 3-trifluoromethylbenzoylchloride (1.0 equiv.) and the reaction was stirred at room temperature for 3 h. The solution was concentrated and dried under vacuo to give N-(4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-3-(trifluoromethyl)benzamide as a tan solid in 96% yield. LCMS (m/z) (M+H) = 406.2, Rt = 1.24 min.
-
- Step 1: To a 0.4 M solution of 5-bromo-6-methylpyridin-3-amine (1.00 equiv.) in DCM was added DIEA (1.00 equiv.) and 3-(trifluoromethyl)benzoyl chloride (1.00 equiv.). The mixture was stirred at ambient temperature for 3 hr. The reaction mixture was diluted with DCM, washed with saturated aqueous sodium bicarbonate, dried over sodium sulfate, filtered, and concentrated to give N-(5-bromo-6-methylpyridin-3-yl)-3-(trifluoromethyl)benzamide as an off-white solid in 98% yield. LCMS (m/z) (M+H) = 359.0/361.0, Rt = 0.86 min.
- Step 2: To a 0.27 M solution N-(5-bromo-6-methylpyridin-3-yl)-3-(trifluoromethyl)benzamide (1.00 equiv.) in 1,4-dioxane was added bis(pinacolato)diboron (1.50 equiv.), potassium acetate (2.00 equiv.) and PdCl2(dppf).CH2Cl2 adduct (0.10 equiv.). The reaction was irradiated at 120°C for 20 min. The cooled reaction mixture was diluted with ethyl acetate and filtered through Celite. The filtrate was concentrated to give N-(6-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-3-yl)-3-(trifluoromethyl)benzamide as a dark brown tacky solid in quantitative yield. LCMS (m/z) (M+H) = 325.0, Rt = 0.59 min.
-
- Step 1: To a mixture of 2-fluoro-4-methylpyridine (1.0 equiv.) and isobutyronitrile (4.0 equiv.) was cannulated KHMDS (1.2 equiv.) in toluene. The mixture was heated to reflux for 1.5 hours at which time the reaction was cooled to RT, quenched with NH4Cl (aq), extracted with EtOAc, dried over Na2SO4, filtered, and concentrated. The crude material was used in next step. LCMS (m/z) (M+H) = 161.1, Rt = 0.48 min.
- Step 2: To a solution of 2-methyl-2-(4-methylpyridin-2-yl)propanenitrile (1.0 equiv.) in water (0.38 M) was added potassium permanganate (6.0 equiv.). The mixture was heated at 60 °C for 1 hr. The mixture was cooled to rt, acidified with 2 M HCl to pH 4 and extracted with EtOAc. The organic layer was washed with brine, dried over Na2SO4 and concentrated. LC-MS showed the crude yellowish solid still contained 15% of diacid. Redissolved the crude in EtOAc and washed with acidic water (pH 4). The organic layer was washed with brine, dried over Na2SO4 and concentrated to yield off white solid. NO diacid left. Used as is in next step. LCMS (m/z) (M+H) = 191.0, Rt = 0.53 min.
- Step 3: EDC (1.3 equiv.) was added to a solution of 4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline (1.0 equiv.), 2-(2-cyanopropan-2-yl)isonicotinic acid (1.2 equiv.), HOAt (1.3 equiv.) in DMF (0.19 M). The mixture was stirred at ambient temperature 3 hrs. The reaction mixture was diluted with water and extracted with ethyl acetate. The combined extracts were washed sequentially with 1M aqueous sodium hydroxide and brine, dried over sodium sulfate, filtered, and concentrated to yield 2-(2-cyanopropan-2-yl)-N-(4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)isonicotinamide in 97% yield. LCMS (m/z) (M+H) = 406.2, Rt = 1.10 min.
-
- Step 1: To a solution of 3-bromo-4-methylbenzoic acid (1.0 equiv.) in DMF (1.2M) was added EDC (1.0 equiv.) and HOBt (1.0 equiv.) followed by 3-trifluoromethylaniline (1.0 equiv.) and the reaction was stirred at ambient temperature for 48 h. The reaction mixture was partitioned between ethyl acetate and water. The separated organic layer was dried with sodium sulfate and concentrated under vacuo. The concentrated crude was purified via silica gel chromatography and eluted with 0 to 100% ethyl acetate in heptanes to give 3-bromo-4-methyl-N-(3-(trifluoromethyl) phenyl) benzamide in 83% yield. LCMS (m/z) (M+H) = 358/360, Rt = 1.1 min.
- Step 2: To 3-bromo-4-methyl-N-(3-(trifluoromethyl) phenyl) benzamide (1.0 equiv.) in a microwave vial equipped with a stir bar was added dioxane (0.5M) was added 4,4,4',4',5,5,5',5'-octamethyl-2,2'-bi(1,3,2-dioxaborolane) (3 equiv.) and potassium acetate (6 equiv.) and nitrogen was bubbled through the reaction mixture for 5 min. To it was added PdCl2(dppf)-DCM adduct (0.1 equiv) and the vial was sealed and heated to 120 °C for 16h. The reaction mixture was filtered and the filter paper was washed with dichloromethane and the filtrate was concentrated under vacuo. It was then loaded on celite and purified via silica gel chromatography eluting with 0-100% ethyl acetate in heptanes to afford N-(4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-3-(trifluoromethyl)benzamide in quantitative yield. LCMS (m/z) (M+H) = 406.2, Rt = 1.2 min.
-
- To a mixture of 4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline (1.0 equiv.) and 3-(trifluoromethyl)benzoic acid (1.1 equiv.) in DMF (0.27 M) was added HOAt (1.3 equiv.) and EDC (1.3 equiv.) After 3 h the reaction mixture was diluted with water and then extracted with EtOAc. The organic phase was washed sequentially with 1 M aqueous sodium hydroxide and brine and was then dried over sodium sulfate. The solution was concentrated and dried under vacuo to give N-(4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-2-(trifluoromethyl)isonicotinamide in 91% yield. LCMS (m/z) (M+H) = 407.1, Rt = 1.13 min.
-
- A solution of 5-amino-2-methylphenylboronic acid, pinacol ester (1.0 equiv.), 2-(tert-butyl)isonicotinic acid (1.0 equiv.), EDC (1.0 equiv.) and 1-hydroxy-7-azabenzotriazole (0.380 g, 1.0 equiv.) in DMF (0.3 M) was stirred at RT for 68 hr. The reaction mixture was then diluted with EtOAc and water, the organic layer was isolated and the aqueous layer was extracted twice with EtOAc. The combined organics were dried over MgSO4, filtered and concentrated in vaccuo to yield 2-(tert-butyl)-N-(4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)isonicotinamide as a white solid in 91%. LCMS (m/z) (M+H) = 395.1, Rt = 0.71 min.
-
- Step 1: EDC (1.3 equiv.) was added to a solution of 5-bromo-6-methylpyridin-3-amine (1.05 equiv), 2-(2-cyanopropan-2-yl)isonicotinic acid (1.0 equiv), HOAt (1.3 equiv) in DMF (0.17 M). The mixture was stirred at ambient temperature 3 hrs. The reaction mixture was diluted with water and extracted with ethyl acetate. The combined extracts were washed sequentially with 1M aqueous sodium hydroxide and brine, dried over sodium sulfate, filtered, and concentrated. The crude was purified by ISCO(50% EtOAc/Heptane). Combined fractions still contained 17% 5-bromo-6-methylpyridin-3-amine. Add 2-(2-cyanopropan-2-yl)isonicotinic acid (0.3 equiv), EDC (0.3 equiv), HOAt (0.3 equiv) in DMF (0.17 M). After stirred at rt overnight, the reaction mixture was diluted with water and extracted with ethyl acetate. The combined extracts were washed sequentially with 1M aqueous sodium hydroxide and brine, dried over sodium sulfate, filtered, and concentrated to yield N-(5-bromo-6-methylpyridin-3-yl)-2-(2-cyanopropan-2-yl)isonicotinamide in 71% over three steps. LCMS (m/z) (M+H) = 359.0, Rt = 0.73 min.
- Step 2: To a solution of N-(5-bromo-6-methylpyridin-3-yl)-2-(2-cyanopropan-2-yl)isonicotinamide (1.0 equiv.) in dioxane (0.18 M) was added potassium acetate (5.0 equiv.) and 4,4,4',4',5,5,5',5'-octamethyl-2,2'-bi(1,3,2-dioxaborolane) (1.5 equiv.). The solution was degassed with nitrogen and Pd(dppf)Cl2-DCM was added. The reaction was then heated to 80 °C overnight. The mixture was concentrated and diluted with EtOAc, washed with H2O, brine. The organic layer was dried over Na2SO4 and concentrated. The residue was then titrated in hexane. Filtered and the solid was collected to yield 2-(2-cyanopropan-2-yl)-N-(6-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-3-yl)isonicotinamide in 82% yield. LCMS (m/z) (M+H) = 325.1, Rt = 0.49 min. 1H NMR (400 MHz, <cdcl3>) δ ppm 1.27 (s, 6 H), 1.32 - 1.40 (m, 12 H), 1.82 (s, 6 H), 2.75 (s, 3 H), 7.69 (d, J=3.91 Hz, 1 H), 7.86 - 7.95 (m, 1 H), 7.98 (s, 1 H), 8.28 (br. s., 1 H), 8.79 (d, J=5.09 Hz, 1 H), 8.89 (br. s., 1 H).
-
- Step 1: To a 0.3M solution of 5-bromo-6-methylpyridin-3-amine (1.00 equiv.) in DME was added (2,6-difluoropyridin-4-yl)boronic acid (1.30 equiv.), PdCl2(dppf).CH2Cl2 adduct (0.05 equiv.), and 2M aqueous sodium carbonate (3.00 equiv.). The reaction mixture was heated at 60 °C for 18 hrs in an oil bath. The cooled reaction mixture was partitioned between water and EtOAc (3x100mL). The combined organics were washed with brine, dried over MgSO4, filtered and concentrated. The crude was purified by flash chromatography over silica gel (ethyl acetate in heptane, 0-100% gradient) to give 2',6'-difluoro-2-methyl-[3,4'-bipyridin]-5-amine (90.0 % yield) as an orange solid. 1H NMR (400 MHz, <dmso>) δ ppm 2.27 (s, 3 H) 5.31 (s, 2 H) 6.84 (d, J=2.35 Hz, 1 H), 7.23 (s, 2 H) 7.94 (d, J=2.74 Hz, 1 H). LCMS (m/z) (M+H) =222.1, Rt = 0.41 min.
- Step 2: To a 0.35M suspension of 2',6'-difluoro-2-methyl-[3,4'-bipyridin]-5-amine (1.00 eq) and potassium carbonate (1.20eq) in DMSO was added 2-aminoethanol (5.10eq) drop wise. The reaction was mixture was heated to 35°C for 18hrs in an oil bath. The reaction was partition between water and EtOAc. The aqueous was further washed with EtOAc (3x75mL). The combined organics were dried over MgSO4, filtered, and concentrated to yield 2-((5-amino-6'-fluoro-2-methyl-[3,4'-bipyridin]-2'-yl)amino)ethanol (95%). No further purification was performed. LCMS (m/z) (M+H) =263.0, Rt = 0.38 min.
- Step 3: To a 0.5M suspension of 2-((5-amino-6'-fluoro-2-methyl-[3,4'-bipyridin]-2'-yl)amino)ethanol (1.00 equiv.) and potassium carbonate (1.20eq) in DMSO was added morpholine (5eq). The reaction mixture was irradiated at 150 °C for 30 min in the microwave. The cooled reaction mixture was partitioned between water and EtOAc (3x75mL). The combined organics were washed with brine, dried over MgSO4, filtered and concentrated. The crude was purified by flash chromatography over silica gel (MeOH in DCM 0-15% gradient) to give 2-((5-amino-2-methyl-6'-morpholino-[3,4'-bipyridin]-2'-yl)amino)ethanol (58.0 % yield) as a tan solid. 1H NMR (400 MHz, <dmso>) δ ppm 2.22 (s, 3 H) 3.26 - 3.30 (m, 2 H) 3.37 (t, J=4.50 Hz, 4 H) 3.52 (q, J=6.00 Hz, 2 H) 3.64 - 3.69 (m, 4 H) 4.63 (t, J=5.48 Hz, 1 H) 5.11 (s, 2 H) 5.72 - 5.80 (m, 2 H) 6.24 (t, J=5.48 Hz, 1 H) 6.71 (d, J=2.35 Hz, 1 H) 7.81 (d, J=2.74 Hz, 1 H). LCMS (m/z) (M+H) =330.1, Rt = 0.32 min.
-
- Step 1: In a high pressure vial, a solution of methyl 3-formylbenzoate (1 equiv.) in DCM/EtOH (867:1, 0.40M) was added DeoxoFluor (2.0 equiv.). The reation was purged with N2, the vessel was sealed and heated at 60 °C. After 18hrs of stirring additional DeoxoFluor (2.0 equiv.) was added and allowed to stir for 42hrs. The reaction was followed by TLC (25% EtOAc in heptanes). The reaction was partitioned between brine and EtOAc. The aqueous layer was further washed with EtOAc (3x) and the combined organics were dried over Na2SO4, filtered, and concentrated. The crude material was purified via flash chromatography over silica gel eluting with heptanes and 0-25% ethyl acetate gradient. Isolated methyl 3-(difluoromethyl)benzoate as a yellow oil in 62% yield. 1H NMR (400 MHz, <cdcl3>) δδ ppm 3.94 (s, 3 H) 6.53 - 6.84 (m, 1 H) 7.54 (t, J=7.83 Hz, 1 H) 7.71 (d, J=7.83 Hz, 1 H) 8.15 (d, J=7.83 Hz, 1 H) 8.18 (s, 1 H).
- Step 2: To a solution of methyl 3-(difluoromethyl)benzoate (1 equiv.) in THF (0.25M) was added 1M LiOH (2.5 equiv.) and allowed to stir at RT. Upon initial addition of LiOH, the solution turned from clear to a burnt orange, and after 2hrs the solution is light yellow. The reaction stirred for 18hrs at RT. The volatiles were removed in vacuo, and the aqueous phase was acidified to ∼pH 3. A white precipitate was formed, filtered and dried. Isolated 3-(difluoromethyl)benzoic acid in 78% yield. LCMS (m/z) (M+H) = 245.1, Rt =0.73). 1H NMR (400 MHz, <dmso>) δ ppm 6.97 - 7.30 (m, 1 H) 7.63 - 7.71 (m, 1 H) 7.83 (d, J=7.43 Hz, 1 H) 8.06 - 8.16 (m, 1 H)
-
- Step 1: In a high pressure vial charged with a solution of 1-(4-methylpyridin-2-yl)ethanone (1.0 equiv.) and EtOH (0.1 equiv) in DCM (2.0M) was added DAST (2.5 equiv.). The reaction was heated to 30 oC and heated for 48 hrs. LCMS analysis indicated the formation of the desired product (MH+ - 157.9, Rt - 0.54 min). The reaction was diluted with DCM and quenched with NaHCO3, slowly at 0oC. The phases were separated and the aqueous layer was washed with DCM (2x). The combined organics were dried over MgSO4, filtered, and concentrated. The crude material was purified via flash chromatography over silica gel eluting with heptanes and 0-100% ethyl acetate gradient. Isolated 2-(1,1-difluoroethyl)-4-methylpyridine in 27% yield. LCMS (m/z) (M+H) = 157.9, Rt =0.54.
- Step 2: To a solution of 2-(1,1-difluoroethyl)-4-methylpyridine (1 equiv.) in water (2.0 M) was added KMnO4 (3.0 equiv) and heated to 80 °C for 4hrs. LCMS analysis indicated the formation of the desired product (MH+ - 188.0, Rt - 0.52 min). The reaction was acidified to pH 3 with 1M HCl. The white precipitate was filtered and dried. Isolated 2-(1,1-difluoroethyl)isonicotinic acid in 12% yield. LCMS (m/z) (M+H) = 188.0, Rt =0.52). 1H NMR (400 MHz, <cd3od>) δδ ppm 2.01 (t, J=18.78 Hz, 3 H) 8.00 (d, J=4.70 Hz, 1 H) 8.16 (s, 1 H) 8.80 (d, J=5.09 Hz, 1 H).
-
- Procedure follows exactly as that of 2-(1,1-difluoroethyl)isonicotinic acid. Isolated 2-(difluoromethyl)isonicotinic acid in 23%. LCMS (m/z) (M+H) = 174.0, Rt =0.48).
-
- Step 1: To a vial with a stir bar was added methyl 3-bromobenzoate (1.0 equiv.) 4-isoxazoleboronic acid (1.2 equiv.), PdCl2(dppf).CH2Cl2 adduct (0.1 equiv.), 1M KF (2.0) and DMSO (0.10 M). The reaction mixture was degassed with bubbling nitrogen and the vial capped and heated at 130 °C for 18 hr. LCMS analysis indicated the formation of the desired product (MH+ - 176, Rt - 0.62 min). The reaction mixture was diluted with a saturated solution of NH4Cl and extracted with EtOAc (2x). The combined organics were washed with water and brine, dried over MgSO4, filtered and concentrated. The crude material was purified via flash chromatography over silica gel eluting with heptanes and 0-100% ethyl acetate gradient. Isolated methyl 3-(cyanomethyl)benzoate in 69% yield. LCMS (m/z) (M+H) = 176.1, Rt =0.62). 1H NMR (400 MHz, <cd3od>) δ ppm 3.92 (s, 3 H), 3.99 (s, 2 H), 7.49 - 7.55 (m, 1 H), 7.62 (d, J=7.83 Hz, 1 H), 7.99 (d, J=7.83 Hz, 1 H), 8.04 (s, 1 H).
- Step 2: To a solution of methyl 3-(cyanomethyl)benzoate (1.0 equiv.) in DMSO (0.50 M) was slowly added NaH (3 equiv.) at 0 °C and allowed to stir for 20 mins. To the mixture was added Mel (3.0 equiv.) and allowed to stir 18 hrs at RT. LCMS analysis indicated the formation of the desired product (MH+ - 204, Rt - 0.78 min). Under ice-cooling, the reaction mixture was diluted with water and extracted with EtOAc. The organics were washed with water and brine, dried over MgSO4, filtered, and concentrated. The crude material was purified via flash chromatography over silica gel eluting with heptanes and 0-50% ethyl acetate gradient. Isolated methyl 3-(2-cyanopropan-2-yl)benzoate in 63% yield. LCMS (m/z) (M+H) = 204.1, Rt =0.78).
- Step 3: To a solution of methyl 3-(2-cyanopropan-2-yl)benzoate (1 equiv.) in THF (0.10 M) was added 1M LiOH (2.5 equiv.) and allowed to stir at RT for 18 hrs. LCMS analysis indicated the formation of the desired product (MH+ - 190, Rt - 0.60 min). The volatiles were removed in vacuo, and the aqueous phase was acidified to ∼pH3 with 1M HCl. A white precipitate was formed, filtered and dried. Isolated 3-(2-cyanopropan-2-yl)benzoic acid in 63% yield. LCMS (m/z) (M+H) = 190.1, Rt =0.60. 1H NMR (400 MHz, <cd3od>) δ ppm 1.76 (s, 6 H) 7.54 (t, J=7.83 Hz, 1 H) 7.74 - 7.80 (m, 1 H) 8.00 (d, J=7.43 Hz, 1 H) 8.16 - 8.21 (m, 1 H).
- Step 1. A solution of (S)-tert-butyl 2-(hydroxymethyl)morpholine-4-carboxylate (1.0 equiv.), tosyl chloride (1.10 equiv.), triethylamine (1.40 equiv.) and N,N-dimethylpyridin-4-amine (0.1 equiv.) in dichloromethane (0.1 M) at RT. The resulting mixture was stirred at RT for 2 hours. The reaction mixture was then diluted with water and the aqueous layer was separated and washed sequentially with NaOH (1 M), water, brine dried over sodium sulfate then concentrated in vaccuo to yield (S)-tert-butyl 2-((tosyloxy)methyl)morpholine-4-carboxylate as a pale yellow oil in 99% yield. LCMS (m/z) (M+H) = 390.2, Rt = 0.84 min.
- Step 2. To a solution of (S)-tert-butyl 2-((tosyloxy)methyl)morpholine-4-carboxylate (1.0 equiv.) in DMF (0.1 M) at RT was added sodium azide (2.00). The resulting mixture was heated to 60 °C for 24 h. The reaction then cooled to RT and partitioned between water and diethyl ether. The organic layer was separated then washed with water followed by brine then dried over sodium sulfate. The organic layer was then concentrated in vaccuo to yield (S)-tert-butyl 2-(azidomethyl)morpholine-4-carboxylateas a white solid oil in 83% yield.
- Step 3. A solution of (S)-tert-butyl 2-(azidomethyl)morpholine-4-carboxylateas (1.0 equiv.) in ethanol (0.1 M) was evactuated and back filled with argon (x3). To the solution was then added Pd/C (0.20 eq.) and the mixture was evacuated and back filled with hydrogen (x 3). The mixture was then stirred at RT under a positive pressure of atmospheric hydrogen (balloon) for 24 h. The hydrogen gas was removed by evacuation and the reaction backfilled with argon. The reaction mixture was then filtered through a pad of celite and then concentrated in vaccuo to afford (R)-tert-butyl 2-(aminomethyl)morpholine-4-carboxylate as a white solid in 91% yield. LCMS (m/z) (M+H) = 217.1, Rt = 0.43 min.
- Step 1. To a solution of (R)-tert-butyl 2-(aminomethyl)morpholine-4-carboxylate (1.0 equiv.) and triethylamine (3.0 equiv.) in dichloromethane (0.1 M) was added methyl chloroformate (1.1 equiv.). The resulting mixture was stirred at RT for 45 min. After concentration, the residue was partitioned between EtOAc and water. The organic phase was washed with water and then with brine. After drying over sodium sulfate the solution was concentrated in vaccuo to give crude (R)-tert-butyl 2-(((methoxycarbonyl)amino)methyl)morpholine-4-carboxylate which was used in the next step without further purification. LCMS (m/z) (M+H) = 175.1 (-Boc), Rt = 0.63 min.
- Step 2. To a 4:1 solution of dichloromethane and TFA (0.1 M) was added (R)-tert-butyl 2-(((methoxycarbonyl)amino)methyl)morpholine-4-carboxylate. After 1 h the solution was then concentrated in vaccuo to give crude (S)-methyl (morpholin-2-ylmethyl)carbamate which was used in the next step without further purification. LCMS (m/z) (M+H) = 175.0, Rt = 0.11 min.
- Step 1. To a solution of (R)-tert-butyl 2-(aminomethyl)morpholine-4-carboxylate (1.0 equiv.) and triethylamine (1.5 equiv.) in dichloromethane (0.1 M) was added acetic anhydride (1.1 equiv.). The resulting mixture was stirred at RT for 45 min. After concentration, the residue was partitioned between EtOAc and water. The organic phase was washed with water and then with brine. After drying over sodium sulfate the solution was concentrated in vaccuo to give crude (R)-tert-butyl 2-(acetamidomethyl)morpholine-4-carboxylate which was used in the next step without further purification. LCMS (m/z) (M+H) = 159.1 (-Boc), Rt = 0.53 min.
- Step 2. To a 4:1 solution of dichloromethane and TFA (0.1 M) was added (R)-tert-butyl 2-(acetamidomethyl)morpholine-4-carboxylate. After 1 h the solution was then concentrated in vacuo to give crude (S)-N-(morpholin-2-ylmethyl)acetamide which was used in the next step without further purification. LCMS (m/z) (M+H) = 159.0, Rt = 0.11 min.
- Step 1. A mixture of (R)-tert-butyl 2-(aminomethyl)morpholine-4-carboxylate (1.0 equiv.), 2-hydroxyacetic acid (1.80 equiv.), N1-((ethylimino)methylene)-N3,N3-dimethylpropane-1,3-diamine hydrochloride (2.0 equiv.), and N,N-dimethylpyridin-4-amine (0.20 equiv.) was stirred in DCM (0.1 M) at room temperature overnight. The reaction was quenched with water and washed (3X) with water. The combined aqueous fractions were then back-extracted with chloroform (4X) and the combined organics were dried over Na2SO4, filtered, and concentrated. The resulting oil was passed through a pad of SiO2 gel using 5-50% MeOH/DCM and concentrated to yield (R)-tert-butyl 2-((2-hydroxyacetamido)methyl)morpholine-4-carboxylate as an oil. LCMS (m/z) (M+H) = 175.1 (-Boc), Rt = 0.55 min.
- Step 2. (R)-tert-butyl 2-((2-hydroxyacetamido)methyl)morpholine-4-carboxylate (1.0 equiv.) was dissolved in DCM:TFA (4:1, 0.5 M) and stirred at room temperature. After one hour the solution was concentrated to yield (S)-2-hydroxy-N-(morpholin-2-ylmethyl)acetamide. LCMS (m/z) (M+H) = 175.1, Rt = 0.12 min.
- Step 1. To a 4:1 solution of dichloromethane and TFA (0.1 M) was added (S)-tert-butyl 2-(hydroxymethyl)morpholine-4-carboxylate. After 1 h the solution was then concentrated in vaccuo to give crude (S)-morpholin-2-ylmethanol which was used in the next step without further purification. LCMS (m/z) (M+H) = 60.0, Rt = 0.11 min.
- Step 2. Refer to standard.
- Step 3. A solution of (S)-(4-(4-bromopyridin-2-yl)morpholin-2-yl)methanol (1.0 equiv.), tosyl chloride (1.0 equiv.), triethylamine (1.40 equiv.) and N,N-dimethylpyridin-4-amine (0.1 equiv.) in dichloromethane (0.1 M) at RT. The resulting mixture was stirred at RT for 18 hours. The reaction mixture was then diluted with water and the aqeuous layer was separated and washed sequentially with NaOH (1 M), water, brine dried over sodium sulfate then concentrated in vacuo to yield (S)-(4-(4-bromopyridin-2-yl)morpholin-2-yl)methyl 4-methylbenzenesulfonate in 56% yield. LCMS (m/z) (M+H) = 427.1/429.0, Rt = 0.77 min.
- Step 4. To a 2 M solution of methylamine in methanol was added (S)-(4-(4-bromopyridin-2-yl)morpholin-2-yl)methyl 4-methylbenzenesulfonate (1.0 eq). This solution was microwave heated at 80 °C. After 1 h the solution was then concentrated in vacuo and water was added. The resulting suspension was sonicated and centrifuged. The water soluble portion was separated from the solids. The resulting aqueous solution of (R)-1-(4-(4-bromopyridin-2-yl)morpholin-2-yl)-N-methylmethanamine was used in the next step without further purification. LCMS (m/z) (M+H) = 286.0/288.0, Rt = 0.34 min.
-
- Step 1: To a solution of 5-bromo-2-methoxypyridin-3-amine (1.0 equiv.) in DMF was added 1-bromo-2-(2-bromoethoxy)ethane (1.2 equiv.), followed by DIEA (3.0 equiv.). The solution was heated at 120 °C for 24 hours. Cooled to room temperature and partitioned between ethyl acetate and water. The organic phase was washed with brine, dried over sodium sulfate, filtered and concentrated. The crude material was purified via flash chromatography over silica gel eluting with heptanes and 0-25% ethyl acetate gradient). Isolated 4-(5-bromo-2-methoxypyridin-3-yl)morpholine as a yellow solid in 69% yield. LCMS (m/z) (M+H) = 273.0/274.9, Rt = 0.82 min. 1H NMR (400 MHz, <cdcl3>) δ ppm 2.90 - 3.18 (m, 4 H) 3.76 - 3.91 (m, 4 H) 3.97 (s, 3 H) 7.14 (d, J=1.96 Hz, 1 H) 7.84 (d, J=1.96 Hz, 1 H).
- Step 2: To a solution of 4-(5-bromo-2-methoxypyridin-3-yl)morpholine (1.0 equiv.) in 1,4-dioxane (0.3 M) was added concentrated HCl (5 equiv.) and the solution was heated to 100 °C for 1 h. Upon cooling to room temperature, the solution was concentrated to dryness under vacuo, then dissolved in water and neutralized with solid sodium bicarbonate. The precipitate was filtered, washed with water and dried under vacuo to give 5-bromo-3-morpholinopyridin-2(1H)-one as a beige solid in 93% yield. LCMS m/z (M+H) = 258.9/260.9, Rt = 0.48 min.
-
- To a solution of 2,6-dichloropyrazine (1.0 equiv.) in acetonitrile (0.3 M) was added morpholine (3.5 equiv.) and the reaction was stirred at room temperature for 20 h. The resulting precipitate was filtered off and the filtrate was concentrated under vacuo. The crude material was partitioned between water and ethyl acetate, the organic phase was dried with sodium sulfate, filtered and concentrated to afford 4-(6-chloropyrazin-2-yl)morpholine in 75% yield. LCMS m/z (M+H) = 200.0, Rt = 0.61 min.
-
- Step 1: A solution of 3,5-dibromopyrazin-2(1H)-one (1.0 equiv.) in morpholine (5 equiv.) was heated to 100 °C for 24 h. Cooled to room temperature and filtered off the precipitate. The filtrate was partitioned between water and ethyl acetate. The organic phase was dried with sodium sulfate, filtered and concentrated. The crude material was purified via silica gel column chromatography eluting with ethyl acetate and heptanes (0-50%). The pure fractions were concentrated to yield 5-bromo-3-morpholinopyrazin-2(1H)-one as a white solid in 43% yield. LCMS m/z (M+H) = 259.9, Rt = 0.41 min.
- Step 2: To a solution of 5-bromo-3-morpholinopyrazin-2(1H)-one (1.0 equiv.) in DMF (0.1 M) was added potassium carbonate (2.0 equiv.) and iodomethane (1.0 equiv.) at 0 °C and the solution was allowed to warm to room temperature and stirred for 2 hours. Upon completion, the reaction was partitioned between water and ethyl acetate, the organic phase was washed with brine, dried with sodium sulfate, filtered and concentrated. The crude material was used for the next step without further purification. Isolated 5-bromo-1-methyl-3-morpholinopyrazin-2(1H)-one in 91% yield. LCMS m/z (M+H) = 274/276, Rt = 0.60 min. 1H NMR (400 MHz, <cdcl3>) δ ppm 3.42 (s, 3 H) 3.66-3.83 (m, 4 H) 3.85-4.00 (m, 4 H), 6.77 (s, 1 H).
-
- Step 1: To a solution of 5-bromo-6-methoxypyridin-3-amine (1.0 equiv.) in DMF was added DIEA (3.0 equiv.) and 1-bromo-2-(2-bromoethoxy)ethane (1.0 equiv.). The solution was heated to 120 °C for 24 hours. Upon cooling to room temperature, the reaction was partitioned between water and ethyl acetate, the aqueous phase was extracted three times with ethyl acetate, the organics were combined, dried with sodium sulfate, filtered and concentrated. The crude material was purified via silica gel column chromatography eluting with 0-50% ethyl acetate in heptanes. The pure fractions were concentrated to yield 4-(5-bromo-6-methoxypyridin-3-yl)morpholine in 53% yield as an orange oil. LCMS m/z (M+H) = 273/275, Rt = 0.61 min. 1H NMR (400 MHz, <cdcl3>) δ ppm 2.93-3.18 (m, 4 H) 3.80-4.05 (m, 7 H) 7.50 (d, J=2.74 Hz, 1 H) 7.74 (d, J=2.74 Hz, 1 H).
- Step 2: A solution of 4-(5-bromo-6-methoxypyridin-3-yl)morpholine (1.0 equiv.) in 4M HCI in dioxane (20 equiv.) was heated to 110 °C for 24 hours. Upon cooling to room temperature, the reaction was neutralized with aqueous NaOH to pH ∼ 6 then extracted with ethyl acetate three times. The organic phase was dried with sodium sulfate, filtered and concentrated. Isolated 3-bromo-5-morpholinopyridin-2-ol as the desired product in 32% yield. LCMS (m/z) (M+H) = 259.0/261/0, Rt = 0.36 min.
- Step 3: To a solution of 3-bromo-5-morpholinopyridin-2-ol (1.0 equiv.) in DMF (0.1 M) was added potassium carbonate (2.0 equiv.) and iodomethane (1.0 equiv.). The solution was stirred at room temperature for 3 hours. Partitioned between water and ethyl acetate, the organic phase was washed with brine, dried with sodium sulfate, filtered and concentrated to dryness. Isolated 3-bromo-1-methyl-5-morpholinopyridin-2(1H)-one in 87% yield. LCMS (m/z) (M+H) = 273.0/275.0, Rt = 0.41 min.
-
- Step 1: A solution of 4-bromo-2,6-dichloropyridine (1.0 equiv.) in dioxane and aqueous sodium hydroxide (15% by weight solution, 1:1 ratio, 0.55 M) was heated in the microwave for 30 min at 150 °C. The solution was cooled to room temperature and neutralized with concentrated HCl (pH = ∼6) and extracted with ethyl acetate three times. The organic phase was dried with sodium sulfate, filtered and concentrated. The crude material was dried under vacuo to give 4-bromo-6-chloropyridin-2-ol as an off-white solid in 76% yield. LCMS (m/z) (M+H) = 207.9/209.9, Rt = 0.60 min.
- Step 2: To a solution of 4-bromo-6-chloropyridin-2-ol (1.0 equiv.) in DMF (0.16 M) was added potassium carbonate (2.0 equiv.) and iodomethane (1.2 equiv.) at room temperature. The solution was stirred for 2 hours, then partitioned between water and ethyl acetate. The aqueous phase was extracted with ethyl acetate two more times, the organic phase was washed with brine, dried with sodium sulfate, filtered and concentrated. The crude material was purified via silica gel column chromatography eluting with ethyl acetate and heptanes (0-50% ethyl acetate). The pure fractions were concentrated to yield 4-bromo-6-chloro-1-methylpyridin-2(1H)-one in 38% yield. LCMS (m/z) (M+H) = 221.9/223.9, Rt = 0.64 min.
- Step 3: To a solution of 4-bromo-6-chloro-1-methylpyridin-2(1H)-one (1.0 equiv.) in NMP (0.18 M) was added morpholine (1.1 equiv.) and DIEA (1.1 equiv). The solution was stirred at 100 °C for 4 hours. Upon cooling to room temperature, the solution was partitioned between water and ethyl acetate. The organic phase was washed with water, then brine, dried with sodium sulfate, filtered and concentrated. The crude material was purified via silica gel column chromatography eluting with ethyl acetate and heptanes (0-100% ethyl acetate then 90% ethyl acetate and 10% methanol). Isolated 4-bromo-1-methyl-6-morpholinopyridin-2(1H)-one in 51% yield and 6-chloro-1-methyl-4-morpholinopyridin-2(1H)-one in 15% yield. LCMS (m/z) (M+H) = 273/274.9, Rt = 0.53 min and LCMS (m/z) (M+H) = 229.1/230.9, Rt = 0.47 min respectively.
-
- Step 1: To a solution of 6-chloropyridazin-3-amine (1.0 equiv) in MeOH (1M) at room temperature was added sodium bicarbonate (2.0 equiv.) and the resulting suspension was stirred at room temperature for 30 min before the dropwise addition of bromine (1.0 equiv.). The reaction mixture was stirred for 20 h. Upon concentration under vacuo, the crude residue was purified via silica gel column chromatography eluting with 100% heptanes to 80% ethyl acetate:heptanes to yield 4-bromo-6-chloropyridazin-3-amine in 50% yield. LCMS (m/z) (M+H) = 207.8/209.8, Rt = 0.47 min. 1H NMR (400 MHz, <cdcl3>) δ ppm 5.31-5.63 (m, 2 H) 7.46-7.61 (m, 1H).
- Step 2: To a cooled solution (0-5 °C) of NaNO2 (2.4 equiv.) in H2SO4 conc. (23 equiv.) was added 4-bromo-6-chloropyridazin-3-amine (1.0 equiv.) in acetic acid (0.25 M). The reaction mixture was stirred at 0 °C for 30 min before warming to room temperature and stirring for 1 hour. Water was added and stirred at room temperature for a further 4 hours. The reaction mixture was then extracted with ethyl acetate, dried over MgSO4 and concentrated in vacuo to yield a brown oil. The oil was further purified by silica gel column chromatography eluting with 100% heptanes to 80% ethyl acetate/heptanes to yield 4-bromo-6-chloropyridazin-3(2H)-one as an off-white solid in 83% yield. LCMS (m/z)
- (M+H) = 208.9/210.9, Rt = 0.42 min. 1H NMR (400 MHz, <dmso>) δ ppm 8.08-8.32 (m, 1 H) 13.25-13.71 (m, 1H).
- Step 3: To a solution of 4-bromo-6-chloropyridazin-3(2H)-one (1.0 equiv.) and Cs2CO3 (1.2 equiv.) in DMF (0.07 M) was added iodomethane (1.5 equiv.) drop-wise over 20 min. The resulting mixture was stirred for 3 h. The reaction mixture was then diluted with ammonium chloride, then extracted with ethyl acetate, dried over MgSO4 and concentrated in vacuo to yield as a brown solid. The oil was further purified via silica gel column chromatography eluting with 100% heptanes to 80% ethyl acetate:heptanes to yield 4-bromo-6-chloro-2-methylpyridazin-3(2H)-one as an off-white solid in 79% yield. LCMS (m/z) (M+H) = 222.9/224.9, Rt = 0.54 min. 1H NMR (400 MHz, <cdcl3>) δ ppm 3.77-3.86 (m, 3 H) 7.56-7.69 (m, 1H).
- Step 4: To a solution of 4-bromo-6-chloro-2-methylpyridazin-3(2H)-one (1.0 equiv.) in DMF (0.3 M) was added DIEA (1.0 equiv.) and morpholine (1.0 equiv.) at room temperature. The resulting mixture was heated to 120 °C for 5 h and 30 min. The reaction mixture was diluted with water, extracted with ethyl acetate, dried over MgSO4 and concentrated in vacuo to yield. 6-chloro-2-methyl-4-morpholinopyridazin-3(2H)-one as an off-white solid in 97% yield. LCMS (m/z) (M+H) = 230.0/232.0, Rt = 0.63 min.
-
- To a 0.45 M solution of triphenylphosphine (1.50 equiv.) in DMF was added DIAD (1.50 equiv.). The mixture was stirred at ambient temperature for 10 min. Tetrahydro-2H-pyran-4-ol (2.00 equiv.) was added, and the mixture was stirred for 15 min. 5-Bromo-3-morpholinopyridin-2(1H)-one (1.00 equiv.) was added. The mixture was stirred for 2 hr. The reaction mixture was diluted with water and extracted with ethyl acetate. The combined organics were washed with brine, dried over sodium sulfate, filtered and concentrated with silica gel. The material was purified by flash chromatography over silica gel (heptanes with 0-100% ethyl acetate gradient) to give both the O-alkylated isomer (88% yield) and the N-alkylated isomer (11% yield).
- 4-(5-bromo-2-((tetrahydro-2H-pyran-4-yl)oxy)pyridin-3-yl)morpholine: 1H NMR (400 MHz, <cdcl3>) δ ppm 1.82 (td, J=8.51, 4.30 Hz, 2 H) 2.09 (dt, J=8.99, 4.33 Hz, 2 H) 3.02 - 3.17 (m, 4 H) 3.56 - 3.73 (m, 2 H) 3.77 - 3.89 (m, 4 H) 3.90 - 4.03 (m, 2 H) 5.29 (dt, J=8.01, 3.99 Hz, 1 H) 7.13 (d, J=2.10 Hz, 1 H) 7.78 (d, J=2.20 Hz, 1 H). LCMS (m/z) (M+H) = 343.0/345.0, Rt = 0.92 min.
- 5-bromo-3-morpholino-1-(tetrahydro-2H-pyran-4-yl)pyridin-2(1H)-one: 1H NMR (400 MHz, <cdcl3>) δ ppm 1.26 (s, 2 H) 1.72 - 1.96 (m, 4 H) 3.08 - 3.24 (m, 4 H) 3.47 - 3.67 (m, 2 H) 3.79 - 3.95 (m, 4 H) 4.04 - 4.19 (m, 2 H) 5.14 (s, 1 H) 6.64 (d, J=2.40 Hz, 1 H) 7.13 (d, J=2.40 Hz, 1 H). LCMS (m/z) (M+H) = 342.9/344.9, Rt = 0.63 min.
-
- A 0.3 M solution of 5-bromo-3-morpholinopyridin-2(1H)-one (1.00 equiv.) in DMF was treated with sodium hydride (1.20 equiv.). The mixture was stirred for 20 min at ambient temperature. 2-bromopropane (1.20 equiv.) was added. The mixture was stirred at 70 °C for 18 hr. The cooled reaction mixture was diluted with water and extracted with ethyl acetate. The combined extracts were washed with brine, dried over sodium sulfate, filtered, and concentrated. The crude material was purified by flash chromatography over silica gel (heptanes with 20-100% ethyl acetate gradient) to give both the O-alkylated isomer (56% yield) and the N-alkylated isomer (26% yield).
- 4-(5-bromo-2-isopropoxypyridin-3-yl)morpholine: 1H NMR (400 MHz, <cdcl3>) δ ppm 1.39 (d, J=6.16 Hz, 6 H) 3.04 - 3.15 (m, 4 H) 3.82 - 3.93 (m, 4 H) 5.24 - 5.44 (m, 1 H) 7.12 (d, J=2.10 Hz, 1 H) 7.82 (d, J=2.15 Hz, 1 H). LCMS (m/z) (M+H) = 301.0/303.0, Rt = 0.99 min.
- 5-bromo-1-isopropyl-3-morpholinopyridin-2(1H)-one: 1H NMR (400 MHz, <cdcl3>) δ ppm 1.30 - 1.40 (m, 6 H) 3.12 - 3.21 (m, 4 H) 3.82 - 3.93 (m, 4 H) 5.19 - 5.33 (m, 1 H) 6.62 (d, J=2.35 Hz, 1 H) 7.11 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 301.0/303.0, Rt = 0.70 min.
-
- A 0.3 M solution of 5-bromo-3-morpholinopyridin-2(1H)-one (1.00 equiv.) in DMF was treated with sodium hydride (1.20 equiv.). The mixture was stirred for 15 min at ambient temperature. Tert-butyl (2-bromoethyl)carbamate (1.20 equiv.) was added. The mixture was stirred at 60 °C for 3 hr. The cooled reaction mixture was diluted with water and extracted with ethyl acetate. The combined organics were washed with saturated aqueous sodium bicarbonate, dried over sodium sulfate, filtered, and concentrated to give tert-butyl (2-(5-bromo-3-morpholino-2-oxopyridin-1(2H)-yl)ethyl)carbamate. LCMS (m/z) (M+H) = 402.1/404.1, Rt = 0.78 min.
- To a solution of the starting pyridone or pyrazinone (1.0 equiv.) in DMF (0.1-0.2 M) was added the electrophile (1.0-1.5 equiv.) followed by potassium carbonate or cesium carbonate (1.0-2.0 equiv.). The solution was stirred at room temperature (or alternatively heated up to 80 °C) for 2-24 hours. Upon cooling to room temperature, the solution was partitioned between water and ethyl acetate, the organic phase was washed with water, then brine, dried over sodium sulfate, filtered and concentrated under vacuo. The crude material was a mixture of N-alkyl and O-alkyl products. The material could be used for the next step without further purification as a mixture of isomers or it could be purified via silica gel column chromatography eluting with 0-100% ethyl acetate in heptanes.
-
- To a solution of 5-bromo-3-morpholinopyridin-2(1H)-one (1.0 equiv.) in DMF (0.2 M) was added potassium carbonate (2.0 equiv.), followed by iodomethane (1.0 equiv.). The solution was stirred at room temperature for 3 hours. The solution was partitioned between water and ethyl acetate, the organic phase was washed with brine, dried with sodium sulfate, filtered and concentrated. The crude material was a mixture of N-methylated and O-methylated products (90:10). The material could be used for the next step without further purification as a mixture of isomers or it could be purified via silica gel column chromatography eluting with 0-100% ethyl acetate in heptanes to afford 5-bromo-1-methyl-3-morpholinopyridin-2(1H)-one in 71% yield LCMS (m/z) (M+H) = 273/275, Rt = 0.55 min and 4-(5-bromo-2-methoxypyridin-3-yl)morpholine in 10% yield. LCMS (m/z) (M+H) = 273/275, Rt = 0.82 min.
- The intermediates listed below were prepared using methods similar to those described for the preparation of 5-bromo-1-methyl-3-morpholinopyridin-2(1H)-one AND 4-(5-bromo-2-methoxypyridin-3-yl)morpholine (Method 1) using the appropriate starting materials.
-
- Method 1 was followed using 5-bromo-3-morpholinopyridin-2(1H)-one (1.0 equiv.), 2-iodoethanol (1.0 equiv.) and potassium carbonate (2.0 equiv.) at room temperature to give 5-bromo-1-(2-hydroxyethyl)-3-morpholinopyridin-2(1H)-one and 2-((5-bromo-3-morpholinopyridin-2-yl)oxy)ethanol as a mixture of two isomers (-5:1 ratio). LCMS (m/z) (M+H) = 303/305, Rt = 0.47 min and 0.62 min.
-
- Method 1 was followed using 5-bromo-3-morpholinopyridin-2(1H)-one (1.0 equiv.), (methylsulfonyl)ethene (1.2 equiv.) and cesium carbonate (1.2 equiv.) at room temperature to give 5-bromo-1-(2-(methylsulfonyl)ethyl)-3-morpholinopyridin-2(1H)-one in 98% yield. 1H NMR (400 MHz, <cdcl3>) δ ppm 2.92 (s, 3 H) 3.09-3.23 (m, 4H) 3.53 (t, J=6.65 Hz, 2 H) 3.78-3.96 (m, 4 H) 4.32 (t, J=6.65 Hz, 2 H) 6.69 (s, 1 H) 7.23 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 365.1/366.9, Rt = 0.57 min.
-
- Method 1 was followed using 5-bromo-3-morpholinopyridin-2(1H)-one (1.0 equiv.), iodoethane (1.0 equiv.) and cesium carbonate (1.0 equiv.) at 50 °C to afford a mixture of 5-bromo-1-ethyl-3-morpholinopyridin-2(1H)-one and 4-(5-bromo-2-ethoxypyridin-3-yl)morpholine in about 2:1 ratio. LCMS (m/z) (M+H) = 286.9/288.9, Rt = 0.62 min and 0.88 min.
-
- Method 1 was followed using 5-bromo-3-morpholinopyridin-2(1H)-one (1.0 equiv.), 2-bromoacetonitrile (1.2 equiv.) and potassium carbonate (1.0 equiv.) at 80 °C and the isomers were purified via silica gel column chromatography (0-50% ethyl acetate and heptanes). Isolated 2-(5-bromo-3-morpholino-2-oxopyridin-1(2H)-yl)acetonitrile in 61% yield. LCMS (m/z) (M+H) = 298/299.8, Rt = 0.60 min. And 2-((5-bromo-3-morpholinopyridin-2-yl)oxy)acetonitrile in 12% yield. LCMS (m/z) (M+H) = 298/299.8, Rt = 0.82 min.
-
- Method 1 was followed using 5-bromo-3-morpholinopyridin-2(1H)-one (1.0 equiv.), 2-bromopropanenitrile (1.2 equiv.) and potassium carbonate (1.0 equiv.) at 80 °C and the isomers were purified via silica gel column chromatography (0-50% ethyl acetate and heptanes). Isolated 2-(5-bromo-3-morpholino-2-oxopyridin-1(2H)-yl)propanenitrile in 50% yield. LCMS (m/z) (M+H) = 312/314, Rt = 0.63 min. And 2-((5-bromo-3-morpholinopyridin-2-yl)oxy)propanenitrile in 39% yield. LCMS (m/z) (M+H) = 312/314, Rt = 0.84 min.
-
- 2-(5-bromo-3-morpholino-2-oxopyridin-1(2H)-yl)propanenitrile was further purified via chiral HPLC (SFC, Methanol, AD-column) to give: Peak 1 (Rt = 1.13 min, 99% ee) and Peak 2 (Rt = 1.74 min, 95% ee).
-
- 2-((5-bromo-3-morpholinopyridin-2-yl)oxy)propanenitrile was further purified via chiral HPLC (Heptanes/ethanol 95:5, AD-H column) to give: Peak 1 (Rt = 4.808 min, 99% ee) and Peak 2 (Rt = 7.274 min, 99% ee).
- To a solution of the aryl halide (1.0 equiv.) and the boronic ester (Intermediate A-G, 1.0-1.2 equiv.) in DME and 2M sodium carbonate (3:1, 0.1 M) was added PdCl2(dppf)-DCM adduct (0.1-0.5 equiv.) in a microwave vial equipped with a stir bar. The reaction was heated to 120 °C for 10-20 min in the microwave. The solution was partitioned between ethyl acetate and water, the organic phase was dried with sodium sulfate or magnesium sulfate, filtered and concentrated. The crude material was purified via preparative reverse HPLC. Upon lyophilization, the TFA salt of the product was obtained.
- Compounds of Formula (I) were prepared by the synthetic schemes shown above, using the intermediates depicted above and analogs made similarly. Other compounds of the invention can be made by the same methods, based on the Examples described herein and known starting materials, in combination with methods known in the art.
-
- Step 1: To a solution of ethyl isonicotinate (1.0 eq) and bis(((difluoromethyl)sulfinyl)oxy)zinc (2.7eq) in DCM /Water (1:0.4) was cooled to 0 °C followed by the slow addition of t-butylhydroperoxide (6M in decane) (5 eq) with vigorous stirring. The reaction was warmed to RT and stirred for 18 hrs. TLC (4:1 EtOAc in Heptanes) indicates compete consumption of SM. The reaction was partiontioned between DCM and NaHCO3(sat). The organic phase was separated and the aqueous layer was extracted with DCM (3x). The combined organics were dried over MgSO4, filtered and concentrated. The crude was loaded onto silica gel and purified via ISCO (0-30% EtOAc in heptanes). Pure fractions were combined and concentrated to yield ethyl 2-(difluoromethyl)isonicotinate in 95% as a colorless oil. 1H NMR (400 MHz, <cdcl3>) δ ppm 1.44 (t, J=7.24 Hz, 3 H) 4.46 (q, J=7.30 Hz, 2 H) 6.70 (t, J=55.60 Hz, 1 H) 7.98 (d, J=4.70 Hz, 1 H) 8.19 (s, 1 H) 8.82 (d, J=5.09 Hz, 1 H).
- Step 2: To a solution of 2-(difluoromethyl)isonicotinate (1 eq) in THF (0.25 M) was added 2M LiOH (2.5 eq) and allowed to stir at RT. Upon initial addition of LiOH, the solution turned from clear to burnt orange. After 2 hrs of stirring, the solution is light yellow in color. The reaction stirred for 18 hrs. The volatiles were removed in vacuo, and the aqueous phase was acidified to ∼pH 3. A white ppt formed and was filtered and dried. Some product remained in the aqueous layer which was extracted with BuOH (2x). The organics were dried over MgSO4, filtered, concentrated and dried on the high-vacuum for 2 days to yield 2-(difluoromethyl)isonicotinic acid in 99% as a white solid. 1H NMR (400 MHz, <dmso>) δ ppm 7.05 (t, J=54.00 Hz, 1 H) 7.97 (d, J=4.70 Hz, 1 H) 8.05 (s, 1 H) 8.82 (d, J=4.70 Hz, 1 H)
-
- Step 1: To a solution of 2-bromo-4-methylpyridine (1.0 equiv) in toluene (0.3 M) at -78 °C was slowly added n-BuLi (1.15 equiv) and the mixture was allowed to stir for 45 min. Acetone (3 equiv) was then added, and the reaction was allowed to warm to 25 °C over 30 min. The reaction was quenched with saturated aqueous ammonium chloride and extracted three times with ethyl acetate The combined organics were washed with brine, dried over magnesium sulfate, filtered and concentrated. The crude residue was purified via flash chromatography over silica gel eluting with heptanes and 0-50% ethyl acetate gradient. Isolated 2-(4-methylpyridin-2-yl)propan-2-ol as a pale yellow oil in 72 % yield. LCMS (m/z) (M+H) = 151.9, Rt =0.28 min.
- Step 2: To a solution of 2-(4-methylpyridin-2-yl)propan-2-ol (1.0 equiv.) in DCM (0.2 M) at -78 °C was added DAST (1.4 equiv.). The reaction was allowed to warm to 0 °C over 30 min and then slowly quenched with saturated aqueous sodium bicarbonate and extracted two times with DCM. The combined organics were washed with brine, dried over magnesium sulfate, filtered and concentrated. The crude residue was purified via flash chromatography over silica gel eluting with pentane and 0-20% diethyl ether gradient. Isolated 2-(2-fluoropropan-2-yl)-4-methylpyridine as a pale yellow oil in 61 % yield. LCMS (m/z) (M+H) = 153.9, Rt =0.32 min.
- Step 3: To a solution of 2-(2-fluoropropan-2-yl)-4-methylpyridine (1.0 equiv.) in water (0.2 M) was added KMnO4 (3.0 equiv) and the reaction heated to 80 °C for 1.5 hrs. More KMnO4 (1.5 equiv) was added and the reaction heated at 80 °C for an additional 1.5 hrs. The reaction was cooled to room temperature, acidified to pH 3 with 1 M HCl, and then extracted three times with ethyl acetate. The combined organics were dried over magnesium sulfate, filtered and concentrated. Isolated 2-(2-fluoropropan-2-yl)isonicotinic acid as a white solid in 43% yield. LCMS (m/z) (M+H) = 184.0, Rt =0.45. 1H NMR (400 MHz, <dmso>) δ ppm 1.65 (s, 3 H) 1.70 (s, 3 H) 7.76 (dd, J=5.09, 1.57 Hz, 1 H) 7.93 (s, 1 H) 8.75 (d, J=5.09 Hz, 1 H)
-
- Step 1: Monomethyl isophthalate (1.0 equiv) and hydrazine hydrate (4 equiv) were combined in MeOH (1.0 M) and heated to reflux for 4 h. More hydrazine hydrate (4 equiv) was added and the reaction was continued refluxing for another 3 h. The mixture was cooled and concentrated, providing 3-(hydrazinecarbonyl)benzoic acid which was used without further purification. LCMS (m/z) (M+H) = 181.0, Rt =0.27 min.
- Step 2: A mixture of 3-(hydrazinecarbonyl)benzoic acid (1.0 equiv), triethyl orthoformate (12 equiv), and TsOH.H2O (0.1 equiv) was heated at 60 °C overnight, and then further heated to 120 °C for 1.5 h. The mixture was cooled to room temp and poured onto water. The precipitated solid was filtered, washed with water, and dried to give 3-(1,3,4-oxadiazol-2-yl)benzoic acid as a white solid in 61% yield. LCMS (m/z) (M+H) = 191.0, Rt =0.44 min. 1H NMR (400 MHz, <dmso>) δ ppm 7.74 (t, J=7.83 Hz, 1 H) 8.16 (d, J=7.83 Hz, 1 H) 8.25 (d, J=7.43 Hz, 1 H) 8.51 (s, 1 H) 9.38 (s, 1 H) 13.39 (br. s., 1 H)
-
- Step 1: In a round bottom flask equiped with a stir bar and purged with nitrogen was added 5-bromo-3-(trifluoromethyl)pyridin-2-ol (1.0 equiv.), potassium carbonate (2.0 equiv.) and DMF (0.2 M). The mixture was stirred at room temperature and iodoethane (1.2 equiv.) was added via syringe. The mixture was warmed to 30 °C for 4 hours at which time LCMS indicated full conversion. The reaction was worked up by partitioning between water and ethyl acetate, the aqueous phase was extracted 3 more times with ethyl acetate, the organics were combined, washed with brine, dried with sodium sulfate, filtered and concentrated to yield 5-bromo-1-ethyl-3-(trifluoromethyl)pyridin-2(1H)-one (83%). 1H NMR (400 MHz, <cdcl3>) δ ppm 1.32 - 1.50 (m, 3 H) 4.04 (q, J=7.17 Hz, 2 H) 7.63 (br. s., 1 H) 7.78 (br. s., 1 H). LCMS (m/z) (M+H) = 269.1/271.1, Rt = 0.72 min
- Step 2: In a 2.0 mL microwave tube was added 5-bromo-1-ethyl-3-(trifluoromethyl)pyridin-2(1H)-one (1.0 equiv.), PdCl2(dppf).CH2Cl2 adduct (0.1 equiv.), MO(CO)6 (1.0 equiv.), methanol (10.0 equiv.) and THF (0.4 M). The mixture was capped and stirred while DBU (3.0 equiv) was added, fizzing occured and the tube was vented and subsequently heated in the microwave at 120 °C for 20 min at which time LCMS indicated full conversion to product (M+H = 250). The reaction was filtered through Celite, concentrated, and purified via ISCO to yield methyl 1-ethyl-6-oxo-5-(trifluoromethyl)-1,6-dihydropyridine-3-carboxylate (52% yield). LCMS (m/z) (M+H) = 250.0, Rt = 0.69 min.
- Step 3: To a solution of methyl 1-ethyl-6-oxo-5-(trifluoromethyl)-1,6-dihydropyridine-3-carboxylate (1.0 equiv.) in THF (0.25 M) was added lithium hydroxide (1.0 M, 3.0 equiv.) and allowed to stir at RT. Upon initial addition of LiOH, the solution turned from clear to burnt orange.The rxn stirred overnight at which time LCMS indicated conversion to M+H = 236. The volatiles were removed in vacuo, and the aqueous phase was acidified to ∼pH 3. A tan ppt formed and was filtered and dried. A significant amount of the product remained in the aqueous layer so it was extracted 3x with EtOAc, dried, filtered and concentrated. The solids were combined to yield 1-ethyl-6-oxo-5-(trifluoromethyl)-1,6-dihydropyridine-3-carboxylic acid (97 % yield). 13C NMR (400 MHz, <cdcl3>) δ ppm 166.2, 160.1, 148.3, 140.0, 125.5, 122.8, 110.6, 47.4, 14.7. LCMS (m/z) (M+H) = 236.0, Rt = 0.53 min.
-
- Step 1: To a flame dried flask and 2-cyano-4-methylpyridine (1.0 equiv.) in THF (0.5 M) at -78 °C was added 3M ethylmagnesiumbromide in diethyl ether (1.2 equiv.) and the mixture was stirred at that temperature for 20 mins and then warmed to room temperature. The reaction mixture was acidified with aqueous citric acid and then partitioned between ethyl acetate and water. The separated organic layer was dried with sodium sulfate and concentrated under vacuo. The concentrated crude was purified via silica gel chromatography and eluted with 0 to 100% ethyl acetate in heptanes to give 1-(4-methylpyridinyl-2-yl)propan-1-one in 78% yield. LCMS m/z (M+H) = 150.1, Rt = 0.35 min.
- Step 2: To 1-(4-methylpyridinyl-2-yl)propan-1-one (1 eq) in DCM (0.46 M) was added DAST (3 eq) and ethanol (0.8 eq) and the mixture was refluxed under nitrogen atmosphere. After 5 h another portion of ethanol (0.8 eq) was added and the mixture was refluxed for 16h. The reaction mixture was partitioned between ethyl acetate and saturated sodium bicarbonate solution and the separated organic layer was dried with sodium sulfate and concentrated under vacuo. The concentrated crude was purified via silica gel chromatography and eluted with 0 to 100% ethyl acetate in heptanes to give 2-(1,1-difluoropropyl)-4-methylpyridine in 70% yield. LCMS m/z (M+H) = 172.1, Rt = 0.68 min.
- Step 3: To 2-(1,1-difluoropropyl)-4-methylpyridine (1 eq) in water (0.36M) was added potassium permanganate (3eq) and the mixture was heated to 80°C for 6h. To the reaction mixture was added another portion of potassium permanganate (1.5 eq) and after 1 h the reaction mixture was cooled to ambient temperature and was then acidified with 6N HCI and the product was extracted with ethyl acetate and the separated organic layer was dried with sodium sulfate and concentrated under vacuo to give 2-(1,1-difluoropropyl)isonicotinic acid in 23% yield. LCMS m/z (M+H) = 202.1, Rt = 0.64 min.
-
- Step 1: To a solution of methyl-2-acetylisonicotinate (1.0 equiv.) in THF (0.089M) at-78 °C was added 3M solution of methyl magnesiumbromide in diethyl ether (6 eq) drop-wise over 10 min. The reaction mixture was quenched with water at that temperature and brought to ambient temperature. The reaction mixture was partitioned between ethyl acetate and water. The separated organic layer was dried with sodium sulfate and concentrated under vacuo. The concentrated crude was purified via silica gel chromatography and eluted with 0 to 100% ethyl acetate in heptanes to give methyl 2-(2-hydroxypropan-2-yl)isonicotinate in 38% yield. LCMS m/z (M+H) = 196 Rt = 0.3 min.
- Step 2: To methyl 2-(2-hydroxypropan-2-yl)isonicotinate (1.0 equiv.) in THF (0.3 M) was added 2M Lithium hydroxide (2eq) and the reaction mixture was stirred at ambient temperature for 1h. The reaction mixture was concentrataed and to it was added 6M HCl (2eq) (pH=4) and then extracted with 3:1 chloroform:IPA mixture and the separated organic layer was dried with sodium sulfate and concentrated under vacuo to give 2-(2-hydroxypropan-2-yl)isonicotinic acid in 91% yield. LCMS (m/z) (M+H) = 182, Rt = 0.12 min. 1H NMR (400 MHz, <dmso>) δ ppm 1.40 (d, J=5.09 Hz, 16 H) 5.08 - 5.23 (m, 1 H) 7.15 - 7.29 (m, 1 H) 7.67 - 7.78 (m, 1 H) 8.28 - 8.43 (m, 1 H)
-
- Step 1: To a dry round bottom flask was added a solution of ZnCl2 (0.5 M in THF) (1.50 equiv.) followed by cyclopropylmagnesium bromide (0.5 M in THF) (1.50 equiv.) at room temperature under Argon. The resulting solution was stirred for 30 min before the addition of methyl 6-chloropyridazine-4-carboxylate (1.0 equiv.), PdCl2(dppf)-DCM (0.05 equiv.), and zinc dust (0.15 equiv.). The resulting mixture was then heated to 55 °C overnight. LCMS indicated 90% conversion and the reaction was cooled, quenched with H2O, filtered through Celite, extracted with EtOAc (3x), dried, concentrated, and purified on a ISCO SiO2 cartridge using 0-100% EtOAc/Heptanes to yield methyl 6-cyclopropylpyridazine-4-carboxylate (39% yield). 1H NMR (400 MHz, <cdcl3>) δ ppm 1.12 - 1.34 (m, 4 H) 2.11 - 2.36 (m, 1 H) 4.01 (s, 3 H) 7.73 (d, J=1.96 Hz, 1 H) 9.43 (d, J=1.96 Hz, 1 H). LCMS (m/z) (M+H) = 178.9, Rt = 0.46 min.
- Step 2: To a solution of methyl 6-cyclopropylpyridazine-4-carboxylate (1.0 equiv.) in THF (0.25 M) was added lithium hydroxide (1.0 M, 3.0 equiv.) and allowed to stir at room temperature. The rxn stirred overnight at which time LCMS indicated conversion to M+H = 165. The volatiles (THF) were removed in vacuo, and the aqueous phase was acidified to ∼pH 3-4 with HCl. The reaction was diluted with H2O and brine, extracted with EtOAc (3x), dried over MgSO4, filtered, and concentrated to yield 6-cyclopropylpyridazine-4-carboxylic acid (83% yield). LCMS (m/z) (M+H) = 164.8, Rt = 0.27 min.
-
- Step 1: To an oven dried round-bottomed flask was added a solution of zinc chloride (0.5 M in THF, 1.5 equiv.) followed by cyclopropylmagnesium bromide (0.5 M in THF, 1.5 equiv.) at room temperature and the resulting solution was stirred at room temperature for 30 min before the portionwise sequential addition of 2-chloroisonicotinonitrile (1.0 equiv.), dppf (0.12 equiv.) and Pd2(dba)3 (0.06 equiv.) at room temperature. The resulting mixture was heated to 60 °C for 23 hours. At this point, LC/MS indicated complete consumption of the starting material and formation of the desired product. The reaction mixture was quenched by the addition of ammonium chloride and diluted with diethyl ether. Extracted with ethyl acetate three times, the combined organics were dried over magnesium sulfate and concentrated in vacuo to yield a brown oil. The oil was further purified by flash column chromatography eluting with 100% heptanes to 50% ethyl acetate:heptanes to yield 2-cyclopropylisonicotinonitrile as the desired product as a yellow oil in 75% yield. LCMS (m/z) (M+H) = 145.0, Rt =0.53 min.
- Step 2: To a solution of 2-cyclopropylisonicotinonitrile (1.0 equiv.) in ethanol and water (2:3, 1.7 M) was added sodium hydroxide (2.0 equiv.). The resulting mixture was then heated to 80 °C for 90 min. Cooled to room temperature and concentrated under vacuo. The residue was diluted with water and 2M HCl to pH = 5. The aqueous layer was separated and extracted with ethyl acetate three times. The combined organics were then dried over magnesium sulfate, filtered, and concentrated under vacuo to yield 2-cyclopropylisonicotinic acid as a white solid in 99% yield. LCMS (m/z) (M+H) = 164.0, Rt =0.26 min.
-
- Step 1: To a solution of ethyl isonicotinate (1.0 equiv.) in DMSO (0.1M) was added sulphuric acid (2.0 equiv.), iron(II) sulfate heptahydrate (0.3 equiv.), 3-iodooxetane (2.0 equiv.). Heated to 40 °C and then added hydrogen peroxide (30% in water, 3.0 equiv.). After 2 min, another 0.3 equiv. of iron (II) sulfate heptahydrate was added and stirred for 30 min. After 30 min, added additional hydrogen peroxide (3.0 equiv.) and iron (II) sulfate heptahydrate (0.3 equiv.) and stirred for 15 min at 40 °C. After 2 hours, LC/MS indicated complete conversion to product. Quenched by the addition of 1M NaOH and diluted with diethyl ether. Extracted three more times with diethyl ether, the organics were combined, dried over magnesium sulfate, filtered and concentrated in vacuo to yield an orange oil. This material was further purified via flash column chromatography eluting with 100% heptanes to 20% ethyl acetate:heptanes to 80% ethyl acetate:heptanes to yield ethyl 2-(oxetan-3-yl)isonicotinate as a colorless oil in 14% yield. LCMS (m/z) (M+H) = 208.1, Rt =0.48 min.
- Step 2: To a solution of ethyl 2-(oxetan-3-yl)isonicotinate (1.0 equiv.) in THF and Water (1:1, 0.45 M) was added lithium hydroxide (2.0 equiv.) at room temperature. The mixture was stirred for 4 hours at rt. The reaction was quenched with 2M HCI and diluted with ethyl acetate. The organic phase was dried over magnesium sulfate, filtered and concentrated under vacuo to yield 2-(oxetan-3-yl)isonicotinic acid as an off-white solid in 41% yield. LCMS (m/z) (M+H) = 180.0, Rt =0.22.
-
- Step 1: To a solution of methyl 6-chloropyridazine-4-carboxylate (1.0 equiv.) in HI (57% w/w in water) (1.35 M) was added Nal (1.3 equiv.). The reaction was heated at 40 °C for 20 hrs. The reaction mixture was cooled to room temperature, neutralized with sat. NaHCO3 and extracted with EtOAc. The combined organic solution was washed with sat NH4Cl , brine, dried and concentrated in vacuo to give methyl 6-iodopyridazine-4-carboxylate in 87% yield. LCMS (m/z) (M+H) = 264.9, Rt = 0.48 min.
- Step 2: To a mixture of methyl 6-iodopyridazine-4-carboxylate (1.0 equiv.) and [(phen)CuCF3] (1.5 equiv.) at rt was added DMF(0.28 M). The mixture was stirred at rt overnight, diluted with ether and filtered through Celite. The organics were washed with H2O, Brine and dried over Na2SO4 and concentrated to yield methyl 6-(trifluoromethyl)pyridazine-4-carboxylate in 99% yield. LCMS (m/z) (M+H) = 206.9, Rt = 0.53 min.
- Step 3: To a solution of methyl 6-(trifluoromethyl)pyridazine-4-carboxylate (1.0 equiv.) in THF/water (1:1, 0.20 M) was added LiOH (6.0 equiv.). After it stirred at rt for 3 hr, the mixture was concentrated to remove most of THF and the residue was diluted with EtOAc and neutralized with 6N HCl to pH=2. The organic layer was washed with brine, dried with Na2SO4, filtered and concentrated to yield 6-(trifluoromethyl)pyridazine-4-carboxylic acid in 69% yield. LCMS (m/z) (M+H) = 192.8, Rt = 0.37 min. 1H NMR (400 MHz, <dmso>) δ ppm 8.42 (d, J=1.57 Hz, 1 H), 9.81 (d, J=1.57 Hz, 1 H).
-
- Step 1: To a mixture of cyclopropanecarbonitrile (4.0 equiv.) and 2-fluoro-4-methylpyridine (1.0 equiv.) was added KHMDS in PhMe (1.3 equiv.) to give a dark suspension. The mixture was heated to reflux for 1.5 hours at which time the reaction was cooled to RT, quenched with NH4Cl (aq), extracted with EtOAc (3X), dried over Na2SO4, filtered, and concentrated to yield 1-(4-methylpyridin-2-yl)cyclopropanecarbonitrile in 38% yield. LCMS (m/z) (M+H) = 158.8, Rt = 0.43 min. The crude material was used in next step.
- Step 2: To a solution of 1-(4-methylpyridin-2-yl)cyclopropanecarbonitrile (1.0 equiv.) in water (0.16 M) was added potassium permanganate (6.0 equiv.). The mixture was heated at 60 °C for 4 hr. The mixture was cooled to rt, acidified with 2 M HCl to pH=4 and extracted with EtOAc. The organic layer was washed with brine, dried over Na2SO4 and concentrated to yield 2-(1-cyanocyclopropyl)isonicotinic acid in 34% yield. LCMS (m/z) (M+H) = 189.1, Rt = 0.53 min.
-
- Step 1: A solution of 5-methylpyridazin-3(2H)-one (1.0 equiv.) in POCl3 (2.3 M) was heated at 90 °C for 2 h. The reaction mixture was poured into crushed ice and neutralized with sodium bicarbonate. After three extractions with EtOAc, the combined organic phase was washed with brine and then dried over sodium sulfate. After concentration, the crude material was purified via normal phase chromatography eluting with 30 % EtOAc in heptanes. 3-chloro-5-methylpyridazine was isolated in 93% yield. LCMS (m/z) (M+H) = 128.9, Rt = 0.37 min.
- Step 2: To a solution of tert-butyl 2-cyanoacetate (1.0 equiv.) in THF (0.25 M) in a flame dried flask under Ar and cooled in an ice-water bath was added sodium hydride (2.7 eq). After 30 min, 3-chloro-5-methylpyridazine in THF (2 M) was added dropwise. After several min, the solution was warmed to room temperature and then microwave heated at 120 °C for 60 min. The reaction mixture was then partitioned between water and EtOAc. The organic phase was then washed with water and brine and then dried over sodium sulfate. After concentration, the crude material was purified via normal phase chromatography. tert-butyl 2-cyano-2-(5-methylpyridazin-3-yl)acetate was isolated in 44% yield. LCMS (m/z) (M+H) = 178.1, Rt = 0.90 min.
- Step 3: To a solution of tert-butyl 2-cyano-2-(5-methylpyridazin-3-yl)acetate (1.0 equiv.) in DCM (0.1 M) was added 2,2,2-trifluoroacetic acid (24 eq). After 1 h 45 min, the reaction mixture was concentrated and was then purified via normal phase chromatography. Product eluted at 90 % EtOAc in heptanes. 2-(5-Methylpyridazin-3-yl)acetonitrile was isolated in 81% yield. LCMS (m/z) (M+H) = 134.0, Rt = 0.25 min.
- Step 4: In a flame dried flask under Ar, 2-(5-methylpyridazin-3-yl)acetonitrile was dissolved in DMF (0.1 M) and then cooled in an ice-water bath. Sodium hydride (3 eq) was added. After 30 min, 1,2-dibromoethane (1 eq) was added. After 2 h, the reaction mixture was warmed to room temperature and was then poured into water. The product was extracted with three portions of EtOAc. The combined organics were washed with brine and dried over sodium sulfate. The organics were concentrated and were then purified via normal phase chromatography. Product eluted at 20% EtOAc in heptanes. 1-(5-Methylpyridazin-3-yl)cyclopropanecarbonitrile was isolated in 65% yield. LCMS (m/z) (M+H) = 160.2, Rt = 0.40 min.
- Step 5: To a solution of 1-(5-methylpyridazin-3-yl)cyclopropanecarbonitrile (1.0 equiv.) in pyridine (0.38 M) under Ar was added selenium dioxide (4 eq). After heating at 90 °C for 2 days, the reaction mixture was cooled in an ice bath and water was added. After washing with ethyl acetate, the aqueous phase was acidified to pH 3 with 6 N HCI and then extracted with ethyl acetate. The combined organics were dried over Na2SO4 and concentrated to give 6-(1-cyanocyclopropyl)pyridazine-4-carboxylic acid in 36 % yield. LCMS (m/z) (M+H) = 190.2, Rt = 0.36 min.
-
- Step 1: To methyl 3-(bromomethyl)benzoate (1.0 equiv.) in THF (0.44M) at rt was added sodium methanesulfonate (2.0 equiv.). The mixture was stirred at rt for 18 h. The reaction mixture was poured onto ice-water. The solid was collected by filtration and dried overnight under vacuo to give methyl 3-((methylsulfonyl)methyl)benzoate in 95% yield. LCMS m/z (M+H) = 229.2, Rt = 0.52 min.
- Step 2: To methyl 3-((methylsulfonyl)methyl)benzoate (1.0 equiv.) in THF (0.16M) at rt was added sodium t-butoxide (3.0 equiv.) and 2.0 M methyl iodide in diethyl ether (2.2 equiv.). The reaction mixture was stirred at rt for 18 h. The reaction mixture was partitioned between ethyl acetate and water. The separated organic layer was dried with sodium sulfate and concentrated under vacuo. The concentrated crude was purified via silica gel chromatography and eluted with 0 to 50% ethyl acetate in heptanes to give methyl 3-(2-(methylsulfonyl)propan-2-yl)benzoate in 70% yield. LCMS m/z (M+H) = 257.2, Rt = 0.60 min.
- Step 3: To methyl 3-(2-(methylsulfonyl)propan-2-yl)benzoate (1.0 equiv.) in 10:1 mixture of THF and water (0.5M) at rt was added lithium hydroxide. The reaction mixture was stirred at rt for 1 h then concentrated. The residue was dissolved in water then acidified with 1.0N HCl to pH=3. The precipitate was collected by filtration and dried under vacuo to give 3-(2-(methylsulfonyl)propan-2-yl)benzoic acid in 95% yield. LCMS m/z (M+H) = 243.2, Rt = 0.54 min.
-
- Step1: To 3-chloro-5-methylpyridazine (1.0 equiv.) in DME (0.5M) at rt was added 4,4,5,5-tetramethyl-2-(prop-1-en-2-yl)-1,3,2-dioxaborolane (1.4 equiv.), 2.0 M sodium carbonate (3.0 equiv.), Pd(PPh3)4 (0.02 equiv.). The mixture was stirred at 70 °C for 18 h then cooled to ambient temperature. The reaction mixture was partitioned between ethyl acetate and water. The separated organic layer was dried with sodium sulfate and concentrated under vacuo. The concentrated crude was purified via silica gel chromatography and eluted with 0 to 30% ethyl acetate in heptanes to give 5-methyl-3-(prop-1-en-2-yl)pyridazine in 58% yield. LCMS m/z (M+H) = 134.8, Rt = 0.44 min.
- Step 2: To 5-methyl-3-(prop-1-en-2-yl)pyridazine in dichloromethane (0.5M) at -78°C was bubbled with ozone for 10 min. The reaction mixture was warmed to rt then concentrated. The concentrated crude was purified via silica gel chromatography and eluted with 0 to 50% ethyl acetate in heptanes to give 1-(5-methylpyridazin-3-yl)ethanone in 50% yield. LCMS m/z (M+H) = 136.8, Rt = 0.36 min.
- Step 3: To 1-(5-methylpyridazin-3-yl)ethanone (1.0 equiv.) in THF (0.5M) at -0°C was added 3.0 M methylmagnesiumbromide in diethyl ether (1.1 eq) and the mixture was stirred at that temperature for 2 h. The reaction mixture was acidified with aqueous citric acid and then partitioned between ethyl acetate and water. The separated organic layer was dried with sodium sulfate and concentrated under vacuo. The concentrated crude was purified via silica gel chromatography and eluted with 0 to 40% ethyl acetate in heptanes to give 2-(5-methylpyridazin-3-yl)propan-2-ol in 49% yield. LCMS m/z (M+H) = 152.9, Rt = 0.76 min.
- Step 4: To 2-(5-methylpyridazin-3-yl)propan-2-ol (1 equiv.) in DCM (0.46M) at -15 °C was added DAST (1.2 equiv.) and the mixture was stirred at that temperature for 1 h under argon atmosphere. The reaction mixture was neutralized with saturated sodium bicarbonate solution to pH=8 and partitioned between water and dichloromethane. The separated organic layer was dried with sodium sulfate and concentrated under vacuo. The concentrated crude was purified via silica gel chromatography and eluted with 0 to 50% ethyl acetate in heptanes to give 3-(2-fluoropropan-2-yl)-5-methylpyridazine in 52% yield. LCMS m/z (M+H) = 154.8, Rt = 0.42 min.
- Step 5: To 3-(2-fluoropropan-2-yl)-5-methylpyridazine (1 equiv.) in pyridine (0.38 M) was added selenium dioxide (2.5 equiv.) and the mixture was heated to 70°C for 18 h. The reaction mixture was cooled to ambient temperature and concentrated. The concentrated crude was dissolved in water and then acidified with 1N HCl to pH = 3. The mixture was partitioned between ethyl acetate and water. The separated organic layer was dried with sodium sulfate and concentrated under vacuo to give 2-(1,1-difluoropropyl)isonicotinic acid in 89% yield. LCMS m/z (M+H) = 184.9, Rt = 0.63 min.
-
- Step 1: A solution of 5-methylpyridazin-3(2H)-one (1.0 equiv.) in POCl3 (2 M) was heated up to 90°C for 2 h. After completion of the reaction (TLC monitoring), reaction mass was poured into crushed ice and pH was neutralized by using solid NaHCO3. The compound was extracted with EtOAc (3x); combined organics were washed with brine and dried over anhydrous Na2SO4. The solvent was evaporated and crude residue was purified over silica gel by using eluents 30% EtOAc:hexanes to afford 3-chloro-5-methylpyridazine as yellowish liquid in 93% yield . 1H-NMR (400 MHz, CDCl3): δ 8.96 (s, 1H), 7.36 (s, 1H) and 2.39 (s, 3H). LCMS m/z (M+H) = 129.13.
- Step 2: A solution of LDA (2M in THF, 2.5 equiv.) in THF (1M) was cooled up to -78°C followed by the drop wise addition of isobutyronitrile (2.5 equiv.). The resulting reaction mixture was stirred at 0 °C for 30 minutes and again cooled up to -78 °C followed by the addition of a solution of 3-chloro-5-methylpyridazine (1.0 equiv.) in THF. The resulting reaction mixture temperature was slowly raised up to room temperature and left for stirring for 16 h. After completion of the reaction (TLC monitoring), reaction mass was quenched with saturated solution of NH4Cl followed by the extraction with EtOAc (3 x). The combined organics were washed with brine, dried over anhydrous Na2SO4. The solvent was evaporated and crude residue was purified over silica gel by using eluents 50% EtOAc: hexanes to afford 2-methyl-2-(5-methylpyridazin-3-yl)propanenitrile as the desired product as off-white low melting solid (76%). 1H-NMR (400 MHz, CDCl3): δ 9.01 (s, 1H), 7.61 (s, 1H), 2.42 (s, 3H) and 1.87 (s, 6H). LCMS m/z (M+H) = 162.42.
- Step 3: To a solution of 2-methyl-2-(5-methylpyridazin-3-yl)propanenitrile (1.0 equiv.) in pyridine (1.2 M) was added SeO2 (2.5 equiv.). The resulting reaction mass was stirred at 90 °C for 24 h. After completion of the reaction (TLC monitoring), reaction mixture was cooled up to room temperature and poured into crushed ice followed by the extraction with EtOAc (2 x). The organics were discarded and the pH of the aqueous layer was adjusted up to 3-4 by using 6N HCl followed by the extraction with EtOAc (3 x). The combined organics were washed with brine, dried over anhydrous Na2SO4, filtered and evaporated under reduced pressure. The crude compound was finally triturated with n-pentane to get 6-(2-cyanopropan-2-yl)pyridazine-4-carboxylic acid as the desired product as light yellow solid (51%). 1H-NMR (400 MHz, DMSO-d6): δ 9.55 (s, 1H), 8.21 (s, 1H) and 1.82 (s, 6H). LCMS m/z (M+H) = 192.28.
-
- Step 1: To a solution of 5-bromo-2-chloro-3-nitropyridine (1.0 equiv) in EtOH (0.25 M) at 25 °C was added sodium ethoxide (21 wt % solution in EtOH, 1.2 equiv) and the mixture was heated to 75 °C for 1 h. The reaction was poured onto a 1:1 mix of 1 M citric acid and water and the ethanol was removed by concentration. The residue was extracted with three times with ethyl acetate. The combined organics were washed with brine, dried over magnesium sulfate, filtered and concentrated. Isolated 5-bromo-2-ethoxy-3-nitropyridine as a brown oil which was used without further purification. LCMS (m/z) (M+H) = 246.8/248.8, Rt = 0.95 min.
- Step 2: To a solution of 5-bromo-2-ethoxy-3-nitropyridine (1.0 equiv) in MeOH and DCM (1:10; 0.3 M) at 25 °C were added zinc (5.5 equiv) and ammonium chloride (5 equiv) and the mixture was heated to 75 °C and stirred for 4 hours. The reaction was cooled to room temperature and filtered through a short plug of Celite, washing with DCM, and then concentrated. The residue was taken up in ethyl acetate, washed with water and brine and then dried over magnesium sulfate, filtered and concentrated. The crude residue was purified via flash chromatography over silica gel eluting with heptanes and 0-50% ethyl acetate gradient. Isolated 5-bromo-2-ethoxypyridin-3-amine as a brown solid in 79% yield. LCMS (m/z) (M+H) = 216.9/218.9, Rt = 0.75 min.
- Step 3: To a solution of 5-bromo-2-ethoxypyridin-3-amine (1.0 equiv.) in DMF (0.5 M) at 0 °C was slowly added NaH (1.5 equiv.) and the mixture was allowed to warm to room temperature over 15 min followed by the addition of bis(2-bromoethyl) ether (4 equiv.). The mixture was heated to 90 °C and stirred for 48 hours. The mixture was poured onto ice water and extracted three times with ethyl acetate. The combined organics were washed with water, brine, dried over magnesium sulfate, filtered and concentrated. The crude residue was purified via flash chromatography over silica gel eluting with heptanes and 0-25% acetone gradient. Isolated 4-(5-bromo-2-ethoxypyridin-3-yl)morpholine as an orange solid in 76% yield. LCMS (m/z) (M+H) = 286.9/288.9, Rt = 0.93 min.
-
- Step 1: To a solution of 5-bromo-2-chloro-3-nitropyridine (1.0 equiv) in MeOH and DCM (1:10; 0.45 M) at 25 °C were added zinc (5.5 equiv) and ammonium chloride (5 equiv) and the mixture was heated to 65 °C and stirred for 5 hours. More zinc (2.5 equiv) and ammonium chloride (2.5 equiv) was added and the mixture was stirred at 65 °C for an additional 3 hours. The reaction was cooled to room temperature and filtered through a short plug of Celite. The filtrate was washed with water and brine and then dried over magnesium sulfate, filtered and concentrated. Isolated 5-bromo-2-chloropyridin-3-amine as an off-white solid in 35% yield which was used without further purification. LCMS (m/z) (M+H) = 206.8/208.8, Rt = 0.62 min.
- Step 2: To a solution of 5-bromo-2-chloropyridin-3-amine (1.0 equiv.) in DMF (0.2 M) at 0 °C was slowly added NaH (1.5 equiv.) and the mixture was allowed to warm to room temperature over 15 min followed by the addition of bis(2-bromoethyl) ether (3 equiv.). The mixture was heated to 80 °C and stirred for 2 hours. The mixture was poured onto water and extracted three times with ethyl acetate. The combined organics were washed with water, brine, dried over magnesium sulfate, filtered and concentrated. The crude residue was purified via flash chromatography over silica gel eluting with heptanes and 0-50% acetone gradient. Isolated 4-(5-bromo-2-chloropyridin-3-yl)morpholine as a yellow solid in 71% yield. LCMS (m/z) (M+H) = 276.9/278.9, Rt = 0.81 min.
-
- To an ice-bath cooled solution of NaH (60% in mineral oil, 3.0 equiv.) in DMF (1.4 M) was added 3-amino-5-bromo-2-fluoropyridine (1.0 equiv.). The mixture was allowed to warm to room temperature over 15 min and then treated with bis(2-bromoethyl) ether (1.5 equiv.). The mixture was heated to 80 °C and stirred for 35 min. The cooled reaction mixture was poured into four volumes of water. The resulting precipitate was collected by vacuum filtration. The filter cake was rinsed twice with water and twice with heptanes. The tan solid was dried under high vacuum to give 4-(5-bromo-2-fluoropyridin-3-yl)morpholine in 83% yield. LCMS (m/z) (M+H) = 260.9/262.9, Rt = 0.74 min.
-
- To a solution of 3-amino-5-bromopyridine (1.0 equiv.) in DMF (0.6 M) at 0 °C was slowly added NaH (1.5 equiv.) and the mixture was allowed to warm to room teperature over 15 min followed by the addition of bis(2-bromoethyl) ether (3 equiv.). The mixture was heated to 80 °C and stirred for 18 hours. The mixture was poured onto water and extracted three times with DCM. The combined organics were washed with water, brine, dried over magnesium sulfate, filtered and concentrated. The crude residue was purified via flash chromatography over silica gel eluting with heptanes and 0-75% ethyl acetate gradient. Isolated 4-(5-bromopyridin-3-yl)morpholine as a yellow solid in 40% yield. LCMS (m/z) (M+H) = 242.9/244.9, Rt = 0.39 min.
-
- A solution of 5-bromo-3-fluoropicolinonitrile (1.0 equiv.) in acetonitrile (0.5 M) was treated with morpholine (1.1 equiv.), and DIEA (2.0 equiv.). The mixture was stirred at 90 °C for 22 hr. The cooled reaction mixture was diluted with water (12 mL) and filtered. The precipitate was air-dried to give 5-bromo-3-morpholinopicolinonitrile as a yellow crystalline solid in 87% yield. LCMS (m/z) (M+H) = 267.9/269.9, Rt = 0.79 min.
-
- To a solution of 4-(5-bromo-2-fluoropyridin-3-yl)morpholine (1.0 equiv.) in DMF (0.3 M) was added dimethylamine, 5.6M in ethanol (4.0 equiv.). The reaction mixture was stirred at 90 °C overnight. The cooled reaction mixture was partially concentrated in vacuo. Four volumes of water were added. The mixture was stirred for 1 hr and filtered. The pinkish solid was air-dried to give 5-bromo-N,N-dimethyl-3-morpholinopyridin-2-amine in 69 % yield. LCMS (m/z) (M+H) = 285.8/287.8, Rt = 0.50 min.
-
- To a solution of 5-bromo-3-morpholinopyridin-2-ol (1.0 equiv) in DMF (0.38 M) was added sodium 2-chloro-2,2-difluoroacetate (2 equiv.) and sodium hydroxide (1.1 equiv.) and the reaction was heated to 55 °C for 16 h. The reaction mixture was further heated to 90 °C for 16 h. The reaction mixture was partitioned between water and ethyl acetate, and the organic phase was dried with sodium sulfate, filtered and concentrated. The crude material was redissolved in DCM and a few drops of methanol and filtered. The filtrate was concentrated and purified via flash column chromatography over silica gel eluting with heptane and 0 to 100% ethyl acetate gradienet. Isolated 4-(5-bromo-2-(difluoromethoxy)pyridin-3-yl)morpholine. 1H NMR (500 MHz, DMSO-d6) δ 2.95 - 3.14 (m, 4H), 3.54 - 3.93 (m, 4H), 7.58 (d, J = 2.2 Hz, 1H), 7.74 (t, J = 72.4 Hz, 1H), 7.95 (d, J = 2.1 Hz, 1H), LCMS (m/z) (M+H) = 308.9/310.9, Rt = 0.87 min.
-
- Step 1: To a solution of 5-bromo-3-iodo-2-hydroxypyridine (1.0 equiv.) in THF (0.18 M) at 25 °C were added 4-hydroxytetrahydropyran (1.2 equiv.), PPh3 (1.25 equiv.) and DIAD (1.2 equiv.) and the mixture was stirred for 2 hours. More 4-hydroxytetrahydropyran (1.2 equiv.), PPh3 (1.25 equiv.), and DIAD (1.2 equiv.) was added, and the reaction was stirred for another 2 hours. The reaction mixture was concentrated, and the crude residue was purified via flash chromatography over silica gel eluting with heptanes and 0-20% ethyl acetate gradient. Isolated 5-bromo-3-iodo-2-((tetrahydro-2H-pyran-4-yl)oxy)pyridine as a colorless oil in 55% yield. LCMS (m/z) (M+H) = 384.0/386.0, Rt = 0.88 min.
- Step 2: To a solution of 5-bromo-3-iodo-2-((tetrahydro-2H-pyran-4-yl)oxy)pyridine (1.0 equiv.) in toluene (0.15 M) in a microwave vial was added 3-oxa-8-azabicyclo[3.2.1]octane (1.3 equiv.), NaOtBu (3 equiv.), and Xantphos (0.1 equiv.) and the mixture was degassed with Ar. Pd(dba)2 (0.05 equiv) was added, and the mixture was degassed again and then sealed and heated at 90 °C for 18 hours. The mixture was poured onto saturated aqueous sodium bicarbonate and extracted three times with ethyl acetate. The combined organics were washed with brine, dried over magnesium sulfate, filtered and concentrated. The crude residue was purified via flash chromatography over silica gel eluting with heptanes and 0-30% ethyl acetate gradient. Isolated 8-(5-bromo-2-((tetrahydro-2H-pyran-4-yl)oxy)pyridin-3-yl)-3-oxa-8-azabicyclo[3.2.1]octane as a pale yellow solid in 67% yield. LCMS (m/z) (M+H) = 369.1/371.1, Rt = 0.95 min.
-
- To a solution of 5-bromo-2-ethoxypyridin-3-amine (1.0 equiv.) in a mixture of concentrated HCl and water (1:1.3, 0.2 M) at 0 °C was slowly added NaNO2 (1.4 equiv.) and the mixture was stirred for 30 min. A 0.3 M solution of Kl in water (3 equiv.) was slowly added to the mixture, which was then allowed to warm to 25 °C and stirred for 30 min. The mixture was poured into a separatory funnel and extracted three times with ethyl acetate. The combined organics were washed with saturated aqueous sodium sulfite, saturated aqueous sodium bicarbonate, dried over magnesium sulfate, filtered, and concentrated. The crude residue was purified via flash chromatography over silica gel eluting with heptanes and 0-15% ethyl acetate gradient. Isolated 5-bromo-2-ethoxy-3-iodopyridine as a white solid in 71% yield. LCMS (m/z) (M+H) = 327.9/329.9, Rt = 1.10 min.
- To a solution of the starting iodide (1.0 equiv.) in toluene (0.15 M) in a microwave vial was added the amine (1.3 equiv.), NaOtBu (3 equiv.), and Xantphos (0.1 equiv.) and the mixture was degassed with Ar. Pd(dba)2 (0.05 equiv) was added, and the mixture was degassed again and then sealed and heated at 90 °C for 18 hours. The mixture was poured onto saturated aqueous sodium bicarbonate and extracted three times with ethyl acetate. The combined organics were washed with brine, dried over magnesium sulfate, filtered and concentrated. The crude residue was purified via flash chromatography over silica gel eluting with heptanes and 0-30% ethyl acetate gradient.
-
- Method 4 was followed using 5-bromo-2-ethoxy-3-iodopyridine and 3-oxa-8-azabicyclo[3.2.1]octane to give 8-(5-bromo-2-ethoxypyridin-3-yl)-3-oxa-8-azabicyclo[3.2.1]octane as a pale orange oil in 46% yield. LCMS (m/z) (M+H) = 312.9/314.9, Rt = 0.97 min.
-
- Method 4 was followed using 5-bromo-2-ethoxy-3-iodopyridine and (S)-3-methylmorpholine to give (S)-4-(5-bromo-2-ethoxypyridin-3-yl)-3-methylmorpholine as a pale orange oil in 12% yield. LCMS (m/z) (M+H) = 300.9/302.9, Rt = 0.91 min.
-
- Method 4 was followed using 5-bromo-2-ethoxy-3-iodopyridine and (R)-3-methylmorpholine to give (R)-4-(5-bromo-2-ethoxypyridin-3-yl)-3-methylmorpholine as a pale yellow oil in 17% yield. LCMS (m/z) (M+H) = 300.9/302.9, Rt = 0.92 min.
-
- To a solution of 4-(5-bromo-2-fluoropyridin-3-yl)morpholine (1.0 equiv.) in dioxane (0.13 M) at 25 °C was added NaOMe (5 equiv.) and the reaction was heated to 105 °C and stirred for 2 hours. The reaction was cooled to room temperature, poured onto water, and extracted three times with ethyl acetate. The combined organics were washed with water, brine, dried over magnesium sulfate and concentrated. Isolated 4-(5-bromo-2-methoxypyridin-3-yl)morpholine as a pale orange solid in 95% yield which was used without further purification. LCMS (m/z) (M+H) = 272.9/274.9, Rt = 0.78 min.
-
- To a solution of 4-hydroxytetrahydropyran (2 equiv.) in dioxane (0.2 M) at 25 °C was added NaH (2.1 equiv.) and the reaction was stirred for 30 min. 4-(5-bromo-2-fluoropyridin-3-yl)morpholine (1.0 equiv.) was then added and the reaction was heated to 105 °C and stirred for for 5 h. The reaction was cooled to room temperature, poured onto water, and extracted three times with ethyl acetate. The combined organics were dried over sodium sulfate, filtered, and concentrated. The crude residue was purified by flash chromatography over silica gel eluting with heptane and 50-100% ethyl acetate gradient. Isolated 4-(5-bromo-2-((tetrahydro-2H-pyran-4-yl)oxy)pyridin-3-yl)morpholine as a light yellow oil in 83% yield. LCMS (m/z) (M+H) = 343.0/344.9, Rt = 0.86 min.
-
- To a solution of 2,2-difluroethanol (2.0 equiv.) in dioxane (0.13 M) was added sodium hydride (2.0 equiv.) under nitrogen. The reaction was stirred for 15 min at room temperature, then 4-(5-bromo-2-fluoropyridin-3-yl)morpholine (1.0 equiv.) was added. The solution was allowed to stir at room temperature overnight. The mixture was partitioned between water and ethyl acetate, and the organic phase was dried over sodium sulfate, filtered and concentrated. The crude material was used for the next step without further purification. LCMS (m/z) (M+H) = 322.9/324.9, Rt = 0.89 min.
-
- Step 1: To a solution of 4-(5-bromo-2-methoxypyridin-3-yl)morpholine (1.0 equiv.) in 1,4-dioxane (0.15 M) was added bis(pinacolato)diboron (1.5 equiv.), PdCl2(dppf).CH2Cl2 adduct (0.1 equiv.), and 2M aqueous sodium carbonate (3.0 equiv.). The reaction mixture was irradiated at 120 °C for 18 min in the microwave. The cooled reaction mixture was diluted with DCM and filtered. The filtrate was concentrated to give crude 4-(2-methoxy-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-3-yl)morpholine (assumed 100% yield) as a brown residue which was used without further purification. LCMS (m/z) (M+H) = 321.0, Rt = 0.81 min.
- Step 2: To a solution of 4-(2-methoxy-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-3-yl)morpholine (1.0 equiv.) in DME (0.15 M) was added 5-bromo-6-chloropyridin-3-amine (1.0 equiv.), PdCl2(dppf).CH2Cl2 adduct (0.1 equiv.), and 2M aqueous sodium carbonate (3.0 equiv.). The reaction mixture was irradiated at 120 °C for 15 min in the microwave. The cooled reaction mixture was diluted with 2:1 DCM:MeOH and filtered. The filtrate was concentrated and purified by flash chromatography over silica gel eluting with heptane and 50-100% ethyl acetate gradient. Isolated 2-chloro-6'-methoxy-5'-morpholino-[3,3'-bipyridin]-5-amine as a brown residue in 73% yield. LCMS (m/z) (M+H) = 321.0, Rt = 0.60 min.
- A solution of the aryl bromide (1.0 equiv.) and the boronic ester (1.2 equiv.) in DME (0.15 M) and 2 M aqueous sodium carbonate (3 equiv.) was purged with Ar for 5 min. PdCl2(dppf).CH2Cl2 adduct (0.05 equiv.) was then added, and the mixture was purged with Ar again and then heated at 100 °C for 1 h. The mixture was poured onto water and extracted three times with ethyl acetate. The combined organics were washed with brine, dried over magnesium sulfate, filtered and concentrated. The crude residue was purified via flash chromatography over silica gel eluting with either heptane and 0-100% ethyl acetate gradient or DCM and 0-15% methanol gradiant, or in other cases the crude residue was used without further purification.
-
- Method 5 was followed using 4-(5-bromo-2-ethoxypyridin-3-yl)morpholine and 5-amino-2-methylphenylboronic acid, pinacol ester. The crude residue was purified via flash chromatography over silica gel eluting with heptane and 0-100% ethyl acetate gradient. Isolated 3-(6-ethoxy-5-morpholinopyridin-3-yl)-4-methylaniline as a pale yellow oil in 91% yield. LCMS (m/z) (M+H) = 314.1, Rt = 0.60 min.
-
- Method 5 was followed using 4-(5-bromo-2-ethoxypyridin-3-yl)morpholine and 6-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-3-amine. The crude residue was purified via flash chromatography over silica gel eluting with DCM and 0-15% methanol gradient. Isolated 6'-ethoxy-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-amine as a light brown solid in 96% yield. LCMS (m/z) (M+H) = 315.1, Rt = 0.52 min.
-
- Step 1: Method 5 was followed using 4-(5-bromo-2-ethoxypyridin-3-yl)morpholine and methyl 4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzoate. The crude residue was purified via flash chromatography over silica gel eluting with heptane and 0-100% ethyl acetate gradient. Isolated methyl 3-(6-ethoxy-5-morpholinopyridin-3-yl)-4-methylbenzoate as a white solid in 57% yield. LCMS (m/z) (M+H) = 357.1, Rt = 1.01 min.
- Step 2: To a stirred solution of methyl 3-(6-ethoxy-5-morpholinopyridin-3-yl)-4-methylbenzoate (1.0 equiv.) in THF/MeOH (2:1, 0.1 M) was added 2.0 M aqueous LiOH (6 equiv.) and the mixture was heated at 45 °C for 2 h. The mixture was cooled to room temperature and acidified with 1 M HCl. The mixture was extracted three times with ethyl acetate. The combined organics were dried over magnesium sulfate, filtered, and concentrated. Isolated 3-(6-ethoxy-5-morpholinopyridin-3-yl)-4-methylbenzoic acid as a pale orange solid which was used without further purification. LCMS (m/z) (M+H) = 343.1, Rt = 0.81 min.
-
- Method 5 was followed using 4-(5-bromo-2-fluoropyridin-3-yl)morpholine and N-(6-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-3-yl)-3-(trifluoromethyl)benzamide. The crude residue was purified via flash chromatography over silica gel eluting with DCM and 0-15% methanol gradient. Isolated N-(6'-fluoro-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide as a light brown solid in 100% yield. LCMS (m/z) (M+H) = 461.1, Rt = 0.75 min.
-
- Method 5 was followed using 4-(5-bromo-2-fluoropyridin-3-yl)morpholine and 6-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-3-amine. The crude residue was purified via flash chromatography over silica gel eluting with DCM and 0-15% methanol gradient. Isolated 6'-fluoro-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-amine as a light brown oil in 100% yield. LCMS (m/z) (M+H) = 289.0, Rt = 0.45 min.
-
- Method 5 was followed using 5-bromo-3-morpholinopicolinonitrile and 6-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-3-amine. The crude residue was purified via flash chromatography over silica gel eluting with DCM and 0-15% methanol gradient. Isolated 5'-amino-2'-methyl-5-morpholino-[3,3'-bipyridine]-6-carbonitrile as a tan solid. LCMS (m/z) (M+H) = 296.0, Rt = 0.46 min.
-
- Method 5 was followed using 5-bromo-N,N-dimethyl-3-morpholinopyridin-2-amine and 6-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-3-amine The crude residue was purified via flash chromatography over silica gel eluting with ethyl acetate and 0-5% methanol Isolated N6',N6',2-trimethyl-5'-morpholino-[3,3'-bipyridine]-5,6'-diamine as a brown residue in 69% yield. LCMS (m/z) (M+H) = 314.1, Rt = 0.32 min.
-
- Method 5 was followed using 8-(5-bromo-2-((tetrahydro-2H-pyran-4-yl)oxy)pyridin-3-yl)-3-oxa-8-azabicyclo[3.2.1]octane and 6-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-3-amine. The crude residue was purified via flash chromatography over silica gel eluting with DCM and 0-15% methanol gradient. Isolated 5'-(3-oxa-8-azabicyclo[3.2.1]octan-8-yl)-2-methyl-6'-((tetrahydro-2H-pyran-4-yl)oxy)-[3,3'-bipyridin]-5-amine as a light brown oil in 98% yield. LCMS (m/z) (M+H) = 397.0, Rt = 0.56 min.
-
- Method 5 was followed using 4-(5-bromo-2-((tetrahydro-2H-pyran-4-yl)oxy)pyridin-3-yl)morpholine and 6-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-3-amine. The crude residue was purified via flash chromatography over silica gel eluting with DCM and 0-15% methanol gradient. Isolated 2-methyl-5'-morpholino-6'-((tetrahydro-2H-pyran-4-yl)oxy)-[3,3'-bipyridin]-5-amine as a brown residue in 46% yield. LCMS (m/z) (M+H) = 371.1, Rt = 0.51 min.
-
- Method 5 was followed using 4-(5-bromo-2-((tetrahydro-2H-pyran-4-yl)oxy)pyridin-3-yl)morpholine and 4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline (1.15 equiv.). The crude residue was purified via flash chromatography over silica gel eluting with DCM and 0-15% methanol gradient. Isolated 4-methyl-3-(5-morpholino-6-((tetrahydro-2H-pyran-4-yl)oxy)pyridin-3-yl)aniline as a brown residue in 76% yield. LCMS (m/z) (M+H) = 370.2, Rt = 0.59 min.
-
- Method 5 was followed using 8-(5-bromo-2-ethoxypyridin-3-yl)-3-oxa-8-azabicyclo[3.2.1]octane and 6-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-3-amine. The crude residue was purified via flash chromatography over silica gel eluting with DCM and 0-15% methanol gradient. Isolated 5'-(3-oxa-8-azabicyclo[3.2.1]octan-8-yl)-6'-ethoxy-2-methyl-[3,3'-bipyridin]-5-amine as a light brown oil in 92% yield. LCMS (m/z) (M+H) = 341.0, Rt = 0.58 min.
-
- Method 5 was followed using (S)-4-(5-bromo-2-ethoxypyridin-3-yl)-3-methylmorpholine and 6-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-3-amine. The crude residue used without further purification. Isolated (S)-6'-ethoxy-2-methyl-5'-(3-methylmorpholino)-[3,3'-bipyridin]-5-amine as a light brown oil. LCMS (m/z) (M+H) = 329.1.0, Rt = 0.53 min.
-
- Method 5 was followed using (R)-4-(5-bromo-2-ethoxypyridin-3-yl)-3-methylmorpholine and 6-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-3-amine. The crude residue was purified via flash chromatography over silica gel eluting with heptane and 0-100% ethyl acetate gradient. Isolated (R)-6'-ethoxy-2-methyl-5'-(3-methylmorpholino)-[3,3'-bipyridin]-5-amine as a pale yellow solid. LCMS (m/z) (M+H) = 329.1.0, Rt = 0.53 min.
-
- Method 5 was followed using 4-(5-bromo-2-chloropyridin-3-yl)morpholine and 6-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-3-amine. The crude residue was purified via flash chromatography over silica gel eluting with DCM and 0-15% methanol gradient. Isolated 6'-chloro-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-amine as a pale yellow foam in 100% yield. LCMS (m/z) (M+H) = 305.0, Rt = 0.47 min.
-
- Method 5 was followed using 4-(5-bromopyridin-3-yl)morpholine and 6-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-3-amine. The crude residue was purified via flash chromatography over silica gel eluting with DCM and 0-15% methanol gradient. Isolated 2-methyl-5'-morpholino-[3,3'-bipyridin]-5-amine as a light brown oil in 69% yield. LCMS (m/z) (M+H) = 271.0, Rt = 0.27 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.40 (s, 3 H) 3.05 - 3.18 (m, 4 H) 3.84 - 3.95 (m, 4 H) 4.05 (s, 3 H) 6.89 (br. s., 1 H) 7.02 (d, J=1.96 Hz, 1 H) 7.76 (d, J=1.96 Hz, 1 H) 8.04 (d, J=2.74 Hz, 1 H). LCMS (m/z) (M+H) = 301.0, Rt = 0.45 min.
-
- To a solution of ethylene glycol (5 equiv.) in dioxane (0.1 M) at 25 °C was added NaH (5 equiv) and the reaction was stirred for 15 min 6'-fluoro-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-amine (1.0 equiv.) was then added and the reaction was heated to 105 °C and stirred for for 24 h. More ethylene glycol (5 equiv.) and NaH (5 equiv) was added and the mixture was stirred at 105 °C for an additional 24 h. The reaction was cooled to room temperature, poured onto water, and extracted three times with ethyl acetate. The combined organics were washed with brine, dried over magnesium sulfate and concentrated. Isolated 2-((5'-amino-2'-methyl-5-morpholino-[3,3'-bipyridin]-6-yl)oxy)ethanol as a light brown oil in 95% yield which was used without further purification. LCMS (m/z) (M+H) = 331.1 Rt = 0.39 min.
- To a solution of the amine (1.0 equiv) and the acid (1.1 equiv.) in DMA (0.15 M) at 25 °C were added HOAT (1.3 equiv.), i-Pr2NEt (3 equiv.), and EDC (1.3 equiv) and the mixture was stirred for 4 h at 25 °C. The mixture was poured onto water and extracted three times with ethyl acetate. The combined organics were washed with water, brine, dried over magnesium sulfate, filtered and concentrated. The crude residue was used without further purification.
-
- To a 0.15M solution of 1-methyl-3-morpholino-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-2(1H)-one (1.00 equiv.) in DME was added 5-bromo-6-chloropyridin-3-amine (1.00 equiv.), PdCl2(dppf).CH2Cl2 adduct (0.10 equiv.), and 2M aqueous sodium carbonate (3.00 equiv.). The reaction mixture was irradiated at 120 °C for 15 min in the microwave. The cooled reaction mixture was diluted with 2:1 DCM:MeOH and filtered. The filtrate was concentrated and purified by flash chromatography over silica gel (ethyl acetate with 0-10% methanol gradient) to give 5'-amino-2'-chloro-1-methyl-5-morpholino-[3,3'-bipyridin]-6(1H)-one (56.6 % yield) as a brown residue. LCMS (m/z) (M+H) = 321.0, Rt = 0.45 min.
-
- Following the preparation in Method 7 using the appropriate starting materials gave 5-(5-amino-2-fluorophenyl)-1-methyl-3-morpholinopyridin-2(1H)-one (52.2 % yield) as a brown residue. LCMS (m/z) (M+H) = 304.0, Rt = 0.40 min.
-
- Following the preparation in Method 7 using the appropriate starting materials gave 5-(5-amino-2-chlorophenyl)-1-methyl-3-morpholinopyridin-2(1H)-one (52.1 % yield) as a brown residue. LCMS (m/z) (M+H) = 320.1, Rt = 0.46 min.
-
- Following the preparation in Method 7 using the appropriate starting materials gave 4-amino-2-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)benzonitrile (63.4 % yield) as a tan solid. LCMS (m/z) (M+H) = 310.9, Rt = 0.56 min.
-
-
- Step 1: To a 0.15M solution of 1-methyl-3-morpholino-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-2(1H)-one (1.00 equiv.) in DME was added methyl 5-bromo-6-chloronicotinate (1.00 equiv.), PdCl2(dppf).CH2Cl2 adduct (0.10 equiv.), and 2M aqueous sodium carbonate (3.00 equiv.). The reaction mixture was irradiated at 120 °C for 15 min in the microwave. The cooled reaction mixture was diluted with 2:1 DCM:MeOH and filtered. The filtrate was concentrated and purified by flash chromatography over silica gel (ethyl acetate with 0-10% methanol gradient) to give methyl 2-chloro-1'-methyl-5'-morpholino-6'-oxo-1',6'-dihydro-[3,3'-bipyridine]-5-carboxylate (29.0 % yield) as a yellow solid. LCMS (m/z) (M+H) = 364.1, Rt = 0.62 min.
- Step 2: To a 0.23M solution of methyl 2-chloro-1'-methyl-5'-morpholino-6'-oxo-1',6'-dihydro-[3,3'-bipyridine]-5-carboxylate (1.00 equiv.) in THF was added 2.0M aqueous lithium hydroxide (3.00 equiv.). The mixture was stirred at ambient temperature for 1.5 hr. The reaction mixture was acidified to pH 3 with aqueous HCl and concentrated to give crude 2-chloro-1'-methyl-5'-morpholino-6'-oxo-1',6'-dihydro-[3,3'-bipyridine]-5-carboxylic acid as a yellow solid (assumed 100% yield). LCMS (m/z) (M+H) = 350.0, Rt = 0.52 min.
-
- Following the preparation of Method 8 using the appropriate starting materials gave 4-chloro-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)benzoic acid as a yellow solid (assumed 100% yield). LCMS (m/z) (M+H) = 349.1, Rt = 0.61 min.
-
- Step 1: To a solution of 5-bromo-1-methyl-3-morpholinopyridin-2(1H)-one (1.0 equiv.) in DME (0.18 M) was added methyl 4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzoate (1.5 equiv.), PdCl2(dppf).CH2Cl2 adduct (0.10 equiv.), and 2M aqueous sodium carbonate (3.00 equiv.). The reaction was heated to 90 C for 2 hours. Cooled to room temperature, partitioned between water and ethyl acetate, the organic phase was dried with sodium sulfate, filtered and concentrated. The crude material was purified via silica gel column chromatography eluting with 0-100% ethyl acetate in heptanes followed by 10% methanol in ethyl acetate. The pure fractions were concentrated to yield methyl 4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)benzoate in 76% yield. LCMS (m/z) (M+H) = 343.2, Rt = 0.70 min.
- Step 2: To a solution of methyl 4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)benzoate (1.0 equiv.) in THF was added lithium hydroxide (2M solution, 3.0 equiv.). The reaction was stirred at room temperature overnight. Acidified with 1N HCl to pH = 2 and extracted with ethyl acetate. The organic phase was separated, and the precipitate was filtered off to yield 4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)benzoic acid as the desired product in 91% yield. LCMS (m/z) (M+H) = 329.1, Rt = 0.60 min.
-
- Method 6 was followed using 6'-fluoro-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-amine and 2-isopropylisonicotinic acid. Isolated N-(6'-fluoro-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-2-isopropylisonicotinamide as a light brown oil. LCMS (m/z) (M+H) = 436.3, Rt = 0.52 min.
-
- Method 6 was followed using 6'-fluoro-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-amine and 2-(trifluoromethyl)pyridine-4-carboxylic acid. Isolated N-(6'-fluoro-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-2-(trifluoromethyl)isonicotinamide as a light brown oil. LCMS (m/z) (M+H) = 462.2, Rt = 0.65 min.
-
- Step 1: 4-(4-bromo-6-chloropyridin-2-yl)morpholine (1.0 equiv.) was dissolved in acetonitrile (0.1 M). Selectfluor (1.1 equiv.) was added at rt and stirred for 18 hours. The reaction was diluted with ethyl acetate and washed with water, brine, dried over sodium sulfate, filtered and concentrated. The residue was purified by silica gel chromatography (ISCO, 0-10% ethyl acetate/heptanes) to give 4-(4-bromo-6-chloro-3-fluoropyridin-2-yl)morpholine in 42% yield and 4-(4-bromo-6-chloro-5-fluoropyridin-2-yl)morpholine in 14% yield. LCMS (m/z) (M+H) = 294.7, Rt = 0.95 and 0.99 min.
- Step 2: To a solution of 4-(4-bromo-6-chloro-3-fluoropyridin-2-yl)morpholine (1.0 euqiv.) and 6-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-3-amine (1.7 equiv.) in DME (0.04 M) and sodium carbonate (2M, 3.0 equiv.) was added Pd(PPh3)4 (0.03 equiv.) and the reaction was heated at 100 °C for 2 hours. The mixture was poured onto ice water and extracted with ethyl acetate. The combined organics were washed with brine, dried over magnesium sulfate, filtered and concentrated. The mixture was purified via silica gel chromatography (10% methanol:ethyl acetate:heptanes) to give 6'-chloro-3'-fluoro-2-methyl-2'-morpholino-[3,4'-bipyridin]-5-amine as a yellow solid in 39% yield. 1H NMR (400 MHz, <cdcl3>) δ ppm 2.32 (s, 3 H) 3.52 - 3.59 (m, 4 H) 3.66 (br. s., 2 H) 3.80 - 3.85 (m, 4 H) 6.63 (d, J=3.91 Hz, 1 H) 6.79 - 6.84 (m, 1 H) 8.08 (d, J=2.74 Hz, 1 H)
-
- To a solution of 4-(4-bromo-6-chloro-5-fluoropyridin-2-yl)morpholine
(1.0 equiv.) and 6-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-3-amine (1.4 equiv.) in DME (0.02 M)) and Na2CO3 (2 M aq.) (3.0 equiv.) was added Pd(PPh3)4 and heated (thermally) at 100 °C for 2 h. LCMS shows complete consumption of starting material with fairly clean conversion to desired product. The mixture was poured onto ice-water and extracted with EtOAc (3 X). The combined organics were washed with brine, dried (MgSO4) and concentrated. The mixture was adsorbed onto Celite and purified by ISCO flash column chromatography (silica gel, 10% methanol in EtOAc:heptane). Product fractions eluted around 40% EtOAc and were concentrated to give 2'-chloro-3'-fluoro-2-methyl-6'-morpholino-[3,4'-bipyridin]-5-amine in 77% yield as a pale yellow solid. LCMS (m/z) (M+H) = 322.9, Rt = 0.62 min. -
- Step 1: To a solution of 4-(4-bromo-6-chloro-5-fluoropyridin-2-yl)morpholine (1.0 equiv.) and 4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline
(1.2 equiv.) in DME (0.1 M) and Na2CO3 (2 M aq.) (3.0 equiv.) was added Pd(PPh3)4 and heated (thermally) at 100 °C for 2 h. LCMS shows complete consumption of starting material with fairly clean conversion to desired product. The mixture was poured onto ice-water and extracted with EtOAc (3 X). The combined organics were washed with brine, dried (MgSO4) and concentrated. The mixture was adsorbed onto Celite and purified by ISCO flash column chromatography (silica gel, 10% methanol in EtOAc:heptane). Product fractions eluted around 40% EtOAc and were concentrated to give 3-(2-chloro-3-fluoro-6-morpholinopyridin-4-yl)-4-methylaniline in 87% yield. LCMS (m/z) (M+H) = 322, Rt = 0.62 min. - Step 2: In a microwave vial was added 3-(2-chloro-3-fluoro-6-morpholinopyridin-4-yl)-4-methylaniline (1.0 equiv.), 2-aminoethanol (50 equiv.), DIPEA (2.0 equiv.) in NMP (0.2). The vial was sealed with a crimp top. The reaction was then heated to 250 °C for 30 min heated by microwave. LC-MS showed completion of the reaction. The reaction mixture was diluted with ethyl acetate, washed with water, brine then dried over sodium sulfate. Concentrated to yield crude. Purified by 10% methanol in ethyl acetate to yield 2-((4-(5-amino-2-methylphenyl)-3-fluoro-6-morpholinopyridin-2-yl)amino)ethanol in 43% yield. LCMS (m/z) (M+H) = 347.0, Rt = 0.50 min.
-
- Step 1. To a solution of 4,6-dichloropyrimidine (1.0 equiv.) in EtOH (0.44 M) was added morpholine (1.0 equiv.) followed by triethylamine (1.10 equiv.). The resulting mixture was stirred at RT for 16 hours. The reaction mixture was then concentrated in vacuo and dried under high vacuum over 20 h to yield 4-(6-chloropyrimidin-4-yl)morpholine as a white solid in 93% yield. LCMS (m/z) (M+H) = 200.0/201.8, Rt = 0.35 min. 1H NMR (400 MHz, <cdcl3>) δ ppm 3.53 - 3.71 (m, 4 H) 3.72 - 3.83 (m, 4 H) 6.51 (s, 1 H) 8.39 (s, 1 H) 11.75 (br. s., 1 H).
- Step 2. To a solution of 4-(6-chloropyrimidin-4-yl)morpholine (1.0 equiv.) and Intermediate A (1.1 equiv.) in DME and 2M sodium carbonate (3:1, 0.2 M) was added PdCl2(dppf)-DCM adduct (0.500 equiv.) in a microwave vial equipped with a stir bar. The reaction was heated to 120 °C for 20 min in the microwave. The organic phase was dried with sodium sulfate, filtered and concentrated. The crude material was purified via preparative reverse phase HPLC. Upon lyophilization of the pure fractions, N-(4-methyl-3-(6-morpholinopyrimidin-4-yl)phenyl)-3-(trifluoromethyl)benzamide was isolated as the TFA salt in 52% yield. 1H NMR (400 MHz, <cd3od>) δ ppm 2.28 (s, 3 H) 3.67 - 4.02 (m, 8 H) 7.09 (s, 1 H) 7.35 (d, J=8.22 Hz, 1 H) 7.65 (s, 2 H) 7.78 - 7.84 (m, 1 H) 7.92 (d, J=2.35 Hz, 1 H) 8.16 (s, 2 H) 8.64 (s, 1 H). LCMS (m/z) (M+H) = 443.2, Rt = 0.77 min.
- The compounds listed below were prepared using methods similar to those described for the preparation of Example 1 using the appropriate starting materials.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.70 - 1.81 (m, 6 H) 2.30 (s, 3 H) 3.67 - 3.92 (m, 8 H) 7.11 - 7.22 (m, 1 H) 7.34 - 7.45 (m, 1 H) 7.73 - 7.83 (m, 1 H) 7.83 - 7.92 (m, 2 H) 7.99 (s, 1 H) 8.73 - 8.86 (m, 2 H) 10.70 (s, 1 H). LCMS (m/z) (M+H) = 443.2, Rt = 0.64 min.
-
- Step 1. To a solution 4-(4,6-dichloropyrimidin-2-yl)morpholine (1.0 equiv.), morpholin-3-one (1.2 equiv.), tribasic potassium phosphate (4.00 equiv), (9,9-dimethyl-9H-xanthene-4,5-diyl)bis(diphenylphosphine) (0.16 equiv) and Rd2(dba)3.HCCl3 (20 mol %) in dioxane (0.5 M) was heated to 100 °C for 90 min. The reaction mixture was then cooled to room temperature and diluted with EtOAc (20 ml) and water (20 ml). The aqueous layer was separated and extracted with EtOAc (x 2, 20 ml). The combined organic layer was dried over magnesium sulfate, filtered and concentrated in vacuo. The compound was utilized in the subsequent reactions without further purification. LCMS (m/z) (M+H) = 299.2/300.9, Rt = 0.77 min.
- Step 2. To a solution of 4-(6-chloro-2-morpholinopyrimidin-4-yl)morpholin-3-one (1.0 equiv.) and Intermediate A (1.1 equiv.) in DME and 2M sodium carbonate (3:1, 0.2 M) was added PdCl2(dppf)-DCM adduct (0.500 equiv.) in a microwave vial equipped with a stir bar. The reaction was heated to 120 °C for 20 min in the microwave. The organic phase was dried with sodium sulfate, filtered and concentrated. The crude material was purified via preparative reverse phase HPLC. Upon lyophilization of the pure fractions, N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)-3-(trifluoromethyl)benzamide was isolated as the TFA salt in 19% yield. LCMS (m/z) (M+H) = 542.4, Rt = 1.04 min. 1H NMR (400 MHz, <dmso>) δ ppm 2.36 (s, 3 H) 3.56 - 3.81 (m, 8 H) 4.01 (d, J=5.09 Hz, 4 H) 4.28 (s, 5 H) 7.31 (d, J=8.22 Hz, 1 H) 7.72 - 7.82 (m, 2 H) 7.85 (d, J=1.96 Hz, 1 H) 7.97 (d, J=7.83 Hz, 1 H) 8.20 - 8.35 (m, 2 H) 10.53 (s, 1H).
- The compounds listed below were prepared using methods similar to those described for the preparation of Example 3 using the appropriate starting materials.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 2.45 (s, 3 H) 3.69 (d, J=4.70 Hz, 5 H) 3.74 (d, J=4.70 Hz, 5 H) 4.01 (d, J=5.09 Hz, 3 H) 4.29 (s, 2 H) 7.36 -7.54 (m, 3 H) 7.60 (t, J=8.02 Hz, 2 H) 7.93 - 8.02 (m, 2 H) 8.05 (d, J=8.22 Hz, 1 H) 8.24 (s, 1 H) 10.55 (s, 1 H) LCMS (m/z) (M+H) = 542.3, Rt = 1.08 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 3.61 - 3.72 (m, 6 H) 3.75 (d, J=4.70 Hz, 5 H) 3.88 - 4.08 (m, 9 H) 4.29 (s, 3 H) 7.41 - 7.51 (m, 4 H) 7.51 - 7.58 (m, 3 H) 7.77 - 7.88 (m, 3 H) 8.01 (t, J=6.46 Hz, 3 H) 8.22 - 8.32 (m, 4 H) 9.01 (dd, J=4.30, 2.35 Hz, 2 H) 10.83 (s, 1 H) 10.88 (s, 1 H), LCMS (m/z) (M+H) = 543.3, Rt = 0.78 min.
-
- Step 1. To a solution of 4-(4,6-dichloropyrimidin-2-yl)morpholine (1.0 equiv.) in EtOH:THF (1:1, 0.25 M) was added thiomorpholine 1,1-dioxide (1.0 equiv.) in one portion. The resulting mixture was heated to 100 °C for 42 h. The resulting mixture was then cooled to RT and concentrated in vacuo to yield an off white solid in The reaction mixture was then concentrated in vacuo and dried under high vacuum over 20 h to yield 4-(6-chloropyrimidin-4-yl)morpholine as a white solid in 97% yield. LCMS (m/z) (M+H) = 333.0/334.9, Rt = 0.68 min.
- Step 2. To a solution of 4-(6-chloro-2-morpholinopyrimidin-4-yl)thiomorpholine 1,1-dioxide (1.0 equiv.) and Intermediate A (1.1 equiv.) in DME and 2M sodium carbonate (3:1, 0.2 M) was added PdCl2(dppf)-DCM adduct (0.500 equiv.) in a microwave vial equipped with a stir bar. The reaction was heated to 120 °C for 20 min in the microwave. The organic phase was dried with sodium sulfate, filtered and concentrated. The crude material was purified via preparative reverse phase HPLC. Upon lyophilization of the pure fractions, N-(3-(6-(1,1-dioxidothiomorpholino)-2-morpholinopyrimidin-4-yl)-4-methylphenyl)-3-(trifluoromethyl)benzamide was isolated as the TFA salt in 35% yield. LCMS (m/z) (M+H) = 576.3, Rt = 0.79 min, 1H NMR (400 MHz, <dmso>) δ ppm 2.33 (s, 3 H) 2.54 (s, 1 H) 3.21 (br. s., 4 H) 3.70 (d, J=10.56 Hz, 8 H) 4.16 (br. s., 4 H) 6.56 (br. s., 1 H) 7.32 (d, J=7.83 Hz, 1 H) 7.67 - 7.87 (m, 3 H) 7.98 (d, J=7.83 Hz, 1 H) 8.21 - 8.44 (m, 2 H) 10.55 (br. s., 1 H).
- The compounds listed below were prepared using methods similar to those described for the preparation of Example 6 using the appropriate starting materials.
-
- LCMS (m/z) (M+H) = 576.3, Rt = 0.78 min, 1H NMR (400 MHz, <dmso>) δ ppm 2.44 (s, 3 H) 3.08 - 3.30 (m, 4 H) 3.41 - 3.88 (m, 46 H) 4.15 (br. s., 4 H) 6.49 - 6.68 (m, 1 H) 7.39 - 7.52 (m, 2H) 7.56 - 7.66 (m, 1 H) 7.91 - 8.00 (m, 1 H) 8.01 (d, J=1.57 Hz, 1 H) 8.06 (d, J=8.22 Hz, 1 H) 8.25 (s, 1 H) 10.40 - 10.60 (m, 1 H).
-
- LCMS (m/z) (M+H) = 576.3, Rt = 0.78 min, 1H NMR (400 MHz, <dmso>) δ ppm 2.32 (s, 3 H) 2.54 (s, 2 H) 3.20 (br. s., 4 H) 3.69 (br. s., 8 H) 4.01 - 4.30 (m, 4 H) 6.45 (br. s., 1 H) 7.32 (d, J=8.22 Hz, 1 H) 7.71 - 7.80 (m, 2 H) 7.82 (d, J=4.30 Hz, 1 H) 7.98 (d, J=7.43 Hz, 1 H) 8.27 (d, J=8.22 Hz, 1 H) 8.30 (s, 1 H) 10.55 (s, 1 H).
-
- LCMS (m/z) (M+H) = 576.3, Rt = 0.80 min, 1H NMR (400 MHz, <dmso>) δ ppm 2.43 (s, 3 H) 2.54 (s, 2 H) 3.04 - 3.23 (m, 4 H) 3.68 (br. s., 10 H) 4.20 (br. s., 4 H) 6.46 (br. s., 1 H) 7.26 - 7.53 (m, 2 H) 7.60 (t, J=7.83 Hz, 1 H) 7.98 (d, J=7.83 Hz, 1 H) 8.00 (s, 1 H) 8.06 (d, J=8.22 Hz, 1 H) 8.25 (s, 1 H) 10.52 (s, 1 H).
-
- Step 1. To a solution of 4,4'-(6-chloropyrimidine-2,4-diyl)dimorpholine (1.0 equiv.) and Intermediate A (1.1 equiv.) in DME and 2M sodium carbonate (3:1, 0.2 M) was added PdCl2(dppf)-DCM adduct (0.500 equiv.) in a microwave vial equipped with a stir bar. The reaction was heated to 120 °C for 20 min in the microwave. The organic phase was dried with sodium sulfate, filtered and concentrated. The crude material was purified via preparative reverse phase HPLC. Upon lyophilization of the pure fractions, N-(3-(2,6-dimorpholinopyrimidin-4-yl)-4-methylphenyl)-3-(trifluoromethyl)benzamide was isolated as the TFA salt in 37% yield. LCMS (m/z) (M+H) = 528.3, Rt = 0.80 min, 1H NMR (400 MHz, <dmso>) δ ppm 2.21 - 2.35 (m, 3 H) 3.68 (br. s., 8 H) 3.71 (d, J=4.30 Hz, 8 H) 6.50 (br. s., 1 H) 7.34 (d, J=8.22 Hz, 1 H) 7.70 - 7.89 (m, 3 H) 7.97 (d, J=7.83 Hz, 1 H) 8.26 (d, J=7.83 Hz, 1 H) 8.29 (s, 1 H) 10.59 (br. s., 1 H).
- The compounds listed below were prepared using methods similar to those described for the preparation of Example 10 using the appropriate starting materials.
-
- LCMS (m/z) (M+H) = 528.3, Rt = 0.80 min. 1H NMR (400 MHz, <dmso>) δ ppm 2.29 - 2.37 (m, 3 H) 3.42 - 3.72 (m, 19 H) 3.84 (br. s., 8 H) 7.35 - 7.50 (m, 2 H) 7.54 (t, J=8.02 Hz, 1 H) 7.95 (s, 2 H) 8.00 (d, J=8.22 Hz, 1 H) 8.18 (s, 1 H) 10.47 (s, 1 H).
-
- 1H NMR (400 MHz, <dmso>) δ ppm 10.86 (s, 1 H), 8.99 (d, J=2.3 Hz, 1 H), 8.24 - 8.40 (m, 3 H), 8.01 (d, J=7.8 Hz, 1 H), 7.75 - 7.89 (m, 1 H), 6.51 (br. s., 1 H), 3.68 (d, J=6.6 Hz, 16 H), 2.56 (s, 3 H). LCMS (m/z) (M+H) = 529.4, Rt = 0.70 min.
-
- To a solution of 4,4'-(2-chloropyrimidine-4,6-diyl)dimorpholine (1.0 equiv.) and Intermediate A (1.1 equiv.) in DME and 2M sodium carbonate (3:1, 0.2 M) was added PdCl2(dppf)-DCM adduct (0.500 equiv.) in a microwave vial equipped with a stir bar. The reaction was heated to 120 °C for 20 min in the microwave. The organic phase was dried with sodium sulfate, filtered and concentrated. The crude material was purified via preparative reverse phase HPLC. Upon lyophilization of the pure fractions, N-(3-(4,6-dimorpholinopyrimidin-2-yl)-4-methylphenyl)-3-(trifluoromethyl)benzamide was isolated as the TFA salt in 35% yield. LCMS (m/z) (M+H) = 528.3, Rt = 0.82 min, 1H NMR (400 MHz, <dmso>) δ ppm 2.35 - 2.45 (m, 3 H) 3.40 - 3.63 (m, 9 H) 3.66 (d, J=4.30 Hz, 9 H) 5.97 (s, 1 H) 7.26 (d, J=8.22 Hz, 1 H) 7.69 -7.84 (m, 2 H) 7.95 (d, J=7.83 Hz, 1 H) 8.04 (d, J=2.35 Hz, 1 H) 8.21 - 8.31 (m, 2 H) 10.49 (s, 1 H).
- The compounds listed below were prepared using methods similar to those described for the preparation of Example 13 using the appropriate starting materials.
-
- LCMS (m/z) (M+H) = 528.3, Rt = 0.84 min, 1H NMR (400 MHz, <dmso>) δ ppm 2.51 - 2.62 (m, 4 H) 3.58 (d, J=4.30 Hz, 9 H) 3.62 - 3.77 (m, 9 H) 5.96 (s, 1 H) 7.30 - 7.47 (m, 2 H) 7.51 - 7.65 (m, 2 H) 7.92 (dd, J=8.02, 1.76 Hz, 1 H) 8.03 (d, J=8.22 Hz, 1 H) 8.16 - 8.34 (m, 2 H) 10.53 (s, 1 H).
-
- Step 1. To a solution of 4,4'-(6-chloropyrimidine-2,4-diyl)dimorpholine (1.0 equiv.) and 4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline (1.5 equiv.) in DME and 2M sodium carbonate (3:1, 0.2 M) was added PdCl2(dppf)-DCM adduct (0.100 equiv.) in a microwave vial equipped with a stir bar. The reaction was heated to 120 °C for 20 min in the microwave. The reaction mixture qas quenched with water and the aqueous layer was separated and extracted with EtOAc (x 3). The combined organic layer was dried over magnesium sulfate, filtered and concentrated in vacuo. The material was purified via silica gel column chromatography eluting with 100% DCM to 10% MeOH/DCM to afford 3-(2,6-dimorpholinopyrimidin-4-yl)-4-methylaniline in 96% yield . LCMS (m/z) (M+H) = 356.2, Rt = 0.44 min.
- Step 2. To a solution of 3-(2,6-dimorpholinopyrimidin-4-yl)-4-methylaniline (1.0 equiv.) in DMF (0.10 M) was added 2-(2-cyanopropan-2-yl)isonicotinic acid (1.2 equiv.), EDC-HCl (1.2 equiv.) and aza-HOBt (1.2 equiv.). The reaction was stirred at room temperature for 6 hours. Upon completion, the solution was filtered through a HPLC filter and purified via reverse phase preparative HPLC. Upon lyophilization of the pure fractions, 2-(2-cyanopropan-2-yl)-N-(3-(2,6-dimorpholinopyrimidin-4-yl)-4-methylphenyl)isonicotinamide was isolated as the TFA salt in 40% yield. 1H NMR (400 MHz, <cd3od>) δ ppm 1.81 (s, 6 H) 2.38 (s, 3 H) 3.79 (s, 13 H) 3.89 (br. s., 3 H) 6.57 (s, 1 H) 7.43 (d, J=8.41 Hz, 1 H) 7.65 (dd, J=8.27, 2.30 Hz, 1 H) 7.81 (dd, J=5.04, 1.57 Hz, 1 H) 7.97 (d, J=2.25 Hz, 1 H) 8.04 - 8.10 (m, 1 H) 8.78 (dd, J=5.04, 0.78 Hz, 1 H). LCMS (m/z) (M+H) = 528.3, Rt = 0.69 min.
- The compounds listed below were prepared using methods similar to those described for the preparation of Example 15 using the appropriate starting materials.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.79 (s, 7 H) 2.38 (s, 3 H) 3.80 (s, 13 H) 6.58 (s, 1 H) 7.41 (d, J=8.36 Hz, 1 H) 7.53 - 7.68 (m, 2 H) 7.78 (ddd, J=7.92, 2.05, 1.03 Hz, 1 H) 7.86 - 7.99 (m, 2 H) 8.10 (t, J=1.71 Hz, 1 H). LCMS (m/z) (M+H) = 527.3, Rt = 0.75 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.31 - 1.41 (m, 2 H) 1.65 - 1.76 (m, 2 H) 2.26 (s, 3 H) 3.69 (s, 17 H) 6.47 (s, 1 H) 7.30 (d, J=8.36 Hz, 1 H) 7.35 - 7.41 (m, 1 H) 7.44 - 7.50 (m, 2 H) 7.53 (dd, J=7.65, 1.74 Hz, 1 H) 7.87 (d, J=2.30 Hz, 1 H). LCMS (m/z) (M+H) = 560.2, Rt = 0.72 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.38 (s, 3 H) 3.17 (s, 6 H) 3.71 - 3.99 (m, 16 H) 6.56 (s, 1 H) 7.43 (d, J=8.36 Hz, 1 H) 7.67 (dd, J=8.31, 2.30 Hz, 1 H) 7.95 (d, J=2.35 Hz, 1 H) 8.03 (dd, J=2.86, 1.54 Hz, 1 H) 8.26 (d, J=2.84 Hz, 1 H) 8.44 (d, J=1.22 Hz, 1 H). LCMS (m/z) (M+H) = 504.3, Rt = 0.53 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.40 - 1.48 (m, 9 H) 2.38 (s, 3 H) 3.80 (s, 13 H) 6.58 (s, 1 H) 7.43 (d, J=8.41 Hz, 1 H) 7.62 - 7.68 (m, 1 H) 7.72 (d, J=5.28 Hz, 1 H) 7.97 (d, J=2.15 Hz, 2 H) 8.69 (d, J=5.18 Hz, 1 H). LCMS (m/z) (M+H) = 517.3, Rt = 0.60 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.38 (s, 3 H) 2.92 (s, 6 H) 3.68 - 3.98 (m, 16 H) 4.51 (s, 2 H) 6.53 (s, 1 H) 7.42 (d, J=8.41 Hz, 1 H) 7.66 - 7.73 (m, 1 H) 7.93 (d, J=2.15 Hz, 1 H) 8.12 (s, 1 H) 8.38 (s, 1 H) 8.43 (s, 1 H). LCMS (m/z) (M+H) = 585.3, Rt = 0.61 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.41 (t, J=7.34 Hz, 3 H) 2.38 (s, 3 H) 3.70 - 3.93 (m, 15 H) 6.52 (s, 1 H) 7.40 (d, J=8.36 Hz, 1 H) 7.52 (s, 1 H) 7.66 (dd, J=8.39, 1.98 Hz, 1 H) 7.79 (s, 1 H) 7.82 (d, J=2.01 Hz, 1 H) 7.91 (d, J=2.25 Hz, 1 H). LCMS (m/z) (M+H) = 640.3, Rt = 0.66 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.38 (s, 3 H) 3.72 - 3.94 (m, 15 H) 6.57 (s, 1 H) 7.42 (d, J=8.36 Hz, 1 H) 7.51 - 7.57 (m, 1 H) 7.60 - 7.69 (m, 2 H) 7.87 (s, 1 H) 7.94 - 8.00 (m, 1 H). LCMS (m/z) (M+H) = 544.3, Rt = 0.84 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.38 (s, 3 H) 3.19 (s, 3 H) 3.65 - 4.06 (m, 16 H) 6.58 (s, 1 H) 7.42 (d, J=8.22 Hz, 1 H) 7.65 (dd, J=8.41, 2.15 Hz, 1 H) 7.81 (t, J=7.83 Hz, 1 H) 7.97 (d, J=2.35 Hz, 1 H) 8.19 (d, J=7.83 Hz, 1 H) 8.28 (d, J=7.83 Hz, 1 H) 8.51 (s, 1 H). LCMS (m/z) (M+H) = 538.3, Rt = 0.64 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.42 (s, 9 H) 2.37 (s, 3 H) 3.80 (m, 16 H) 6.52 (s, 1 H) 7.10 (s, 1 H) 7.42 (d, J=5.28 Hz, 1 H) 7.71 (d, J=5.28 Hz, 1 H) 7.92 (s, 1 H). LCMS (m/z) (M+H) = 507.3, Rt = 0.79 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.39 (s, 9 H) 2.30 (s, 3 H) 3.80 (m, 16 H) 6.52 (m, 2 H) 7.40 (d, J=5.28 Hz, 1 H) 7.71 (d, J=5.28 Hz, 1 H) 7.87 (s, 1 H). LCMS (m/z) (M+H) = 507.3, Rt = 0.84 min.
-
- LCMS (m/z) (M+H) = 535.2, Rt = 0.78 min. 1H NMR (400 MHz, <cd3od>) δ ppm 2.37 (s, 3 H) 3.71 - 4.00 (m, 16 H) 6.57 (s, 1 H) 7.42 (d, J=8.22 Hz, 1 H) 7.77 (dd, J=8.22, 2.35 Hz, 1 H) 7.92 (d, J =1.96 Hz, 1 H) 8.70 (s, 1 H).
-
- Step 1. To a solution of 4,6-dichloro-2-(methylthio)pyrimidine (1.0 equiv.) and triethylamine (0.8 equiv.) in EtOH (0.256 M) at RT was added morpholine (1.0 equiv.) in one portion. The resulting mixture was stirred at RT for 6 hours; a precipitate formed during this time. LCMS analysis indicated the formation of the desired product. The precipitate was filtered and and washed with EtOH. Isolated 4-(6-chloro-2-(methylthio)pyrimidin-4-yl)morpholine as a white solid in 76% yield. LCMS (m/z) (M+H) = 245.1, Rt =0.73 min.
- Step 2. To a solution of 4-(6-chloro-2-(methylthio)pyrimidin-4-yl)morpholine (1.0 equiv.), N-(4methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-3-(trifluoromethyl)benzamide (1.05 equiv.) in DME/2M sodium carbonate (3:1, 0.20M ) was added PdCl2(dppf).CH2Cl2 adduct (0.1 equiv.). The reaction was purged with N2 for 5 mins, the vial was sealed and subjected to microwave irradiation for 10min at 120 °C. LCMS shows complete formation of desired product. The reaction was partitioned between water and EtOAc. The aqueous layer was further washed EtOAc (2x100mL). The combined organics were dried over MgSO4, filtered and concentrated. The crude material was purified via flash chromatography over silica gel eluting with heptanes and 0-60% ethyl acetate gradient. Isolated N-(4-methyl-3-(2-(methylthio)-6-morpholinopyrimidin-4-yl)phenyl)-3-(trifluoromethyl)benzamide as a white solid in 60% yield. LCMS (m/z) (M+H) = 489.1, Rt =0.81 min.
- Step 3. To a solution of N-(4-methyl-3-(2-(methylthio)-6-morpholinopyrimidin-4-yl)phenyl)-3-(trifluoromethyl)benzamide (1.0 equiv.) in DCM (0.1 M) was added m-CPBA (2.2 equiv.) portion wise. The reaction was stirred at RT for 4 hours. After which time LCMS shows complete oxidation to desired product. The reaction was diluted with DCM and washed with 0.5M Na2CO3. The resulting emulsion was filtered through a pad of celite and the cake was washed with DCM. The organics were dried over MgSO4, filtered and concentrated. The material was purified via preparative reverse phase HPLC. Upon lyophilization of the pure fractions, N-(4-methyl-3-(2-(methylsulfonyl)-6-morpholinopyrimidin-4-yl)phenyl)-3-(trifluoromethyl)benzamide was isolated as the TFA salt in 33% yield. LCMS (m/z) (M+H) = 521.2, Rt = 0.97 min. 1H NMR (400 MHz, <dmso>) δ ppm 2.36 (s, 3 H) 3.68 - 3.81 (m, 9 H) 4.03 (br. s., 2 H) 7.14 (s, 1 H) 7.35 (d, J=9.00 Hz, 1 H) 7.76 - 7.82 (m, 1 H) 7.82 - 7.87 (m, 2 H) 7.98 (d, J=7.83 Hz, 1 H) 8.28 (d, J=7.83 Hz, 1 H) 8.31 (s, 1 H) 10.57 (s, 1 H).
-
- Step 1. To a solution of N-(4-methyl-3-(2-(methylsulfonyl)-6-morpholinopyrimidin-4-yl)phenyl)-3-(trifluoromethyl)benzamide (1.0 equiv.) and 2-oxa-6-azaspiro[3.3]heptane (1.0 equiv.) in THF (0.20M) was added triethylamine (3.5 equiv.) and the allowed to stir at 75 °C for 48 hours. LCMS analysis indicated formation of the desired product. The volatiles were removed in vacuo. The crude material was purified via preparative reverse phase HPLC. Upon lyophilization of the pure fractions, N-(3-(2-(ethylamino)-6-morpholinopyrimidin-4-yl)-4-methylphenyl)-3-(trifluoromethyl)benzamide was isolated as the TFA salt in 21% yield. 1H NMR (400 MHz, <cd3od>) δ ppm 1.28 (t, J=7.24 Hz, 3 H) 2.38 (s, 3 H) 3.52 (q, J=6.65 Hz, 2 H) 3.80 (br. s., 6 H) 4.05 (br. s., 2 H) 6.50 (s, 1 H) 7.41 (d, J=8.61 Hz, 1 H) 7.66 (dd, J=8.22, 2.35 Hz, 1 H) 7.72 - 7.78 (m, 1 H) 7.91 (d, J=7.83 Hz, 1 H) 7.96 (d, J=2.35 Hz, 1 H) 8.21 (d, J=7.83 Hz, 1 H) 8.26 (s, 1 H). LCMS (m/z) (M+H) = 486.3, Rt = 0.86 min.
- The compounds listed below were prepared using methods similar to those described for the preparation of Example 28 using the appropriate starting materials.
-
- LCMS (m/z) (M+H) = 540.3, Rt = 0.81 min. 1H NMR (400 MHz, <cd3od>) δ ppm 2.36 (s, 3 H) 3.69 - 3.83 (m, 12 H) 4.44 (s, 4 H) 6.51 (s, 1 H) 7.41 (d, J=8.61 Hz, 1 H) 7.63 (dd, J=8.22, 2.35 Hz, 1 H) 7.72 - 7.78 (m, 1 H) 7.92 (d, J=7.83 Hz, 1 H) 7.95 (d, J=1.96 Hz, 1 H) 8.21 (d, J=7.83 Hz, 1 H) 8.26 (s, 1 H).
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.37 (s, 3 H) 3.03 (s, 3 H) 3.80 (br. s., 6 H) 4.08 (br. s., 2 H) 6.50 (s, 1 H) 7.41 (d, J=8.22 Hz, 1 H) 7.66 (dd, J=8.22, 2.35 Hz, 1 H) 7.71 - 7.78 (m, 1 H) 7.91 (d, J=7.83 Hz, 1 H) 7.96 (d, J=2.35 Hz, 1 H) 8.21 (d, J=7.83 Hz, 1 H) 8.26 (s, 1 H). LCMS (m/z) (M+H) = 472.3, Rt = 0.82 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.02 - 2.26 (m, 2 H) 2.38 (s, 3 H) 3.62 - 3.85 (m, 9 H) 4.04 (br. s., 2 H) 4.56 (br. s., 1 H) 6.52 (s, 1 H) 7.41 (d, J=8.22 Hz, 1 H) 7.66 (dd, J=8.22, 2.35 Hz, 1 H) 7.72 - 7.78 (m, 1 H) 7.92 (d, J=7.83 Hz, 1 H) 7.94 (d, J=1.96 Hz, 1 H) 8.21 (d, J=7.83 Hz, 1 H) 8.26 (s, 1 H). LCMS (m/z) (M+H) = 502.3, Rt = 0.77 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.02 - 2.27 (m, 2 H) 2.38 (s, 3 H) 3.63 - 3.87 (m, 10 H) 4.05 (br. s., 2 H) 4.56 (br. s., 1 H) 6.52 (s, 1 H) 7.41 (d, J=8.61 Hz, 1 H) 7.66 (dd, J=8.41, 2.15 Hz, 1 H) 7.72 - 7.78 (m, 1 H) 7.92 (d, J=7.83 Hz, 1 H) 7.94 (d, J=2.35 Hz, 1 H) 8.21 (d, J=7.83 Hz, 1 H) 8.26 (s, 1 H). LCMS (m/z) (M+H) = 528.3, Rt = 0.79 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.46 (s, 3 H) 3.78 - 3.93 (m, 8 H) 6.99 (s, 1 H) 7.36 (d, J=8.22 Hz, 1 H) 7.60 (s, 1 H) 7.63 (dd, J=8.22, 2.35 Hz, 1 H) 7.71 - 7.78 (m, 1 H) 7.91 (d, J=7.83 Hz, 1 H) 7.99 (d, J=1.96 Hz, 1 H) 8.22 (d, J=7.83 Hz, 1 H) 8.27 (s, 1 H) 8.36 (s, 1 H) 9.61 (s, 1 H). LCMS (m/z) (M+H) = 509.4, Rt = 0.84 min.
-
- To a solution of N-(4-methyl-3-(2-(methylsulfonyl)-6-morpholinopyrimidin-4-yl)phenyl)-3-(trifluoromethyl)benzamide (1.0 equiv.) and ethylene glycol (1.0 equiv.) in acetonitrile (0.10M) was added potassium carbonate (1.0 equiv.) and the allowed to stir at 120 °C for 24 hours. LCMS analysis indicated formation of the desired product. The volatiles were removed in vacuo. The crude material was purified via preparative reverse phase HPLC. Upon lyophilization of the pure fractions, N-(4-methyl-3-(2-(methylsulfonamido)-6-morpholinopyrimidin-4-yl)phenyl)-3-(trifluoromethyl)benzamide was isolated as the TFA salt in 6% yield. LCMS (m/z) (M+H) = 536.3, Rt = 0.80 min, 1H NMR (400 MHz, <cd3od>) δ ppm 2.37 (s, 3 H) 3.79 - 3.85 (m, 4 H) 3.86 - 3.97 (m, 6 H) 4.60 - 4.65 (m, 2 H) 6.78 (s, 1 H) 7.41 (d, J=8.22 Hz, 1 H) 7.67 (dd, J=8.22, 2.35 Hz, 1 H) 7.74 (t, J=7.83 Hz, 1 H) 7.91 (d, J=8.22 Hz, 1 H) 7.94 (d, J=1.96 Hz, 1 H) 8.21 (d, J=7.83 Hz, 1 H) 8.26 (s, 1 H). LCMS (m/z) (M+H) = 503.1, Rt = 0.73 min.
- The compounds listed below were prepared using methods similar to those described above using the appropriate starting materials.
-
- LCMS (m/z) (M+H) = 536.3, Rt = 0.80 min. 1H NMR (400 MHz, <cd3od>) δ ppm 2.37 (s, 3 H) 3.23 (s, 3 H) 3.76 - 3.83 (m, 4 H) 3.86 (br. s., 4 H) 6.50 (s, 1 H) 7.38 (d, J=8.22 Hz, 1 H) 7.68 - 7.78 (m, 2 H) 7.84 (d, J=2.35 Hz, 1 H) 7.91 (d, J=7.83 Hz, 1 H) 8.21 (d, J=7.83 Hz, 1 H) 8.26 (s, 1 H).
-
- To a solution of N-(4-methyl-3-(2-(methylsulfonyl)-6-morpholinopyrimidin-4-yl)phenyl)-3-(trifluoromethyl)benzamide (1.0 equiv.) and pyrrolidin-2-one (2.0 equiv.) in dioxane (0.10M) was added cesium carbonate (1.0 equiv.) and the allowed to stir at 120°C for 24 hours. LCMS analysis indicated formation of the desired product. The volatiles were removed in vacuo. The crude material was purified via preparative reverse phase HPLC. Upon lyophilization of the pure fractions, N-(4-methyl-3-(6-morpholino-2-(2-oxopyrrolidin-1-yl)pyrimidin-4-yl)phenyl)-3-(trifluoromethyl)benzamide was isolated as the TFA salt in 12% yield. LCMS (m/z) (M+H) = 526.3, Rt = 0.83 min. 1H NMR (400 MHz, <cd3od>) δ ppm 2.25 (quin, J=7.73 Hz, 2 H) 2.47 (s, 3 H) 2.81 (t, J=8.02 Hz, 2 H) 3.82 - 3.87 (m, 8 H) 4.15 (t, J=7.43 Hz, 2 H) 7.03 (s, 1 H) 7.47 (d, J=8.61 Hz, 1 H) 7.71 (dd, J=8.41, 2.15 Hz, 1 H) 7.75 (t, J=7.83 Hz, 1 H) 7.92 (d, J=7.83 Hz, 1 H) 8.11 (d, J=2.35 Hz, 1 H) 8.22 (d, J=7.83 Hz, 1 H) 8.27 (s, 1 H).
-
- Step 1. A solution of N-(4-methyl-3-(2-(methylsulfonyl)-6-morpholinopyrimidin-4-yl)phenyl)-3-(trifluoromethyl)benzamide (1.0 equiv.) and Sodium azide in DMF (0.2 M) was heated at 90 °C for 3 hours. The reaction mixture was then cooled to room temperature and quenched with water then the aqueous layer was separated and extracted with EtOAc (x 2). The combined organic layer was dried over sodium sulfate, filtered and concentrated in vacuo to afford N-(3-(2-azido-6-morpholinopyrimidin-4-yl)-4-methylphenyl)-3-(trifluoromethyl)benzamide. The compound was utilized in the subsequent reaction without further purification. LCMS (m/z) (M+H) = 484.0/485.1, Rt = 0.96 min.
- Step 2. To a mixture of N-(3-(2-azido-6-morpholinopyrimidin-4-yl)-4-methylphenyl)-3-(trifluoromethyl)benzamide (1.0 equiv.), 2-methylbut-3-yn-2-ol (5.0 equiv.) and triethylamine (2.0 equiv.) in dioxane (0.25 M) was added Copper (I) Oxide on carbon (0.2 equiv.). The resulting mixture was heated to 90 °C for 3 hours. The reaction mixture was then cooled to room temperature and filtered, concentrated in vacuo. The crude material was purified via preparative reverse phase HPLC. Upon lyophilization of the pure fractions, N-(3-(2-(4-(2-hydroxypropan-2-yl)-1H-1,2,3-triazol-1-yl)-6-morpholinopyrimidin-4-yl)-4-methylphenyl)-3-(trifluoromethyl)benzamide was isolated as the TFA salt in 14% yield. 1H NMR (400 MHz, <cd3od>) δ ppm 1.66 (s, 6 H) 2.55 (s, 3 H) 2.66 (s, 1 H) 3.71 - 4.06 (m, 8 H) 6.99 (s, 1 H) 7.43 (d, J=7.83 Hz, 1 H) 7.47 - 7.61 (m, 2 H) 7.92 - 8.02 (m, 2 H) 8.11 (d, J=1.96 Hz, 1 H) 8.17 (s, 1 H) 8.62 (s, 1 H). LCMS (m/z) (M+H) = 568.3, Rt = 0.96 min.
-
- To a solution of N-(4-methyl-3-(2-(methylsulfonyl)-6-morpholinopyrimidin-4-yl)phenyl)-3-(trifluoromethyl)benzamide (1.0 equiv.) in DMSO (0.05M) was added ammonium acetate (2 equiv.) in a microwave vial equipped with a stir bar. The reaction was heated to 100 °C for 15 min in the microwave. The crude material was purified via preparative reverse phase HPLC. Upon lyophilization of the pure fractions, N-(3-(2-amino-6-morpholinopyrimidin-4-yl)-4-methylphenyl)-3-(trifluoromethyl)benzamide was isolated as the TFA salt in 23% yield. LCMS (m/z) (M+H) = 458.0, Rt = 0.79 min. 1H NMR (400 MHz, <cd3od>) δ ppm 2.48 (s, 3 H) 3.79 (br. s., 8 H) 6.57 (s, 1 H) 7.45 (d, J=7.83 Hz, 1 H) 7.54 - 7.60 (m, 2 H) 7.94 (d, J=8.61 Hz, 1 H) 8.03 (d, J=1.57 Hz, 1 H) 8.08 (dd, J=8.02, 1.76 Hz, 1 H) 8.17 (s, 1 H).
-
- To a solution of N-(4-methyl-3-(2-(methylsulfonyl)-6-morpholinopyrimidin-4-yl)phenyl)-3-(trifluoromethyl)benzamide (1.0 equiv.) and 2-aminopropane-1,3-diol (1.0 equiv.) in DMF (0.05M) was added 60% sodium hydride (1.0 equiv.) at 0°C. The reaction was allowed to warm to room temperature and stir for 24 hours. LCMS analysis indicated the formation of the desired product. The crude material was purified via preparative reverse phase HPLC. Upon lyophilization of the pure fractions, N-(3-(2-((1,3-dihydroxypropan-2-yl)amino)-6-morpholinopyrimidin-4-yl)-4-methylphenyl)-3-(trifluoromethyl)benzamide was isolated as the TFA salt in 28% yield.. LCMS (m/z) (M+H) = 532.1, Rt = 0.68 min. 1H NMR (400 MHz, <cd3od>) δ ppm 2.45 (s, 3 H) 3.64 - 3.71 (m, 1 H) 3.79 (s, 10 H) 3.85 - 3.91 (m, 1 H) 4.53 - 4.59 (m, 1 H) 4.63 - 4.69 (m, 1 H) 6.67 (s, 1 H) 7.44 (d, J=7.43 Hz, 1 H) 7.51 (d, J=7.83 Hz, 1 H) 7.56 (t, J=8.02 Hz, 1 H) 7.93 (d, J=8.22 Hz, 1 H) 7.96 - 8.01 (m, 3 H) 8.16 (s, 1 H).
- Step 2. To a solution of 4-(6-chloro-2-(methylthio)pyrimidin-4-yl)morpholine (1.0 equiv.) in DCM (0.10 M) was added mCPBA (2.2 equiv.) portion-wise. The reaction was stirred at RT for 3 hours. After which time LCMS shows complete oxidation to desired product. The reaction was diluted with DCM (150mL) and washed with 0.5M Na2CO3. The organics were dried over MgSO4, filtered and concentrated. Isolated 4-(6-chloro-2-(methylsulfonyl)pyrimidin-4-yl)morpholine in 100% yield. LCMS (m/z) (M+H) = 277.9, Rt = 0.49 min.
- Step 3. To a solution of 4-(6-chloro-2-(methylsulfonyl)pyrimidin-4-yl)morpholine (1.0 equiv) in dioxane (0.20M) was added ethane-1,2-diol (90 equiv.). To this stirring solution was added 60% NaH (1.0 equiv.) at 0 °C. The reaction was allowed to warm to room temperature stirring for 24 hours. LCMS analysis indicated the formation of the desired product. The reaction was partitioned between NH4Cl and EtOAc. The organics were washed with brine, water, then dried over MgSO4 filtered and concentrated. Isolated 2-((4-chloro-6-morpholinopyrimidin-2-yl)oxy)ethanol in 75% yield. LCMS (m/z) (M+H) = 260.0, Rt = 0.49 min. 1H NMR (400 MHz, <cdcl3>) δ ppm 3.71 - 3.82 (m, 8 H) 3.91 - 3.98 (m, 2 H) 4.40 - 4.47 (m, 2 H) 6.18 - 6.24 (m, 1 H).
-
- To a solution of 2-((4-chloro-6-morpholinopyrimidin-2-yl)oxy)ethanol (1.0 equiv.) and N-(4-methyl-3-(4,4,5,5-tetramethyl-1,,3,2-dioxaborolane-2-yl)phenyl)-3-(trifluoromethyl)benxamide (1.2 equiv.) in DME and 2M sodium carbonate (3:1, 0.2 M) was added PdCl2(dppf)-DCM adduct (0.1 equiv.) in a microwave vial equipped with a stir bar. The reaction was heated to 120 °C for 20 min in the microwave. The reaction was partitioned between water and ethyl acetate, the organic phase was washed with brine, was dried with sodium sulfate, filtered and concentrated. The crude material was purified via preparative reverse phase HPLC. Upon lyophilization of the pure fractions, N-(3-(2-(2-hydroxyethoxy)-6-morpholinopyrimidin-4-yl)-4-methylphenyl)-3-(trifluoromethyl)benzamide was isolated as the TFA salt in 18% yield. 1H NMR (400 MHz, <cd3od>) δ ppm 2.37 (s, 3 H) 3.79 - 3.85 (m, 4 H) 3.86 - 3.97 (m, 6 H) 4.60 - 4.65 (m, 2 H) 6.78 (s, 1 H) 7.41 (d, J=8.22 Hz, 1 H) 7.67 (dd, J=8.22, 2.35 Hz, 1 H) 7.74 (t, J=7.83 Hz, 1 H) 7.91 (d, J=8.22 Hz, 1 H) 7.94 (d, J=1.96 Hz, 1 H) 8.21 (d, J=7.83 Hz, 1 H) 8.26 (s, 1 H). LCMS (m/z) (M+H) = 503.1, Rt = 0.73 min.
-
- Step 1. To a solution of 2,4,6-trichloropyrimidine (1.0 equiv.) and 4,4,5,5-tetramethyl-2-(prop-1-en-2-yl)-1,3,2-dioxaborolane (1.05 equiv.) in dioxane and 2M sodium carbonate (3:1, 0.31 M) was added PdCl2(dppf)-DCM adduct (0.05 equiv.). The reaction mixture was heated to 110 °C for 45 min. The reaction mixture was then cooled to room temperature and diluted with EtOAc and water. The aqueous layer was separated and extracted with EtOAc (x 2). The combined organic layer was dried over sodium sulfate, filtered and concentrated in vacuo. The mixture of regioisomers was utilized in the subsequent reactions without further purification. LCMS (m/z) (M+H) = 189.0/191.1, Rt = 0.92 min two overlapping.
- Step 2. To a solution of 2,4-dichloro-6-(prop-1-en-2-yl)pyrimidine and 4,6-dichloro-2-(prop-1-en-2-yl)pyrimidine (total 1.0 equiv.) in t-Butanol (0.2 M) was added morpholine (1.0 equiv.) followed by N,N-diisopropylethylamine (1.20 equiv.). The resulting mixture was heated to 120 at °C for 45 min. The reaction mixture was then cooled to RT, concentrated in vacuo and utilized in the subsequent reactions without further purification. LCMS Major (m/z) (M+H) = 240.1/242.1, Rt = 0.74 min and Minor (m/z) (M+H) = 240.1/242.1, 0.94 min.
- Step 3. To a solution of 4-(2-chloro-6-(prop-1-en-2-yl)pyrimidin-4-yl)morpholine and 4-(4-chloro-6-(prop-1-en-2-yl)pyrimidin-2-yl)morpholine (total 1.0 equiv.) and Intermediate A (1.1 equiv.) in dioxane and 2M sodium carbonate (4:1, 0.17 M) was added PdCl2(dppf)-DCM adduct (0.150 equiv.) in a microwave vial equipped with a stir bar. The reaction was heated to 120 °C for 20 min in the microwave. The organic phase was dried with sodium sulfate, filtered and concentrated. The crude material was purified via preparative reverse phase HPLC. Upon lyophilization of the pure fractions, two regioisomers were isolated in order of elution, major N-(4-methyl-3-(4-morpholino-6-(prop-1-en-2-yl)pyrimidin-2-yl)phenyl)-3-(trifluoromethyl)benzamide as the TFA salt in 4% yield. 1H NMR (400 MHz, <dmso>) δ ppm 2.13 (s, 3 H) 3.30 (s, 3 H) 3.69 (s, 8 H) 5.38 (s, 1 H) 6.15 (d, J=0.78 Hz, 1 H) 6.83 (s, 1 H) 7.26 (d, J=8.61 Hz, 1 H) 7.72 - 7.84 (m, 2 H) 7.95 (d, J=7.83 Hz, 1 H) 8.16 (d, J=2.35 Hz, 1 H) 8.22 - 8.34 (m, 2 H) 10.48 (s, 1 H). LCMS (m/z) (M+H) = 483.2, Rt = 0.87 min and minor N-(4-methyl-3-(2-morpholino-6-(prop-1-en-2-yl)pyrimidin-4-yl)phenyl)-3-(trifluoromethyl)benzamide 2% as the TFA salt in 2% yield. 1H NMR (400 MHz, <dmso>) δ ppm 2.11 (s, 3 H) 2.35 (s, 3 H) 3.75 (d, J=4.70 Hz, 8 H) 5.45 (s, 1 H) 6.12 (s, 1 H) 6.99 (s, 1 H) 7.30 (d, J=8.22 Hz, 1 H) 7.73 - 7.87 (m, 3 H) 7.95 (s, 1 H) 8.21 - 8.35 (m, 2 H) 10.49 (s, 1 H). LCMS (m/z) (M+H) = 483.2, Rt = 1.22 min.
-
- A solution of N-(4-methyl-3-(4-morpholino-6-(prop-1-en-2-yl)pyrimidin-2-yl)phenyl)-3-(trifluoromethyl)benzamide in Methanol (0.083 M) was evacuated and back filled with argon (x3). To the solution was then added Pd/C (1.00 eq.) and the mixture was evacuated and back filled with hydrogen (x 3). The mixture was then stirred at RT under a positive pressure of atmospheric hydrogen (balloon) for 2 h. The hydrogen gas was removed by evacuation and the reaction backfilled with argon. The reaction mixture was then concentrated in vacuo. The crude material was purified via preparative reverse phase HPLC. Upon lyophilization of the pure fractions N-(3-(4-isopropyl-6-morpholinopyrimidin-2-yl)-4-methylphenyl)-3-(trifluoromethyl)benzamide as the TFA salt in 30% yield. 1H NMR (400 MHz, <dmso>) δ ppm 1.29 (d, J=6.65 Hz, 6 H) 2.38 (br. s., 3 H) 2.91 - 3.07 (m, 1 H) 3.71 (br. s., 8 H) 7.27 - 7.47 (m, 1 H) 7.74 - 7.88 (m, 2 H) 7.93 - 8.01 (m, 1 H) 8.06 (s, 1 H) 8.28 (s, 2 H) 10.54 - 10.70 (m, 1 H). LCMS (m/z) (M+H) = 485.4, Rt = 0.85 min.
-
- A solution of N-(4-methyl-3-(2-morpholino-6-(prop-1-en-2-yl)pyrimidin-4-yl)phenyl)-3-(trifluoromethyl)benzamide in Methanol (0.083 M) was evacuated and back filled with argon (x3). To the solution was then added Pd/C (1.00 eq.) and the mixture was evacuated and back filled with hydrogen (x 3). The mixture was then stirred at RT under a positive pressure of atmospheric hydrogen (balloon) for 2 h. The hydrogen gas was removed by evacuation and the reaction backfilled with argon. The reaction mixture was then concentrated in vacuo. The crude material was purified via preparative reverse phase HPLC. Upon lyophilization of the pure fractions N-(3-(6-isopropyl-2-morpholinopyrimidin-4-yl)-4-methylphenyl)-3-(trifluoromethyl) benzamide was obtained as the TFA salt in 43% yield. 1H NMR (400 MHz, <dmso>) δ ppm 1.22 (d, J=6.65 Hz, 6 H) 2.34 (s, 3 H) 2.86 (dt, J=13.69, 6.85 Hz, 1 H) 3.62 - 3.79 (m, 8 H) 6.70 (s, 1 H) 7.29 (d, J=8.22 Hz, 1 H) 7.74 - 7.84 (m, 3 H) 7.95 (d, J=7.83 Hz, 1 H) 8.21 - 8.33 (m, 2 H) 10.49 (s, 1 H). LCMS (m/z) (M+H) = 485.4, Rt = 1.09 min.
-
- Step 1: A mixture of 2,2-dimethylmorpholine (2.0 equiv.), 4-(4,6-dichloropyrimidin-2-yl)morpholine (1 equiv.) and triethylamine (6 equiv.) in EtOH (0.2 M) were heated to 110 °C for 25 min in the microwave. The reaction mixture was partitioned between EtOAc and water. The organic phase was dried over sodium sulfate. The resulting solution was concentrated and dried under vacuo to give 4-(6-chloro-2-morpholinopyrimidin-4-yl)-2,2-dimethylmorpholine and was used in the next step without further purification. LCMS (m/z) (M+H) = 313.2, Rt = 0.86 min.
- Step 2: A mixture of 4-(6-chloro-2-morpholinopyrimidin-4-yl)-2,2-dimethylmorpholine (1.0 equiv.), N-(4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-3-(trifluoromethyl)benzamide (1.2 equiv.), sodium carbonate (2 M, 8 equiv.) and PdCl2(dppf) (0.5 equiv.) in DME (0.1 M) were heated to 108 °C for 13 min in the microwave. After removing the DME soluble portion and concentrating, the resulting solid was partitioned between EtOAc and water. The organic phase was washed with brine, dried over sodium sulfate and then purified via preparative reverse phase HPLC. Upon lyophilization of the pure fractions, N-(3-(6-(2,2-dimethylmorpholino)-2-morpholinopyrimidin-4-yl)-4-methylphenyl)-3-(trifluoromethyl)benzamide was isolated as the TFA salt in 36% yield. 1H NMR (400 MHz, <dmso>) δ ppm 1.08 - 1.18 (m, 6 H) 2.29 (s, 3 H) 3.39 - 3.90 (m, 14 H) 7.34 (d, J=6.26 Hz, 1 H) 7.45 - 7.65 (m, 1 H) 7.70 - 7.88 (m, 3 H) 7.92 - 8.03 (m, 1 H) 8.18 - 8.36 (m, 2 H) 10.58 (br. s., 1 H). LCMS (m/z) (M+H) = 556.4, Rt = 0.87 min.
- The compounds listed below were prepared using methods similar to those described above using the appropriate starting materials.
-
-
- 1H NMR (400 MHz, <dmso>) δ ppm 2.29 (s, 3 H) 3.16 (br. s., 1 H) 3.36 - 3.55 (m, 3 H) 3.68 (d, J=7.43 Hz, 10 H) 3.85 - 4.04 (m, 3 H) 6.43 (br. s., 1 H) 7.34 (d, J=6.65 Hz, 1 H) 7.69 - 7.88 (m, 3 H) 7.97 (d, J=7.83 Hz, 1 H) 8.20 - 8.35 (m, 2 H) 10.57 (br. s., 1 H). LCMS (m/z) (M+H) = 558.3, Rt = 0.75 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.82 - 2.06 (m, 4 H) 2.31 (s, 3 H) 3.58 - 3.73 (m, 14 H) 7.33 (br. s., 1 H) 7.45 - 7.67 (m, 1 H) 7.71 - 7.88 (m, 3 H) 7.91 - 8.02 (m, 1 H) 8.16 - 8.39 (m, 2 H) 10.55 (br. s., 1 H). LCMS (m/z) (M+H) = 554.3, Rt = 0.85 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.85 (br. s., 2 H) 2.30 (s, 3 H) 3.58 - 3.80 (m, 16 H) 7.35 (br. s., 1 H) 7.44 - 7.69 (m, 1 H) 7.72 - 7.90 (m, 3 H) 7.97 (d, J=7.83 Hz, 1 H) 8.18 - 8.36 (m, 2 H) 10.57 (br. s., 1 H). LCMS (m/z) (M+H) = 542.3, Rt = 0.85 min.
-
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.58 - 1.72 (m, 2 H) 1.74 - 1.92 (m, 2 H) 2.29 (s, 3 H) 2.94 - 3.29 (m, 2 H) 3.68 (d, J=7.04 Hz, 8 H) 4.42 (br. s., 2 H) 7.33 (d, J=7.04 Hz, 1 H) 7.46 - 7.68 (m, 1 H) 7.70 - 7.86 (m, 3 H) 7.97 (d, J=7.83 Hz, 1 H) 8.19 - 8.34 (m, 2 H) 10.56 (br. s., 1 H). LCMS (m/z) (M+H) = 554.4, Rt = 0.83 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.00 - 1.26 (m, 3 H) 2.29 (s, 3 H) 3.41 - 3.57 (m, 2 H) 3.68 (d, J=8.61 Hz, 8 H) 3.89 (d, J=10.96 Hz, 1 H) 7.32 (br. s., 1 H) 7.42 - 7.66 (m, 1 H) 7.70 - 7.87 (m, 3 H) 7.92 - 8.02 (m, 1 H) 8.19 - 8.33 (m, 2 H) 10.54 (br. s., 1 H). LCMS (m/z) (M+H) = 542.3, Rt = 0.85 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.13 (d, J=6.26 Hz, 3 H) 2.29 (s, 3 H) 2.52 (s, 2 H) 3.41 - 3.61 (m, 2 H) 3.68 (d, J=9.39 Hz, 8 H) 3.90 (d, J=10.17 Hz, 1 H) 7.33 (d, J=6.26 Hz, 1 H) 7.42 - 7.62 (m, 1 H) 7.69 - 7.88 (m, 3 H) 7.93 - 8.03 (m, 1 H) 8.20 - 8.35 (m, 2 H) 10.57 (br. s., 1 H). LCMS (m/z) (M+H) = 542.4, Rt = 0.85 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.82 - 2.06 (m, 4 H) 2.31 (s, 3 H) 3.58 - 3.73 (m, 14 H) 7.33 (br. s., 1 H) 7.45 - 7.67 (m, 1 H) 7.71 - 7.88 (m, 3 H) 7.91 - 8.02 (m, 1 H) 8.16 - 8.39 (m, 2 H) 10.55 (br. s., 1 H). LCMS (m/z) (M+H) = 554.3, Rt = 0.79 min.
-
- A mixture of 4-(4-chloro-6-((tetrahydro-2H-pyran-4-yl)oxy)pyrimidin-2-yl)morpholine (prepared according to
WO2007/084786 ) (1.0 equiv.), N-(4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-3-(trifluoromethyl)benzamide (1.2 equiv.), sodium carbonate (2 M, 8 equiv.) and PdCl2(dppf) (0.5 equiv.) in DME (0.1 M) were heated to 108 °C for 13 min in the microwave. After removing the DME soluble portion and concentrating, the resulting solid was partitioned between EtOAc and water. The organic phase was washed with brine, dried over sodium sulfate and then purified via preparative reverse phase HPLC. Upon lyophilization of the pure fractions, N-(3-(6-(2,2-dimethylmorpholino)-2-morpholinopyrimidin-4-yl)-4-methylphenyl)-3-(trifluoromethyl)benzamide was isolated as the TFA salt in 44% yield. 1H NMR (400 MHz, <dmso>) δ ppm 1.59 - 1.71 (m, 2 H) 1.95 - 2.09 (m, 2 H) 2.35 (s, 3 H) 3.64 - 3.72 (m, 10 H) 3.80 - 3.91 (m, 2 H) 5.24 (dt, J=8.71, 4.45 Hz, 1 H) 6.18 (s, 1 H) 7.27 (d, J=8.22 Hz, 1 H) 7.72 - 7.87 (m, 3 H) 7.96 (d, J=7.43 Hz, 1 H) 8.18 - 8.38 (m, 2 H) 10.45 (s, 1 H). LCMS (m/z) (M+H) = 543.3, Rt = 0.96 min. -
- Step 1. To a solution of 4-(4,6-dichloro-5-methylpyrimidin-2-yl)morpholine in EtOH (0.15 M) was added morpholine (2.0 equiv.) followed by triethylamine (4.00 equiv.). The resulting mixture was heated under microwave irradiation at 125 °C for 50 min (2 x 25 min). The reaction mixture was then concentrated in vacuo to yield 4,4'-(6-chloro-5-methylpyrimidine-2,4-diyl)dimorpholine as a white solid in 96% yield which was utilized without further purification in the subsequent reaction. LCMS (m/z) (M+H) = 299.1, Rt = 0.85 min.
- Step 2. To a solution of 4,4'-(6-chloro-5-methylpyrimidine-2,4-diyl)dimorpholine (1.0 equiv.) and Intermediate A (1.20 equiv.) in DME and 2M sodium carbonate (3:1, 0.2 M) was added PdCl2(dppf)-DCM adduct (0.500 equiv.) in a microwave vial equipped with a stir bar. The reaction was heated to 110 °C for 10 min under microwave irradiation. The organic phase was dried with sodium sulfate, filtered and concentrated. The crude material was purified via preparative reverse phase HPLC. Upon lyophilization of the pure fractions, N-(4-methyl-3-(5-methyl-2,6-dimorpholinopyrimidin-4-yl)phenyl)-3-(trifluoromethyl)benzamide was isolated as the TFA salt in 6% yield. 1H NMR (400 MHz, <dmso>) δ ppm 1.81 (s, 3 H) 2.10 (br. s., 3 H) 3.63 (br. s., 11 H) 3.70 (d, J=3.91 Hz, 5 H) 7.30 (br. s., 1 H) 7.65 - 7.82 (m, 2 H) 7.95 (d, J=7.43 Hz, 1 H) 8.15 - 8.35 (m, 3 H) 10.48 (br. s., 1 H). LCMS (m/z) (M+H) = 542.2, Rt = 0.85 min.
-
- Step 1: A mixture of 5-bromo-3-chloropyridazine (1.0 equiv.), N-(6-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-3-yl)-3-(trifluoromethyl)benzamide (1.2 equiv.), sodium carbonate (2 M, 8 equiv.) and PdCl2(dppf) (0.5 equiv.) in DME (0.1 M) were heated to 108 °C for 13 min in the microwave. After removing the DME soluble portion and concentrating, the resulting solid was partitioned between EtOAc and water. The organic phase was washed with brine and then dried over sodium sulfate. After concentration, the crude material was purified via preparative reverse phase HPLC. Volatiles were removed by rotary evaporation and the remaining aqueous solution was basified with sodium bicarbonate. This solution was extracted with EtOAc, washed with brine and dried over sodium sulfate. The solution was concentrated and dried under vacuo to give crude N-(5-(6-chloropyridazin-4-yl)-6-methylpyridin-3-yl)-3-(trifluoromethyl)benzamide and was used in the next step without further purification. LCMS (m/z) (M+H) = 393.1, Rt = 0.73 min.
- Step 2: A mixture of N-(5-(6-chloropyridazin-4-yl)-6-methylpyridin-3-yl)-3-(trifluoromethyl)benzamide (1.0 equiv.), morpholine (5 equiv.) and potassium carbonate (10 equiv.) in NMP (0.15 M) were heated to 130 °C for 18 h in an oil bath. The reaction mixture was centrifuged and the soluble portion was removed from solids. The soluble portion was purified via preparative reverse phase HPLC. Upon lyophilization of the pure fractions, N-(6-methyl-5-(6-morpholinopyridazin-4-yl)pyridin-3-yl)-3-(trifluoromethyl)benzamide was isolated as the TFA salt in 1% yield. LCMS (m/z) (M+H) = 444.2, Rt = 0.63 min.
-
- Step 1: A mixture of 5-bromo-3-chloropyridazine (1.0 equiv.), morpholine (1 equiv.) and potassium carbonate (6 equiv.) in NMP (0.2 M) were heated to 110 °C for 4 hours in an oil bath. The reaction mixture was partitioned between EtOAc and water. The organic phase was dried over sodium sulfate, concentrated and purified by normal phase chromatography. The combined fractions were concentrated and dried under vacuo to give crude 4-(6-chloropyridazin-4-yl)morpholine and was used in the next step without further purification. LCMS (m/z) (M+H) = 200.0, Rt = 0.34 min.
- Step 2: A mixture of 4-(6-chloropyridazin-4-yl)morpholine (1.0 equiv.), N-(4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-3-(trifluoromethyl)benzamide (1.0 equiv.), sodium carbonate (2 M, 10 equiv.) and PdCl2(dppf) (0.5 equiv.) in DME (0.1 M) were heated to 110 °C for 15 min in the microwave. After removing the DME soluble portion and concentrating, the resulting solid was partitioned between EtOAc and water. The organic phase was washed with brine, dried over sodium sulfate and then purified via preparative reverse phase HPLC. Upon lyophilization of the pure fractions, N-(4-methyl-3-(5-morpholinopyridazin-3-yl)phenyl)-3-(trifluoromethyl)benzamide was isolated as the TFA salt in 14% yield. 1H NMR (400 MHz, <dmso>) δ ppm 2.37 (s, 3 H) 3.73 - 3.86 (m, 8 H) 7.46 (d, J=7.83 Hz, 1 H) 7.51 (d, J=2.35 Hz, 1 H) 7.55 - 7.69 (m, 2 H) 8.01 - 8.10 (m, 2 H) 8.14 (d, J=8.22 Hz, 1 H) 8.21 (s, 1 H) 9.07 (d, J=2.74 Hz, 1 H) 10.60 (s, 1 H). LCMS (m/z) (M+H) = 443.1, Rt = 0.74 min.
- The compound listed below were prepared using methods similar to those described above using the appropriate starting materials.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 2.46 (s, 3 H) 3.73 - 3.90 (m, 9 H) 7.55 (br. s., 1 H) 7.76 - 7.88 (m, 1 H) 8.01 (d, J=7.83 Hz, 1 H) 8.28 (d, J=7.83 Hz, 1 H) 8.32 (s, 1 H) 8.38 (d, J=2.35 Hz, 1 H) 8.95 (d, J=1.96 Hz, 1 H) 9.07 (d, J=3.13 Hz, 1 H) 10.87 (s, 1 H). LCMS (m/z) (M+H) = 444.0, Rt = 0.62 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 2.40 (s, 3 H) 3.65 - 3.85 (m, 8 H) 7.19 (s, 1 H) 7.35 (d, J=8.22 Hz, 1 H) 7.75 - 7.83 (m, 1 H) 7.87 (dd, J=8.22, 1.96 Hz, 1 H) 7.91 (d, J=1.96 Hz, 1 H) 7.97 (d, J=7.43 Hz, 1 H) 8.22 - 8.34 (m, 2 H) 10.54 (s, 1 H). LCMS (m/z) (M+H) = 511.2, Rt = 1.23 min.
-
-
- To a solution of triethylamine (1.0 equiv.) and 2-fluoro-4-bromopyridine (1.0 equiv.) at RT was added morpholine (1.0 equiv) in one portion, the resulting mixture was then heated in an oil bath at 100 °C for 66 hr. LCMS analysis indicated the formation of the desired product (m/z=244.9, Rt=0.36 min). The reaction mixture was concentrated in vacuo to yield 4-(4-bromopyridin-2-yl)morpholine as a light brown solid, (>100%, TEA impurity). LCMS (m/z) (M+H) = 244.9, Rt = 0.36 min. 1H NMR (400 MHz, <dmso>) δ ppm 3.39 - 3.55 (m, 4 H) 3.59 - 3.75 (m, 4 H) 6.87 (dd, J=5.28, 1.37 Hz, 1 H) 7.05 (d, J=1.17 Hz, 1 H) 8.00 (d, J=5.48 Hz, 1 H).
-
- 4-(4-bromopyridin-2-yl)morpholine (1.10 equiv), bis(pinacolato)diboron (1.0 equiv.), potassium acetate (4.0 equiv), and PdCl2(dppf)CH2Cl2 (0.05 equiv.) were added to a rb flask which was purged with nitrogen. DMF (0.20 M) was added and the mixture was heated to 80 °C overnight. The reaction was cooled to rt, quenched with water, and the product was extracted into EtOAc (3X). The combined organics were dried over Na2SO4, filtered, and concentrated. The crude was loaded onto silica gel and purified via ISCO to yield 4-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-2-yl)morpholine as a light brown foam (56%). 1H NMR (400 MHz, <cdcl3>) δ ppm 1.33 (s, 12 H) 3.49 - 3.55 (m, 4 H) 3.79 - 3.83 (m, 4 H) 6.98 (d, J=4.70 Hz, 1 H) 7.03 (s, 1 H) 8.21 (d, J=4.70 Hz, 1 H).
-
- To a solution of 5-bromo-6-methylpyridin-3-amine (1.0 equiv.) and 4-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-2-yl)morpholine (1.7 equiv.) in DME and 2M sodium carbonate (4:1, 0.14 M) was added PdCl2(dppf)-DCM adduct (0.1 equiv.) in a microwave vial equipped with a stir bar. The reaction was heated to 110 °C for 15 min in the microwave. The cooled reaction mixture was partitioned between water and ethyl acetate. The organic phase was dried with sodium sulfate, filtered and concentrated. The crude material was purified by flash chromatography over silica gel (DCM with a 0-20% methanol gradient). The pure fractions were concentrated in vacuo to afford 2-methyl-2'-morpholino-[3,4'-bipyridin]-5-amine in quantitative yield. LCMS (m/z) (M+H) = 271.1, Rt = 0.26 min.
- Synthesis of N-(4-methyl-3-(2-morpholinopyridin-4-yl)phenyl)-3-(trifluoromethyl)benzamide. To a solution of 4-(4-bromopyridin-2-yl)morpholine (1.0 equiv.) and Intermediate A (1.2 equiv.) in DME and 2M sodium carbonate (3:1, 0.08 M) was added PdCl2(dppf)-DCM adduct (0.1 equiv.) in a microwave vial equipped with a stir bar. The reaction was heated to 120 °C for 20 min in the microwave. The reaction was quenched with water and extracted with ethyl acetate. The combined organic phase was dried with sodium sulfate, filtered and concentrated. The crude material was purified via preparative reverse phase HPLC. Upon lyophilization of the pure fractions, N-(4-methyl-3-(2-morpholinopyridin-4-yl)phenyl)-3-(trifluoromethyl)benzamide was isolated as the TFA salt in 16% yield. LCMS (m/z) (M+H) = 442.3, Rt = 0.76 min. 1H NMR (400 MHz, <dmso>) δ ppm 2.25 (s, 3 H) 3.44 - 3.59 (m, 5 H) 3.64 - 3.87 (m, 22 H) 6.82 (d, J=5.48 Hz, 1 H) 7.00 (s, 1 H) 7.27 - 7.41 (m, 1H) 7.67 - 7.82 (m, 3 H) 7.90 - 8.03 (m, 1 H) 8.17 (d, J=5.48 Hz, 1 H) 8.26 (d, J=7.83 Hz, 1 H) 8.30 (s, 1 H) 10.40 - 10.61 (m, 1 H).
- The compounds listed below were prepared using methods similar to those described for the preparation of Example 62 using the appropriate starting materials.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 2.28 - 2.38 (m, 3 H) 3.50 - 3.58 (m, 5 H) 3.61 - 3.93 (m, 36 H) 6.83 (d, J=5.09 Hz, 1 H) 6.97 (br. s., 1 H) 7.37- 7.69 (m, 6 H) 7.89 (d, J=1.57 Hz, 1 H) 7.96 (dd, J=7.83, 1.57 Hz, 1 H) 8.06 (d, J=8.22 Hz, 1 H) 8.20 (d, J=5.48 Hz, 1 H) 8.23 (s, 1 H) 10.50 (s, 1H). LCMS (m/z) (M+H) = 442.3, Rt = 0.79 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 2.36 (s, 3 H) 2.54 (s, 1 H) 7.27 (dd, J=7.24, 2.54 Hz, 1 H) 7.32 (d, J=2.74 Hz, 1 H) 7.48 (d, J=7.83 Hz, 1 H)7.56 - 7.65 (m, 2 H) 8.03 - 8.10 (m, 2 H) 8.14 (dd, J=8.02, 1.76 Hz, 1 H) 8.23 (s, 1 H) 8.36 (d, J=7.04 Hz, 1 H) 10.50 - 10.65 (m, 1 H) 13.75 (br. s., 1 H). LCMS (m/z) (M+H) = 442.3, Rt = 0.74 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 2.14 - 2.27 (m, 3 H) 3.28 - 3.51 (m, 8 H) 3.54 - 3.82 (m, 8 H) 5.97 - 6.12 (m, 2 H) 7.21 - 7.33 (m, 1 H) 7.56 -7.63 (m, 2 H) 7.68 - 7.74 (m, 1 H) 7.78 (t, J=7.83 Hz, 1 H) 7.96 (d, J=7.83 Hz, 1 H) 8.17 - 8.27 (m, 1 H) 8.29 (s, 1 H) 10.36 - 10.50 (m, 1 H), LCMS (m/z) (M+H) = 527.4, Rt = 1.04 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 2.25 (s, 3 H) 3.45 - 3.61 (m, 4 H) 3.67 - 3.79 (m, 4 H) 6.81 (d, J=5.48 Hz, 1 H) 6.98 (br. s., 1 H) 7.35 (d, J=8.22 Hz, 1 H) 7.69 (s, 1 H) 7.73 (dd, J=8.22, 1.96 Hz, 1 H) 7.86 (dd, J=5.09, 1.17 Hz, 1 H) 8.00 (s, 1 H) 8.17 (d, J=5.87 Hz, 1 H) 8.81 (d, J=5.09 Hz, 1 H) 10.60 (s, 1 H), LCMS (m/z) (M+H) = 442.4, Rt = 0.67 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 2.17 - 2.34 (m, 3 H) 3.49 - 3.65 (m, 4 H) 3.69 - 3.82 (m, 4 H) 6.88 (d, J=5.48 Hz, 1 H) 7.09 (s, 1 H) 7.27 - 7.44 (m, 1 H) 7.86 - 7.95 (m, 2 H) 7.98 (dd, J=8.61, 5.09 Hz, 1 H) 8.13 - 8.22 (m, 1 H) 8.27 - 8.37 (m, 1 H) 9.38 - 9.55 (m, 1 H) 11.03 - 11.24 (m, 1 H), LCMS (m/z) (M+H) = 376.3.0, Rt = 0.56 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 2.17 - 2.30 (m, 3 H) 3.23 - 3.35 (m, 3 H) 3.52 - 3.64 (m, 4 H) 3.69 - 3.85 (m, 4 H) 6.85 (d, J=5.48 Hz, 1 H), 7.06 (br. s., 1 H) 7.35 (d, J=8.22 Hz, 1 H) 7.65 - 7.79 (m, 2 H) 7.79 - 7.89 (m, 1 H) 8.09 - 8.20 (m, 2 H) 8.29 (d, J=7.83 Hz, 1 H) 8.43 - 8.53 (m, 1H) 10.50 - 10.65 (m, 1 H), LCMS (m/z) (M+H) = 452.1, Rt = 0.61 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.29 - 1.42 (m, 9 H) 2.25 (s, 3 H) 3.51 - 3.65 (m, 4 H) 3.69 - 3.81 (m, 4 H) 6.85 (d, J=5.48 Hz, 1 H) 6.95 - 7.13 (m, 1 H) 7.35 (d, J=8.22 Hz, 1 H) 7.59 - 7.78 (m, 3 H) 7.86 (s, 1 H) 8.16 (d, J=5.48 Hz, 1 H) 8.72 (d, J=5.09 Hz, 1 H) 10.52 (s, 1 H), LCMS (m/z) (M+H) = 431.3, Rt = 0.54 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 2.18 - 2.31 (m, 3 H) 3.48 - 3.65 (m, 4 H) 3.68 - 3.83 (m, 4 H) 6.85 (d, J=5.48 Hz, 1 H) 6.95 - 7.13 (m, 1 H), 7.27 - 7.39 (m, 1 H) 7.79 - 7.92 (m, 2 H) 8.05 - 8.22 (m, 1 H) 8.81 (dd, J=2.35, 1.57 Hz, 1 H) 8.94 (d, J=2.35 Hz, 1 H) 9.23 - 9.37 (m, 1 H) 10.79 (s,1 H), LCMS (m/z) (M+H) = 376.2, Rt = 0.57 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 2.19 - 2.28 (m, 3 H) 3.49 - 3.63 (m, 4 H) 3.68 - 3.81 (m, 4 H) 6.85 (d, J=5.48 Hz, 1 H) 6.97 - 7.12 (m, 1 H) 7.32 - 7.41 (m, 1 H) 7.65 - 7.78 (m, 2 H) 8.11 (dd, J=5.28, 2.15 Hz, 1 H) 8.17 (d, J=5.48 Hz, 1 H) 9.50 (dd, J=5.48, 0.78 Hz, 1 H) 9.64 (d, J=0.78 Hz, 1 H) 10.68 - 10.86 (m, 1 H), LCMS (m/z) (M+H) = 376.2, Rt = 0.52 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 2.19 - 2.29 (m, 3 H) 3.58 (d, J=3.91 Hz, 4 H) 3.67 - 3.82 (m, 4 H) 6.83 (d, J=5.09 Hz, 1 H) 7.03 (br. s., 1 H), 7.29 - 7.42 (m, 1 H) 7.64 - 7.76 (m, 2 H) 8.10 - 8.24 (m, 1 H) 9.27 (s, 2 H) 9.37 (s, 1 H) 10.66 (s, 1 H), LCMS (m/z) (M+H) = 376.2, Rt = 0.50 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 2.18 - 2.34 (m, 3 H) 3.35 (s, 3 H) 3.47 - 3.63 (m, 4 H) 3.69 - 3.84 (m, 4 H) 6.72 - 6.88 (m, 1 H) 6.95 - 7.07 (m,1 H) 7.37 (d, J=8.22 Hz, 1 H) 7.72 (s, 1 H) 7.76 (dd, J=8.22, 2.35 Hz, 1 H) 8.17 (d, J=5.48 Hz, 1 H) 8.20 - 8.26 (m, 1 H) 8.53 (s, 1 H) 8.94 - 9.05 (m, 1 H) 10.75 - 10.90 (m, 1 H), LCMS (m/z) (M+H) = 453.3, Rt = 0.57 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.27 (t, J=7.24 Hz, 4 H) 2.24 (s, 3 H) 2.54 (s, 1 H) 3.13 (d, J=8.22 Hz, 5 H) 3.18 - 3.28 (m, 3 H) 3.44 - 3.56 (m, 6 H) 3.61 (d, J=6.26 Hz, 3 H) 3.66 - 3.81 (m, 6 H) 4.11 (d, J=8.61 Hz, 3 H) 6.76 (d, J=5.09 Hz, 1 H) 6.89 (s, 1 H) 7.33 (d, J=8.61 Hz, 1 H) 7.52 (s, 1 H) 7.65 (d, J=1.96 Hz, 1 H) 7.73 (s, 2 H) 7.75 - 7.81 (m, 2 H) 8.18 (d, J=5.48 Hz, 1 H) 9.72 (br. s., 1 H) 10.42 (s, 1 H), LCMS (m/z) (M+H) = 554.4, Rt = 0.61 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 2.54 (s, 1 H) 3.46 - 3.63 (m, 4 H) 3.66 - 3.82 (m, 4 H) 6.84 (d, J=5.09 Hz, 1 H) 7.01 (s, 1 H) 7.03 (br. s., 1 H), 7.15 (s, 1 H) 7.28 (s, 1 H) 7.33 (d, J=8.22 Hz, 1 H) 7.62 - 7.84 (m, 4 H) 8.06 - 8.20 (m, 3 H) 10.46 (s, 1 H), LCMS (m/z) (M+H) = 424.1, Rt = 0.73 min.
-
- 1H NMR (400 MHz, DMSO-d 6) δ ppm 2.21 (s, 3 H) 2.99 (s, 6 H) 3.30 - 3.49 (m, 4 H) 5.89 (d, J=19.95 Hz, 2 H) 7.12 - 7.32 (m, 1 H) 7.63 - 7.84 (m, 2 H) 7.90 - 8.04 (m, 1 H) 8.17 - 8.35 (m, 2 H) 10.30 - 10.53 (m, 1 H). LCMS (m/z) (M+H) 485.4, Rt = 0.93 min.
-
- 1H NMR (400 MHz, DMSO-d 6) δ 2.13 - 2.32 (m, 1 H) 2.54 - 2.66 (m, 2 H) 3.54 - 3.70 (m, 9 H) 7.65 - 8.11 (m, 4 H) 7.83 - 8.02 (m, 3 H) 8.26 (s, 3 H) 8.76 - 8.94 (m, 1 H) 10.53 - 10.79 (m, 1 H). LCMS (m/z) (M+H) 528.3, Rt = 0.8 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.33 (s, 3 H) 3.13 (t, J=11.54 Hz, 1 H) 3.60 - 3.73 (m, 3 H) 3.77 (td, J=11.74, 2.74 Hz, 1 H) 4.02 (d, J=13.30 Hz, 1 H) 4.11 (d, J=12.91 Hz, 2 H) 7.02 (d, J=6.26 Hz, 1 H) 7.29 (s, 1 H) 7.37 (d, J=8.61 Hz, 1 H) 7.61 (dd, J=8.22, 2.35 Hz, 1 H) 7.70 - 7.76 (m, 1 H) 7.81 (d, J=2.35 Hz, 1 H) 7.90 (d, J=7.83 Hz, 1 H) 8.04 (d, J=6.26 Hz, 1 H) 8.20 (d, J=7.83 Hz, 1 H) 8.26 (s, 1 H). LCMS (m/z) (M+H) = 472.3, Rt = 0.74 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.18 (d, J=6.26 Hz, 3 H) 1.75 (s, 6 H) 2.23 (s, 3 H) 2.81 (br. s., 6 H) 3.11 (br. s., 1 H) 3.43 (dd, J=13.69, 4.70 Hz, 1 H) 3.52 (dd, J=11.74, 2.35 Hz, 1 H) 3.70 - 3.80 (m, 1 H) 3.91 (d, J=12.91 Hz, 1 H) 4.04 (dd, J=11.93, 3.33 Hz, 1 H) 4.22 - 4.31 (m, 1 H) 4.37 (d, J=10.56 Hz, 1 H) 6.70 (d, J=5.09 Hz, 1 H) 6.75 (s, 1 H) 7.33 (d, J=8.22 Hz, 1 H) 7.62 - 7.76 (m, 2 H) 7.80 - 7.88 (m, 1 H) 7.99 (s, 1 H) 8.19 (d, J=5.09 Hz, 1 H) 8.80 (d, J=5.09 Hz, 1 H) 10.56 - 10.66 (m, 1 H). LCMS (m/z) (M+H) = 513.5, Rt = 0.59 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.14 (d, J=6.65 Hz, 3 H) 1.75 (s, 6 H) 2.22 (s, 3 H) 2.75 - 2.89 (m, 7 H) 3.23 - 3.36 (m, 2 H) 3.79 - 3.85 (m, 2 H) 3.92 (t, J=9.78 Hz, 1 H) 4.11 (d, J=12.52 Hz, 1 H) 4.40 (d, J=6.26 Hz, 1 H) 6.68 (d, J=5.48 Hz, 1 H) 6.74 (s, 1 H) 7.32 (d, J=8.61 Hz, 1 H) 7.64 - 7.72 (m, 2 H) 7.84 (d, J=4.70 Hz, 1 H) 7.98 (s, 1 H) 8.18 (d, J=5.09 Hz, 1 H) 8.79 (d, J=5.09 Hz, 1 H) 10.57 (s, 1 H). LCMS (m/z) (M+H) = 513.4, Rt = 0.57 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 2.49 (s, 9 H) 3.50 - 3.62 (m, 4 H) 3.68 - 3.77 (m, 4 H) 6.86 (d, J=5.48 Hz, 1 H) 7.07 (s, 1 H) 7.87 (br. s., 1 H) 8.18 (d, J=2.35 Hz, 1 H) 8.22 (d, J=5.48 Hz, 1 H) 8.34 (d, J=2.74 Hz, 1 H) 8.50 (s, 1 H) 8.97 (d, J=2.35 Hz, 1 H) 10.96 (s, 1 H). LCMS (m/z) (M+H) = 419.3, Rt = 0.37 min.
-
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.75 (s, 6 H) 2.23 (s, 3 H) 2.76 (t, J=11.35 Hz, 1 H) 2.99 (t, J=10.96 Hz, 1 H) 3.36 - 3.66 (m, 4 H) 3.96 (dd, J=11.54, 2.15 Hz, 1 H) 4.07 (d, J=12.91 Hz, 1 H) 4.19 (d, J=12.52 Hz, 1 H) 6.81 (d, J=5.09 Hz, 1 H) 6.99 (br. s., 1 H) 7.34 (d, J=8.61 Hz, 1 H) 7.68 (d, J=1.57 Hz, 1 H) 7.72 (dd, J=8.41, 2.15 Hz, 1 H) 7.85 (dd, J=5.09, 1.17 Hz, 1 H) 7.99 (s, 1 H) 8.15 (d, J=5.48 Hz, 1 H) 8.80 (d, J=5.09 Hz, 1 H) 10.59 (s, 1 H). LCMS (m/z) (M+H) = 472.1, Rt = 0.63 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.75 (s, 7 H) 2.22 (s, 3 H) 2.58 (t, J=5.28 Hz, 3 H) 2.62 - 2.73 (m, 2 H) 2.87 - 2.99 (m, 1 H) 3.00 - 3.22 (m, 2 H) 3.76 - 3.87 (m, 2 H) 4.01 (d, J=11.35 Hz, 1 H) 4.11 (d, J=12.52 Hz, 1 H) 4.26 (d, J=12.13 Hz, 1 H) 6.72 (d, J=5.09 Hz, 1 H) 6.81 (s, 1 H) 7.33 (d, J=9.00 Hz, 1 H) 7.61 - 7.72 (m, 2 H) 7.84 (dd, J=5.09, 1.17 Hz, 1 H) 7.98 (s, 1 H) 8.19 (d, J=5.09 Hz, 1 H) 8.80 (d, J=5.09 Hz, 1 H) 10.57 (s, 1 H). LCMS (m/z) (M+H) = 485.3, Rt = 0.60 min.
-
-
-
- To a solution of (S)-2-hydroxy-N-(morpholin-2-ylmethyl)acetamide (1.0 equiv.) and N-(2'-fluoro-2-methyl-[3,4'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide (2.0 equiv.) in NMP (0.13 M) was added potassium carbonate (6.0 equiv.). The mixture was heated at 120 °C overnight. The reaction mixture was then filtered, and purified via reverse phase HPLC to yield (R)-N-(2'-(2-((2-hydroxyacetamido)methyl)morpholino)-2-methyl-[3,4'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide (5%, 99% purity by LC) as a white crystalline solid. LCMS (m/z) (M+H) = 530.1, Rt = 0.56 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.75 (s, 6 H) 3.53 (t, J=4.30 Hz, 4 H) 3.67 - 3.76 (m, 4 H) 3.90 (s, 3 H) 6.98 (d, J=5.48 Hz, 1 H) 7.15 (br. s., 1 H) 7.88 (dd, J=4.89, 1.37 Hz, 1 H) 8.02 (s, 1 H) 8.11 - 8.23 (m, 2 H) 8.58 (d, J=2.35 Hz, 1 H) 8.82 (d, J=5.09 Hz, 1 H) 10.73 (s, 1 H). LCMS (m/z) (M+H) = 459.2, Rt = 0.69 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.94 - 2.12 (m, 3 H) 3.54 (d, J=4.70 Hz, 4 H) 3.68 - 3.79 (m, 4 H) 7.19 (d, J=5.48 Hz, 1 H) 7.56 (br. s., 1 H) 8.00 (d, J=4.70 Hz, 1 H) 8.04 - 8.15 (m, 3 H) 8.17 (s, 1 H) 8.88 (d, J=5.09 Hz, 1 H) 10.54 (s, 1 H). LCMS (m/z) (M+H) = 442.2, Rt = 0.60 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 3.53 (d, J=4.30 Hz, 4 H) 3.68 - 3.77 (m, 4 H) 7.17 (d, J=4.70 Hz, 1 H) 7.52 (br. s., 1 H) 8.00 - 8.14 (m, 3 H) 8.17 (d, J=4.70 Hz, 1 H) 8.34 (s, 1 H) 9.00 (d, J=5.09 Hz, 1 H) 10.59 (s, 1 H). LCMS (m/z) (M+H) = 446.2, Rt = 0.61 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.75 (s, 6 H) 3.69 - 3.79 (m, 4 H) 7.05 - 7.21 (m, 1 H) 7.50 (br. s., 1 H) 7.84 (dd, J=5.09, 1.57 Hz, 1 H) 7.99 (s, 1 H) 8.03 (br. s., 1 H) 8.06 - 8.15 (m, 2 H) 8.81 (d, J=5.09 Hz, 1 H) 10.45 (s, 1 H). LCMS (m/z) (M+H) = 445.2, Rt = 0.59 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.34 (s, 3 H) 3.49 - 3.60 (m, 4 H) 3.75 - 3.86 (m, 4 H) 6.07 (d, J=2.35 Hz, 1 H) 6.61 (d, J=2.35 Hz, 1 H) 7.40 (d, J=8.61 Hz, 1 H) 7.65 (dd, J=8.41, 2.15 Hz, 1 H) 7.70 - 7.79 (m, 1 H) 7.87 - 7.96 (m, 2 H) 8.21 (d, J=7.83 Hz, 1 H) 8.26 (s, 1 H). LCMS (m/z) (M+H) = 447.2, Rt = 0.87 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.32 (s, 3 H) 3.44 - 3.55 (m, 4 H) 3.80 - 3.88 (m, 4 H) 6.13 - 6.24 (m, 1 H) 7.34 (d, J=8.22 Hz, 1 H) 7.58 (dd, J=8.22, 2.35 Hz, 1 H) 7.69 - 7.81 (m, 2 H) 7.90 (d, J=7.83 Hz, 1 H) 8.20 (d, J=7.83 Hz, 1 H) 8.26 (s, 1 H). LCMS (m/z) (M+H) = 447.2, Rt = 0.87 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.41 (t, J=7.24 Hz, 3 H) 2.32 (s, 3 H) 3.61 - 3.74 (m, 4 H) 3.80 - 3.94 (m, 4 H) 4.16 (q, J=7.04 Hz, 2 H) 7.02 (d, J=5.87 Hz, 1 H) 7.28 (s, 1 H) 7.36 (d, J=8.61 Hz, 1 H) 7.55 (dd, J=8.22, 1.96 Hz, 1 H) 7.76 (d, J=1.96 Hz, 1 H) 8.04 (d, J=6.26 Hz, 1 H) 8.48 (s, 1 H) 8.70 (d, J=2.74 Hz, 1 H). LCMS (m/z) (M+H) = 487.2, Rt = 0.72 min.
-
- To a 0.2 M solution of 2-methyl-2'-morpholino-[3,4'-bipyridin]-5-amine (1.0 equiv.) in DMF was added 2-(2-cyanopropan-2-yl)isonicotinic acid (1.0 equiv.), EDC-HCl (1.1 equiv.) and aza-HOBt (1.1 equiv.). The reaction was stirred at room temperature for 4 hours. The solution was filtered through a syringe filter and purified via reverse phase preparative HPLC. Upon lyophilization of the pure fractions, 2-(2-cyanopropan-2-yl)-N-(2-methyl-2'-morpholino-[3,4'-bipyridin]-5-yl)isonicotinamide was isolated as the TFA salt in 51% yield. 1H NMR (400 MHz, <dmso>) δ ppm 1.75 (s, 6 H) 2.47 (br. s., 3 H) 3.45 - 3.63 (m, 4 H) 3.64 - 3.79 (m, 4 H) 6.84 (d, J=5.09 Hz, 1 H) 7.03 (br. s., 1 H) 7.87 (dd, J=5.09, 1.17 Hz, 1 H) 8.02 (s, 1 H) 8.14 (d, J=2.35 Hz, 1 H) 8.20 (d, J=5.48 Hz, 1 H) 8.83 (d, J=5.09 Hz, 1 H) 8.92 (d, J=2.35 Hz, 1 H) 10.90 (s, 1 H); LCMS (m/z) (M+H) = 443.2, Rt = 0.50 min.
-
- To a solution of 3-bromo-4-methylbenzoic acid (1.0 equiv.) and AIBN (0.05 equiv.) in trfluorotoluene (0.28 M) was added NBS (1.1 equiv.). The mixture was heated at 90 °C overnight. The reaction mixture was partitioned between EtOAc and H2O. The organic layer was washed with NaCl(sat.), dried over MgSO4, filtered, concentrated to yield 3-bromo-4-(bromomethyl)benzoic acid in 60% yield. LC/MS (m/z) = 294.8 (MH+), Rt = 0.80 min.
-
- To a solution of yield 3-bromo-4-(bromomethyl)benzoic acid (1.0 equiv.) in Water (0.56 M) at 95 °C was added potassium carbonate K2CO3 (5.0 equiv.). The homogenous reaction mixture was stirred at 95 °C in an oil bath for 1 hr. The reaction mixture was COOLED OFF TO RT, neutralized with 6 M HCl. diluted with EtOAc and washed with brine. The organic layer was dried over Na2SO4, filtered and concentrated. The crude was used in next step. LC/MS (m/z) = 294.8 (MH+), Rt = 0.80 min.
-
- EDC (1.3 equiv.) was added to a solution of 3-bromo-4-(hydroxymethyl)benzoic acid (1.0 equiv), 3-(trifluoromethyl)aniline (1.1 equiv.), HOAt (1.3 equiv.) in DMF (0.43 M). The mixture was stirred at ambient temperature 3 hrs. The reaction mixture was diluted with water and extracted with ethyl acetate. The combined extracts were washed sequentially with 1M aqueous sodium hydroxide and brine, dried over sodium sulfate, filtered, and concentrated.The residue was purified by ISCO(50%EtOAc/Heptane) to yield 3-bromo-4-(hydroxymethyl)-N-(3-(trifluoromethyl)phenyl)benzamide in 35% yield. LC/MS (m/z) = 374.0 (MH+), Rt = 0.93 min.
- The compounds listed below were prepared using methods similar to those described for the preparation of Example 95 using the appropriate starting materials.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 2.47 (br. s., 3 H) 3.49 - 3.59 (m, 4 H) 3.67 - 3.75 (m, 4 H) 6.85 (d, J=4.65 Hz, 1 H) 7.03 (s, 1 H) 7.81 (t, J=7.83 Hz, 1 H) 8.00 (d, J=7.87 Hz, 1 H) 8.18 (d, J=2.40 Hz, 1 H) 8.21 (d, J=5.67 Hz, 1 H) 8.27 (d, J=7.92 Hz, 1 H) 8.32 (s, 1 H) 8.96 (d, J=2.40 Hz, 1 H) 10.82 (s, 1 H). LCMS (m/z) (M+H) = 443.3, Rt = 0.61 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.60 (s, 3 H) 3.63 - 3.73 (m, 4 H) 3.81 - 3.91 (m, 4 H) 4.01 (s, 3 H) 6.98 - 7.06 (m, 1 H) 7.29 (s, 1 H) 7.36 (d, J=8.22 Hz, 1 H) 8.14 (d, J=5.87 Hz, 1 H) 8.22 - 8.33 (m, 2 H) 8.42 (d, J=2.35 Hz, 1 H) 9.04 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 473.3, Rt = 0.59 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.59 (s, 3 H) 3.62 - 3.73 (m, 4 H) 3.81 - 3.91 (m, 4 H) 3.97 (s, 3 H) 7.01 (dd, J=6.06, 0.98 Hz, 1 H) 7.20 - 7.33 (m, 2 H) 7.60 (ddd, J=8.41, 4.11, 2.35 Hz, 1 H) 7.73 (dd, J=8.02, 2.15 Hz, 1 H) 8.14 (d, J=6.26 Hz, 1 H) 8.39 (d, J=2.35 Hz, 1 H) 9.02 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 423.3, Rt = 0.51 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.59 (s, 3 H) 3.65 - 3.70 (m, 4 H) 3.84 - 3.89 (m, 4 H) 6.75 (s, 1 H) 6.89 (s, 1 H) 7.01 (s, 1 H) 7.03 (d, J=3.13 Hz, 1 H) 7.27 (s, 1 H) 7.66 - 7.72 (m, 1 H) 7.81 (d, J=7.83 Hz, 1 H) 8.11 - 8.16 (m, 2 H) 8.19 (s, 1 H) 8.41 (d, J=2.35 Hz, 1 H) 9.01 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 425.1, Rt = 0.56 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.05 (t, J=18.78 Hz, 3 H) 2.59 (s, 3 H) 3.67 - 3.73 (m, 4 H) 3.84 - 3.91 (m, 4 H) 7.05 (dd, J=6.26, 1.17 Hz, 1 H) 7.34 (s, 1 H) 8.00 (d, J=3.91 Hz, 1 H) 8.13 (d, J=6.26 Hz, 1 H) 8.23 (s, 1 H) 8.41 (d, J=2.35 Hz, 1 H) 8.85 (d, J=5.09 Hz, 1 H) 8.98 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 440.1, Rt = 0.51 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.99 (t, J=18.39 Hz, 3 H) 2.60 (s, 3 H) 3.66 - 3.71 (m, 4 H) 3.84 - 3.89 (m, 4 H) 7.03 (dd, J=6.26, 1.17 Hz, 1 H) 7.30 (s, 1 H) 7.63 - 7.69 (m, 1 H) 7.81 (d, J=7.43 Hz, 1 H) 8.09 (d, J=7.83 Hz, 1 H) 8.15 (d, J=6.26 Hz, 1 H) 8.18 (s, 1 H) 8.44 (d, J=2.35 Hz, 1 H) 9.05 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 439.1, Rt = 0.59 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 3.27 - 3.42 (m, 3 H) 3.48 - 3.64 (m, 4 H) 3.67 - 3.84 (m, 4 H) 6.90 (d, J=5.09 Hz, 1 H) 7.12 (s, 1 H) 8.10 - 8.34 (m, 3 H) 8.57 (s, 1 H) 8.99 (d, J=2.35 Hz, 1 H) 9.04 (d, J=5.09 Hz, 1 H) 11.19 (s, 1 H), LCMS (m/z) (M+H) = 454.2, Rt = 0.40 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 2.53 (s, 3 H) 3.45 - 3.63 (m, 4 H) 3.66 - 3.82 (m, 4 H) 5.67 (br. s., 1 H) 6.81 - 6.96 (m, 1 H) 7.14 (s, 1 H) 7.87 (t, J=7.83 Hz, 1 H) 8.13 - 8.26 (m, 2 H) 8.27 - 8.37 (m, 2 H) 8.53 (s, 1 H) 9.00 - 9.13 (m, 1 H) 10.96 - 11.11 (m, 1 H), LCMS (m/z) (M+H) = 453.2, Rt = 0.43 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.38 (s, 9 H) 2.51 - 2.54 (m, 3 H) 3.52 - 3.63 (m, 4 H) 3.68 - 3.79 (m, 4 H) 6.85 - 6.97 (m, 1 H) 7.10 - 7.17 (m,1 H) 7.74 (dd, J=5.09, 1.57 Hz, 1 H) 7.87 - 7.95 (m, 1 H) 8.23 (d, J=5.48 Hz, 1 H) 8.25 - 8.30 (m, 1 H) 8.77 (d, J=5.09 Hz, 1 H) 9.00 - 9.06 (m, 1H) 10.98 (s, 1 H), LCMS (m/z) (M+H) = 432.3, Rt = 0.46 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.81 (s, 6 H) 1.85 - 2.01 (m, 4 H) 2.31 (s, 3 H) 3.02 - 3.17 (m, 1 H) 3.48 - 3.61 (m, 2 H) 3.65 - 3.76 (m, 3 H) 3.80 - 3.92 (m, 4 H) 4.01 - 4.14 (m, 2 H) 6.87 (s, 1 H) 7.02 (s, 1 H) 7.37 (d, J=8.22 Hz, 1 H) 7.61 (dd, J=8.22, 1.96 Hz, 1 H) 7.73 - 7.86 (m, 2 H) 8.06 (s, 1 H) 8.76 (d, J=5.09 Hz, 1 H). LCMS (m/z) (M+H) = 526.3, Rt = 0.76 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.81 - 2.02 (m, 4 H) 2.31 (s, 3 H) 3.05 - 3.18 (m, 1 H) 3.45 - 3.62 (m, 2 H) 3.66 - 3.75 (m, 4 H) 3.81 - 3.91 (m, 4 H) 4.03 - 4.15 (m, 2 H) 6.89 (s, 1 H) 7.06 (s, 1 H) 7.36 (d, J=8.22 Hz, 1 H) 7.60 (dd, J=8.22, 2.35 Hz, 1 H) 7.69 - 7.83 (m, 2 H) 7.90 (d, J=7.83 Hz, 1 H) 8.20 (d, J=7.83 Hz, 1 H) 8.26 (s, 1 H). LCMS (m/z) (M+H) = 526.2, Rt = 0.86 min.
-
- The method used to prepare example 62 was followed using 3-bromo-4-(hydroxymethyl)-N-(3-(trifluoromethyl)phenyl)benzamide and 4-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-2-yl)morpholine to afford 4-(hydroxymethyl)-3-(2-morpholinopyridin-4-yl)-N-(3-(trifluoromethyl) phenyl)benzamide in a 91% yield. 1H NMR (400 MHz, <cd3od>) δ ppm 3.61 - 3.73 (m, 4 H), 3.83 - 3.90 (m, 4 H), 4.63 (s, 2 H), 7.09 - 7.15 (m, 1 H), 7.39 - 7.47 (m, 2 H), 7.53 - 7.60 (m, 1 H), 7.75 - 7.82 (m, 1 H), 7.91 - 7.99 (m, 2 H), 8.04 - 8.13 (m, 2 H), 8.14 - 8.19 (m, 1 H). LC/MS (m/z) = 458.1 (MH+), Rt = 0.73 min.
-
- MnO2 (8.0 equiv.) was added into a solution of 4-(hydroxymethyl)-3-(2-morpholinopyridin-4-yl)-N-(3-(trifluoromethyl) phenyl)benzamide (1.0 equiv.) in DCM (0.05 M). The suspension was stirred at rt for 1 hr. The mixture was filtered over celite and concentrated to yield 4-formyl-3-(2-morpholinopyridin-4-yl)-N-(3-(trifluoromethyl)phenyl)benzamide in 100% yield. LC/MS (m/z) = 456.1 (MH+), Rt = 0.76 min.
-
- To a cooled solution of 4-formyl-3-(2-morpholinopyridin-4-yl)-N-(3-(trifluoromethyl)phenyl) benzamide (1.0 equiv.) in dry CH2Cl2 (0.05 M), (diethylamino)sulfur trifluoride (3.5 equiv.) was added under vigorous stirring. The resulting reaction mixture was stirred at 0 °C for 2 hrs. Quenched the reaction with sat NaHCO3 and extracted with DCM. The organic layer was washed with Brine, filtered over Na2SO4 and concentrated. The crude was purified by prep HPLC to yield 4-(difluoromethyl)-3-(2-morpholinopyridin-4-yl)-N-(3-(trifluoromethyl)phenyl)benzamide in 12% yield. 1H NMR (400 MHz, <cd3od>) δ ppm 2.65 (s, 1 H), 3.63 - 3.73 (m, 4 H), 3.80 - 3.90 (m, 4 H), 6.70 - 7.05 (m, 2 H), 7.27 (s, 1 H), 7.43 - 7.49 (m, 1 H), 7.53 - 7.61 (m, 1 H), 7.91 - 7.99 (m, 2 H), 8.01 - 8.05 (m, 1 H), 8.08 - 8.14 (m, 1 H), 8.15 - 8.23 (m, 2 H). LC/MS (m/z) = 478.1 (MH+), Rt = 0.85 min.
-
- To a cooled solution of 4-(difluoromethyl)-3-(2-morpholinopyridin-4-yl)-N-(3-(trifluoromethyl)phenyl)benzamide (1.0 equiv.) in dry CH2Cl2 (0.05 M), (diethylamino)sulfur trifluoride (3.5 equiv.) was added portionwise under vigorous stirring. The resulting reaction mixture was stirred at -78 °C for 3 hrs, Quenched the reaction with sat NaHCO3 and extracted with DCM. The organic layer was washed with Brine, filtered over Na2SO4 and concentrated. The residue was purified by PREP HPLC to yield 4-(fluoromethyl)-3-(2-morpholinopyridin-4-yl)-N-(3-(trifluoromethyl)phenyl)benzamide in 16% yield. 1H NMR (400 MHz, <cd3od>) δ ppm 3.68 (d, J=5.09 Hz, 4 H), 3.86 (d, J=5.09 Hz, 4 H), 5.40 (s, 1 H), 5.52 (s, 1 H), 7.01 - 7.11 (m, 1 H), 7.24 - 7.31 (m, 1 H), 7.41 - 7.48 (m, 1 H), 7.52 - 7.60 (m, 1 H), 7.77 - 7.83 (m, 1 H), 7.91 - 7.98 (m, 1 H), 7.99 - 8.04 (m, 1 H), 8.07 - 8.19 (m, 3 H). LC/MS (m/z) = 460.1 (MH+), Rt = 0.85 min.
-
- To a solution of triethylamine (1.0 equiv.) and 2,4-dichloropyridine (1.0 equiv.) at RT was added morpholine (1.0 equiv) in one portion, the resulting mixture was then stirred at RT for 45 hr. LCMS analysis indicated the formation of the desired product (M+H = 199, Rt=0.29 min, major) and the undesired isomer (M+H = 199, Rt = 0.33 min, minor). The reaction mixture was concentrated in vacuo and purified via ISCO to yield 4-(2-chloropyridin-4-yl)morpholine as a light brown solid (28%). LCMS (m/z) (M+H) = 299.0, Rt = 0.29 min. 1H NMR (400 MHz, <cdcl3>) δ ppm 3.18 - 3.37 (m, 4 H) 3.72 - 3.91 (m, 4 H) 6.51 - 6.61 (m, 1 H) 6.61 - 6.69 (m, 1 H) 8.05 (d, J=6.26 Hz, 1 H)
-
- To a solution of 4-(2-chloropyridin-4-yl)morpholine (1.0 equiv.) and Intermediate A (1.2 equiv.) in DME and 2M sodium carbonate (3:1, 0.08 M) was added PdCl2(dppf)-DCM adduct (0.1 equiv.) in a microwave vial equipped with a stir bar. The reaction was heated to 120 °C for 20 min in the microwave. The reaction was quenched with water and extracted with ethyl acetate. The combined organic phase was dried with sodium sulfate, filtered and concentrated. The crude material was purified via preparative reverse phase HPLC. Upon lyophilization of the pure fractions, N-(4-methyl-3-(4-morpholinopyridin-2-yl)phenyl)-3-(trifluoromethyl)benzamide was isolated as the TFA salt in 16% yield. 1H NMR (400 MHz, <dmso>) δ ppm 2.17 - 2.30 (m, 3 H) 7.17 - 7.29 (m, 2 H) 7.44 (d, J=8.22 Hz, 1 H) 7.74 - 7.86 (m, 2 H) 7.93 (d, J=1.96 Hz, 1H) 7.99 (d, J=7.83 Hz, 1 H) 8.17 - 8.41 (m, 3 H) 10.68 (s, 1 H) 13.74 (br. s., 1 H). LCMS (m/z) (M+H) = 442.3, Rt = 0.73 min.
-
- To a solution of Morpholine (5.0 equiv.) and 4-bromo-2,6-dichloropyridine (1.0 equiv.) in DMF (0.275 M) was added cesium carbonate (2.0 equiv.). The mixture was heated at 100 °C for 45 hours. LCMS analysis indicated formation of several products including the desired (M+H = 288, Rt = 0.87 min). The reaction mixture was then concentrated in vacuo to yield a glassy foam. Water was then added, and the mixture was extracted with ethyl acetate, and the combined extracts were washed with brine, dried over magnesium sulfate, filtered, and concentrated. The residue was chromatographed via ISCO to provide 4,4'-(4-bromopyridine-2,6-diyl)dimorpholine (44%, 80% purity by LC) as a white crystalline solid. LCMS (m/z) (M+H) = 288.0, Rt = 0.87 min.
-
- To a solution of 4-bromo-2,6-dichloropyridine (1.0 equiv.) and Intermediate D (1.2 equiv.) in DME and 2M sodium carbonate (3:1, 0.08 M) was added PdCl2(dppf)-DCM adduct (0.1 equiv.) in a microwave vial equipped with a stir bar. The reaction was heated to 120 °C for 20 min in the microwave. The reaction was quenched with water and extracted with ethyl acetate. The combined organic phase was dried with sodium sulfate, filtered and concentrated. The crude material was purified via preparative reverse phase HPLC. Upon lyophilization of the pure fractions, 3-(2,6-dimorpholinopyridin-4-yl)-4-methyl-N-(3-(trifluoromethyl)phenyl)benzamide was isolated as the TFA salt in 8% yield. LCMS (m/z) (M+H) = 527.3, Rt = 1.07 min. 1H NMR (400 MHz, <dmso>) δ ppm 1.27 (s, 2 H) 2.31 (s, 3 H) 3.53 - 3.71 (m, 16 H) 6.08 (s, 2 H) 7.30 - 7.72 (m, 6 H) 7.80 - 7.98 (m, 2 H) 8.22 (s,2 H) 10.44 (s, 1 H).
-
- To a solution of triethylamine (1.0 equiv.) and 2,6-dichloro-4-iodopyridine (1.0 equiv.) at RT was added morpholine (1.0 equiv) in one portion, the resulting mixture was then heated in an oil bath at 100 °C for 18 hours. LCMS analysis indicated the formation of the desired product (M+H = 324.9/326.8, Rt=0.98 min). Water was then added, and the mixture was extracted with ethyl acetate, and the combined extracts were washed with brine, dried over magnesium sulfate, filtered, and concentrated. The residue was chromatographed via ISCO to yield 4-(6-chloro-4-iodopyridin-2-yl)morpholine as a light brown solid (63%). LCMS (m/z) (M+H) = 324.9/326.8, Rt = 0.98 min.
-
- To a solution of 4-(6-chloro-4-iodopyridin-2-yl)morpholine (1.0 equiv.) and Intermediate A (1.2 equiv.) in DME and 2M sodium carbonate (3:1, 0.08 M) was added PdCl2(dppf)-DCM adduct (0.1 equiv.) in a vial equipped with a stir bar. The reaction was heated to 80 °C for 18 hours. The reaction was quenched with water and extracted with ethyl acetate. The combined organic phase was dried with sodium sulfate, filtered and concentrated. The residue was chromatographed via ISCO to yield N-(3-(2-chloro-6-morpholinopyridin-4-yl)-4-methylphenyl)-3-(trifluoromethyl)benzamide as a light brown solid (>100%, 90% purity by UV). LCMS (m/z) (M+H) = 476.0, Rt = 1.16 min.
-
- To a solution of N-(3-(2-chloro-6-morpholinopyridin-4-yl)-4-methylphenyl)-3-(trifluoromethyl)benzamide (1.0 equiv.), 1-methyl-4-pyrazole-1H-boronic acid pinacol ester (2.0 equiv.), potassium fluoride (3.0 equiv.), and P(t-Bu)3 (0.1 equiv./1.0 M in PhMe) in THF and water (1:1, 0.12 M) was added Pd2(dba)3 (0.1 equiv.) in a nitrogen purged microwave vial equipped with a stir bar. The reaction was heated to 80 °C for 2 hours. The reaction was quenched with water and extracted with ethyl acetate. The combined organic phase was dried with sodium sulfate, filtered and concentrated. The crude material was purified via preparative reverse phase HPLC. Upon lyophilization of the pure fractions, N-(4-methyl-3-(2-(1-methyl-1H-pyrazol-4-yl)-6-morpholinopyridin-4-yl)phenyl)-3-(trifluoromethyl)benzamide was isolated as the TFA salt in 6% yield. 1H NMR (400 MHz, <cd3od>) δ ppm 2.33 (s, 3 H) 3.64 - 3.69 (m, 4 H) 3.82 - 3.88 (m, 4 H) 3.96 (s, 3 H) 6.79 (s, 1 H) 7.08 (s, 1 H) 7.35 (d, J=8.61 Hz, 1 H) 7.62 (dd, J=8.41, 2.15 Hz, 1 H) 7.70 - 7.77 (m, 2 H) 7.90 (d, J=7.83 Hz, 1 H) 8.04 (s, 1 H) 8.18 - 8.24 (m, 2 H) 8.26 (s, 1 H). LCMS (m/z) (M+H) = 522.1, Rt = 0.89 min.
-
- Step 1: To a solution of 3-(2-chloro-6-morpholinopyridin-4-yl)-4-methylaniline (1.0 equiv.) and 2-(3,6-dihydro-2H-pyran-4-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (1.2 equiv.) in DME and 2M sodium carbonate (3:1, 0.1 M) was added PdCl2(dppf)-DCM adduct (0.1 equiv.). The solution was heated to 100 C for 5 hours. Upon cooling to room temperature, the solution was partitioned between water and ethyl acetate, the organic phase was dried with sodium sulfate, filtered and concentrated. The crude material was purified via silica gel column chromatography eluting with 0-50% ethyl acetate and heptanes). The pure fractions were concentrated to yield 3-(2-(3,6-dihydro-2H-pyran-4-yl)-6-morpholinopyridin-4-yl)-4-methylaniline in 69% yield. LCMS (m/z) (M+H) = 352.3, Rt = 0.50 min.
- Step 2: To a solution of 3-(2-(3,6-dihydro-2H-pyran-4-yl)-6-morpholinopyridin-4-yl)-4-methylaniline (1.0 equiv.) in degassed ethanol (0.09 M) was added Pd/C (0.1 equiv.) and the solution was stirred under a hydrogen balloon for 1 h. Upon completion, the solution was filtered through Celite, and the filtrate was concentrated to dryness to give 4-methyl-3-(2-morpholino-6-(tetrahydro-2H-pyran-4-yl)pyridin-4-yl)aniline as desired product in 87% yield. LCMS (m/z) (M+H) = 354.3, Rt = 0.42 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.79 (s, 6 H) 1.85 - 1.96 (m, 4 H) 2.31 (s, 3 H) 3.05 - 3.17 (m, 1 H) 3.48 - 3.62 (m, 2 H) 3.66 - 3.76 (m, 4 H) 3.82 - 3.92 (m, 4 H) 4.07 (d, J=11.35 Hz, 2 H) 6.89 (s, 1 H) 7.06 (s, 1 H) 7.36 (d, J=8.22 Hz, 1 H) 7.54 - 7.64 (m, 2 H) 7.77 (d, J=5.09 Hz, 2 H) 7.91 (d, J=7.83 Hz, 1 H) 8.09 (s, 1 H). LCMS (m/z) (M+H) = 525.3, Rt = 0.82 min.
-
- To a solution of (2,6-difluoropyridin-4-yl)boronic acid (1.5 equiv.) and Intermediate X (1.0 equiv.) in DME and 2M sodium carbonate (3:1, 0.2 M) was added PdCl2(dppf)-DCM adduct (0.1 equiv.) in a vial equipped with a stir bar. The reaction was heated to 80 °C for 18 hours. The reaction was quenched with water and extracted with ethyl acetate. The combined organic phase was dried with sodium sulfate, filtered and concentrated. The residue was chromatographed via ISCO to yield N-(3-(2,6-difluoropyridin-4-yl)-4-methylphenyl)-3-(trifluoromethyl)benzamide as a light brown solid (37%). LCMS (m/z) (M+H) = 393.0, Rt = 1.09 min.
-
- To a solution of triethylamine (3.0 equiv.) and N-(3-(2,6-difluoropyridin-4-yl)-4-methylphenyl)-3-(trifluoromethyl)benzamide (1.0 equiv.) at RT in MeOH (0.12 M) was added morpholine (2.0 equiv) in one portion, the resulting mixture was then heated at 55 °C for 8 hours. LCMS analysis indicated 90% conversion to the desired product (M+H = 460.1, Rt=0.43 min/non-polar). Water was then added, and the mixture was extracted with ethyl acetate, and the combined extracts were washed with brine, dried over magnesium sulfate, filtered, and concentrated to yield N-(3-(2-fluoro-6-morpholinopyridin-4-yl)-4-methylphenyl)-3-(trifluoromethyl)benzamide as a light brown solid (>100%). LCMS (m/z) (M+H) = 460.1, Rt=0.43 min/non-polar.
-
- In a nitrogen purged microwave vial equipped with a stir bar N-(3-(2-fluoro-6-morpholinopyridin-4-yl)-4-methylphenyl)-3-(trifluoromethyl)benzamide (1.0 equiv.), in ethanolamine (276 equiv.) was heated to 180 °C for 15 minutes. The reaction was quenched with water and extracted with ethyl acetate. The combined organic phase was dried with sodium sulfate, filtered and concentrated. The crude material was purified via preparative reverse phase HPLC. Upon lyophilization of the pure fractions, N-(3-(2-((2-hydroxyethyl)amino)-6-morpholinopyridin-4-yl)-4-methylphenyl)-3-(trifluoromethyl)benzamide was isolated as the TFA salt in 27% yield. 1H NMR (400 MHz, <cd3od>) δ ppm 2.23 (s, 3 H) 3.35 - 3.50 (m, 6 H) 3.63 - 3.81 (m, 6 H) 6.08 - 6.18 (m, 1 H) 7.24 (d, J=8.22 Hz, 1 H) 7.47 (dd, J=8.22, 2.35 Hz, 1 H) 7.59 - 7.71 (m, 2 H) 7.80 (d, J=7.83 Hz, 1 H) 8.10 (d, J=7.83 Hz, 1 H) 8.16 (s, 1 H). LCMS (m/z) (M+H) = 501.1, Rt = 0.80 min.
-
- In a round bottom flask equipped with a stir bar and purged with nitrogen was added 5-bromo-3-(trifluoromethyl)pyridin-2-ol (1.0 equiv.), potassium carbonate (2.0 equiv.) and DMF (0.2 M). The mixture was stirred at room temperature and iodoethane (1.2 equiv.) was added via syringe. The mixture was warmed to 35 °C for 4 hours at which time LCMS indicated full conversion. The reaction was worked up by partitioning between water and ethyl acetate, the aqueous phase was extracted 3 more times with ethyl acetate, the organics were combined, washed with brine, dried with sodium sulfate, filtered and concentrated to yield 5-bromo-1-ethyl-3-(trifluoromethyl)pyridin-2(1H)-one (67%). 1H NMR (400 MHz, <cdcl3>) δ ppm 1.32 - 1.50 (m, 3 H) 4.04 (q, J=7.17 Hz, 2 H) 7.63 (br. s., 1 H) 7.78 (br. s., 1 H). LCMS (m/z) (M+H) = 269.1/271.1, Rt = 0.72 min
-
- In a microwave tube was added 5-(5-amino-2-methylphenyl)-1-methyl-3-morpholinopyridin-2(1H)-one (1.0 equiv.), 5-bromo-1-ethyl-3-(trifluoromethyl)pyridin-2(1H)-one (2.0 equiv.), PdCl2(dppf).CH2Cl2 adduct (0.1 equiv.), Mo(CO)6 (1.0 equiv.), and THF (0.3 M). The mixture was capped and stirred while DBU (3.0 equiv.) was added, fizzing occured and the tube was subsequently heated in the microwave at 150 °C for 15 min at which time LCMS indicated full conversion to product (M+H = 517). The reaction was filtered, concentrated, and purified via preparative HPLC to yield 1-ethyl-N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)-6-oxo-5-(trifluoromethyl)-1,6-dihydropyridine-3-carboxamide (15 % yield). 1H NMR (400 MHz, <cd3od>) δ ppm 1.42 (t, J=7.24 Hz, 3 H) 2.30 (s, 3 H) 3.08 - 3.21 (m, 4 H) 3.64 (s, 3 H) 3.80 - 3.92 (m, 4 H) 4.16 (q, J=7.04 Hz, 2 H) 6.93 (d, J=1.96 Hz, 1 H) 7.28 (d, J=8.22 Hz, 1 H) 7.34 (d, J=1.96 Hz, 1 H) 7.47 - 7.60 (m, 2 H) 8.48 (d, J=1.96 Hz, 1 H) 8.70 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 517.1, Rt = 0.81 min.
-
- To a solution of 5-bromo-1-methyl-3-morpholinopyridin-2(1H)-one (1.0 equiv.) and Intermediate A (1.2 equiv.) in DME and 2M sodium carbonate (3:1, 0.08 M) was added PdCl2(dppf)-DCM adduct (0.1 equiv.) in a microwave vial equipped with a stir bar. The reaction was heated to 120 °C for 10 min in the microwave. The organic phase was dried with sodium sulfate, filtered and concentrated. The crude material was purified via preparative reverse phase HPLC. Upon lyophilization of the pure fractions, N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)-3-(trifluoromethyl)benzamide was isolated as the TFA salt in 11% yield. LCMS (m/z) (M+H) = 472.2, Rt = 0.87 min. 1H NMR (400 MHz, <cd3od>) δ ppm 2.30 (s, 3 H) 3.13 - 3.21 (m, 4 H) 3.64 (s, 3 H) 3.81 - 3.92 (m, 4 H) 7.01 (d, J=2.35 Hz, 1 H) 7.29 (d, J=8.61 Hz, 1 H) 7.39 (d, J=2.35 Hz, 1 H) 7.57 (dd, J=8.22, 1.96 Hz, 1 H) 7.62 (d, J=1.96 Hz, 1 H) 7.69 - 7.77 (m, 1 H) 7.89 (d, J=7.83 Hz, 1 H) 8.19 (d, J=7.43 Hz, 1 H) 8.25 (s, 1 H).
- The compounds listed below were prepared by methods similar to those described for the preparation of Example 117 using the corresponding aryl halide and intermediates (A-G).
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.40 (s, 3 H) 3.60 - 3.73 (m, 4 H) 3.75 - 3.88 (m, 4 H) 7.33 (d, J=8.22 Hz, 1 H) 7.59 - 7.78 (m, 2 H) 7.81 - 7.96 (m, 2 H) 8.02 (s, 1 H) 8.14 - 8.40 (m, 3 H). LCMS (m/z) (M+H) = 443.2, Rt = 0.93 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.39 (s, 3 H) 3.56 (s, 3 H) 3.80 (s, 9 H) 7.18 (s, 1 H) 7.26 (d, J=8.22 Hz, 1 H) 7.56 (dd, J=8.22, 2.35 Hz, 1 H) 7.67 - 7.80 (m, 2 H) 7.89 (d, J=7.83 Hz, 1 H) 8.20 (d, J=7.83 Hz, 1 H) 8.25 (s, 1 H). LCMS (m/z) (M+H) = 473.1, Rt = 0.92 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.29 (s, 3 H) 3.72 (d, J=4.70 Hz, 9 H) 6.85 (s, 1 H) 7.16 (d, J=8.22 Hz, 1 H) 7.47 (dd, J=8.22, 2.35 Hz, 1 H) 7.58 - 7.69 (m, 2 H) 7.79 (d, J=7.83 Hz, 1 H) 8.05 - 8.20 (m, 1 H). LCMS (m/z) (M+H) = 459.3, Rt = 0.86 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.71 (s, 3 H) 3.59 - 3.91 (m, 9 H) 7.11 (s, 1 H) 7.69 (t, J=7.83 Hz, 1 H) 7.86 (d, J=7.83 Hz, 1 H) 8.08 - 8.30 (m, 2 H) 8.54 (d, J=2.35 Hz, 1 H) 9.11 (d, J=1.96 Hz, 1 H). LCMS (m/z) (M+H) = 460.2, Rt = 0.66 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.11 (s, 3 H) 3.21 (dd, J=5.48, 3.91 Hz, 4 H) 3.81 - 3.92 (m, 7 H) 7.27 (d, J=8.22 Hz, 1 H) 7.45 (d, J=2.74 Hz, 1 H) 7.52 - 7.62 (m, 2 H) 7.68 - 7.77 (m, 1 H) 7.83 - 7.97 (m, 2 H) 8.10 - 8.36 (m, 2 H). LCMS (m/z) (M+H) = 472.2, Rt = 0.93 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.17 (s, 3 H) 2.87 - 3.06 (m, 4 H) 3.63 (s, 3 H) 3.74 - 3.87 (m, 4 H) 7.14 - 7.30 (m, 2 H) 7.43 - 7.63 (m, 3 H) 7.67 - 7.77 (m, 1 H) 7.88 (d, J=7.83 Hz, 1 H) 8.12 - 8.28 (m, 1 H). LCMS (m/z) (M+H) = 472.3, Rt = 0.80 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.61 (s, 3 H) 2.92 - 3.08 (m, 4 H) 3.67 (s, 3 H) 3.77 - 3.92 (m, 4 H) 7.42 (d, J=3.13 Hz, 1 H) 7.68 - 7.83 (m, 2 H) 7.96 (d, J=7.83 Hz, 1 H) 8.17 - 8.37 (m, 2 H) 8.47 (d, J=2.35 Hz, 1 H) 9.37 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 473.2, Rt = 0.63 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.11 (s, 3 H) 2.84 - 2.98 (m, 4 H) 3.66 - 3.79 (m, 4 H) 6.93 (d, J=3.13 Hz, 1 H) 7.18 (d, J=8.22 Hz, 1 H) 7.39 - 7.55 (m, 3 H) 7.57 - 7.68 (m, 1 H) 7.79 (d, J=7.43 Hz, 1 H) 8.02 - 8.22 (m, 1 H). LCMS (m/z) (M+H) = 458.2, Rt = 0.78 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.27 (s, 3 H) 3.04 - 3.22 (m, 4 H) 3.81 - 3.93 (m, 4 H) 4.04 (s, 3 H) 7.27 - 7.34 (m, 2 H) 7.61 (dd, J=4.11, 2.15 Hz, 2 H) 7.68 - 7.76 (m, 1 H) 7.80 (d, J=1.96 Hz, 1 H) 7.88 (d, J=7.83 Hz, 1 H) 8.20 (d, J=7.83 Hz, 1 H) 8.25 (s, 1 H). LCMS (m/z) (M+H) = 472.4, Rt = 1.04 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.67 (s, 3 H) 3.09 - 3.18 (m, 4 H) 3.80 - 3.91 (m, 4 H) 4.05 (s, 3 H) 7.31 (d, J=1.96 Hz, 1 H) 7.78 (t, J=7.83 Hz, 1 H) 7.88 (d, J=1.96 Hz, 1 H) 7.96 (d, J=7.83 Hz, 1 H) 8.28 (d, J=8.22 Hz, 1 H) 8.34 (s, 1 H) 8.43 (d, J=2.35 Hz, 1 H) 9.32 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 473.3, Rt = 0.72 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.81 (s, 6 H) 2.27 (s, 3 H) 3.09 - 3.17 (m, 4 H) 3.81 - 3.89 (m, 4 H) 4.02 (s, 3 H) 7.24 (d, J=1.96 Hz, 1 H) 7.32 (d, J=8.22 Hz, 1 H) 7.60 (d, J=1.96 Hz, 1 H) 7.63 (dd, J=8.22, 2.35 Hz, 1 H) 7.76 (d, J=1.96 Hz, 1 H) 7.81 (dd, J=4.89, 1.37 Hz, 1 H) 8.06 (s, 1 H) 8.75 (d, J=5.09 Hz, 1 H). LCMS (m/z) (M+H) = 472.4, Rt = 0.87 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.82 (s, 6 H) 2.69 (s, 3 H) 3.07 - 3.21 (m, 4 H) 3.78 - 3.92 (m, 4 H) 4.05 (s, 3 H) 7.31 (d, J=1.96 Hz, 1 H) 7.82 - 7.94 (m, 2 H) 8.14 (s, 1 H) 8.45 (d, J=2.35 Hz, 1 H) 8.82 (d, J=5.09 Hz, 1 H) 9.34 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 473.3, Rt = 0.62 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.87 (dd, J=11.98, 2.15 Hz, 2 H) 2.01 (qd, J=12.22, 4.52 Hz, 2 H) 3.09 - 3.21 (m, 4 H) 3.62 (td, J=11.77, 1.83 Hz, 2 H) 3.79 - 3.91 (m, 4 H) 4.10 (dd, J=11.27, 4.33 Hz, 2 H) 5.19 (tt, J=12.06, 4.00 Hz, 1 H) 6.94 (d, J=2.25 Hz, 1 H) 7.55 (d, J=2.30 Hz, 1 H) 7.74 - 7.83 (m, 1 H) 7.96 (dd, J=7.87, 0.68 Hz, 1 H) 8.27 (d, J=7.92 Hz, 1 H) 8.34 (d, J=0.64 Hz, 1 H) 8.40 (d, J=2.40 Hz, 1 H) 9.22 (d, J=2.40 Hz, 1 H). LCMS (m/z) (M+H) = 543.1, Rt = 0.70 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.77 - 1.91 (m, 2 H) 2.06 - 2.20 (m, 2 H) 2.71 (s, 3 H) 3.12 - 3.22 (m, 4 H) 3.67 (ddd, J=11.59, 8.22, 3.28 Hz, 2 H) 3.81 - 3.91 (m, 4 H) 3.92 - 4.03 (m, 2 H) 5.45 (tt, J=7.92, 3.91 Hz, 1 H) 7.33 (d, J=2.20 Hz, 1 H) 7.74 - 7.82 (m, 1 H) 7.87 (d, J=2.15 Hz, 1 H) 7.93 - 8.00 (m, 1 H) 8.29 (d, J=7.87 Hz, 1 H) 8.35 (d, J=1.22 Hz, 1 H) 8.50 (d, J=2.30 Hz, 1 H) 9.40 (d, J=2.40 Hz, 1 H). LCMS (m/z) (M+H) = 543.1, Rt = 0.80 min.
-
- 1H NMR (400 MHz, <cd3od>) δ 1.84 (dtd, J=12.67, 8.34, 8.34, 3.91 Hz, 2 H) 2.03 - 2.20 (m, 2 H) 2.27 (s, 3 H) 3.06 - 3.22 (m, 4 H) 3.67 (ddd, J=11.64, 8.31, 3.13 Hz, 2 H) 3.78 - 3.91 (m, 4 H) 3.92 - 4.04 (m, 2 H) 5.39 (tt, J=7.83, 3.91 Hz, 1 H) 7.24 (d, J=1.96 Hz, 1 H) 7.30 (d, J=7.83 Hz, 1 H) 7.56 - 7.66 (m, 2 H) 7.68 - 7.78 (m, 2 H) 7.88 (d, J=7.83 Hz, 1 H) 8.20 (d, J=7.83 Hz, 1 H) 8.25 (s, 1 H). LCMS (m/z) (M+H) = 542.1, Rt = 1.06 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.45 (d, J=6.80 Hz, 6 H) 2.70 (s, 3 H) 3.12 - 3.23 (m, 4 H) 3.81 - 3.95 (m, 4 H) 5.35 (quin, J=6.87 Hz, 1 H) 6.95 (d, J=2.15 Hz, 1 H) 7.56 (d, J=2.10 Hz, 1 H) 7.80 (t, J=7.73 Hz, 1 H) 7.98 (d, J=7.19 Hz, 1 H) 8.30 (d, J=7.87 Hz, 1 H) 8.36 (s, 1 H) 8.41 (d, J=2.35 Hz, 1 H) 9.26 (d, J=2.20 Hz, 1 H). LCMS (m/z) (M+H) = 501.3, Rt = 0.78 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.43 (d, J=6.16 Hz, 6 H) 2.69 (s, 3 H) 3.12 - 3.22 (m, 4 H) 3.82 - 3.92 (m, 4 H) 5.47 (quin, J=6.17 Hz, 1 H) 7.30 (d, J=2.10 Hz, 1 H) 7.76 - 7.84 (m, 1 H) 7.87 (d, J=2.01 Hz, 1 H) 7.98 (d, J=7.87 Hz, 1 H) 8.30 (d, J=7.68 Hz, 1 H) 8.36 (s, 1 H) 8.43 (d, J=2.35 Hz, 1 H) 9.31 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 501.3, Rt = 0.90 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.44 (d, J=6.80 Hz, 6 H) 2.32 (s, 3 H) 3.12 - 3.23 (m, 4 H) 3.84 - 3.93 (m, 4 H) 5.35 (quin, J=6.86 Hz, 1 H) 6.98 (d, J=2.10 Hz, 1 H) 7.32 (d, J=8.02 Hz, 1 H) 7.39 (d, J=2.10 Hz, 1 H) 7.58 - 7.66 (m, 2 H) 7.71 - 7.79 (m, 1 H) 7.91 (d, J=7.92 Hz, 1 H) 8.23 (d, J=7.92 Hz, 1 H) 8.28 (s, 1 H). LCMS (m/z) (M+H) = 500.3, Rt = 1.02 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.43 (d, J=6.16 Hz, 6 H) 2.29 (s, 3 H) 3.15 - 3.25 (m, 4 H) 3.83 - 3.94 (m, 4 H) 5.42 (spt, J=6.18 Hz, 1 H) 7.27 - 7.35 (m, 2 H) 7.59 - 7.66 (m, 2 H) 7.70 - 7.77 (m, 1 H) 7.79 (d, J=1.86 Hz, 1 H) 7.90 (d, J=7.87 Hz, 1 H) 8.22 (d, J=7.68 Hz, 1 H) 8.27 (s, 1 H). LCMS (m/z) (M+H) = 500.4, Rt = 1.17 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.42 (s, 3 H) 3.12 - 3.22 (m, 4 H) 3.67 (s, 3 H) 3.83 - 3.94 (m, 4 H) 6.99 (d, J=2.25 Hz, 1 H) 7.42 (d, J=2.25 Hz, 1 H) 7.43 - 7.50 (m, 2 H) 7.57 (t, J=8.02 Hz, 1 H) 7.85 (d, J=2.01 Hz, 1 H) 7.89 (dd, J=7.92, 2.01 Hz, 1 H) 7.95 (d, J=8.22 Hz, 1 H) 8.17 (s, 1 H). LCMS (m/z) (M+H) = 472.1, Rt = 0.91 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.71 (s, 3 H) 3.12 - 3.21 (m, 4 H) 3.65 (s, 3 H) 3.82 - 3.90 (m, 4 H) 6.96 (d, J=2.35 Hz, 1 H) 7.53 (d, J=1.96 Hz, 1 H) 7.74 - 7.83 (m, 1 H) 7.96 (d, J=7.83 Hz, 1 H) 8.28 (d, J=7.83 Hz, 1 H) 8.34 (s, 1 H) 8.45 (d, J=2.35 Hz, 1 H) 9.27 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 473.3, Rt = 0.64 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.50 (s, 9 H) 2.31 (s, 3 H) 3.08 - 3.19 (m, 4 H) 3.64 (s, 3 H) 3.79 - 3.94 (m, 4 H) 6.93 (d, J=1.96 Hz, 1 H) 7.24 - 7.38 (m, 2 H) 7.57 - 7.71 (m, 2 H) 7.98 (d, J=5.48 Hz, 1 H) 8.20 (s, 1 H) 8.76 (d, J=5.87 Hz, 1 H). LCMS (m/z) (M+H) = 461.4, Rt = 0.66 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.81 (s, 6 H) 2.31 (s, 3 H) 3.10 - 3.23 (m, 4 H) 3.64 (s, 3 H) 3.82 - 3.95 (m, 4 H) 7.01 (d, J=1.96 Hz, 1 H) 7.30 (d, J=8.22 Hz, 1 H) 7.40 (d, J=1.96 Hz, 1 H) 7.58 (dd, J=8.22, 2.35 Hz, 1 H) 7.63 (d, J=1.96 Hz, 1 H) 7.80 (dd, J=5.09, 1.17 Hz, 1 H) 8.06 (s, 1 H) 8.76 (d, J=5.09 Hz, 1 H). LCMS (m/z) (M+H) = 472.2, Rt = 0.73 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.78 - 1.86 (m, 6 H) 2.70 (s, 3 H) 3.16 (br. s., 4 H) 3.65 (s, 3 H) 3.85 (br. s., 4 H) 6.90 - 6.99 (m, 1 H) 7.49 -7.56 (m, 1 H) 7.82 - 7.89 (m, 1 H) 8.09 - 8.16 (m, 1 H) 8.38 - 8.45 (m, 1 H) 8.78 - 8.85 (m, 1 H) 9.20 - 9.26 (m, 1 H). LCMS (m/z) (M+H) = 473.2, Rt = 0.54 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.31 (s, 3 H) 3.13 (d, J=3.91 Hz, 4 H) 3.80 - 3.95 (m, 6 H) 4.17 (t, J=5.28 Hz, 2 H) 6.93 (d, J=1.96 Hz, 1 H) 7.26 - 7.33 (m, 2 H) 7.54 - 7.63 (m, 2 H) 7.72 (t, J=7.83 Hz, 1 H) 7.89 (d, J=7.83 Hz, 1 H) 8.20 (d, J=8.22 Hz, 1 H) 8.25 (s, 1 H). LCMS (m/z) (M+H) = 502.2, Rt = 0.78 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.80 (s, 6 H) 2.32 (s, 3 H) 2.97 - 3.18 (m, 4 H) 3.74 - 3.94 (m, 7 H) 4.17 (t, J=5.28 Hz, 2 H) 6.98 (d, J=2.35 Hz, 1 H) 7.24 - 7.42 (m, 2 H) 7.54 - 7.65 (m, 2 H) 7.80 (dd, J=5.09, 1.17 Hz, 1 H) 8.06 (s, 1 H) 8.75 (d, J=5.09 Hz, 1 H). LCMS (m/z) (M+H) = 502.2, Rt = 0.71 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.72 (s, 3 H) 3.07 - 3.20 (m, 4 H) 3.80 - 3.99 (m, 6 H) 4.19 (t, J=5.09 Hz, 2 H) 6.98 (d, J=2.35 Hz, 1 H) 7.50 (d, J=2.35 Hz, 1 H) 7.78 (t, J=7.83 Hz, 1 H) 7.96 (d, J=7.83 Hz, 1 H) 8.28 (d, J=7.83 Hz, 1 H) 8.34 (s, 1 H) 8.47 (d, J=2.35 Hz, 1 H) 9.30 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 503.2, Rt = 0.63 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.67 (s, 3 H) 3.12 - 3.22 (m, 4 H) 3.80 - 3.89 (m, 4 H) 3.91 - 3.99 (m, 2 H) 4.47 - 4.58 (m, 2 H) 7.32 (d, J=1.96 Hz, 1 H) 7.68 - 7.82 (m, 1 H) 7.85 (d, J=1.96 Hz, 1 H) 7.96 (d, J=7.83 Hz, 1 H) 8.28 (d, J=7.83 Hz, 1 H) 8.34 (s, 1 H) 8.42 (d, J=1.96 Hz, 1 H) 9.30 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 503.2, Rt = 0.67 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.20 (s, 3 H) 2.98 - 3.12 (m, 4 H) 3.67 - 3.84 (m, 4 H) 6.89 (d, J=1.96 Hz, 1 H) 6.99 (d, J=1.96 Hz, 1 H) 7.20 (d, J=8.22 Hz, 1 H) 7.45 - 7.54 (m, 2 H) 7.59 - 7.67 (m, 1 H) 7.79 (d, J=7.83 Hz, 1 H) 8.10 (d, J=7.83 Hz, 1 H) 8.16 (s, 1 H). LCMS (m/z) (M+H) = 458.3, Rt = 0.82 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.31 (s, 3 H) 3.11 - 3.22 (m, 4 H) 3.80 - 3.89 (m, 4 H) 5.05 (s, 2 H) 6.93 (d, J=1.96 Hz, 1 H) 7.30 (d, J=8.22 Hz, 1 H) 7.39 (d, J=1.96 Hz, 1 H) 7.59 (dd, J=8.22, 1.96 Hz, 1 H) 7.64 (d, J=1.96 Hz, 1 H) 7.69 - 7.76 (m, 1 H) 7.89 (d, J=7.83 Hz, 1 H) 8.20 (d, J=7.83 Hz, 1 H) 8.25 (s, 1 H). LCMS (m/z) (M+H) = 497.3, Rt = 0.95 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.72 (d, J=7.04 Hz, 6 H) 2.25 (s, 6 H) 3.11 (br. s., 8 H) 3.71 (br. s., 8 H) 5.87 (q, J=7.04 Hz, 2 H) 6.73 (d, J=1.17 Hz, 2 H) 7.28 (d, J=8.22 Hz, 2 H) 7.43 (d, J=1.57 Hz, 2 H) 7.63 (s, 2 H) 7.71 (d, J=8.22 Hz, 2 H) 7.77 (t, J=7.83 Hz, 2 H) 7.95 (d, J=7.43 Hz, 2 H) 8.21 - 8.32 (m, 5 H) 10.45 (s, 1 H). LCMS (m/z) (M+H) = 511.2, Rt = 1.00 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.80 (d, J=7.43 Hz, 3 H) 2.33 (s, 3 H) 3.20 (br. s., 4 H) 3.78 (d, J=4.30 Hz, 4 H) 5.95 (q, J=7.04 Hz, 1 H) 6.81 (d, J=1.56 Hz, 1 H) 7.36 (d, J=8.22 Hz, 1 H) 7.51 (d, J=1.57 Hz, 1 H) 7.71 (d, J=1.96 Hz, 1 H) 7.79 (dd, J=8.22, 1.96 Hz, 1 H) 7.83 - 7.90 (m, 1 H) 8.04 (d, J=7.83 Hz, 1 H) 8.28 - 8.44 (m, 2 H) 10.53 (s, 1 H). LCMS (m/z) (M+H) = 511.3, Rt = 1.01 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.31 (s, 3 H) 3.02 (s, 3 H) 3.14 - 3.24 (m, 4 H) 3.67 (t, J=6.46 Hz, 2 H) 3.83 - 3.90 (m, 4 H) 4.50 (t, J=6.46 Hz, 2 H) 6.99 (d, J=1.96 Hz, 1 H) 7.29 (d, J=8.22 Hz, 1 H) 7.42 (d, J=1.96 Hz, 1 H) 7.57 (dd, J=8.22, 1.96 Hz, 1 H) 7.61 (s, 1 H) 7.69 - 7.76 (m, 1 H) 7.89 (d, J=7.43 Hz, 1 H) 8.20 (d, J=7.83 Hz, 1 H) 8.25 (s, 1 H). LCMS (m/z) (M+H) = 564.3, Rt = 0.90 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.71 (s, 3 H) 3.04 (s, 3 H) 3.12 - 3.22 (m, 4 H) 3.70 (t, J=6.06 Hz, 2 H) 3.80 - 3.95 (m, 4 H) 4.53 (t, J=6.06 Hz, 2 H) 6.94 (d, J=1.96 Hz, 1 H) 7.56 (d, J=1.96 Hz, 1 H) 7.78 (t, J=8.02 Hz, 1 H) 7.96 (d, J=7.43 Hz, 1 H) 8.27 (d, J=7.43 Hz, 1 H) 8.33 (s, 1 H) 8.44 (d, J=2.35 Hz, 1 H) 9.28 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 565.2, Rt = 0.68 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.73 (d, J=7.04 Hz, 3 H) 2.22 (s, 3 H) 3.06 (d, J=5.09 Hz, 4 H) 3.74 (t, J=4.50 Hz, 4 H) 5.78 (q, J=6.91 Hz, 1 H) 7.26 (d, J=1.57 Hz, 1 H) 7.30 (d, J=8.22 Hz, 1 H) 7.65 (d, J=1.57 Hz, 1 H) 7.70 - 7.82 (m, 3 H) 7.95 (d, J=7.83 Hz, 1 H) 8.22 - 8.30 (m, 2 H) 10.44 (s, 1 H). LCMS (m/z) (M+H) = 511.5, Rt = 1.13 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.73 (d, J=7.04 Hz, 3 H) 2.22 (s, 3 H) 3.06 (d, J=5.09 Hz, 4 H) 3.74 (t, J=4.50 Hz, 4 H) 5.78 (q, J=6.65 Hz, 1 H) 7.26 (d, J=1.57 Hz, 1 H) 7.30 (d, J=8.22 Hz, 1 H) 7.65 (d, J=1.96 Hz, 1 H) 7.69 - 7.83 (m, 3 H) 7.95 (d, J=7.83 Hz, 1 H) 8.19 - 8.32 (m, 2 H) 10.44 (s, 1 H). LCMS (m/z) (M+H) = 511.2, Rt = 1.00 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.40 (s, 3 H) 3.03 (s, 3 H) 3.10 - 3.22 (m, 4 H) 3.68 (t, J=6.46 Hz, 2 H) 3.81 - 3.92 (m, 4 H) 4.51 (t, J=6.46 Hz, 2 H) 7.00 (d, J=1.96 Hz, 1 H) 7.36 - 7.48 (m, 2 H) 7.54 (t, J=8.02 Hz, 1 H) 7.81 - 7.88 (m, 2 H) 7.93 (d, J=8.22 Hz, 1 H) 8.15 (s, 1 H). LCMS (m/z) (M+H) = 564.3, Rt = 0.93 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.38 (t, J=7.04 Hz, 3 H) 2.31 (s, 3 H) 3.11 - 3.21 (m, 4 H) 3.82 - 3.91 (m, 4 H) 4.11 (q, J=7.30 Hz, 2 H) 6.96 (d, J=1.96 Hz, 1 H) 7.29 (d, J=8.22 Hz, 1 H) 7.38 (d, J=1.96 Hz, 1 H) 7.58 (d, J=8.22 Hz, 1 H) 7.62 (s, 1 H) 7.69 - 7.76 (m, 1 H) 7.89 (d, J=7.83 Hz, 1 H) 8.20 (d, J=7.83 Hz, 1 H) 8.25 (s, 1 H). LCMS (m/z) (M+H) = 486.2, Rt = 0.95 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.45 (t, J=7.04 Hz, 3 H) 2.27 (s, 3 H) 3.12 - 3.23 (m, 4 H) 3.81 - 3.96 (m, 4 H) 4.47 (q, J=7.04 Hz, 2 H) 7.24 - 7.33 (m, 2 H) 7.57 - 7.64 (m, 2 H) 7.69 - 7.75 (m, 1 H) 7.76 (d, J=1.96 Hz, 1 H) 7.88 (d, J=7.83 Hz, 1 H) 8.20 (d, J=7.83 Hz, 1 H) 8.25 (s, 1 H). LCMS (m/z) (M+H) = 486.3, Rt = 1.09 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.39 (t, J=7.24 Hz, 3 H) 2.72 (s, 3 H) 3.07 - 3.21 (m, 4 H) 3.76 - 3.89 (m, 4 H) 4.13 (q, J=7.30 Hz, 2 H) 6.95 (d, J=1.96 Hz, 1 H) 7.55 (d, J=2.35 Hz, 1 H) 7.74 - 7.83 (m, 1 H) 7.97 (d, J=7.83 Hz, 1 H) 8.28 (d, J=7.83 Hz, 1 H) 8.34 (s, 1 H) 8.46 (d, J=2.35 Hz, 1 H) 9.30 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 487.2, Rt = 0.70 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.29 (t, J=7.24 Hz, 3 H) 2.22 (s, 3 H) 3.03 - 3.13 (m, 4 H) 3.71 - 3.82 (m, 4 H) 4.03 (q, J=7.04 Hz, 2 H) 6.93 (d, J=1.96 Hz, 1 H) 7.22 (d, J=8.22 Hz, 1 H) 7.32 (d, J=1.96 Hz, 1 H) 7.51 (dd, J=8.22, 2.35 Hz, 1 H) 7.56 (d, J=2.35 Hz, 1 H) 8.02 (d, J=5.09 Hz, 1 H) 8.20 (s, 1 H) 8.81 (d, J=4.69 Hz, 1 H). LCMS (m/z) (M+H) = 487.2, Rt = 0.89 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.45 (t, J=7.04 Hz, 3 H) 2.27 (s, 3 H) 3.01 - 3.22 (m, 4 H) 3.75 - 3.99 (m, 4 H) 4.47 (q, J=7.04 Hz, 2 H) 7.25 (d, J=1.96 Hz, 1 H) 7.32 (d, J=8.22 Hz, 1 H) 7.50 - 7.67 (m, 2 H) 7.74 (d, J=1.96 Hz, 1 H) 8.12 (d, J=5.09 Hz, 1 H) 8.29 (s, 1 H) 8.90 (d, J=5.09 Hz, 1 H). LCMS (m/z) (M+H) = 487.2, Rt = 1.03 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.38 (t, J=7.04 Hz, 3 H) 1.81 (s, 6 H) 2.31 (s, 3 H) 3.20 (d, J=3.91 Hz, 4 H) 3.80 - 3.94 (m, 4 H) 4.12 (q, J=7.04 Hz, 2 H) 7.02 (d, J=1.96 Hz, 1 H) 7.31 (d, J=8.61 Hz, 1 H) 7.41 (d, J=1.96 Hz, 1 H) 7.59 (d, J=8.22 Hz, 1 H) 7.63 (s, 1 H) 7.81 (d, J=4.70 Hz, 1 H) 8.06 (s, 1 H) 8.76 (d, J=5.09 Hz, 1 H). LCMS (m/z) (M+H) = 486.3, Rt = 0.79 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.46 (t, J=7.04 Hz, 3 H) 1.81 (s, 6 H) 2.27 (s, 3 H) 3.12 - 3.25 (m, 4 H) 3.75 - 3.94 (m, 4 H) 4.49 (q, J=7.04 Hz, 2 H) 7.24 - 7.36 (m, 2 H) 7.47 - 7.67 (m, 2 H) 7.75 - 7.90 (m, 2 H) 8.06 (s, 1 H) 8.75 (d, J=5.09 Hz, 1 H). LCMS (m/z) (M+H) = 486.3, Rt = 0.93 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.30 (s, 3 H) 3.05 (d, J=3.91 Hz, 4 H) 3.66 (s, 3 H) 3.82 - 3.91 (m, 4 H) 6.13 (d, J=0.78 Hz, 1 H) 6.31 (s, 1 H) 7.31 (d, J=9.00 Hz, 1 H) 7.61 - 7.67 (m, 2 H) 7.72 (t, J=7.83 Hz, 1 H) 7.89 (d, J=7.83 Hz, 1 H) 8.20 (d, J=7.83 Hz, 1 H) 8.25 (s, 1 H). LCMS (m/z) (M+H) = 472.3, Rt = 0.96 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.64 (s, 3 H) 2.99 - 3.11 (m, 4 H) 3.65 (s, 3 H) 3.80 - 3.96 (m, 4 H) 6.12 (d, J=1.57 Hz, 1 H) 6.35 (d, J=1.56 Hz, 1 H) 7.73 - 7.81 (m, 1 H) 7.95 (d, J=7.83 Hz, 1 H) 8.26 (d, J=7.83 Hz, 1 H) 8.33 (s, 1 H) 8.36 (d, J=2.35 Hz, 1 H) 9.21 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 473.2, Rt = 0.69 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 2.29 (s, 3 H) 3.37 - 3.51 (m, 4 H) 3.67 (s, 3 H) 3.68 - 3.77 (m, 5 H) 6.59 (s, 1 H) 7.28 (d, J=8.22 Hz, 1 H) 7.69- 7.83 (m, 3 H) 7.95 (d, J=7.83 Hz, 1 H) 8.21 - 8.27 (m, 1 H) 8.29 (s, 1 H) 10.47 (s, 1 H). LCMS (m/z) (M+H) = 473.1, Rt = 0.94 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 2.34 (s, 3 H) 3.26 (br. s., 12 H) 3.43 (br. s., 4 H) 3.64 (br. s., 7 H) 6.62 (s, 1 H) 7.32 - 7.46 (m, 3 H) 7.48 - 7.59 (m, 2 H) 7.89 (d, J=8.22 Hz, 1 H) 7.92 (s, 1 H) 8.00 (d, J=7.83 Hz, 1 H) 8.18 (s, 1 H) 10.46 (s, 1 H). LCMS (m/z) (M+H) = 473.1, Rt = 1.00 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 2.56 (s, 3 H) 3.40 - 3.54 (m, 4 H) 3.62 - 3.77 (m, 8 H) 6.72 (s, 1 H) 7.75 - 7.87 (m, 1 H) 8.00 (d, J=7.83 Hz, 1H) 8.25 - 8.31 (m, 2 H) 8.33 (s, 1 H) 8.99 (d, J=2.35 Hz, 1 H) 10.84 (s, 1 H). LCMS (m/z) (M+H) = 474.3, Rt = 0.72 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.76 (s, 6 H) 2.54 (s, 3 H) 3.39 - 3.53 (m, 4 H) 3.65 - 3.75 (m, 7 H) 6.71 (s, 1 H) 7.81 - 7.92 (m, 1 H) 8.04 (s, 1H) 8.22 (d, J=2.35 Hz, 1 H) 8.83 (d, J=5.09 Hz, 1 H) 8.94 (d, J=1.96 Hz, 1 H) 10.90 (s, 1 H). LCMS (m/z) (M+H) = 474.2, Rt = 0.68 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 2.29 (s, 3 H) 3.43 - 3.52 (m, 8 H) 3.67 (s, 3 H) 3.68 - 3.76 (m, 4 H) 6.59 (s, 1 H) 7.31 (d, J=8.22 Hz, 1 H) 7.69- 7.79 (m, 2 H) 8.18 (d, J=4.30 Hz, 1 H) 8.36 (s, 1 H) 8.98 (d, J=5.09 Hz, 1 H) 10.69 (s, 1 H). LCMS (m/z) (M+H) = 474.2, Rt = 0.94 min.
- The compounds listed below were prepared using methods similar to those described in Method 1 using the appropriate starting materials and purified via preparative HPLC to yield the corresponding TFA salt upon lyophilization.
-
- Method 1 was followed using N-(4-methyl-3-(6-morpholino-5-oxo-4,5-dihydropyrazin-2-yl)phenyl)-3-(trifluoromethyl)benzamide (1.0 equiv.), iodoethane (1.2 equiv.) and potassium carbonate (2.0 equiv.) at room temperature. 1H NMR (400 MHz, <cd3od>) δ ppm 1.38 (t, J=7.24 Hz, 3 H) 2.39 (s, 3 H) 3.80 (s, 8 H) 4.02 (q, J=7.30 Hz, 2 H) 7.02 - 7.31 (m, 2 H) 7.57 (dd, J=8.22, 1.96 Hz, 1 H) 7.65 - 7.81 (m, 2 H) 7.89 (d, J=7.83 Hz, 1 H) 8.13 - 8.38 (m, 1 H). LCMS (m/z) (M+H) = 487.4, Rt = 1.02 min.
-
- Method 1 was followed using N-(4-methyl-3-(6-morpholino-5-oxo-4,5-dihydropyrazin-2-yl)phenyl)-3-(trifluoromethyl)benzamide (1.0 equiv.), 1,1-difluoro-2-iodoethane (1.2 equiv.) and potassium carbonate (2.0 equiv.) at 60 °C. 1H NMR (400 MHz, <cd3od>) δ ppm 2.39 (s, 3 H) 3.81 (d, J=5.09 Hz, 8 H) 4.38 (td, J=14.09, 3.91 Hz, 2 H) 6.02 - 6.44 (m, 1 H) 7.14 (s, 1 H) 7.26 (d, J=8.22 Hz, 1 H) 7.59 (dd, J=8.22, 1.96 Hz, 1 H) 7.67 - 7.79 (m, 2 H) 7.89 (d, J=7.83 Hz, 1 H) 8.16 - 8.34 (m, 1 H). LCMS (m/z) (M+H) = 523.3, Rt = 1.05 min.
-
- To a solution of 5-bromo-1-methyl-3-morpholinopyridin-2(1H)-one (1.0 equiv.) and 4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline (1.2 equiv.) in DME and 2M sodium carbonate (3:1, 0.14 M) was added PdCl2(dppf)-DCM adduct (0.1 equiv.) in a microwave vial equipped with a stir bar. The reaction was heated to 120 °C for 15 min in the microwave. The solution was partitioned between water and ethyl acetate, the organic phase was dried with sodium sulfate, filtered and concentrated. The crude material was purified via silica gel column chromatography eluting with 100% ethyl acetate followed by 10% methanol in ethyl acetate. The pure fractions were concentrated and dried under vacuo to afford 5-(5-amino-2-methylphenyl)-1-methyl-3-morpholinopyridin-2(1H)-one in 31% yield. LCMS (m/z) (M+H) = 300.2, Rt = 0.41 min.
-
- Step 1: To a 0.18 M solution of 5-bromo-1-methyl-3-morpholinopyridin-2(1H)-one (1.00 equiv.) in 1,4-dioxane was added bis(pinacolato)diboron (1.50 equiv.), potassium acetate (2.00 equiv.), and PdCl2(dppf).CH2Cl2 adduct (0.10 equiv.). The reaction was irradiated at 120°C for 20 min. The reaction was diluted with DCM (20 mL) and filtered. The filtrate was concentrated to give 5'-amino-1,2'-dimethyl-5-morpholino-[3,3'-bipyridin]-6(1H)-one as a mixture with the corresponding boronic acid as a dark brown tacky solid in quantitative yield. LCMS (m/z) (M+H) = 321.0, Rt = 0.65 min.
- Step 2: To a 0.18 M solution of 5'-amino-1,2'-dimethyl-5-morpholino-[3,3'-bipyridin]-6(1H)-one (1.00 equiv.) in DME and 5-bromo-6-methylpyridin-3-amine (1.00 equiv.) was added PdCl2(dppf).CH2Cl2 adduct (0.10 equiv.) and 2M aqueous sodium carbonate (3.00 equiv.). The reaction mixture was irradiated at 125 °C for 20 min. LC-MS showed primarily conversion to P. The cooled reaction mixture was diluted with 2:1 DCM:MeOH and filtered. The filtrate was concentrated and purified by flash chromatography over silica gel (ethyl acetate with a 0-15% methanol gradient) to give 5'-amino-1,2'-dimethyl-5-morpholino-[3,3'-bipyridin]-6(1H)-one as a brown solid. LCMS (m/z) (M+H) = 301.0, Rt = 0.33 min.
-
- To a solution of 6-chloro-2-methyl-4-morpholinopyridazin-3(2H)-one (1.0 equiv.) and 4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline (1.1 equiv.) in DME and water (2:1, 0.2 M) was added PdCl2(dppf).CH2Cl2 adduct (0.5 equiv.) and sodium carbonate (6.6 equiv.). The solution was heated in the microwave for 40 min at 120 °C. Upon cooling to room temperature, the solution was diluted with ethyl acetate and water, the aqueous layer was extracted with ethyl acetate two more times, the organics were combined, dried over magnesium sulfate, filtered and concentrated to yield a brown solid. Isolated 6-(5-amino-2-methylphenyl)-2-methyl-4-morpholinopyridazin-3(2H)-one as the desired product. LCMS (m/z) (M+H) = 301.1, Rt = 0.49 min.
- To a solution of the amine (1.0 equiv.) and the corresponding carboxylic acid (1.0-1.2 equiv.) in DMF (0.1 M) was added EDC (1.0-1.2 equiv.) and HOAt (1.0-1.2 equiv.) and the reaction was stirred at room temperature for 6-24 hours. Upon completion, the solution was filtered through a HPLC filter and purified via reverse phase preparative HPLC. Alternatively, the solution was partitioned between water and ethyl acetate, the organic phase was dried over sodium sulfate or magnesium sulfate, filtered and concentrated to yield a crude material that was further purified via reverse phase preparative HPLC. Upon lyophilization of the pure fractions, the desired product was isolated as the TFA salt.
-
- To a solution of 5-(5-amino-2-methylphenyl)-1-methyl-3-morpholinopyridin-2(1H)-one (1.0 equiv.) in DMF (0.07 M) was added 3-(difluoromethyl)benzoic acid (1.2 equiv.), EDC-HCl (1.2 equiv.) and HOAt (1.2 equiv.). The reaction was stirred at room temperature for 6 hours. Upon completion, the solution was filtered through a HPLC filter and purified via reverse phase preparative HPLC. Upon lyophilization of the pure fractions, 3-(difluoromethyl)-N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6 dihydropyridin-3-yl)phenyl)benzamide was isolated as the TFA salt in 45% yield. LCMS (m/z) (M+H) = 454.2, Rt = 0.79 min. 1H NMR (400 MHz, <cd3od>) δ ppm 2.30 (s, 3 H) 3.08 - 3.22 (m, 4 H) 3.64 (s, 3 H) 3.81 - 3.94 (m, 4 H) 6.66 - 7.05 (m, 2 H) 7.29 (d, J=8.61 Hz, 1 H) 7.40 (d, J=2.35 Hz, 1 H) 7.56 (dd, J=8.41, 2.15 Hz, 1 H) 7.60 - 7.68 (m, 2 H) 7.76 (d, J=7.43 Hz, 1 H) 8.05 - 8.15 (m, 1 H).
- The compounds listed below were prepared using methods similar to those described for the preparation of Example 171 (Method 3) using the appropriate starting materials.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.78 (s, 6 H) 2.30 (s, 3 H) 3.08 - 3.25 (m, 4 H) 3.64 (s, 3 H) 3.82 - 3.95 (m, 4 H) 7.03 (d, J=1.96 Hz, 1 H) 7.29 (d, J=8.22 Hz, 1 H) 7.41 (d, J=1.96 Hz, 1 H) 7.51 - 7.66 (m, 3 H) 7.76 (d, J=9.00 Hz, 1 H) 7.90 (d, J=7.83 Hz, 1 H) 8.08 (s, 1 H). LCMS (m/z) (M+H) = 471.3, Rt = 0.80 min.
-
- To a solution of 3-((dimethylamino)methyl)-5-(trifluoromethyl)benzoic acid (1.1 equiv.), N1-((ethylimino)methylene)-N3,N3-dimethylpropane-1,3-diamine hydrochloride (1.1 equiv.), 3H-[1,2,3]triazolo[4,5-b]pyridin-3-ol hydrate (1.1 equiv.) in DMF (0.3 M) was added 5-(5-amino-2-methylphenyl)-1-methyl-3-morpholinopyridin-2(1H)-one (1.0 equiv.) and the reaction was stirred overnight at rt. Diluted with 0.4 M aqueous sodium carbonate and extracted with ethyl acetate. The combined organics were dried over sodium sulfate, filtered and concentrated with silica gel to give the crude product. The material was purified by flash chromatography over silica gel (heptanes with 50-100% 90:10:1.5 ethyl acetate:methanol:triethylamine gradient) to give 3-((dimethylamino)methyl)-N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)-5-(trifluoromethyl)benzamide as a pale yellow-green solid in 46% yield. 1H NMR (400 MHz, <cd3od>) δ ppm 2.31 (s, 3 H) 2.92 (s, 6 H) 3.07 - 3.20 (m, 4 H) 3.63 (s, 3 H) 3.79 - 3.91 (m, 4 H) 4.51 (s, 2 H) 6.92 (d, J=1.96 Hz, 1 H) 7.22 - 7.40 (m, 2 H) 7.53 - 7.72 (m, 2 H) 8.10 (s, 1 H) 8.30 - 8.46 (m, 1 H). LCMS (m/z) (M+H) = 529.4, Rt = 0.65 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.41 (t, J=7.24 Hz, 3 H) 2.30 (s, 3 H) 3.14 (d, J=4.30 Hz, 5 H) 3.21 (d, J=18.00 Hz, 4 H) 3.63 (s, 3 H) 3.70 (br. s., 2 H) 3.81 - 3.91 (m, 4 H) 4.09 (d, J=12.13 Hz, 2 H) 6.91 (d, J=1.96 Hz, 1 H) 7.29 (d, J=7.83 Hz, 1 H) 7.33 (d, J=1.96 Hz, 1 H) 7.50 (s, 1 H) 7.54 - 7.62 (m, 2 H) 7.79 (d, J=4.70 Hz, 2 H). LCMS (m/z) (M+H) = 584.4, Rt = 0.70 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.31 (s, 3 H) 3.01 - 3.16 (m, 4 H) 3.20 (s, 6 H) 3.63 (s, 3 H) 3.78 - 3.92 (m, 4 H) 6.91 (d, J=2.35 Hz, 1 H) 7.23 - 7.37 (m, 2 H) 7.54 - 7.75 (m, 2 H) 8.14 - 8.30 (m, 2 H) 8.45 (s, 1 H). LCMS (m/z) (M+H) = 448.3, Rt = 0.57 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.32 (s, 3 H) 3.06 - 3.19 (m, 4 H) 3.27 (s, 4 H) 3.64 (s, 3 H) 3.77 - 3.93 (m, 4 H) 6.92 (d, J=1.96 Hz, 1 H) 7.23 - 7.39 (m, 2 H) 7.53 - 7.71 (m, 2 H) 8.45 (s, 1 H) 8.60 (s, 1 H) 8.78 (s, 1 H). LCMS (m/z) (M+H) = 550.1, Rt = 0.83.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.98 (t, J=18.39 Hz, 3 H) 2.31 (s, 3 H) 3.13 - 3.23 (m, 4 H) 3.65 (s, 3 H) 3.82 - 3.93 (m, 4 H) 7.01 (d, J=1.96 Hz, 1 H) 7.29 (d, J=8.22 Hz, 1 H) 7.40 (d, J=1.96 Hz, 1 H) 7.53 - 7.67 (m, 3 H) 7.76 (d, J=7.83 Hz, 1 H) 8.03 (d, J=7.83 Hz, 1 H) 8.11 (s, 1 H). LCMS (m/z) (M+H) = 468.1, Rt = 0.85.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.04 (t, J=18.78 Hz, 3 H) 2.31 (s, 3 H) 3.10 - 3.23 (m, 4 H) 3.65 (s, 3 H) 3.81 - 3.93 (m, 4 H) 7.00 (d, J=1.96 Hz, 1 H) 7.31 (d, J=8.22 Hz, 1 H) 7.39 (d, J=1.96 Hz, 1 H) 7.55 - 7.68 (m, 2 H) 7.96 (d, J=4.30 Hz, 1 H) 8.17 (s, 1 H) 8.81 (d, J=5.09 Hz, 1 H). LCMS (m/z) (M+H) = 469.1, Rt = 0.78.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.31 (s, 3 H) 3.10 - 3.22 (m, 4 H) 3.65 (s, 3 H) 3.80 - 3.93 (m, 4 H) 6.98 (d, J=1.96 Hz, 1 H) 7.31 (d, J=8.22 Hz, 1 H) 7.38 (d, J=2.35 Hz, 1 H) 7.60 (dd, J=8.22, 2.35 Hz, 1 H) 7.65 (d, J=1.96 Hz, 1 H) 8.12 (d, J=5.09 Hz, 1 H) 8.30 (s, 1 H) 8.91 (d, J=5.09 Hz, 1 H). LCMS (m/z) (M+H) = 473.1, Rt = 0.83.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.69 (s, 3 H) 3.10 - 3.21 (m, 4 H) 3.65 (s, 3 H) 3.79 - 3.91 (m, 4 H) 4.02 (s, 3 H) 6.95 (d, J=1.96 Hz, 1 H) 7.37 (d, J=8.61 Hz, 1 H) 7.52 (d, J=1.96 Hz, 1 H) 8.22 - 8.34 (m, 2 H) 8.42 (d, J=2.35 Hz, 1 H) 9.24 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 503.1, Rt = 0.67 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.70 (s, 3 H) 3.12 - 3.20 (m, 4 H) 3.65 (s, 3 H) 3.80 - 3.89 (m, 4 H) 3.97 (s, 3 H) 6.95 (d, J=2.35 Hz, 1 H) 7.27 (dd, J=10.96, 8.61 Hz, 1 H) 7.53 (d, J=2.35 Hz, 1 H) 7.62 (ddd, J=8.41, 4.11, 1.96 Hz, 1 H) 7.75 (dd, J=8.22, 1.96 Hz, 1 H) 8.43 (d, J=2.35 Hz, 1 H) 9.25 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 453.0, Rt = 0.58 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 2.27 (s, 3 H) 3.11 (br. s., 4 H) 3.35 (s, 5 H) 3.50 (s, 5 H) 3.72 (br. s., 4 H) 6.70 (s, 1 H) 7.30 (d, J=8.22 Hz, 1 H) 7.41 (s, 1 H) 7.64 (s, 1 H) 7.69 (d, J=8.22 Hz, 1 H) 8.22 (d, J=4.69 Hz, 1 H) 8.53 (s, 1 H) 9.00 (d, J=5.09 Hz, 1 H) 10.76 (s, 1 H). LCMS (m/z) (M+H) = 483.3, Rt = 0.65.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 2.27 (s, 3 H) 3.11 (br. s., 4 H) 3.29 (s, 3 H) 3.50 (s, 4 H) 3.68 - 3.77 (m, 5 H) 6.71 (d, J=1.96 Hz, 1 H) 7.28 (d, J=8.22 Hz, 1 H) 7.41 (d, J=1.96 Hz, 1 H) 7.63 (d, J=1.96 Hz, 1 H) 7.69 (dd, J=8.22, 1.96 Hz, 1 H) 7.83 (t, J=7.83 Hz, 1 H) 8.14 (d, J=7.83 Hz, 1 H) 8.29 (d, J=8.22 Hz, 1 H) 8.48 (s, 1 H) 10.49 (s, 1 H). LCMS (m/z) (M+H) = 482.3, Rt = 0.68.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 2.31 (br. s., 1 H) 3.42 - 3.49 (m, 5 H) 3.67 (s, 3 H) 3.68 - 3.74 (m, 4 H) 6.59 (s, 1 H) 7.07 (s, 1 H) 7.30 (d, J=8.22 Hz, 1 H) 7.74 (s, 2 H) 8.05 (d, J=5.09 Hz, 1 H) 8.17 (s, 1 H) 8.89 (d, J=5.09 Hz, 1 H) 10.65 (s, 1 H), LCMS (m/z) (M+H) = 456.0, Rt = 0.76 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 2.23 - 2.33 (m, 3 H) 3.37 - 3.52 (m, 4 H) 3.61 - 3.77 (m, 7 H) 6.59 (s, 1 H) 7.23 - 7.32 (m, 1 H) 7.60 - 7.71 (m,1 H) 7.71 - 7.80 (m, 3 H) 8.07 - 8.18 (m, 2 H) 10.41 (s, 1 H), LCMS (m/z) (M+H) = 455.0, Rt = 0.87 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.75 (s, 6 H) 2.29 (s, 3 H) 3.36 - 3.51 (m, 4 H) 3.57 - 3.76 (m, 7 H) 6.59 (s, 1 H) 7.30 (d, J=8.22 Hz, 1 H) 7.65 - 7.78 (m, 2 H) 7.85 (d, J=3.91 Hz, 1 H) 7.94 - 8.06 (m, 1 H) 8.79 (d, J=5.09 Hz, 1 H) 10.56 (s, 1 H), LCMS (m/z) (M+H) = 473.4, Rt = 0.84 min.
-
- Step 1: MnO2 (8.0 equiv.) was added into a solution of 3-bromo-4-(hydroxymethyl)-N-(3-(trifluoromethyl)phenyl)benzamide (1.0 equiv.) in DCM (0.14 M). The suspension was stirred at rt for 1 hr. The mixture was filtered over celite and concentrated to yield 3-bromo-4-formyl-N-(3-(trifluoromethyl)phenyl)benzamide in 100% yield. LC/MS (m/z) = 373.9 (MH+), Rt = 0.0.94 min.
- Step 2: To a cooled solution of 3-bromo-4-formyl-N-(3-(trifluoromethyl)phenyl)benzamide (1.0 equiv.) in dry CH2Cl2 (0.18 M), (diethylamino)sulfur trifluoride (3.5 equiv.) was added under vigorous stirring. The resulting reaction mixture was stirred at 0 °C for 2 hrs. Quenched the reaction with sat NaHCO3 and extracted with DCM. The organic layer was washed with Brine, filtered over Na2SO4 and concentrated to yield 3-bromo-4-(difluoromethyl)-N-(3-(trifluoromethyl)phenyl)benzamide in 47% yield. LC/MS (m/z) = 393.9 (MH+), Rt = 1.11 min.
- Step 3: Method 2 was followed using 1-methyl-3-morpholino-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-2(1H)-one and 3-bromo-4-(difluoromethyl)-N-(3-(trifluoromethyl)phenyl)benzamide to give 4-(difluoromethyl)-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)-N-(3-(trifluoromethyl)phenyl)benzamid in 8% yield. LC/MS (m/z) = 508.1 (MH+), Rt = 0.98 min. 1H NMR (400 MHz, <cd3od>) δ ppm 3.12 - 3.21 (m, 4 H), 3.64 (s, 3 H), 3.80 - 3.90 (m, 4 H), 6.96 (d, J=1.96 Hz, 2 H), 7.41 (d, J=1.96 Hz, 2 H), 7.52- 7.62 (m, 1 H), 7.84 - 7.92 (m, 1 H), 7.97 (br. s., 2 H), 8.05 - 8.12 (m, 1 H), 8.14 - 8.20 (m, 1 H).
-
- Step 1: A 0.3 M solution of 5-bromo-3-morpholinopyridin-2(1H)-one (1.00 equiv.) in DMF was treated with sodium hydride (1.20 equiv.). The mixture was stirred for 15 min at ambient temperature. Tert-butyl (2-bromoethyl)carbamate (1.20 equiv.) was added. The mixture was stirred at 60 °C for 3 hr. The cooled reaction mixture was diluted with water and extracted with ethyl acetate. The combined organics were washed with saturated aqueous sodium bicarbonate, dried over sodium sulfate, filtered, and concentrated to give tert-butyl (2-(5-bromo-3-morpholino-2-oxopyridin-1 (2H)-yl)ethyl)carbamate. LCMS (m/z) (M+H) = 402.1/404.1, Rt = 0.78 min.
- Step 2: Tert-butyl (2-(2'-methyl-5-morpholino-6-oxo-5'-(3-(trifluoromethyl)benzamido)-[3,3'-bipyridin]-1(6H)-yl)ethyl)carbamate was prepared using methods similar to those described for the preparation of Example 192 using the appropriate starting materials. LCMS (m/z) (M+H) = 602.2, Rt = 0.78 min.
- Step 3: A 0.1 M solution of tert-butyl (2-(2'-methyl-5-morpholino-6-oxo-5'-(3-(trifluoromethyl)benzamido)-[3,3'-bipyridin]-1(6H)-yl)ethyl)carbamate (1.00 equiv.) in 1:1 DCM:TFA was stirred for 15 min at ambient temperature. The reaction mixture was concentrated. The residue was basified with aqueous sodium carbonate and extracted with DCM. The combined extracts were dried over sodium sulfate, filtered, and concentrated to give crude N-(1'-(2-aminoethyl)-2-methyl-5'-morpholino-6'-oxo-1',6'-dihydro-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide which was used without further purification. LCMS (m/z) (M+H) = 502.2, Rt = 0.58 min.
- Step 4: To a 0.2 M solution of N-(1'-(2-aminoethyl)-2-methyl-5'-morpholino-6'-oxo-1',6'-dihydro-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide (1.0 equiv.) in DCM was added and triethylamine (3.00 equiv.) and methyl chloroformate (1.10 equiv.). The reaction was stirred at ambient temperature for 20 min. The reaction was quenched by the addition of water and concentrated. The crude material was purified via preparative reverse phase HPLC. Upon lyophilization of the pure fractions, methyl (2-(2'-methyl-5-morpholino-6-oxo-5'-(3-(trifluoromethyl)benzamido)-[3,3'-bipyridin]-1(6H)-yl)ethyl)carbamate was isolated as the TFA salt in 7% yield. 1H NMR (400 MHz (400 MHz, <cd3od>) δ ppm 2.69 (s, 3 H) 3.10 - 3.21 (m, 5 H) 3.47 - 3.62 (m, 5 H) 3.80 - 3.90 (m, 4 H) 4.10 - 4.20 (m, 2 H) 6.93 (d, J=2.05 Hz, 1 H) 7.41 (d, J=2.10 Hz, 1 H) 7.73 - 7.83 (m, 1 H) 7.96 (dd, J=7.87, 0.68 Hz, 1 H) 8.27 (d, J=7.87 Hz, 1 H) 8.33 (s, 1 H) 8.43 (d, J=2.20 Hz, 1 H) 9.18 (d, J=2.15 Hz, 1 H). LCMS (m/z) (M+H) = 560.3, Rt = 0.68 min.
- The compound listed below was prepared using methods similar to those described for the preparation of Example 193 using the appropriate starting materials.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.30 (s, 3 H) 3.16 (br. s., 4 H) 3.48 - 3.55 (m, 2 H) 3.56 (s, 3 H) 3.81 - 3.91 (m, 4 H) 4.08 - 4.19 (m, 2 H) 6.97 (d, J=1.57 Hz, 1 H) 7.24 (d, J=1.56 Hz, 1 H) 7.29 (d, J=8.22 Hz, 1 H) 7.55 (d, J=8.22 Hz, 1 H) 7.62 (s, 1 H) 7.69 - 7.78 (m, 1 H) 7.89 (d, J=7.83 Hz, 1 H) 8.20 (d, J=7.83 Hz, 1 H) 8.25 (s, 1 H). LCMS (m/z) (M+H) = 559.3, Rt = 0.89 min.
-
- In a round bottom flask equipped with a stir bar and purged with nitrogen was added 5-bromo-3-(trifluoromethyl)pyridin-2-ol (1.0 equiv.), potassium carbonate (2.0 equiv.) and DMF (0.2 M). The mixture was stirred at room temperature and iodoethane (1.2 equiv.) was added via syringe. The mixture was warmed to 35 °C for 4 hours at which time LCMS indicated full conversion. The reaction was worked up by partitioning between water and ethyl acetate, the aqueous phase was extracted 3 more times with ethyl acetate, the organics were combined, washed with brine, dried with sodium sulfate, filtered and concentrated to yield 5-bromo-1-ethyl-3-(trifluoromethyl)pyridin-2(1H)-one (67%). 1H NMR (400 MHz, <cdcl3>) δ ppm 1.32 - 1.50 (m, 3 H) 4.04 (q, J=7.17 Hz, 2 H) 7.63 (br. s., 1 H) 7.78 (br. s., 1 H). LCMS (m/z) (M+H) = 269.1/271.1, Rt = 0.72 min
-
- Step 1: A mixture of 2,6-dichloro-4-nitropyridine (1.0 equiv.), potassium carbonate (3 equiv.) and methanol (20 equiv.) were heated to 70 °C for 25 min in the microwave. The reaction mixture was diluted with methanol and was decanted from remaining solids. After concentration, the mixture was partitioned between water and EtOAc. The organic phase was washed with brine and dried over sodium sulfate. The solution was concentrated and dried under vacuo to give 2,6-dichloro-4-methoxypyridine in 88% yield. LCMS (m/z) (M+H) = 177.9/179.9, Rt = 0.72 min.
- Step 2: A mixture of 2,6-dichloro-4-methoxypyridine (1.0 equiv.) and morpholine (20 equiv.) were heated to 130 °C for 40 min in the microwave. The reaction mixture was centrifuged and the soluble portion was removed from solids. Water was added to the soluble portion which resulted in precipitation of product. This mixture was centrifuged and the soluble portion was discarded. The remaining solids were partitioned between water and EtOAc. The organic phase was washed with brine and dried over sodium sulfate. The solution was concentrated and dried under vacuo to give 4-(6-chloro-4-methoxypyridin-2-yl)morpholine in 43% yield. LCMS (m/z) (M+H) = 229.1, Rt = 0.76 min.
- Step 3: A mixture of 4-(6-chloro-4-methoxypyridin-2-yl)morpholine (1.0 equiv.), N-(4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-3-(trifluoromethyl)benzamide (1.2 equiv.), sodium carbonate (2 M, 8 equiv.) and PdCl2(dppf) (0.5 equiv.) in DME (0.1 M) were heated to 108 °C for 13 min in the microwave. After removing the DME soluble portion and concentrating, the resulting solid was partitioned between EtOAc and water. The organic phase was washed with brine and then dried over magnesium sulfate. After concentration, the crude material was purified via preparative reverse phase HPLC. Upon lyophilization of the pure fractions, N-(3-(4-methoxy-6-morpholinopyridin-2-yl)-4-methylphenyl)-3-(trifluoromethyl)benzamide was isolated as the TFA salt in 34% yield. LCMS (m/z) (M+H) = 472.4, Rt = 0.81 min.
-
- Step 1: A mixture of 2,6-dichloro-4-nitropyridine (1.0 equiv.), potassium carbonate (2 equiv.) and benzyl alcohol (2.4 equiv.) in NMP (4 M) were heated to 90 °C for 2 h in the microwave. The mixture was partitioned between water and EtOAc. The organic phase was washed with brine and dried over sodium sulfate. The solution was concentrated and dried under vacuo to give crude 4-(benzyloxy)-2,6-dichloropyridine and was used in the next step without further purification. LCMS (m/z) (M+H) = 254.0/256.0, Rt = 1.05 min.
- Step 2: A mixture of 4-(benzyloxy)-2,6-dichloropyridine (1.0 equiv.) and morpholine (1.2 equiv.) in NMP (2 M) were heated to 130 °C for 1 h in the microwave. The reaction mixture was partitioned between water and EtOAc. The organic phase was washed with brine and dried over sodium sulfate. The solution was concentrated and dried under vacuo to give crude 4-(4-(benzyloxy)-6-chloropyridin-2-yl)morpholine and was used in the next step without further purification. LCMS (m/z) (M+H) = 305.0, Rt = 1.10 min.
- Step 3: A mixture of 4-(4-(benzyloxy)-6-chloropyridin-2-yl)morpholine (1.0 equiv.), N-(4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-3-(trifluoromethyl)benzamide (1.2 equiv.), sodium carbonate (2 M, 8 equiv.) and PdCl2(dppf) (0.5 equiv.) in DME (0.1 M) were heated to 108 °C for 13 min in the microwave. After removing the DME soluble portion and concentrating, the resulting solid was partitioned between EtOAc and water. The organic phase was washed with brine and then dried over magnesium sulfate. The solution was concentrated and dried under vacuo to give crude N-(3-(4-(benzyloxy)-6-morpholinopyridin-2-yl)-4-methylphenyl)-3-(trifluoromethyl)benzamide and was used in the next step without further purification. LCMS (m/z) (M+H) = 548.2, Rt = 0.99 min.
- Step 4: To N-(3-(4-(benzyloxy)-6-morpholinopyridin-2-yl)-4-methylphenyl)-3-(trifluoromethyl)benzamide (1.0 equiv.) in EtOH flushed with nitrogen was added Pd-C (0.2 equiv.). This mixture was then exposed to an atmosphere of hydrogen. After stirring for 4 h, the hydrogen atmosphere was replaced with nitrogen and the mixture was filtered over celite. After concentration, the crude material was purified via preparative reverse phase HPLC. Upon lyophilization of the pure fractions, N-(4-methyl-3-(6-morpholino-4-oxo-1,4-dihydropyridin-2-yl)phenyl)-3-(trifluoromethyl)benzamide was isolated as the TFA salt in 10% yield over four steps. 1H NMR (400 MHz, <dmso>) δ ppm 2.26 (s, 3 H) 3.69 (br. s., 4 H) 6.20 - 6.50 (m, 1 H) 7.30 (br. s., 1 H) 7.61 - 7.85 (m, 3 H) 7.96 (d, J=7.83 Hz, 1 H) 8.17 - 8.37 (m, 2 H) 10.50 (br. s., 1 H). LCMS (m/z) (M+H) = 458.1, Rt = 0.78 min.
-
- Step 1: A solution of 2,5-dibromothiazole (1.0 equiv.), morpholine (1.5 equiv.) and triethylamine (4 equiv.) were heated to 150 °C for 2 h in the microwave. After concentration, the mixture was partitioned between water and EtOAc. The organic phase was washed with brine and dried over sodium sulfate. The solution was concentrated and dried under vacuo to give crude N-(4-methyl-3-(2-morpholinothiazol-5-yl)phenyl)-3-(trifluoromethyl)benzamide and was used in the next step without further purification. LCMS (m/z) (M+H) = 448.2, Rt = 0.83 min.
- Step 2: A mixture of 4-(5-bromothiazol-2-yl)morpholine (1.0 equiv.), N-(4-methyl-3-(4,4,5,5-tetramethyl-1 ,3,2-dioxaborolan-2-yl)phenyl)-3-(trifluoromethyl)benzamide (1.2 equiv.), sodium carbonate (2 M, 8 equiv.) and PdCl2(dppf) (0.5 equiv.) in DME (0.1 M) were heated to 108 °C for 13 min in the microwave. After removing the DME soluble portion and concentrating, the resulting solid was partitioned between EtOAc and water. The organic phase was washed with brine and then dried over magnesium sulfate. After concentration, the crude material was purified via preparative reverse phase HPLC. Upon lyophilization of the pure fractions, N-(4-methyl-3-(2-morpholinothiazol-5-yl)phenyl)-3-(trifluoromethyl)benzamide was isolated as the TFA salt in 15% yield. 1H NMR (400 MHz, <dmso>) δ ppm 2.36 (s, 3 H) 3.40 - 3.43 (m, 4 H) 3.70 - 3.74 (m, 4 H) 7.22 - 7.33 (m, 2 H) 7.63 (dd, J=8.22, 1.96 Hz, 1 H) 7.72 - 7.84 (m, 2 H) 7.95 (d, J=7.43 Hz, 1 H) 8.19 - 8.33 (m, 2 H) 10.45 (s, 1 H). LCMS (m/z) (M+H) = 448.2, Rt = 0.83 min.
-
- Starting with 2,4-dibromothiazole, the product was synthesized using the same procedure as for N-(4-methyl-3-(2-morpholinothiazol-5-yl)phenyl)-3-(trifluoromethyl)benzamide 1H NMR (400 MHz, <dmso>) δ ppm 2.39 (s, 3 H) 3.68 - 3.77 (m, 4 H) 6.94 (s, 1 H) 7.17 - 7.27 (m, 1 H) 7.68 (dd, J=8.41, 2.15 Hz, 1 H) 7.77 (t, J=7.83 Hz, 1 H) 7.89 - 8.00 (m, 2 H) 8.19 - 8.34 (m, 2 H) 10.43 (s, 1 H). LCMS (m/z) (M+H) = 448.2, Rt = 0.85 min.
- To a solution of 4-bromo-2-fluoropyridine (1.0 equiv.) and N-(6-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-3-yl)-3-(trifluoromethyl)benzamide (1.0 equiv.) in DME and 2M sodium carbonate (3:1, 0.08 M) was added PdCl2(dppf)-DCM adduct (0.1 equiv.) in a microwave vial equipped with a stir bar. The reaction was heated to 110 °C for 15 min in the microwave. The reaction was quenched with water and extracted with ethyl acetate. The combined organic phase was dried with sodium sulfate, filtered and concentrated. The crude material N-(4-methyl-3-(2-morpholinopyridin-4-yl)phenyl)-3-(trifluoromethyl)benzamide was isolated as a solid and used in the subsequent step without purification. LCMS (m/z) (M+H) = 376.0, Rt = 0.71 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.31 (s, 3 H) 3.17 - 3.22 (m, 4 H) 3.65 (s, 3 H) 3.85 - 3.91 (m, 4 H) 6.67 - 6.98 (m, 1 H) 7.02 (d, J=1.96 Hz, 1 H) 7.31 (d, J=8.22 Hz, 1 H) 7.40 (d, J=1.96 Hz, 1 H) 7.59 (dd, J=8.41, 2.15 Hz, 1 H) 7.65 (d, J=1.96 Hz, 1 H) 8.01 (d, J=5.09 Hz, 1 H) 8.17 (s, 1 H) 8.83 (d, J=5.09 Hz, 1 H). LCMS (m/z) (M+H) = 455.1, Rt = 0.75 min.
-
- To a solution of 5'-amino-2'-methyl-5-morpholino-[3,3'-bipyridine]-6-carbonitrile (1.0 equiv.) and N-(6-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-3-yl)-3-(trifluoromethyl)benzamide (1.2 equiv.) in DME (0.1 M) and 2 M sodium carbonate (3 equiv.) was added PdCl2(dppf)-DCM adduct (0.1 equiv.) in a microwave vial equipped with a stir bar. The reaction was heated to 120 °C for 10 min in the microwave. The organic phase was dried with sodium sulfate, filtered and concentrated. The crude material was purified via preparative reverse phase HPLC. Upon lyophilization of the pure fractions, N-(6'-cyano-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide was isolated as the TFA salt in 23% yield. 1H NMR (400 MHz, <cd3od>) δ ppm 2.62 (s, 3 H) 3.36 - 3.43 (m, 4 H) 3.87 - 3.98 (m, 4 H) 7.75 (d, J=1.57 Hz, 1 H) 7.80 (t, J=7.83 Hz, 1 H) 7.97 (d, J=7.43 Hz, 1 H) 8.28 (d, J=7.83 Hz, 1 H) 8.35 (s, 1 H) 8.38 (d, J=1.57 Hz, 1 H) 8.42 (d, J=1.96 Hz, 1 H) 9.20 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 468.1, Rt = 0.74 min.
- The compounds listed below were prepared using methods similar to those described for the preparation of Example 222 using the corresponding bromides and boronic esters.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.74 (s, 6 H) 2.12 - 2.27 (m, 3 H) 2.99 - 3.15 (m, 3 H) 3.63 - 3.84 (m, 3 H) 7.29 - 7.34 (m, 1 H) 7.36 - 7.39 (m,1 H) 7.61 - 7.64 (m, 1 H) 7.68 - 7.72 (m, 1 H) 7.78 - 7.81 (m, 1 H) 7.82 - 7.86 (m, 1 H) 7.93 - 8.00 (m, 1 H) 8.69 - 8.87 (m, 1 H) 10.47 - 10.60 (m, 1H), LCMS (m/z) (M+H) = 508.3, Rt = 1.08 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 2.97 - 3.11 (m, 4 H) 3.69 - 3.72 (m, 4 H) 7.43 - 7.49 (m, 1H) 7.69 - 7.81 (m, 2 H) 7.83 - 7.87 (m, 1 H) 7.89 -7.99 (m, 1 H) 8.10 - 8.17 (m, 1 H) 8.21 - 8.30 (m, 2 H) 8.87 - 8.95 (m, 1 H) 10.73 - 10.86 (m, 1 H)LCMS (m/z) (M+H) = 509.2, Rt = 0.86 min.
-
- 1H NMR (400 MHz, <dmso>) ™ppm 1.74 (s, 6 H) 2.12 - 2.27 (m, 3 H) 2.99 - 3.15 (m, 3 H) 3.63 - 3.84 (m, 3 H) 7.29 - 7.34 (m, 1 H) 7.36 - 7.39 (m,1 H) 7.61 - 7.64 (m, 1 H) 7.68 - 7.72 (m, 1 H) 7.78 - 7.81 (m, 1 H) 7.82 - 7.86 (m, 1 H) 7.93 - 8.00 (m, 1 H) 8.69 - 8.87 (m, 1 H) 10.47 - 10.60 (m, 1H), LCMS (m/z) (M+H) = 508.3, Rt = 1.04 min.
-
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.69 (s, 3 H) 3.05 - 3.20 (m, 4 H) 3.76 - 3.96 (m, 4 H) 4.67 (td, J=14.18, 3.72 Hz, 2 H) 6.02 - 6.59 (m, 1 H) 7.36 (d, J=1.96 Hz, 1 H) 7.69 - 7.84 (m, 1 H) 7.97 (d, J=7.83 Hz, 2 H) 8.23 - 8.38 (m, 2 H) 8.47 (d, J=2.35 Hz, 1 H) 9.37 (d, J=2.35 Hz, 1 H).
LCMS (m/z) (M+H) = 523.1, Rt = 0.82 min. -
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.81 (s, 6 H) 2.67 (s, 3 H) 2.98 - 3.24 (m, 4 H) 3.71 - 4.16 (m, 4 H) 4.67 (td, J=14.18, 3.72 Hz, 2 H) 6.03 - 6.57 (m, 1 H) 7.36 (d, J=1.96 Hz, 1 H) 7.80 - 7.92 (m, 2 H) 8.13 (s, 1 H) 8.42 (d, J=2.35 Hz, 1 H) 8.82 (d, J=5.09 Hz, 1 H) 9.30 (d, J=1.96 Hz, 1 H). LCMS (m/z) (M+H) = 523.2, Rt = 0.72 min.
-
- To a solution of 3-(6-ethoxy-5-morpholinopyridin-3-yl)-4-methylaniline (1.0 equiv) and 3-(methylsulfonyl)benzoic acid (1.1 equiv.) in DMA (0.1 M) at 25 °C were added HOAT (1.3 equiv.), i-Pr2NEt (3 equiv.), and EDC (1.3 equiv) and the mixture was stirred for 20 h at 25 °C. The mixture was quenched with a small amount of water, diluted with DMSO, filtered, and purified via preparative reverse phase HPLC. Upon lyophilization of the pure fractions, N-(3-(6-ethoxy-5-morpholinopyridin-3-yl)-4-methylphenyl)-3-(methylsulfonyl)benzamide was isolated as the TFA salt in 63% yield. 1H NMR (400 MHz, <dmso>) δ ppm 1.35 (t, J=7.04 Hz, 3 H) 2.21 (s, 3 H) 3.05 (br. s., 4 H) 3.27 (s, 3 H) 3.66 - 3.82 (m, 4 H) 4.38 (q, J=7.04 Hz, 2 H) 7.12 (d, J=1.57 Hz, 1 H) 7.29 (d, J=8.61 Hz, 1 H) 7.62 (d, J=1.57 Hz, 1 H) 7.68 - 7.74 (m, 2 H) 7.81 (t, J=7.83 Hz, 1 H) 8.12 (d, J=7.83 Hz, 1 H) 8.27 (d, J=7.83 Hz, 1 H) 8.46 (s, 1 H) 10.48 (s, 1 H). LCMS (m/z) (M+H) = 496.1, Rt = 0.88 min.
- The compounds listed below were prepared using methods similar to those described for the preparation of Example 229 using the corresponding amines and acids:
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.35 (t, J=6.85 Hz, 3 H) 2.22 (s, 3 H) 2.99 - 3.12 (m, 4 H) 3.63 - 3.80 (m, 4 H) 4.38 (q, J=6.78 Hz, 2 H) 7.13 (d, J=1.57 Hz, 1 H) 7.28 (d, J=8.22 Hz, 1 H) 7.65 (d, J=1.57 Hz, 1 H) 7.70 - 7.81 (m, 3 H) 8.21 (t, J=7.43 Hz, 2 H) 8.59 (s, 1 H) 9.41 (s, 1 H) 10.47 (s, 1 H). LCMS (m/z) (M+H) = 486.1, Rt = 0.89 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.35 (t, J=7.04 Hz, 3 H) 2.21 (s, 3 H) 3.05 (br. s., 4 H) 3.69 - 3.79 (m, 4 H) 4.38 (q, J=7.04 Hz, 2 H) 6.97 - 7.25 (m, 2 H) 7.27 (d, J=7.83 Hz, 1 H) 7.60 - 7.73 (m, 4 H) 7.75 - 7.81 (m, 1 H) 8.09 - 8.16 (m, 2 H) 10.36 (s, 1 H). LCMS (m/z) (M+H) = 468.1, Rt = 1.02 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.35 (t, J=7.04 Hz, 3 H) 2.22 (s, 3 H) 3.05 (br. s., 4 H) 3.33 (s, 3 H) 3.67 - 3.79 (m, 4 H) 4.38 (q, J=7.04 Hz, 2 H) 7.12 (d, J=1.57 Hz, 1 H) 7.31 (d, J=8.22 Hz, 1 H) 7.63 (d, J=1.96 Hz, 1 H) 7.68 - 7.75 (m, 2 H) 8.17 - 8.24 (m, 1 H) 8.52 (s, 1 H) 8.98 (d, J=5.09 Hz, 1 H) 10.75 (s, 1 H). LCMS (m/z) (M+H) = 497.1, Rt = 0.87 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.35 (t, J=7.04 Hz, 3 H) 2.03 (t, J=19.17 Hz, 3 H) 2.22 (s, 3 H) 3.05 (br. s., 4 H) 3.64 - 3.80 (m, 4 H) 4.38 (q, J=6.91 Hz, 2 H) 7.12 (d, J=1.57 Hz, 1 H) 7.30 (d, J=8.22 Hz, 1 H) 7.62 (d, J=1.96 Hz, 1 H) 7.68 - 7.74 (m, 2 H) 8.01 (d, J=4.70 Hz, 1 H) 8.16 (s, 1 H) 8.86 (d, J=5.09 Hz, 1 H) 10.60 (s, 1 H). LCMS (m/z) (M+H) = 483.1, Rt = 1.00 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.29 (t, J=7.04 Hz, 3 H) 1.35 (t, J=6.85 Hz, 3 H) 2.20 (s, 3 H) 3.04 (br. s., 4 H) 3.72 (d, J=3.91 Hz, 4 H) 4.06 (q, J=6.91 Hz, 2 H) 4.38 (q, J=6.91 Hz, 2 H) 7.11 (d, J=1.57 Hz, 1 H) 7.27 (d, J=8.22 Hz, 1 H) 7.52 (d, J=1.57 Hz, 1 H) 7.63 (dd, J=8.22, 1.96 Hz, 1 H) 7.70 (d, J=1.57 Hz, 1 H) 8.45 (d, J=1.96 Hz, 1 H) 8.79 (d, J=2.35 Hz, 1 H) 10.12 (s, 1 H). LCMS (m/z) (M+H) = 531.1, Rt = 0.99 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.35 (t, J=7.04 Hz, 3 H) 2.32 (s, 3 H) 3.07 (d, J=3.91 Hz, 4 H) 3.68 - 3.77 (m, 4 H) 4.39 (q, J=7.04 Hz, 2 H) 7.18 (d, J=1.57 Hz, 1 H) 7.45 (dd, J=15.85, 8.02 Hz, 2 H) 7.58 (t, J=8.02 Hz, 1 H) 7.78 (d, J=1.57 Hz, 1 H) 7.85 - 7.92 (m, 2 H) 8.05 (d, J=8.22 Hz, 1 H) 8.22 (s, 1 H) 10.45 (s, 1 H). LCMS (m/z) (M+H) = 486.1, Rt = 1.13 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.35 (t, J=7.04 Hz, 3 H) 1.41 (s, 6 H) 2.31 (s, 3 H) 3.06 (br. s., 4 H) 3.69 - 3.77 (m, 4 H) 4.39 (q, J=7.04 Hz, 2 H) 7.13 - 7.20 (m, 2 H) 7.21 - 7.27 (m, 1 H) 7.44 (d, J=8.22 Hz, 1 H) 7.67 (d, J=8.22 Hz, 1 H) 7.78 (d, J=1.57 Hz, 1 H) 7.80 (s, 1 H) 7.84 - 7.90 (m, 2 H) 10.11 (s, 1 H). LCMS (m/z) (M+H) = 476.2, Rt = 0.91 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.35 (t, J=7.04 Hz, 3 H) 2.21 (s, 3 H) 3.05 (br. s., 4 H) 3.68 - 3.79 (m, 4 H) 4.38 (q, J=7.04 Hz, 2 H) 6.88 - 7.22 (m, 2 H) 7.30 (d, J=8.22 Hz, 1 H) 7.62 (d, J=1.96 Hz, 1 H) 7.67 - 7.75 (m, 2 H) 8.04 (d, J=4.70 Hz, 1 H) 8.16 (s, 1 H) 8.88 (d, J=5.09 Hz, 1 H) 10.61 (s, 1 H). LCMS (m/z) (M+H) = 469.1, Rt = 0.95 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.35 (t, J=7.04 Hz, 3 H) 2.32 (s, 3 H) 3.06 (br. s., 4 H) 3.19 (s, 3 H) 3.69 - 3.78 (m, 4 H) 4.39 (q, J=7.04 Hz, 2 H) 7.19 (d, J=1.96 Hz, 1 H) 7.47 (d, J=8.61 Hz, 1 H) 7.58 - 7.66 (m, 2 H) 7.78 (d, J=1.96 Hz, 1 H) 7.87 - 7.93 (m, 2 H) 8.12 (dt, J=5.97, 2.69 Hz, 1 H) 8.39 (s, 1 H) 10.52 (s, 1 H). LCMS (m/z) (M+H) = 496.1, Rt = 0.90 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.36 (t, J=7.04 Hz, 3 H) 1.75 (s, 6 H) 2.49 (s, 3 H) 2.99 - 3.12 (m, 4 H) 3.66 - 3.78 (m, 4 H) 4.39 (q, J=7.04 Hz, 2 H) 7.23 (d, J=1.57 Hz, 1 H) 7.80 (d, J=1.96 Hz, 1 H) 7.86 - 7.92 (m, 1 H) 8.02 (s, 1 H) 8.14 (s, 1 H) 8.83 (d, J=5.09 Hz, 1 H) 8.93 (s, 1 H) 10.90 (s, 1 H). LCMS (m/z) (M+H) = 487.1, Rt = 0.70 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.36 (t, J=7.04 Hz, 3 H) 1.48 (s, 6 H) 2.53 (s, 3 H) 3.07 (br. s., 4 H) 3.63 - 3.82 (m, 4 H) 4.40 (q, J=7.04 Hz, 2 H) 7.26 (d, J=1.57 Hz, 1 H) 7.75 (dd, J=5.09, 1.17 Hz, 1 H) 7.83 (d, J=1.57 Hz, 1 H) 8.20 (s, 1 H) 8.28 (s, 1 H) 8.72 (d, J=5.09 Hz, 1 H) 9.04 (s, 1 H) 11.00 (s, 1 H). LCMS (m/z) (M+H) = 478.1, Rt = 0.55 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.29 (t, J=7.04 Hz, 3 H) 1.35 (t, J=7.04 Hz, 3 H) 2.48 (s, 3 H) 3.06 (br. s., 4 H) 3.65 - 3.80 (m, 4 H) 4.08 (q, J=7.17 Hz, 2 H) 4.39 (q, J=7.04 Hz, 2 H) 7.22 (d, J=1.96 Hz, 1 H) 7.79 (d, J=1.57 Hz, 1 H) 8.05 (s, 1 H) 8.48 (d, J=1.96 Hz, 1 H) 8.78 - 8.91 (m, 2 H) 10.47 (s, 1 H). LCMS (m/z) (M+H) = 532.2, Rt = 0.72 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.36 (t, J=7.04 Hz, 3 H) 2.52 (s, 3 H) 3.07 (br. s., 4 H) 3.29 (s, 3 H) 3.63 - 3.81 (m, 4 H) 4.40 (q, J=7.04 Hz, 2 H) 7.25 (d, J=1.57 Hz, 1 H) 7.82 (d, J=1.96 Hz, 1 H) 7.86 (t, J=7.83 Hz, 1 H) 8.18 (d, J=7.83 Hz, 1 H) 8.23 (s, 1 H) 8.31 (d, J=7.83 Hz, 1 H) 8.52 (s, 1 H) 9.01 (d, J=1.57 Hz, 1 H) 10.95 (s, 1 H). LCMS (m/z) (M+H) = 497.1, Rt = 0.64 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.36 (t, J=7.04 Hz, 3 H) 2.48 (br. s., 3 H) 3.00 - 3.11 (m, 4 H) 3.35 (s, 3 H) 3.68 - 3.78 (m, 4 H) 4.40 (q, J=7.04 Hz, 2 H) 7.23 (d, J=1.96 Hz, 1 H) 7.81 (d, J=1.96 Hz, 1 H) 8.16 (s, 1 H) 8.20 - 8.26 (m, 1 H) 8.56 (s, 1 H) 8.95 (s, 1 H) 9.03 (d, J=5.09 Hz, 1 H) 11.12 (s, 1 H). LCMS (m/z) (M+H) = 498.1, Rt = 0.60 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.36 (t, J=7.04 Hz, 3 H) 2.52 (s, 3 H) 3.07 (br. s., 4 H) 3.68 - 3.79 (m, 4 H) 4.40 (q, J=6.91 Hz, 2 H) 7.26 (d, J=1.96 Hz, 1 H) 7.78 - 7.85 (m, 2 H) 8.21 - 8.30 (m, 3 H) 8.65 (s, 1 H) 9.03 (s, 1 H) 9.43 (s, 1 H) 10.93 (s, 1 H). LCMS (m/z) (M+H) = 487.1, Rt = 0.65 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 0.91 (dd, J=4.89, 2.15 Hz, 2 H) 1.07 (dd, J=8.41, 2.54 Hz, 2 H) 1.30 (t, J=7.04 Hz, 3 H) 2.12 - 2.22 (m, 1 H) 2.41 (br. s., 3 H) 3.01 (br. s., 4 H) 3.63 - 3.74 (m, 4 H) 4.34 (q, J=7.04 Hz, 2 H) 6.59 (s, 1 H) 7.16 (d, J=1.96 Hz, 1 H) 7.73 (d, J=1.96 Hz, 1 H) 8.10 (br. s., 1 H) 8.87 (d, J=1.57 Hz, 1 H) 10.93 (s, 1 H). LCMS (m/z) (M+H) = 450.1, Rt = 0.73 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.35 (t, J=7.04 Hz, 3 H) 2.46 (br. s., 3 H) 3.01 - 3.13 (m, 4 H) 3.51 - 3.83 (m, 4 H) 4.39 (q, J=7.04 Hz, 2 H) 7.21 (d, J=1.96 Hz, 1 H) 7.79 (d, J=1.96 Hz, 1 H) 8.08 (s, 1 H) 8.20 (d, J=5.09 Hz, 1 H) 8.38 (s, 1 H) 8.89 (d, J=1.96 Hz, 1 H) 9.01 (d, J=4.70 Hz, 1 H) 10.94 (s, 1 H). LCMS (m/z) (M+H) = 488.1, Rt = 0.74 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.36 (t, J=7.04 Hz, 3 H) 2.49 (s, 3 H) 3.06 (br. s., 4 H) 3.62 - 3.80 (m, 4 H) 4.40 (q, J=7.04 Hz, 2 H) 6.90 - 7.28 (m, 2 H) 7.81 (d, J=1.96 Hz, 1 H) 8.07 (d, J=4.70 Hz, 1 H) 8.14 - 8.27 (m, 2 H) 8.93 (d, J=5.09 Hz, 1 H) 8.95 (d, J=1.57 Hz, 1 H) 10.99 (s, 1 H). LCMS (m/z) (M+H) = 470.1, Rt = 0.67 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.36 (t, J=6.85 Hz, 3 H) 2.50 (br. s., 3 H) 3.07 (br. s., 4 H) 3.62 - 3.81 (m, 4 H) 4.40 (q, J=7.04 Hz, 2 H) 7.24 (d, J=1.96 Hz, 1 H) 7.77 - 7.87 (m, 2 H) 8.01 (d, J=7.83 Hz, 1 H) 8.20 (s, 1 H) 8.28 (d, J=7.83 Hz, 1 H) 8.33 (s, 1 H) 8.99 (d, J=1.57 Hz, 1 H) 10.85 (s, 1 H). LCMS (m/z) (M+H) = 487.2, Rt = 0.81 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.56 (s, 3 H) 2.95 (s, 6 H) 3.35 - 3.40 (m, 4 H) 3.88 - 3.96 (m, 4 H) 4.54 (s, 2 H) 7.73 (d, J=1.57 Hz, 1 H) 8.16 (s, 1 H) 8.30 (d, J=2.35 Hz, 1 H) 8.35 (d, J=1.57 Hz, 1 H) 8.44 (s, 1 H) 8.51 (s, 1 H) 9.02 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 525.1, Rt = 0.60 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.09 (t, J=18.78 Hz, 3 H) 2.54 (s, 3 H) 3.28 - 3.41 (m, 4 H) 3.89 - 4.01 (m, 4 H) 7.33 (d, J=1.57 Hz, 1 H) 7.86 (d, J=4.70 Hz, 1 H) 8.07 (s, 1 H) 8.22 (s, 1 H) 8.30 - 8.36 (m, 2 H) 8.69 (d, J=2.35 Hz, 1 H) 8.88 (d, J=5.09 Hz, 1 H). LCMS (m/z) (M+H) = 468.1, Rt = 0.74 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.43 (d, J=7.04 Hz, 6 H) 2.61 (s, 3 H) 3.25 - 3.30 (m, 1 H) 3.35 - 3.41 (m, 4 H) 3.88 - 3.96 (m, 4 H) 7.74 (d, J=1.57 Hz, 1 H) 7.97 (dd, J=5.48, 1.57 Hz, 1 H) 8.09 (s, 1 H) 8.36 (d, J=1.57 Hz, 1 H) 8.39 (d, J=2.35 Hz, 1 H) 8.78 (d, J=5.48 Hz, 1 H) 9.13 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 443.2, Rt = 0.55 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.29 (d, J=7.04 Hz, 6 H) 1.36 (t, J=7.04 Hz, 3 H) 2.54 (s, 3 H) 3.07 (br. s., 4 H) 3.16 (dt, J=13.69, 6.85 Hz, 1 H) 3.66 - 3.79 (m, 4 H) 4.40 (q, J=7.04 Hz, 2 H) 7.26 (d, J=1.96 Hz, 1 H) 7.75 (dd, J=5.28, 1.37 Hz, 1 H) 7.80 - 7.88 (m, 2 H) 8.29 (d, J=1.57 Hz, 1 H) 8.75 (d, J=5.48 Hz, 1 H) 9.05 (d, J=1.57 Hz, 1 H) 11.00 (s, 1 H). LCMS (m/z) (M+H) = 462.1, Rt = 0.58 min.
-
- Step 1: To a solution of 4-(5-bromo-2-ethoxypyridin-3-yl)morpholine (1.0 equiv.) and 6-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-3-amine (1.7 equiv.) in DME (0.3 M) and sodium carbonate (2M aqueous solution, 3.0 equiv.) was added PdCl2(dppf)-DCM adduct (0.02 equiv.) and the solution was heated at 100 °C for 2 hours. The cooled mixture was poured into ice-water and extracted with ethyl acetate (3x). The combined organics were washed with brine, dried over MgSO4, filtered and concentrated. The mixture was adsorbed onto Celite and purified by silica gel chromatography (ISCO, 0-70% ethyl acetate in heptanes). The pure fractions were concentrated to give 6'-ethoxy-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-amine as a pale yellow solid in 78% yield. 1H NMR (400 MHz, <cdcl3>) δ ppm 1.47 (t, J=7.04 Hz, 3 H) 3.08 - 3.19 (m, 4 H) 3.49 (s, 3 H) 3.64 (br. s., 2 H) 3.84 - 3.96 (m, 4 H) 4.48 (q, J=7.04 Hz, 2 H) 6.86 (d, J=2.35 Hz, 1 H) 7.01 (d, J=1.96 Hz, 1 H) 7.73 (d, J=1.96 Hz, 1 H) 8.03 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 315.1, Rt = 0.50 min.
- Step 2: To a solution of 2-(2-fluoropropan-2-yl)isonicotinic acid (1.3 equiv.), 6'-ethoxy-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-amine (1.0 equiv.) and N-ethyl-N-isopropylpropan-2-amine (2.5 equiv.) in DCM (0.12 M) was added 2,4,6-tripropyl-1,3,5,2,4,6-trioxatriphosphinane 2,4,6-trioxide (1.3 quiv.) and the mixture was stirred at rt over the weekend. The reaction was diluted with DCM and washed with sat. sodium bicarbonate, the organic phase was concentrated to dryness and purified via silica gel chromatography (ISCO, 0-8% methanol in ethyl acetate) to give N-(6'-ethoxy-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-2-(2-fluoropropan-2-yl)isonicotinamide. 1H NMR (400 MHz, <cdcl3>) δ ppm 1.48 (t, J=7.04 Hz, 3 H) 1.71 - 1.77 (m, 6 H) 2.51 (s, 3 H) 3.09 - 3.21 (m, 4 H) 3.85 - 3.96 (m, 4 H) 4.49 (q, J=7.04 Hz, 2 H) 7.05 (d, J=1.96 Hz, 1 H) 7.69 (dd, J=5.09, 1.57 Hz, 1 H) 7.78 (d, J=1.96 Hz, 1 H) 7.94 (s, 1 H) 8.13 (d, J=2.35 Hz, 1 H) 8.23 (s, 1 H) 8.64 (d, J=2.35 Hz, 1 H) 8.73 (d, J=4.70 Hz, 1 H). LCMS (m/z) (M+H) = 480.3, Rt = 0.68 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.10 - 1.19 (m, 2 H) 1.23 (dt, J=7.92, 3.08 Hz, 2 H) 1.45 (t, J=7.04 Hz, 3 H) 2.23 - 2.34 (m, 1 H) 2.70 (s, 3 H) 3.07 - 3.19 (m, 4 H) 3.82 - 3.91 (m, 4 H) 4.50 (d, J=7.04 Hz, 2 H) 7.31 (d, J=1.96 Hz, 1 H) 7.81 (dd, J=5.48, 1.57 Hz, 1 H) 7.86 (d, J=1.96 Hz, 2 H) 8.46 (d, J=2.35 Hz, 1 H) 8.65 (d, J=5.48 Hz, 1 H) 9.35 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 460.1, Rt = 0.57 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.45 (t, J=7.04 Hz, 3 H) 2.71 (s, 3 H) 3.10 - 3.21 (m, 4 H) 3.82 - 3.89 (m, 4 H) 4.50 (q, J=7.04 Hz, 2 H) 4.53 - 4.62 (m, 1 H) 4.97 (t, J=6.26 Hz, 2 H) 5.11 (dd, J=8.61, 5.87 Hz, 2 H) 7.31 (d, J=1.96 Hz, 2 H) 7.82 - 7.89 (m, 3 H) 7.95 (s, 1 H) 8.48 (d, J=1.96 Hz, 1 H) 8.83 (d, J=5.09 Hz, 1 H) 9.38 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 476.3, Rt = 0.59 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.45 (t, J=7.04 Hz, 3 H) 2.15 (s, 3 H) 2.36 (s, 3 H) 3.13 - 3.19 (m, 4 H) 3.82 - 3.90 (m, 4 H) 4.47 (d, J=7.04 Hz, 2 H) 5.08 - 5.12 (m, 1 H) 5.34 - 5.39 (m, 1 H) 7.11 - 7.20 (m, 1 H) 7.24 - 7.29 (m, 1 H) 7.34 - 7.41 (m, 1 H) 7.43 - 7.49 (m, 1 H) 7.75 - 7.80 (m, 1 H) 7.80 - 7.91 (m, 1 H). LCMS (m/z) (M+H) = 476.3, Rt = 1.12 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.43 (dt, J=16.04, 7.24 Hz, 6 H) 2.67 (s, 3 H) 3.12 - 3.19 (m, 4 H) 3.20 - 3.28 (m, 2 H) 3.72 (br. s., 1 H) 3.82 - 3.90 (m, 4 H) 4.10 (br. s., 1 H) 4.50 (q, J=7.04 Hz, 2 H) 7.30 (d, J=2.35 Hz, 1 H) 7.56 (s, 1 H) 7.82 - 7.88 (m, 2 H) 7.89 (s, 1 H) 8.44 (d, J=2.35 Hz, 1 H) 9.29 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 599.4, Rt = 0.67 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.46 (t, J=7.04 Hz, 3 H) 2.68 (s, 3 H) 2.93 (s, 6 H) 3.11 - 3.23 (m, 4 H) 3.81 - 3.91 (m, 4 H) 4.47 - 4.56 (m, 4 H) 7.30 (d, J=2.35 Hz, 1 H) 7.85 (d, J=1.96 Hz, 1 H) 8.16 (s, 1 H) 8.45 - 8.50 (m, 2 H) 8.51 (s, 1 H) 9.32 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 544.3, Rt = 0.62 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.45 (t, J=7.04 Hz, 3 H) 2.64 (s, 3 H) 3.08 - 3.21 (m, 4 H) 3.80 - 3.95 (m, 4 H) 4.50 (q, J=7.04 Hz, 2 H) 7.29 (d, J=1.96 Hz, 1 H) 7.83 (d, J=1.96 Hz, 1 H) 8.33 (d, J=2.35 Hz, 1 H) 8.63 (d, J=1.96 Hz, 1 H) 9.17 (d, J=2.35 Hz, 1 H) 9.92 (d, J=1.96 Hz, 1 H). LCMS (m/z) (M+H) = 489.2, Rt = 0.69 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.78 - 1.93 (m, 4 H) 3.13 - 3.25 (m, 4 H) 3.82 - 3.95 (m, 4 H) 4.06 (s, 3 H) 7.43 (d, J=2.35 Hz, 1 H) 7.77 (dd, J=5.09, 1.17 Hz, 1 H) 7.94 (d, J=1.96 Hz, 1 H) 8.13 (s, 1 H) 8.32 (d, J=2.74 Hz, 1 H) 8.69 (d, J=5.09 Hz, 1 H) 8.80 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 491.1, Rt = 0.86 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.05 (t, J=18.78 Hz, 3 H) 3.11 - 3.25 (m, 4 H) 3.83 - 3.94 (m, 4 H) 4.06 (s, 3 H) 7.42 (d, J=1.96 Hz, 1 H) 7.93 (d, J=1.96 Hz, 1 H) 8.01 (d, J=4.69 Hz, 1 H) 8.24 (s, 1 H) 8.32 (d, J=2.35 Hz, 1 H) 8.81 (d, J=2.35 Hz, 1 H) 8.85 (d, J=5.09 Hz, 1 H). LCMS (m/z) (M+H) = 490.1, Rt = 0.89 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.68 - 1.83 (m, 6 H) 3.10 - 3.22 (m, 4 H) 3.81 - 3.93 (m, 4 H) 4.06 (s, 3 H) 7.43 (d, J=2.35 Hz, 1 H) 7.85 (dd, J=5.09, 1.57 Hz, 1 H) 7.93 (d, J=1.96 Hz, 1 H) 8.14 (s, 1 H) 8.32 (d, J=2.74 Hz, 1 H) 8.75 (d, J=5.09 Hz, 1 H) 8.80 (d, J=2.74 Hz, 1 H). LCMS (m/z) (M+H) = 486.1, Rt = 0.88 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 3.11 - 3.20 (m, 4 H) 3.82 - 3.93 (m, 4 H) 4.06 (s, 3 H) 7.41 (d, J=1.96 Hz, 1 H) 7.91 (d, J=1.96 Hz, 1 H) 8.33 (d, J=2.35 Hz, 1 H) 8.64 (d, J=1.96 Hz, 1 H) 8.82 (d, J=2.74 Hz, 1 H) 9.92 (d, J=1.96 Hz, 1 H). LCMS (m/z) (M+H) = 495.1, Rt = 0.84 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.84 (s, 6 H) 3.11 - 3.21 (m, 4 H) 3.82 - 3.93 (m, 4 H) 4.06 (s, 3 H) 7.40 (d, J=1.96 Hz, 1 H) 7.87 (dd, J=4.89, 1.37 Hz, 1 H) 7.92 (d, J=1.96 Hz, 1 H) 8.12 (s, 1 H) 8.32 (d, J=2.74 Hz, 1 H) 8.77 - 8.84 (m, 2 H). LCMS (m/z) (M+H) = 493.1, Rt = 0.86 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.83 (s, 6 H) 2.65 (s, 3 H) 3.02 - 3.12 (m, 4 H) 3.33 (s, 6 H) 3.87 - 3.96 (m, 4 H) 7.65 (d, J=1.96 Hz, 1 H) 7.85 - 7.92 (m, 2 H) 8.13 (s, 1 H) 8.47 (d, J=2.35 Hz, 1 H) 8.82 (d, J=5.09 Hz, 1 H) 9.13 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 486.2, Rt = 0.54 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.77 - 1.92 (m, 4 H) 2.65 (s, 3 H) 3.02 - 3.11 (m, 4 H) 3.33 (s, 6 H) 3.86 - 3.96 (m, 4 H) 7.65 (d, J=1.96 Hz, 1 H) 7.77 (dd, J=5.09, 1.57 Hz, 1 H) 7.89 (d, J=1.56 Hz, 1 H) 8.14 (s, 1 H) 8.48 (d, J=2.35 Hz, 1 H) 8.69 (d, J=4.70 Hz, 1 H) 9.15 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 484.2, Rt = 0.54 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.05 (t, J=18.78 Hz, 3 H) 2.66 (s, 3 H) 3.02 - 3.11 (m, 4 H) 3.34 (s, 6 H) 3.87 - 3.96 (m, 4 H) 7.66 (d, J=1.96 Hz, 1 H) 7.89 (d, J=1.96 Hz, 1 H) 8.02 (d, J=3.91 Hz, 1 H) 8.24 (s, 1 H) 8.50 (d, J=2.35 Hz, 1 H) 8.86 (d, J=5.09 Hz, 1 H) 9.17 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 483.2, Rt = 0.55 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.69 - 1.83 (m, 6 H) 2.65 (s, 3 H) 3.03 - 3.13 (m, 4 H) 3.32 (s, 6 H) 3.88 - 3.98 (m, 4 H) 7.63 (d, J=1.96 Hz, 1 H) 7.83 (dd, J=5.09, 1.96 Hz, 1 H) 7.89 (d, J=1.56 Hz, 1 H) 8.13 (s, 1 H) 8.47 (d, J=2.35 Hz, 1 H) 8.76 (d, J=5.09 Hz, 1 H) 9.14 (d, J=1.96 Hz, 1 H). LCMS (m/z) (M+H) = 479.3, Rt = 0.55 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.64 (s, 3 H) 2.94 (s, 6 H) 3.05 - 3.12 (m, 4 H) 3.31 (s, 6 H) 3.88 - 3.96 (m, 4 H) 4.54 (s, 2 H) 7.61 (d, J=1.96 Hz, 1 H) 7.89 (d, J=1.57 Hz, 1 H) 8.17 (s, 1 H) 8.44 (d, J=2.35 Hz, 1 H) 8.49 (d, J=9.39 Hz, 2 H) 9.14 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 543.3, Rt = 0.49 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.61 (s, 3 H) 3.05 - 3.13 (m, 4 H) 3.33 (s, 6 H) 3.88 - 3.97 (m, 4 H) 7.64 (d, J=1.96 Hz, 1 H) 7.85 (d, J=1.96 Hz, 1 H) 8.38 (d, J=2.35 Hz, 1 H) 8.63 (d, J=1.96 Hz, 1 H) 8.99 (d, J=2.35 Hz, 1 H) 9.92 (d, J=1.57 Hz, 1 H). LCMS (m/z) (M+H) = 488.1, Rt = 0.52 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.18 - 1.37 (m, 4 H) 2.36 - 2.46 (m, 1 H) 2.63 (s, 3 H) 3.03 - 3.13 (m, 4 H) 3.33 (br. s., 6 H) 3.85 - 3.98 (m, 4 H) 7.64 (d, J=1.96 Hz, 1 H) 7.87 (d, J=1.96 Hz, 1 H) 7.98 (d, J=1.96 Hz, 1 H) 8.42 (d, J=2.35 Hz, 1 H) 9.05 (d, J=2.35 Hz, 1 H) 9.42 (d, J=1.96 Hz, 1 H). LCMS (m/z) (M+H) = 460.2, Rt = 0.47 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.81 - 1.93 (m, 8 H) 2.08 - 2.23 (m, 2 H) 2.71 (s, 3 H) 3.16 - 3.25 (m, 4 H) 3.69 (ddd, J=11.54, 8.22, 3.33 Hz, 2 H) 3.82 - 3.93 (m, 4 H) 3.94 - 4.04 (m, 2 H) 5.46 (tt, J=7.92, 3.81 Hz, 1 H) 7.34 (d, J=1.96 Hz, 1 H) 7.84 - 7.93 (m, 2 H) 8.15 (s, 1 H) 8.47 (d, J=2.35 Hz, 1 H) 8.84 (d, J=5.09 Hz, 1 H) 9.36 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 543.3, Rt = 0.68 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.67 - 1.80 (m, 6 H) 1.86 (dtd, J=12.72, 8.31, 8.31, 3.91 Hz, 2 H) 2.09 - 2.23 (m, 2 H) 2.72 (s, 3 H) 3.15 - 3.24 (m, 4 H) 3.69 (ddd, J=11.64, 8.31, 3.13 Hz, 2 H) 3.81 - 3.93 (m, 4 H) 3.94 - 4.06 (m, 2 H) 5.46 (dt, J=7.83, 3.91 Hz, 1 H) 7.34 (d, J=1.96 Hz, 1 H) 7.85 (dd, J=5.09, 1.57 Hz, 1 H) 7.88 (d, J=1.96 Hz, 1 H) 8.15 (s, 1 H) 8.50 (d, J=2.35 Hz, 1 H) 8.77 (d, J=5.09 Hz, 1 H) 9.38 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 536.3, Rt = 0.69 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.77 - 1.94 (m, 2 H) 2.08 - 2.21 (m, 2 H) 2.29 (s, 3 H) 3.16 - 3.23 (m, 4 H) 3.31 (s, 3 H) 3.69 (ddd, J=11.64, 8.31, 3.13 Hz, 2 H) 3.82 - 3.94 (m, 4 H) 3.94 - 4.07 (m, 2 H) 5.41 (tt, J=7.97, 3.96 Hz, 1 H) 7.27 (d, J=1.57 Hz, 1 H) 7.34 (d, J=8.22 Hz, 1 H) 7.60 - 7.69 (m, 2 H) 7.76 (d, J=1.96 Hz, 1 H) 8.17 (dd, J=5.09, 1.57 Hz, 1 H) 8.56 (s, 1 H) 8.94 (d, J=5.09 Hz, 1 H). LCMS (m/z) (M+H) = 553.2, Rt = 0.83 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.86 (dtd, J=12.67, 8.34, 8.34, 3.91 Hz, 2 H) 2.07 - 2.22 (m, 2 H) 2.29 (s, 3 H) 3.14 - 3.25 (m, 4 H) 3.68 (ddd, J=11.44, 8.31, 3.33 Hz, 2 H) 3.82 - 3.94 (m, 4 H) 3.95 - 4.06 (m, 2 H) 5.41 (dt, J=7.92, 4.06 Hz, 1 H) 7.27 (d, J=1.96 Hz, 1 H) 7.34 (d, J=8.22 Hz, 1 H) 7.61 - 7.72 (m, 2 H) 7.76 (d, J=1.96 Hz, 1 H) 8.59 (d, J=1.96 Hz, 1 H) 9.88 (d, J=1.96 Hz, 1 H). LCMS (m/z) (M+H) = 544.3, Rt = 0.93 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.18 - 1.39 (m, 4 H) 1.85 (dtd, J=12.81, 8.46, 8.46, 3.91 Hz, 2 H) 2.06 - 2.19 (m, 2 H) 2.28 (s, 3 H) 2.35 - 2.50 (m, 1 H) 3.14 - 3.22 (m, 4 H) 3.68 (ddd, J=11.44, 8.31, 3.33 Hz, 2 H) 3.81 - 3.92 (m, 4 H) 3.93 - 4.04 (m, 2 H) 5.40 (tt, J=7.92, 3.81 Hz, 1 H) 7.25 (d, J=1.96 Hz, 1 H) 7.33 (d, J=8.22 Hz, 1 H) 7.57 - 7.69 (m, 2 H) 7.74 (d, J=1.96 Hz, 1 H) 8.05 (d, J=1.96 Hz, 1 H) 9.44 (d, J=1.96 Hz, 1 H). LCMS (m/z) (M+H) = 516.2, Rt = 0.84 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.69 (s, 6 H) 1.85 (dtd, J=12.77, 8.39, 8.39, 3.72 Hz, 2 H) 2.07 - 2.21 (m, 2 H) 2.30 (s, 3 H) 3.09 - 3.21 (m, 4 H) 3.69 (ddd, J=11.64, 8.31, 3.13 Hz, 2 H) 3.81 - 3.93 (m, 4 H) 3.94 - 4.06 (m, 2 H) 5.41 (tt, J=7.92, 3.81 Hz, 1 H) 7.23 (d, J=1.96 Hz, 1 H) 7.35 (d, J=8.22 Hz, 1 H) 7.63 (d, J=2.35 Hz, 1 H) 7.67 (dd, J=8.22, 2.35 Hz, 1 H) 7.74 (d, J=1.96 Hz, 1 H) 8.10 (dd, J=5.48, 1.56 Hz, 1 H) 8.40 (s, 1 H) 8.77 (d, J=5.48 Hz, 1 H). LCMS (m/z) (M+H) = 533.3, Rt = 0.73 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.79 - 1.92 (m, 2 H) 1.95 - 2.10 (m, 4 H) 2.10 - 2.20 (m, 2 H) 2.68 (s, 3 H) 3.59 - 3.72 (m, 4 H) 3.89 - 4.01 (m, 4 H) 4.21 (br. s., 2 H) 5.43 (dt, J=7.83, 3.91 Hz, 1 H) 7.24 (d, J=1.96 Hz, 1 H) 7.73 (d, J=2.35 Hz, 1 H) 8.18 (d, J=5.09 Hz, 1 H) 8.36 (s, 1 H) 8.40 (d, J=2.35 Hz, 1 H) 8.97 (d, J=5.09 Hz, 1 H) 9.27 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 570.2, Rt = 0.75 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.71 (s, 3 H) 1.77 (s, 3 H) 1.84 (dtd, J=12.67, 8.34, 8.34, 3.91 Hz, 2 H) 1.95 - 2.10 (m, 4 H) 2.10 - 2.21 (m, 2 H) 2.71 (s, 3 H) 3.60 - 3.74 (m, 4 H) 3.88 - 4.03 (m, 4 H) 4.22 (br. s., 2 H) 5.43 (dt, J=7.83, 3.91 Hz, 1 H) 7.25 (d, J=1.96 Hz, 1 H) 7.75 (d, J=1.96 Hz, 1 H) 7.84 (dd, J=5.09, 1.57 Hz, 1 H) 8.14 (s, 1 H) 8.49 (d, J=2.35 Hz, 1 H) 8.76 (d, J=5.09 Hz, 1 H) 9.38 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 562.2, Rt = 0.74 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.46 (t, J=7.04 Hz, 3 H) 2.28 (s, 3 H) 3.14 - 3.21 (m, 4 H) 3.83 - 3.91 (m, 4 H) 4.47 (q, J=7.04 Hz, 2 H) 7.26 (d, J=1.96 Hz, 1 H) 7.33 (d, J=8.22 Hz, 1 H) 7.63 - 7.71 (m, 2 H) 7.75 (d, J=1.96 Hz, 1 H) 8.58 (d, J=1.96 Hz, 1 H) 9.87 (d, J=1.57 Hz, 1 H). LCMS (m/z) (M+H) = 488.1, Rt = 0.94 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.71 (s, 3 H) 1.77 (s, 3 H) 2.71 (s, 3 H) 3.09 - 3.19 (m, 4 H) 3.83 - 3.90 (m, 4 H) 4.06 (s, 3 H) 7.32 (d, J=1.96 Hz, 1 H) 7.84 (dd, J=5.09, 1.57 Hz, 1 H) 7.90 (d, J=1.96 Hz, 1 H) 8.15 (s, 1 H) 8.50 (d, J=2.35 Hz, 1 H) 8.76 (d, J=5.09 Hz, 1 H) 9.40 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 466.3, Rt = 0.64 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.45 (t, J=7.04 Hz, 3 H) 1.96 - 2.13 (m, 4 H) 2.69 (s, 3 H) 3.61 (d, J=10.17 Hz, 2 H) 3.91 (d, J=10.56 Hz, 2 H) 4.22 (br. s., 2 H) 4.48 (q, J=7.04 Hz, 2 H) 7.22 (d, J=1.96 Hz, 1 H) 7.73 (d, J=1.96 Hz, 1 H) 8.41 (d, J=2.35 Hz, 1 H) 8.63 (d, J=1.96 Hz, 1 H) 9.29 (d, J=2.35 Hz, 1 H) 9.92 (d, J=1.57 Hz, 1 H). LCMS (m/z) (M+H) = 515.1, Rt = 0.72 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.85 (dt, J=12.52, 2.93 Hz, 4 H) 2.69 (s, 3 H) 3.11 - 3.19 (m, 4 H) 3.81 - 3.91 (m, 4 H) 4.05 (s, 3 H) 7.32 (d, J=1.96 Hz, 1 H) 7.78 (dd, J=5.09, 1.57 Hz, 1 H) 7.89 (d, J=1.96 Hz, 1 H) 8.16 (s, 1 H) 8.44 (d, J=2.35 Hz, 1 H) 8.70 (d, J=5.09 Hz, 1 H) 9.33 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 471.3, Rt = 0.65 min.
-
- 1H NMR (500 MHz, <cd3od>) δ ppm 1.49 (t, J=6.94 Hz, 3 H) 1.94 (s, 6 H) 2.31 (s, 3 H) 3.18 - 3.25 (m, 4 H) 3.85 - 3.93 (m, 4 H) 4.51 (d, J=7.25 Hz, 2 H) 7.33 (s, 2 H) 7.67 (s, 2 H) 7.80 (s, 1 H) 8.38 (d, J=1.89 Hz, 1 H) 9.64 (s, 1 H). LCMS (m/z) (M+H) = 487.2, Rt = 0.88 min.
-
- 1H NMR (500 MHz, <cd3od>) δ ppm 1.01 (d, J=6.31 Hz, 3 H) 1.42 - 1.51 (m, 3 H) 2.69 (s, 3 H) 2.84 - 2.95 (m, 1 H) 3.37 - 3.63 (m, 2 H) 3.78 - 3.96 (m, 4 H) 4.40 - 4.61 (m, 2 H) 7.39 - 7.45 (m, 1 H) 7.90 - 7.97 (m, 1 H) 8.36 - 8.43 (m, 1 H) 8.63 - 8.68 (m, 1 H) 9.23 - 9.29 (m, 1 H) 9.91 - 9.98 (m, 1 H). LCMS (m/z) (M+H) = 503.1, Rt = 0.69 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 0.98 (d, J=6.65 Hz, 3 H) 1.45 (t, J=7.04 Hz, 3 H) 2.66 (s, 3 H) 2.88 (ddd, J=11.93, 6.06, 3.13 Hz, 1 H) 3.34 - 3.39 (m, 1 H) 3.54 (dd, J=11.15, 5.28 Hz, 1 H) 3.75 - 3.95 (m, 4 H) 4.41 - 4.60 (m, 2 H) 7.40 (d, J=2.35 Hz, 1 H) 7.91 (d, J=1.96 Hz, 1 H) 8.36 (d, J=2.35 Hz, 1 H) 8.63 (d, J=1.96 Hz, 1 H) 9.21 (d, J=2.35 Hz, 1 H) 9.92 (d, J=1.96 Hz, 1 H). LCMS (m/z) (M+H) = 503.1, Rt = 0.69 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.45 (t, J=7.04 Hz, 3 H) 1.92 (s, 6 H) 2.70 (s, 3 H) 3.11 - 3.19 (m, 4 H) 3.81 - 3.90 (m, 4 H) 4.50 (d, J=7.04 Hz, 2 H) 7.30 (d, J=2.35 Hz, 1 H) 7.86 (d, J=1.96 Hz, 1 H) 8.43 (dd, J=9.19, 2.15 Hz, 2 H) 9.32 (d, J=2.35 Hz, 1 H) 9.66 (d, J=1.96 Hz, 1 H). LCMS (m/z) (M+H) = 488.1, Rt = 0.64 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.78 - 1.91 (m, 4 H) 2.63 (s, 3 H) 3.15 - 3.22 (m, 4 H) 3.85 - 3.94 (m, 4 H) 7.66 (d, J=1.96 Hz, 1 H) 7.77 (dd, J=5.09, 1.57 Hz, 1 H) 8.15 (d, J=1.96 Hz, 2 H) 8.39 (d, J=2.35 Hz, 1 H) 8.70 (d, J=5.09 Hz, 1 H) 9.21 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 475.1, Rt = 0.66 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.82 (s, 6 H) 2.63 (s, 3 H) 3.15 - 3.22 (m, 4 H) 3.84 - 3.93 (m, 4 H) 7.66 (d, J=1.96 Hz, 1 H) 7.87 (dd, J=4.89, 1.37 Hz, 1 H) 8.13 (s, 1 H) 8.15 (d, J=1.96 Hz, 1 H) 8.39 (d, J=2.35 Hz, 1 H) 8.82 (d, J=5.09 Hz, 1 H) 9.21 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 477.1, Rt = 0.66 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.71 (s, 3 H) 1.77 (s, 3 H) 2.64 (s, 3 H) 3.14 - 3.21 (m, 4 H) 3.81 - 3.93 (m, 4 H) 7.67 (d, J=1.96 Hz, 1 H) 7.83 (dd, J=5.09, 1.96 Hz, 1 H) 8.13 (s, 1 H) 8.15 (d, J=1.96 Hz, 1 H) 8.43 (d, J=2.35 Hz, 1 H) 8.75 (d, J=5.09 Hz, 1 H) 9.26 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 470.1, Rt = 0.69 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.63 (s, 3 H) 3.14 - 3.22 (m, 4 H) 3.85 - 3.93 (m, 4 H) 7.66 (d, J=2.35 Hz, 1 H) 8.14 (d, J=2.35 Hz, 1 H) 8.17 (d, J=3.91 Hz, 1 H) 8.36 (s, 1 H) 8.39 (d, J=2.35 Hz, 1 H) 8.96 (d, J=4.70 Hz, 1 H) 9.21 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 478.1, Rt = 0.70 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.60 (s, 3 H) 3.14 - 3.21 (m, 4 H) 3.84 - 3.95 (m, 4 H) 7.65 (d, J=1.96 Hz, 1 H) 8.13 (d, J=2.35 Hz, 1 H) 8.34 (d, J=2.35 Hz, 1 H) 8.62 (d, J=1.96 Hz, 1 H) 9.13 (d, J=2.35 Hz, 1 H) 9.91 (d, J=1.96 Hz, 1 H). LCMS (m/z) (M+H) = 479.1, Rt = 0.65 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.93 (s, 6 H) 2.63 (s, 3 H) 3.15 - 3.22 (m, 4 H) 3.83 - 3.94 (m, 4 H) 7.66 (d, J=1.96 Hz, 1 H) 8.15 (d, J=2.35 Hz, 1 H) 8.39 (d, J=2.35 Hz, 1 H) 8.41 (d, J=1.96 Hz, 1 H) 9.21 (d, J=2.35 Hz, 1 H) 9.66 (d, J=1.96 Hz, 1 H). LCMS (m/z) (M+H) = 478.3, Rt = 0.62 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.71 (s, 3 H) 1.77 (s, 3 H) 2.59 (s, 3 H) 3.44 - 3.50 (m, 4 H) 3.85 - 3.93 (m, 4 H) 7.82 (dd, J=5.09, 1.57 Hz, 1 H) 8.04 (d, J=0.78 Hz, 1 H) 8.12 (s, 1 H) 8.28 (d, J=0.78 Hz, 1 H) 8.48 (t, J=2.35 Hz, 2 H) 8.75 (d, J=5.09 Hz, 1 H) 9.07 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 436.4, Rt = 0.52 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.56 (s, 3 H) 3.42 - 3.47 (m, 4 H) 3.84 - 3.94 (m, 4 H) 8.01 (s, 1 H) 8.16 (d, J=3.91 Hz, 1 H) 8.26 (d, J=0.78 Hz, 1 H) 8.34 (s, 1 H) 8.42 (d, J=2.35 Hz, 1 H) 8.46 (d, J=2.74 Hz, 1 H) 8.92 - 9.00 (m, 2 H). LCMS (m/z) (M+H) = 444.3, Rt = 0.52 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.92 (s, 6 H) 2.55 (s, 3 H) 3.42 - 3.48 (m, 4 H) 3.82 - 3.93 (m, 4 H) 8.02 (s, 1 H) 8.25 (d, J=1.17 Hz, 1 H) 8.40 (t, J=1.96 Hz, 2 H) 8.46 (d, J=2.74 Hz, 1 H) 8.93 (d, J=2.35 Hz, 1 H) 9.65 (d, J=1.96 Hz, 1 H). LCMS (m/z) (M+H) = 444.1, Rt = 0.45 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.82 (s, 6 H) 2.57 (s, 3 H) 3.42 - 3.51 (m, 4 H) 3.83 - 3.92 (m, 4 H) 7.85 (dd, J=4.89, 1.37 Hz, 1 H) 8.02 (d, J=0.78 Hz, 1 H) 8.12 (s, 1 H) 8.26 (d, J=1.17 Hz, 1 H) 8.43 (d, J=2.35 Hz, 1 H) 8.47 (d, J=2.74 Hz, 1 H) 8.81 (d, J=4.70 Hz, 1 H) 8.99 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 443.4, Rt = 0.50 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.71 (s, 3 H) 1.77 (s, 3 H) 2.65 (s, 3 H) 3.16 - 3.24 (m, 4 H) 3.82 - 3.91 (m, 4 H) 7.57 (dd, J=9.78, 1.96 Hz, 1 H) 7.79 - 7.87 (m, 2 H) 8.13 (s, 1 H) 8.44 (d, J=1.96 Hz, 1 H) 8.76 (d, J=5.09 Hz, 1 H) 9.29 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 454.1, Rt = 0.69 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.71 (s, 3 H) 1.77 (s, 3 H) 2.67 - 2.73 (m, 3 H) 3.16 - 3.22 (m, 4 H) 3.85 - 3.91 (m, 4 H) 3.93 - 3.99 (m, 2 H) 4.50 - 4.57 (m, 2 H) 7.33 (d, J=1.96 Hz, 1 H) 7.81 - 7.88 (m, 2 H) 8.14 (s, 1 H) 8.46 (d, J=1.96 Hz, 1 H) 8.76 (d, J=5.09 Hz, 1 H) 9.34 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 496.1, Rt = 0.61 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.76 - 1.86 (m, 6 H) 2.66 - 2.71 (m, 3 H) 3.16 - 3.23 (m, 4 H) 3.83 - 3.89 (m, 4 H) 3.91 - 3.97 (m, 2 H) 4.51 - 4.56 (m, 2 H) 7.32 (d, J=2.35 Hz, 1 H) 7.84 - 7.88 (m, 2 H) 8.11 - 8.15 (m, 1 H) 8.42 (d, J=2.35 Hz, 1 H) 8.82 (d, J=5.09 Hz, 1 H) 9.31 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 503.4, Rt = 0.60 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.67 - 2.72 (m, 3 H) 3.16 - 3.23 (m, 4 H) 3.84 - 3.90 (m, 4 H) 3.92 - 3.98 (m, 2 H) 4.49 - 4.57 (m, 2 H) 7.34 (d, J=1.96 Hz, 1 H) 7.88 (d, J=1.96 Hz, 1 H) 7.99 (d, J=4.30 Hz, 1 H) 8.50 (s, 1 H) 8.67 (d, J=2.35 Hz, 1 H) 9.02 (d, J=5.09 Hz, 1 H) 9.43 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 504.3, Rt = 0.67 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.63 - 1.74 (m, 2 H) 1.90 - 1.95 (m, 2 H) 2.01 (d, J=3.13 Hz, 4 H) 2.22 (s, 3 H) 3.06 (br. s., 4 H) 3.54 (ddd, J=11.35, 8.41, 2.93 Hz, 2 H) 3.68 - 3.76 (m, 4 H) 3.78 - 3.86 (m, 2 H) 5.31 (dt, J=7.92, 4.06 Hz, 1 H) 7.12 (d, J=1.96 Hz, 1 H) 7.31 (d, J=8.61 Hz, 1 H) 7.59 (d, J=1.96 Hz, 1 H) 7.66 (dd, J=8.22, 2.35 Hz, 1 H) 7.70 (d, J=1.96 Hz, 1 H) 8.00 (d, J=1.96 Hz, 1 H) 9.53 (d, J=1.96 Hz, 1 H) 10.70 (s, 1 H). LCMS (m/z) (M+H) = 541.2, Rt = 0.85 min.
-
- 1H NMR (500 MHz, <cd3od>) δ ppm 1.01 (d, J=6.31 Hz, 3 H) 1.48 (t, J=6.94 Hz, 3 H) 1.95 (s, 6 H) 2.72 (s, 3 H) 2.86 - 2.95 (m, 1 H) 3.42 - 3.44 (m, 1 H) 3.53 - 3.62 (m, 1 H) 3.91 (br. s., 4 H) 4.42 - 4.61 (m, 2 H) 7.45 (d, J=2.21 Hz, 1 H) 7.95 (d, J=1.89 Hz, 1 H) 8.46 (dd, J=7.09, 2.36 Hz, 2 H) 9.34 (d, J=2.21 Hz, 1 H) 9.70 (d, J=1.89 Hz, 1 H). LCMS (m/z) (M+H) = 502.2, Rt = 0.65 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.45 (t, J=7.04 Hz, 3 H) 1.78 - 1.91 (m, 6 H) 2.27 (s, 3 H) 3.11 - 3.23 (m, 4 H) 3.81 - 3.93 (m, 4 H) 4.47 (d, J=7.04 Hz, 2 H) 7.28 (d, J=1.96 Hz, 2 H) 7.64 (s, 2 H) 7.76 (d, J=1.96 Hz, 1 H) 8.34 (d, J=1.57 Hz, 1 H) 9.56 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 480.2, Rt = 0.92 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.45 (t, J=7.04 Hz, 3 H) 1.79 - 1.93 (m, 6 H) 2.70 (s, 3 H) 3.08 - 3.21 (m, 4 H) 3.80 - 3.94 (m, 4 H) 4.50 (d, J=7.04 Hz, 2 H) 7.30 (d, J=1.96 Hz, 1 H) 7.86 (d, J=1.96 Hz, 1 H) 8.41 (d, J=1.96 Hz, 1 H) 8.45 (d, J=2.35 Hz, 1 H) 9.33 (d, J=1.96 Hz, 1 H) 9.61 (d, J=1.96 Hz, 1 H). LCMS (m/z) (M+H) = 481.2, Rt = 0.66 min.
-
- To a solution of 3-(6-ethoxy-5-morpholinopyridin-3-yl)-4-methylbenzoic acid (1.0 equiv.) in DCM (0.1 M) at 0 °C was added 1-chloro-N,N,2-trimethyl-1-propenylamine (1.2 equiv.) and the mixture was allowed to stir at for 1 h. The mixture was subsequently added to a solution of 4-amino-2-(trifluoromethyl)pyridine (1.3 equiv.) and Et3N (3 equiv.) in DCM (0.1 M) and the reaction was allowed to warm to 25 °C and stirred for 1 h. The mixture was concentrated, taken up in DMSO, filtered, and purified via preparative reverse phase HPLC. Upon lyophilization of the pure fractions, 3-(6-ethoxy-5-morpholinopyridin-3-yl)-4-methyl-N-(2-(trifluoromethyl)pyridin-4-yl)benzamide was isolated as the TFA salt in 52% yield. 1H NMR (400 MHz, <dmso>) δ ppm 1.35 (t, J=7.04 Hz, 3 H) 2.27 - 2.35 (m, 3 H) 3.06 (br. s., 4 H) 3.72 (d, J=4.30 Hz, 4 H) 4.39 (d, J=7.04 Hz, 2 H) 7.18 (d, J=1.96 Hz, 1 H) 7.50 (d, J=8.61 Hz, 1 H) 7.78 (d, J=1.96 Hz, 1 H) 7.87 - 7.96 (m, 2 H) 8.06 (d, J=3.91 Hz, 1 H) 8.28 (d, J=1.57 Hz, 1 H) 8.65 (d, J=5.48 Hz, 1 H) 10.81 (s, 1 H). LCMS (m/z) (M+H) = 487.1, Rt = 1.09 min.
-
- To a solution of N-(6'-fluoro-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide (1.0 equiv.) in DMF (0.25 M) was added a 5.6M solution of dimethylamine in ethanol (5.0 equiv.). The mixture was stirred at 90 °C overnight. The cooled mixture was diluted with DMSO, filtered, and purified via preparative reverse phase HPLC. Upon lyophilization of the pure fractions N-(6'-(dimethylamino)-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide was isolated as the TFA salt, a light yellow solid, in 28% yield. 1H NMR (400 MHz, <cd3od>) δ ppm 2.65 (s, 3 H) 3.04 - 3.12 (m, 4 H) 3.30 (s, 6 H) 3.87 - 3.96 (m, 4 H) 7.61 (d, J=1.96 Hz, 1 H) 7.74 - 7.83 (m, 1 H) 7.90 (d, J=1.56 Hz, 1 H) 7.97 (d, J=7.83 Hz, 1 H) 8.28 (d, J=8.22 Hz, 1 H) 8.34 (s, 1 H) 8.46 (d, J=2.35 Hz, 1 H) 9.13 (d, J=1.96 Hz, 1 H); LCMS (m/z) (M+H) = 486.3, Rt = 0.60 min.
- The compounds listed below were prepared using methods similar to those described for the preparation of Example 307 using the appropriate starting materials.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.42 (d, J=7.04 Hz, 6 H) 2.65 (s, 3 H) 3.02 - 3.11 (m, 4 H) 3.33 (s, 6 H) 3.86 - 3.97 (m, 4 H) 7.65 (d, J=1.96 Hz, 1 H) 7.88 (d, J=1.96 Hz, 1 H) 7.97 (dd, J=5.48, 1.57 Hz, 1 H) 8.08 (s, 1 H) 8.47 (d, J=1.96 Hz, 1 H) 8.77 (d, J=5.48 Hz, 1 H) 9.12 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 461.2, Rt = 0.45 min.
-
- To a solution of N-(2-methyl-5'-morpholino-6'-((tetrahydro-2H-pyran-4-yl)oxy)-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide (1.0 equiv.) in DCM (0.1 M) was added benzyltriethylammonium chloride (6.1 equiv.) and potassium permanganate (6.0 equiv.). The mixture was stirred at 45 °C for 2 hr. The cooled reaction mixture was diluted with water and treated with sodium bisulfite (18 equiv.). The mixture was stirred for 15 min at ambient temperature. Additional water was added, and the mixture was extracted with DCM. The organic layer was washed with saturated aqueous sodium bicarbonate, dried over sodium sulfate, filtered, and concentrated. The crude material was purified by preparative reverse phase HPLC. Upon lyophilization of the pure fractions, N-(2-methyl-5'-(3-oxomorpholino)-6'-((tetrahydro-2H-pyran-4-yl)oxy)-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide was isolated as the TFA salt, a white solid, in 27% yield. 1H NMR (400 MHz, <cd3od>) δ ppm 1.80 - 1.94 (m, 2 H) 2.13 (ddd, J=9.59, 6.46, 3.13 Hz, 2 H) 2.69 (s, 3 H) 3.69 (ddd, J=11.54, 7.83, 3.33 Hz, 2 H) 3.79 (t, J=5.09 Hz, 2 H) 3.97 (ddd, J=11.25, 6.95, 3.72 Hz, 2 H) 4.06 - 4.16 (m, 2 H) 4.36 (s, 2 H) 5.48 (tt, J=7.58, 3.77 Hz, 1 H) 7.76 - 7.84 (m, 1 H) 7.92 (d, J=2.35 Hz, 1 H) 7.98 (d, J=7.83 Hz, 1 H) 8.26 - 8.33 (m, 2 H) 8.36 (s, 1 H) 8.45 (d, J=2.35 Hz, 1 H) 9.28 (d, J=2.35 Hz, 1 H); LCMS (m/z) (M+H) = 557.2, Rt = 0.75 min.
-
- To a solution of (S)-(+)-3-hydroxytetrahydrofuran (5 equiv.) in dioxane (0.1 M) at 25 °C was added NaH (5.2 equiv.), and the mixture was stirred for 15 min. N-(6'-fluoro-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide (1.0 equiv.) was then added, and the reaction was heated to 105 °C and stirred for 1 h. The reaction was cooled to room temperature, quenched with a few drops of water, and concentrated. The crude material was purified by preparative reverse phase HPLC. Upon lyophilization of the pure fractions, (S)-N-(2-methyl-5'-morpholino-6'-((tetrahydrofuran-3-yl)oxy)-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide was isolated as the TFA salt, a pale yellow solid, in 44% yield. 1H NMR (400 MHz, <dmso>) δ ppm 2.05 - 2.13 (m, 1 H) 2.22 - 2.29 (m, 1 H) 2.52 (s, 3 H) 3.08 (br. s., 4 H) 3.71 - 3.78 (m, 4 H) 3.78 - 3.91 (m, 3 H) 3.96 (dd, J=10.37, 4.50 Hz, 1 H) 5.61 (dd, J=5.87, 4.70 Hz, 1 H) 7.28 (d, J=1.57 Hz, 1 H) 7.78 - 7.90 (m, 2 H) 8.02 (d, J=7.83 Hz, 1 H) 8.22 (s, 1 H) 8.30 (d, J=7.83 Hz, 1 H) 8.34 (s, 1 H) 8.99 (d, J=1.96 Hz, 1 H) 10.85 (s, 1 H). LCMS (m/z) (M+H) = 529.2, Rt = 0.77 min. The compounds listed below were prepared using methods similar to those described for the preparation of Example 310 using the appropriate starting materials Differences in the workup and/or purification protocols are noted where applicable.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 2.09 (d, J=6.65 Hz, 1 H) 2.22 - 2.31 (m, 1 H) 2.53 (s, 3 H) 3.08 (br. s., 4 H) 3.67 - 3.77 (m, 4 H) 3.78 - 3.91 (m, 3 H) 3.96 (dd, J=10.17, 4.70 Hz, 1 H) 5.55 - 5.67 (m, 1 H) 7.28 (d, J=1.56 Hz, 1 H) 7.84 (s, 2 H) 8.03 (d, J=7.83 Hz, 1 H) 8.23 (s, 1 H) 8.30 (d, J=8.22 Hz, 1 H) 8.34 (s, 1 H) 9.00 (s, 1 H) 10.88 (s, 1 H). LCMS (m/z) (M+H) = 529.2, Rt = 0.76 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 2.49 (s, 3 H) 3.05 - 3.12 (m, 4 H) 3.31 (s, 3 H) 3.67 - 3.77 (m, 6 H) 4.42 - 4.49 (m, 2 H) 7.25 (d, J=1.56 Hz, 1 H) 7.77 - 7.86 (m, 2 H) 8.01 (d, J=7.83 Hz, 1 H) 8.19 (s, 1 H) 8.28 (d, J=7.83 Hz, 1 H) 8.32 (s, 1 H) 8.97 (d, J=1.96 Hz, 1 H) 10.83 (s, 1 H). LCMS (m/z) (M+H) = 517.2, Rt = 0.72 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.39 (d, J=7.04 Hz, 6 H) 1.84 (dtd, J=12.77, 8.29, 8.29, 3.91 Hz, 2 H) 2.08 - 2.18 (m, 2 H) 2.69 (s, 3 H) 3.15 - 3.19 (m, 4 H) 3.21 - 3.27 (m, 1 H) 3.67 (ddd, J=11.35, 8.22, 3.13 Hz, 2 H) 3.83 - 3.90 (m, 4 H) 3.93 - 4.01 (m, 2 H) 5.44 (tt, J=7.83, 3.91 Hz, 1 H) 7.31 (d, J=1.96 Hz, 1 H) 7.85 (d, J=1.96 Hz, 1 H) 7.89 (dd, J=5.28, 1.37 Hz, 1 H) 8.00 (s, 1 H) 8.44 (d, J=2.35 Hz, 1 H) 8.74 (d, J=5.48 Hz, 1 H) 9.31 (d, J=1.96 Hz, 1 H). LCMS (m/z) (M+H) = 518.3, Rt = 0.57 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.85 (td, J=8.51, 4.11 Hz, 2 H) 2.08 - 2.19 (m, 2 H) 2.67 (s, 3 H) 3.13 - 3.18 (m, 4 H) 3.67 (ddd, J=11.64, 8.31, 3.13 Hz, 2 H) 3.82 - 3.90 (m, 4 H) 3.93 - 4.01 (m, 2 H) 5.44 (tt, J=7.83, 3.91 Hz, 1 H) 7.31 (d, J=1.96 Hz, 1 H) 7.85 (d, J=1.96 Hz, 1 H) 8.18 (d, J=4.30 Hz, 1 H) 8.36 (s, 1 H) 8.41 (d, J=2.35 Hz, 1 H) 8.97 (d, J=5.09 Hz, 1 H) 9.28 (d, J=1.96 Hz, 1 H). LCMS (m/z) (M+H) = 544.3, Rt = 0.69 min.
-
- The reaction mixture was quenched with water and extracted three times with ethyl acetate. The combined organics were dried over magnesium sulfate, filtered, and concentated. The crude residue was purified via flash chromatography over silica gel eluting with heptane and 0-100% ethyl acetate gradient. Pure product fractions were concentrated, re-dissolved in acetonitrile/water, and lyophilized. Isolated N-(2-methyl-5'-morpholino-6'-(oxetan-3-yloxy)-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide as a white solid in 44% yield.1H NMR (400 MHz, <dmso>) δ ppm 2.43 (s, 3 H) 3.13 (br. s., 4 H) 3.70 - 3.83 (m, 4 H) 4.62 (dd, J=7.04, 5.48 Hz, 2 H) 4.93 (t, J=6.85 Hz, 2 H) 5.63 (quin, J=5.67 Hz, 1 H) 7.28 (d, J=1.96 Hz, 1 H) 7.74 (d, J=1.56 Hz, 1 H) 7.81 (t, J=7.83 Hz, 1 H) 8.00 (d, J=7.83 Hz, 1 H) 8.04 (d, J=2.35 Hz, 1 H) 8.28 (d, J=7.83 Hz, 1 H) 8.32 (s, 1 H) 8.84 (d, J=2.35 Hz, 1 H) 10.65 (s, 1 H). LCMS (m/z) (M+H) = 515.1, Rt = 0.72 min.
-
- After initial purification by preparative reverse phase HPLC, a second purification of the diastereomeric mixture was performed via chiral HPLC (SFC, methanol, OJ column). Isolated N-(6'-(((1r,4r)-4-hydroxycyclohexyl)oxy)-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide and N-(6'-(((1s,4s)-4-hydroxycyclohexyl)oxy)-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide as white solids. The stereochemical identity of the two peaks was not determined. Peak 1 (11% yield, Rt = 1.91 min) 1H NMR (400 MHz, <cdcl3>) δ ppm 1.70 - 1.91 (m, 6 H) 2.08 - 2.19 (m, 2 H) 2.53 (s, 3 H) 3.12 - 3.22 (m, 4 H) 3.83 - 3.93 (m, 5 H) 5.32 (br. s., 1 H) 7.04 (d, J=1.96 Hz, 1 H) 7.61 - 7.71 (m, 1 H) 7.76 (d, J=1.96 Hz, 1 H) 7.85 (d, J=7.83 Hz, 1 H) 7.92 (br. s., 1 H) 8.09 (d, J=7.83 Hz, 1 H) 8.15 (s, 2 H) 8.62 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 557.2, Rt =0.75. Peak 2 (4% yield, Rt = 5.19 min) 1H NMR (400 MHz, <cdcl3>) δ ppm 1.59 - 1.72 (m, 4 H) 2.06 (d, J=6.26 Hz, 2 H) 2.23 - 2.32 (m, 2 H) 2.53 (s, 3 H) 3.14 (br. s., 4 H) 3.80 - 3.93 (m, 5 H) 5.15 - 5.25 (m, 1 H) 7.04 (s, 1 H) 7.68 (t, J=7.63 Hz, 1 H) 7.77 (s, 1 H) 7.82 - 7.90 (m, 2 H) 8.09 (d, J=7.43 Hz, 1 H) 8.12 - 8.19 (m, 2 H) 8.61 (d, J=1.96 Hz, 1 H). LCMS (m/z) (M+H) = 557.2, Rt = 0.75 min.
-
- After initial purification by preparative reverse phase HPLC, a second purification of the diastereomeric mixture was performed via chiral HPLC (SFC, ethanol, OJ column). Isolated rac-N-(6'-(((1,3-cis)-3-hydroxycyclopentyl)oxy)-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide (Peak 1, Rt = 2.28 min) in 6% yield and rac-N-(6'-(((1,3-trans)-3-hydroxycyclopentyl)oxy)-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide (Peak 2, Rt = 5.35 min) in 4% yield as white solids. rac-N-(6'-(((1,3-cis)-3-hydroxycyclopentyl)oxy)-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide 1H NMR (400 MHz, <cdcl3>) δ ppm 1.90 - 2.08 (m, 4 H) 2.09 - 2.28 (m, 2 H) 2.53 (s, 3 H) 2.97 - 3.08 (m, 2 H) 3.10 - 3.24 (m, 2 H) 3.79 - 3.95 (m, 4 H) 4.40 (br. s., 1 H) 5.69 (br. s., 1 H) 7.11 (d, J=1.57 Hz, 1 H) 7.64 - 7.71 (m, 1 H) 7.81 - 7.89 (m, 3 H) 8.09 (d, J=7.83 Hz, 1 H) 8.14 (d, J=2.74 Hz, 2 H) 8.62 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 543.1, Rt = 0.72 min. rac-N-(6'-(((1,3-trans)-3-hydroxycyclopentyl)oxy)-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide 1H NMR (400 MHz, <cdcl3>) δ ppm 1.67 - 1.80 (m, 1 H) 1.87 - 1.99 (m, 1 H) 2.06 - 2.16 (m, 1 H) 2.19 (t, J=4.89 Hz, 2 H) 2.31 - 2.44 (m, 1 H) 2.52 (s, 3 H) 3.12 (d, J=2.74 Hz, 4 H) 3.88 (t, J=4.30 Hz, 4 H) 4.58 (d, J=4.30 Hz, 1 H) 5.68 (br. s., 1 H) 7.04 (s, 1 H) 7.63 - 7.72 (m, 1 H) 7.79 (s, 1 H) 7.83 - 7.91 (m, 2 H) 8.09 (d, J=7.83 Hz, 1 H) 8.14 (d, J=6.26 Hz, 2 H) 8.61 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 543.1, Rt = 0.73 min.
-
- After initial purification by preparative reverse phase HPLC, a second purification of the diastereomeric mixture was performed via chiral HPLC (SFC, isopropanol, OD column). One of the four enantiomerically pure possible stereoisomers was isolated in pure form (Rt = 10.29 min); the absolute or relative configuration of this compound was not determined. Isolated N-(6'-((3-hydroxycyclohexyl)oxy)-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide as a white solid in 31% yield. 1H NMR (400 MHz, <cdcl3>) δ ppm 1.47 - 1.56 (m, 3 H) 1.69 - 1.89 (m, 3 H) 1.90 - 2.07 (m, 2 H) 2.24 (d, J=12.91 Hz, 1 H) 2.52 (s, 3 H) 3.07 (br. s., 2 H) 3.14 - 3.22 (m, 2 H) 3.89 (t, J=4.11 Hz, 5 H) 5.38 (dt, J=7.24, 3.81 Hz, 1 H) 7.09 (d, J=1.96 Hz, 1 H) 7.64 - 7.71 (m, 1 H) 7.79 (d, J=1.96 Hz, 1 H) 7.83 - 7.91 (m, 2 H) 8.06 - 8.17 (m, 3 H) 8.62 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 557.1, Rt = 0.76 min.
-
- After purification by preparative reverse phase HPLC, pure product fractions were stirred with saturated aqueous sodium carbonate for 15 min. The mixture was extracted three times with ethyl acetate; the combined organics were washed with brine, dried over magnesium sulfate, and concentrated. The residue was taken up in acetonitrile/water and lyophilized. Isolated N-(2-methyl-6'-((1-methylazetidin-3-yl)oxy)-5'-morpholino-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide as a white solid in 23% yield. 1H NMR (400 MHz, <cd3od>) δ ppm 2.48 (s, 3 H) 2.50 - 2.56 (m, 5 H) 3.13 - 3.21 (m, 4 H) 3.40 - 3.48 (m, 2 H) 3.83 - 3.90 (m, 4 H) 3.98 (dd, J=8.80, 7.24 Hz, 2 H) 5.34 (t, J=5.67 Hz, 1 H) 7.28 (d, J=1.96 Hz, 1 H) 7.70 - 7.81 (m, 2 H) 7.92 (d, J=7.83 Hz, 1 H) 8.11 (d, J=2.35 Hz, 1 H) 8.24 (d, J=7.83 Hz, 2 H) 8.30 (s, 2 H) 8.81 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 528.1, Rt = 0.61 min.
-
- The crude residue was purified by preparative neutral reverse phase HPLC (acetonitrile/3.75 mM aqueous ammonium acetate eluent). Upon lyophilization of the pure fractions, N-(6'-(2-oxaspiro[3.3]heptan-6-yloxy)-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide was isolated as the free base, a white solid, in 53% yield. 1H NMR (400 MHz, <cd3od>) δ ppm 2.32 - 2.42 (m, 2 H) 2.48 (s, 3 H) 2.88 (ddd, J=10.37, 7.04, 2.93 Hz, 2 H) 3.09 - 3.17 (m, 4 H) 3.79 - 3.89 (m, 4 H) 4.71 (s, 2 H) 4.79 (s, 2 H) 5.16 (quin, J=6.95 Hz, 1 H) 7.25 (d, J=1.96 Hz, 1 H) 7.72 - 7.79 (m, 2 H) 7.92 (d, J=7.43 Hz, 1 H) 8.10 (d, J=2.35 Hz, 1 H) 8.24 (d, J=7.83 Hz, 1 H) 8.30 (s, 1 H) 8.81 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 555.2, Rt = 0.78 min.
-
- To a solution of NaOMe (5 equiv.) in dioxane (0.1 M) at 25 °C was added N-(6'-fluoro-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-2-isopropylisonicotinamide (1.0 equiv.), and the reaction was heated to 105 °C and stirred for 1 h. The reaction was cooled to room temperature, quenched with a few drops of water, and concentrated. The crude material was purified by preparative reverse phase HPLC. Upon lyophilization of the pure fractions, 2-isopropyl-N-(6'-methoxy-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)isonicotinamide was isolated as the TFA salt, a pale yellow solid, in 52% yield. 1H NMR (400 MHz, <cd3od>) δ ppm 1.40 (d, J=6.65 Hz, 6 H) 2.69 (s, 3 H) 3.10 - 3.18 (m, 4 H) 3.22 - 3.29 (m, 1 H) 3.80 - 3.90 (m, 4 H) 4.06 (s, 3 H) 7.32 (d, J=1.96 Hz, 1 H) 7.89 (d, J=1.57 Hz, 1 H) 7.91 (dd, J=5.48, 1.57 Hz, 1 H) 8.02 (s, 1 H) 8.45 (d, J=1.96 Hz, 1 H) 8.75 (d, J=5.48 Hz, 1 H) 9.33 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 448.3, Rt = 0.52 min.
- The compounds listed below were prepared using methods similar to those described for the preparation of Example 323 using the appropriate starting materials Differences in the workup and/or purification protocols are noted where applicable.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.69 (s, 3 H) 3.05 - 3.18 (m, 4 H) 3.79 - 3.90 (m, 4 H) 4.05 (s, 3 H) 7.31 (d, J=1.96 Hz, 1 H) 7.88 (d, J=1.96 Hz, 1 H) 8.18 (d, J=4.30 Hz, 1 H) 8.36 (s, 1 H) 8.44 (d, J=2.35 Hz, 1 H) 8.97 (d, J=5.09 Hz, 1 H) 9.33 (d, J=1.96 Hz, 1 H). LCMS (m/z) (M+H) = 474.2, Rt = 0.66 min.
-
- To a solution of 1-N-Boc-3-hydroxyazetidine (6 equiv.) in dioxane (0.1 M) at 25 °C was added NaH (5.2 equiv.), and the mixture was stirred for 15 min. N-(6'-fluoro-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide (1.0 equiv.) was then added, and the reaction was heated to 105 °C and stirred for 4 h. The reaction was cooled to room temperature, poured onto water, and extracted three times with ethyl acetate. The combined organics were dried over magnesium sulfate, filtered, and concentrated. The crude residue was taken up in DCM/TFA (5:1, 0.05 M), stirred at 25 °C overnight, and then concentrated. The crude material was purified by preparative reverse phase HPLC. Upon lyophilization of the pure fractions, N-(6'-(azetidin-3-yloxy)-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide was isolated as the TFA salt, a pale yellow solid, in 61% yield. 1H NMR (400 MHz, <cd3od>) δ ppm 2.56 (s, 3 H) 3.35 - 3.46 (m, 4 H) 3.66 - 3.74 (m, 2 H) 3.87 (dt, J=5.58, 3.47 Hz, 4 H) 4.87 - 4.93 (m, 1 H) 5.27 (dd, J=12.52, 9.78 Hz, 1 H) 5.75 - 5.88 (m, 1 H) 7.73 - 7.80 (m, 1 H) 7.86 (s, 1 H) 7.94 (d, J=7.83 Hz, 1 H) 8.22 - 8.27 (m, 2 H) 8.30 (s, 1 H) 8.45 (d, J=2.35 Hz, 1 H) 8.85 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 514.3, Rt = 0.53 min.
-
- To a solution of isobutyronitrile (5 equiv.) in dioxane (0.1 M) at 25 °C was added KHMDS (0.5 M in toluene, 5.2 equiv.) and the mixture was stirred for 15 min.. N-(6'-fluoro-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide (1.0 equiv.) was then added, and the reaction was stirred for 30 min. The reaction was cooled to room temperature, quenched with a few drops of water, and concentrated. The crude material was purified by preparative reverse phase HPLC. Upon lyophilization of the pure fractions, N-(6'-(2-cyanopropan-2-yl)-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide was isolated as the TFA salt, a white solid, in 49% yield. 1H NMR (400 MHz, <cd3od>) δ ppm 1.86 (s, 6 H) 2.65 (s, 3 H) 2.92 - 3.12 (m, 4 H) 3.92 (t, J=4.50 Hz, 4 H) 7.75 - 7.82 (m, 1 H) 7.96 (d, J=7.83 Hz, 1 H) 8.17 (d, J=1.96 Hz, 1 H) 8.28 (d, J=7.83 Hz, 1 H) 8.35 (s, 1 H) 8.44 (d, J=2.35 Hz, 1 H) 8.57 (d, J=1.96 Hz, 1 H) 9.29 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 510.1, Rt = 0.82 min.
-
- To a solution of N-(6'-fluoro-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide (1.0 equiv.) in THF (0.26 M) at 25 °C was added NaHMDS (1 M in THF, 5.1 equiv.) followed by methyl sulfone (5 equiv.). The reaction was heated to 80 °C and stirred for 2 h. The reaction was cooled to room temperature, poured onto brine and extracted three times with ethyl acetate. The combined organics were dried over magnesium sulfate, filtered, and concentrated. The crude residue was purified by preparative neutral reverse phase HPLC (acetonitrile/3.75 mM aqueous ammonium acetate eluent). Upon lyophilization of the pure fractions, N-(2-methyl-6'-((methylsulfonyl)methyl)-5'-morpholino-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide was isolated as the free base in 60% yield. 1H NMR (500 MHz, <cd3od>) δ ppm 2.54 (s, 3 H) 3.02 - 3.08 (m, 4 H) 3.24 (s, 3 H) 3.88 - 3.93 (m, 4 H) 4.84 - 4.87 (m, 2 H) 7.78 (t, J=7.72 Hz, 1 H) 7.89 (d, J=1.89 Hz, 1 H) 7.95 (d, J=7.88 Hz, 1 H) 8.22 (d, J=2.21 Hz, 1 H) 8.27 (d, J=8.20 Hz, 1 H) 8.33 (s, 1 H) 8.49 (d, J=1.89 Hz, 1 H) 8.90 (d, J=2.21 Hz, 1 H). LCMS (m/z) (M+H) = 535.2, Rt = 0.67 min.
-
- To a solution of N-(2-methyl-5'-morpholino-6'-((tetrahydro-2H-pyran-4-yl)oxy)-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide (1.0 equiv.) in THF/DMF (5:1; 0.05 M) was added sodium hydride (1.5 equiv.) and methyl iodide (1.5 equiv.) and the reaction was heated to 60 °C and stirred for 3 h. The reaction mixture was partitioned between water and ethyl acetate, and the organic phase was dried with sodium sulfate, filtered and concentrated. The crude material was purified via preparative reverse phase HPLC. Upon lyophilization of the pure fractions, N-methyl-N-(2-methyl-5'-morpholino-6'-((tetrahydro-2H-pyran-4-yl)oxy)-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide was isolated as the TFA salt in 2% yield. LCMS (m/z) (M+H) = 557.2, Rt = 0.81 min.
- The compounds listed below were prepared using methods similar to those described for the preparation of Example 328 using the appropriate starting materials.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.07 (s, 3 H) 1.54 - 1.71 (m, 2 H) 1.92 - 2.05 (m, 2 H) 2.30 (s, 3 H) 2.99 (br. s., 4 H) 3.48 - 3.53 (m, 3 H) 3.69 (br. s., 7 H) 5.15 - 5.32 (m, 1 H) 6.83 - 6.93 (m, 1 H) 7.39 - 7.50 (m, 1 H) 7.51 - 7.74 (m, 4 H) 8.07 - 8.21 (m, 1 H). LCMS (m/z) (M+H) = 571.2, Rt = 0.84 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 0.74 - 0.85 (m, 2 H) 1.00 - 1.18 (m, 2 H) 1.38 - 1.55 (m, 1 H) 1.59 - 1.72 (m, 2 H) 1.87 - 2.03 (m, 2 H) 2.32 (s,3 H) 2.99 (br. s., 4 H) 3.49 (br. s., 2 H) 3.69 (d, J=3.91 Hz, 7 H) 5.16 - 5.42 (m, 1 H) 6.82 - 7.04 (m, 1 H) 7.40 - 7.74 (m, 6 H) 8.05 - 8.38 (m, 1 H). LCMS (m/z) (M+H) = 585.3, Rt = 0.9 min.
- The compounds listed below were prepared using methods similar to those described for the preparation of Example 117 using the appropriate starting materials.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.38 (t, J=7.04 Hz, 3 H) 2.31 (s, 3 H) 3.11 - 3.21 (m, 4 H) 3.82 - 3.91 (m, 4 H) 4.11 (q, J=7.30 Hz, 2 H) 6.96 (d, J=1.96 Hz, 1 H) 7.29 (d, J=8.22 Hz, 1 H) 7.38 (d, J=1.96 Hz, 1 H) 7.58 (d, J=8.22 Hz, 1 H) 7.62 (s, 1 H) 7.69 - 7.76 (m, 1 H) 7.89 (d, J=7.83 Hz, 1 H) 8.20 (d, J=7.83 Hz, 1 H) 8.25 (s, 1 H), LCMS (m/z) (M+H) = 486.2, Rt = 0.95 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.39 (t, J=7.24 Hz, 3 H) 1.82 (s, 6 H) 2.70 (s, 3 H) 3.16 (br. s., 4 H) 3.66 - 3.91 (m, 4 H) 4.13 (q, J=7.30 Hz, 2 H) 6.94 (d, J=1.96 Hz, 1 H) 7.54 (d, J=1.96 Hz, 1 H) 7.86 (d, J=5.09 Hz, 1 H) 8.13 (s, 1 H) 8.41 (d, J=1.96 Hz, 1 H) 8.82 (d, J=5.09 Hz, 1 H) 9.22 (d, J=1.96 Hz, 1 H), LCMS (m/z) (M+H) = 487.3, Rt = 0.56 min.
-
- 1H NMR (500 MHz, DMSO-d 6) δ ppm 2.55 (s, 3 H) 3.05 (t, J=6.46 Hz, 2 H) 3.14 (br. s., 4 H) 3.74 (t, J=4.41 Hz, 4 H) 4.24 (t, J=6.46 Hz, 2 H) 6.83 (d, J=1.58 Hz, 1 H) 7.60 (d, J=1.58 Hz, 1 H) 7.84 (t, J=7.88 Hz, 1 H) 8.03 (d, J=7.88 Hz, 1 H) 8.18 (br. s., 1 H) 8.30 (d, J=7.88 Hz, 1 H) 8.35 (s, 1 H) 8.93 (s, 1 H) 10.83 (br. s., 1 H), LCMS (m/z) (M+H) = 512.3, Rt = 0.66 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 2.03 (t, J=19.17 Hz, 3 H) 2.25 (s, 3 H) 3.00 (t, J=6.46 Hz, 2 H) 3.10 (br. s., 4 H) 3.60 - 3.69 (m, 4 H) 4.20 (t, J=6.46 Hz, 2 H) 6.71 (s, 1 H) 7.28 (d, J=8.61 Hz, 1 H) 7.43 (d, J=1.57 Hz, 1 H) 7.62 (d, J=1.96 Hz, 1 H) 7.67 (d, J=8.22 Hz, 1 H) 8.01 (d, J=4.70 Hz, 1 H) 8.16 (s, 1 H) 8.86 (d, J=4.70 Hz, 1 H) 10.61 (s, 1 H), LCMS (m/z) (M+H) = 508.2, Rt = 0.78 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.75 (s, 6 H) 2.26 (s, 3 H) 3.00 (t, J=6.26 Hz, 2 H) 3.10 (br. s., 4 H) 3.70 (d, J=4.30 Hz, 4 H) 4.20 (t, J=6.46 Hz, 2 H) 6.71 (d, J=1.57 Hz, 1 H) 7.28 (d, J=8.22 Hz, 1 H) 7.43 (d, J=1.96 Hz, 1 H) 7.61 (s, 1 H) 7.65 (d, J=8.61 Hz, 1 H) 7.84 (d, J=5.09 Hz, 1 H) 7.99 (s, 1 H) 8.79 (d, J=5.09 Hz, 1 H) 10.53 (s, 1 H), LCMS (m/z) (M+H) = 511.3, Rt = 0.76 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 2.25 (s, 3 H) 3.00 (t, J=6.26 Hz, 2 H) 3.11 (br. s., 4 H) 3.70 (d, J=4.30 Hz, 4 H) 4.20 (t, J=6.46 Hz, 2 H) 6.72 (d, J=1.96 Hz, 1 H) 6.91 - 7.30 (m, 2 H) 7.43 (d, J=1.96 Hz, 1 H) 7.60 - 7.69 (m, 3 H) 7.77 (d, J=7.43 Hz, 1 H) 8.06 - 8.18 (m, 2 H) 10.37 (s, 1 H), LCMS (m/z) (M+H) = 493.3, Rt = 0.80 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.04 (s, 3 H) 2.25 (s, 3 H) 3.01 - 3.20 (m, 4 H) 3.43 (br. s., 2 H) 3.74 (t, J=4.30 Hz, 4 H) 4.34 (d, J=13.69 Hz, 1 H) 4.44 - 4.58 (m, 2 H) 4.65 (d, J=10.56 Hz, 1 H) 7.37 (d, J=8.22 Hz, 1 H) 7.68 (dd, J=8.22, 1.96 Hz, 1 H) 7.75 - 7.86 (m, 2 H) 7.97 (d, J=7.83 Hz, 1 H) 8.07 (s, 1 H) 8.21 - 8.32 (m, 2 H) 10.55 (s, 1 H), LCMS (m/z) (M+H) = 542.4, Rt = 0.80 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 0.95 (s, 3 H) 1.72 (s, 6 H) 2.40 (s, 3 H) 2.76 - 3.01 (m, 4 H) 3.64 (br. s., 5 H) 4.30 (d, J=13.69 Hz, 1 H) 4.39 - 4.52 (m, 2 H) 4.61 (d, J=10.56 Hz, 1 H) 7.24 - 7.49 (m, 3 H) 7.63 - 7.78 (m, 2 H) 7.92 (s, 1 H) 8.19 (s, 1 H) 8.76 (d, J=4.70 Hz, 1 H) 10.42 (s, 1 H), LCMS (m/z) (M+H) = 542.4, Rt = 0.66 min.
- The compounds listed below were prepared using methods similar to those described for the preparation of Example 171 using the appropriate starting materials.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.32 (s, 3 H) 3.13 - 3.25 (m, 4 H) 3.66 (s, 3 H) 3.84 - 3.94 (m, 4 H) 4.02 (s, 3 H) 7.02 (d, J=1.96 Hz, 1 H) 7.31 (dd, J=15.65, 8.22 Hz, 2 H) 7.40 (d, J=1.96 Hz, 1 H) 7.55 (dd, J=8.22, 1.96 Hz, 1 H) 7.61 (d, J=1.96 Hz, 1 H) 8.17 - 8.27 (m, 2 H). LCMS (m/z) (M+H) = 502.2, Rt = 0.87 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.32 (s, 3 H) 3.15 - 3.22 (m, 4 H) 3.66 (s, 3 H) 3.84 - 3.93 (m, 4 H) 6.99 (d, J=1.96 Hz, 1 H) 7.31 (d, J=8.22 Hz, 1 H) 7.39 (d, J=1.96 Hz, 1 H) 7.53 (d, J=8.22 Hz, 1 H) 7.58 (dd, J=8.02, 2.15 Hz, 1 H) 7.61 - 7.68 (m, 2 H) 7.87 (s, 1 H) 7.97 (d, J=7.83 Hz, 1 H). LCMS (m/z) (M+H) = 488.3, Rt = 0.93 min.
-
- 1H NMR (400 MHz, <cdcl3>) δ ppm 1.03 (t, J=7.43 Hz, 3 H) 2.29 (s, 3 H) 2.32 - 2.49 (m, 2 H) 3.17 (d, J=3.91 Hz, 4 H) 3.60 (s, 3 H) 3.80 - 3.94 (m, 4 H) 6.64 (s, 1 H) 6.99 (d, J=1.56 Hz, 1 H) 7.29 (d, J=8.61 Hz, 1 H) 7.49 - 7.62 (m, 2 H) 7.86 (d, J=4.30 Hz, 1 H) 8.06 (s, 1 H) 8.24 (s, 1 H) 8.85 (d, J=5.09 Hz, 1 H). LCMS (m/z) (M+H) = 483.2, Rt = 0.85 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.46 (t, J=7.04 Hz, 3 H) 2.31 (s, 3 H) 3.17 - 3.27 (m, 4 H) 3.66 (s, 3 H) 3.84 - 3.96 (m, 4 H) 4.21 (q, J=7.04 Hz, 2 H) 7.06 (d, J=2.35 Hz, 1 H) 7.23 (dd, J=10.76, 8.41 Hz, 1 H) 7.29 (d, J=8.22 Hz, 1 H) 7.42 (d, J=2.35 Hz, 1 H) 7.50 - 7.58 (m, 2 H) 7.61 (d, J=1.96 Hz, 1 H) 7.67 (dd, J=8.22, 1.96 Hz, 1 H). LCMS (m/z) (M+H) = 466.1, Rt = 0.87 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.36 (d, J=5.87 Hz, 6 H) 2.32 (s, 3 H) 3.15 - 3.26 (m, 4 H) 3.66 (s, 3 H) 3.84 - 3.96 (m, 4 H) 4.70 (dt, J=12.13, 6.06 Hz, 1 H) 7.02 (d, J=2.35 Hz, 1 H) 7.13 (dd, J=8.22, 1.57 Hz, 1 H) 7.29 (d, J=8.22 Hz, 1 H) 7.38 - 7.44 (m, 2 H) 7.45 - 7.52 (m, 2 H) 7.56 (dd, J=8.22, 2.35 Hz, 1 H) 7.61 (d, J=1.96 Hz, 1 H). LCMS (m/z) (M+H) = 462.2, Rt = 0.89 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.45 - 1.53 (m, 2 H) 1.77 - 1.85 (m, 2 H) 2.32 (s, 3 H) 3.16 - 3.26 (m, 4 H) 3.66 (s, 3 H) 3.84 - 3.96 (m, 4 H) 7.03 (d, J=2.35 Hz, 1 H) 7.30 (d, J=8.61 Hz, 1 H) 7.41 (d, J=2.35 Hz, 1 H) 7.45 - 7.52 (m, 1 H) 7.52 - 7.60 (m, 1 H) 7.60 - 7.66 (m, 1 H). LCMS (m/z) (M+H) = 503.1, Rt = 0.80 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.30 (s, 3 H) 2.99 - 3.20 (m, 4 H) 3.64 (s, 3 H) 3.78 - 3.94 (m, 4 H) 6.99 (d, J=1.96 Hz, 1 H) 7.27 (d, J=8.22 Hz, 1 H) 7.38 (d, J=1.96 Hz, 1 H) 7.47 - 7.63 (m, 3 H) 7.92 (d, J=7.04 Hz, 1 H), LCMS (m/z) (M+H) = 404.1, Rt = 0.75 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.45 (d, J=7.04 Hz, 6 H) 2.31 (s, 3 H) 3.03 - 3.19 (m, 4 H) 3.32 - 3.44 (m, 1 H) 3.63 (s, 3 H) 3.76 - 3.96 (m, 4 H) 6.93 (d, J=1.96 Hz, 1 H) 7.28 - 7.41 (m, 2 H) 7.58 - 7.70 (m, 2 H) 8.12 (dd, J=5.67, 1.37 Hz, 1 H) 8.23 (s, 1 H) 8.79 (d, J=5.87 Hz, 1 H), LCMS (m/z) (M+H) = 447.1, Rt = 0.60 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.31 (s, 3 H) 3.17 (br. s., 4 H) 3.64 (s, 3 H) 3.80 - 3.93 (m, 4 H) 6.99 (d, J=1.96 Hz, 1 H) 7.30 (d, J=8.22 Hz, 1 H) 7.39 (d, J=1.96 Hz, 1 H) 7.54 - 7.66 (m, 2 H) 7.75 (t, J=7.83 Hz, 1 H) 8.17 (d, J=8.22 Hz, 1 H) 8.29 (d, J=7.83 Hz, 1 H) 8.64 (s, 1 H) 9.07 (s, 1 H), LCMS (m/z) (M+H) = 472.3, Rt = 0.69 min.
-
- 1H NMR (400 MHz, METHANOL-d 4) δ ppm 1.67 (s, 6 H) 2.31 (s, 3 H) 3.05 - 3.19 (m, 4 H) 3.63 (s, 3 H) 3.79 - 3.92 (m, 4 H) 6.93 (d, J=1.57 Hz, 1 H) 7.26 - 7.40 (m, 2 H) 7.53 - 7.73 (m, 2 H) 8.10 (d, J=5.87 Hz, 1 H) 8.40 (s, 1 H) 8.76 (d, J=5.48 Hz, 1 H), LCMS (m/z) (M+H) = 463.3, Rt = 0.55 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.80 (s, 6 H) 2.24 (s, 3 H) 2.72 (s, 3 H) 3.09 (br. s., 4 H) 3.48 (s, 3 H) 3.66 - 3.77 (m, 4 H) 6.69 (d, J=1.96 Hz, 1 H) 7.25 (d, J=8.22 Hz, 1 H) 7.38 (d, J=1.96 Hz, 1 H) 7.56 (t, J=7.83 Hz, 1 H) 7.60 - 7.68 (m, 2 H) 7.81 (d, J=8.22 Hz, 1 H) 7.96 (d, J=7.43 Hz, 1 H) 8.10 (s, 1 H) 10.25 (s, 1 H), LCMS (m/z) (M+H) = 524, Rt = 0.70 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 2.24 (s, 3 H) 3.09 (br. s., 4 H) 3.48 (br. s., 3 H) 3.69 (d, J=4.30 Hz, 4 H) 4.33 (t, J=7.63 Hz, 1 H) 4.67 (t, J=6.26 Hz, 2 H) 4.96 (dd, J=8.22, 5.87 Hz, 2 H) 6.69 (d, J=1.96 Hz, 1 H) 7.24 (d, J=8.22 Hz, 1 H) 7.38 (d, J=1.96 Hz, 1 H) 7.46 - 7.54 (m, 1 H) 7.57 - 7.71 (m, 3 H) 7.83 (d, J=7.43 Hz, 1 H) 7.96 (s, 1 H) 10.21 (s, 1 H), LCMS (m/z) (M+H) = 460.2, Rt = 0.70 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.28 (t, J=7.63 Hz, 3 H) 2.25 (s, 3 H) 2.90 (q, J=7.70 Hz, 2 H) 3.09 (br. s., 4 H) 3.48 (s, 3 H) 3.64 - 3.88 (m, 4 H) 6.69 (d, J=1.96 Hz, 1 H) 7.27 (d, J=8.22 Hz, 1 H) 7.39 (d, J=1.96 Hz, 1 H) 7.58 - 7.69 (m, 2 H) 7.80 (d, J=4.70 Hz, 1 H) 7.87 (s, 1 H) 8.73 (d, J=5.09 Hz, 1 H) 10.51 (s, 1 H), LCMS (m/z) (M+H) = 433.1, Rt = 0.59 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.08 - 1.23 (m, 2 H) 1.31 (dd, J=8.02, 2.93 Hz, 2 H) 2.30 (s, 4 H) 3.02 - 3.18 (m, 4 H) 3.63 (s, 3 H) 3.78 - 3.92 (m, 4 H) 6.91 (d, J=1.96 Hz, 1 H) 7.24 - 7.42 (m, 2 H) 7.53 - 7.69 (m, 2 H) 7.81 - 8.04 (m, 2 H) 8.64 (d, J=5.48 Hz, 1 H), LCMS (m/z) (M+H) = 445.1, Rt = 0.60 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.71 (s, 3 H) 1.76 (s, 3 H) 2.31 (s, 3 H) 3.11 - 3.22 (m, 4 H) 3.64 (s, 3 H) 3.83 - 3.99 (m, 4 H) 7.03 (d, J=1.96 Hz, 1 H) 7.30 (d, J=8.22 Hz, 1 H) 7.41 (d, J=1.96 Hz, 1 H) 7.58 (dd, J=8.22, 2.35 Hz, 1 H) 7.64 (d, J=1.96 Hz, 1 H) 7.80 (dd, J=5.09, 1.57 Hz, 1 H) 8.08 (s, 1 H) 8.71 (d, J=5.09 Hz, 1 H), LCMS (m/z) (M+H) = 465.0, Rt = 0.79 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.30 (s, 3 H) 2.98 - 3.20 (m, 4 H) 3.64 (s, 3 H) 3.79 - 3.95 (m, 4 H) 4.45 - 4.65 (m, 1 H) 4.96 (t, J=6.26 Hz, 2 H) 5.11 (dd, J=8.61, 5.87 Hz, 2 H) 6.97 (d, J=2.35 Hz, 1 H) 7.30 (d, J=8.22 Hz, 1 H) 7.37 (d, J=1.96 Hz, 1 H) 7.53 - 7.67 (m, 2 H) 7.86 (dd, J=5.28, 1.37 Hz, 1 H) 7.99 (s, 1 H) 8.78 (d, J=5.48 Hz, 1 H), LCMS (m/z) (M+H) = 461.0, Rt = 0.61 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.74 - 1.89 (m, 4 H) 2.30 (s, 3 H) 3.05 - 3.20 (m, 4 H) 3.64 (s, 3 H) 3.80 - 3.93 (m, 4 H) 6.93 (d, J=1.96 Hz, 1 H) 7.26 - 7.43 (m, 2 H) 7.52 - 7.63 (m, 2 H) 7.67 - 7.80 (m, 1 H) 8.07 (s, 1 H) 8.64 (d, J=5.09 Hz, 1 H), LCMS (m/z) (M+H) = 470.0, Rt = 0.77 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.31 (s, 3 H) 3.17 - 3.22 (m, 4 H) 3.65 (s, 3 H) 3.85 - 3.91 (m, 4 H) 6.67 - 6.98 (m, 1 H) 7.02 (d, J=1.96 Hz, 1 H) 7.31 (d, J=8.22 Hz, 1 H) 7.40 (d, J=1.96 Hz, 1 H) 7.59 (dd, J=8.41, 2.15 Hz, 1 H) 7.65 (d, J=1.96 Hz, 1 H) 8.01 (d, J=5.09 Hz, 1 H) 8.17 (s, 1 H) 8.83 (d, J=5.09 Hz, 1 H). LCMS (m/z) (M+H) = 455.1, Rt = 0.75 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 2.24 (s, 3 H) 3.09 (br. s., 4 H) 3.43 - 3.52 (m, 3 H) 3.62 - 3.75 (m, 4 H) 3.86 (s, 1 H) 4.09 - 4.18 (m, 3 H) 6.69(d, J=1.96 Hz, 1 H) 7.20 - 7.28 (m, 1 H) 7.39 (d, J=1.96 Hz, 1 H) 7.48 - 7.58 (m, 2 H) 7.59 - 7.71 (m, 2 H) 7.86 - 7.92 (m, 2 H) 10.27 (s, 1 H). LCMS (m/z) (M+H) = 443.3, Rt = 0.71 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.84 (s, 6 H) 2.26 (s, 3 H) 3.09 (br. s., 4 H) 3.48 (s, 3 H) 3.66 - 3.72 (m, 5 H) 6.68 (d, J=1.57 Hz, 1 H) 7.30 (d, J=8.22 Hz, 1 H) 7.39 (d, J=1.96 Hz, 1 H) 7.60 (d, J=1.96 Hz, 1 H) 7.64 (dd, J=8.22, 1.96 Hz, 1 H) 8.28 (d, J=1.56 Hz, 1 H) 9.63 (d, J=1.96 Hz, 1H) 10.71 (s, 1 H). LCMS (m/z) (M+H) = 473.1, Rt = 0.67 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.31 (s, 3 H) 3.08 - 3.22 (m, 4 H) 3.64 (s, 3 H) 3.80 - 3.93 (m, 4 H) 7.01 (d, J=1.96 Hz, 1 H) 7.32 (d, J=8.22 Hz, 1 H) 7.40 (d, J=2.35 Hz, 1 H) 7.55 - 7.70 (m, 2 H) 8.57 (d, J=1.96 Hz, 1 H) 9.86 (d, J=1.57 Hz, 1 H). LCMS (m/z) (M+H) = 474.1, Rt = 0.76 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.15 - 1.34 (m, 4 H) 2.30 (s, 3 H) 2.33 - 2.45 (m, 1 H) 3.11 - 3.19 (m, 4 H) 3.64 (s, 3 H) 3.82 - 3.89 (m, 4 H) 6.95 (d, J=1.96 Hz, 1 H) 7.30 (d, J=8.22 Hz, 1 H) 7.36 (d, J=1.96 Hz, 1 H) 7.55 - 7.65 (m, 2 H) 7.96 (d, J=1.96 Hz, 1 H) 9.39 (d, J=1.96 Hz, 1 H). LCMS (m/z) (M+H) = 446.2, Rt = 0.68 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.77 - 1.92 (m, 6 H) 2.31 (s, 3 H) 3.13 - 3.23 (m, 4 H) 3.64 (s, 3 H) 3.81 - 3.95 (m, 4 H) 7.02 (d, J=1.96 Hz, 1 H) 7.31 (d, J=8.22 Hz, 1 H) 7.40 (d, J=2.35 Hz, 1 H) 7.60 (dd, J=8.22, 2.35 Hz, 1 H) 7.66 (d, J=1.96 Hz, 1 H) 8.33 (d, J=1.57 Hz, 1 H) 9.56 (d, J=1.96 Hz, 1 H). LCMS (m/z) (M+H) = 466.2, Rt = 0.74 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.33 (s, 3 H) 3.16 - 3.26 (m, 4 H) 3.67 (s, 3 H) 3.84 - 3.96 (m, 4 H) 7.02 (d, J=2.35 Hz, 1 H) 7.33 (d, J=8.22 Hz, 1 H) 7.42 (d, J=1.96 Hz, 1 H) 7.67 - 7.78 (m, 2 H) 7.94 (d, J=3.91 Hz, 1 H) 8.45 (s, 1 H) 8.98 (d, J=5.09 Hz, 1 H). LCMS (m/z) (M+H) = 473.1, Rt = 0.89 min.
-
- 1H NMR (500 MHz, DMSO-d 6) δ ppm 1.38 (t, J=7.25 Hz, 3 H) 2.23 (s, 3 H) 2.34 (s, 3 H) 3.11 (br. s., 4 H) 3.49 (s, 3 H) 3.72 (t, J=4.41 Hz, 4 H) 4.09 (q, J=7.25 Hz, 2 H) 6.70 (d, J=1.89 Hz, 1 H) 7.20 (d, J=8.20 Hz, 1 H) 7.39 (d, J=2.21 Hz, 1 H) 7.51 - 7.61 (m, 2 H) 8.33 (s, 1 H) 9.61 (s, 1 H). LCMS (m/z) (M+H) = 436.1, Rt = 0.67 min.
-
- 1H NMR (500 MHz, DMSO-d 6) δ ppm 2.22 (s, 3 H) 2.33 (s, 3 H) 3.10 (m, 4 H) 3.49 (s, 3 H) 3.72 (t, J=4.41 Hz, 4 H) 3.81 (s, 3 H) 6.70 (d, J=2.21 Hz, 1 H) 7.14 - 7.26 (m, 1 H) 7.39 (d, J=1.89 Hz, 1 H) 7.56 (dd, J=4.41, 2.21 Hz, 2 H) 8.27 (s, 1 H) 9.62 (s, 1 H). LCMS (m/z) (M+H) = 422.1, Rt = 0.62 min.
-
- 1H NMR (500 MHz, DMSO-d 6) δ ppm 1.42 (d, J=6.62 Hz, 6 H) 2.23 (s, 3 H) 2.35 (s, 3 H) 3.10 (br. s., 4 H) 3.49 (s, 3 H) 3.72 (t, J=4.41 Hz, 4 H) 4.43 (spt, J=6.62 Hz, 1 H) 6.70 (d, J=2.21 Hz, 1 H) 7.20 (d, J=8.20 Hz, 1 H) 7.39 (d, J=2.21 Hz, 1 H) 7.49 - 7.65 (m, 2 H) 8.38 (s, 1 H) 9.59 (s, 1 H). LCMS (m/z) (M+H) = 450.1, Rt = 0.72 min.
-
- 1H NMR (500 MHz, DMSO-d 6) δ ppm 1.42 (d, J=6.62 Hz, 6 H) 2.23 (s, 3 H) 2.35 (s, 3 H) 3.10 (br. s., 4 H) 3.49 (s, 3 H) 3.72 (t, J=4.41 Hz, 4 H) 4.43 (spt, J=6.62 Hz, 1 H) 6.70 (d, J=2.21 Hz, 1 H) 7.20 (d, J=8.20 Hz, 1 H) 7.39 (d, J=2.21 Hz, 1 H) 7.49 - 7.65 (m, 2 H) 8.38 (s, 1 H) 9.59 (s, 1 H). LCMS (m/z) (M+H) = 448.1, Rt = 0.78 min.
-
- 1H NMR (500 MHz, DMSO-d 6) δ ppm 2.26 (s, 3 H) 3.11 (br. s., 4 H) 3.50 (s, 3 H) 3.72 (t, J=4.41 Hz, 4 H) 4.16 (s, 3 H) 6.70 (d, J=1.89 Hz, 1 H) 7.28 (d, J=8.20 Hz, 1 H) 7.41 (d, J=1.89 Hz, 1 H) 7.51 (s, 1 H) 7.57 - 7.63 (m, 2 H) 10.38 (s, 1 H). LCMS (m/z) (M+H) = 476.1, Rt = 0.86 min.
-
- 1H NMR (500 MHz, DMSO-d 6) δ ppm 1.29 (d, J=6.94 Hz, 6 H) 2.25 (s, 3 H) 3.10 (br. s., 4 H) 3.13 - 3.22 (m, 1 H) 3.49 (s, 3 H) 3.68 - 3.74 (m, 4 H) 6.61 - 6.77 (m, 2 H) 7.25 (d, J=8.20 Hz, 1 H) 7.40 (d, J=2.21 Hz, 1 H) 7.58 - 7.74 (m, 2 H) 10.59 (s, 1 H). LCMS (m/z) (M+H) = 437.1, Rt = 0.87 min.
-
- 1H NMR (500 MHz, DMSO-d 6) δ ppm 0.92 - 0.99 (m, 2 H) 1.09 - 1.16 (m, 2 H) 2.19 - 2.24 (m, 1 H) 2.25 (s, 3 H) 3.10 (br. s., 4 H) 3.49 (s, 3 H) 3.71 (t, J=4.26 Hz, 4 H) 6.61 (s, 1 H) 6.70 (d, J=1.89 Hz, 1 H) 7.25 (d, J=8.83 Hz, 1 H) 7.40 (d, J=1.89 Hz, 1 H) 7.56 - 7.75 (m, 2 H) 10.56 (s, 1 H). LCMS (m/z) (M+H) = 435.1, Rt = 0.82 min.
-
-
-
-
-
-
-
-
- 1H NMR (500 MHz, DMSO-d 6) δ ppm 2.08 - 2.31 (m, 6 H) 3.11 (br. s., 4 H) 3.50 (s, 3 H) 3.72 (t, J=4.41 Hz, 4 H) 3.99 (s, 3 H) 6.69 (d, J=1.89 Hz, 1 H) 6.82 (s, 1 H) 7.25 (d, J=8.51 Hz, 1 H) 7.40 (d, J=1.89 Hz, 1 H) 7.52 - 7.70 (m, 3 H) 10.09 (s, 1 H). LCMS (m/z) (M+H) = 422.1, Rt = 0.69 min.
-
-
-
-
- 1H NMR (400 MHz, CDCl3) δ ppm 0.93 (dd, J=16.82, 6.65 Hz, 6 H) 1.57 - 2.08 (m, 7 H) 2.50 (s, 3 H) 2.81 - 2.95 (m, 1 H) 3.11 - 3.29 (m, 4 H) 3.42 (ddd, J=9.88, 7.14, 2.15 Hz, 1 H) 3.60 (s, 3 H) 3.71 - 4.01 (m, 7 H) 6.60 (d, J=1.96 Hz, 1 H) 7.00 (d, J=2.35 Hz, 1 H) 7.57 (br. s., 1 H) 8.23 (br. s., 1 H) 8.38 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 455.1, Rt = 0.52 min.
-
- 1H NMR (400 MHz, CDCl3) δ ppm 0.94 (dd, J=12.52, 6.65 Hz, 6 H) 1.42 - 2.01 (m, 8 H) 2.43 - 2.62 (m, 4 H) 3.06 (dd, J=9.98, 6.06Hz, 1 H) 3.20 (d, J=4.30 Hz, 4 H) 3.40 - 3.53 (m, 1 H) 3.60 (s, 3 H) 3.80 - 3.99 (m, 4 H) 4.03 - 4.24 (m, 1 H) 6.61 (d, J=1.57 Hz, 1 H) 7.00 (d,J=1.57 Hz, 1 H) 8.22 (br. s., 1 H) 8.40 (s, 1 H). LCMS (m/z) (M+H) = 455.1, Rt = 0.52 min.
-
- 1H NMR (400 MHz, CDCl3) δ ppm 1.50 - 1.83 (m, 7 H) 1.90 - 2.05 (m, 2 H) 2.08 - 2.22 (m, 1 H) 2.49 (s, 2 H) 2.55 - 2.63 (m, 1 H) 2.63 - 2.71 (m, 1 H) 3.15 - 3.27 (m, 4 H) 3.60 (s, 3 H) 3.84 - 3.94 (m, 5 H) 3.96 - 4.08 (m, 1 H) 4.15 - 4.32 (m, 1 H) 6.61 (d, J=1.96 Hz, 1 H) 6.99 (d, J=1.96 Hz, 1 H) 8.12 (d, J=1.57 Hz, 1 H) 8.41 (d, J=2.35 Hz, 1 H) 8.78 (br. s., 1 H). LCMS (m/z) (M+H) = 413.1, Rt = 0.43 min.
-
- 1H NMR (400 MHz, CDCl3) δ ppm 1.50 - 1.83 (m, 7 H) 1.90 - 2.05 (m, 2 H) 2.08 - 2.22 (m, 1 H) 2.49 (s, 2 H) 2.55 - 2.63 (m, 1 H) 2.63 - 2.71 (m, 1 H) 3.15 - 3.27 (m, 4 H) 3.60 (s, 3 H) 3.84 - 3.94 (m, 5 H) 3.96 - 4.08 (m, 1 H) 4.15 - 4.32 (m, 1 H) 6.61 (d, J=1.96 Hz, 1 H) 6.99 (d, J=1.96 Hz, 1 H) 8.12 (d, J=1.57 Hz, 1 H) 8.41 (d, J=2.35 Hz, 1 H) 8.78 (br. s., 1 H). LCMS (m/z) (M+H) = 413.1, Rt = 0.43 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.82 (s, 6 H) 2.69 (s, 3 H) 3.15 - 3.22 (m, 4 H) 3.67 (s, 3 H) 3.83 - 3.93 (m, 4 H) 6.98 (d, J=1.96 Hz, 1 H) 7.53 (d, J=1.96 Hz, 1 H) 7.65 (t, J=7.83 Hz, 1 H) 7.85 (d, J=7.83 Hz, 1 H) 7.99 (d, J=7.83 Hz, 1 H) 8.18 (s, 1 H) 8.39 (d, J=1.96 Hz, 1 H) 9.19 (s, 1 H). LCMS (m/z) (M+H) = 472.1, Rt = 0.60 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.72 (s, 3 H) 3.14 - 3.22 (m, 4 H) 3.67 (s, 3 H) 3.83 - 3.91 (m, 4 H) 6.97 (d, J=2.30 Hz, 1 H) 7.54 (d, J=2.25 Hz, 1 H) 8.19 (dd, J=5.01, 1.54 Hz, 1 H) 8.37 (s, 1 H) 8.43 (d, J=2.35 Hz, 1 H) 8.99 (d, J=5.14 Hz, 1 H) 9.23 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 474.0, Rt = 0.56 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.07 (t, J=18.73 Hz, 3 H) 2.69 (s, 3 H) 3.14 - 3.22 (m, 4 H) 3.67 (s, 3 H) 3.83 - 3.92 (m, 4 H) 6.97 (d, J=2.25 Hz, 1 H) 7.53 (d, J=2.20 Hz, 1 H) 8.03 (d, J=5.09 Hz, 1 H) 8.26 (d, J=0.73 Hz, 1 H) 8.39 (d, J=2.35 Hz, 1 H) 8.88 (d, J=5.09 Hz, 1 H) 9.17 (d, J=2.30 Hz, 1 H). LCMS (m/z) (M+H) = 470.1, Rt = 0.55 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.71 (s, 3 H) 3.16 - 3.22 (m, 4 H) 3.67 (s, 3 H) 3.84 - 3.92 (m, 4 H) 6.70 - 7.03 (m, 2 H) 7.54 (d, J=2.30 Hz, 1 H) 8.08 (d, J=5.14 Hz, 1 H) 8.26 (s, 1 H) 8.42 (d, J=2.40 Hz, 1 H) 8.91 (d, J=4.99 Hz, 1 H) 9.22 (d, J=2.30 Hz, 1 H). LCMS (m/z) (M+H) = 456.0, Rt = 0.50 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.01 (t, J=18.39 Hz, 3 H) 2.73 (s, 3 H) 3.12 - 3.25 (m, 4 H) 3.67 (s, 3 H) 3.81 - 3.95 (m, 4 H) 6.98 (d, J=1.96 Hz, 1 H) 7.56 (d, J=1.96 Hz, 1 H) 7.64 - 7.74 (m, 1 H) 7.84 (d, J=7.83 Hz, 1 H) 8.13 (d, J=7.83 Hz, 1 H) 8.22 (s, 1 H) 8.48 (d, J=2.35 Hz, 1 H) 9.32 (d, J=1.96 Hz, 1 H). LCMS (m/z) (M+H) = 469.1, Rt = 0.62 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.73 (s, 3 H) 3.15 - 3.23 (m, 4 H) 3.67 (s, 3 H) 3.83 - 3.93 (m, 4 H) 6.74 - 7.09 (m, 2 H) 7.55 (d, J=2.30 Hz, 1 H) 7.67 - 7.76 (m, 1 H) 7.85 (d, J=7.58 Hz, 1 H) 8.17 (d, J=7.82 Hz, 1 H) 8.23 (s, 1 H) 8.47 (d, J=2.35 Hz, 1 H) 9.30 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 455.0, Rt = 0.57 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.48 (t, J=7.04 Hz, 3 H) 2.68 (s, 3 H) 3.13 - 3.23 (m, 4 H) 3.67 (s, 3 H) 3.82 - 3.93 (m, 4 H) 4.23 (q, J=7.04 Hz, 2 H) 6.97 (d, J=1.96 Hz, 1 H) 7.28 (dd, J=10.76, 8.41 Hz, 1 H) 7.52 (d, J=2.35 Hz, 1 H) 7.62 (ddd, J=8.22, 4.11, 2.15 Hz, 1 H) 7.74 (dd, J=8.02, 1.76 Hz, 1 H) 8.36 (d, J=2.35 Hz, 1 H) 9.15 (s, 1 H). LCMS (m/z) (M+H) = 467.3, Rt = 0.61 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.40 (d, J=5.87 Hz, 6 H) 2.70 (s, 3 H) 3.12 - 3.24 (m, 4 H) 3.67 (s, 3 H) 3.82 - 3.94 (m, 4 H) 4.74 (dt, J=12.13, 6.06 Hz, 1 H) 6.97 (d, J=1.96 Hz, 1 H) 7.29 (dd, J=10.56, 8.61 Hz, 1 H) 7.54 (d, J=1.96 Hz, 1 H) 7.64 (ddd, J=8.41, 4.11, 2.35 Hz, 1 H) 7.76 (dd, J=7.83, 1.96 Hz, 1 H) 8.41 (d, J=1.96 Hz, 1 H) 9.22 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 481.2, Rt = 0.66 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.44 (t, J=6.85 Hz, 3 H) 2.70 (s, 3 H) 3.14 - 3.23 (m, 4 H) 3.67 (s, 3 H) 3.83 - 3.93 (m, 4 H) 4.15 (q, J=6.78 Hz, 2 H) 6.97 (d, J=1.96 Hz, 1 H) 7.21 (dd, J=8.02, 2.15 Hz, 1 H) 7.47 (t, J=8.02 Hz, 1 H) 7.51 - 7.62 (m, 3 H) 8.41 (d, J=1.96 Hz, 1 H) 9.23 (d, J=1.96 Hz, 1 H). LCMS (m/z) (M+H) = 449.3, Rt = 0.59 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.37 (d, J=5.87 Hz, 6 H) 2.70 (s, 3 H) 3.15 - 3.24 (m, 4 H) 3.67 (s, 3 H) 3.81 - 3.94 (m, 4 H) 4.72 (quin, J=6.16 Hz, 1 H) 6.97 (d, J=1.96 Hz, 1 H) 7.20 (dd, J=8.02, 2.15 Hz, 1 H) 7.47 (t, J=8.02 Hz, 1 H) 7.50 - 7.60 (m, 3 H) 8.42 (d, J=1.96 Hz, 1 H) 9.23 (d, J=1.96 Hz, 1 H). LCMS (m/z) (M+H) = 463.3, Rt = 0.63 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.47 (s, 9 H) 2.73 (s, 3 H) 3.15 - 3.24 (m, 4 H) 3.67 (s, 3 H) 3.82 - 3.93 (m, 4 H) 6.97 (d, J=1.96 Hz, 1 H) 7.55 (d, J=2.35 Hz, 1 H) 7.78 - 7.87 (m, 1 H) 8.07 (s, 1 H) 8.46 (d, J=1.96 Hz, 1 H) 8.76 (d, J=5.09 Hz, 1 H) 9.27 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 462.3, Rt = 0.47 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.42 (d, J=6.65 Hz, 6 H) 2.72 (s, 3 H) 3.15 - 3.22 (m, 4 H) 3.23 - 3.30 (m, 1 H) 3.67 (s, 3 H) 3.82 - 3.93 (m, 4 H) 6.97 (d, J=1.96 Hz, 1 H) 7.54 (d, J=1.96 Hz, 1 H) 7.91 (dd, J=5.28, 1.37 Hz, 1 H) 8.02 (s, 1 H) 8.45 (d, J=2.35 Hz, 1 H) 8.76 (d, J=5.48 Hz, 1 H) 9.26 (d, J=1.96 Hz, 1 H). LCMS (m/z) (M+H) = 448.3, Rt = 0.44 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.70 (s, 3 H) 2.94 (s, 6 H) 3.15 - 3.23 (m, 4 H) 3.67 (s, 3 H) 3.83 - 3.93 (m, 4 H) 4.55 (s, 2 H) 6.96 (d, J=2.35 Hz, 1 H) 7.53 (d, J=1.96 Hz, 1 H) 8.17 (s, 1 H) 8.45 (d, J=1.96 Hz, 1 H) 8.50 (d, J=6.65 Hz, 2 H) 9.21 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 540.3, Rt = 0.50 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.43 (t, J=7.24 Hz, 3 H) 2.67 (s, 3 H) 3.11 - 3.20 (m, 4 H) 3.21 - 3.29 (m, 2 H) 3.67 (s, 3 H) 3.73 (br. s., 1 H) 3.83 - 3.94 (m, 4 H) 4.11 (br. s., 1 H) 6.96 (d, J=2.35 Hz, 1 H) 7.51 (d, J=1.96 Hz, 1 H) 7.58 (s, 1 H) 7.88 (d, J=8.61 Hz, 2 H) 8.36 (d, J=1.96 Hz, 1 H) 9.12 (d, J=1.96 Hz, 1 H). LCMS (m/z) (M+H) = 585.2, Rt = 0.55 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.45 - 1.53 (m, 2 H) 1.78 - 1.88 (m, 2 H) 2.70 (s, 3 H) 3.11 - 3.23 (m, 4 H) 3.66 (s, 3 H) 3.81 - 3.92 (m, 4 H) 6.96 (d, J=1.96 Hz, 1 H) 7.48 - 7.58 (m, 2 H) 7.65 (dd, J=7.83, 1.57 Hz, 1 H) 7.70 (dd, J=7.63, 1.37 Hz, 1 H) 8.28 (d, J=2.35 Hz, 1 H) 9.19 (d, J=1.96 Hz, 1 H). LCMS (m/z) (M+H) = 504.2, Rt = 0.59 min.
- The following compounds were prepared using methods similar to those described in Method 7 and Example 171 using the appropriate starting materials.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 3.14 - 3.24 (m, 4 H) 3.67 (s, 3 H) 3.82 - 3.93 (m, 4 H) 7.10 (d, J=1.96 Hz, 1 H) 7.59 (d, J=2.35 Hz, 1 H) 8.17 (d, J=4.70 Hz, 1 H) 8.30 - 8.39 (m, 2 H) 8.75 (d, J=2.74 Hz, 1 H) 8.96 (d, J=4.70 Hz, 1 H). LCMS (m/z) (M+H) = 494.0, Rt = 0.74 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.06 (t, J=18.78 Hz, 3 H) 3.12 - 3.26 (m, 4 H) 3.67 (s, 3 H) 3.82 - 3.95 (m, 4 H) 7.10 (d, J=2.35 Hz, 1 H) 7.59 (d, J=1.96 Hz, 1 H) 8.01 (d, J=5.09 Hz, 1 H) 8.23 (s, 1 H) 8.35 (d, J=2.35 Hz, 1 H) 8.75 (d, J=2.74 Hz, 1 H) 8.85 (d, J=5.09 Hz, 1 H). LCMS (m/z) (M+H) = 490.1, Rt = 0.72 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 3.14 - 3.24 (m, 4 H) 3.67 (s, 3 H) 3.85 - 3.94 (m, 4 H) 6.73 - 7.06 (m, 1 H) 7.10 (d, J=1.96 Hz, 1 H) 7.59 (d, J=1.96 Hz, 1 H) 7.65 - 7.74 (m, 1 H) 7.82 (d, J=7.43 Hz, 1 H) 8.14 (d, J=7.43 Hz, 1 H) 8.19 (s, 1 H) 8.34 (d, J=2.35 Hz, 1 H) 8.74 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 475.0, Rt = 0.75 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 3.15 - 3.24 (m, 4 H) 3.67 (s, 3 H) 3.85 - 3.93 (m, 4 H) 7.11 (d, J=1.96 Hz, 1 H) 7.59 (d, J=2.35 Hz, 1 H) 7.73 - 7.83 (m, 1 H) 7.95 (d, J=7.83 Hz, 1 H) 8.26 (d, J=7.83 Hz, 1 H) 8.32 (s, 1 H) 8.35 (d, J=2.74 Hz, 1 H) 8.75 (d, J=2.74 Hz, 1 H). LCMS (m/z) (M+H) = 493.0, Rt = 0.84 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 3.12 - 3.24 (m, 4 H) 3.67 (s, 3 H) 3.84 - 3.93 (m, 4 H) 4.03 (s, 3 H) 7.10 (d, J=1.96 Hz, 1 H) 7.37 (d, J=8.61 Hz, 1 H) 7.59 (d, J=1.96 Hz, 1 H) 8.21 - 8.37 (m, 3 H) 8.72 (d, J=2.74 Hz, 1 H). LCMS (m/z) (M+H) = 523.2, Rt = 0.83 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 3.14 - 3.23 (m, 4 H) 3.67 (s, 3 H) 3.84 - 3.93 (m, 4 H) 7.10 (d, J=1.96 Hz, 1 H) 7.48 - 7.56 (m, 2 H) 7.68 - 7.80 (m, 2 H) 7.86 (d, J=2.74 Hz, 1 H) 7.92 (d, J=7.83 Hz, 1 H) 8.23 (d, J=7.83 Hz, 1 H) 8.28 (s, 1 H). LCMS (m/z) (M+H) = 492.2, Rt = 0.90 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 3.17 - 3.25 (m, 4 H) 3.68 (s, 3 H) 3.86 - 3.93 (m, 4 H) 7.19 (s, 1 H) 7.20 - 7.29 (m, 1 H) 7.64 - 7.72 (m, 2 H) 7.72 - 7.81 (m, 1 H) 7.85 - 7.96 (m, 2 H) 8.24 (d, J=7.83 Hz, 1 H) 8.30 (s, 1 H). LCMS (m/z) (M+H) = 476.3, Rt = 0.86 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 3.18 - 3.23 (m, 4 H) 3.68 (s, 3 H) 3.85 - 3.92 (m, 4 H) 7.22 (d, J=1.96 Hz, 1 H) 7.68 (dd, J=8.22, 1.57 Hz, 1 H) 7.77 - 7.83 (m, 1 H) 7.83 - 7.89 (m, 2 H) 7.93 (d, J=1.57 Hz, 1 H) 7.98 (d, J=7.83 Hz, 1 H) 8.26 - 8.33 (m, 2 H) 8.36 (s, 1 H). LCMS (m/z) (M+H) = 483.3, Rt = 0.86 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 3.12 - 3.24 (m, 4 H) 3.67 (s, 3 H) 3.85 - 3.93 (m, 4 H) 6.73 - 7.05 (m, 1 H) 7.08 (d, J=2.35 Hz, 1 H) 7.52 (dd, J=5.28, 3.33 Hz, 2 H) 7.63 - 7.75 (m, 2 H) 7.80 (d, J=7.83 Hz, 1 H) 7.85 (d, J=2.35 Hz, 1 H) 8.11 (d, J=7.83 Hz, 1 H) 8.15 (s, 1 H). LCMS (m/z) (M+H) = 474.0, Rt = 0.88 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 3.15 - 3.25 (m, 4 H) 3.67 (s, 3 H) 3.82 - 3.95 (m, 4 H) 7.10 (d, J=1.96 Hz, 1 H) 7.48 - 7.59 (m, 2 H) 7.74 (dd, J=8.80, 2.54 Hz, 1 H) 7.87 (d, J=2.35 Hz, 1 H) 8.14 (d, J=4.70 Hz, 1 H) 8.32 (s, 1 H) 8.94 (d, J=5.09 Hz, 1 H). LCMS (m/z) (M+H) = 493.1, Rt = 0.87 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.05 (t, J=18.78 Hz, 3 H) 3.16 - 3.25 (m, 4 H) 3.67 (s, 3 H) 3.83 - 3.94 (m, 4 H) 7.12 (d, J=2.35 Hz, 1 H) 7.48 - 7.58 (m, 2 H) 7.74 (dd, J=8.80, 2.54 Hz, 1 H) 7.87 (d, J=2.74 Hz, 1 H) 7.98 (d, J=4.70 Hz, 1 H) 8.20 (s, 1 H) 8.83 (d, J=5.09 Hz, 1 H). LCMS (m/z) (M+H) = 489.2, Rt = 0.81 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 3.18 - 3.26 (m, 4 H) 3.68 (s, 3 H) 3.84 - 3.94 (m, 4 H) 7.24 (d, J=1.96 Hz, 1 H) 7.70 (dd, J=8.22, 1.57 Hz, 1 H) 7.82 - 7.91 (m, 2 H) 7.95 (d, J=1.57 Hz, 1 H) 8.20 (d, J=4.30 Hz, 1 H) 8.37 (s, 1 H) 8.99 (d, J=5.09 Hz, 1 H). LCMS (m/z) (M+H) = 484.2, Rt = 0.72 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.07 (t, J=18.78 Hz, 3 H) 3.18 - 3.28 (m, 4 H) 3.68 (s, 3 H) 3.83 - 3.96 (m, 4 H) 7.27 (d, J=1.96 Hz, 1 H) 7.69 (dd, J=8.22, 1.57 Hz, 1 H) 7.87 (dd, J=5.09, 3.13 Hz, 2 H) 7.94 (d, J=1.17 Hz, 1 H) 8.04 (d, J=4.70 Hz, 1 H) 8.27 (s, 1 H) 8.88 (d, J=4.70 Hz, 1 H). LCMS (m/z) (M+H) = 484.2, Rt = 0.72 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 3.18 - 3.27 (m, 4 H) 3.68 (s, 3 H) 3.86 - 3.95 (m, 4 H) 6.73 - 7.07 (m, 1 H) 7.18 - 7.29 (m, 2 H) 7.62 - 7.73 (m, 3 H) 7.79 (d, J=7.83 Hz, 1 H) 7.89 (dd, J=7.04, 2.74 Hz, 1 H) 8.12 (d, J=7.83 Hz, 1 H) 8.16 (s, 1 H). LCMS (m/z) (M+H) = 458.2, Rt = 0.79 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 3.19 - 3.26 (m, 4 H) 3.68 (s, 3 H) 3.86 - 3.95 (m, 4 H) 7.17 - 7.32 (m, 2 H) 7.63 - 7.74 (m, 2 H) 7.92 (dd, J=6.85, 2.54 Hz, 1 H) 8.15 (d, J=4.70 Hz, 1 H) 8.33 (s, 1 H) 8.94 (d, J=5.09 Hz, 1 H). LCMS (m/z) (M+H) = 477.2, Rt = 0.78 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.06 (t, J=18.59 Hz, 3 H) 3.19 - 3.27 (m, 4 H) 3.68 (s, 3 H) 3.86 - 3.97 (m, 4 H) 7.17 - 7.31 (m, 2 H) 7.63 - 7.75 (m, 2 H) 7.91 (dd, J=7.04, 2.35 Hz, 1 H) 7.99 (d, J=4.70 Hz, 1 H) 8.21 (s, 1 H) 8.84 (d, J=5.09 Hz, 1 H). LCMS (m/z) (M+H) = 473.2, Rt = 0.76 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 3.18 - 3.24 (m, 4 H) 3.68 (s, 3 H) 3.85 - 3.91 (m, 4 H) 6.76 - 7.10 (m, 1 H) 7.22 (d, J=2.35 Hz, 1 H) 7.64 - 7.69 (m, 1 H) 7.69 - 7.77 (m, 1 H) 7.80 - 7.89 (m, 3 H) 7.93 (d, J=1.57 Hz, 1 H) 8.19 (d, J=7.83 Hz, 1 H) 8.23 (s, 1 H). LCMS (m/z) (M+H) = 465.3, Rt = 0.78 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.44 (d, J=7.04 Hz, 6 H) 3.12 - 3.21 (m, 4 H) 3.66 (s, 3 H) 3.83 - 3.93 (m, 4 H) 7.04 (d, J=1.96 Hz, 1 H) 7.50 (d, J=1.96 Hz, 1 H) 7.55 (d, J=8.61 Hz, 1 H) 7.71 - 7.78 (m, 1 H) 7.86 (d, J=2.35 Hz, 1 H) 8.00 (d, J=5.48 Hz, 1 H) 8.11 (s, 1 H) 8.77 (d, J=5.87 Hz, 1 H). LCMS (m/z) (M+H) = 467.1, Rt = 0.67 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.45 (d, J=7.04 Hz, 6 H) 3.14 - 3.22 (m, 4 H) 3.67 (s, 3 H) 3.84 - 3.92 (m, 4 H) 7.07 (d, J=2.35 Hz, 1 H) 7.57 (d, J=2.35 Hz, 1 H) 8.05 (dd, J=5.48, 1.17 Hz, 1 H) 8.16 (s, 1 H) 8.34 (d, J=2.74 Hz, 1 H) 8.76 (d, J=2.74 Hz, 1 H) 8.80 (d, J=5.48 Hz, 1 H). LCMS (m/z) (M+H) = 468.1, Rt = 0.59 min.
- The compounds listed below were prepared using methods similar to those described for the preparation of Example 171 using the appropriate starting materials.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 3.16 - 3.24 (m, 4 H) 3.67 (s, 3 H) 3.85 - 3.92 (m, 4 H) 7.14 (d, J=1.96 Hz, 1 H) 7.48 (d, J=7.83 Hz, 1 H) 7.55 - 7.65 (m, 2 H) 7.97 (d, J=7.83 Hz, 1 H) 8.18 (s, 1 H) 8.39 (d, J=2.35 Hz, 1 H) 8.93 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 493.2, Rt = 0.86 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.57 (s, 6 H) 3.14 - 3.24 (m, 4 H) 3.67 (s, 3 H) 3.84 - 3.92 (m, 4 H) 7.13 (d, J=1.96 Hz, 1 H) 7.31 - 7.39 (m, 2 H) 7.58 - 7.66 (m, 2 H) 7.82 (s, 1 H) 8.37 (d, J=2.35 Hz, 1 H) 8.91 (d, J=1.96 Hz, 1 H). LCMS (m/z) (M+H) = 483.2, Rt = 0.67 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 3.16 - 3.25 (m, 4 H) 3.67 (s, 3 H) 3.84 - 3.94 (m, 4 H) 7.15 (d, J=2.35 Hz, 1 H) 7.46 (d, J=7.83 Hz, 1 H) 7.52 - 7.62 (m, 2 H) 7.69 (d, J=8.61 Hz, 1 H) 7.91 - 7.99 (m, 2 H) 8.01 (d, J=2.35 Hz, 1 H) 8.17 (s, 1 H). LCMS (m/z) (M+H) = 492.2, Rt = 0.92 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 3.16 - 3.25 (m, 4 H) 3.67 (s, 3 H) 3.84 - 3.95 (m, 4 H) 6.60 - 6.97 (m, 1 H) 7.13 (d, J=2.35 Hz, 1 H) 7.35 (d, J=7.83 Hz, 1 H) 7.51 (t, J=7.83 Hz, 1 H) 7.57 (d, J=1.96 Hz, 1 H) 7.69 (d, J=8.22 Hz, 1 H) 7.85 (d, J=8.22 Hz, 1 H) 7.94 (dd, J=8.22, 1.96 Hz, 1 H) 7.97 - 8.07 (m, 2 H). LCMS (m/z) (M+H) = 474.2, Rt = 0.84 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.77 (s, 6 H) 3.15 - 3.22 (m, 4 H) 3.67 (s, 3 H) 3.83 - 3.93 (m, 4 H) 7.10 (d, J=2.35 Hz, 1 H) 7.35 (d, J=8.22 Hz, 1 H) 7.45 (t, J=8.02 Hz, 1 H) 7.56 (d, J=2.35 Hz, 1 H) 7.66 - 7.75 (m, 2 H) 7.91 - 7.98 (m, 2 H) 8.01 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 491.3, Rt = 0.85 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.43 (s, 3 H) 2.48 (s, 3 H) 3.10 - 3.22 (m, 4 H) 3.67 (s, 3 H) 3.82 - 3.94 (m, 4 H) 6.95 (d, J=1.96 Hz, 1 H) 7.40 (d, J=1.96 Hz, 1 H) 7.50 (d, J=7.83 Hz, 1 H) 7.79 - 7.99 (m, 4 H) 8.16 (s, 1 H) 8.61 (s, 1 H) 9.44 (s, 1 H). LCMS (m/z) (M+H) = 552.3, Rt = 0.69 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.39 (s, 3 H) 3.09 - 3.24 (m, 4 H) 3.65 (s, 3 H) 3.81 - 4.07 (m, 4 H) 7.03 (d, J=1.96 Hz, 1 H) 7.11 - 7.19 (m, 1 H) 7.35 (t, J=7.83 Hz, 2 H) 7.41 - 7.46 (m, 2 H) 7.67 (d, J=7.83 Hz, 2 H) 7.81 (s, 1 H) 7.84 (dd, J=7.83, 1.96 Hz, 1 H), LCMS (m/z) (M+H) = 404.1, Rt = 0.77 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.40 (s, 3 H) 3.07 - 3.23 (m, 4 H) 3.65 (s, 3 H) 3.80 - 3.92 (m, 4 H) 6.51 - 6.95 (m, 1 H) 7.02 (d, J=1.96 Hz, 1 H) 7.31 (d, J=7.83 Hz, 1 H) 7.38 - 7.62 (m, 3 H) 7.74 - 7.89 (m, 3 H) 7.97 (s, 1 H), LCMS (m/z) (M+H) = 454.1, Rt = 0.85 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.74 (s, 6 H) 2.40 (s, 3 H) 3.09 - 3.23 (m, 4 H) 3.65 (s, 3 H) 3.82 - 3.94 (m, 4 H) 7.03 (d, J=1.96 Hz, 1 H) 7.31 (d, J=7.83 Hz, 1 H) 7.38 - 7.51 (m, 3 H) 7.68 (d, J=8.22 Hz, 1 H) 7.80 - 7.89 (m, 2 H) 7.93 (s, 1 H), LCMS (m/z) (M+H) = 471.2, Rt = 0.85 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.42 (s, 3 H) 3.01 - 3.20 (m, 4 H) 3.64 (s, 3 H) 3.80 - 3.91 (m, 4 H) 6.94 (d, J=1.96 Hz, 1 H) 7.39 (d, J=2.35 Hz, 1 H) 7.44 - 7.63 (m, 2 H) 7.83 - 8.00 (m, 3 H) 8.15 - 8.31 (m, 1 H) 8.42 (d, J=5.48 Hz, 1 H), LCMS (m/z) (M+H) = 405.1, Rt = 0.56 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.41 (s, 3 H) 3.07 - 3.18 (m, 4 H) 3.64 (s, 3 H) 3.81 - 3.92 (m, 4 H) 6.92 (d, J=1.96 Hz, 1 H) 7.38 (d, J=1.96 Hz, 1 H) 7.48 (d, J=7.83 Hz, 1 H) 7.84 - 8.01 (m, 3 H) 8.52 (d, J=5.09 Hz, 1 H) 8.61 (d, J=8.22 Hz, 1 H) 9.42 (d, J=2.35 Hz, 1 H), LCMS (m/z) (M+H) = 405.1, Rt = 0.51 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.41 (s, 3 H) 3.00 - 3.22 (m, 4 H) 3.65 (s, 3 H) 3.82 - 3.98 (m, 4 H) 7.01 (d, J=1.56 Hz, 1 H) 7.35 - 7.54 (m, 3 H) 7.79 - 7.99 (m, 2 H) 8.48 - 8.65 (m, 2 H), LCMS (m/z) (M+H) = 473.2, Rt = 0.86 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.25 (t, J=7.43 Hz, 3 H) 2.39 (s, 3 H) 2.66 (q, J=7.56 Hz, 2 H) 3.08 - 3.23 (m, 4 H) 3.65 (s, 3 H) 3.80 - 3.98 (m, 4 H) 6.85 - 7.09 (m, 2 H) 7.26 (t, J=7.83 Hz, 1 H) 7.35 - 7.58 (m, 4 H) 7.75 - 7.98 (m, 2 H), LCMS (m/z) (M+H) = 432.3, Rt = 0.87 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.26 (d, J=7.04 Hz, 7 H) 2.39 (s, 3 H) 2.90 (dt, J=13.69, 6.85 Hz, 1 H) 3.13 - 3.25 (m, 4 H) 3.65 (s, 3 H) 3.81 - 4.01 (m, 4 H) 7.03 (d, J=7.43 Hz, 1 H) 7.09 (d, J=1.57 Hz, 1 H) 7.26 (t, J=7.83 Hz, 1 H) 7.38 - 7.52 (m, 3 H) 7.56 (s, 1 H) 7.78 - 7.91 (m, 1 H), LCMS (m/z) (M+H) = 446.3, Rt = 0.92 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.40 (s, 3 H) 3.17 (br. s., 4 H) 3.65 (s, 3 H) 3.78 - 3.99 (m, 4 H) 6.99 (d, J=1.96 Hz, 1 H) 7.41 (d, J=1.96 Hz, 1 H) 7.46 (d, J=7.83 Hz, 1 H) 7.58 (t, J=8.02 Hz, 1 H) 7.82 - 7.90 (m, 3 H) 7.96 (d, J=7.83 Hz, 1 H) 8.52 (s, 1 H) 9.03 (s, 1 H), LCMS (m/z) (M+H) = 472.2, Rt = 0.69 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.41 (s, 3 H) 2.66 (s, 3 H) 3.25 (br. s., 4 H) 3.66 (s, 3 H) 3.83 - 3.99 (m, 4 H) 7.12 (s, 1 H) 7.49 (dt, J=16.34, 8.07 Hz, 3 H) 7.77 - 7.96 (m, 4 H) 8.42 (s, 1 H), LCMS (m/z) (M+H) = 486.3, Rt = 0.80 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.54 (s, 6 H) 2.39 (s, 3 H) 3.16 (br. s., 4 H) 3.64 (s, 3 H) 3.79 - 4.13 (m, 4 H) 6.98 (d, J=1.57 Hz, 1 H) 7.18 - 7.34 (m, 2 H) 7.35 - 7.50 (m, 2 H) 7.58 (d, J=7.04 Hz, 1 H) 7.75 - 7.94 (m, 1 H), LCMS (m/z) (M+H) = 462.3, Rt = 0.70 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.41 (s, 3 H) 3.16 - 3.22 (m, 4 H) 3.67 (s, 3 H) 3.83 (s, 3 H) 3.85 - 3.91 (m, 4 H) 6.74 (dt, J=7.14, 2.10 Hz, 1 H) 7.01 (d, J=1.96 Hz, 1 H) 7.20 - 7.31 (m, 2 H) 7.39 - 7.44 (m, 2 H) 7.46 (d, J=7.83 Hz, 1 H) 7.82 (s, 1 H) 7.86 (dd, J=8.02, 1.76 Hz, 1 H). LCMS (m/z) (M+H) = 434.3, Rt = 0.80 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.42 (s, 3 H) 3.17 - 3.23 (m, 4 H) 3.67 (s, 3 H) 3.85 - 3.93 (m, 4 H) 7.00 - 7.09 (m, 2 H) 7.41 - 7.50 (m, 3 H) 7.67 (d, J=9.39 Hz, 1 H) 7.82 - 7.90 (m, 3 H). LCMS (m/z) (M+H) = 488.4, Rt = 0.96 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.43 (s, 3 H) 3.13 - 3.19 (m, 4 H) 3.66 (s, 3 H) 3.85 - 3.91 (m, 4 H) 4.01 (s, 3 H) 6.95 (d, J=1.96 Hz, 1 H) 7.40 (d, J=1.96 Hz, 1 H) 7.50 (d, J=7.83 Hz, 1 H) 7.89 (s, 1 H) 7.90 - 7.96 (m, 1 H) 8.21 (d, J=16.04 Hz, 2 H) 8.88 (s, 1 H). LCMS (m/z) (M+H) = 435.3, Rt = 0.57 min.
-
- Step 1: To a 0.15M solution of methyl 2-chloro-1'-methyl-5'-morpholino-6'-oxo-1',6'-dihydro-[3,3'-bipyridine]-5-carboxylate (1.00 equiv.) in DME was added trimethylboroxine (2.00 equiv.), PdCl2(dppf).CH2Cl2 adduct (0.10 equiv.), and 2M aqueous sodium carbonate (3.00 equiv.). The reaction mixture was irradiated at 130 °C for 15 min in the microwave. The cooled reaction mixture was diluted with 2:1 DCM:MeOH and filtered. The filtrate was concentrated and purified by flash chromatography over silica gel (heptanes with 50-100% 10:1 ethyl acetate:methanol gradient) to give methyl 1',2-dimethyl-5'-morpholino-6'-oxo-1',6'-dihydro-[3,3'-bipyridine]-5-carboxylate (17.0 % yield) as a yellow film. LCMS (m/z) (M+H) = 344.1, Rt = 0.43 min.
- Step 2: To a 0.10M solution of methyl 1',2-dimethyl-5'-morpholino-6'-oxo-1',6'-dihydro-[3,3'-bipyridine]-5-carboxylate (1.00 equiv.) in THF was added 2.0M aqueous lithium hydroxide (3.00 equiv.). The mixture was stirred at ambient temperature for 1.5 hr. The reaction mixture was acidified to pH 3 with aqueous HCl and concentrated to give crude 1',2-dimethyl-5'-morpholino-6'-oxo-1',6'-dihydro-[3,3'-bipyridine]-5-carboxylic acid as a yellow solid (assumed 100% yield). LCMS (m/z) (M+H) = 330.0, Rt = 0.32 min.
- The compounds listed below were prepared using methods similar to those described for the preparation of Example 171 using the appropriate starting materials.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.74 (s, 3 H) 3.13 - 3.26 (m, 4 H) 3.67 (s, 3 H) 3.83 - 3.94 (m, 4 H) 7.01 (d, J=1.96 Hz, 1 H) 7.49 (d, J=7.83 Hz, 1 H) 7.54 (d, J=2.35 Hz, 1 H) 7.60 (t, J=8.02 Hz, 1 H) 7.98 (d, J=8.22 Hz, 1 H) 8.19 (s, 1 H) 8.55 (d, J=1.96 Hz, 1 H) 9.11 (d, J=1.96 Hz, 1 H). LCMS (m/z) (M+H) = 473.2, Rt = 0.69 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.76 (s, 6 H) 2.77 (s, 3 H) 3.12 - 3.25 (m, 4 H) 3.67 (s, 3 H) 3.80 - 3.94 (m, 4 H) 7.01 (d, J=2.35 Hz, 1 H) 7.36 (d, J=8.22 Hz, 1 H) 7.46 (t, J=7.83 Hz, 1 H) 7.55 (d, J=1.96 Hz, 1 H) 7.75 (d, J=8.22 Hz, 1 H) 7.98 (s, 1 H) 8.64 (d, J=1.96 Hz, 1 H) 9.13 (d, J=1.57 Hz, 1 H). LCMS (m/z) (M+H) = 472.3, Rt = 0.63 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.73 (s, 3 H) 3.15 - 3.24 (m, 4 H) 3.67 (s, 3 H) 3.83 - 3.94 (m, 4 H) 6.63 - 6.97 (m, 1 H) 7.01 (d, J=1.96 Hz, 1 H) 7.37 (d, J=7.83 Hz, 1 H) 7.48 - 7.60 (m, 2 H) 7.87 (d, J=8.22 Hz, 1 H) 8.02 (s, 1 H) 8.51 (d, J=1.96 Hz, 1 H) 9.09 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 455.2, Rt = 0.60 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.56 (s, 6 H) 2.77 (s, 3 H) 3.11 - 3.25 (m, 4 H) 3.67 (s, 3 H) 3.80 - 3.94 (m, 4 H) 7.02 (d, J=1.96 Hz, 1 H) 7.29 - 7.41 (m, 2 H) 7.56 (d, J=1.96 Hz, 1 H) 7.64 (d, J=7.04 Hz, 1 H) 7.83 (s, 1 H) 8.67 (d, J=1.57 Hz, 1 H) 9.13 (d, J=1.96 Hz, 1 H). LCMS (m/z) (M+H) = 463.3, Rt = 0.52 min.
-
- To a 0.1M solution of N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)-3-(trifluoromethyl)benzamide (1.00 equiv.) in DCM was added benzyltriethylammonium chloride (4.10 equiv.) and potassium permanganate (4.00 equiv.). The mixture was stirred at 45 °C for 7 hr. The cooled reaction mixture was diluted with water and treated with sodium bisulfite (12.0 equiv.). The mixture was stirred for 15 min at ambient temperature. Additional water was added, and the mixture was extracted with DCM. The organic layer was washed with saturated aqueous sodium bicarbonate, dried over sodium sulfate, filtered, and concentrated. The crude material was purified by reverse-phase HPLC and lyophilized to give N-(4-methyl-3-(1-methyl-6-oxo-5-(3-oxomorpholino)-1,6-dihydropyridin-3-yl)phenyl)-3-(trifluoromethyl)benzamide as its TFA salt, a white solid, in 11.0% yield.
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.35 (s, 3 H) 3.67 - 3.80 (m, 5 H) 4.02 - 4.12 (m, 2 H) 4.31 (s, 2 H) 7.33 (d, J=8.22 Hz, 1 H) 7.58 - 7.68 (m, 2 H) 7.71 - 7.78 (m, 2 H) 7.80 (d, J=2.35 Hz, 1 H) 7.91 (d, J=7.83 Hz, 1 H) 8.22 (d, J=7.83 Hz, 1 H) 8.28 (s, 1 H); LCMS (m/z) (M+H) = 486.1, Rt = 0.86 min.
-
- Step 1: To a solution of 5-(5-amino-2-methylphenyl)-1-methyl-3-morpholinopyridin-2(1H)-one (1.0 equiv.) in DMF (0.09M) was added 2-fluoroisonicotinic acid (1.2 equiv), EDC (1.2 equiv.) and HOAt (1.2 equiv.). The solution was stirred at room temperature overnight. Worked up by partitioning between water and ethyl acetate, the organic phase was dried with sodium sulfate, filtered and concentrated. The crude amterial was used for the next step without further purification. LCMS (m/z) (M+H) = 423, Rt = 0.74 min.
- Step 2: To a solution of 2-fluoro-N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)isonicotinamide (1.0 equiv.) in DMSO was added dimethyl amine (1.5 equiv., HCl salt) and DIEA (2.0 equiv.) and the reaction was heated to 140 C for 3 hours. The solution was then filtered through a HPLC filter and purified via reverse phase prep-HPLC. The pure fractions were lyophilized to yield 2-(dimethylamino)-N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)isonicotinamide as the TFA salt. 1H NMR (400 MHz, <cd3od>) δ ppm 2.31 (s, 3 H) 3.13 (d, J=3.52 Hz, 4 H) 3.34 (s, 6 H) 3.63 (s, 3 H) 3.78 - 3.91 (m, 4 H) 6.89 (d, J=1.96 Hz, 1 H) 7.19 - 7.39 (m, 3 H) 7.53 - 7.74 (m, 3 H) 8.04 (d, J=6.65 Hz, 1 H), LCMS (m/z) (M+H) = 449.2, Rt = 0.60 min.
- The compounds listed below were prepared using methods similar to those described for the preparation of Example 452 using the appropriate starting materials.
-
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.30 (s, 3 H) 2.61 (quin, J=7.73 Hz, 2 H) 3.03 - 3.16 (m, 4 H) 3.63 (s, 3 H) 3.79 - 4.05 (m, 4 H) 4.39 (t, J=7.63 Hz, 4 H) 6.89 (d, J=2.35 Hz, 1 H) 7.18 - 7.37 (m, 4 H) 7.53 - 7.67 (m, 2 H) 7.98 (d, J=6.65 Hz, 1 H), LCMS (m/z) (M+H) = 460.2, Rt = 0.60 min.
-
- 1H NMR (500 MHz, METHANOL-d 4) δ ppm 2.34 (s, 3 H) 3.16 (br. s., 4 H) 3.37 (s, 3 H) 3.39 (s, 3 H) 3.66 (s, 3 H) 3.74 (t, J=4.89 Hz, 2 H) 3.82 - 3.90 (m, 4 H) 3.94 (t, J=5.04 Hz, 2 H) 6.93 (d, J=1.89 Hz, 1 H) 7.29 - 7.39 (m, 3 H) 7.59 - 7.65 (m, 2 H) 7.73 (s, 1 H) 8.05 (d, J=6.31 Hz, 1 H), LCMS (m/z) (M+H) = 492.2, Rt = 0.64 min.
-
- 1H NMR (500 MHz, METHANOL-d 4) δ ppm 2.33 (s, 3 H) 3.04 - 3.18 (m, 4 H) 3.38 (s, 3 H) 3.66 (s, 3 H) 3.84 - 3.97 (m, 8 H) 6.94 (d, J=2.21 Hz, 1 H) 7.29 - 7.35 (m, 2 H) 7.37 (d, J=2.21 Hz, 1 H) 7.59 - 7.67 (m, 2 H) 7.77 (s, 1 H) 8.05 (d, J=6.62 Hz, 1 H), LCMS (m/z) (M+H) = 478.2, Rt = 0.60 min.
-
- 1H NMR (500 MHz, METHANOL-d 4) δ ppm 2.33 (s, 3 H) 2.77 (s, 3 H) 3.17 (br. s., 4 H) 3.21 (s, 3 H) 3.66 (s, 3 H) 3.78 - 3.92 (m, 4 H) 3.98 (t, J=5.67 Hz, 2 H) 6.97 (d, J=2.21 Hz, 1 H) 7.20 (d, J=5.36 Hz, 1 H) 7.26 (s, 1 H) 7.32 (d, J=8.20 Hz, 1 H) 7.38 (d, J=1.89 Hz, 1 H) 7.57 - 7.65 (m, 2 H) 8.29 (d, J=5.36 Hz, 1 H), LCMS (m/z) (M+H) = 491.3, Rt = 0.60 min.
-
- Step 1: To a solution of methyl 4-bromo-3-(trifluoromethyl)benzoate (1.0 equiv.) and 2,4,6-trivinyl-1,3,5,2,4,6-trioxatriborinane (2.0 equiv.) in DME and 2M sodium carbonate (3:1, 0.18 M) was added PdCl2(dppf)-DCM adduct (0.05 equiv.) in a microwave vial equipped with a stir bar. The reaction was heated to 120 °C for 30 min in the microwave. The reaction was quenched with water and extracted with ethyl acetate. The aquoeus phase was acidified with conc. HCl, and extracted with ethyl acetate. The organic phase was dried with magnesium sulfate, filtered and concentrated to give 3-(trifluoromethyl)-4-vinylbenzoic acid as a white solid in 18% yield. LCMS (m/z) (M+H) = 217.1, Rt = 0.85 min.
- Step 2: 5-(5-amino-2-methylphenyl)-1-methyl-3-morpholinopyridin-2(1H)-one (1.0 equiv.), 3H-[1,2,3]triazolo[4,5-b]pyridin-3-ol (1.0 equiv.), N1-((ethylimino)methylene)-N3,N3-dimethylpropane-1,3-diamine hydrochloride (1.0 equiv.), and 3-(trifluoromethyl)-4-vinylbenzoic acid (1.0 equiv.) were dissolved in DMF (0.095 M) at RT. The reaction was monitored by LCMS. After about 3 hr, the reaction mixture was purified via preparative reverse phase HPLC to give N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)-3-(trifluoromethyl)-4-vinylbenzamidein 64% yield. LCMS (m/z) (M+H) = 498.2, Rt = 0.99 min.
- Step 3: N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)-3-(trifluoromethyl)-4-vinylbenzamide (1.0 equiv.), 4-methylmorpholine 4-oxide (1.5 equiv.), and 2.5 wt% osmium(VIII) oxide in t-butanol (0.1 equiv.) were dissolved in 1:1 THF and water (0.03 M) at RT. The reaction was monitored by LCMS. After about 4 hr, the reaction mixture was purified via preparative reverse phase HPLC to give 4-(1,2-dihydroxyethyl)-N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)-3-(trifluoromethyl)benzamide in 39% yield. 1H NMR (400 MHz, <cdcl3>) δ ppm 2.29 (s, 3 H) 2.61 (br. s., 2 H) 3.20 (br. s., 6 H) 3.52 (dd, J=11.15, 8.02 Hz, 1 H) 3.62 (s, 3 H) 3.73 (dd, J=11.35, 2.35 Hz, 1 H) 3.80 - 3.99 (m, 4 H) 5.20 (d, J=7.04 Hz, 1 H) 6.71 (s, 1 H) 7.07 (s, 1 H) 7.24 (d, J=8.22 Hz, 1 H) 7.41 - 7.51 (m, 3 H) 7.60 (d, J=8.22 Hz, 1 H) 7.75 (s, 1 H) 7.96 (d, J=7.83 Hz, 1 H) 8.22 (d, J=8.22 Hz, 1 H) 8.31 (s, 1 H) 9.90 (br. s., 1 H). LCMS (m/z) (M+H) = 532.1, Rt = 0.71 min.
-
- Step 1: 5-(5-amino-2-methylphenyl)-1-methyl-3-morpholinopyridin-2(1H)-one (1.0 equiv.), 3H-[1,2,3]triazolo[4,5-b]pyridin-3-ol (1.0 equiv.), N1-((ethylimino)methylene)-N3,N3-dimethylpropane-1,3-diamine hydrochloride (1.0 equiv.), and 4-(bromomethyl)-3-(trifluoromethyl)benzoic acid (1.0 equiv.) were dissolved in DMF (0.114 M) at RT. The reaction was monitored by LCMS. After about 5 hr, the reaction mixture was purified via preparative reverse phase HPLC to give 4-(chloromethyl)-N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)-3-(trifluoromethyl)benzamide in 46% yield. LCMS (m/z) (M+H) = 520.2, Rt = 0.97 min.
- Step 2: 4-(chloromethyl)-N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)-3-(trifluoromethyl)benzamide (1.0 equiv.) was dissovled in 7 M ammonia in methanol (0.046 M). After being heated at 50 °C until no further progress by LCMS, the reaction mixture was concentrated and purified via preparative reverse phase HPLC to give 4-(aminomethyl)-N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)-3-(trifluoromethyl)benzamide in 47% yield. LCMS (m/z) (M+H) = 501.3, Rt = 0.62 min.
-
- Step 1: 4-(bromomethyl)-3-(trifluoromethyl)benzoic acid (1.0 equiv.) and potassium cyanide (0.9 equiv.) in DMSO (0.177 M) were stirred at RT. The reaction was monitored by LCMS until no further progression. The crude reaction mixture was used directly for next step.
- Step 2: The crude mixture from previous step and 5-(5-amino-2-methylphenyl)-1-methyl-3-morpholinopyridin-2(1H)-one (1 equiv.), 3H-[1,2,3]triazolo[4,5-b]pyridin-3-ol (1.0 equiv.), and N1-((ethylimino)methylene)-N3,N3-dimethylpropane-1,3-diamine hydrochloride (1.0 equiv.) were mixed in DMF (0.233 M). After 3 hr, the reaction mixture was purified via preparative reverse phase HPLC to give 4-(hydroxymethyl)-N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)-3-(trifluoromethyl)benzamide and 4-(cyanomethyl)-N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)-3-(trifluoromethyl)benzamide in in 2.8% yield and 8.5% yield respectively over two steps. For 4-(hydroxymethyl)-N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)-3-(trifluoromethyl)benzamide, LCMS (m/z) (M+H) = 502.1, Rt = 0.79 min. For 4-(cyanomethyl)-N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)-3-(trifluoromethyl)benzamide, LCMS (m/z) (M+H) = 511.2, Rt = 0.86 min.
- Step 3: To a solution of 4-(cyanomethyl)-N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)-3-(trifluoromethyl)benzamide (1 equiv.) in ethanol (0.02 M), nickel chloride (4 equiv.) and sodium borohydride (20 equiv.) were added at RT. After 2 hr, the reaction mixture was quenched with diethyltriamine, partitioned between saturated sodium bicarbonate solution and ethyl acetate. The organic phase was dried over magnesium sulfate, filtered and concentrated. The resiude was purified via preparative reverse phase HPLC to give 4-(2-aminoethyl)-N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)-3-(trifluoromethyl)benzamidein 47% yield. LCMS (m/z) (M+H) = 515.1, Rt = 0.66 min.
-
- To a solution of 3,5-dibromo-1-methylpyridin-2(1H)-one (1.0 equiv.) in dioxane (0.190 M) in a microwave vial, were added 6-oxa-3-azabicyclo[3.1.1]heptane TsOH (1.0 equiv.), xantphos (0.1 equiv.), cesium carbonate (3.0 equiv.) and Pd2(dba)3 (0.05 equiv.). The reaction vessel was degassed by a stream of argon for 15 min and the reaction vessel was sealed and stirred at 80 °C in a regular sand bath for 16 hr. LCMS showed an estimated 45% conversion. The reaction temperature was increased at 100 °C for 6 hr. The reaction mixture was cooled to room temperature and extracted with ethyl acetate. The organic phase was washed with brine, dried over sodium sulfate, filtered and concentrated The solvent was removed under vacuum and the crude material was purified via flash chromatography over silica gel eluting with DCM and 0-10% MeOH gradient. Isolated 3-(6-oxa-3-azabicyclo[3.1.1]heptan-3-yl)-5-bromo-1-methylpyridin-2(1H)-one in 39% yield. LCMS (m/z) (M+H) = 286.9, Rt = 0.64 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.06 - 1.29 (m, 1 H) 2.04 - 2.11 (m, 1 H) 2.22 (s, 3 H) 2.90 - 3.01 (m, 1 H) 3.43 (s, 3 H) 4.04 (d, J=12.13 Hz, 2 H) 4.50 (d, J=5.87 Hz, 2 H) 6.43 - 6.63 (m, 1 H) 7.12 - 7.27 (m, 2 H) 7.51 - 7.66 (m, 2 H) 7.72 (t, J=7.83 Hz, 1 H) 7.90 (d, J=7.43 Hz, 1 H) 8.13 - 8.30 (m, 2 H) 10.38 (s, 1 H). LCMS (m/z) (M+H) = 484.2, Rt = 0.98 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.14 - 1.27 (m, 4 H) 1.75 (s, 6 H) 2.12 (d, J=8.22 Hz, 1 H) 2.27 (s, 3 H) 3.01 (q, J=6.65 Hz, 1 H) 3.48 (s, 3 H) 4.08 (d, J=12.13 Hz, 2 H) 4.54 (d, J=6.26 Hz, 2 H) 6.55 - 6.61 (m, 1 H) 7.20 - 7.31 (m, 2 H) 7.62 - 7.68 (m, 2 H) 7.85 (d, J=5.09 Hz, 1 H) 7.93 -8.06 (m, 1 H) 8.79 (d, J=5.09 Hz, 1 H) 10.42 - 10.61 (m, 1 H) LCMS (m/z) (M+H) = 484, Rt = 0.79 min.
-
- Step 1: Aza-HOBt (1.0 equiv.) was added to a solution of 5-(5-amino-2-methylphenyl)-1-methyl-3-morpholinopyridin-2(1H)-one (1.0 equiv.), 4-(bromomethyl)-3-(trifluoromethyl)benzoic acid (1.5 equiv.) and EDC.HCl (1.0 equiv.) in DMF (0.11 M) and the reaction mix was sitrred at RT for 5 hr. The crude was partitioned in H2O/EtOAc. The organic layer was isolated, dried over Na2SO4, filtered and concentrated. Crude was purified silicagel column to give the desired 4-(chloromethyl)-N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)-3-(trifluoromethyl)benzamide in 46% yield. LCMS (m/z) (M+H) = 520, Rt = 0.97 min.
- Step 2: A mixture of 4-(chloromethyl)-N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)-3-(trifluoromethyl)benzamide (1.0 equiv.) and MeNH2 2M in THF (70 equiv.) was stirred at RT overnight. LCMS showed desired product MH+ = 515 at LC = 0.64 mins. The solvent was removed under vacuum and the residue was purified by HPLC to give N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)-4-((methylamino)methyl)-3-(trifluoromethyl)benzamide as the TFA salt in 46% yield. 1H NMR (400 MHz, <dmso>) δ ppm 2.20 (s, 3 H) 2.66 (t, J=4.89 Hz, 3 H) 3.04 (br. s., 4 H) 3.43 (s, 4 H) 3.65 (d, J=4.30 Hz, 4 H) 4.33 (br. s., 2 H) 6.62 (d, J=1.96 Hz, 1 H) 7.22 (d, J=8.22 Hz, 1 H) 7.33 (d, J=1.96 Hz, 1 H) 7.56 (d, J=1.96 Hz, 1 H) 7.62 (d, J=8.61 Hz, 1 H) 7.82 (d, J=8.61 Hz, 1H) 8.19 - 8.39 (m, 2 H) 8.95 (br. s., 2 H) 10.32 - 10.51 (m, 1 H). LCMS (m/z) (M+H) = 515, Rt = 0.64 min.
-
- Step 1: HATU (1.1 equiv.) was added to a solution of 4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)benzoic acid (1.0 and DIEA (2.0 equiv.) in DMF (Volume: 1 mL) at 0 °C, and the mixture was stirred for 30 min. Tert-butyl 4-amino-2-(trifluoromethyl)benzylcarbamate (1.0) was added and the reaction mix was left stirring overnight at RT. Reaction mix was treated with water and extracted twice with EtOAc. The combined organics were concentrated to dryness. The crude was purified on silicagel column using 0 to 70% EtOAc in heptane to give tert-butyl 4-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)benzamido)-2-(trifluoromethyl)benzylcarbamate in 20% yield. LCMS (m/z) (M+H) = 601, Rt = 1.0 min.
- Step 2: To a solution of tert-butyl 4-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)benzamido)-2-(trifluoromethyl)benzylcarbamate (1.0 equiv.) in DCM (0.01 M) was added TFA (15 equiv.) and the reaction mix was stirred at RT for 1h. The solvent was removed under vacuum and the residue was purified by HPLC to give N-(4-(aminomethyl)-3-(trifluoromethyl)phenyl)-4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)benzamide as the TFA salt in 51% yield. 1H NMR (400 MHz, <dmso>) δ ppm 2.35 (s, 3 H) 3.10 (br. s., 4 H) 3.70 (d, J=4.30 Hz, 4 H) 4.14 (d, J=5.48 Hz, 2 H) 6.58 - 6.82 (m, 1 H) 7.35 -7.54 (m, 2 H) 7.66 (d, J=8.61 Hz, 1 H) 7.78 - 7.98 (m, 2 H) 8.18 (d, J=8.61 Hz, 1 H) 8.25 (br. s., 4 H) 10.53 (s, 1 H). LCMS (m/z) (M+H) = 501, Rt = 0.63 min.
-
- To a 0.08 M solution of 3-formyl-N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)-5-(trifluoromethyl)benzamide (1.00 equiv.), prepared using methods similar to those described for the preparation of Example 171 using the appropriate starting materials) in ethanol was added methylamine, 33wt% in ethanol (5.00 equiv.). The mixture was stirred overnight at ambient temperature. The reaction mixture was degassed by bubbling argon through the solution for 5 min. Degussa type 10% palladium on carbon (23.86 mg, 0.022 mmol) was added. The reaction vessel was purged and flushed twice with hydrogen from a balloon. The reaction was stirred under a hydrogen atmosphere for 2.5 hr and then filtered. The filtrate was concentrated and purified by reverse phase HPLC and lyophilized to give N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)-3-((methylamino)methyl)-5-(trifluoromethyl)benzamide (17.4 % yield) and 3-(hydroxymethyl)-N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)-5-(trifluoromethyl)benzamide (8.5% yield) as their TFA salts.
- N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)-3-((methylamino)methyl)-5-(trifluoromethyl)benzamide: 1H NMR (400 MHz, <cd3od>) δ ppm 2.33 (s, 3 H) 2.81 (s, 3 H) 3.10 - 3.21 (m, 4 H) 3.65 (s, 3 H) 3.82 - 3.94 (m, 4 H) 4.40 (s, 2 H) 6.94 (d, J=1.96 Hz, 1 H) 7.32 (d, J=8.22 Hz, 1 H) 7.36 (d, J=1.96 Hz, 1 H) 7.57 - 7.66 (m, 2 H) 8.08 (s, 1 H) 8.34 (s, 1 H) 8.41 (s, 1 H). LCMS (m/z) (M+H) = 515.2, Rt = 0.67 min.
- 3-(hydroxymethyl)-N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)-5-(trifluoromethyl)benzamide: 1H NMR (400 MHz, <cd3od>) δ ppm 2.33 (s, 3 H) 3.16 - 3.24 (m, 4 H) 3.66 (s, 3 H) 3.84 - 3.95 (m, 4 H) 4.79 (s, 2 H) 7.01 (d, J=1.96 Hz, 1 H) 7.31 (d, J=8.22 Hz, 1 H) 7.41 (d, J=1.96 Hz, 1 H) 7.59 (dd, J=8.02, 2.15 Hz, 1 H) 7.64 (d, J=1.96 Hz, 1 H) 7.91 (s, 1 H) 8.16 (s, 1 H) 8.19 (s, 1 H). LCMS (m/z) (M+H) = 502.1, Rt = 0.79 min.
-
- Step 1: To a 0.15M solution of 3-bromo-N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)-5-(trifluoromethyl)benzamide (1.00 equiv., prepared using methods similar to those described for the preparation of Example 171 using the appropriate starting materials) in DMF was added zinc cyanide (4.00 equiv.) and tetrakis(triphenylphosphine)palladium (0.100 equiv.). The reaction mixture was irradiated at 130 °C for 15 min in the microwave. The cooled reaction mixture was filtered. The filtrate was concentrated and purified by flash chromatography over silica gel (95:5 ethyl acetate:methanol) to give 3-cyano-N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)-5-(trifluoromethyl)benzamide (99.0% yield) as a yellow solid. LCMS (m/z) (M+H) = 497.2, Rt = 0.89 min.
- Step 2: To a degassed 0.05M solution of 3-cyano-N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)-5-(trifluoromethyl)benzamide (1.00 equiv.) in methanol was added a methanol slurry of washed Raney-Ni. The mixture was hydrogenated under 60 psi of hydrogen overnight. The degassed reaction mixture was filtered. The filtrate was concentrated to dryness. The residue was purified by reverse phase HPLC and lyophilized to give 3-(aminomethyl)-N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)-5-(trifluoromethyl)benzamide as its TFA salt (8.8% yield), a white solid.
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.33 (s, 3 H) 3.16 (d, J=4.70 Hz, 4 H) 3.66 (s, 3 H) 3.83 - 3.92 (m, 4 H) 4.34 (s, 2 H) 6.93 (d, J=1.96 Hz, 1 H) 7.32 (d, J=8.22 Hz, 1 H) 7.36 (d, J=1.96 Hz, 1 H) 7.56 - 7.66 (m, 2 H) 8.06 (s, 1 H) 8.33 (s, 1 H) 8.38 (s, 1 H). LCMS (m/z) (M+H) = 501.1, Rt = 0.69 min.
- The compounds listed below were prepared using methods similar to those described for the preparation of Example 171 using the appropriate starting materials.
-
- To a 0.2M solution of 4-bromo-1-methyl-6-morpholinopyridin-2(1H)-one (1.00 equiv.) in DME was added 4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline (1.00 equiv.), PdCl2(dppf).CH2Cl2 adduct (0.50 equiv.), and 2M aqueous sodium carbonate (8.00 equiv.). The reaction mixture was irradiated at 110 °C for 20 min in the microwave. The cooled reaction mixture was diluted with water and extracted with ethyl acetate. The combined organics were dried over magnesium sulfate, filtered, concentrated, and purified by flash chromatography over silica gel (heptanes with 50-100% ethyl acetate gradient) to give 4-(5-amino-2-methylphenyl)-1-methyl-6-morpholinopyridin-2(1H)-one (43.8 % yield) as a brown oil. LCMS (m/z) (M+H) = 300.1, Rt = 0.44 min.
- 1H NMR (400 MHz, <dmso>) δ ppm 1.91 - 2.12 (m, 3 H) 2.24 (s, 3 H) 2.93 (br. s., 4 H) 3.45 (s, 3 H) 3.73 (br. s., 4 H) 5.80 (s, 1 H) 6.05 (s, 1 H) 7.29 (d, J=8.22 Hz, 1 H) 7.65 (s, 1 H) 7.72 (d, J=8.22 Hz, 1 H) 8.01 (d, J=4.70 Hz, 1 H) 8.16 (s, 1 H) 8.86 (d, J=5.09 Hz, 1 H) 10.63 (s, 1 H). LCMS (m/z) (M+H) = 469.2, Rt = 0.80 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.29 - 1.38 (m, 9 H) 2.16 - 2.27 (m, 3 H) 2.93 (br. s., 4 H) 3.45 (s, 3 H) 3.73 (t, J=4.11 Hz, 4 H) 5.74 - 5.86 (m, 1 H) 6.05 (d, J=1.17 Hz, 1 H) 7.29 (d, J=8.22 Hz, 1 H) 7.63 (d, J=1.57 Hz, 1 H) 7.70 (d, J=5.87 Hz, 2 H) 7.87 (s, 1 H) 8.71 (d, J=5.09 Hz, 1 H) 10.47 (s, 1 H). LCMS (m/z) (M+H) = 461.2, Rt = 0.67 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 2.23 (s, 3 H) 2.94 (br. s., 4 H) 3.45 (s, 3 H) 3.73 (br. s., 4 H) 5.80 (s, 1 H) 6.05 (s, 1 H) 7.25 (d, J=8.61 Hz, 1 H) 7.45 - 7.54 (m, 2 H) 7.54 - 7.61 (m, 1 H) 7.66 (s, 1 H) 7.72 (d, J=8.22 Hz, 1 H) 7.93 (d, J=7.83 Hz, 2 H) 10.23 (s, 1 H). LCMS (m/z) (M+H) = 404.2, Rt = 0.77 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 2.25 (s, 3 H) 2.94 (br. s., 4 H) 3.27 - 3.36 (m, 3 H) 3.40 - 3.50 (m, 3 H) 3.62 - 3.79 (m, 4 H) 5.81 (s, 1 H) 6.05 (s, 1 H) 7.30 (d, J=8.22 Hz, 1 H) 7.66 (s, 1 H) 7.72 (d, J=8.61 Hz, 1 H) 8.20 (d, J=4.70 Hz, 1 H) 8.51 (s, 1 H) 8.98 (d, J=4.70 Hz, 1 H) 10.57 - 10.91 (m, 1 H). LCMS (m/z) (M+H) = 483.1, Rt = 0.68 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 0.94 (t, J=7.24 Hz, 3 H) 2.26 (s, 3 H) 2.28 - 2.46 (m, 2 H) 2.95 (br. s., 4 H) 3.46 (s., 3H) 3.64 - 3.81 (m, 4 H) 5.82 (s, 1 H) 6.07 (s, 1 H) 7.31 (d, J=8.22 Hz, 1 H) 7.67 (s, 1 H) 7.73 (d, J=8.22 Hz, 1 H) 8.02 (d, J=5.09 Hz, 1 H) 8.16 (s, 1 H) 8.89 (d, J=4.70
Hz, 1 H) 10.56 - 10.72 (m, 1 H). LCMS (m/z) (M+H) = 483.2, Rt = 0.89 min. -
- 1H NMR (400 MHz, <dmso>) δ ppm 1.21 - 1.32 (m, 3 H) 2.24 (s, 3 H) 2.82 - 3.00 (m, 6 H) 3.46 (s., 3H) 3.73 (d, J=3.91 Hz, 4 H) 5.80 (d, J=1.17 Hz, 1 H) 6.05 (d, J=1.17 Hz, 1 H) 7.29 (d, J=8.22 Hz, 1 H) 7.64 (d, J=1.96 Hz, 1 H) 7.70 (dd, J=8.22, 1.96 Hz, 1 H) 7.78 (br. s., 1 H) 7.85 (br. s., 1 H) 8.67 - 8.78 (m, 1 H) 10.53 (br. s., 1 H). LCMS (m/z) (M+H) = 433.1, Rt = 0.62 min.
-
- 1H (400 MHz, <cd3od>) δ ppm 1.29 - 1.41 (m, 2 H) 1.53 - 1.68 (m, 2 H) 2.32 (s, 3 H) 2.45 - 2.58 (m, 1 H) 3.09 (br. s., 4 H) 3.68 (s, 3 H) 3.95 - 4.04 (m, 4 H) 6.20 (s, 1 H) 6.36 (s, 1 H) 7.43 (d, J=7.83 Hz, 1 H) 7.48 - 7.57 (m, 2 H) 7.96 (s, 1 H) 8.08 - 8.17 (m, 1 H) 8.75 (d, J=6.26 Hz, 1 H). LCMS (m/z) (M+H) = 445.1, Rt = 0.63 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.06 (s, 2 H) 2.29 (s, 2 H) 3.06 (br. s., 4 H) 3.63 (s, 3 H) 3.91 (br. s., 4 H) 4.56 (m, 1H) 6.14 (s, 1 H) 6.32 (s, 1 H) 7.39 (d, J=9.00 Hz, 1 H) 7.56 (br. s., 2 H) 7.76 (d, J=5.48 Hz, 1 H) 7.83 (s, 1 H) 8.74 (d, J=5.09 Hz, 1 H). LCMS (m/z) (M+H) = 461.0, Rt = 0.59 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.85 - 1.97 (m, 6 H) 2.38 (s, 3 H) 3.17 (br. s., 4 H) 3.73 (s, 3 H) 4.02 (br. s., 4 H) 6.35 (s, 1 H) 6.46 (s, 1 H) 7.48 - 7.54 (m, 1 H) 7.58 (s, 1 H) 7.58 - 7.64 (m, 1 H) 8.05 (br. s., 1 H) 8.25 (s, 1 H) 8.85 (d, J=5.48 Hz, 1 H). LCMS (m/z) (M+H) = 465.1, Rt = 0.80 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.70 - 1.78 (m, 2 H) 1.83 - 1.92 (m, 2 H) 2.24 (s, 3 H) 2.93 (br. s., 4 H) 3.45 (s, 3 H) 3.73 (br. s., 4 H) 5.80 (d, J=1.57 Hz, 1 H) 6.05 (d, J=1.17 Hz, 1 H) 7.29 (d, J=8.61 Hz, 1 H) 7.63 (d, J=1.96 Hz, 1 H) 7.70 (dd, J=8.22, 1.96 Hz, 1 H) 7.77 (dd, J=4.89, 0.98 Hz, 1 H) 7.90 (s, 1 H) 8.69 (d, J=5.09 Hz, 1 H) 10.56 (s, 1 H). LCMS (m/z) (M+H) = 470.1, Rt = 0.77 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.29 (t, J=7.04 Hz, 3 H) 2.23 (s, 3 H) 2.93 (br. s., 4 H) 3.45 (s, 3 H) 3.73 (t, J=3.91 Hz, 4 H) 4.06 (q, J=7.04 Hz, 2 H) 5.79 (d, J=1.17 Hz, 1 H) 6.04 (d, J=1.17 Hz, 1 H) 7.27 (d, J=8.22 Hz, 1 H) 7.54 (d, J=1.96 Hz, 1 H) 7.64 (dd, J=8.22, 1.96 Hz, 1 H) 8.45 (d, J=1.96 Hz, 1 H) 8.79 (d, J=2.35 Hz, 1 H) 10.14 (s, 1 H). LCMS (m/z) (M+H) = 517.2, Rt = 0.79 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.28 (d, J=7.04 Hz, 6 H) 2.24 (s, 3 H) 2.93 (br. s., 4 H) 3.15 (spt, J=6.85 Hz, 1 H) 3.45 (s, 3 H) 3.73 (t, J=3.91 Hz, 4 H) 5.80 (d, J=1.17 Hz, 1 H) 6.05 (s, 1 H) 7.29 (d, J=8.61 Hz, 1 H) 7.63 (d, J=1.57 Hz, 1 H) 7.67 - 7.75 (m, 2 H) 7.80 (s, 1 H) 8.71 (d, J=5.09 Hz, 1 H) 10.41 - 10.56 (m, 1 H). LCMS (m/z) (M+H) = 447.2, Rt = 0.63 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.48 (s, 6 H) 2.24 (s, 3 H) 2.93 (br. s., 4 H) 3.45 (s, 3 H) 3.73 (t, J=3.91 Hz, 4 H) 5.80 (d, J=1.57 Hz, 1 H) 6.00 - 6.10 (m, 1 H) 7.20 - 7.37 (m, 1 H) 7.64 (d, J=1.96 Hz, 1 H) 7.68 - 7.79 (m, 2 H) 8.16 (s, 1 H) 8.68 (d, J=5.48 Hz, 1 H) 10.54 (s, 1 H). LCMS (m/z) (M+H) = 463.2, Rt = 0.59 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 2.24 (s, 3 H) 2.94 (br. s., 4 H) 3.45 (s, 3 H) 3.71-3.78 (m, 4 H) 5.80 (d, J=1.17 Hz, 1 H) 6.05 (d, J=1.17 Hz, 1 H) 6.96 - 7.31 (m, 2 H) 7.63-7.75 (m, 3 H) 7.77 (d, J=7.43 Hz, 1 H) 8.07 - 8.16 (m, 2 H) 10.35 - 10.42 (m, 1 H). LCMS (m/z) (M+H) = 454.2, Rt = 0.82 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 2.25 (s, 3 H) 2.93 (br. s., 4 H) 3.45 (s, 3 H) 3.74 (d, J=3.91 Hz, 4 H) 5.80 (s, 1 H) 6.05 (s, 1 H) 7.30 (d, J=8.22 Hz, 1 H) 7.65 (s, 1 H) 7.71 (dd, J=8.22, 1.96 Hz, 1 H) 8.17 (d, J=5.09 Hz, 1 H) 8.34 (s, 1 H) 8.97 (d, J=4.69 Hz, 1 H) 10.67 (s, 1 H). LCMS (m/z) (M+H) = 473.3, Rt = 0.82 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 2.25 (s, 3 H) 2.94 (br. s., 4 H) 3.45 (s, 3 H) 3.73 (d, J=3.91 Hz, 4 H) 5.70 - 5.88 (m, 1 H) 6.05 (d, J=1.17 Hz, 1 H) 6.83 - 7.23 (m, 1 H) 7.25-7.37 (m, 1 H) 7.57 - 7.67 (m, 1 H) 7.72 (dd, J=8.22, 1.96 Hz, 1 H) 8.04 (d, J=5.09 Hz, 1 H) 8.16 (s, 1 H) 8.89 (d, J=5.09 Hz, 1 H) 10.63 (s, 1 H). LCMS (m/z) (M+H) = 455.2, Rt = 0.74 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.75 (s, 6 H) 2.24 (s, 3 H) 2.93 (br. s., 4 H) 3.45 (s, 3 H) 3.73 (br. s., 4 H) 5.80 (s, 1 H) 6.05 (s, 1 H) 7.30 (d, J=8.22 Hz, 1 H) 7.63 (s, 1 H) 7.70 (dd, J=8.41, 1.76 Hz, 1 H) 7.84 (d, J=4.70 Hz, 1 H) 7.98 (s, 1 H) 8.79 (d, J=4.70 Hz, 1 H) 10.54 (s, 1 H). LCMS (m/z) (M+H) = 472.3, Rt = 0.77 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 2.24 (s, 3 H) 2.94 (br. s., 4 H) 3.21 - 3.34 (m, 3 H) 3.39 - 3.48 (m, 3 H) 3.8 (br. s., 4 H) 5.74 - 5.88 (m, 1 H) 5.98 - 6.12 (m, 1 H) 7.19 - 7.34 (m, 1 H) 7.65 (d, J=1.56 Hz, 1 H) 7.68 - 7.75 (m, 1 H) 7.76 - 7.87 (m, 1 H) 8.08 - 8.17 (m, 1 H) 8.22 - 8.32 (m, 1 H) 8.39 - 8.53 (m, 1 H) 10.51 (s, 1 H). LCMS (m/z) (M+H) = 482.3, Rt = 0.70 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.83 (s, 6 H) 2.25 (s, 3 H) 2.93 (br. s., 4 H) 3.45 (s, 3 H) 3.73 (d, J=4.30 Hz, 4 H) 5.80 (d, J=1.57 Hz, 1 H) 6.05 (s, 1 H) 7.32 (d, J=8.61 Hz, 1 H) 7.62 (d, J=1.96 Hz, 1 H) 7.69 (dd, J=8.22, 1.96 Hz, 1 H) 8.28 (d, J=1.96 Hz, 1 H) 9.62 (d, J=1.57 Hz, 1 H) 10.74 (s, 1 H). LCMS (m/z) (M+H) = 473.2, Rt = 0.74 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.25 (t, J=7.24 Hz, 3 H) 2.24 (s, 3 H) 2.93 (br. s., 4 H) 3.06 - 3.15 (m, 4 H) 3.18 - 3.24 (m, 2 H) 3.45 (s, 3 H) 3.59 (d, J=7.43 Hz, 2 H) 3.73 (t, J=4.11 Hz, 4 H) 4.10 (d, J=9.78 Hz, 2 H) 5.80 (d, J=1.56 Hz, 1 H) 6.04 (d, J=1.17 Hz, 1 H) 7.19 - 7.35 (m, 1 H) 7.50 (s, 1 H) 7.61 (d, J=1.96 Hz, 1 H) 7.65 - 7.80 (m, 3 H) 9.42 (br. s., 1 H) 10.36 (s, 1 H). LCMS (m/z) (M+H) = 584.3, Rt = 0.77 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 2.23 (s, 3 H) 2.93 (br. s., 4 H) 3.17 - 3.24 (m, 4 H) 3.45 (s, 3 H) 3.71 - 3.75 (m, 8 H) 5.79 (d, J=1.56 Hz, 1 H) 6.04 (d, J=1.57 Hz, 1 H) 6.90-7.01 (m, 1 H) 7.11 (d, J=8.61 Hz, 1 H) 7.20 - 7.34 (m, 2 H) 7.61 (d, J=2.35 Hz, 1 H) 7.69 (dd, J=8.22, 2.35 Hz, 1 H) 10.17 (s, 1 H). LCMS (m/z) (M+H) = 507.1, Rt = 0.86 min.
-
-
- 1H NMR (400 MHz, <dmso>) δ ppm 2.25 (s, 3 H) 2.94 (br. s., 4 H) 3.45 (s, 3 H) 3.72-3.75 (m, 4 H) 5.81 (d, J=1.57 Hz, 1 H) 6.06 (d, J=1.57 Hz, 1 H) 7.17 - 7.36 (m, 1 H) 7.58-7.87 (m, 3 H) 8.16 - 8.28 (m, 2 H) 8.59 (s, 1 H) 9.40 (s, 1 H) 10.50 (s, 1 H). LCMS (m/z) (M+H) = 472.1, Rt = 0.75 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.80 (s, 6 H) 2.24 (s, 3 H) 2.72 (s, 3 H) 2.93 (br. s., 4 H) 3.45 (s, 3 H) 3.73 (t, J=4.11 Hz, 4 H) 5.80 (d, J=1.57 Hz, 1 H) 6.05 (d, J=1.57 Hz, 1 H) 7.27 (d, J=8.61 Hz, 1 H) 7.56 (t, J=7.83 Hz, 1 H) 7.63 (d, J=1.96 Hz, 1 H) 7.70 (dd, J=8.22, 1.96 Hz, 1 H) 7.81 (d, J=8.22 Hz, 1 H) 7.96 (d, J=7.83 Hz, 1 H) 8.10 (s, 1 H) 10.28 (s, 1 H). LCMS (m/z) (M+H) = 524.1, Rt = 0.77 min.
-
- 1H NMR (500 MHz, <dmso>) δ ppm 2.27 (s, 3H), 2.94 (s, 4H), 3.46 (s, 3H), 3.74 (d, J = 4.7 Hz, 4H), 5.81 (d, J = 1.7 Hz, 1H), 6.06 (d, J = 1.7 Hz, 1H), 7.34 (d, J = 8.4 Hz, 1H), 7.65 (d, J = 2.3 Hz, 1H), 7.72 (dd, J = 8.3, 2.3 Hz, 1H), 8.67 (d, J = 2.0 Hz, 1H), 9.91 (d, J = 2.0 Hz, 1H), 10.86 (s, 1H). LCMS (m/z) (M+H) = 474.0, Rt = 0.80 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.07 - 1.23 (m, 4 H) 2.24 (s, 3 H) 2.32 - 2.40 (m, 1 H) 2.93 (br. s., 4 H) 3.45 (s, 3 H) 3.73 (br. s., 4 H) 5.79 (d, J=1.57 Hz, 1 H) 6.04 (d, J=1.57 Hz, 1 H) 7.30 (d, J=8.22 Hz, 1 H) 7.62 (d, J=1.96 Hz, 1 H) 7.68 (dd, J=8.22, 2.35 Hz, 1 H) 7.87 (d, J=1.96 Hz, 1 H) 9.36 (d, J=1.96 Hz, 1 H) 10.61 (s, 1 H). LCMS (m/z) (M+H) = 446.2, Rt = 0.70 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 2.25 (s, 3 H) 2.77 (br. s., 6 H) 2.93 (br. s., 4 H) 3.45 (s, 3 H) 3.70 - 3.76 (m, 4 H) 4.43 - 4.49 (m, 2 H) 5.80 (d, J=1.57 Hz, 1 H) 6.05 (d, J=1.57 Hz, 1 H) 7.30 (d, J=8.22 Hz, 1 H) 7.62 (d, J=1.96 Hz, 1 H) 7.71 (dd, J=8.22, 1.96 Hz, 1 H) 8.12 (s, 1 H) 8.35 (s, 1 H) 8.43 (s, 1 H) 10.53 (s, 1 H). LCMS (m/z) (M+H) = 529.3, Rt = 0.68 min.
- The compounds listed below were prepared using methods similar to those described in the preparation of Example 171 using the appropriate starting materials.
-
-
- 1H NMR (400 MHz, <dmso>) δ ppm 2.44 (s, 3 H) 2.95 (br. s., 4 H) 3.45 (s, 3 H) 3.73 (t, J=4.11 Hz, 4 H) 5.87 (d, J=1.56Hz, 1 H) 6.13 (d, J=1.56 Hz, 1 H) 7.79 (t, J=7.63 Hz, 1 H) 7.98 (d, J=7.83 Hz, 1 H) 8.03 (d, J=2.35 Hz, 1 H) 8.26 (d, J=7.83 Hz, 1 H) 8.30 (s, 1 H) 8.85 (d, J=2.35 Hz, 1 H) 10.66 (s, 1 H). LCMS (m/z) (M+H) = 473.0, Rt = 0.67 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.77 (s, 6 H) 2.96 (br. s., 4 H) 3.47 (s, 3 H) 3.75 (br. s., 4 H) 5.91 (s, 1 H) 6.17 (s, 1 H) 7.89 (d, J=4.70 Hz, 1 H) 8.04 (s, 1 H) 8.12 (d, J=1.57 Hz, 1 H) 8.84 (d, J=5.09 Hz, 1 H) 8.93 (d, J=1.57 Hz, 1 H) 10.90 (s, 1 H). LCMS (m/z) (M+H) = 473.2, Rt = 0.54 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 2.95 (br. s., 4 H) 3.46 (s, 3 H) 3.74 (t, J=4.11 Hz, 4 H) 5.89 (d, J=1.17 Hz, 1 H) 6.16 (d, J=1.17 Hz, 1 H) 8.13 (d, J=2.35 Hz, 1 H) 8.20 (d, J=4.70 Hz, 1 H) 8.37 (s, 1 H) 8.93 (d, J=2.35 Hz, 1 H) 9.01 (d, J=5.09 Hz, 1 H) 11.01 (s, 1 H). LCMS (m/z) (M+H) = 474.1, Rt = 0.57 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.46 (s., 6 H) 2.52 (s, 3 H) 2.95 (br. s., 4 H) 3.38-3.50 (m, 3 H) 3.67 - 3.80 (m, 4 H) 5.91 (s, 1 H) 6.10 - 6.25 (m, 1 H) 7.66 - 7.83 (m, 1 H) 8.14 - 8.25 (m, 2 H) 8.65 - 8.77 (m, 1 H) 9.00 (d, J=1.96 Hz, 1 H) 10.97 (s, 1 H). LCMS (m/z) (M+H) = 464.1, Rt = 0.33 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.31 (t, J=7.24 Hz, 3 H) 2.96 (br. s., 4 H) 3.48 (s, 3 H) 3.76 (t, J=4.11 Hz, 4 H) 4.09 (quin, J=7.53 Hz, 2 H) 5.91 (s, 1 H) 6.18 (s, 1 H) 8.15 (d, J=1.96 Hz, 1 H) 8.49 (d, J=1.57 Hz, 1 H) 8.79 (d, J=1.96 Hz, 1 H) 8.85 (s, 1 H) 10.56 (br. s., 1 H). LCMS (m/z) (M+H) = 518.1, Rt = 0.58 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 2.45 (br. s., 3 H) 2.90 (br. s., 4 H) 3.35 - 3.47 (m, 3 H) 3.69 (t, J=4.11 Hz, 4 H) 5.86 (d, J=1.17 Hz, 1 H) 6.12 (d, J=1.17 Hz, 1 H) 7.44 - 7.54 (m, 2 H) 7.54 - 7.63 (m, 1 H) 7.93 (d, J=7.04 Hz, 2 H) 8.10 - 8.20 (m, 1 H) 8.95 (d, J=1.96 Hz, 1 H) 10.59 (s, 1 H). LCMS (m/z) (M+H) = 405.0, Rt = 0.53 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 2.44 (br. s., 3 H) 2.90 (br. s., 4 H) 3.23 - 3.33 (m, 3 H) 3.41 (s, 3 H) 3.69 (br. s., 4 H) 5.85 (s, 1 H) 6.11 (s, 1 H) 8.09 (s, 1 H) 8.17 (d, J=5.09 Hz, 1 H) 8.50 (s, 1 H) 8.89 (s, 1 H) 8.97 (d, J=4.70 Hz, 1 H) 11.06 (s, 1 H). LCMS (m/z) (M+H) = 484.0, Rt = 0.46 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.29 (d, J=6.65 Hz, 6 H) 2.52 (s, 3 H) 2.95 (br. s., 4 H) 3.16 (spt, J=6.72 Hz, 1 H) 3.46 (s, 3 H) 3.74 (br. s., 4 H) 5.91 (s, 1 H) 6.18 (s, 1 H) 7.77 (d, J=5.09 Hz, 1 H) 7.84 (s, 1 H) 8.21 (s, 1 H) 8.75 (d, J=5.09 Hz, 1 H) 9.00 (s, 1 H) 10.95 (s, 1 H). LCMS (m/z) (M+H) = 448.1, Rt = 0.45 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 2.49 (br. s., 3 H) 2.95 (br. s., 4 H) 3.46 (s, 3 H) 3.72-3.76 (m, 4 H) 5.90 (d, J=1.17 Hz, 1 H) 6.11 - 6.21 (m, 1 H) 6.95 - 7.33 (m, 1 H) 7.67 - 7.76 (m, 1 H) 7.82 (d, J=7.83 Hz, 1 H) 8.10 - 8.22 (m, 3 H) 8.97 (d, J=1.96 Hz, 1 H) 10.45-10.96 (m, 1 H). LCMS (m/z) (M+H) = 455.2, Rt = 0.57 min.
-
- 1H NMR (400 MHz, <dmso>) ™ppm 1.36 (s, 9 H) 2.50 (br. s., 3 H) 2.95 (br. s., 4 H) 3.46 (s, 3 H) 3.74 (t, J=4.11 Hz, 4 H) 5.90 (d, J=1.17 Hz, 1 H) 6.17 (d, J=1.17 Hz, 1 H) 7.70 (dd, J=5.09, 1.17 Hz, 1 H) 7.88 (s, 1 H) 8.15 (d, J=1.57 Hz, 1 H) 8.68 - 8.80 (m, 1 H) 8.96 (d, J=1.96 Hz, 1 H) 10.82 (s, 1 H). LCMS (m/z) (M+H) = 462.3, Rt = 0.48 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 2.48 (s, 3 H) 2.95 (br. s., 4 H) 3.46 (s, 3 H) 3.74 (br. s., 4 H) 5.89 (d, J=1.17 Hz, 1 H) 6.16 (d, J=1.56 Hz, 1 H) 6.90 - 7.27 (m, 1 H) 8.06 (d, J=5.09 Hz, 1 H) 8.12 (d, J=1.96 Hz, 1 H) 8.19 (s, 1 H) 8.87 - 8.99 (m, 2 H) 10.95 (s, 1 H). LCMS (m/z) (M+H) = 456.3, Rt = 0.50 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 2.48 (s, 3 H) 2.91 (br. s., 4 H) 3.24 (s, 3 H) 3.41 (s, 3 H) 3.66 - 3.72 (m, 4 H) 5.85 (d, J=1.57 Hz, 1 H) 6.12 (d, J=1.57 Hz, 1 H) 7.80 (t, J=7.83 Hz, 1 H) 8.06 - 8.16 (m, 2 H) 8.26 (d, J=7.83 Hz, 1 H) 8.46 (s, 1 H) 8.91 (d, J=2.35 Hz, 1 H) 10.81 (s, 1 H). LCMS (m/z) (M+H) = 483.3, Rt = 0.47 min.
-
-
- 1H NMR (400 MHz, <dmso>) δ ppm 0.88 - 1.10 (m, 4 H) 2.15 - 2.27 (m, 1 H) 2.49 (s, 3 H) 2.95 (br. s., 4 H) 3.46 (s, 3 H) 3.71 - 3.76 (m, 4 H) 5.89 (d, J=1.57 Hz, 1 H) 6.15 (d, J=1.56 Hz, 1 H) 7.60 (dd, J=5.09, 1.17 Hz, 1 H) 7.76 (s, 1 H) 8.12 (d, J=1.96 Hz, 1 H) 8.60 (d, J=5.09 Hz, 1 H) 8.93 (d, J=2.35 Hz, 1 H) 10.77 (s, 1 H). LCMS (m/z) (M+H) = 446.2, Rt = 0.48 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.81 (s, 6 H) 2.49 (s, 3 H) 2.73 (s, 3 H) 2.89 - 3.00 (m, 4 H) 3.46 (s, 3 H) 3.73 (d, J=4.30 Hz, 4 H) 5.90 (d, J=1.57 Hz, 1 H) 6.16 (d, J=1.17 Hz, 1 H) 7.60 (s, 1 H) 7.85 (d, J=8.61 Hz, 1 H) 8.01 (d, J=7.83 Hz, 1 H) 8.08 - 8.18 (m, 2 H) 8.94 (d, J=1.96 Hz, 1 H) 10.60 (s, 1 H). LCMS (m/z) (M+H) = 525.1, Rt = 0.56 min.
- The compounds listed below were prepared using methods similar to those described in the preparation of Example 171 using the appropriate starting materials.
-
-
- 1H NMR (400 MHz, <dmso>) δ ppm 2.04 (t, J=19.17 Hz, 3 H) 2.95 (br. s., 4 H) 3.46 (s, 3 H) 3.71 - 3.76 (m, 4 H) 5.95 (d, J=1.57 Hz, 1 H) 6.22 (d, J=1.17 Hz, 1 H) 8.03 (d, J=5.09 Hz, 1 H) 8.20 (s, 1 H) 8.26 (d, J=2.35 Hz, 1 H) 8.84 (d, J=2.35 Hz, 1 H) 8.91 (d, J=5.09 Hz, 1 H) 11.03 (s, 1 H). LCMS (m/z) (M+H) = 490.2, Rt = 0.76 min.
-
- To a 0.20M solution of 4-bromo-1-methyl-6-morpholinopyridin-2(1H)-one (1.00 equiv.) in DME was added methyl 4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzoate (1.10 equiv.), PdCl2(dppf).CH2Cl2 adduct (0.50 equiv.), and 2M aqueous sodium carbonate (8.00 equiv.). The reaction mixture was irradiated at 110 °C for 15 min in the microwave. The cooled reaction mixture was diluted with water and extracted with ethyl acetate. The combined extracts were dried over magnesium sulfate, filtered, concentrated to give crude methyl 4-methyl-3-(1-methyl-6-morpholino-2-oxo-1,2-dihydropyridin-4-yl)benzoate (80.0 % yield) as a brown oil. LCMS (m/z) (M+H) = 343.2, Rt = 0.72 min.
-
- To a 0.20M solution of methyl 4-methyl-3-(1-methyl-6-morpholino-2-oxo-1,2-dihydropyridin-4-yl)benzoate (1.00 equiv.) in 1:1 THF:water was added lithium hydroxide (2.00 equiv.). The mixture was stirred at ambient temperature for 20 hr. The reaction mixture was acidified with aqueous HCl and extracted with ethyl acetate. The combined extracts were dried over magnesium sulfate, filtered, and concentrated to give crude 4-methyl-3-(1-methyl-6-morpholino-2-oxo-1,2-dihydropyridin-4-yl)benzoic acid as an off-white solid (63% yield). LCMS (m/z) (M+H) = 329.1, Rt = 0.56 min.
- The compounds listed below were prepared using methods similar to those described for the preparation of Example 171 using the appropriate starting materials.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 2.27 - 2.39 (m, 3 H) 2.95 (br. s., 4 H) 3.46 (s, 3 H) 3.63 - 3.85 (m, 4 H) 5.87 (d, J=1.17 Hz, 1 H) 6.15 (d, J=1.17 Hz, 1 H) 6.80 - 7.20 (m, 1 H) 7.27 (d, J=7.83 Hz, 1 H) 7.41 - 7.52 (m, 2 H) 7.85 (s, 1 H) 7.90 (d, J=7.83 Hz, 2 H) 8.04 (s, 1 H) 10.38 (s, 1 H). LCMS (m/z) (M+H) = 454.2, Rt = 0.83 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.60 - 1.71 (m, 6 H) 2.34 (s, 3 H) 2.95 (br. s., 4 H) 3.46 (s, 3 H) 3.73 (t, J=3.91 Hz, 4 H) 5.87 (d, J=1.17 Hz, 1 H) 6.15 (s, 1 H) 7.22 (d, J=7.83 Hz, 1 H) 7.39 (t, J=7.83 Hz, 1 H) 7.45 (d, J=8.22 Hz, 1 H) 7.80 (d, J=8.22 Hz, 1 H) 7.85 (s, 1 H) 7.87 - 7.98 (m, 2 H) 10.30 (s, 1 H). LCMS (m/z) (M+H) = 471.3, Rt = 0.85 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.43 (s, 6 H) 2.36 (s, 3 H) 2.96 (br. s., 4 H) 3.48 (s, 3 H) 3.75 (d, J=3.91 Hz, 4 H) 5.88 (d, J=1.56 Hz, 1 H) 6.17 (d, J=1.17 Hz, 1 H) 7.14 - 7.22 (m, 1 H) 7.23 - 7.30 (m, 1 H) 7.45 (d, J=8.22 Hz, 1 H) 7.69 (d, J=8.22 Hz, 1 H) 7.78 - 7.88 (m, 2 H) 7.88 - 7.96 (m, 1 H) 10.16 (s, 1 H). LCMS (m/z) (M+H) = 462.3, Rt = 0.74 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 2.35 (s, 3 H) 2.95 (br. s., 4 H) 3.46 (s, 3 H) 3.73 (d, J=4.30 Hz, 4 H) 5.86 (d, J=1.57 Hz, 1 H) 6.15 (d, J=1.57 Hz, 1 H) 7.38 - 7.51 (m, 2 H) 7.58 (t, J=8.02 Hz, 1 H) 7.86 (d, J=1.17 Hz, 1 H) 7.91 (dd, J=7.83, 1.57 Hz, 1 H) 8.04 (d, J=8.22 Hz, 1 H) 8.21 (s, 1 H) 10.48 (s, 1 H). LCMS (m/z) (M+H) = 472.1, Rt = 0.91 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 2.34 (s, 3 H) 2.95 (br. s., 4 H) 3.46 (s, 3 H) 3.73 (br. s., 4 H) 5.86 (d, J=1.56 Hz, 1 H) 6.15 (d, J=1.56 Hz, 1 H) 7.03 - 7.13 (m, 1 H) 7.33 (t, J=8.02 Hz, 2 H) 7.44 (d, J=7.83 Hz, 1 H) 7.74 (d, J=7.83 Hz, 2 H) 7.83 (d, J=1.17 Hz, 1 H) 7.88 (dd, J=7.83, 1.57 Hz, 1 H) 10.18 (s, 1 H). LCMS (m/z) (M+H) = 404.1, Rt = 0.77 min.
-
- Following the preparation of 4-(5-amino-2-methylphenyl)-1-methyl-6-morpholinopyridin-2(1H)-one using the appropriate starting materials gave 4-(5-amino-2-methylphenyl)-1-ethyl-6-morpholinopyridin-2(1H)-one (37.7 % yield) as a white solid. LCMS (m/z) (M+H) = 314.2, Rt = 0.51 min.
- The compounds listed below were prepared using methods similar to those described in the preparation of Example 171 using the appropriate starting materials.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.22 (t, J=6.85 Hz, 3 H) 2.03 (t, J=19.17 Hz, 3 H) 2.25 (s, 3 H) 2.91 (d, J=4.30 Hz, 4 H) 3.72 (br. s., 4 H) 4.08 (q, J=6.65 Hz, 2 H) 5.95 (d, J=1.17 Hz, 1 H) 6.09 (s, 1 H) 7.30 (d, J=8.61 Hz, 1 H) 7.66 (d, J=1.96 Hz, 1 H) 7.71 (d, J=8.22 Hz, 1 H) 8.01 (d, J=5.09 Hz, 1 H) 8.16 (s, 1 H) 8.81 - 8.89 (m, 1 H) 10.57 - 10.66 (m, 1 H). LCMS (m/z) (M+H) = 483.0, Rt = 0.88 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 0.93 (t, J=7.63 Hz, 3 H) 1.22 (t, J=6.85 Hz, 3 H) 2.25 (s, 3 H) 2.30 - 2.41 (m, 2 H) 2.91 (t, J=4.11 Hz, 4 H) 3.72 (br. s., 4 H) 4.08 (q, J=7.04 Hz, 2 H) 5.95 (d, J=1.57 Hz, 1 H) 6.10 (d, J=1.56 Hz, 1 H) 7.30 (d, J=8.61 Hz, 1 H) 7.65 (d, J=1.96 Hz, 1 H) 7.71 (dd, J=8.41, 2.15 Hz, 1 H) 8.00 (d, J=4.30 Hz, 1 H) 8.14 (s, 1 H) 8.87 (d, J=5.09 Hz, 1 H) 10.62 (s, 1 H). LCMS (m/z) (M+H) = 497.3, Rt = 0.91 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.22 (t, J=6.85 Hz, 3 H) 1.66 (s, 3 H) 1.72 (s, 3 H) 2.25 (s, 3 H) 2.91 (t, J=4.11 Hz, 4 H) 3.72 (br. s., 4 H) 4.08 (d, J=7.04 Hz, 2 H) 5.95 (d, J=1.57 Hz, 1 H) 6.10 (d, J=1.57 Hz, 1 H) 7.29 (d, J=8.22 Hz, 1 H) 7.65 (d, J=1.96 Hz, 1 H) 7.71 (dd, J=8.22, 1.96 Hz, 1 H) 7.80 (dd, J=4.89, 1.37 Hz, 1 H) 8.00 (s, 1 H) 8.74 (d, J=5.09 Hz, 1 H) 10.54 (s, 1 H). LCMS (m/z) (M+H) = 479.2, Rt = 0.85 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.19 - 1.28 (m, 9 H) 2.25 (s, 3 H) 2.85 - 2.95 (m, 4 H) 3.11 (dt, J=13.69, 6.85 Hz, 1 H) 3.72 (br. s., 4 H) 4.08 (d, J=6.65 Hz, 2 H) 5.94 (d, J=1.57 Hz, 1 H) 6.09 (d, J=1.57 Hz, 1 H) 7.28 (d, J=8.22 Hz, 1 H) 7.58 - 7.79 (m, 4 H) 8.67 (d, J=5.09 Hz, 1 H) 10.43 (s, 1 H). LCMS (m/z) (M+H) = 461.2, Rt = 0.68 min.
- The compounds listed below were prepared using methods similar to those described in the preparation of Example 162 using the appropriate starting materials.
-
- Following the preparation of 4-bromo-1-methyl-6-morpholinopyridin-2(1H)-one using the appropriate starting materials gave (R)-4-bromo-1-methyl-6-(3-methylmorpholino)pyridin-2(1H)-one (assumed quantitative yield) as a brown residue. LCMS (m/z) (M+H) = 286.8/288.8, Rt = 0.63 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 0.87 (d, J=5.87 Hz, 3 H) 2.00 (t, J=19.17 Hz, 3 H) 2.21 (s, 3 H) 2.56 - 2.64 (m, 1 H) 3.08 (br. s., 1 H) 3.21 (br. s., 1 H) 3.26 - 3.35 (m, 1 H) 3.44 (s, 3 H) 3.58 - 3.72 (m, 2 H) 3.77 (dd, J=10.96, 2.74 Hz, 1 H) 5.94 (br. s., 1 H) 6.07 (s, 1 H) 7.27 (d, J=8.22 Hz, 1 H) 7.61 (d, J=1.96 Hz, 1 H) 7.66 - 7.75 (m, 1 H) 7.98 (d, J=4.70 Hz, 1 H) 8.13 (s, 1 H) 8.83 (d, J=5.09 Hz, 1 H) 10.60 (s, 1 H). LCMS (m/z) (M+H) = 483.1, Rt = 0.86 min.
-
- 1H (400 MHz, <dmso>) δ ppm 0.93 (d, J=6.26 Hz, 3 H) 2.06 (t, J=19.17 Hz, 3 H) 2.67 (dt, J=11.35, 5.67 Hz, 1 H) 3.16 (d, J=10.96 Hz, 1 H) 3.23 - 3.32 (m, 1 H) 3.36 (d, J=5.87 Hz, 1 H) 3.50 (s, 3 H) 3.74 (br. s., 2 H) 3.82 (dd, J=10.76, 2.54 Hz, 1 H) 6.08 (br. s., 1 H) 6.21 (s, 1 H) 8.05 (d, J=4.30 Hz, 1 H) 8.11 (d, J=2.35 Hz, 1 H) 8.21 (s, 1 H) 8.91 (d, J=5.09 Hz, 1 H) 8.94 (d, J=2.35 Hz, 1 H) 10.94 (s, 1 H). LCMS (m/z) (M+H) = 484.1, Rt = 0.62 min.
-
- Following the preparation of 4-bromo-1-methyl-6-morpholinopyridin-2(1H)-one using the appropriate starting materials gave (S)-4-bromo-1-methyl-6-(3-methylmorpholino)pyridin-2(1H)-one (assumed quantitative yield) as a brown residue. LCMS (m/z) (M+H) = 286.8/288.8, Rt = 0.63 min.
- The compounds listed below were prepared using methods similar to those described in the preparation of Example 162 using the appropriate starting materials.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 0.92 (d, J=5.87 Hz, 3 H) 2.05 (t, J=19.17 Hz, 3 H) 2.26 (s, 3 H) 2.61 - 2.70 (m, 1 H) 3.13 (br. s., 1 H) 3.26 (br. s., 1 H) 3.36 (br. s., 1 H) 3.49 (s, 3 H) 3.74 (br. s., 2 H) 3.82 (dd, J=10.96, 2.74 Hz, 1 H) 5.99 (br. s., 1 H) 6.12 (s, 1 H) 7.32 (d, J=8.22 Hz, 1 H) 7.66 (d, J=1.96 Hz, 1 H) 7.75 (dd, J=8.22, 1.96 Hz, 1 H) 8.03 (d, J=4.70 Hz, 1 H) 8.18 (s, 1 H) 8.88 (d, J=5.09 Hz, 1 H) 10.65 (s, 1 H). LCMS (m/z) (M+H) = 483.2, Rt = 0.86 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 0.93 (d, J=5.87 Hz, 3 H) 2.06 (t, J=19.17 Hz, 3 H) 2.61 - 2.71 (m, 1 H) 3.16 (d, J=10.96 Hz, 1 H) 3.28 (br. s., 1 H) 3.33 - 3.41 (m, 1 H) 3.50 (s, 3 H) 3.74 (br. s., 2 H) 3.82 (dd, J=11.15, 2.54 Hz, 1 H) 6.09 (br. s., 1 H) 6.23 (s, 1 H) 8.05 (d, J=4.30 Hz, 1 H) 8.16 (d, J=1.96 Hz, 1 H) 8.22 (s, 1 H) 8.92 (d, J=4.70 Hz, 1 H) 8.98 (d, J=2.35 Hz, 1 H) 10.99
-
- Following the preparation of 4-bromo-1-methyl-6-morpholinopyridin-2(1H)-one using the appropriate starting materials gave (S)-4-bromo-1-methyl-6-(3-methylmorpholino)pyridin-2(1H)-one (36% yield). LCMS (m/z) (M+H) = 299.0/301.0, Rt = 0.59 min.
- The compounds listed below were prepared using methods similar to those described in the preparation of Example 162 using the appropriate starting materials.
-
- 1H NMR (400 MHz, <dmso>) 6 ppm 1.90 (s, 4 H) 2.03 (t, J=19.17 Hz, 3 H) 2.23 (s, 3 H) 3.52 (s, 3 H) 3.58 (d, J=10.17 Hz, 2 H) 3.75 - 3.85 (m, 4 H) 5.64 (d, J=1.17 Hz, 1 H) 5.93 (s, 1 H) 7.28 (d, J=8.22 Hz, 1 H) 7.63 (d, J=1.96 Hz, 1 H) 7.71 (dd, J=8.22, 1.96 Hz, 1 H) 8.00 (d, J=4.70 Hz, 1 H) 8.15 (s, 1 H) 8.86 (d, J=5.09 Hz, 1 H) 10.61 (s, 1 H). LCMS (m/z) (M+H) = 495.3, Rt = 0.86 min.
-
- Following the preparation in Example 527, using the appropriate starting materials gave 5-amino-6'-(3-oxa-8-azabicyclo[3.2.1]octan-8-yl)-2-chloro-1'-methyl-[3,4'-bipyridin]-2'(1'H)-one (assumed 100% yield) as a light brown residue. LCMS (m/z) (M+H) = 347.1, Rt = 0.53 min.
- The compounds listed below were prepared using methods similar to those described in the preparation of Example 171 using the appropriate starting materials.
-
- 1H NMR (500 MHz, <dmso>) δ ppm 1.90 (s, 3H), 2.03 (t, J = 19.1 Hz, 3H), 3.30 - 3.60 (m, 8H), 3.74 - 3.83 (m, 2H), 5.83 (s, 1H), 6.08 (s, 1H), 8.01 (d, J = 5.0 Hz, 1H), 8.17 (s, 1H), 8.21 (d, J = 2.6 Hz, 1H), 8.82 (d, J = 2.5 Hz, 1H), 8.88 (d, J = 5.0 Hz, 1H). LCMS (m/z) (M+H) = 516.3, Rt = 0.81 min.
- The compounds listed below were prepared using methods similar to those described in the preparation of Example 171 using the appropriate starting materials.
-
- To a solution of 4-bromo-6-chloro-1-methylpyridin-2(1H)-one (1.0 equiv.) and morpholin-2-ylmethanol (1.5 equiv.) was added potassium carbonate (6.0 equiv.) and the mixture was heated to 115 °C for 18 h. The reaction mixture was partitioned between EtOAc and water, and was then extracted five times with EtOAc. The combined organics were dried over sodium sulfate and then purified by normal phase chromatography. Product eluted with 25% MeOH in DCM. 4-bromo-6-(2-(hydroxymethyl)morpholino)-1-methylpyridin-2(1H)-one was used in the next step without further purification. LCMS (m/z) (M+H) = 273.0, Rt = 0.23 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.96 - 2.11 (m, 3 H) 2.44 (s, 3 H) 2.53 (m, 2 H) 2.63-2.68 (m, 1 H) 2.75 (d, J=2.35 Hz, 1 H) 3.10 (d, J=11.74 Hz, 1 H) 3.16 (d, J=11.74 Hz, 1 H) 3.45 (s, 3 H) 3.56 - 3.74 (m, 2 H) 3.88 (d, J=10.96 Hz, 1 H) 5.86 (d, J=1.57 Hz, 1 H) 6.13 (d, J=1.17 Hz, 1 H) 8.02 (d, J=2.35 Hz, 2 H) 8.19 (s, 1 H) 8.79 - 8.93 (m, 2 H) 10.83 (s, 1 H). LCMS (m/z) (M+H) = 500.2, Rt = 0.52 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 2.04 (t, J=19.17 Hz, 3 H) 2.31 (d, J=1.96 Hz, 1 H) 2.44 (s, 3 H) 2.53 - 2.59 (m, 1 H) 2.62 - 2.66 (m, 1 H) 2.69 - 2.81 (m, 1 H) 3.07 - 3.18 (m, 2 H) 3.45 (s, 3 H) 3.61 (d, J=7.83 Hz, 1 H) 3.69 (d, J=1.96 Hz, 1 H) 3.88 (d, J=10.96 Hz, 1 H) 5.86 (d, J=1.57 Hz, 1 H) 6.13 (d, J=1.57 Hz, 1 H) 8.03 (d, J=2.35 Hz, 2 H) 8.19 (s, 1 H) 8.79 - 8.93 (m, 2 H) 10.84 (s, 1 H). LCMS (m/z) (M+H) = 500.2, Rt = 0.52 min.
- The compounds listed below were prepared using methods similar to those described for the preparation of Example 118 using the appropriate starting materials.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.81 (s, 6 H) 2.41 (s, 3 H) 3.60 - 3.71 (m, 4 H) 3.78-3.87 (m, 4 H) 7.34 (d, J=8.22 Hz, 1 H) 7.70 (dd, J=8.22, 2.35 Hz, 1 H) 7.78 - 7.90 (m, 2 H) 8.01 (s, 1 H) 8.07 (s, 1 H) 8.18 (s, 1 H) 8.76 (d, J=5.09 Hz, 1 H). LCMS (m/z) (M+H) = 443.2, Rt = 0.94 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.82 (s, 6 H) 2.81 (s, 3 H) 3.63 - 3.72 (m, 4 H) 3.78-3.90 (m, 4 H) 7.87 (dd, J=5.09, 1.57 Hz, 1 H) 8.09 - 8.20 (m, 2 H) 8.35 (s, 1 H) 8.66 (d, J=2.35 Hz, 1 H) 8.82 (d, J=5.09 Hz, 1 H) 9.31 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 444.1, Rt = 0.61 min.
-
- Step 1: To a solution of 4-(6-chloropyrazin-2-yl)morpholine (1.0 equiv.) in DME (0.2M) was added 6-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-3-amine (1.1 equiv.) and PdCl2(dppf).CH2Cl2 adduct (0.1 equiv.), followed by 2M sodium carbonate solution (3.0 equiv.). The reaction was heated to 120 °C in a microwave vial for 10 min. Partitioned between water and ethyl acetate, the aqueous phase was extracted with ethyl acetate three times, the organics were combined, dried with sodium sulfate, filtered and concentrated. The crude material was purified via silica gel column chromatography eluting with 0-100% ethyl acetate in heptanes, then 10% methanol in ethyl acetate. The pure fractions were concentrated to yield 6-methyl-5-(6-morpholinopyrazin-2-yl)pyridin-3-amine in 74% yield. LCMS (m/z) (M+H) = 272.0, Rt = 0.41 min.
- Step 2: To a solution of 6-methyl-5-(6-morpholinopyrazin-2-yl)pyridin-3-amine in DMF (0.1M) was added EDC (1.2 equiv.), HOAt (1.2 equiv.) and 2-(1,1-difluoroethyl)isonicotinic acid (1.2 equiv.) and the reaction was stirred at rt for 3 hours. Upon completion, filtered through a HPLC filter and purified via reverse phase prep-HPLC. The pure fractions were lyophilized to yield 2-(1,1-difluoroethyl)-N-(6-methyl-5-(6-morpholinopyrazin-2-yl)pyridin-3-yl)isonicotinamide as the TFA salt in 39% yield. 1H NMR (400 MHz, <cd3od>) δ ppm 2.05 (t, J=18.78 Hz, 3 H) 2.84 (s, 3 H) 3.64 - 3.74 (m, 4 H) 3.79 - 3.91 (m, 4 H) 8.03 (d, J=4.70 Hz, 1 H) 8.17 (s, 1 H) 8.26 (s, 1 H) 8.37 (s, 1 H) 8.73 (d, J=2.35 Hz, 1 H) 8.87 (d, J=5.09 Hz, 1 H) 9.39 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 441.2, Rt = 0.63 min.
- The compounds listed below were prepared using methods similar to those described for the preparation of Example 533 using the appropriate starting materials.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.66 - 1.82 (m, 6 H) 2.84 (s, 3 H) 3.61 - 3.73 (m, 4 H) 3.78 - 3.87 (m, 4 H) 7.84 (dd, J=4.89, 1.76 Hz, 1 H) 8.11 - 8.21 (m, 2 H) 8.36 (s, 1 H) 8.73 (d, J=2.35 Hz, 1 H) 8.76 (d, J=5.09 Hz, 1 H) 9.38 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 437.2, Rt = 0.63 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.85 (s, 3 H) 3.61 - 3.73 (m, 4 H) 3.78 - 3.89 (m, 4 H) 6.64 - 7.08 (m, 1 H) 8.08 (d, J=5.09 Hz, 1 H) 8.17 (s, 1 H) 8.26 (s, 1 H) 8.37 (s, 1 H) 8.74 (d, J=2.35 Hz, 1 H) 8.89 (d, J=4.70 Hz, 1 H) 9.39 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 427.1, Rt = 0.58 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.69 (s, 3 H) 3.59 - 3.72 (m, 4 H) 3.78 - 3.89 (m, 4 H) 8.10 (s, 1 H) 8.16 (d, J=5.09 Hz, 1 H) 8.29 (s, 1 H) 8.35 (s, 1 H) 8.47 (d, J=2.35 Hz, 1 H) 8.95 (d, J=5.09 Hz, 1 H) 9.06 (s, 1 H). LCMS (m/z) (M+H) = 445.1, Rt = 0.65 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.01 (t, J=7.43 Hz, 3 H) 2.39 (td, J=16.63, 7.43 Hz, 2 H) 2.81 (s, 3 H) 3.59 - 3.73 (m, 4 H) 3.78 - 3.89 (m, 4 H) 8.03 (d, J=3.91 Hz, 1 H) 8.15 (s, 1 H) 8.35 (s, 2 H) 8.68 (d, J=2.35 Hz, 1 H) 8.87 (d, J=5.09 Hz, 1 H) 9.31 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 455.2, Rt = 0.68 min.
-
-
- To a 0.5M solution of 3-bromo-6-chloropyrazin-2-amine (1.00 equiv.) in ethanol was added sodium ethoxide, 21 wt% in ethanol (3.00 equiv.). The mixture was stirred at 85 °C for 1.5 hr. The cooled reaction mixture was diluted with DCM and washed with saturated aqueous sodium bicarbonate. The organic phase was dried over sodium sulfate, filtered, and concentrated to give 6-chloro-3-ethoxypyrazin-2-amine as a peach solid in 82.0% yield. LCMS (m/z) (M+H) = 174.0, Rt = 0.65 min.
-
- 6-Chloro-3-ethoxypyrazin-2-amine (1.00 equiv.) was added to a 0.6M solution of NaH, 60% dispersion (3.00 equiv.) in DMF at ambient temperature. The mixture was stirred for 20 min at ambient temperature. Bis(2-bromoethyl) ether (1.50 equiv.) was added. The mixture was heated to 80 °C and stirred for 1 hr. The cooled reaction mixture was poured into water and stirred for 1 hr. The mixture was filtered. The filter cake was rinsed with water and air-dried to give 4-(6-chloro-3-ethoxypyrazin-2-yl)morpholine as a yellow solid in 43.4% yield. LCMS (m/z) (M+H) = 244.0, Rt = 0.93 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.46 (t, J=7.04 Hz, 3 H) 2.39 (s, 3 H) 3.54 - 3.66 (m, 4 H) 3.79 - 3.87 (m, 4 H) 4.48 (q, J=7.04 Hz, 2 H) 7.30 (d, J=8.61 Hz, 1 H) 7.65 (dd, J=8.22, 2.35 Hz, 1 H) 7.70 - 7.77 (m, 2 H) 7.78 (d, J=1.96 Hz, 1 H) 7.90 (d, J=7.83 Hz, 1 H) 8.22 (d, J=7.83 Hz, 1 H) 8.27 (s, 1 H); LCMS (m/z) (M+H) = 487.1, Rt = 1.13 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.48 (t, J=7.04 Hz, 3 H) 2.83 (s, 3 H) 3.61 - 3.70 (m, 4 H) 3.81 - 3.87 (m, 4 H) 4.54 (q, J=7.04 Hz, 2 H) 7.80 (t, J=8.02 Hz, 1 H) 7.92 (s, 1 H) 7.98 (d, J=8.22 Hz, 1 H) 8.30 (d, J=8.22 Hz, 1 H) 8.36 (s, 1 H) 8.66 (d, J=1.96 Hz, 1 H) 9.29 (d, J=2.35 Hz, 1 H); LCMS (m/z) (M+H) = 488.1, Rt = 0.85 min.
-
- 6-Chloro-3-ethoxypyrazin-2-amine (1.00 equiv.) was added to a 0.6M solution of NaH, 60% dispersion (3.00 equiv.) in DMF at ambient temperature. The mixture was stirred for 20 min at ambient temperature. Bis(2-bromoethyl) ether (1.50 equiv.) was added. The mixture was heated to 60 °C and stirred for 45 min. The cooled reaction mixture was poured into water and extracted with ethyl acetate. The combined organic layers were dried over sodium sulfate, filtered and concentrated to give crude 4-(3-bromo-6-chloropyrazin-2-yl)morpholine as a tan oil in 100% yield. LCMS (m/z) (M+H) = 277.8/279.8, Rt = 0.82 min.
-
- To a 0.3M solution of 4-(3-bromo-6-chloropyrazin-2-yl)morpholine (1.00 equiv.) in methanol was added sodium methoxide (3.00 equiv.). The mixture was stirred at 60 °C for 1 hr. The cooled reaction mixture was concentrated to about half of its original volume and poured into 4 volumes of water. The resulting precipitate was collected by vacuum filtration and air-dried to give 4-(6-chloro-3-methoxypyrazin-2-yl)morpholine as a yellow solid in 76.0% yield. LCMS (m/z) (M+H) = 230.0, Rt = 0.80 min
-
- To a 0.15M solution of 4-(6-chloro-3-methoxypyrazin-2-yl)morpholine (1.00 equiv.) in DME was added 6-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-3-amine (1.00 equiv.), PdCl2(dppf).CH2Cl2 adduct (0.10 equiv.), and 2M aqueous sodium carbonate (3.00 equiv.). The reaction mixture was irradiated at 130 °C for 15 min in the microwave. The cooled reaction mixture was diluted with 2:1 DCM:MeOH and filtered. The filtrate was concentrated and purified by flash chromatography over silica gel (ethyl acetate with 5% methanol) to give 5-(5-methoxy-6-morpholinopyrazin-2-yl)-6-methylpyridin-3-amine (44.7 % yield) as a tan solid. LCMS (m/z) (M+H) = 302.0, Rt = 0.51 min.
- The compounds listed below were prepared using methods similar to those described for the preparation of Example 539 using the appropriate starting materials.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.84 (s, 6 H) 2.86 (s, 3 H) 3.60 - 3.70 (m, 4 H) 3.78-3.89 (m, 4 H) 4.08 (s, 3 H) 7.90 (dd, J=5.09, 1.57 Hz, 1 H) 7.95 (s, 1 H) 8.16 (s, 1 H) 8.70 (d, J=2.35 Hz, 1 H) 8.84 (d, J=4.70 Hz, 1 H) 9.33 (d, J=2.35 Hz, 1 H); LCMS (m/z) (M+H) = 474.2, Rt = 0.69 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.79 - 1.93 (m, 4 H) 2.85 (s, 3 H) 3.60 - 3.68 (m, 4 H) 3.78 - 3.89 (m, 4 H) 4.08 (s, 3 H) 7.79 (dd, J=4.89, 1.37 Hz, 1 H) 7.95 (s, 1 H) 8.18 (s, 1 H) 8.68 (d, J=2.35 Hz, 1 H) 8.72 (d, J=4.70 Hz, 1 H) 9.30 (d, J=2.35 Hz, 1 H); LCMS (m/z) (M+H) = 472.2, Rt = 0.69 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.07 (t, J=18.78 Hz, 3 H) 2.81 (s, 3 H) 3.61 - 3.69 (m, 4 H) 3.80 - 3.89 (m, 4 H) 4.08 (s, 3 H) 7.92 (s, 1 H) 8.04 (d, J=3.52 Hz, 1 H) 8.27 (s, 1 H) 8.63 (d, J=1.96 Hz, 1 H) 8.88 (d, J=5.09 Hz, 1 H) 9.23 (d, J=1.96 Hz, 1 H); LCMS (m/z) (M+H) = 471.2, Rt = 0.71 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.71 (s, 3 H) 2.95 (s, 6 H) 3.60 - 3.67 (m, 4 H) 3.80-3.89 (m, 4 H) 4.07 (s, 3 H) 4.54 (s, 2 H) 7.87 (s, 1 H) 8.16 (s, 1 H) 8.43 (s, 1 H) 8.46 (s, 1 H) 8.53 (s, 1 H) 9.02 (s, 1 H); LCMS (m/z) (M+H) = 495.1, Rt = 0.84 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.69 - 1.82 (m, 6 H) 2.86 (s, 3 H) 3.61 - 3.69 (m, 4 H) 3.81 - 3.88 (m, 4 H) 4.09 (s, 3 H) 7.86 (dd, J=5.09, 1.57 Hz, 1 H) 7.95 (s, 1 H) 8.16 (s, 1 H) 8.72 (d, J=2.35 Hz, 1 H) 8.78 (d, J=5.09 Hz, 1 H) 9.35 (d, J=2.35 Hz, 1 H); LCMS (m/z) (M+H) = 467.2, Rt = 0.71 min.
-
- Following the preparation in Example 539 using the appropriate starting materials gave 5-(5-ethoxy-6-morpholinopyrazin-2-yl)-6-methylpyridin-3-amine (68.3 % yield) as a tan solid. LCMS (m/z) (M+H) = 316.1, Rt = 0.59 min.
- The compounds listed below were prepared using methods similar to those described for the preparation of Example 539 using the appropriate starting materials.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.48 (t, J=7.04 Hz, 3 H) 1.84 (s, 6 H) 2.83 (s, 3 H) 3.61 - 3.72 (m, 4 H) 3.80 - 3.91 (m, 4 H) 4.54 (q, J=7.04 Hz, 2 H) 7.86 - 7.93 (m, 2 H) 8.15 (s, 1 H) 8.64 (d, J=2.35 Hz, 1 H) 8.84 (d, J=5.09 Hz, 1 H) 9.26 (d, J=2.35 Hz, 1 H); LCMS (m/z) (M+H) = 488.2, Rt = 0.74 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.48 (t, J=7.04 Hz, 3 H) 2.83 (s, 3 H) 3.60 - 3.72 (m, 4 H) 3.78 - 3.91 (m, 4 H) 4.54 (q, J=7.04 Hz, 2 H) 7.91 (s, 1 H) 8.20 (d, J=3.91 Hz, 1 H) 8.38 (s, 1 H) 8.66 (d, J=2.35 Hz, 1 H) 8.98 (d, J=5.09 Hz, 1 H) 9.27 (d, J=2.35 Hz, 1 H); LCMS (m/z) (M+H) = 489.1, Rt = 0.78 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.48 (t, J=7.04 Hz, 3 H) 2.07 (t, J=18.78 Hz, 3 H) 2.84 (s, 3 H) 3.58 - 3.72 (m, 4 H) 3.78 - 3.91 (m, 4 H) 4.54 (q, J=7.04 Hz, 2 H) 7.92 (s, 1 H) 8.04 (d, J=4.30 Hz, 1 H) 8.27 (s, 1 H) 8.68 (d, J=1.96 Hz, 1 H) 8.88 (d, J=5.09 Hz, 1 H) 9.29 (d, J=2.35 Hz, 1 H); LCMS (m/z) (M+H) = 485.1, Rt = 0.76 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.48 (t, J=7.04 Hz, 3 H) 1.76 (m, J=1.00 Hz, 6 H) 2.85 (s, 3 H) 3.58 - 3.73 (m, 4 H) 3.79 - 3.91 (m, 4 H) 4.54 (q, J=7.04 Hz, 2 H) 7.85 (dd, J=5.09, 1.57 Hz, 1 H) 7.93 (s, 1 H) 8.16 (s, 1 H) 8.72 (d, J=2.35 Hz, 1 H) 8.77 (d, J=5.09 Hz, 1 H) 9.33 (d, J=2.35 Hz, 1 H); LCMS (m/z) (M+H) = 481.1, Rt = 0.77 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.49 (t, J=7.04 Hz, 3 H) 2.85 (s, 3 H) 3.60 - 3.73 (m, 4 H) 3.77 - 3.92 (m, 4 H) 4.54 (q, J=7.04 Hz, 2 H) 7.94 (s, 1 H) 8.01 (d, J=4.30 Hz, 1 H) 8.51 (s, 1 H) 8.89 (d, J=2.35 Hz, 1 H) 9.04 (d, J=4.70 Hz, 1 H) 9.39 (d, J=2.35 Hz, 1 H); LCMS (m/z) (M+H) = 489.2, Rt = 0.83 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.48 (t, J=7.04 Hz, 3 H) 2.77 (s, 3 H) 2.95 (s, 6 H) 3.60 - 3.70 (m, 4 H) 3.79 - 3.91 (m, 4 H) 4.48 - 4.60 (m, 4 H) 7.88 (s, 1 H) 8.17 (s, 1 H) 8.46 (s, 1 H) 8.54 (s, 1 H) 8.57 (d, J=2.35 Hz, 1 H) 9.15 (d, J=1.96 Hz, 1 H); LCMS (m/z) (M+H) = 545.3, Rt = 0.67 min.
-
- Following the preparation in Example 539 using the appropriate starting materials gave 3-(5-methoxy-6-morpholinopyrazin-2-yl)-4-methylaniline (88.0 % yield) as a tan solid. LCMS (m/z) (M+H) = 301.0, Rt = 0.57 min.
-
- 1H NMR (400 MHz, <cd3od>) ™ 1H NMR (400 MHz, <cd3od>) δ ppm 2.39 (s, 3 H) 3.30 (s, 3 H) 3.51 - 3.67 (m, 4 H) 3.77 - 3.90 (m, 4 H) 4.03 (s, 3 H) 7.30 (d, J=8.22 Hz, 1 H) 7.68 (dd, J=8.22, 2.35 Hz, 1 H) 7.74 (s, 1 H) 7.80 (d, J=2.35 Hz, 1 H) 8.16 (dd, J=4.89, 1.37 Hz, 1 H) 8.56 (s, 1 H) 8.93 (d, J=5.09 Hz, 1 H); LCMS (m/z) (M+H) = 484.0, Rt = 0.85 min.
-
- Step 1: To a flask containing 3,4,6-trichloropyridazine (1.0 equiv.) in EtOH (1.3 M) was added morpholine (2.3 equiv.) and the reaction mix was stirred at RT for 60 min. A precipitate appeared which was removed by filtration. The solid recovered was suspended in water and stirred for few minutes to remove salts. After filtration the solid was dried under vacuum giving 4-(3,6-dichloropyridazin-4-yl)morpholine in 86% yield which was used as is in the next step. LCMS (m/z) (M+H) = 234/236, Rt = 0.57 min. Step 2: Sodium methoxide (2.0 equiv.) was added portion wise to a flask containing 4-(3,6-dichloropyridazin-4-yl)morpholine (1.0 equiv.) in MeOH (0.43 M) and the reaction mix was stirred overnight at RT. The solvent was removed under vacuum and the crude was partitioned in brine/EtOAc. The organic phase was isolated and the aqueous layer was extracted once more with EtOAc. The combined organics were concentrated to dryness and the residue was dissolved in DCM, and adsorbed in silica gel. The solid was loaded into a cartridge and purified on a silica gel column using 0 to 60% EtOAc in heptane. The desired 4-(6-chloro-3-methoxypyridazin-4-yl)morpholine was obtained in 71% yield. LCMS (m/z) (M+H) = 230, Rt = 0.44 min.
- Step 3: To a solution of 4-(6-chloro-3-methoxypyridazin-4-yl)morpholine (1.0 equiv.) and 4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline (1.0 equiv.) in DME (0.12 M) was added Na2CO3 (3.0 equiv.) and the system was flushed with nitrogen. PdCl2(dppf).CH2Cl2 adduct (0.05 equiv.) was added to the reaction mix and the system was flushed once again with nitrogen. The reaction mix was heated in a bath at 110 °C, ovenight. The crude was partitioned in H2O/EtOAc. The organic layer was isolated, dried over Na2SO4, filtered and concentrated. Crude was purified using a reverse phase system of 0 to 40% acetonitrile in water. The fractions containing the product were concentrated until a small volume of solvent was left and extracted three times with EtOAc. The combined organics were dried over Na2SO4, filtered and concentrated to give 3-(6-methoxy-5-morpholinopyridazin-3-yl)-4-methylaniline in 78% yield.
LCMS (m/z) (M+H) = 301, Rt = 0.38 min. - Step 4: DIEA (3.0 equiv.) was added to a solution of 3-(6-methoxy-5-morpholinopyridazin-3-yl)-4-methylaniline (1.0 equiv.), 2-(trifluoromethyl)isonicotinic acid (1.0 equiv.) and HATU (1.0 equiv.) in DMF (0.07 M), and the mixture was left stirring at RT overnight. The reaction mix was treated with water and extracted three times with EtOAc. The combined organics were concentrated to dryness and the crude purified by HPLC giving N-(3-(6-methoxy-5-morpholinopyridazin-3-yl)-4-methylphenyl)-2-(trifluoromethyl)isonicotinamide as the TFA salt in 33% yield. 1H NMR (400 MHz, <dmso>) δ ppm 2.27 (s, 3 H) 3.74 (br. s., 8 H) 4.07 (s, 3 H) 7.28 (br. s., 1 H) 7.44 (d, J=8.61 Hz, 1 H) 7.80 (dd, J=8.22, 1.96 Hz, 1 H) 7.92 (s, 1 H) 8.18 (d, J=5.09 Hz, 1 H) 8.35 (s, 1 H) 8.99 (d, J=5.09 Hz, 1 H) 10.84 (s, 1 H). LCMS (m/z) (M+H) = 474, Rt = 0.70 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.95 - 2.11 (m, 3 H) 2.26 (s, 3 H) 3.74 (br. s., 8 H) 4.07 (s, 3 H) 7.29 (br. s., 1 H) 7.43 (d, J=8.22 Hz, 1 H) 7.81 (dd, J=8.61, 1.96 Hz, 1 H) 7.93 (s, 1 H) 8.01 (d, J=4.70 Hz, 1 H) 8.16 (s, 1 H) 8.88 (d, J=5.09 Hz, 1 H) 10.79 (s, 1 H). LCMS (m/z) (M+H) = 470, Rt = 0.69 min.
-
- 1H NMR (400 MHz, <dmso>) δ 0.93 (t, J=7.43 Hz, 4 H) 1.21 (s, 2 H) 2.27 (s, 4 H) 2.79 (d, J=10.96 Hz, 1 H) 3.73 (br. s., 5 H) 4.07 (s, 4 H) 7.41 (d, J=8.61 Hz, 1 H) 7.79 (d, J=10.17 Hz, 1 H) 7.89 (br. s., 1 H) 8.01 (d, J=5.09 Hz, 1 H) 8.15 (s, 1 H) 8.89 (d, J=5.09 Hz, 1 H) 10.75 (br. s., 1H). LCMS (m/z) (M+H) = 484, Rt = 0.74 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 0.87 - 1.11 (m, 4 H) 2.15 - 2.24 (m, 1 H) 2.26 (s, 3 H) 3.74 (d, J=4.70 Hz, 8 H) 4.00 - 4.11 (m, 4 H) 7.34 (s, 1 H) 7.43 (d, J=8.61 Hz, 1 H) 7.55 (dd, J=5.09, 1.57 Hz, 1 H) 7.72 (s, 1 H) 7.79 (dd, J=8.41, 2.15 Hz, 1 H) 7.96 (d, J=1.56 Hz, 1 H) 8.58 (d, J=5.09 Hz, 1 H) 10.62 (s, 1 H). LCMS (m/z) (M+H) = 446, Rt = 0.52 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 2.27 (s, 3 H) 3.73 (br. s., 7 H) 4.07 (s, 3 H) 7.28 (br. s., 1 H) 7.46 (d, J=8.22 Hz, 1 H) 7.79 (dd, J=8.22, 1.96 Hz, 1 H) 7.91 (s, 1 H) 8.66 (d, J=1.96 Hz, 1 H) 9.91 (d, J=1.96 Hz, 1 H) 11.00 (s, 1 H). LCMS (m/z) (M+H) = 475, Rt = 0.76 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.66 (s, 3 H) 1.72 (s, 3 H) 2.26 (s, 3 H) 3.70 - 3.90 (m, 8 H) 4.01 - 4.12 (m, 3 H) 7.33 (br. s., 1 H) 7.43 (d, J=8.22 Hz, 1 H) 7.76 - 7.85 (m, 2 H) 7.94 (s, 1 H) 8.00 (s, 1 H) 8.76 (d, J=5.09 Hz, 1 H) 10.73 (s, 1 H). LCMS (m/z) (M+H) = 466, Rt = 0.68 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 2.26 (s, 3 H) 3.28 (s, 3 H) 3.74 (br. s., 7 H) 4.07 (s, 3 H) 7.30 (br. s., 1 H) 7.42 (d, J=8.61 Hz, 1 H) 7.78 - 7.86 (m, 2 H) 7.93 (s, 1 H) 8.15 (d, J=7.83 Hz, 1 H) 8.27 (d, J=7.83 Hz, 1 H) 8.46 (s, 1 H) 10.68 (s, 1 H). LCMS (m/z) (M+H) = 483, Rt = 0.60 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 2.27 (s, 3 H) 3.73 (br. s., 7 H) 4.07 (s, 3 H) 7.28 (br. s., 1 H) 7.46 (d, J=8.22 Hz, 1 H) 7.79 (dd, J=8.22, 1.96 Hz, 1 H) 7.91 (s, 1 H) 8.66 (d, J=1.96 Hz, 1 H) 9.91 (d, J=1.96 Hz, 1 H) 11.00 (s, 1 H). LCMS (m/z) (M+H) = 475, Rt = 0.76 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.66 (s, 3 H) 1.72 (s, 3 H) 2.26 (s, 3 H) 3.70 - 3.90 (m, 8 H) 4.01 - 4.12 (m, 3 H) 7.33 (br. s., 1 H) 7.43 (d, J=8.22 Hz, 1 H) 7.76 - 7.85 (m, 2 H) 7.94 (s, 1 H) 8.00 (s, 1 H) 8.76 (d, J=5.09 Hz, 1 H) 10.73 (s, 1 H). LCMS (m/z) (M+H) = 466, Rt = 0.68 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.42 - 1.52 (m, 7 H) 2.26 (s, 3 H) 4.03 - 4.12 (m, 4 H) 7.36 (s, 1 H) 7.44 (d, J=8.61 Hz, 1 H) 7.69 (dd, J=5.09, 1.57 Hz, 1 H) 7.81 (dd, J=8.41, 2.15 Hz, 1 H) 7.96 (d, J=1.96 Hz, 1 H) 8.12 (s, 1 H) 8.68 (d, J=5.09 Hz, 1 H) 10.71 (s, 1 H). LCMS (m/z) (M+H) = 464, Rt = 0.50 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.84 (s, 12 H) 2.27 (s, 8 H) 2.31 (br. s., 1 H) 3.73 (br. s., 15 H) 4.04 - 4.10 (m, 8 H) 7.26 (br. s., 1 H) 7.45 (d, J=8.22 Hz, 1 H) 7.78 (dd, J=8.61, 1.96 Hz, 1 H) 7.88 (br. s., 1 H) 8.28 (d, J=1.96 Hz, 1 H) 9.63 (d, J=1.96 Hz, 1 H) 10.90 (br. s., 1 H). LCMS (m/z) (M+H) = 474, Rt = 0.61 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.75 (s, 6 H) 2.18 - 2.32 (m, 3 H) 3.62 - 3.88 (m, 7 H) 3.99 - 4.15 (m, 3 H) 7.30 (br. s., 1 H) 7.43 (d, J=8.61 Hz, 1 H) 7.79 (dd, J=8.22, 1.96 Hz, 1 H) 7.84 (dd, J=4.89, 1.37 Hz, 1 H) 7.90 (s, 1 H) 7.98 (s, 1 H) 8.81 (d, J=5.09 Hz, 1 H) 10.72 (s, 1 H). LCMS (m/z) (M+H) = 473, Rt = 0.66 min.
-
- Step 1: To a flask containing 3,4,6-trichloropyridazine (1.0 equiv.) in EtOH (1.3 M) was added morpholine (2.3 equiv.) and the reaction mix was stirred at RT for 60 min. A precipitate appeared which was removed by filtration. The solid recovered was suspended in water and stirred for few minutes to remove salts. After filtration the solid was dried under vacuum giving 4-(3,6-dichloropyridazin-4-yl)morpholine in 86% yield which was used as is in the next step. LCMS (m/z) (M+H) = 234/236, Rt = 0.57 min.
- Step 2: To a flask containing 4-(3,6-dichloropyridazin-4-yl)morpholine (1.0 equiv.) in EtOH (0.23 M) was added sodium ethoxide 21% in ethanol (1.4 equiv.) and the reaction mix was stirred o.n. at RT. The solvent was removed under vacuum and the crude was partitioned in brine/EtOAc. The organic phase was concentrated to dryness and the residue was dissolved in DCM, and adsorbed in silica gel. The solid was loaded into a cartridge and purified on a silica gel column. using 0 to 40% EtOAc in heptane. The desired 4-(6-chloro-3-ethoxypyridazin-4-yl)morpholine was obtained in 48% yield. LCMS (m/z) (M+H) = 246, Rt = 0.36 min.
- Step 3: To a solution of 4-(6-chloro-3-ethoxypyridazin-4-yl)morpholine (1.0 equiv.) and 4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline (1.0 equiv.) in DME (0.11 M) was added Na2CO3 (2M, 3.0 equiv.) and the system was flushed with nitrogen. PdCl2(dppf).CH2Cl2 adduct (0.05 equiv.) was added to the reaction mix and the system was flushed once again with nitrogen. The reaction flask was heated in a bath at 110 °C overnight. The reaction mix was partitioned in H2O/EtOAc. The organic layer was isolated, dried over Na2SO4, filtered and concentrated. Crude was purified using a reverse phase system of 0 to 40% acetonitrile in water. The fractions containing the product were concentrated until a small volume of solvent was left and extracted three times with EtOAc. The combined organics were dried over Na2SO4, filtered and concentrated to give 3-(6-ethoxy-5-morpholinopyridazin-3-yl)-4-methylaniline in 62% yield. LCMS (m/z) (M+H) = 315, Rt = 0.44 min.
- Step 4: DIEA (3.0 equiv.) was added to a solution of 3-(6-ethoxy-5-morpholinopyridazin-3-yl)-4-methylaniline (1.0 equiv.), 3-(methylsulfonyl)benzoic acid (1.0 equiv.) and HATU (1.0 equiv.) in DMF (0.07 M), and the mixture was left stirring at RT overnight. The reaction mix was treated with water and extracted three times with EtOAc. The combined organics were concentrated to dryness and the crude purified by HPLC giving N-(3-(6-ethoxy-5-morpholinopyridazin-3-yl)-4-methylphenyl)-3-(methylsulfonyl)benzamide as the TFA salt in 53% yield. 1H NMR (400 MHz, <dmso>) δ ppm 1.43 (d, J=3.52 Hz, 3 H) 2.26 (br. s., 4 H) 3.63 - 3.91 (m, 8 H) 4.36 - 4.57 (m, 2 H) 7.33 (br. s., 1 H) 7.43 (d, J=6.26 Hz, 1 H) 7.75 - 7.87 (m, 2 H) 7.94 (br. s., 1 H) 8.14 (d, J=6.65 Hz, 1 H) 8.27 (d, J=6.65 Hz, 1 H) 8.46 (br. s., 1 H) 10.69 (br. s., 1 H). LCMS (m/z) (M+H) = 497, Rt = 0.66 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 0.82 - 0.99 (m, 3 H) 1.34 - 1.51 (m, 3 H) 2.26 (s, 3 H) 2.29 - 2.43 (m, 2 H) 3.71 - 3.77 (m, 4 H) 3.81 (br. s., 3 H) 4.48 (q,J=7.04 Hz, 2 H) 7.32 (br. s., 1 H) 7.44 (d, J=8.22 Hz, 1 H) 7.81 (dd, J=8.22, 1.96 Hz, 1 H) 7.93 (s, 1 H) 8.01 (d, J=4.30 Hz, 1 H) 8.14 (s, 1 H) 8.89 (d, J=5.09 Hz, 1 H) 10.80 (s, 1 H). LCMS (m/z) (M+H) = 498, Rt = 0.78 min.
-
- 5-(6-Ethoxy-5-morpholinopyridazin-3-yl)-6-methylpyridin-3-amine (1.0 equiv.), N1-((ethylimino)methylene)-N3,N3-dimethylpropane-1,3-diamine hydrochloride (1.1 equiv.), and 4-(bromomethyl)-3-(trifluoromethyl)benzoic acid (1.1 equiv.) were dissolved in DMF (0.106 M) at RT. Hunig's base (2.2 equiv.) was subsequently added to mixture. The reaction was monitored by LCMS. After about 1 hr, the reaction mixture was purified via preparative reverse phase HPLC to give 3-(difluoromethyl)-N-(3-(6-ethoxy-5-morpholinopyridazin-3-yl)-4-methylphenyl)benzamidein 47% yield. 1H NMR (400 MHz, <dmso>) δ ppm 1.43 (s, 1 H) 2.26 (s, 1 H) 3.74 (br. s., 2 H) 4.48 (d, J=7.04 Hz, 1 H) 6.94 - 7.33 (m, 2 H) 7.40 (d, J=8.61 Hz, 1H) 7.62 - 7.74 (m, 1 H) 7.79 (d, J=8.22 Hz, 2 H) 7.94 (br. s., 1 H) 8.07 - 8.20 (m, 2 H) 10.55 (br. s., 1 H). LCMS (m/z) (M+H) = 469.2, Rt = 0.78 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.43 (t, J=7.04 Hz, 1 H) 2.26 (s, 1 H) 3.74 (br. s., 3 H) 4.48 (q, J=7.04 Hz, 1 H) 6.94 (s, 1 H) 7.07 (s, 2 H) 7.21 (s, 1 H) 7.29 (br. s., 1 H) 7.43 (d, J=8.22 Hz, 1 H) 7.80 (dd, J=8.41, 2.15 Hz, 1 H) 7.93 (s, 1 H) 8.04 (d, J=5.09 Hz, 1 H) 8.16 (s, 1 H) 8.90 (d, J=5.09 Hz, 1 H) 10.80 (s, 1 H). LCMS (m/z) (M+H) = 470.2, Rt = 0.70 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 0.92 - 1.08 (m, 1 H) 1.43 (t, J=7.04 Hz, 1 H) 2.15-2.28 (m, 1 H) 3.74 (br. s., 1 H) 4.48 (q, J=6.78 Hz, 1 H) 7.41 (d, J=8.22 Hz, 1 H) 7.55 (dd, J=5.09, 1.57 Hz, 1 H) 7.66 - 7.83 (m, 2 H) 7.93 (br. s., 1 H) 8.57 (d, J=5.09 Hz, 1 H) 10.58 (br. s., 1 H). LCMS (m/z) (M+H) = 460.2, Rt = 0.60 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.43 (t, J=7.04 Hz, 1 H) 1.59 - 1.76 (m, 2 H) 2.26 (s, 1 H) 3.68 - 3.89 (m, 3 H) 4.48 (q, J=7.04 Hz, 1 H) 7.29 - 7.37 (m, 1 H) 7.43 (d, J=8.61 Hz, 1 H) 7.76 - 7.84 (m, 2 H) 7.94 (s, 1 H) 8.00 (s, 1 H) 8.63 - 8.88 (m, 1 H) 10.58 - 10.79 (m, 1 H). LCMS (m/z) (M+H) = 480.2, Rt = 0.75 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.43 (t, J=7.04 Hz, 1 H) 2.04 (t, J=19.17 Hz, 1 H) 2.26 (s, 1 H) 3.74 (d, J=2.35 Hz, 2 H) 4.48 (d, J=7.04 Hz, 1 H) 7.19 - 7.35 (m, 1 H) 7.42 (d, J=8.22 Hz, 2 H) 7.80 (dd, J=8.22, 1.96 Hz, 2 H) 7.91 (br. s., 2 H) 8.01 (d, J=4.70 Hz, 2 H) 8.17 (s, 2 H) 8.80 - 9.01 (m, 2 H) 10.65 - 10.87 (m, 2 H). LCMS (m/z) (M+H) = 484.2, Rt = 0.76 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.38 (t, J=7.04 Hz, 4 H) 2.22 (s, 4 H) 3.69 (br. s., 10 H) 4.43 (q, J=6.91 Hz, 3 H) 7.23 (br. s., 1 H) 7.39 (d, J=8.22 Hz, 1 H) 7.75 (dd, J=8.22, 1.96 Hz, 1 H) 7.87 (br. s., 1 H) 8.13 (d, J=4.30 Hz, 1 H) 8.30 (s, 1 H) 8.94 (d, J=5.09 Hz, 1 H) 10.78 (s, 1 H). LCMS (m/z) (M+H) = 480.2, Rt = 0.75 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.42 (s, 1 H) 1.84 (s, 2 H) 2.27 (s, 1 H) 3.73 (br. s., 1 H) 4.49 (d, J=7.04 Hz, 1 H) 7.43 (d, J=8.22 Hz, 1 H) 7.68 - 7.95 (m, 2 H) 8.28 (d, J=1.96 Hz, 1 H) 9.63 (d, J=1.57 Hz, 1 H) 10.78 - 10.95 (m, 1 H). LCMS (m/z) (M+H) = 488.2, Rt = 0.68 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.43 (t, J=7.04 Hz, 1 H) 1.69 - 1.79 (m, 1 H) 1.83 - 1.93 (m, 1 H) 2.26 (s, 1 H) 3.74 (d, J=2.35 Hz, 2 H) 4.48 (q, J=7.04 Hz, 1 H) 7.41 (d, J=8.22 Hz, 1 H) 7.69 - 8.02 (m, 5 H) 8.70 (d, J=5.09 Hz, 1 H) 10.71 (br. s., 1 H). LCMS (m/z) (M+H) = 485.2, Rt = 0.74 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.37 - 1.55 (m, 12 H) 2.26 (s, 4 H) 3.71 - 3.78 (m, 9 H) 3.86 (br. s., 7 H) 4.47 (d, J=7.04 Hz, 3 H) 7.36 (s, 1 H) 7.44 (d, J=8.22 Hz, 1 H) 7.68 (dd, J=5.09, 1.57 Hz, 1 H) 7.81 (dd, J=8.41, 2.15 Hz, 1 H) 7.96 (d, J=1.96 Hz, 1 H) 8.12 (s, 1 H) 8.68 (d, J=5.09 Hz, 1 H) 10.55 - 10.85 (m, 1 H). LCMS (m/z) (M+H) = 478.1, Rt = 0.56 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.43 (t, J=7.04 Hz, 5 H) 2.27 (s, 5 H) 3.74 (br. s., 10 H) 4.38 - 4.63 (m, 3 H) 7.25 (br. s., 1 H) 7.45 (d, J=8.22 Hz, 1 H) 7.78 (dd, J=8.41, 2.15 Hz, 1 H) 7.86 - 7.94 (m, 1 H) 8.55 - 8.78 (m, 2 H) 9.90 (d, J=1.57 Hz, 2 H) 10.99 (s, 2 H). LCMS (m/z) (M+H) = 489.1, Rt = 0.71 min.
-
- Step 1: A mixture of 3,4,6-trichloropyridazine (1.0 equiv.), (S)-3-methylmorpholine (1.0 equiv.), and Hunig's base (1.1 equiv.) in NMP (2.73 M) was stirred at RT for 2 days. Water was added to the reaction mixture. The solid that precipitated was collected by filtration and dried in air to give (S)-4-(3,6-dichloropyridazin-4-yl)-3-methylmorpholine as white solid in 62% yield. LC/MS (m/z) = 247.9 (MH+), Rt = 0.63 min.
- Step 2: A mixture of (S)-4-(3,6-dichloropyridazin-4-yl)-3-methylmorpholine (1.0 equiv.) and 21 wt% sodium ethoxide in ethanol (2.0 equiv.) in 1.5 :1 ethanol and water was stirred overnight at RT. The resulting mixture was partitioned between EtOAc and water. The organic phase was washed with brine and then dried over magnesium sulfate. After concentration, the crude material was purified via preparative reverse phase HPLC. Upon lyophilization of the pure fractions, (S)-4-(6-chloro-3-ethoxypyridazin-4-yl)-3-methylmorpholine was isolated as the TFA salt in 55% yield. LC/MS (m/z) = 258.0 (MH+), Rt = 0.59 min.
- Step 3: A mixture of (S)-4-(6-chloro-3-ethoxypyridazin-4-yl)-3-methylmorpholine (1.0 equiv.), N-(6-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-3-yl)-3-(trifluoromethyl)benzamide (1.0 equiv.), Na2CO3 (2 M, 3 equiv.) and PdCl2(dppf) (0.05 equiv.) in DME (0.203 M) were heated at 120 °C for 15 min in the microwave. The resulting mixture was partitioned between EtOAc and water. The organic phase was washed with brine and then dried over magnesium sulfate. After concentration, the crude material was purified via preparative reverse phase HPLC. Upon lyophilization of the pure fractions, (S)-N-(5-(6-ethoxy-5-(3-methylmorpholino)pyridazin-3-yl)-6-methylpyridin-3-yl)-3-(trifluoromethyl)benzamide was isolated as the TFA salt in 32% yield. 1H NMR (400 MHz, <dmso>) δ ppm 1.31 (d, J=6.65 Hz, 5 H) 1.43 (t, J=6.85 Hz, 5 H) 3.69 (d, J=1.57 Hz, 4 H) 3.91 (d, J=9.78 Hz, 2 H) 4.36 - 4.64 (m, 3 H) 7.34 (br. s., 1 H) 7.81 (t, J=7.83 Hz, 1 H) 8.01 (d, J=7.83 Hz, 1 H) 8.24 - 8.39 (m, 3 H) 8.95 (d, J=2.35 Hz, 1 H) 10.84 (s, 1 H). LCMS (m/z) (M+H) = 502.2, Rt = 0.78 min.
-
- A mixture of (S)-4-(6-chloro-3-ethoxypyridazin-4-yl)-3-methylmorpholine (1.0 equiv.), 2-(2-cyanopropan-2-yl)-N-(4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)isonicotinamide (1.0 equiv.), Na2CO3 (2 M, 3 equiv.) and PdCl2(dppf) (0.05 equiv.) in DME (0.058 M) were heated at 120 °C for 15 min in the microwave. The resulting mixture was partitioned between EtOAc and water. The organic phase was washed with brine and then dried over magnesium sulfate. After concentration, the crude material was purified via preparative reverse phase HPLC. Upon lyophilization of the pure fractions, (S)-2-(2-cyanopropan-2-yl)-N-(3-(6-ethoxy-5-(3-methylmorpholino)pyridazin-3-yl)-4-methylphenyl)isonicotinamidewas isolated as the TFA salt in 11% yield. 1H NMR (400 MHz, <dmso>) δ ppm 1.32 (br. s., 2 H) 1.43 (t, J=6.85 Hz, 3 H) 1.75 (s, 6 H) 2.05 (s, 2 H) 2.26 (s, 3 H) 3.50 - 3.63 (m, 2 H) 3.68 (s, 2 H) 3.89 (br. s., 1 H) 4.41 - 4.54 (m, 2 H) 7.43 (d, J=8.61 Hz, 1 H) 7.76 - 7.93 (m, 3 H) 7.98 (s, 1 H) 8.81 (d, J=5.09 Hz, 1 H) 10.71 (br. s., 1 H). LCMS (m/z) (M+H) = 501.2, Rt = 0.78 min.
-
- PdCl2(dppf).CH2Cl2 adduct (0.1 equiv.) was added to a solution of 4-(6-chloro-3-ethoxypyridazin-4-yl)morpholine (1.0 equiv.), 2-(2-cyanopropan-2-yl)-N-(4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)isonicotinamide (1.0 equiv.) and Na2CO3 2M solution (3.0 equiv.) in DME (0.04 M) and the system was flushed with nitrogen. The vial was sealed and placed in the microwave for 20 minutes at 120 °C. The solvent was removed under vacuum and the residue was partitioned in EtOAC/H2O. The organic layer was isolated and the aqueous layer was back extracted twice with EtOAc. The combined organics were dried over Na2SO4, filtered and concentrated. The crude was purified by HPLC to give 2-(2-cyanopropan-2-yl)-N-(3-(6-ethoxy-5-morpholinopyridazin-3-yl)-4-methylphenyl)isonicotinamide in 25% yield. 1H NMR (400 MHz, <dmso>) δ ppm 1.32 - 1.49 (m, 3 H) 1.68 - 1.80 (m, 7 H) 2.27 (s, 3 H) 3.65 - 3.78 (m, 5 H) 4.52 (q, J=7.04 Hz, 2 H) 6.94 (br. s., 1 H) 7.32 (d, J=8.22 Hz, 1 H) 7.69 - 7.79 (m, 2 H) 7.85 (dd, J=5.09, 1.17 Hz, 1 H) 8.00 (s, 1 H) 8.79 (d, J=5.09 Hz, 1 H) 10.57 (s, 1 H). LCMS (m/z) (M+H) = 487, Rt = 0.73 min.
-
- Step 1: 3-(6-ethoxy-5-morpholinopyridazin-3-yl)-4-methylaniline (1.0 equiv.), N1-((ethylimino)methylene)-N3,N3-dimethylpropane-1,3-diamine hydrochloride (1.1 equiv.), 3H-[1,2,3]triazolo[4,5-b]pyridin-3-ol (1.1 equiv.) and 4-(bromomethyl)-3-(trifluoromethyl)benzoic acid (1.1 equiv.) were dissolved in DMF (0.181 M) at RT. The reaction was monitored by LCMS. After about 1 hr, the reaction mixture was purified via preparative reverse phase HPLC to give 4-(chloromethyl)-N-(3-(6-ethoxy-5-morpholinopyridazin-3-yl)-4-methylphenyl)-3-(trifluoromethyl)benzamide in 68% yield. LCMS (m/z) (M+H) = 535.1, Rt = 1.02 min.
- Step 2: 4-(chloromethyl)-N-(3-(6-ethoxy-5-morpholinopyridazin-3-yl)-4-methylphenyl)-3-(trifluoromethyl)benzamide (1.0 equiv.) was dissolved in 2M ammonia in methanol (0.028 M). After stirring at RT overnight, the reaction mixture was concentrated and purified via preparative reverse phase HPLC to give N-(3-(6-ethoxy-5-morpholinopyridazin-3-yl)-4-methylphenyl)-4-((methylamino)methyl)-3-(trifluoromethyl)benzamide in 58% yield. 1H NMR (400 MHz, <dmso>) δ ppm 1.42 (t, J=7.04 Hz, 6 H) 2.26 (s, 6 H) 2.36 (d, J=6.26 Hz, 2 H) 2.71 (br. s., 6 H) 3.74 (br. s., 7 H) 4.38 (br. s., 4 H) 4.44 - 4.59 (m, 4 H) 7.16 (br. s., 1 H) 7.39 (d, J=8.22 Hz, 1 H) 7.79 (dd, J=8.22, 1.96 Hz, 2 H) 7.83 - 7.94 (m, 1 H) 8.35 (br. s., 1 H) 8.94 - 9.22 (m, 3 H) 10.50 - 10.74 (m, 1 H). LCMS (m/z) (M+H) = 530.1, Rt = 0.62 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.11 (t, J=7.43 Hz, 2 H) 1.25 (t, J=7.24 Hz, 10 H) 1.43 (t, J=7.04 Hz, 8 H) 2.26 (s, 8 H) 2.36 (d, J=6.26 Hz, 1 H) 2.74 - 2.90 (m, 1 H) 3.13 (dd, J=11.93, 6.46 Hz, 1 H) 3.74 (br. s., 2 H) 4.38 (br. s., 1 H) 4.49 (d, J=7.04 Hz, 1 H) 7.12 - 7.29 (m, 2 H) 7.40 (d, J=8.22 Hz, 3 H) 7.80 (dd, J=8.22, 1.96 Hz, 3 H) 7.85 - 7.98 (m, 6 H) 8.35 (d, J=3.91 Hz, 6 H) 8.86 - 9.12 (m, 5 H) 10.66 (br. s., 2 H). LCMS (m/z) (M+H) = 544.1, Rt = 0.64 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.38 (t, J=6.85 Hz, 1 H) 2.22 (s, 1 H) 2.46 - 2.55 (m, 1 H) 2.77 (br. s., 1 H) 3.69 (br. s., 1 H) 4.35 - 4.60 (m, 1 H) 7.34 (d, J=8.22 Hz, 1 H) 7.74 (dd, J=8.41, 1.76 Hz, 1 H) 7.78 - 7.88 (m, 2 H) 7.95 (d, J=8.61 Hz, 2 H) 8.33 (br. s., 4 H) 10.48 - 10.74 (m, 2 H). LCMS (m/z) (M+H) = 544.1, Rt = 0.63 min.
-
- Step 1: To a flask containing 3,4,6-trichloropyridazine (1.0 equiv.) in EtOH (1.3 M) was added morpholine (2.3 equiv.) and the reaction mix was stirred at RT for 60 min. A precipitate appeared which was removed by filtration. The solid recovered was suspended in water and stirred for few minutes to remove salts. After filtration the solid was dried under vacuum giving 4-(3,6-dichloropyridazin-4-yl)morpholine in 86% yield which was used as is in the next step. LCMS (m/z) (M+H) = 234/236, Rt = 0.57 min.
- Step 2: NaH (2.0 equiv.) was added to a solution of tetrahydro-2H-pyran-4-ol (1.7 equiv.) and 4-(3,6-dichloropyridazin-4-yl)morpholine (1.0 equiv.) in THF (0.3 M) at 0 °C and the reaction mix was left stirring overnight at RT. The reaction mix was quench with water and extracted three times with EtOAc. The combined organics were washed with brine and dried over Na2SO4. The crude was dissolved in DCM, and adsorbed in silica gel. The solid was loaded into a cartridge and purified on a silica gel column using 0 to 40% EtOAc in heptane. The desired 4-(6-chloro-3-((tetrahydro-2H-pyran-4-yl)oxy)pyridazin-4-yl)morpholine was otained in 75% yield. LCMS (m/z) (M+H) = 300, Rt = 0.54 min.
- Step 3: To a solution of 4-(6-chloro-3-((tetrahydro-2H-pyran-4-yl)oxy)pyridazin-4-yl)morpholine (1.0 equiv.) and 4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline (1.0 equiv.) in DME (0.11 M) was added Na2CO3 (2M, 3.0 equiv.) and the system was flushed with nitrogen. PdCl2(dppf).CH2Cl2 adduct (0.05 equiv.) was added to the reaction mix and the system was flushed once again with nitrogen. The reaction mix was heated in a bath for 4 hr at 120 °C. The crude was partitioned in H2O/EtOAc. The organic layer was isolated, dried over Na2SO4, filtered and concentrated. Crude was purified silica gel column using DCM to 5% MeOH in DCM to give 4-methyl-3-(5-morpholino-6-((tetrahydro-2H-pyran-4-yl)oxy)pyridazin-3-yl)aniline in 77% yield. LCMS (m/z) (M+H) = 371, Rt = 0.43 min.
- Step 4: DIEA (3.0 equiv.) was added to a solution of 4-methyl-3-(5-morpholino-6-((tetrahydro-2H-pyran-4-yl)oxy)pyridazin-3-yl)aniline (1.0 equiv.), 6-(trifluoromethyl)pyridazine-4-carboxylic acid (1.0 equiv.) and HATU (1.0 equiv.) in DMF (0.05 M), and the mixture was left stirring at RT overnight. The reaction mix was treated with water and extracted three times with EtOAc. The combined organics were dried over Na2SO4, filtered and concentrated. The crude was purified by HPLC giving N-(4-methyl-3-(5-morpholino-6-((tetrahydro-2H-pyran-4-yl)oxy)pyridazin-3-yl)phenyl)-6-(trifluoromethyl)pyridazine-4-carboxamide as the TFA salt in 55% yield. 1H NMR (400 MHz, <dmso>) δ ppm 1.71 - 1.91 (m, 2 H) 2.00 - 2.17 (m, 2 H) 2.21 - 2.33 (m, 3 H) 3.67 - 3.90 (m, 10 H) 5.25 - 5.44 (m, 1 H) 7.29 (br. s., 1 H) 7.46 (d, J=8.61 Hz, 1 H) 7.77 (dd, J=8.22, 1.96 Hz, 1 H) 7.92 (s, 1 H) 8.66 (d, J=1.96 Hz, 1 H) 9.90 (d, J=1.56 Hz, 1 H) 11.01 (s, 1 H). LCMS (m/z) (M+H) = 545, Rt = 0.69 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.61 - 1.74 (m, 6 H) 1.76 - 1.90 (m, 2 H) 2.02 - 2.17 (m, 2 H) 2.21 - 2.31 (m, 3 H) 7.34 (br. s., 1 H) 7.43 (d, J=8.22 Hz, 1 H) 7.75 - 7.84 (m, 2 H) 7.95 (s, 1 H) 8.00 (s, 1 H) 8.76 (d, J=5.09 Hz, 1 H) 10.73 (s, 1 H). LCMS (m/z) (M+H) = 536, Rt = 0.70 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.68 - 1.83 (m, 3 H) 1.94 (s, 1 H) 1.97 - 2.11 (m, 4 H) 2.22 (s, 3 H) 5.19 - 5.38 (m, 1 H) 7.28 (br. s., 1 H) 7.39 (d, J=8.22 Hz, 1 H) 7.74 (dd, J=8.22, 1.96 Hz, 1 H) 7.90 (s, 1 H) 7.96 (d, J=4.70 Hz, 1 H) 8.11 (s, 1 H) 8.83 (d, J=5.09 Hz, 1 H) 10.75 (s, 1 H). LCMS (m/z) (M+H) = 540, Rt = 0.71 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.77 (d, J=8.61 Hz, 3 H) 2.03 (br. s., 3 H) 2.23 (s, 4 H) 3.53 (t, J=8.22 Hz, 3 H) 5.31 (br. s., 1 H) 7.26 (br. s., 1 H) 7.37 (d, J=8.22 Hz, 1 H) 7.91 (d, J=7.83 Hz, 1 H) 8.04 (br. s., 2 H) 8.27 (s, 1 H) 8.98 (d, J=4.70 Hz, 1 H) 10.91 (br. s., 1 H). LCMS (m/z) (M+H) = 544, Rt = 0.80 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.41 - 1.50 (m, 7 H) 1.75 - 1.91 (m, 2 H) 2.02 - 2.14 (m, 2 H) 2.26 (s, 3 H) 3.58 (ddd, J=11.35, 7.83, 3.13 Hz, 2 H) 5.33 (dt, J=7.43, 3.72 Hz, 1 H) 7.37 (s, 1 H) 7.43 (d, J=8.22 Hz, 1 H) 7.68 (dd, J=5.09, 1.57 Hz, 1 H) 7.79 (dd, J=8.22, 1.96 Hz, 1 H) 7.97 (d, J=1.57 Hz, 1 H) 8.12 (s, 1 H) 8.68 (d, J=5.09 Hz, 1 H) 10.70 (s, 1 H). LCMS (m/z) (M+H) = 534, Rt = 0.55 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.74 - 1.89 (m, 2 H) 2.10 (dt, J=6.65, 3.33 Hz, 2 H) 2.27 (s, 3 H) 3.34 (s, 4 H) 3.72 - 3.88 (m, 10 H) 5.35 (br. s., 1 H) 7.31 (br. s., 1 H) 7.44 (d, J=8.22 Hz, 1 H) 7.80 (dd, J=8.41, 2.15 Hz, 1 H) 7.94 (s, 1 H) 8.20 (dd, J=4.89, 1.37 Hz, 1 H) 8.51 (s, 1 H) 9.00 (d, J=4.70 Hz, 1 H) 10.93 (s, 1 H). LCMS (m/z) (M+H) = 554, Rt = 0.61 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.67 - 1.92 (m, 9 H) 1.97 - 2.15 (m, 2 H) 2.18 - 2.35 (m, 4 H) 3.65 - 3.90 (m, 7 H) 5.38 (br. s., 1 H) 7.43 (d, J=8.22 Hz, 1 H) 7.76 (dd, J=8.22, 1.96 Hz, 1 H) 7.88 (br. s., 1 H) 8.28 (d, J=1.96 Hz, 1 H) 9.63 (d, J=1.96 Hz, 1 H) 10.88 (br. s., 1 H). LCMS (m/z) (M+H) = 544, Rt = 0.65 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.21 (s, 1 H) 1.66 - 1.83 (m, 9 H) 1.97 (s, 2 H) 2.04 - 2.15 (m, 2 H) 2.27 (s, 3 H) 3.52 - 3.62 (m, 2 H) 3.67 - 3.77 (m, 4 H) 3.79 - 3.87 (m, 2 H) 4.01 (q, J=7.04 Hz, 1 H) 5.41 - 5.58 (m, 1 H) 6.95 (br. s., 1 H) 7.32 (d, J=8.61 Hz, 1 H) 7.69 - 7.79 (m, 2 H) 7.85 (d, J=5.09 Hz, 1 H) 7.99 (s, 1 H) 8.79 (d, J=5.09 Hz, 1 H) 10.56 (s, 1 H). LCMS (m/z) (M+H) = 543, Rt = 0.71 min.
-
- Step 1: To a solution of 4-(3,6-dichloropyridazin-4-yl)morpholine (1.0 equiv.) and ethane-1,2-diol (3.0 equiv.) in THF (0.14M) was added sodium hydride (60% oil dispersion, 3.0 equiv.) under nitrogen and the reaction was heated to 60 °C for 4 hours. Upon completion, cooled to room temperature and quenched by the addition of water. Extracted with ethyl acetate three times, the organics were combined, dried with Na2SO4, filtered and concentrated. The crude material was triturated in DCM and the precipitate was filtered. Isolated 2-((6-chloro-4-morpholinopyridazin-3-yl)oxy)ethanol as the desired product in 51% yield as a white solid. LCMS (m/z) (M+H) = 260.0, Rt = 0.39 min.
- Step 2: To a solution 2-((6-chloro-4-morpholinopyridazin-3-yl)oxy)ethanol (1.0 equiv.) in DME (0.2 M) was added 4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline (1.2 equiv.) and PdCl2(dppf).CH2Cl2 adduct (0.10 equiv.), and 2M Na2CO3 (3.00 equiv.). The reaction was heated in the microwave at 120 °C for 20 min. Partitioned between water and ethyl acetate, the aqueous phase was extracted 3 times with ethyl acetate, the organics were combined, dried with sodium sulfate, filtered and concentrated. The crude material was purified via silica gel chromatography eluting with 0-100% ethyl acetate in heptanes followed by 10% methanol in EtOAc. The pure fractions were concentrated under vacuum to yield 2-((6-(5-amino-2-methylphenyl)-4-morpholinopyridazin-3-yl)oxy)ethanol in 39% yield. LCMS (m/z) (M+H) = 331.0, Rt = 0.35 min.
- Step 3: To a solution of 2-((6-(5-amino-2-methylphenyl)-4-morpholinopyridazin-3-yl)oxy)ethanol (1.0 equiv.) in DMF (0.06 M) was added 2-(trifluoromethyl)isonicotinic acid (1.0 equiv.) and EDC (1.0 equiv.) and HOAt (1.0 equiv.). The solution was stirred at room temperature overnight. Filtered through a HPLC filter and purified via reverse phase prep-HPLC. The pure fractions were lyophilized for several days to yield N-(3-(6-(2-hydroxyethoxy)-5-morpholinopyridazin-3-yl)-4-methylphenyl)-2-(trifluoromethyl)isonicotinamide in 21% yield. 1H NMR (400 MHz, <cd3od>) δ ppm 2.35 (s, 3 H) 3.81 - 3.90 (m, 4 H) 3.94 - 4.08 (m, 6 H) 4.51 - 4.63 (m, 2 H) 7.31 (s, 1 H) 7.48 (d, J=8.61 Hz, 1 H) 7.72 (dd, J=8.41, 2.15 Hz, 1 H) 8.05 (d, J=2.35 Hz, 1 H) 8.12 (d, J=3.91 Hz, 1 H) 8.29 (s, 1 H) 8.92 (d, J=5.09 Hz, 1 H). LCMS (m/z) (M+H) = 504.1, Rt = 0.64 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.35 (s, 3 H) 3.78 - 3.90 (m, 4 H) 3.95 - 4.08 (m, 6 H) 4.49 - 4.61 (m, 2 H) 7.32 (s, 1 H) 7.48 (d, J=8.61 Hz, 1 H) 7.87 (dd, J=8.22, 2.35 Hz, 1 H) 7.94 (d, J=4.30 Hz, 1 H) 8.09 (d, J=2.35 Hz, 1 H) 8.43 (s, 1 H) 8.97 (d, J=5.09 Hz, 1 H). LCMS (m/z) (M+H) = 504.2, Rt = 0.70 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.03 (t, J=18.78 Hz, 3 H) 2.35 (s, 3 H) 3.77 - 3.90 (m, 4 H) 3.94 - 4.06 (m, 6 H) 4.48 - 4.62 (m, 2 H) 7.30 (s, 1 H) 7.47 (d, J=8.61 Hz, 1 H) 7.71 (dd, J=8.22, 1.96 Hz, 1 H) 7.96 (d, J=4.70 Hz, 1 H) 8.04 (d, J=2.35 Hz, 1 H) 8.17 (s, 1 H) 8.82 (d, J=5.09 Hz, 1 H). LCMS (m/z) (M+H) = 500.1, Rt = 0.63 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.62 - 1.83 (m, 6 H) 2.35 (s, 3 H) 3.80 - 3.90 (m, 4 H) 3.95 - 4.07 (m, 6 H) 4.49 - 4.65 (m, 2 H) 7.31 (s, 1 H) 7.47 (d, J=8.22 Hz, 1 H) 7.62 - 7.79 (m, 2 H) 7.97 - 8.10 (m, 2 H) 8.71 (d, J=5.09 Hz, 1 H). LCMS (m/z) (M+H) = 496.2, Rt = 0.62 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.00 (t, J=7.43 Hz, 3 H) 2.25 - 2.50 (m, 5 H) 3.82 - 3.91 (m, 4 H) 3.95 - 4.05 (m, 5 H) 4.52 - 4.65 (m, 2 H) 7.30 (s, 1 H) 7.47 (d, J=8.22 Hz, 1 H) 7.72 (dd, J=8.61, 2.35 Hz, 1 H) 7.96 (d, J=3.91 Hz, 1 H) 8.04 (d, J=1.96 Hz, 1 H) 8.15 (s, 1 H) 8.83 (d, J=5.09 Hz, 1 H). LCMS (m/z) (M+H) = 514.2, Rt = 0.67 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.25 (s, 3 H) 3.71 - 3.82 (m, 4 H) 3.84 - 3.96 (m, 6 H) 4.42 - 4.53 (m, 2 H) 7.22 (s, 1 H) 7.37 (d, J=8.22 Hz, 1 H) 7.57 - 7.71 (m, 2 H) 7.82 (d, J=7.83 Hz, 1 H) 7.93 (d, J=1.96 Hz, 1 H) 8.11 (d, J=8.22 Hz, 1 H) 8.16 (s, 1 H). LCMS (m/z) (M+H) = 503.1, Rt = 0.72 min.
-
- To a solution of 2-((6-chloro-4-morpholinopyridazin-3-yl)oxy)ethanol (1.0 equiv.) in DME (0.06 M) was added 2-(2-cyanopropan-2-yl)-N-(4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)isonicotinamide (1.2 equiv.), followed by PdCl2(dppf).CH2Cl2 adduct (0.1 equiv.) and 2M Na2CO3 (3.0 equiv.). The reaction was heated to 120 °C for 10 min the microwave. The layers were separated; the organic phase was concentrated to dryness and purified via reverse phase HPLC. The pure fractions were lyophilized for several days to yield 2-(2-cyanopropan-2-yl)-N-(3-(6-(2-hydroxyethoxy)-5-morpholinopyridazin-3-yl)-4-methylphenyl)isonicotinamide as the TFA salt in 29% yield. 1H NMR (400 MHz, <cd3od>) δ ppm 1.81 (s, 6 H) 2.35 (s, 3 H) 3.76 - 3.90 (m, 4 H) 3.93 - 4.08 (m, 6 H) 4.51 - 4.65 (m, 2 H) 7.31 (s, 1 H) 7.47 (d, J=8.61 Hz, 1 H) 7.71 (dd, J=8.22, 2.35 Hz, 1 H) 7.81 (dd, J=5.09, 1.57 Hz, 1 H) 8.00 - 8.13 (m, 2 H) 8.77 (d, J=5.09 Hz, 1 H). LCMS (m/z) (M+H) = 503.1, Rt = 0.61 min.
-
- Synthetic conditions similar to Example 585.
- Step 1: 4-(6-chloro-3-isopropoxypyridazin-4-yl)morpholine. LCMS (m/z) (M+H) = 258.2,259.7, Rt = 0.59 min.
- Step 2: 3-(6-isopropoxy-5-morpholinopyridazin-3-yl)-4-methylaniline. LCMS (m/z) (M+H) = 329.3, Rt = 0.50 min.
- Step 3: 2-(1,1-difluoroethyl)-N-(3-(6-isopropoxy-5-morpholinopyridazin-3-yl)-4-methylphenyl)isonicotinamide. 1H NMR (400 MHz, <dmso>) δ ppm 1.42 (d, J=6.26 Hz, 6 H) 2.03 (t, J=19.17 Hz, 3 H) 2.27 (s, 3 H) 3.74 (br. s., 8 H) 5.23 - 5.40 (m, 1 H) 7.28 (br. s., 1 H) 7.42 (d, J=8.61 Hz, 1 H) 7.79 (dd, J=8.41, 2.15 Hz, 1 H) 7.93 (s, 1 H) 8.01 (d, J=4.70 Hz, 1 H) 8.16 (s, 1 H) 8.88 (d, J=5.09 Hz, 1 H) 10.79 (s, 1 H). LCMS (m/z) (M+H) = 498.2, Rt = 0.76 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.42 (d, J=5.87 Hz, 6 H) 2.27 (s, 3 H) 3.74 (br. s., 8 H) 5.26 - 5.38 (m, 1 H) 6.87 - 7.23 (m, 1 H) 7.29 (br. s., 1 H) 7.43 (d, J=8.22 Hz, 1 H) 7.79 (dd, J=8.41, 2.15 Hz, 1 H) 7.94 (s, 1 H) 8.04 (d, J=5.09 Hz, 1 H) 8.16 (s, 1 H) 8.90 (d, J=5.09 Hz, 1 H) 10.80 (s, 1 H). LCMS (m/z) (M+H) = 484.2, Rt = 0.72 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.43 (d, J=6.26 Hz, 6 H) 2.27 (s, 3 H) 3.69 - 3.92 (m, 8 H) 5.22 - 5.39 (m, 1 H) 7.32 (s, 1 H) 7.43 (d, J=8.22 Hz, 1 H) 7.96 (dd, J=8.41, 2.15 Hz, 1 H) 8.06 - 8.14 (m, 2 H) 8.32 (s, 1 H) 9.03 (d, J=5.09 Hz, 1 H) 10.98 (s, 1 H). LCMS (m/z) (M+H) = 502.1, Rt = 0.83 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.42 (d, J=5.87 Hz, 6 H) 1.66 (s, 3 H) 1.71 (s, 3 H) 2.27 (s, 3 H) 3.74 (d, J=4.70 Hz, 4 H) 3.82 (br. s., 4 H) 5.30 (dt, J=12.23, 6.21 Hz, 1 H) 7.33 (s, 1 H) 7.43 (d, J=8.22 Hz, 1 H) 7.75 - 7.84 (m, 2 H) 7.96 (d, J=1.57 Hz, 1 H) 8.00 (s, 1 H) 8.75 (d, J=5.09 Hz, 1 H) 10.74 (s, 1 H). LCMS (m/z) (M+H) = 494.1, Rt = 0.77 min.
-
- It was prepared following similar procedure as LXH202. 1H NMR (400 MHz, <dmso>) δ ppm 1.42 (d, J=6.26 Hz, 6 H) 1.70 - 1.82 (m, 6 H) 2.27 (s, 3 H) 3.74 (br. s., 8 H) 5.25 - 5.39 (m, 1 H) 7.29 (br. s., 1 H) 7.43 (d, J=8.22 Hz, 1 H) 7.78 (dd, J=8.22, 1.96 Hz, 1 H) 7.84 (dd, J=5.09, 1.17 Hz, 1 H) 7.91 (s, 1 H) 7.98 (s, 1 H) 8.81 (d, J=5.09 Hz, 1 H) 10.71 (s, 1 H). LCMS (m/z) (M+H) = 501.2, Rt = 0.75 min.
-
- Synthetic conditions similar to Example 585.
- Step 1: 4-(6-chloro-3-(2-methoxyethoxy)pyridazin-4-yl)morpholine. LCMS (m/z) (M+H) = 329.3, Rt = 0.50 min.
- Step 2: 3-(6-(2-methoxyethoxy)-5-morpholinopyridazin-3-yl)-4-methylaniline. LCMS (m/z) (M+H) = 345.2, Rt = 0.40 min.
- Step 3: 2-(1,1-difluoroethyl)-N-(3-(6-(2-methoxyethoxy)-5-morpholinopyridazin-3-yl)-4-methylphenyl)isonicotinamide. 1H NMR (400 MHz, <dmso>) δ ppm 1.94 - 2.13 (m, 3 H) 2.26 (s, 3 H) 3.32 (s, 3 H) 3.68 - 3.82 (m, 10 H) 4.49 - 4.57 (m, 2 H) 7.27 (br. s., 1 H) 7.42 (d, J=8.61 Hz, 1 H) 7.80 (dd, J=8.41, 2.15 Hz, 1 H) 7.89 - 7.94 (m, 1 H) 8.01 (d, J=4.70 Hz, 1 H) 8.16 (s, 1 H) 8.88 (d, J=4.70 Hz, 1 H) 10.78 (s, 1 H). LCMS (m/z) (M+H) = 514.2, Rt = 0.68 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 2.26 (s, 3 H) 3.32 (s, 4 H) 3.70 - 3.80 (m, 10 H) 4.53 (br. s., 2 H) 6.89 - 7.32 (m, 2 H) 7.42 (d, J=8.61 Hz, 1 H) 7.79 (dd, J=8.61, 1.96 Hz, 1 H) 7.91 (br. s., 1 H) 8.04 (d, J=5.09 Hz, 1 H) 8.16 (s, 1 H) 8.90 (d, J=4.70 Hz, 1 H) 10.78 (br. s., 1 H). LCMS (m/z) (M+H) = 500.2, Rt = 0.64 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 2.27 (s, 3 H) 3.33 (s, 3 H) 3.67 - 3.82 (m, 10 H) 4.49 - 4.58 (m, 2 H) 7.28 (br. s., 1 H) 7.41 (d, J=8.22 Hz, 1 H) 7.96 (dd, J=8.22, 1.96 Hz, 1 H) 8.03 - 8.14 (m, 2 H) 8.32 (s, 1 H) 9.03 (d, J=4.70 Hz, 1 H) 10.95 (s, 1 H). LCMS (m/z) (M+H) = 518.1, Rt = 0.76 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.66 (s, 3 H) 1.71 (s, 3 H) 2.26 (s, 3 H) 3.32 (s, 3 H) 3.70 - 3.82 (m, 10 H) 4.52 (dd, J=5.09, 3.52 Hz, 2 H) 7.31 (br. s., 1 H) 7.42 (d, J=8.22 Hz, 1 H) 7.75 - 7.84 (m, 2 H) 7.93 (d, J=1.57 Hz, 1 H) 8.00 (s, 1 H) 8.75 (d, J=5.09 Hz, 1 H) 10.72 (s, 1 H). LCMS (m/z) (M+H) = 510.1, Rt = 0.68 min.
-
- It was prepared following similar procedure as LXH202. 1H NMR (400 MHz, <dmso>) δ ppm 1.75 (s, 6 H) 2.26 (s, 3 H) 3.32 (s, 3 H) 3.68 - 3.84 (m, 10 H) 4.53 (dd, J=5.28, 3.33 Hz, 2 H) 7.29 (br. s., 1 H) 7.43 (d, J=8.22 Hz, 1 H) 7.79 (dd, J=8.22, 1.96 Hz, 1 H) 7.84 (dd, J=5.09, 1.17 Hz, 1 H) 7.89 (s, 1 H) 7.98 (s, 1 H) 8.81 (d, J=5.09 Hz, 1 H) 10.71 (s, 1 H). LCMS (m/z) (M+H) = 517.3, Rt = 0.67 min.
-
- Step 1: To a flask containing 3,4,6-trichloropyridazine (1.0 equiv.) in EtOH (1.3 M) was added morpholine (2.3 equiv.) and the reaction mix was stirred at RT for 60 min. A precipitate appeared which was removed by filtration. The solid recovered was suspended in water and stirred for few minutes to remove salts. After filtration the solid was dried under vacuum giving 4-(3,6-dichloropyridazin-4-yl)morpholine in 86% yield which was used as is in the next step. LCMS (m/z) (M+H) = 234/236, Rt = 0.57 min.
- Step 2: To a flask containing 4-(3,6-dichloropyridazin-4-yl)morpholine (1.0 equiv.) in DMF (0.14 M) was added sodium thiomethoxide (1.5 equiv.) and the reaction mix was stirred at RT overnight. The solvent was removed under vacuum and the crude was suspended in large volume of water. The solids that were removed by filtration were dissolved in DCM. The small aqueous layer was removed and the organic layer was dried over MgSO4, filtered and concentrated. The crude 4-(6-chloro-3-(methylthio)pyridazin-4-yl)morpholine was used as is in the next step. Yield was assumed to be quantitative.
- Step 3: A solution of Oxone (2.2 equiv.) in water (0.043M) was added to a solution of 4-(6-chloro-3-(methylthio)pyridazin-4-yl)morpholine (1.0 equiv.) in THF (0.043 M) at 0 °C and the reaction mix was left to reach RT overnight. The reaction mix was poured into water and extracted three times with EtOAc. The combined organics were dried over Na2SO4, filtered and concentrated. The residue was dissolved in DCM, and adsorbed in silica gel. The solid was loaded into a cartridge and purified on a silica gel column using 0 to 60% EtOAc in heptane. The desired 4-(6-chloro-3-(methylsulfonyl)pyridazin-4-yl)morpholine was obtained in 63% yield. LCMS (m/z) (M+H) = 278, Rt = 0.48 min.
- Step 4: To a solution of 4-(6-chloro-3-(methylsulfonyl)pyridazin-4-yl)morpholine (1.0 equiv.) and 4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline (1.0 equiv.) in DME (0.11 M) was added Na2CO3 (2M, 3.0 equiv.) and the system was flushed with nitrogen. PdCl2(dppf).CH2Cl2 adduct (0.1 equiv.) was added to the reaction mix and the system was flushed once again with nitrogen. The reaction vial was heated in a microwave reactor at 120 °C for 20 minutes. The reaction mix was partitioned in H2O/EtOAc. The organic layer was isolated, dried over Na2SO4, filtered and concentrated. Crude was purified by HPLC to give N-(4-methyl-3-(6-(methylsulfonyl)-5-morpholinopyridazin-3-yl)phenyl)-3-(trifluoromethyl)benzamide in 24% yield. 1H NMR (400 MHz, <dmso>) δ ppm 2.22 - 2.37 (m, 3 H) 3.68 - 3.79 (m, 7 H) 7.34 - 7.40 (m, 1 H) 7.41 (s, 1 H) 7.73 - 7.83 (m, 2 H) 7.90 (d, J=2.35 Hz, 1 H) 7.96 (d, J=7.83 Hz, 1 H) 8.25 (d, J=7.83 Hz, 1 H) 8.29 (s, 1 H) 10.43 - 10.66 (m, 1 H). LCMS (m/z) (M+H) = 521, Rt = 0.89 min.
-
- Step 1: To a flask containing 3,4,6-trichloropyridazine (1.0 equiv.) in EtOH (1.3 M) was added morpholine (2.3 equiv.) and the reaction mix was stirred at RT for 60 min. A precipitate appeared which was removed by filtration. The solid recovered was suspended in water and stirred for few minutes to remove salts. After filtration the solid was dried under vacuum giving 4-(3,6-dichloropyridazin-4-yl)morpholine in 86% yield which was used as is in the next step. LCMS (m/z) (M+H) = 234/236, Rt = 0.57 min. Step 2: Sodium methoxide (2.0 equiv.) was added portion wise to a flask containing 4-(3,6-dichloropyridazin-4-yl)morpholine (1.0 equiv.) in MeOH (0.43 M) and the reaction mix was stirred overnight at RT. The solvent was removed under vacuum and the crude was partitioned in brine/EtOAc. The organic phase was isolated and the aqueous layer was extracted once more with EtOAc. The combined organics were concentrated to dryness and the residue was dissolved in DCM, and adsorbed in silica gel. The solid was loaded into a cartridge and purified on a silica gel column. using 0 to 60% EtOAc in heptane. The desired 4-(6-chloro-3-methoxypyridazin-4-yl)morpholine was obtained in 71% yield. LCMS (m/z) (M+H) = 230, Rt = 0.44 min.
- Step 3: To a solution of 4-(6-chloro-3-methoxypyridazin-4-yl)morpholine (1.0 equiv.) and 6-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-3-amine (1.0 equiv.) in DME (0.08 M) was added Na2CO3 (2M, 3.0 equiv.) and the system was flushed with nitrogen. PdCl2(dppf).CH2Cl2 adduct (0.1 equiv.) was added to the reaction mix and the system was flushed once again with nitrogen. The reaction vial was capped and heated in a bath for 4 hr at 120 °C. The crude was partitioned in H2O/EtOAc. The organic layer was isolated, dried over Na2SO4, filtered and concentrated. Crude was purified silica gel column using DCM to 5% MeOH in DCM to give 5-(6-methoxy-5-morpholinopyridazin-3-yl)-6-methylpyridin-3-amine in 54% yield. LCMS (m/z) (M+H) = 317, Rt = 0.38 min.
- Step 4: DIEA (3.0 equiv.) was added to a solution of 5-(6-methoxy-5-morpholinopyridazin-3-yl)-6-methylpyridin-3-amine (1.0 equiv.), 2-(1,1-difluoroethyl)isonicotinic acid (1.0 equiv.) and HATU (1.0 equiv.) in DMF (0.07 M), and the mixture was left stirring at RT overnight. The reaction mix was treated with water and the precipitate was filtered. The solid was purified by HPLC giving 2-(1,1-difluoroethyl)-N-(5-(6-methoxy-5-morpholinopyridazin-3-yl)-6-methylpyridin-3-yl)isonicotinamide as the TFA salt in 30% yield. 1H NMR (400 MHz, <dmso>) δ ppm 2.04 (t, J=19.17 Hz, 3 H) 3.74 (s, 8 H) 4.08 (s, 3 H) 7.38 (s, 1 H) 8.04 (d, J=4.70 Hz, 1 H) 8.20 (s, 1 H) 8.35 (d, J=1.96 Hz, 1 H) 8.83 - 9.01 (m, 2 H) 10.91 - 11.13 (m, 1 H). LCMS (m/z) (M+H) = 471, Rt = 0.59 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 4.07 (s, 12 H) 6.97 - 7.31 (m, 1 H) 7.01 (s, 1 H) 7.15 (s, 2 H) 7.29 (s, 1 H) 7.35 (s, 1 H) 7.67 - 7.75 (m, 1 H) 7.82 (d, J=7.83 Hz, 1 H) 8.09 - 8.21 (m, 2 H) 8.37 (d, J=2.35 Hz, 1 H) 8.95 (d, J=2.35 Hz, 1 H) 10.80 (s, 1 H). LCMS (m/z) (M+H) = 456, Rt = 0.61 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 3.69 (br. s., 7 H) 4.03 (s, 3 H) 7.31 (br. s., 1 H) 8.16 (d, J=4.70 Hz, 1 H) 8.29 (d, J=1.96 Hz, 1 H) 8.33 (s, 1 H) 8.89 (d, J=2.35 Hz, 1 H) 8.97 (d, J=4.70 Hz, 1 H) 11.01 (s, 1 H). LCMS (m/z) (M+H) = 475, Rt = 0.61 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 0.87 - 1.05 (m, 5 H) 2.11 - 2.27 (m, 1 H) 3.66 - 3.86 (m, 8 H) 3.98 - 4.14 (m, 3 H) 7.39 (s, 1 H) 7.58 (dd, J=5.09, 1.17 Hz, 1 H) 7.75 (s, 1 H) 8.36 (d, J=2.35 Hz, 1 H) 8.59 (d, J=5.09 Hz, 1 H) 8.93 (d, J=2.35 Hz, 1 H) 10.88 (s, 1 H). LCMS (m/z) (M+H) = 447, Rt = 0.45 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 0.93 (t, J=7.43 Hz, 2 H) 2.26 - 2.43 (m, 2 H) 3.74 (s, 7 H) 3.65 - 3.82 (m, 1 H) 3.87 - 4.36 (m, 8 H) 7.38 (s, 1 H) 8.03 (d, J=4.30 Hz, 1 H) 8.18 (s, 1 H) 8.35 (d, J=2.35 Hz, 1 H) 8.83 - 9.02 (m, 1 H) 11.03 (s, 1 H). LCMS (m/z) (M+H) = 485, Rt = 0.65 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.56 - 1.83 (m, 6 H) 3.62 - 3.78 (m, 4 H) 3.99 - 4.15 (m, 3 H) 6.97 - 7.11 (m, 1 H) 7.83 (dd, J=5.09, 1.57 Hz, 1 H) 8.05 (s, 1 H) 8.19 (d, J=2.35 Hz, 1 H) 8.76 (d, J=5.09 Hz, 1 H) 8.88 (d, J=2.35 Hz, 1 H) 10.78 (s, 1 H). LCMS (m/z) (M+H) = 543, Rt = 0.71 min.
-
- Step 1: To a flask containing 3,4,6-trichloropyridazine (1.0 equiv.) in EtOH (1.3 M) was added morpholine (2.3 equiv.) and the reaction mix was stirred at RT for 60 min. A precipitate appeared which was removed by filtration. The solid recovered was suspended in water and stirred for few minutes to remove salts. After filtration the solid was dried under vacuum giving 4-(3,6-dichloropyridazin-4-yl)morpholine in 86% yield which was used as is in the next step. LCMS (m/z) (M+H) = 234/236, Rt = 0.57 min.
- Step 2: To a flask containing 4-(3,6-dichloropyridazin-4-yl)morpholine (1.0 equiv.) in EtOH (0.23 M) was added sodium ethoxide 21% in ethanol (1.4 equiv.) and the reaction mix was stirred overnight at RT. The solvent was removed under vacuum and the crude was partitioned in brine/EtOAc. The organic phase was concentrated to dryness and the residue was dissolved in DCM, and adsorbed in silica gel. The solid was loaded into a cartridge and purified on a silica gel column using 0 to 40% EtOAc in heptane. The desired 4-(6-chloro-3-ethoxypyridazin-4-yl)morpholine was obtained in 48% yield. LCMS (m/z) (M+H) = 246, Rt = 0.36 min.
- Step 3: PdCl2(dppf).CH2Cl2 adduct (0.1) was added to a solution of 4-(6-chloro-3-ethoxypyridazin-4-yl)morpholine (1.0 equiv.), N-(6-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-3-yl)-3-(trifluoromethyl)benzamide (1.0 equiv.) and Na2CO3 2M solution (3.0 equiv.) in DME (0.07 M) and the system was flushed with nitrogen. The vial was sealed and placed in the microwave reactor for 20 minutes at 120 °C. The solvent was removed under vacuum and the residue was partitioned in EtOAC/H2O. The organic layer was isolated and the aqueous layer was back extracted twice with EtOAc. The combined organics were dried over Na2SO4, filtered and concentrated. The crude was purified by HPLC giving N-(5-(6-ethoxy-5-morpholinopyridazin-3-yl)-6-methylpyridin-3-yl)-3-(trifluoromethyl)benzamide as the TFA salt in 33% yield. 1H NMR (400 MHz, <dmso>) δ ppm 1.43 (t, J=7.04 Hz, 3 H) 3.74 (br. s., 8 H) 4.50 (q, J=7.04 Hz, 2 H) 7.36 (s, 1 H) 7.81 (t, J=7.83 Hz, 1 H) 8.01 (d, J=7.83 Hz, 1 H) 8.28 (d, J=7.83 Hz, 1 H) 8.32 (s, 1 H) 8.36 (d, J=2.35 Hz, 1 H) 8.80 - 9.07 (m, 1 H) 10.71 - 10.95 (m, 1 H). LCMS (m/z) (M+H) = 488, Rt = 0.75 min.
-
- Step 1: To a flask containing 3,4,6-trichloropyridazine (1.0 equiv.) in EtOH (1.3 M) was added morpholine (2.3 equiv.) and the reaction mix was stirred at RT for 60 min. A precipitate appeared which was removed by filtration. The solid recovered was suspended in water and stirred for few minutes to remove salts. After filtration the solid was dried under vacuum giving 4-(3,6-dichloropyridazin-4-yl)morpholine in 86% yield which was used as is in the next step. LCMS (m/z) (M+H) = 234/236, Rt = 0.57 min. Step 2: To a flask containing 4-(3,6-dichloropyridazin-4-yl)morpholine (1.0 equiv.) in EtOH (0.23 M) was added sodium ethoxide 21% in ethanol (1.4 equiv.) and the reaction mix was stirred overnight at RT. The solvent was removed under vacuum and the crude was partitioned in brine/EtOAc. The organic phase was concentrated to dryness and the residue was dissolved in DCM, and adsorbed in silica gel. The solid was loaded into a cartridge and purified on a silica gel column using 0 to 40% EtOAc in heptane. The desired 4-(6-chloro-3-ethoxypyridazin-4-yl)morpholine was obtained in 48% yield. LCMS (m/z) (M+H) = 246, Rt = 0.36 min.
- Step 3: To a solution of 4-(6-chloro-3-ethoxypyridazin-4-yl)morpholine (1.0 equiv.) and 6-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-3-amine (1.0 equiv.) in DME (0.08 M) was added Na2CO3 (2M, 3.0 equiv.) and the system was flushed with nitrogen. PdCl2(dppf).CH2Cl2 adduct (0.1 equiv.) was added to the reaction mix and the system was flushed once again with nitrogen. The reaction vial was capped and heated in a bath for 4 hr at 120 °C. The crude was partitioned in H2O/EtOAc. The organic layer was isolated, dried over Na2SO4, filtered and concentrated. Crude was purified silica gel column using DCM to 5% MeOH in DCM to give 5-(6-ethoxy-5-morpholino-1,6-dihydropyridazin-3-yl)-6-methylpyridin-3-amine in 54% yield. LCMS (m/z) (M+H) = 317, Rt = 0.38 min.
- Step 4: DIEA (3.0 equiv.) was added to a solution of 5-(6-ethoxy-5-morpholinopyridazin-3-yl)-6-methylpyridin-3-amine (1.0 equiv.), 2-(2-fluoropropan-2-yl)isonicotinic acid (1.0 equiv.) and HATU (1.0 equiv.) in DMF (0.07 M), and the mixture was left stirring at RT overnight. The reaction mix was treated with water and the precipitate was filtered. The solid was purified by HPLC giving N-(5-(6-ethoxy-5-morpholinopyridazin-3-yl)-6-methylpyridin-3-yl)-2-(2-fluoropropan-2-yl)isonicotinamide as the TFA salt in 50% yield. 1H NMR (400 MHz, <dmso>) δ ppm 1.36 - 1.52 (m, 3 H) 1.60 - 1.82 (m, 7 H) 4.50 (q, J=6.91 H) 7.39 (s, 1 H) 7.83 (dd, J=5.09, 1.57 Hz, 1 H) 8.04 (s, 1 H) 8.36 (d, J=2.35 Hz, 1 H) 8.78 (d, J=5.09 Hz, 1 H) 8.96 (d, J=2.35 Hz, 1 H) 10.97 (s, 1 H). LCMS (m/z) (M+H) = 481, Rt = 0.65 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.28 - 1.54 (m, 3 H) 3.76 (br. s., 9 H) 4.50 (q, J=7.04 Hz, 2 H) 7.27 - 7.49 (m, 1 H) 8.13 (d, J=4.30 Hz, 1 H) 8.34 (s, 1 H) 8.50 (d, J=1.96 Hz, 1 H) 8.95 - 9.20 (m, 2 H) 11.29 (s, 1 H). LCMS (m/z) (M+H) = 489, Rt = 0.75 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 0.88 - 1.11 (m, 5 H) 1.29 - 1.53 (m, 4 H) 2.05 - 2.08 (m, 1 H) 2.15 - 2.28 (m, 1 H) 2.71 (s, 1 H) 2.87 (s, 1 H) 3.64 - 3.81 (m, 9 H) 4.37 - 4.63 (m, 2 H) 7.33 (br. s., 1 H) 7.58 (dd, J=5.09, 1.57 Hz, 1 H) 7.75 (s, 1 H) 7.93 (s, 1 H) 8.34 (d, J=1.96 Hz, 1 H) 8.60 (d, J=5.09 Hz, 1 H) 8.82 - 9.03 (m, 1 H) 10.73 - 10.91 (m, 1 H). LCMS (m/z) (M+H) = 461, Rt = 0.57 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.43 (t, J=6.85 Hz, 3 H) 1.71 - 1.84 (m, 7 H) 4.50 (q, J=6.91 H) 7.35 (s, 1 H) 7.88 (dd, J=5.09, 1.17 Hz, 1 H) 8.02 (s, 1 H) 8.32 (d, J=1.96 Hz, 1 H) 8.77 - 8.88 (m, 1 H) 8.93 (d, J=2.35 Hz, 1 H) 10.95 (s, 1 H). LCMS (m/z) (M+H) = 488, Rt = 0.68 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.43 (t, J=6.85 Hz, 3 H) 4.50 (q, J=7.04 Hz, 2 H) 7.36 (s, 1 H) 8.32 (d, J=2.35 Hz, 1 H) 8.69 (d, J=1.96 Hz, 1 H) 8.92 (d, J=2.35 Hz, 1 H) 9.93 (d, J=1.96 Hz, 1 H) 11.24 (s, 1 H). LCMS (m/z) (M+H) = 490, Rt = 0.61 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.38 (t, J=6.85 Hz, 3 H) 2.01 (s, 2 H) 3.30 (s, 3 H) 4.45 (q, J=7.04 Hz, 2 H) 7.30 (br. s., 1 H) 8.18 (dd, J=4.70, 1.56 Hz, 1 H) 8.29 (d, J=2.35 Hz, 1 H) 8.50 (s, 1 H) 8.90 (d, J=2.35 Hz, 1 H) 8.98 (d, J=4.70 Hz, 1 H) 10.96 - 11.22 (m, 1 H). LCMS (m/z) (M+H) = 499, Rt = 0.53 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.43 (t, J=7.04 Hz, 4 H) 3.43 - 3.83 (m, 16 H) 4.51 (q, J=7.04 Hz, 3 H) 7.28 (br. s., 1 H) 8.20 (d, J=5.09 Hz, 1 H) 8.30 (s, 1 H) 8.38 (s, 1 H) 8.92 (d, J=2.35 Hz, 1 H) 9.01 (d, J=5.09 Hz, 1 H) 11.02 (s, 1 H). LCMS (m/z) (M+H) = 489, Rt = 0.66 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 0.85 - 0.98 (m, 3 H) 1.43 (t, J=7.04 Hz, 3 H) 2.25 - 2.41 (m, 2 H) 3.75 (s, 7 H) 4.50 (q, J=7.04 Hz, 2 H) 7.37 (s, 1 H) 8.03 (d, J=4.70 Hz, 1 H) 8.18 (s, 1 H) 8.34 (d, J=2.35 Hz, 1 H) 8.87 - 9.00 (m, 2 H) 11.02 (s, 1 H). LCMS (m/z) (M+H) = 499, Rt = 0.69 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.36 - 1.50 (m, 3 H) 2.52 (s, 1 H) 3.19 - 3.34 (m, 4 H) 4.37 - 4.59 (m, 2 H) 7.39 (s, 1 H) 7.85 (t, J=7.83 Hz, 1 H) 8.18 (d, J=7.83 Hz, 1 H) 8.30 (d, J=7.83 Hz, 1 H) 8.37 (d, J=2.35 Hz, 1 H) 8.50 (s, 1 H) 8.96 (d, J=2.35 Hz, 1 H) 10.93 (s, 1 H). LCMS (m/z) (M+H) = 498, Rt = 0.56 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.36 (t, J=7.04 Hz, 3 H) 2.01 (s, 1 H) 3.68 (br. s., 4 H) 4.49 (q, J=6.91 Hz, 2 H) 6.92 - 7.26 (m, 2 H) 7.54 - 7.83 (m, 2 H) 8.01 - 8.21 (m, 3 H) 8.83 (d, J=1.96 Hz, 1 H) 10.43 - 10.68 (m, 1 H). LCMS (m/z) (M+H) = 460, Rt = 0.68 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.41 (t, J=7.04 Hz, 3 H) 1.96 - 2.12 (m, 4 H) 3.65 - 3.79 (m, 4 H) 4.54 (q, J=7.04 Hz, 2 H) 6.89 - 7.17 (m, 1 H) 8.04 (d, J=4.30 Hz, 1 H) 8.15 - 8.25 (m, 2 H) 8.75 - 8.99 (m, 2 H) 10.72 - 10.94 (m, 1 H). LCMS (m/z) (M+H) = 485, Rt = 0.65 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.17 - 1.32 (m, 9 H) 1.35 - 1.46 (m, 3 H) 2.05 (s, 1 H) 3.01 - 3.18 (m, 1 H) 3.66 - 3.77 (m, 4 H) 4.54 (q, J=7.04 Hz, 2 H) 7.04 (s, 1 H) 7.68 (dd, J=5.09, 1.57 Hz, 1 H) 7.75 (s, 1 H) 8.18 (d, J=2.35 Hz, 1 H) 8.65 - 8.74 (m, 1 H) 8.88 (d, J=2.35 Hz, 1 H) 10.65 (s, 1 H). LCMS (m/z) (M+H) = 463, Rt = 0.51 min.
-
- Step 1: A mixture of 3,4,6-trichloropyridazine (1.0 equiv.), (R)-3-methylmorpholine (1.0 equiv.), and Hunig's base (1.1 equiv.) in NMP (2.73 M) was stirred at RT for 2 days. Water was added to the reaction mixture. The resulting precipitate was collected by filtration and dried in air to give (R)-4-(3,6-dichloropyridazin-4-yl)-3-methylmorpholine as white solid in 66% yield. LC/MS (m/z) = 247.9 (MH+), Rt = 0.63 min.
- Step 2: A mixture of (R)-4-(3,6-dichloropyridazin-4-yl)-3-methylmorpholine (1.0 equiv.) and 21 wt% sodium ethoxide in ethanol (2.0 equiv.) in 1.5 :1 ethanol and water was stirred overnight at RT. The resulting mixture was partitioned between EtOAc and water. The organic phase was washed with brine and then dried over magnesium sulfate. After concentration, the crude material was purified via preparative reverse phase HPLC. Upon lyophilization of the pure fractions, (R)-4-(6-chloro-3-ethoxypyridazin-4-yl)-3-methylmorpholine was isolated as the TFA salt in 41% yield. LC/MS (m/z) = 258.0 (MH+), Rt = 0.59 min.
- Step 3: A mixture of (R)-4-(6-chloro-3-ethoxypyridazin-4-yl)-3-methylmorpholine (1.0 equiv.), N-(6-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-3-yl)-3-(trifluoromethyl)benzamide (1.0 equiv.), Na2CO3 (2 M, 3 equiv.) and PdCl2(dppf) (0.05 equiv.) in DME (0.203 M) were heated at 120 °C for 15 min in the microwave. The resulting mixture was partitioned between EtOAc and water. The organic phase was washed with brine and then dried over magnesium sulfate. After concentration, the crude material was purified via preparative reverse phase HPLC. Upon lyophilization of the pure fractions, (R)-N-(5-(6-ethoxy-5-(3-methylmorpholino)pyridazin-3-yl)-6-methylpyridin-3-yl)-3-(trifluoromethyl)benzamide was isolated as the TFA salt in 20% yield. 1H NMR (400 MHz, <dmso>) δ ppm 1.30 (d, J=6.26 Hz, 2 H) 1.43 (t, J=7.04 Hz, 2 H) 2.05 (s, 2 H) 3.52 - 3.62 (m, 3 H) 3.69 (s, 2 H) 3.91 (d, J=9.78 Hz, 1 H) 4.49 (dd, J=7.04, 1.96 Hz, 4 H) 7.33 (br. s., 1 H) 7.76 - 7.86 (m, 1 H) 8.00 (d, J=7.83 Hz, 1 H) 8.23 - 8.38 (m, 3 H) 8.95 (d, J=2.35 Hz, 1 H) 10.84 (s, 1 H). LCMS (m/z) (M+H) = 502.2, Rt = 0.84 min.
-
- A mixture of (R)-4-(6-chloro-3-ethoxypyridazin-4-yl)-3-methylmorpholine (1.0 equiv.), 2-(2-cyanopropan-2-yl)-N-(6-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-3-yl)isonicotinamide (1.0 equiv.), Na2CO3 (2 M, 3 equiv.) and PdCl2(dppf) (0.05 equiv.) in DME (0.203 M) were heated at 120 °C for 30 min in the microwave. The resulting mixture was partitioned between EtOAc and water. The organic phase was washed with brine and then dried over magnesium sulfate. After concentration, the crude material was purified via preparative reverse phase HPLC. Upon lyophilization of the pure fractions, (R)-2-(2-cyanopropan-2-yl)-N-(5-(6-ethoxy-5-(3-methylmorpholino)pyridazin-3-yl)-6-methylpyridin-3-yl)isonicotinamide was isolated as the TFA salt in 20% yield. 1H NMR (400 MHz, <dmso>) d ppm 1.30 (d, J=5.87 Hz, 2 H) 1.43 (t, J=7.04 Hz, 2 H) 1.75 (s, 5 H) 2.05 (s, 2 H) 3.54 - 3.63 (m, 4 H) 3.69 (s, 2 H) 3.91 (d, J=9.78 Hz, 1 H) 4.49 (dd, J=7.04, 1.96 Hz, 4 H) 7.25 - 7.40 (m, 1 H) 7.88 (dd, J=5.09, 1.17 Hz, 1 H) 8.02 (s, 1 H) 8.31 (d, J=1.96 Hz, 1 H) 8.72 - 9.04 (m, 2 H) 10.86 - 11.02 (m, 1 H)LCMS (m/z) (M+H) = 502.4, Rt = 0.66 min.
-
- A mixture of (R)-4-(6-chloro-3-ethoxypyridazin-4-yl)-3-methylmorpholine (1.0 equiv.), 2-(2-cyanopropan-2-yl)-N-(4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)isonicotinamide (1.0 equiv.), Na2CO3 (2 M, 3 equiv.) and PdCl2(dppf) (0.05 equiv.) in DME (0.058 M) were heated at 120 °C for 15 min in the microwave. The resulting mixture was partitioned between EtOAc and water. The organic phase was washed with brine and then dried over magnesium sulfate. After concentration, the crude material was purified via preparative reverse phase HPLC. Upon lyophilization of the pure fractions, (R)-2-(2-cyanopropan-2-yl)-N-(3-(6-ethoxy-5-(3-methylmorpholino)pyridazin-3-yl)-4-methylphenyl)isonicotinamidewas isolated as the TFA salt in 13% yield. 1H NMR (400 MHz, <dmso>) δ ppm 1.31 (br. s., 3 H) 1.43 (t, J=6.85 Hz, 4 H) 1.75 (s, 8 H) 2.05 (s, 2 H) 2.26 (s, 3 H) 3.50 - 3.63 (m, 3 H) 3.68 (s, 2 H) 3.83 - 4.02 (m, 1 H) 4.38 - 4.56 (m, 2 H) 7.42 (d, J=8.22 Hz, 1 H) 7.76 - 7.92 (m, 3 H) 7.99 (s, 1 H) 8.81 (d, J=4.70 Hz, 1 H) 10.55 - 10.83 (m, 1 H). LCMS (m/z) (M+H) = 501.2, Rt = 0.76 min.
-
- Step 1: A mixture of 3,4,6-trichloropyridazine (1.0 equiv.), 2-(1H-imidazol-2-yl)morpholine (1.0 equiv.), and Hunig's base (3.0 equiv.) in NMP (0.182 M) was stirred at RT for 1 hr. A few drops of water were added to result in a solution, which was purified via preparative reverse phase HPLC. Upon lyophilization of the pure fractions, 4-(3,6-dichloropyridazin-4-yl)-2-(1H-imidazol-2-yl)morpholine was isolated as the TFA salt in 50% yield. LC/MS (m/z) = 299.9 (MH+), Rt = 0.37 min.
- Step 2: A mixture of 4-(6-chloro-3-ethoxypyridazin-4-yl)-2-(1H-imidazol-2-yl)morpholine (1.0 equiv.), N-(6-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-3-yl)-3-(trifluoromethyl)benzamide (1.0 equiv.), Na2CO3 (2 M, 3 equiv.) and PdCl2(dppf) (0.05 equiv.) in DME (0.203 M) were heated at 120 °C for 30 min in the microwave. The resulting mixture was partitioned between EtOAc and water. The organic phase was washed with brine and then dried over magnesium sulfate. After concentration, the crude material was purified via preparative reverse phase HPLC. Upon lyophilization of the pure fractions, N-(5-(5-(2-(1H-imidazol-2-yl)morpholino)-6-ethoxypyridazin-3-yl)-6-methylpyridin-3-yl)-3-(trifluoromethyl)benzamide was isolated as the TFA salt in 9.3% yield. 1H NMR (400 MHz, <dmso>) δ ppm 1.16 (t, J=7.24 Hz, 16 H) 1.43 (t, J=7.04 Hz, 3 H) 1.97 (s, 9 H) 2.76 (s, 1 H) 3.12 - 3.48 (m, 4 H) 4.01 (q,J=7.04 Hz, 10 H) 4.56 (dd, J=7.04, 3.52 Hz, 2 H) 5.13 (dd, J=9.98, 2.54 Hz, 1 H) 7.28 (s, 1 H) 7.68 (s, 2 H) 7.75 - 7.87 (m, 1 H) 8.00 (d, J=7.83 Hz, 1 H) 8.22 - 8.34 (m, 3 H) 8.90 (d, J=2.35 Hz, 1 H) 10.80 (s, 1 H). LCMS (m/z) (M+H) = 554.2, Rt = 0.61 min.
-
- Step 1: 5-(6-ethoxy-5-morpholinopyridazin-3-yl)-6-methylpyridin-3-amine (1.0 equiv.), N1-((ethylimino)methylene)-N3,N3-dimethylpropane-1,3-diamine hydrochloride (1.0 equiv.), and 4-(bromomethyl)-3-(trifluoromethyl)benzoic acid (1.0 equiv.) were dissolved in DMF (0.106 M) at RT. The reaction was monitored by LCMS. After about 1 hr, the reaction mixture was purified via preparative reverse phase HPLC to give 4-(chloromethyl)-N-(5-(6-ethoxy-5-morpholinopyridazin-3-yl)-6-methylpyridin-3-yl)-3-(trifluoromethyl)benzamide in 62% yield. LCMS (m/z) (M+H) = 536.1, Rt = 0.80 min.
- Step 2: 4-(chloromethyl)-N-(5-(6-ethoxy-5-morpholinopyridazin-3-yl)-6-methylpyridin-3-yl)-3-(trifluoromethyl)benzamide (1.0 equiv.) was dissolved in 2M ammonia in methanol (0.08 M). After stirring at RT overnight, the reaction mixture was concentrated and purified via preparative reverse phase HPLC to give N-(5-(6-ethoxy-5-morpholinopyridazin-3-yl)-6-methylpyridin-3-yl)-4-((methylamino)methyl)-3-(trifluoromethyl)benzamide in 24% yield. 1H NMR (400 MHz, <dmso>) δ ppm 1.34 - 1.50 (m, 7 H) 2.29 (s, 7 H) 3.62 - 3.78 (m, 9 H) 3.86 (s, 4 H) 4.46 - 4.62 (m, 5 H) 7.04 (s, 2 H) 7.87 - 8.01 (m, 2 H) 8.16 - 8.33 (m, 6 H) 8.85 - 8.92 (m, 2 H) 10.44 - 10.97 (m, 1 H). LCMS (m/z) (M+H) = 531.2, Rt = 0.54 min.
-
- 5-(6-ethoxy-5-morpholinopyridazin-3-yl)-6-methylpyridin-3-amine (1.0 equiv.), N1-((ethylimino)methylene)-N3,N3-dimethylpropane-1,3-diamine hydrochloride (1.0 equiv.), and 4-formyl-3-(trifluoromethyl)benzoic acid (1.0 equiv.) were dissolved in DMF (0.02 M) at RT. The reaction was monitored by LCMS. After about 1 hr, the reaction mixture was purified via preparative reverse phase HPLC to give N-(5-(6-ethoxy-5-morpholinopyridazin-3-yl)-6-methylpyridin-3-yl)-4-formyl-3-(trifluoromethyl)benzamide. LCMS (m/z) (M+H) = 516.2, Rt = 0.72 min. The product was subsequently dissolved in MeOH and treated with excess sodium borohydride at RT. The reaction mixture was purified via preparative reverse phase HPLC when bubbling ceased to give N-(5-(6-ethoxy-5-morpholinopyridazin-3-yl)-6-methylpyridin-3-yl)-4-(hydroxymethyl)-3-(trifluoromethyl)benzamide in 13% yield over two steps. 1H NMR (400 MHz, <dmso>) δ ppm 1.43 (s, 3 H) 2.05 (s, 8 H) 3.74 (br. s., 9 H) 4.44 - 4.59 (m, 2 H) 4.69 - 4.81 (m, 2 H) 7.34 (s, 1 H) 7.97 (d, J=8.22 Hz, 1 H) 8.23 - 8.40 (m, 3 H) 8.95 (d, J=2.35 Hz, 1 H) 10.63 - 10.94 (m, 1 H). LCMS (m/z) (M+H) = 518.1, Rt = 0.65 min.
-
- Step 1: To a flask containing 3,4,6-trichloropyridazine (1.0 equiv.) in EtOH (1.3 M) was added morpholine (2.3 equiv.) and the reaction mix was stirred at RT for 60 min. A precipitate appeared which was removed by filtration. The solid recovered was suspended in water and stirred for few minutes to remove salts. After filtration the solid was dried under vacuum giving 4-(3,6-dichloropyridazin-4-yl)morpholine in 86% yield which was used as is in the next step. LCMS (m/z) (M+H) = 234/236, Rt = 0.57 min.
- Step 2: NaH (2.0 equiv.) was added to a solution of tetrahydro-2H-pyran-4-ol (1.7 equiv.) and 4-(3,6-dichloropyridazin-4-yl)morpholine (1.0 equiv.) in THF (0.3 M) at 0 °C and the reaction mix was left stirring overnight at RT. The reaction mix was quench with water and extracted three times with EtOAc. The combined organics were washed with brine and dried over Na2SO4. The crude was dissolved in DCM, and adsorbed in silica gel. The solid was loaded into a cartridge and purified on a silica gel column using 0 to 40% EtOAc in heptane. The desired 4-(6-chloro-3-((tetrahydro-2H-pyran-4-yl)oxy)pyridazin-4-yl)morpholine was obtained in 75% yield. LCMS (m/z) (M+H) = 300, Rt = 0.54 min.
- Step 3: To a solution of 4-(6-chloro-3-((tetrahydro-2H-pyran-4-yl)oxy)pyridazin-4-yl)morpholine (1.0 equiv.) and 6-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-3-amine (1.0 equiv.) in DME (0.11 M) was added Na2CO3 (2M, 3.0 equiv.) and the system was flushed with nitrogen. PdCl2(dppf).CH2Cl2 adduct (0.05 equiv.) was added to the reaction mix and the system was flushed once again with nitrogen. The reaction mix was heated in a bath for 4 hr at 120 °C. The crude was partitioned in H2O/EtOAc. The organic layer was isolated, dried over Na2SO4, filtered and concentrated. Crude was purified silica gel column using DCM to 5% MeOH in DCM to give 6-methyl-5-(5-morpholino-6-((tetrahydro-2H-pyran-4-yl)oxy)pyridazin-3-yl)pyridin-3-amine in 40% yield. LCMS (m/z) (M+H) = 372, Rt = 0.37 min.
- Step 4: DIEA (3.0 equiv.) was added to a solution of 6-methyl-5-(5-morpholino-6-((tetrahydro-2H-pyran-4-yl)oxy)pyridazin-3-yl)pyridin-3-amine (1.0 equiv.), 2-(1,1-difluoroethyl)isonicotinic acid (1.0 equiv.) and HATU (1.0 equiv.) in DMF (0.05 M), and the mixture was left stirring at RT overnight. The reaction mix was treated with water and extracted three times with EtOAc. The combined organics were dried over Na2SO4, filtered and concentrated. The crude was purified by HPLC 2-(1,1-difluoroethyl)-N-(6-methyl-5-(5-morpholino-6-((tetrahydro-2H-pyran-4-yl)oxy)pyridazin-3-yl)pyridin-3-yl)isonicotinamide as the TFA salt in 39% yield. 1H NMR (400 MHz, <dmso>) δ ppm 1.70 - 1.86 (m, 2 H) 2.04 (t, J=19.17 Hz, 5 H) 5.40 (br. s., 1 H) 7.32 (br. s., 1 H) 8.04 (d, J=4.70 Hz, 1 H) 8.20 (s, 1 H) 8.33 (d, J=1.96 Hz, 1 H) 8.79 - 8.97 (m, 2 H) 10.90 - 11.07 (m, 1 H). LCMS (m/z) (M+H) = 541, Rt = 0.63 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.75 (dtd, J=12.57, 8.29, 8.29, 3.72 Hz, 2 H) 1.98 - 2.12 (m, 2 H) 3.68 - 3.82 (m, 8 H) 5.37 (dt, J=7.53, 3.86 Hz, 1 H) 7.25 (s, 1 H) 8.07 (d, J=4.70 Hz, 1 H) 8.30 (s, 1 H) 8.41 (d, J=1.96 Hz, 1 H) 8.92 - 9.12 (m, 2 H) 11.06 - 11.31 (m, 1 H). LCMS (m/z) (M+H) = 545, Rt = 0.69 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.70 - 1.89 (m, 9 H) 1.97 - 2.18 (m, 2 H) 5.41 (br. s., 1 H) 7.17 - 7.41 (m, 1 H) 8.17 - 8.38 (m, 2 H) 8.90 (d, J=2.35 Hz, 1 H) 9.65 (d, J=1.96 Hz, 1 H) 11.11 (s, 1 H). LCMS (m/z) (M+H) = 537, Rt = 0.63 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.71 - 1.88 (m, 2 H) 2.01 - 2.18 (m, 2 H) 3.60 (ddd, J=11.44, 8.12, 3.13 Hz, 3 H) 3.55 - 3.64 (m, 1 H) 5.41 (dt, J=7.53, 3.86 Hz, 1 H) 7.39 (s, 1 H) 8.35 (d, J=1.96 Hz, 1 H) 8.71 (d, J=1.57 Hz, 1 H) 8.93 (d, J=2.35 Hz, 1 H) 9.94 (d, J=1.57 Hz, 1 H) 11.14 - 11.39 (m, 1 H). LCMS (m/z) (M+H) = 546, Rt = 0.60 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.67 - 1.83 (m, 2 H) 1.98 - 2.12 (m, 2 H) 3.30 (s, 3 H) 5.29 - 5.42 (m, 1 H) 7.29 (br. s., 1 H) 8.18 (dd, J=4.89, 1.37 Hz, 1 H) 8.29 (d, J=1.96 Hz, 1 H) 8.50 (s, 1 H) 8.89 (d, J=2.35 Hz, 1 H) 8.98 (d, J=4.70 Hz, 1 H) 11.09 (s, 1 H). LCMS (m/z) (M+H) = 555, Rt = 0.52 min.
-
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.47 (s, 6 H) 1.67 - 1.91 (m, 2 H) 2.01 - 2.18 (m, 2 H) 3.47 - 3.67 (m, 2 H) 4.39 (br. s., 1 H) 5.23 - 5.45 (m, 1 H) 7.41 (s, 1 H) 7.73 (dd, J=4.89, 1.37 Hz, 1 H) 8.17 (s, 1 H) 8.39 (d, J=2.35 Hz, 1 H) 8.71 (d, J=5.09 Hz, 1 H) 8.95 (d, J=2.35 Hz, 1 H) 10.96 (s, 1 H). LCMS (m/z) (M+H) = 535, Rt = 0.48 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.74 - 1.89 (m, 10 H) 2.06 - 2.17 (m, 2 H) 3.60 (ddd, J=11.35, 8.22, 3.13 Hz, 7 H) 3.73 - 3.80 (m, 5 H) 3.80 - 3.89 (m, 2 H) 5.45 (br. s., 1 H) 7.26 (br. s., 1 H) 8.28 (s, 1 H) 8.33 (d, J=1.96 Hz, 1 H) 8.91 (d, J=2.35 Hz, 1 H) 9.67 (d, J=1.96 Hz, 1 H) 11.00 - 11.20 (m, 1 H). LCMS (m/z) (M+H) = 555, Rt = 0.49 min.
-
- A mixture of 4-(6-chloro-3-((tetrahydro-2H-pyran-4-yl)oxy)pyridazin-4-yl)morpholine (1.0 equiv.), N-(6-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-3-yl)-3-(trifluoromethyl)benzamide (1.0 equiv.), Na2CO3 (2 M, 3 equiv.) and PdCl2(dppf) (0.05 equiv.) in THF (0.214 M) were heated at 130 °C for 30 min in the microwave. The resulting mixture was partitioned between EtOAc and water. The organic phase was washed with brine and then dried over magnesium sulfate. After concentration, the crude material was purified via preparative reverse phase HPLC. Upon lyophilization of the pure fractions, N-(6-methyl-5-(5-morpholino-6-((tetrahydro-2H-pyran-4-yl)oxy)pyridazin-3-yl)pyridin-3-yl)-3-(trifluoromethyl)benzamide was isolated as the TFA salt in 12% yield. 1H NMR (400 MHz, <dmso>) δ ppm 1.70 - 1.90 (m, 2 H) 2.00 - 2.20 (m, 2 H) 3.33 - 4.18 (m, 60 H) 5.29 - 5.46 (m, 1 H) 7.37 (s, 1 H) 7.76 - 7.87 (m, 1 H) 8.01 (d, J=7.83 Hz, 1 H) 8.23 - 8.42 (m, 3 H) 8.94 (d, J=2.35 Hz, 1 H) 10.87 (s, 1 H). LCMS (m/z) (M+H) = 544.2, Rt = 0.76 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.80 (s, 6 H) 2.28 (s, 3 H) 2.68 - 2.77 (m, 3 H) 3.44 - 3.47 (m, 4 H) 3.63 - 3.75 (m, 7 H) 6.59 (s, 1 H) 7.27 (d, J=8.61 Hz, 1 H) 7.56 (t, J=7.83 Hz, 1 H) 7.67 - 7.77 (m, 2 H) 7.82 (d, J=8.22 Hz, 1 H) 7.98 (d, J=7.83 Hz, 1 H) 8.07 - 8.17 (m, 1 H) 10.30 (s, 1 H). LCMS (m/z) (M+H) = 525.3, Rt = 0.78 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.47 (s, 6 H) 2.25 - 2.34 (m, 3 H) 3.43 - 3.48 (m, 4 H) 3.67 (s, 3 H) 3.70 (d, J=3.91 Hz, 4 H) 6.59 (s, 1 H) 7.28 (d, J=9.00 Hz, 1 H) 7.65 - 7.81 (m, 3 H) 8.15 (s, 1 H) 8.67 (d, J=5.09 Hz, 1 H) 10.54 (s, 1 H). LCMS (m/z) (M+H) = 464.2, Rt = 0.66 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 2.26 - 2.31 (m, 3 H) 3.41 - 3.52 (m, 4 H) 3.63 - 3.76 (m, 7 H) 6.60 (s, 1 H) 7.28 (d, J=9.00 Hz, 1 H) 7.69 - 7.83 (m, 3 H) 8.21 (t, J=6.85 Hz, 2 H) 8.60 (s, 1 H) 9.41 (s, 1 H) 10.52 (s, 1 H). LCMS (m/z) (M+H) = 473.3, Rt = 0.77 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.75 (s, 6 H) 2.29 (s, 3 H) 3.40 - 3.52 (m, 4 H) 3.62 - 3.76 (m, 7 H) 6.59 (s, 1 H) 7.30 (d, J=8.22 Hz, 1 H) 7.67 - 7.77 (m, 2 H) 7.81 - 7.91 (m, 1 H) 8.00 (s, 1 H) 8.79 (d, J=5.09 Hz, 1 H) 10.56 (s, 1 H). LCMS (m/z) (M+H) = 473.2, Rt = 0.81 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.29 (t, J=7.04 Hz, 3 H) 2.28 (s, 3 H) 3.43 - 3.47 (m, 4 H) 3.65 - 3.72 (m, 7 H) 4.06 (q, J=7.30 Hz, 2 H) 6.58 (s, 1 H) 7.27 (d, J=8.61 Hz, 1 H) 7.63 (d, J=2.35 Hz, 1 H) 7.69 (dd, J=8.22, 2.35 Hz, 1 H) 8.46 (d, J=1.96 Hz, 1 H) 8.80 (d, J=2.35 Hz, 1 H) 10.16 (s, 1 H). LCMS (m/z) (M+H) = 518.1, Rt = 0.87 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.27 (t, J=7.63 Hz, 3 H) 2.29 (s, 3 H) 2.86 (d, J=7.83 H) 3.44 - 3.47 (m, 4 H) 3.67 (s, 3 H) 3.68 - 3.71 (m, 6 H) 6.55 - 6.63 (m, 1 H) 7.23 - 7.35 (m, 1 H) 7.68 - 7.76 (m, 3 H) 7.80 (s, 1 H) 8.69 (d, J=5.09 Hz, 1 H) 10.49 (s, 1 H). LCMS (m/z) (M+H) = 434.2, Rt = 0.61 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 0.93 (t, J=7.43 Hz, 3 H) 2.24 - 2.42 (m, 5 H) 3.43 - 3.51 (m, 4 H) 3.62 - 3.77 (m, 7 H) 6.59 (s, 1 H) 7.30 (d, J=8.22 Hz, 1 H) 7.67 - 7.83 (m, 2 H) 8.01 (d, J=4.30 Hz, 1 H) 8.15 (s, 1 H) 8.87 (d, J=5.09 Hz, 1 H) 10.64 (s, 1 H). LCMS (m/z) (M+H) = 484.1, Rt = 0.93 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.10 - 1.18 (m, 4 H) 2.29 (s, 3 H) 2.32 - 2.39 (m, 1 H) 3.46 (d, J=4.70 Hz, 4 H) 3.67 (s, 7 H) 6.58 (s, 1 H) 7.19 - 7.37 (m, 1 H) 7.63 - 7.79 (m, 2 H) 7.88 (d, J=1.96 Hz, 1 H) 9.37 (d, J=1.96 Hz, 1 H) 10.57 - 10.67 (m, 1 H). LCMS (m/z) (M+H) = 447.2, Rt = 0.71 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.76 (s, 6 H) 2.54 (s, 3 H) 3.39 - 3.53 (m, 4 H) 3.65 - 3.75 (m, 7 H) 6.71 (s, 1 H) 7.81 - 7.92 (m, 1 H) 8.04 (s, 1 H) 8.22 (d, J=2.35 Hz, 1 H) 8.83 (d, J=5.09 Hz, 1 H) 8.94 (d, J=1.96 Hz, 1 H) 10.90 (s, 1 H). LCMS (m/z) (M+H) = 474.2, Rt = 0.67 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.76 - 1.88 (s, 6 H) 2.30 (s, 3 H) 3.41 - 3.48 (m, 4 H) 3.67 (s, 3 H) 3.68 - 3.73 (m, 5 H) 6.59 (s, 1 H) 7.32 (d, J=8.61 Hz, 1 H) 7.66 - 7.78 (m, 2 H) 8.29 (d, J=1.57 Hz, 1 H) 9.63 (d, J=1.57 Hz, 1 H) 10.76 (s, 1 H). LCMS (m/z) (M+H) = 474.1, Rt = 0.81 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 2.30 (s, 3 H) 3.46 (d, J=3.13 Hz, 4 H) 3.67 (s, 3 H) 3.69 (d, J=3.52 Hz, 4 H) 6.56 - 6.61 (m, 1 H) 7.27 - 7.35 (m, 1 H) 7.56 - 7.66 (m, 2 H) 7.70 - 7.78 (m, 1 H) 8.68 (d, J=1.56 Hz, 1 H) 9.91 (d, J=1.57 Hz, 1 H) 10.88 (s, 1 H). LCMS (m/z) (M+H) = 475.0, Rt = 0.80 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 2.28 (s, 3 H) 3.43 - 3.49 (m, 4 H) 3.67 (s, 3 H) 3.68 - 3.73 (m, 4 H) 4.49 (q, J=7.73 Hz, 1 H) 4.82 (t, J=6.26 Hz, 2 H) 4.92 (dd, J=8.41, 5.67 Hz, 2 H) 6.58 (s, 1 H) 7.28 (d, J=9.00 Hz, 1 H) 7.65 - 7.77 (m, 3 H) 7.80 (s, 1 H) 8.78 (d, J=5.09 Hz, 1 H) 10.49 (s, 1 H). LCMS (m/z) (M+H) = 462.1, Rt = 0.66 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.25 (t, J=7.43 Hz, 3 H) 2.29 (s, 3 H) 3.11 (d, J=8.22 Hz, 4 H) 3.20 (d, J=6.26 Hz, 2 H) 3.42 - 3.48 (m, 4 H) 3.60 (d, J=5.87 Hz, 2 H) 3.67 (s, 3 H) 3.68 - 3.74 (m, 4 H) 4.10 (d, J=8.61 H) 6.58 (s, 1 H) 7.28 (d, J=8.22 Hz, 1 H) 7.50 (s, 1 H) 7.70 (d, J=1.96 Hz, 1 H) 7.74 (m, 3 H) 10.39 (s, 1 H). LCMS (m/z) (M+H) = 585.2, Rt = 0.75 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 2.29 (s, 3 H) 2.31 (m, 1 H) 3.42 - 3.49 (m, 4 H) 3.67 (s, 3 H) 3.68 - 3.74 (m, 4 H) 6.59 (s, 1 H) 7.30 (d, J=8.22 Hz, 1 H) 7.76 (m, 2 H) 8.05 (d, J=5.09 Hz, 1 H) 8.17 (s, 1 H) 8.89 (d, J=5.09 Hz, 1 H) 10.65 (s, 1 H). LCMS (m/z) (M+H) = 456.0, Rt = 0.74 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 2.56 (s, 3 H) 3.40 - 3.54 (m, 4 H) 3.62 - 3.77 (m, 7 H) 6.72 (s, 1 H) 7.75 - 7.87 (m, 1 H) 8.00 (d, J=7.83 Hz, 1 H) 8.25 - 8.31 (m, 2 H) 8.33 (s, 1 H) 8.99 (d, J=2.35 Hz, 1 H) 10.84 (s, 1 H). LCMS (m/z) (M+H) = 474.3, Rt = 0.71 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 2.28 (s, 3 H) 3.43 - 3.49 (m, 4 H) 3.67 (s, 3 H) 3.68 - 3.75 (m, 4 H) 4.13 (s, 2 H) 6.58 (s, 1 H) 7.26 (d, J=9.00 Hz, 1 H) 7.52 - 7.58 (m, 2 H) 7.70 - 7.78 (m, 2 H) 7.85 - 7.95 (m, 2 H) 10.32 (s, 1 H). LCMS (m/z) (M+H) = 444.3, Rt = 0.76 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 2.34 (s, 3 H) 3.43 (br. s., 4 H) 3.64 (m 7 H) 6.62 (s, 1 H) 7.32 - 7.46 (m, 2 H) 7.48 - 7.59 (m, 1 H) 7.89 (d, J=8.22 Hz, 1 H) 7.92 (s, 1 H) 8.00 (d, J=7.83 Hz, 1 H) 8.18 (s, 1 H) 10.46 (s, 1 H). LCMS (m/z) (M+H) = 473.2, Rt = 0.99 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.66 (s, 3 H) 1.72 (s, 3 H) 2.29 (s, 3 H) 3.39 - 3.49 (m, 4 H) 3.67 (s, 3 H) 3.68 - 3.72 (m, 4 H) 6.59 (s, 1 H) 7.29 (d, J=7.83 Hz, 1 H) 7.68 - 7.78 (m, 2 H) 7.81 (dd, J=5.09, 1.57 Hz, 1 H) 8.01 (s, 1 H) 8.74 (d, J=4.70 Hz, 1 H) 10.57 (s, 1 H). LCMS (m/z) (M+H) = 466.1, Rt = 0.86 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 2.23 - 2.33 (m, 3 H) 3.37 - 3.52 (m, 4 H) 3.61 - 3.77 (m, 7 H) 6.59 (s, 1 H) 6.95 - 7.32 (m, 2 H) 7.60 - 7.71 (m,1 H) 7.71 - 7.80 (m, 2 H) 8.07 - 8.18 (m, 2 H) 10.41 (s, 1 H). LCMS (m/z) (M+H) = 455.0, Rt = 0.86 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 0.91 - 1.07 (m, 4 H) 2.20 (m, 1 H) 2.28 (s, 3 H) 3.36 - 3.51 (m, 4 H) 3.68 - 3.73 (m, 7 H) 6.58 (s, 1 H) 7.25 - 7.30 (m, 1 H) 7.47 - 7.55 (m, 1 H) 7.59 (dd, J=5.09, 1.57 Hz, 1 H) 7.68 - 7.79 (m, 2 H) 8.57 (d, J=5.09 Hz, 1 H) 10.46 (s, 1 H). LCMS (m/z) (M+H) = 466.0, Rt = 0.67 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 2.03 (t, J=19.17 Hz, 3 H) 2.29 (s, 3 H) 3.40 - 3.48 (m, 4 H) 3.67 (s, 3 H) 3.68 - 3.72 (m, 4 H) 6.59 (s, 1 H) 7.29(d, J=8.22 Hz, 1 H) 7.70 - 7.78 (m, 2 H) 8.02 (d, J=4.70 Hz, 1 H) 8.18 (s, 1 H) 8.86 (d, J=4.70 Hz, 1 H) 10.65 (s, 1 H). LCMS (m/z) (M+H) = 470.1, Rt = 0.87 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 2.29 (s, 3 H) 3.43 - 3.52 (m, 4 H) 3.67 (s, 3 H) 3.68 - 3.76 (m, 4 H) 6.59 (s, 1 H) 7.31 (d, J=8.22 Hz, 1 H) 7.69 - 7.79 (m, 2 H) 8.18 (d, J=4.30 Hz, 1 H) 8.36 (s, 1 H) 8.98 (d, J=5.09 Hz, 1 H) 10.69 (s, 1 H). LCMS (m/z) (M+H) = 474.2, Rt = 0.93 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.69 - 1.77 (m, 2 H) 1.84 - 1.90 (m, 2 H) 2.29 (s, 3 H) 3.38 - 3.50 (m, 4 H) 3.67 (s, 3 H) 3.68 - 3.72 (m, 4 H) 6.59 (s, 1 H) 7.29 (d, J=9.00 Hz, 1 H) 7.67 - 7.76 (m, 2 H) 7.78 (dd, J=5.09, 1.17 Hz, 1 H) 7.92 (s, 1 H) 8.69 (d, J=5.09 Hz, 1 H) 10.58 (s, 1 H). LCMS (m/z) (M+H) = 471.1, Rt = 0.84 min.
-
- 1H NMR (400 MHz, <D2O>) δ ppm 1.24 - 1.38 (m, 6 H) 2.16 (s, 3 H) 3.23 - 3.32 (m, 4 H) 3.33 (m, 1 H) 3.65 (s, 3 H) 3.72 - 3.80 (m, 4 H) 6.67 (s, 1 H) 7.29 (d, J=8.22 Hz, 1 H) 7.39 - 7.49 (m, 2 H) 8.07 (dd, J=6.06, 1.37 Hz, 1 H) 8.19 (s, 1 H) 8.66 (d, J=6.26 Hz, 1 H). LCMS (m/z) (M+H) = 448.1, Rt = 0.65 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 2.29 (s, 3 H) 2.77 (d, J=3.13 Hz, 6 H) 3.43 - 3.47 (m, 4 H) 3.64 - 3.76 (m, 7 H) 4.46 (d, J=3.91 Hz, 2 H) 6.59 (s, 1 H) 7.30 (d, J=8.22 Hz, 1 H) 7.70 (d, J=1.96 Hz, 1 H) 7.75 (dd, J=8.22, 1.96 Hz, 1 H) 8.12 (s, 1 H) 8.36 (s, 1 H) 8.45 (s, 1 H) 10.54 (s, 1 H). LCMS (m/z) (M+H) = 530.3, Rt = 0.69 min.
-
- A mixture of 4-bromo-6-chloro-2-methylpyridazin-3(2H)-one (1.0 equiv.), (S)-3-methylmorpholine (1 eq) and potassium carbonate (6 eq) in NMP (0.15 M) was heated in an oil bath at 115 °C for 18 h. The reaction mixture was partitioned between EtOAc and water. The organics were washed with brine and dried over sodium sulfate. After concentration, the resulting (S)-6-chloro-2-methyl-4-(3-methylmorpholino)pyridazin-3(2H)-one was used in the next step without further purification. LCMS (m/z) (M+H) = 244.0, Rt = 0.63 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.09 (d, J=6.65 Hz, 3 H) 1.66 (s, 3 H) 1.69 - 1.76 (m, 3 H) 2.28 (s, 3 H) 3.22 (d, J=3.13 Hz, 1 H) 3.44 - 3.72 (m, 9 H) 6.51 (s, 1 H) 7.28 (d, J=8.22 Hz, 1 H) 7.67 - 7.78 (m, 2 H) 7.81 (dd, J=4.89, 1.37 Hz, 1 H) 8.01 (s, 1 H) 8.73 (d, J=5.09 Hz, 1 H) 10.56 (s, 1 H). LCMS (m/z) (M+H) = 480.2, Rt = 0.86 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.09 (d, J=6.65 Hz, 3 H) 1.75 (s, 6 H) 2.28 (s, 3 H) 3.17 - 3.28 (m, 1 H) 3.47 - 3.63 (m, 4 H) 3.66 (m, 3 H) 3.68 - 3.72 (m, 1 H) 3.85 (d, J=10.56 Hz, 2 H) 6.51 (s, 1 H) 7.29 (d, J=8.22 Hz, 1 H) 7.70 (d, J=1.96 Hz, 1 H) 7.74 (dd, J=8.22, 1.96 Hz, 1 H) 7.85 (dd, J=5.09, 1.17 Hz, 1 H) 8.00 (s, 1 H) 8.79 (d, J=5.09 Hz, 1 H) 10.55 (s, 1 H). LCMS (m/z) (M+H) = 487.2, Rt = 0.85 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.22 (d, J=6.65 Hz, 3 H) 2.16 (t, J=19.17 Hz, 3 H) 2.37 - 2.44 (m, 3 H) 3.30 - 3.40 (m, 1 H) 3.64 - 3.86 (m, 8 H) 3.98 (d, J=12.13 Hz, 1 H) 6.64 (s, 1 H) 7.36 - 7.48 (m, 1 H) 7.79 - 7.94 (m, 2 H) 8.15 (d, J=4.70 Hz, 1 H) 8.30 (s, 1 H) 8.99 (d, J=5.09 Hz, 1 H) 10.77 (s, 1 H). LCMS (m/z) (M+H) = 484.2, Rt = 0.87 min.
-
- 6-Chloro-4-(2,2-dimethylmorpholino)-2-methylpyridazin-3(2H)-one was synthesized using the same method as (S)-6-chloro-2-methyl-4-(3-methylmorpholino)pyridazin-3(2H)-one. LCMS (m/z) (M+H) = 258.0, Rt = 0.69 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.18 (s, 6 H) 1.66 (s, 3 H) 1.69 - 1.76 (m, 3 H)2.28 (s, 3 H) 3.33 - 3.41 (m, 4 H) 3.66 (s, 3 H) 3.70 - 3.76 (m, 2 H) 6.57 (s, 1 H) 7.24 - 7.32 (m, 1 H) 7.71 (d, J=1.96 Hz, 1 H) 7.73 (s, 1 H) 7.81 (dd, J=4.89, 1.37 Hz, 1 H) 8.01 (s, 1 H) 8.74 (d, J=5.09 Hz, 1 H) 10.56 (s, 1 H). LCMS (m/z) (M+H) = 494.3, Rt = 0.90 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.18 (s, 6 H) 1.75 (s, 6 H) 2.28 (s, 3 H) 3.38 - 3.40 (m, 4 H) 3.66 (s, 3 H) 3.69 - 3.76 (m, 2 H) 6.57 (s, 1 H) 7.26 - 7.33 (m, 1 H) 7.69 (d, J=1.96 Hz, 1 H) 7.73 (dd, J=8.22, 1.96 Hz, 1 H) 7.85 (dd, J=5.09, 1.17 Hz, 1 H) 7.99 (s, 1 H) 8.79 (d, J=4.70 Hz, 1 H) 10.55 (s, 1 H). LCMS (m/z) (M+H) = 501.2, Rt = 0.89 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.18 (s, 6 H) 2.03 (s, 3 H) 2.28 (s, 3 H) 3.37 - 3.40 (m, 4 H) 3.66 (s, 3 H) 3.69 - 3.76 (m, 2 H) 6.57 (s, 1 H) 7.29 (d, J=8.22 Hz, 1 H) 7.72 (d, J=1.96 Hz, 1 H) 7.75 (dd, J=8.22, 1.96 Hz, 1 H) 8.02 (d, J=4.70 Hz, 1 H) 8.17 (s, 1 H) 8.86 (d, J=4.70 Hz, 1 H) 10.64 (s, 1 H). LCMS (m/z) (M+H) = 498.3, Rt = 0.89 min.
-
- 4-(3-oxa-8-azabicyclo[3.2.1]octan-8-yl)-6-chloro-2-methylpyridazin-3(2H)-one was synthesized using the same method as (S)-6-chloro-2-methyl-4-(3-methylmorpholino)pyridazin-3(2H)-one. LCMS (m/z) (M+H) = 255.0, Rt = 0.63 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.66 (s, 3 H) 1.71 (s, 3 H) 1.85 - 1.97 (m, 4 H) 2.29 (s, 3 H) 3.48 - 3.51 (m, 4 H) 3.60 - 3.63 (m, 2 H) 3.65 (s, 3 H) 6.57 (s, 1 H) 7.27 (d, J=8.61 Hz, 1 H) 7.70 - 7.77 (m, 2 H) 7.80 (dd, J=5.09, 1.17 Hz, 1 H) 8.01 (s, 1 H) 8.73 (d, J=5.09 Hz, 1 H) 10.55 (s, 1 H). LCMS (m/z) (M+H) = 492.1, Rt = 0.87 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.75 (s, 6 H) 1.85 - 1.98 (m, 4 H) 2.26 - 2.31 (m, 3 H) 3.48 - 3.54 (m, 4 H) 3.58 - 3.63 (m, 2 H) 3.65 (s, 3 H) 6.57 (s, 1 H) 7.28 (d, J=8.61 Hz, 1 H) 7.69 (d, J=1.96 Hz, 1 H) 7.74 (dd, J=8.22, 1.96 Hz, 1 H) 7.85 (dd, J=5.09, 1.17 Hz, 1 H) 7.99 (s, 1 H) 8.78 (d, J=5.09 Hz, 1 H) 10.54 (s, 1 H). LCMS (m/z) (M+H) = 499.1, Rt = 0.86 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.95 - 2.10 (m, 4 H) 2.10 - 2.23 (m, 3 H) 2.43 (s, 3 H) 3.58 (d, J=10.96 Hz, 4 H) 3.70 - 3.84 (m, 5 H) 6.70 (s, 1 H) 7.42 (d, J=8.22 Hz, 1 H) 7.79 - 7.94 (m, 2 H) 8.15 (d, J=4.70 Hz, 1 H) 8.31 (s, 1 H) 9.00 (d, J=5.09 Hz, 1 H) 10.77 (s, 1 H). LCMS (m/z) (M+H) = 496.2, Rt = 0.88 min.
-
- 6-chloro-4-(3,3-dimethylmorpholino)-2-methylpyridazin-3(2H)-one was synthesized using the same method as (S)-6-chloro-2-methyl-4-(3-methylmorpholino)pyridazin-3(2H)-one. LCMS (m/z) (M+H) = 258.0, Rt = 0.67 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.39 (s, 6 H) 1.88 (s, 6 H) 2.44 (s, 3 H) 3.49 (br. s., 4 H) 3.80 (s, 3 H) 3.84 (t, J=4.50 Hz, 2 H) 6.92 (s, 1 H) 7.44 (d, J=9.00 Hz, 1 H) 7.82 - 7.90 (m, 2 H) 7.98 (dd, J=5.09, 1.17 Hz, 1 H) 8.12 (s, 1 H) 8.92 (d, J=5.09 Hz, 1 H) 10.71 (s, 1 H). LCMS (m/z) (M+H) = 501.2, Rt = 0.88 min.
-
- To a solution of 4-bromo-6-chloro-2-methylpyridazin-3(2H)-one (1.0 equiv.) in DMF (0.2 M) was added Huenig's Base (1.0 equiv.) and (R)-3-methylmorpholine (1.0 equiv.) at room temperature. The reaction was heated to 130 °C for 5 hours. Cooled to room temperature, partitioned between water and ethyl acetate, the organic phase was dried with sodium sulfate, filtered and concentrated. The crude material was used for the next step withot further purification. LCMS (m/z) (M+H) = 244.0, Rt = 0.63 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.21 (d, J=7.04 Hz, 3 H) 1.81 (s, 6 H) 2.35 (s, 3 H) 3.34 - 3.55 (m, 2 H) 3.63 - 3.76 (m, 2 H) 3.79 (s, 3 H) 3.87 (dd, J=11.35, 2.74 Hz, 1 H) 3.94 (d, J=10.56 Hz, 1 H) 6.62 (s, 1 H) 7.31 (d, J=8.22 Hz, 1 H) 7.66 (dd, J=8.22, 2.35 Hz, 1 H) 7.76 (d, J=2.35 Hz, 1 H) 7.81 (dd, J=4.89, 1.37 Hz, 1 H) 8.06 (s, 1 H) 8.76 (d, J=5.09 Hz, 1 H). LCMS (m/z) (M+H) = 487.2, Rt = 0.85 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.21 (d, J=7.04 Hz, 3 H) 1.65 - 1.79 (m, 6 H) 2.35 (s, 3 H) 3.36 - 3.50 (m, 1 H) 3.64 - 3.76 (m, 2 H) 3.79 (s, 3 H) 3.87 (dd, J=11.54, 2.93 Hz, 1 H) 3.94 (d, J=13.69 Hz, 1 H) 6.62 (s, 1 H) 7.31 (d, J=8.22 Hz, 1 H) 7.66 (dd, J=8.22, 2.35 Hz, 1 H) 7.73 - 7.85 (m, 2 H) 8.06 (s, 1 H) 8.70 (d, J=5.09 Hz, 1 H). LCMS (m/z) (M+H) = 480.2, Rt = 0.86 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.21 (d, J=6.65 Hz, 3 H) 2.03 (t, J=18.59 Hz, 3 H) 2.35 (s, 3 H) 3.40 (dd, J=11.74, 3.52 Hz, 1 H) 3.47 (br. s., 1 H) 3.62 - 3.76 (m, 2 H) 3.79 (s, 3 H) 3.87 (dd, J=11.35, 3.13 Hz, 1 H) 3.94 (d, J=10.96 Hz, 1 H) 6.62 (s, 1 H) 7.31 (d, J=8.22 Hz, 1 H) 7.67 (dd, J=8.22, 1.96 Hz, 1 H) 7.77 (d, J=2.35 Hz, 1 H) 7.96 (d, J=4.30 Hz, 1 H) 8.17 (s, 1 H) 8.80 (d, J=5.09 Hz, 1 H). LCMS (m/z) (M+H) = 484.2, Rt = 0.88 min.
-
- Step 1: To a solution of 4-bromo-6-chloro-2-methylpyridazin-3(2H)-one (1.0 equiv.) in DME (0.2 M) was added 2-(3,6-dihydro-2H-pyran-4-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (1.0 equiv.) and PdCl2(dppf).CH2Cl2 adduct (0.1 equiv.), followed by 2M Na2CO3 (3.0 equiv.). The reaction was heated to 80 °C for 30 min at which time LC/MS indicated completion. The solution was partitioned between water and ethyl acetate, the organic phase was dried with sodium sulfate, filtered and concentrated to give 6-chloro-4-(3,6-dihydro-2H-pyran-4-yl)-2-methylpyridazin-3(2H)-one. The crude material was used for the next step without further purification. LCMS (m/z) (M+H) = 227.0, Rt = 0.61 min.
- Step 2: To a solution of 6-chloro-4-(3,6-dihydro-2H-pyran-4-yl)-2-methylpyridazin-3(2H)-one (1.0 equiv.) in DME (0. 15 M) was added 4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline (1.0 equiv.) and PdCl2(dppf).CH2Cl2 adduct (0.1 equiv.), followed by 2M Na2CO3 (3.0 equiv.). The solution was heated to 100 °C for 3 hours. Cooled to room temperature, partitioned between water and ethyl acetate, the organic phase was washed with water, dried with sodium sulfate, filtered and concentrated under vacuo. The crude material was purified via silica gel column chromatography eluting with 0-100% ethyl acetate in heptanes. The pure fractions were concentrated under vacuo to yield 6-(5-amino-2-methylphenyl)-4-(3,6-dihydro-2H-pyran-4-yl)-2-methylpyridazin-3(2H)-one as the desired product in 56% yield. LCMS (m/z) (M+H) = 298.0, Rt = 0.49 min.
- Step 3: To a degassed solution of 6-(5-amino-2-methylphenyl)-4-(3,6-dihydro-2H-pyran-4-yl)-2-methylpyridazin-3(2H)-one (1.0 equiv.) in ethanol (0.06 M) was added Pd/C (0.1 equiv.) and the reaction was stirred under a hydrogen baloon. After 2 hours, the reaction was filtered and concentrated to dryness under vacuo. Obtained 6-(5-amino-2-methylphenyl)-2-methyl-4-(tetrahydro-2H-pyran-4-yl)pyridazin-3(2H)-one as the desired product in 78% yield. LCMS (m/z) (M+H) = 300.1, Rt = 0.46 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.64 - 1.76 (m, 2 H) 1.81 (s, 6 H) 1.83 - 1.91 (m, 2 H) 2.37 (s, 3 H) 3.10 - 3.22 (m, 1 H) 3.59 (td, J=11.74, 1.96 Hz, 2 H) 3.85 (s, 3 H) 4.05 (dd, J=11.15, 3.72 Hz, 2 H) 7.33 (d, J=8.22 Hz, 1 H) 7.42 (s, 1 H) 7.69 (dd, J=8.41, 2.15 Hz, 1 H) 7.76 - 7.83 (m, 2 H) 8.07 (s, 1 H) 8.76 (d, J=4.70 Hz, 1 H). LCMS (m/z) (M+H) = 472.2, Rt = 0.84 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.61 - 1.80 (m, 8 H) 1.87 (d, J=11.74 Hz, 2 H) 2.37 (s, 3 H) 3.08 - 3.23 (m, 1 H) 3.53 - 3.65 (m, 2 H) 3.85 (s, 3 H) 4.05 (dd, J=11.35, 3.91 Hz, 2 H) 7.33 (d, J=8.61 Hz, 1 H) 7.42 (s, 1 H) 7.70 (dd, J=8.41, 2.15 Hz, 1 H) 7.77 - 7.86 (m, 2 H) 8.10 (s, 1 H) 8.71 (d, J=5.09 Hz, 1 H). LCMS (m/z) (M+H) = 465.2, Rt = 0.85 min.
-
- To a solution of 6-chloro-2-methyl-4-morpholinopyridazin-3(2H)-one (1.0 equiv.) in DME (0.26 M) was added 6-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-3-amine (1.0 equiv.), PdCl2(dppf).CH2Cl2 adduct (0.5 equiv.) and 2M Na2CO3 (7.0 equiv.). The solution was heated to 120 °C for 2 hours, at which point LC/MS indicated the reaction was complete. Diluted with ethyl acetate and water, the aqueous layer was separated and extracted with ethyl acetate two more times. The organic layers were combined, dried over magnesium sulfate, and concentrated invactuo to yield a brown oil. The residue was further purified via flash column chromatography eluting with 100% heptanes to 50% ethyl acetate and heptanes to 80% ethyl acetate and heptanes. The pure fractions were concentrated to yield 6-(5-amino-2-methylpyridin-3-yl)-2-methyl-4-morpholinopyridazin-3(2H)-one as a brown residue in 99% yield. LCMS (m/z) (M+H) = 302.0, Rt = 0.38 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.53 - 1.89 (m, 6 H) 2.73 (s, 3 H) 3.41 - 3.61 (m, 4 H) 3.71 - 3.93 (m, 7 H) 6.77 (s, 1 H) 7.82 (dd, J=5.09, 1.57 Hz, 1 H) 8.12 (s, 1 H) 8.55 (d, J=2.35 Hz, 1 H) 8.74 (d, J=5.09 Hz, 1 H) 9.19 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 467.2, Rt = 0.61 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.94 (t, J=18.59 Hz, 3 H) 2.48 (s, 3 H) 3.36 - 3.46 (m, 4 H) 3.67 - 3.82 (m, 7 H) 6.64 (s, 1 H) 7.90 (d, J=4.30 Hz, 1 H) 8.12 (s, 1 H) 8.19 (d, J=2.35 Hz, 1 H) 8.68 - 8.78 (m, 1 H). LCMS (m/z) (M+H) = 471.2, Rt = 0.61 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.01 (t, J=7.43 Hz, 3 H) 2.22 - 2.53 (m, 2 H) 2.73 (s, 3 H) 3.44 - 3.61 (m, 4 H) 3.76 - 3.98 (m, 7 H) 6.76 (s, 1 H) 8.01 (d, J=3.91 Hz, 1 H) 8.22 (s, 1 H) 8.53 (d, J=2.35 Hz, 1 H) 8.86 (d, J=5.09 Hz, 1 H) 9.17 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 485.2, Rt = 0.64 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.73 (s, 3 H) 3.42 - 3.62 (m, 4 H) 3.74 - 3.92 (m, 7 H) 6.65 - 7.05 (m, 2 H) 8.06 (d, J=5.09 Hz, 1 H) 8.23 (s, 1 H) 8.53 (d, J=2.35 Hz, 1 H) 8.88 (d, J=5.09 Hz, 1 H) 9.18 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 457.1, Rt = 0.56 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.74 (s, 3 H) 3.46 - 3.61 (m, 4 H) 3.76 - 3.88 (m, 7 H) 6.66 - 7.11 (m, 2 H) 7.58 - 7.76 (m, 1 H) 7.82 (d, J=7.83 Hz, 1 H) 8.08 - 8.27 (m, 2 H) 8.56 (d, J=2.35 Hz, 1 H) 9.21 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 456.2, Rt = 0.64 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.02 - 1.37 (m, 4 H) 2.08 - 2.38 (m, 1 H) 2.74 (s, 3 H) 3.49 - 3.61 (m, 4 H) 3.75 - 3.95 (m, 7 H) 6.77 (s, 1 H) 7.71 - 7.94 (m, 2 H) 8.47 - 8.73 (m, 2 H) 9.20 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 447.2, Rt = 0.48 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.71 - 1.98 (m, 4 H) 2.57 (s, 3 H) 3.43 - 3.62 (m, 4 H) 3.74 - 3.96 (m, 8 H) 6.73 (s, 1 H) 7.74 (d, J=5.09 Hz, 1 H) 8.10 (s, 1 H) 8.27 (d, J=2.35 Hz, 1 H) 8.66 (d, J=5.09 Hz, 1 H) 8.83 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 472.2, Rt = 0.60 min.
-
- Step 1: A 0.5M solution of 4-bromo-2-fluorobenzonitrile (1.00 equiv.) in acetonitrile was treated with morpholine (1.10 equiv.), and DIEA (2.00 equiv.). The mixture was stirred at 90 °C for 4 hr. The cooled reaction mixture was diluted with four volumes of water. The precipitate was collected by vacuum filtration and air-dried to give 4-bromo-2-morpholinobenzonitrile as a peach solid in 82% yield. LCMS (m/z) (M+H) = 266.9/268.9, Rt = 0.90 min.
- Step 2: To a 0.15M solution of 4-bromo-2-morpholinobenzonitrile (1.00 equiv.) in DME was added 6-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-3-amine (1.40 equiv.), PdCl2(dppf).CH2Cl2 adduct (0.10 equiv.), and 2M aqueous sodium carbonate (3.00 equiv.). The reaction mixture was irradiated at 120 °C for 10 min in the microwave. The cooled reaction mixture was diluted with 2:1 DCM:MeOH and filtered. The filtrate was concentrated and purified by flash chromatography over silica gel (ethyl acetate with 0-15% methanol gradient) to give 4-(5-amino-2-methylpyridin-3-yl)-2-morpholinobenzonitrile in 87.0 % yield as a tan solid. LCMS (m/z) (M+H) = 295.1, Rt = 0.52 min.
- The compounds listed below were prepared using methods similar to those described for the preparation of Example 171 using the appropriate starting materials.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.62 (s, 3 H) 3.30 (d, J=4.60 Hz, 4 H) 3.88 - 3.94 (m, 4 H) 7.19 - 7.27 (m, 2 H) 7.76 - 7.86 (m, 2 H) 7.97 (d, J=7.87 Hz, 1 H) 8.29 (d, J=7.82 Hz, 1 H) 8.35 (s, 1 H) 8.40 (d, J=2.40 Hz, 1 H) 9.23 (d, J=2.40 Hz, 1 H). LCMS (m/z) (M+H) = 467.1, Rt = 0.77 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.57 (s, 3 H) 2.95 (s, 6 H) 3.26 - 3.31 (m, 4 H) 3.84 - 3.97 (m, 4 H) 4.54 (s, 2 H) 7.16 - 7.25 (m, 2 H) 7.81 (d, J=7.83 Hz, 1 H) 8.16 (s, 1 H) 8.31 (d, J=2.35 Hz, 1 H) 8.45 (s, 1 H) 8.51 (s, 1 H) 9.08 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 524.2, Rt = 0.63 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.42 (d, J=6.65 Hz, 6 H) 2.63 (s, 3 H) 3.23 - 3.31 (m, 5 H) 3.86 - 3.96 (m, 4 H) 7.22 (d, J=8.22 Hz, 1 H) 7.25 (s, 1 H) 7.83 (d, J=7.83 Hz, 1 H) 7.92 (dd, J=5.28, 1.37 Hz, 1 H) 8.03 (s, 1 H) 8.40 (d, J=2.35 Hz, 1 H) 8.76 (d, J=5.09 Hz, 1 H) 9.23 (d, J=1.96 Hz, 1 H). LCMS (m/z) (M+H) = 442.2, Rt = 0.59 min.
-
- Step 1: A solution of (4-bromo-2-nitrophenyl)(methyl)sulfane (1.0 equiv.) and mCPBA (3.0 equiv.) in DCM (0.13 M) was stirred at RT overnight. The reaction mix was partitioned between 1N NaOH solution and EtOAc. The organic layer was isolated, washed twice with 1N NaOH solution, dried over MgSO4, filtered and concentrated. The crude 4-bromo-1-(methylsulfonyl)-2-nitrobenzene will be used as is in the next step.
- Step 2: Morpholine (3.0 equiv.) was added to a solution of 4-bromo-1-(methylsulfonyl)-2-nitrobenzene (1.0 equiv.) in DME (Volume: 15 mL) and the reaction mix was stirred at RT overnight. The crude was partitioned in H2O/EtOAc. The organic layer was isolated, dried over Na2SO4, filtered and concentrated and purified on silicagel column using heptane to 100% EtOAc in heptane giving 4-(5-bromo-2-(methylsulfonyl)phenyl)morpholine in 8.7% yield. LCMS (m/z) (M+H) = 321, Rt = 0.75 min.
- Step 3: PdCl2(dppf).CH2Cl2 adduct (0.1equiv.) was added to a solution of 4-(5-bromo-2-(methylsulfonyl)phenyl)morpholine (1.0 equiv.), N-(6-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-3-yl)-3-(trifluoromethyl)benzamide (1.0 equiv.) and 2M Na2CO3 solution (3.0 equiv.) in DME (0.08) and the system was flushed with nitrogen. The vial was sealed and the mixture was irradiated at 120 °C for 20 min in the microwave. The solvent was removed under vacuum and the residue was partitioned in EtOAC/H2O. The organic layer was isolated and the aqueous layer was back extracted twice with EtOAc. The combined organics were dried over Na2SO4, filtered and concentrated. The residue was taken in DMSO and purified by HPLC to give N-(6-methyl-5-(4-(methylsulfonyl)-3-morpholinophenyl)pyridin-3-yl)-3-(trifluoromethyl)benzamide as the TFA salt in 22% yield. LCMS (m/z) (M+H) = 520, Rt = 0.76 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.92 (br. s., 4 H) 2.03 (s, 3 H) 2.12 (s, 3 H) 2.99 (s, 3 H) 3.42 (d, J=10.96 Hz, 2 H) 3.59 - 3.63 (m, 2 H) 4.23 (br. s., 2 H) 5.62 (d, J=2.35 Hz, 1 H) 6.00 (d, J=1.96 Hz, 1 H) 7.36 (d, J=8.22 Hz, 1 H) 7.68 (d, J=1.56 Hz, 1 H) 7.79 (dd, J=8.22, 1.96 Hz, 1 H) 8.01 (d, J=5.09 Hz, 1 H) 8.16 (s, 1 H) 8.87 (d, J=4.70 Hz, 1 H) 10.70 (s, 1 H). LCMS (m/z) (M+H) = 495.3, Rt = 0.79 min.
-
- A solution of 4-bromo-6-chloro-1-methylpyridin-2(1H)-one (1.0 equiv.), 3-oxa-8-azabicyclo[3.2.1]octane (1.3 equiv.) and DIEA (2.5 equiv.) in DMF (2.8 M) was heated to 110 °C for 18 h. The reaction mixture was partitioned between EtOAc and water, washed with brine and dried over Na2SO4. After concentration the crude product was purified by normal phase chromatography to give 4-(3-oxa-8-azabicyclo[3.2.1]octan-8-yl)-6-chloro-1-methylpyridin-2(1H)-one in 14 % yield. LCMS (m/z) (M+H) = 255.1, Rt = 0.52 min.
-
- Step 1: To a solution of 4-(6-chloro-2-(methylsulfonyl)pyrimidin-4-yl)morpholine (1.0 equiv.) in THF (0.14 M) was added 2M ethylamine solution in THF (2.0 equiv.) at room temperature. The reaction was stirred at ambient temperature for 16h. The reaction was partitioned between water and ethyl acetate and the separated organic phase was dried with sodium sulfate, filtered and concentrated under vacuo to yield 4-chloro-N-ethyl-6-morpholinopyrimidin-2-amine in quantitative yield. LCMS (m/z) (M+H) = 243/245, Rt = 0.5 min.
- Step 2: To a solution of 4-chloro-N-ethyl-6-morpholinopyrimidin-2-amine (1.0 equiv.) in DME (0.6 M) was added 4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline (1. equiv.), PdCl2(dppf)-DCM adduct (0.1 equiv.) and 2M aqueous sodium carbonate (3.00 equiv.), and the reaction was heated to 120 °C for 20 min in the microwave. LC/MS showed incomplete reaction, allowed to heat in the oil bath at 100 °C for 3 hours. At this time, the reaction was complete. Cooled to room temperature, partitioned between water and ethyl acetate, the organic phase was dried with sodium sulfate, filtered and concentrated. The crude material was purified via silica gel column chromatography eluting with 0-100% ethyl acetate in heptanes. The pure fractions were concentrated under vacuo to yield 4-(5-amino-2-methylphenyl)-N-ethyl-6-morpholinopyrimidin-2-amine as the desired product in 84% yield. LCMS (m/z) (M+H) = 314.2, Rt = 0.48 min.
- Step 3: To a solution of 2-(trifluoromethyl)isonicotinic acid (1. equiv.) in DMF (0.04 M) was added EDC (1eq) and HOBT (1eq) followed by 4-(5-amino-2-methylphenyl)-N-ethyl-6-morpholinopyrimidin-2-amine (1.0 equiv.) and the reaction mixture was stirred at ambient temperature for 16h. The reaction mixture was partitioned between water and ethyl acetate, and the separated organic layer was dried with sodium sulfate, filtered and concentrated. The concentrated crude was dissolved in DMSO, filtered through a HPLC filter and purified via auto-preparative reverse phase HPLC. The pure fractions were lyophilized to yield N-(3-(2-(ethylamino)-6-morpholinopyrimidin-4-yl)-4-methylphenyl)-2-(trifluoromethyl) isonicotinamide.
- 1H NMR (400 MHz, <demos>) δ ppm 1.16 (s, 3 H) 2.30 (s, 3 H) 3.69 (br. s., 8 H) 6.50 - 6.62 (m, 1 H) 7.36 - 7.46 (m, 1 H) 7.62 - 7.72 (m, 1 H) 7.74- 7.82 (m, 1 H) 7.84 - 7.93 (m, 1 H) 8.11 - 8.22 (m, 1 H) 8.32 - 8.43 (m, 1 H) 8.90 - 9.04 (m, 1 H) 10.82 - 10.90 (m, 1 H) LCMS (m/z) (M+H) = 487.3, Rt = 0.7 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.16 (s, 3 H) 2.29 (s, 3 H) 3.35 - 3.46 (m, 4 H) 3.57 - 3.79 (m, 5 H) 3.86 - 4.01 (m, 1 H) 6.51 - 6.65 (m, 1 H)7.29 - 7.40 (m, 1 H) 7.48 - 7.64 (m, 3 H) 7.73 - 7.82 (m, 1 H) 7.90 - 8.00 (m, 3 H) 10.32 - 10.44 (m, 1 H) LCMS (m/z) (M+H) = 418.2, Rt = 0.72 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.12 - 1.20 (m, 3 H) 1.35 (s, 9 H) 2.23 - 2.33 (m, 3 H) 3.27 - 3.45 (m, 2 H) 3.72 - 3.80 (m, 5 H) 3.81 - 4.06 (m,3 H) 6.49 - 6.65 (m, 1 H) 7.35 - 7.45 (m, 1 H) 7.60 - 7.69 (m, 1 H) 7.76 - 7.91 (m, 3 H) 8.65 - 8.78 (m, 1 H) 10.57 - 10.66 (m, 1 H), LCMS (m/z) (M+H) = 475.4, Rt = 0.64 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.16 (s, 3 H) 2.04 (s, 3 H) 2.30 (s, 3 H) 3.63-4.04 (m, 8 H) 6.47 - 6.62 (m, 1 H) 7.34 - 7.48 (m, 1 H) 7.54 -7.65 (m, 1 H) 7.72 - 7.84 (m, 1 H) 7.86 - 7.91 (m, 1 H) 7.98 - 8.05 (m, 1 H) 8.13 - 8.24 (m, 1 H) 8.82 - 8.92 (m, 1 H) 10.73 - 10.85 (m, 1 H), LCMS (m/z) (M+H) = 483.3, Rt = 0.75 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.03 - 1.23 (m, 3 H) 2.29 (s, 3 H) 3.64 - 3.97 (m, 7 H) 6.96 - 7.02 (m, 1 H) 7.10 - 7.17 (m, 1 H) 7.23 - 7.30 (m,1 H) 7.34 - 7.43 (m, 1 H) 7.64 - 7.73 (m, 1 H) 7.75 - 7.81 (m, 2 H) 7.87 - 7.96 (m, 1 H) 8.06 - 8.21 (m, 2 H) 10.48 - 10.63 (m, 1 H), LCMS (m/z) (M+H) = 468.3, Rt = 0.77 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.16 (t, J=7.04 Hz, 3 H) 2.30 (s, 3 H) 3.41 - 3.48 (m, 1 H) 3.49 - 3.57 (m, 1 H) 3.59 - 3.78 (m, 5 H) 3.80 - 4.03(m, 1 H) 6.53 - 6.64 (m, 1 H) 7.33 - 7.44 (m, 1 H) 7.73 - 7.85 (m, 2 H) 7.89 - 7.99 (m, 1 H) 8.15 - 8.27 (m, 2 H) 8.56 - 8.64 (m, 1 H) 9.36 - 9.47 (m,1 H) 10.58 - 10.71 (m, 1 H), LCMS (m/z) (M+H) = 486.3, Rt = 0.69 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.10 - 1.19 (m, 3 H) 1.27 (d, J=7.04 Hz, 6 H)2.29 (s, 3 H) 3.04 - 3.17 (m, 1 H) 3.67 - 3.78 (m, 7 H) 3.85 - 3.97(m, 2 H) 6.54 - 6.61 (m, 1 H) 7.33 - 7.47 (m, 1 H) 7.62 - 7.80 (m, 3 H) 7.86 - 7.95 (m, 1 H) 8.65 - 8.72 (m, 1 H) 10.55 - 10.64 (m, 1 H), LCMS (m/z) (M+H) = 461.4, Rt = 0.58 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.03 - 1.29 (m, 3 H) 1.97 (s, 3 H) 2.24 (s, 3 H) 3.55 - 3.72 (m, 6 H) 3.79 - 3.94 (m, 1 H) 6.48 - 6.57 (m, 1 H)7.28 - 7.41 (m, 1 H) 7.57 - 7.67 (m, 1 H) 7.69 - 7.78 (m, 2 H) 7.80 - 7.91 (m, 1 H) 7.97 - 8.13 (m, 2 H) 10.46 - 10.51 (m, 1 H), LCMS (m/z) (M+H) = 482.4, Rt = 0.82 min.
-
- 1H NMR (400 MHz, <dmso>) v ppm 1.15 (s, 3 H) 2.30 (s, 4 H) 3.62 - 3.75 (m, 5 H) 3.85-3.99 (m, 1 H) 6.50 - 6.61 (m, 1 H) 7.37 - 7.47 (m, 1 H)7.74 - 7.93 (m, 2 H) 8.11 - 8.25 (m, 1 H) 8.46 - 8.56 (m, 1 H) 8.92 - 9.05 (m, 1 H) 10.88 - 10.97 (m, 1 H), LCMS (m/z) (M+H) = 497.3, Rt = 0.6 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.04 - 1.21 (m, 3 H) 1.29 (s, 3 H) 2.28 (s, 3 H) 3.39 - 3.44 (m, 2 H) 3.61 - 3.80 (m, 5 H) 3.85 - 3.98 (m, 1 H)4.02 - 4.15 (m, 2 H) 6.50 - 6.65 (m, 1 H) 7.35 - 7.47 (m, 1 H) 7.67 - 7.84 (m, 2 H) 8.41 - 8.50 (m, 1 H) 8.74 - 8.87 (m, 1 H) 10.21 - 10.35 (m, 1 H), LCMS (m/z) (M+H) = 531.3, Rt = 0.74 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.00 - 1.17 (m, 3 H) 2.23 - 2.35 (m, 4 H) 3.27 - 3.27 (m, 5 H) 3.47 - 3.56 (m, 4 H) 3.59 - 3.69 (m, 4 H) 6.00 -6.10 (m, 1 H) 7.17 - 7.27 (m, 1 H) 7.66 - 7.74 (m, 2 H) 7.77 - 7.85 (m, 1 H) 8.07 - 8.16 (m, 1 H) 8.24 - 8.32 (m, 1 H) 8.43 - 8.52 (m, 1 H) 10.42 -10.51 (m, 1 H), LCMS (m/z) (M+H) = 474.3, Rt = 0.89 min.
-
- 1H NMR (500 MHz, DMSO-d6) δ ppm 1.19 (t, J=7.09 Hz, 3 H) 1.49 (s, 6 H)2.32 (s, 4 H) 3.43 (br. s., 3 H) 3.73 - 3.79 (m, 5 H) 3.95 (br. s., 3 H)6.62 (s, 1 H) 6.64 - 6.65 (m, 1 H) 7.43 (d, J=8.51 Hz, 1 H) 7.71 (dd, J=5.04, 1.26 Hz, 1 H) 7.78 - 7.86 (m, 1 H) 7.93 (s, 1 H) 8.15 (s, 1 H) 8.71 (d,J=5.04 Hz, 1 H) 10.72 (s, 1 H), LCMS (m/z) (M+H) = 477.3, Rt = 0.55 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 0.93 (t, J=7.43 Hz, 3 H) 1.16 (t, J=7.04 Hz, 3 H) 2.26 - 2.43 (m, 5 H) 3.69 (br. s., 9 H) 3.83 - 4.07 (m, 1 H)6.46 - 6.65 (m, 1 H) 7.32 - 7.46 (m, 1 H) 7.71 - 7.85 (m, 1 H) 7.85 - 7.93 (m, 1 H) 7.97 - 8.06 (m, 1 H) 8.15 (s, 1 H) 8.79 - 8.96 (m, 1 H) 10.71 -10.83 (m, 1 H), LCMS (m/z) (M+H) = 497.3, Rt = 0.85 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.08 - 1.23 (m, 3 H) 2.24 - 2.35 (m, 3 H) 3.64 - 3.78 (m, 7 H) 3.86 - 3.98 (m, 1 H) 4.43 - 4.55 (m, 1 H) 4.77 -4.84 (m, 1 H) 4.89 - 4.94 (m, 1 H) 6.52 - 6.61 (m, 1 H) 7.34 - 7.48 (m, 1 H) 7.65 - 7.81 (m, 3 H) 7.86 - 7.94 (m, 1 H) 8.76 - 8.86 (m, 1 H) 10.59 -10.67 (m, 1 H), LCMS (m/z) (M+H) = 475.2, Rt = 0.61 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.08 - 1.21 (m, 3 H) 1.68 - 1.80 (m, 2 H) 1.84 - 1.95 (m, 2 H) 2.30 (s, 3 H) 3.62 - 3.79 (m, 5 H) 3.92 (br. s., 1H) 6.51 - 6.61 (m, 1 H) 7.32 - 7.47 (m, 1 H) 7.72 - 7.80 (m, 2 H) 7.86 - 7.96 (m, 2 H) 8.66 - 8.77 (m, 1 H) 10.71 - 10.77 (m, 1 H), LCMS (m/z) (M+H) = 484.2, Rt = 0.76 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.08 - 1.22 (m, 3 H) 1.84 (s, 6 H) 2.27 - 2.34 (m, 3 H) 3.41 - 3.52 (m, 2 H) 3.60 - 3.79 (m, 6 H) 3.83 - 4.00 (m,1 H) 6.51 - 6.62 (m, 1 H) 7.36 - 7.48 (m, 1 H) 7.72 - 7.87 (m, 2 H) 8.25 - 8.32 (m, 1 H) 9.55 - 9.68 (m, 1 H) 10.86 - 10.95 (m, 1 H), LCMS (m/z) (M+H) = 487.3, Rt = 0.7 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.05 - 1.22 (m, 3 H) 2.40 (s, 3 H) 3.39 - 3.44 (m, 4 H) 3.64 - 3.94 (m, 6 H) 6.54 - 6.69 (m, 1 H) 7.40 - 7.49 (m,1 H) 7.54 - 7.69 (m, 2 H) 7.96 - 8.12 (m, 3 H) 8.19 - 8.25 (m, 1 H) 10.51 - 10.59 (m, 1 H), LCMS (m/z) (M+H) = 486.3, Rt = 0.85 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.16 (s, 3 H) 1.23 - 1.32 (m, 3 H) 1.75 (s, 6 H) 2.30 (s, 3 H) 3.46 - 3.55 (m, 8 H) 6.48 - 6.58 (m, 1 H) 7.37 -7.44 (m, 1 H) 7.73 - 7.90 (m, 3 H) 7.95 - 8.02 (m, 1 H) 8.74 - 8.86 (m, 1 H) 10.69 - 10.77 (m, 1 H), LCMS (m/z) (M+H) = 500.3, Rt = 0.78 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.16 (s, 6 H) 1.46 (s, 6 H) 2.29 (s, 3 H) 3.54 - 3.78 (m, 2 H) 3.83 - 4.04 (m, 1 H) 6.51 - 6.60 (m, 1 H) 7.31 -7.47 (m, 1 H) 7.59 - 7.70 (m, 1 H) 7.75 - 7.83 (m, 1 H) 7.86 - 7.94 (m, 1 H) 8.06 - 8.16 (m, 1 H) 8.60 - 8.73 (m, 1 H) 10.61 - 10.73 (m, 1 H), LCMS (m/z) (M+H) = 491.3, Rt = 0.62 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.10 - 1.20 (m, 3 H) 1.23 - 1.31 (m, 3 H) 2.21 -2.36 (m, 3 H) 3.55 - 4.40 (m, 8 H) 6.47 - 6.62 (m, 1 H) 7.35 -7.44 (m, 1 H) 7.63 - 7.71 (m, 1 H) 7.75 - 7.81 (m, 1 H) 7.86 - 7.94 (m, 1 H) 8.06 - 8.16 (m, 1 H) 8.62 - 8.72 (m, 1 H) 10.60 - 10.74 (m, 1 H), LCMS (m/z) (M+H) = 491.3, Rt = 0.62 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.10 - 1.19 (m, 3 H) 1.21 - 1.32 (m, 3 H) 1.75 (s, 6 H) 2.23 - 2.34 (m, 3 H) 3.45 - 3.49 (m, 7 H) 6.46 - 6.61 (m,1 H) 7.36 - 7.48 (m, 1 H) 7.75 - 7.91 (m, 3 H) 7.95 - 8.03 (m, 1 H) 8.75 - 8.86 (m, 1 H) 10.69 - 10.75 (m, 1 H), LCMS (m/z) (M+H) = 500.3, Rt = 0.79 min.
-
- To a solution of 4-chloro-N-ethyl-6-morpholinopyrimidin-2-amine (1.0 equiv.) in DME was added N-(6-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-3-yl)-3-(trifluoromethyl)benzamide (Intermediate B, 1.3 equiv.), followed by PdCl2(dppf).CH2Cl2 adduct (0.10 equiv.), and 2M aqueous sodium carbonate (3.00 equiv.). The reaction was heated in the microwave for 10 min at 120 °C. LC/MS showed completion of the reaction. The organic phase was concentrated to dryness, dissolved in DMSO, filtered through a HPLC filter and purified via auto-preparative reverse phase HPLC. The pure fractions were lyophilized to yield N-(5-(2-(ethylamino)-6-morpholinopyrimidin-4-yl)-6-methylpyridin-3-yl)-3-(trifluoromethyl) benzamide in 43% yield. 1H NMR (400 MHz, <dmso>) δ ppm 1.06 - 1.24 (m, 3 H) 3.29 - 3.47 (m, 2 H) 3.64 - 3.76 (m, 11 H) 6.62 - 6.75 (m, 1 H) 7.63 - 7.86 (m, 1 H) 7.96 -8.04 (m, 1 H) 8.23 - 8.40 (m, 3 H) 8.85 - 8.98 (m, 1 H) 10.78 - 10.91 (m, 1 H), LCMS (m/z) (M+H) = 487.1, Rt = 0.73 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.01 - 1.24 (m, 3 H) 1.75 (s, 5 H) 2.29 (s, 3 H) 3.27 - 3.45 (m, 2 H) 3.64 - 4.07 (m, 9 H) 6.45 - 6.58 (m, 1 H)7.28 - 7.47 (m, 1 H) 7.70 - 7.93 (m, 3 H) 7.93 - 8.11 (m, 1 H) 8.74 - 8.84 (m, 1 H) 10.65 - 10.81 (m, 1 H), LCMS (m/z) (M+H) = 486.3, Rt = 0.7 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.01 - 1.16 (m, 3 H) 1.75 (s, 7 H) 2.51 (br. s., 3 H) 3.50 - 3.69 (m, 9 H) 6.08 - 6.20 (m, 1 H) 7.82 - 7.91 (m, 1H) 7.98 - 8.05 (m, 1 H) 8.07 - 8.18 (m, 1 H) 8.74 - 8.88 (m, 2 H) 10.64 - 10.79 (m, 1 H), LCMS (m/z) (M+H) = 487.2, Rt = 0.65 min.
-
- Step 1: To a solution of 4-chloro-N-ethyl-6-morpholinopyrimidin-2-amine (1.0 equiv.) in DME (0.1 M) was added 6-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-3-amine (1.1equiv.), PdCl2(dppf)-DCM adduct (0.05 equiv.) and 2M aqueous sodium carbonate (3.00 equiv.), and the reaction mixture was purged with nitrogen and was heated to 100 °C for 2h. Cooled to room temperature, partitioned between water and ethyl acetate and the organic phase was dried with sodium sulfate, filtered and concentrated to yield 4-(5-amino-2-methylpyridin-3-yl)-N-ethyl-6-morpholinopyrimidin-2-amine as the desired product in 79% yield. LCMS (m/z) (M+H) = 315.1, Rt = 0.4 min.
- Step 2: To a solution of 2-(trifluoromethyl)isonicotinic acid (1. equiv.) in DMF (0.04 M) was added EDC (1eq) and HOAT (1eq) followed by 4-(5-amino-2-methylpyridin-3-yl)-N-ethyl-6-morpholinopyrimidin-2-amine (1.0 equiv.) and the reaction mixture was stirred at ambient temperature for 16h. The reaction mixture was partitioned between water and ethyl acetate, and the separated organic layer was dried sodium sulfate, filtered and concentrated. The concentrated crude was dissolved in DMSO, filtered through a HPLC filter and purified via auto-preparative reverse phase HPLC. The pure fractions were lyophilized to yield N-(3-(2-(ethylamino)-6-morpholinopyrimidin-4-yl)-4-methylphenyl)-2-(trifluoromethyl) isonicotinamide.
- 1H NMR (400 MHz, <demos>) δ ppm 1.18 (t, J=7.24 Hz, 1 H) 2.50 (br. s., 12 H) 3.29 - 3.55 (m, 1 H) 3.71 (br. s., 10 H) 3.78 (br. s., 13 H) 6.68 (br.s., 1 H) 8.22 (d, J=4.70 Hz, 1 H) 8.30 (br. s., 1 H) 8.39 (s, 1 H) 8.93 (d, J=1.96 Hz, 1 H) 9.04 (d, J=5.09 Hz, 1 H) 11.07 (s, 1 H) LCMS (m/z) (M+H) = 488.8, Rt = 0.62 min.
-
- 1H NMR (400 MHz, DMSO-d6) δ ppm 0.92 - 1.43 (m, 13 H) 3.28 - 3.51 (m, 3 H) 4.07 (s, 5 H) 6.54 - 6.73 (m, 1 H) 8.02 - 8.29 (m, 2 H) 8.47 (d, J=1.96 Hz, 1 H) 8.68 - 8.94 (m, 3 H) 10.46 - 10.63 (m, 1 H), LCMS (m/z) (M+H) = 532.3, Rt = 0.61 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.18 (t, J=7.04 Hz, 5 H) 3.71 (br. s., 8 H) 6.42 - 6.46 (m, 1 H) 6.65 - 7.28 (m, 3 H) 8.06 - 8.07 (m, 1 H) 8.08(d, J=4.70 Hz, 1 H) 8.21 (s, 1 H) 8.31 (s, 1 H) 8.93 - 8.97 (m, 3 H) 11.04 (s, 1 H), LCMS (m/z) (M+H) = 470.4, Rt = 0.46 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.18 (t, J=7.04 Hz, 1 H) 3.20 (s, 1 H) 3.42 (br. s., 1 H) 3.71 (br. s., 3 H) 3.88 (br. s., 13 H) 4.14 (br. s., 19 H)6.69 (s, 3 H) 7.03 (s, 1 H) 7.17 (s, 2 H) 7.31 (s, 1 H) 7.71 - 7.76 (m, 5 H) 7.84 (d, J=7.83 Hz, 4 H) 8.14 - 8.21 (m, 8 H) 8.33 (d, J=1.57 Hz, 3 H)
8.94 (d, J=2.35 Hz, 3 H) 10.80 (s, 3 H), LCMS (m/z) (M+H) = 469.3, Rt = 0.62 min. -
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.18 (t, J=7.04 Hz, 1 H) 1.49 (s, 2 H) 2.54 (s, 1 H) 3.42 (br. s., 2 H) 6.69 (s, 1 H) 7.73 (dd, J=4.89, 1.37 Hz, 1 H) 7.72 - 7.74 (m, 2 H) 7.72 - 7.74 (m, 2 H) 8.18 (s, 1 H) 8.31 (d, J=1.96 Hz, 1 H) 8.72 (d, J=5.09 Hz, 1 H) 8.94 (d, J=2.35 Hz, 1 H) 10.92 (s, 1 H), LCMS (m/z) (M+H) = 478.8, Rt = 0.47 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.18 (t, J=7.04 Hz, 1 H) 1.38 (s, 3 H) 3.21 (d, J=7.04 Hz, 1 H) 3.35 (s, 1 H) 3.52 (br. s., 1 H) 3.59 - 3.64 (m, 1 H) 3.71 (br. s., 2 H) 6.69 (s, 4 H) 7.69 - 7.73 (m, 5 H) 7.69 - 7.74 (m, 5 H) 7.89 (s, 6 H) 8.29 (d, J=1.96 Hz, 5 H) 8.75 (d, J=4.70 Hz, 6 H) 8.94 (d, J=2.35 Hz, 5 H) 10.87 (s, 5 H), LCMS (m/z) (M+H) = 476.4, Rt = 0.55 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.18 (t, J=7.04 Hz, 1 H) 2.06 (t, J=19.17 Hz, 1 H) 2.34 - 2.69 (m, 3 H) 2.48 - 2.50 (m, 11 H) 2.53 - 2.54 (m, 1H) 3.42 (br. s., 3 H) 6.68 (s, 2 H) 8.05 (d, J=4.70 Hz, 2 H) 8.18 - 8.35 (m, 4 H) 8.89 - 8.97 (m, 4 H) 11.04 (s, 2 H), LCMS (m/z) (M+H) = 488.8, Rt = 0.62 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.18 (t, J=7.24 Hz, 1 H) 1.76 (s, 12 H) 3.42 (br. s., 1 H) 6.68 (br. s., 1 H) 7.60 - 7.68 (m, 1 H) 7.80 (d, J=7.83Hz, 1 H) 7.98 (d, J=7.83 Hz, 1 H) 8.08 (s, 1 H) 8.31 (s, 1 H) 8.94 (d, J=2.35 Hz, 1 H) 10.71 (s, 2 H), LCMS (m/z) (M+H) = 486.5, Rt = 0.65 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.02 - 1.19 (m, 7 H) 2.27 - 2.37 (m, 1 H) 3.32 - 3.39 (m, 1 H) 3.67 - 3.74 (m, 6 H) 6.52 - 6.66 (m, 1 H) 7.80 -7.94 (m, 1 H) 8.15 - 8.26 (m, 1 H) 8.79 - 8.88 (m, 1 H) 9.30 - 9.41 (m, 1 H) 10.92 - 11.01 (m, 1 H), LCMS (m/z) (M+H) = 461.2, Rt = 0.56 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.03 - 1.14 (m, 3 H) 1.51 - 1.59 (m, 3 H) 1.70 - 1.78 (m, 2 H) 1.80 - 1.94 (m, 2 H) 3.51 - 3.57 (m, 3 H) 3.60 -3.70 (m, 3 H) 6.07 - 6.22 (m, 1 H) 7.76 - 7.85 (m, 1 H) 7.92 - 7.96 (m, 1 H) 8.07 - 8.14 (m, 1 H) 8.63 - 8.72 (m, 1 H) 8.79 - 8.85 (m, 1 H), LCMS (m/z) (M+H) = 485.3, Rt = 0.65 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.02 - 1.21 (m, 3 H) 3.34 - 3.44 (m, 2 H) 3.79 - 3.94 (m, 8 H) 4.41 - 4.60 (m, 1 H) 4.76 - 4.88 (m, 2 H) 4.88 -4.94 (m, 1 H) 6.57 - 6.71 (m, 1 H) 7.68 - 7.88 (m, 2 H) 8.21 - 8.35 (m, 1 H) 8.76 - 8.99 (m, 2 H) 10.76 - 10.92 (m, 1 H), LCMS (m/z) (M+H) = 476.2, Rt = 0.51 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.10 - 1.21 (m, 3 H) 1.85 (s, 6 H) 3.39 - 3.40 (m, 9 H) 3.69 (br. s., 4 H) 8.20 - 8.43 (m, 2 H) 8.84 - 8.93 (m, 1H) 9.60 - 9.70 (m, 1 H) 11.04 - 11.16 (m, 1 H), LCMS (m/z) (M+H) = 488.2, Rt = 0.59 min.
-
- Step 1: To a solution of 4-chloro-N-ethyl-6-morpholinopyrimidin-2-amine (1.0 equiv.) in DME (0.6 M) was added methyl 4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzoate (1. equiv.), PdCl2(dppf)-DCM adduct (0.1 equiv.) and 2M aqueous sodium carbonate (3.00 equiv.), and the reaction was heated in the oil bath at 100 °C for 4 hours. At this time, the reaction was complete. Cooled to room temperature, partitioned between water and ethyl acetate and the organic phase was dried with sodium sulfate, filtered and concentrated. The crude material was purified via silica gel column chromatography eluting with 0-100% ethyl acetate in heptanes. The pure fractions were concentrated under vacuo to yield methyl 3-(2-(ethylamino)-6-morpholinopyrimidin-4-yl)-4-methylbenzoate as the desired product in 75% yield. LCMS (m/z) (M+H) = 357.1, Rt = 0.65 min.
- Step 2: To a solution of methyl 3-(2-(ethylamino)-6-morpholinopyrimidin-4-yl)-4-methylbenzoate (1. equiv.) in THF (0.15 M) was added 2M lithium hydroxide solution and the mixture was stirred at RT for 16h. 40% of starting material still remained when checked by LC/MS. The reaction mixture was heated 70°C for 3h. The reaction mixture was acidified with 1N HCl to pH=2 and was extracted with ethyl acetate. The separated organic layer was dried with sodium sulfate and concentrated to give 3-(2-(ethylamino)-6-morpholinopyrimidin-4-yl)-4-methylbenzoic acid in 65% yield. LCMS (m/z) (M+H) = 343.4, Rt = 0.56 min.
- Step 3: To a solution of 3-(2-(ethylamino)-6-morpholinopyrimidin-4-yl)-4-methylbenzoic acid (1. equiv.) in DMF (0.01 M) was added EDC (1eq) and HOBT (1eq) followed by aniline (1.0 equiv.) and the reaction mixture was stirred at ambient temperature for 16h. The reaction mixture was partitioned between water and ethyl acetate, and the separated organic layer was dried sodium sulfate, filtered and concentrated. The concentrated crude was dissolved in DMSO, filtered through a HPLC filter and purified via auto-preparative reverse phase HPLC. The pure fractions were lyophilized to yield 3-(2-(ethylamino)-6-morpholinopyrimidin-4-yl)-4-methyl-N-phenylbenzamide.
- 1H NMR (400 MHz, <dmso>) δ ppm 0.94 - 1.35 (m, 3 H) 2.38 - 2.41 (m, 3 H) 3.31 - 3.47 (m, 3 H) 3.62 - 3.81 (m, 10 H) 6.54 - 6.68 (m, 1 H) 6.96 -7.18 (m, 1 H) 7.27 - 7.43 (m, 2 H) 7.49 - 7.59 (m, 1 H) 7.69 - 7.82 (m, 2 H) 7.98 - 8.16 (m, 2 H) 10.20 - 10.31 (m, 1 H) LCMS (m/z) (M+H) = 418.3, Rt = 0.7 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.02 - 1.22 (m, 3 H) 1.68 (s, 6 H) 2.34 - 2.42 (m, 3 H) 3.52 - 3.59 (m, 3 H) 3.67 - 3.78 (m, 5 H) 3.84 - 4.02 (m,1 H) 6.59 - 6.69 (m, 1 H) 7.18 - 7.30 (m, 1 H) 7.33 - 7.46 (m, 1 H) 7.52 - 7.62 (m, 1 H) 7.79 - 7.87 (m, 1 H) 7.91 - 7.98 (m, 1 H) 8.00 - 8.15 (m, 2H) 10.33 - 10.44 (m, 1 H), LCMS (m/z) (M+H) = 485.4, Rt = 0.78 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.16 (s, 3 H) 2.40 (s, 3 H) 3.38 - 3.44 (m, 2 H) 3.69 (br. s., 6 H) 3.85 - 4.02 (m, 2 H) 6.56 - 6.70 (m, 1 H) 6.86- 6.93 (m, 1 H) 7.00 - 7.06 (m, 1 H) 7.12 - 7.22 (m, 1 H) 7.26 - 7.36 (m, 1 H) 7.42 - 7.63 (m, 2 H) 7.83 - 7.97 (m, 1 H) 8.01 - 8.11 (m, 3 H) 10.41 -10.50 (m, 1 H), LCMS (m/z) (M+H) = 468.3, Rt = 0.76 min.
-
- To a solution of 4-(6-chloro-2-(methylsulfonyl) pyrimidin-4-yl) morpholine (1.0 equiv.) in 1:1 THF: DMF (0.17M) was added ethanolamine (2.0 equiv.) and DIEA (2eq) at room temperature. The reaction was stirred at ambient temperature for 16h. The reaction was partitioned between water and ethyl acetate and the separated organic phase was dried with sodium sulfate, filtered and concentrated under vacuo to yield 2-((4-chloro-6-morpholinopyrimidin-2-yl)amino)ethanol in 87% yield. LCMS (m/z) (M+H) = 259.1/261, Rt = 0.39 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.73 (s, 6 H) 2.38 (s, 3 H) 3.40 (br. s., 2 H) 3.46 - 3.54 (m, 2 H) 3.56 - 3.65 (m, 4 H) 3.67 - 3.78 (m, 4 H) 6.61- 6.69 (m, 1 H) 7.22 - 7.35 (m, 1 H) 7.42 - 7.49 (m, 2 H) 7.57 - 7.67 (m, 1 H) 7.67 - 7.75 (m, 1 H) 7.87 - 7.95 (m, 1 H) 8.73 - 8.83 (m, 1 H), LCMS (m/z) (M+H) = 502.4, Rt = 0.64 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 2.45 - 2.46 (m, 3 H) 3.37 - 3.47 (m, 2 H) 3.49 - 3.54 (m, 2 H) 3.58 - 3.69 (m, 8 H) 6.58 - 6.67 (m, 1 H) 7.69 -7.83 (m, 1 H) 7.91 - 8.00 (m, 1 H) 8.17 - 8.33 (m, 3 H) 8.83 - 8.93 (m, 1 H) 10.71 - 10.85 (m, 1 H), LCMS (m/z) (M+H) = 503.3, Rt = 0.65 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.76 (s, 6 H) 3.56 (d, J=5.09 Hz, 8 H) 6.63 - 6.74 (m, 1 H) 7.79 - 7.92 (m, 1 H) 7.97 - 8.08 (m, 1 H) 8.22 - 8.41(m, 1 H) 8.83 - 8.99 (m, 2 H) 10.88 - 11.01 (m, 1 H), LCMS (m/z) (M+H) = 503.3, Rt = 0.55 min.
-
-
- To a solution of 4-(6-chloro-2-(methylsulfonyl) pyrimidin-4-yl) morpholine (1.0 equiv.) in DMF (0.18 M) was added (S)-1-aminopropan-2-ol (2.0 equiv.) and DIEA (2eq) at room temperature. The reaction was stirred at ambient temperature for 16h. The reaction was partitioned between water and ethyl acetate and the separated organic phase was dried with sodium sulfate, filtered and concentrated under vacuo to yield of (S)-1-((4-chloro-6-morpholinopyrimidin-2-yl)amino)propan-2-ol I in quantitative yield. LCMS (m/z) (M+H) = 273/274.9, Rt = 0.44 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.00 - 1.11 (m, 3 H) 1.71 (s, 7 H) 2.45 - 2.49 (m, 3 H) 3.15 - 3.25 (m, 1 H) 3.30 - 3.43 (m, 1 H) 3.60 - 3.68 (m,5 H) 3.74 - 3.84 (m, 4 H) 6.58 - 6.67 (m, 1 H) 7.53 - 7.63 (m, 1 H) 7.79 - 7.87 (m, 1 H) 7.93 - 8.00 (m, 1 H) 8.19 - 8.28 (m, 1 H) 8.74 - 8.81 (m, 1H) 8.84 - 8.89 (m, 1 H) 10.88 - 10.99 (m, 1 H), LCMS (m/z) (M+H) = 517.3, Rt = 0.58 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 0.99 - 1.11 (m, 3 H) 1.70 (s, 6 H) 2.22 - 2.31 (m, 3 H) 3.13 - 3.25 (m, 1 H) 3.57 - 3.93 (m, 10 H) 6.49 - 6.57(m, 1 H) 7.32 - 7.42 (m, 2 H) 7.69 - 7.88 (m, 3 H) 7.93 - 7.99 (m, 1 H) 8.73 - 8.80 (m, 1 H) 10.67 - 10.73 (m, 1 H), LCMS (m/z) (M+H) = 516.2, Rt = 0.68 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.04 - 1.15 (m, 3 H) 2.50 - 2.52 (m, 3 H) 3.19 - 3.30 (m, 1 H) 3.69 (br. s., 6 H) 3.75 - 3.93 (m, 4 H) 6.65 - 6.71(m, 1 H) 7.43 - 7.59 (m, 1 H) 7.75 - 7.86 (m, 1 H) 7.95 - 8.06 (m, 1 H) 8.21 - 8.38 (m, 3 H) 8.89 - 8.95 (m, 1 H) 10.79 - 10.89 (m, 1 H), LCMS (m/z) (M+H) = 517.2, Rt = 0.67 min.
-
- To a solution of 4-(6-chloro-2-(methylsulfonyl) pyrimidin-4-yl) morpholine (1.0 equiv.) in DMF (0.18 M) was added (R)-1-aminopropan-2-ol (2.0 equiv.) and DIEA (2eq) at room temperature. The reaction was stirred at ambient temperature for 16h. The reaction mixture was partitioned between water and ethyl acetate and the separated organic phase was dried with sodium sulfate, filtered and concentrated under vacuo to yield of (R)-1-((4-chloro-6-morpholinopyrimidin-2-yl)amino)propan-2-ol I in quantitative yield. LCMS (m/z) (M+H) = 273/274.9, Rt = 0.43 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.03 - 1.11 (m, 3 H) 1.75 (s, 6 H) 2.26 - 2.35 (m, 3 H) 3.17 - 3.30 (m, 1 H) 3.35 - 3.47 (m, 1 H) 3.68 - 3.82 (m,9 H) 6.55 - 6.65 (m, 1 H) 7.37 - 7.48 (m, 2 H) 7.73 - 7.93 (m, 3 H) 7.96 - 8.03 (m, 1 H) 8.75 - 8.86 (m, 1 H) 10.70 - 10.78 (m, 1 H), LCMS (m/z) (M+H) = 516.2, Rt = 0.68 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.00 - 1.11 (m, 3 H) 1.71 (s, 6 H) 2.46 - 2.47 (m, 3 H) 3.13 - 3.25 (m, 1 H) 3.73 - 3.89 (m, 9 H) 6.56 - 6.69 (m,1 H) 7.76 - 7.89 (m, 1 H) 7.94 - 8.02 (m, 1 H) 8.19 - 8.30 (m, 1 H) 8.76 - 8.90 (m, 2 H) 10.82 - 10.94 (m, 1 H), LCMS (m/z) (M+H) = 517.2, Rt = 0.57 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.02 - 1.17 (m, 3 H) 2.50 - 2.51 (m, 3 H) 3.18 - 3.31 (m, 1 H) 3.65 - 3.86 (m, 9 H) 6.64 - 6.73 (m, 1 H) 7.76 -7.86 (m, 1 H) 7.97 - 8.04 (m, 1 H) 8.23 - 8.36 (m, 3 H) 8.87 - 8.95 (m, 1 H) 10.80 - 10.88 (m, 1 H), LCMS (m/z) (M+H) = 517.2, Rt = 0.66 min.
-
- To a solution of 4-(6-chloro-2-(methylsulfonyl) pyrimidin-4-yl) morpholine (1.0 equiv.) in DMF (0.18 M) was added (S)-2-aminopropan-1-ol (2.0 equiv.) and DIEA (2eq) at room temperature. The reaction was stirred at ambient temperature for 16h. As starting material remained when checked by LCMS more (S)-2-aminopropan-1-ol (4.0 equiv.) and DIEA (4eq) was added and the stirred the mixture for 5h. The reaction mixture was partitioned between water and ethyl acetate and the separated organic phase was dried with sodium sulfate, filtered and concentrated under vacuo. The concentrated crude was purified via silica gel chromatography and eluted with 0 to 100% ethyl acetate in heptanes to yield to yield (S)-2-((4-chloro-6-morpholinopyrimidin-2-yl)amino)propan-1-ol in 88% yield. LCMS (m/z) (M+H) = 273/274.8, Rt = 0.48 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.09 - 1.29 (m, 3 H) 1.76 (s, 6 H) 2.51 (s, 3 H) 3.70 (br. s., 12 H) 6.64 - 6.74 (m, 1 H) 7.84 - 7.92 (m, 1 H) 8.02(s, 1 H) 8.26 - 8.36 (m, 1 H) 8.79 - 8.93 (m, 2 H) 10.89 - 11.00 (m, 1 H), LCMS (m/z) (M+H) = 517.2, Rt = 0.6 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.04 - 1.18 (m, 3 H) 2.45 - 2.48 (m, 3 H) 3.28 - 3.53 (m, 10 H) 3.99 - 4.05 (m, 1 H) 6.56 - 6.68 (m, 1 H) 7.32 -7.44 (m, 1 H) 7.68 - 7.84 (m, 1 H) 7.93 - 8.01 (m, 1 H) 8.18 - 8.35 (m, 3 H) 8.81 - 8.91 (m, 1 H) 10.74 - 10.83 (m, 1 H), LCMS (m/z) (M+H) = 517.2, Rt = 0.7 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.08 - 1.26 (m, 3 H) 1.75 (s, 6 H) 2.32 (s, 3 H) 3.61 - 3.82 (m, 6 H) 3.82 - 4.22 (m, 3 H) 6.47 - 6.68 (m, 1 H)7.26 - 7.49 (m, 1 H) 7.70 - 8.10 (m, 4 H) 8.76 - 8.86 (m, 1 H) 10.68 - 10.77 (m, 1 H), LCMS (m/z) (M+H) = 516.3, Rt = 0.72 min.
-
- To a solution of 4-(6-chloro-2-(methylsulfonyl) pyrimidin-4-yl) morpholine (1.0 equiv.) in DMF (0.18 M) was added (R)-2-aminopropan-1-ol (2.0 equiv.) and DIEA (2eq) and the reaction was stirred at ambient temperature for 16h. As the reaction was incomplete by LCMS to it was added (R)-2-aminopropan-1-ol (4.0 equiv.) and DIEA (4eq) and the stirred the mixture for 5h. The reaction mixture was partitioned between water and ethyl acetate and the separated organic phase was dried with sodium sulfate, filtered and concentrated under vacuo. The concentrated crude was purified via silica gel chromatography and eluted with 0 to 100% ethyl acetate in heptanes to yield to yield (R)-2-((4-chloro-6-morpholinopyrimidin-2-yl)amino)propan-1-ol in 92% yield. LCMS (m/z) (M+H) = 273/274.8, Rt = 0.48 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.11 - 1.27 (m, 3 H) 1.76 (s, 6 H) 2.51 - 2.52 (m, 2 H) 3.70 (br. s., 8 H) 6.60 - 6.75 (m, 1 H) 7.81 - 7.92 (m, 1H) 7.97 - 8.07 (m, 1 H) 8.22 - 8.35 (m, 1 H) 8.78 - 8.95 (m, 2 H) 10.88 - 10.99 (m, 1 H)), LCMS (m/z) (M+H) = 517.3, Rt = 0.64 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.09 - 1.28 (m, 3 H) 2.50 - 2.55 (m, 3 H) 3.42 - 3.48 (m, 2 H) 3.69 (d, J=4.30 Hz, 8 H) 4.01 - 4.16 (m, 1 H)6.62 - 6.75 (m, 1 H) 7.41 - 7.58 (m, 1 H) 7.77 - 7.87 (m, 1 H) 7.92 - 8.05 (m, 1 H) 8.23 - 8.37 (m, 3 H) 8.86 - 8.98 (m, 1 H) 10.78 - 10.89 (m, 1 H), LCMS (m/z) (M+H) = 517.2, Rt = 0.7 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.09 - 1.24 (m, 3 H) 1.75 (s, 6 H) 2.32 (s, 3 H) 3.44 - 3.51 (m, 3 H) 3.61 - 3.78 (m, 5 H) 3.82 - 4.24 (m, 2 H)6.53 - 6.65 (m, 1 H) 7.35 - 7.45 (m, 1 H) 7.64 - 7.93 (m, 3 H) 7.97 - 8.05 (m, 1 H) 8.72 - 8.87 (m, 1 H) 10.67 - 10.76 (m, 1 H), LCMS (m/z) (M+H) = 516.3, Rt = 0.7 min.
-
- To a solution of 4-(6-chloro-2-(methylsulfonyl) pyrimidin-4-yl) morpholine (1.0 equiv.) in DMF (0.18 M) was added 2-amino-2-methylpropan-1-ol (2.0 equiv.) and DIEA (2eq) at room temperature. The reaction was stirred at ambient temperature for 16h. The reaction mixture was partitioned between water and ethyl acetate and the separated organic phase was dried with sodium sulfate, filtered and concentrated under vacuo. The concentrated crude was purified via silica gel chromatography and eluted with 0 to 100% ethyl acetate in heptanes to yield to yield (R)-2-((4-chloro-6-morpholinopyrimidin-2-yl)amino)propan-1-ol. LCMS (m/z) (M+H) = 287.1, Rt = 0.5 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.36 (s, 5 H) 1.76 (s, 6 H) 2.53 (s, 3 H) 3.43 - 3.52 (m, 2 H) 3.66 - 3.79 (m, 9 H) 6.65 - 6.75 (m, 1 H) 7.12 -7.23 (m, 1 H) 7.83 - 7.91 (m, 1 H) 7.98 - 8.04 (m, 1 H) 8.29 - 8.37 (m, 1 H) 8.80 - 8.94 (m, 2 H) 10.93 - 11.01 (m, 1 H), LCMS (m/z) (M+H) = 531.2, Rt = 0.62 min.
-
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.37 (s, 6 H) 2.53 (s, 3 H) 3.66 - 3.95 (m, 8 H) 6.64 - 6.76 (m, 1 H) 7.02 - 7.15 (m, 1 H) 7.75 - 7.88 (m, 1 H)7.95 - 8.06 (m, 1 H) 8.22 - 8.44 (m, 3 H) 8.84 - 8.94 (m, 1 H) 10.73 - 10.89 (m, 1 H), LCMS (m/z) (M+H) = 531.3, Rt = 0.7 min.
-
- To a solution of 4-(6-chloro-2-(methylsulfonyl)pyrimidin-4-yl)morpholine (1.0 equiv.) in DMF (0.18 M) was added 2-amino-2-methylpropan-1-ol (2.0 equiv.) and DIEA (2eq) and the reaction mixture was heated to 100 °C for 48h. The reaction mixture was partitioned between water and ethyl acetate and the separated organic phase was dried with sodium sulfate, filtered and concentrated under vacuo. The concentrated crude was purified via silica gel chromatography and eluted with 0 to 100% ethyl acetate in heptanes to yield (4-((4-chloro-6-morpholinopyrimidin-2-yl)amino)tetrahydro-2H-pyran-4-yl)methanol. LCMS (m/z) (M+H) = 329, Rt = 0.47 min.
- 1H NMR (400 MHz, <dmso>) δ ppm 1.57 - 1.68 (m, 2 H) 1.71 (s, 6 H) 1.96 - 2.13 (m, 2 H) 2.47 - 2.56 (m, 3 H) 3.67 - 3.86 (m, 8 H) 6.63 - 6.72 (m,1 H) 6.99 - 7.11 (m, 1 H) 7.78 - 7.87 (m, 1 H) 7.94 - 8.02 (m, 1 H) 8.25 - 8.37 (m, 1 H) 8.75 - 8.89 (m, 2 H) 10.86 - 10.95 (m, 1 H), LCMS (m/z) (M+H) = 573.4.3, Rt = 0.58 min.
-
-
- Step 1: To a solution of 4-(6-chloro-2-(methylsulfonyl)pyrimidin-4-yl)morpholine (1.0 equiv.) in 1,4-dioxane (0.18 M) was added dimethylamine solution in ethanol (2.0 equiv.) at room temperature. The reaction was stirred for 30 min, at which point two products were observed with the desired one as the major product. The reaction was concentrated to dryness under vacuo and the crude was purified via silica gel column chromatography eluting with 0-100% ethyl acetate in heptanes to yield 4-chloro-N,N-dimethyl-6-morpholinopyrimidin-2-amine as a white solid in 57% yield. LCMS (m/z) (M+H) = 243.2, Rt = 0.60 min.
- Step 2: To a solution of 4-chloro-N,N-dimethyl-6-morpholinopyrimidin-2-amine (1.0 equiv.) in DME (0.14 M) was added 4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline (1.3 equiv.), PdCl2(dppf)-DCM adduct (0.1 equiv.) and 2M aqueous sodium carbonate (3.00 equiv.), and the reaction was heated to 120 °C for 35 min in the microwave. LC/MS showed incomplete reaction, allowed to heat in the oil bath at 100 °C for 3 hours. At this time, the reaction was complete. Cooled to room temperature, partitioned between water and ethyl acetate, the organic phase was dried with sodium sulfate, filtered and concentrated. The crude material was purified via silica gel column chromatography eluting with 0-100% ethyl acetate in heptanes. The pure fractions were concentrated under vacuo to yield 4-(5-amino-2-methylphenyl)-N,N-dimethyl-6-morpholinopyrimidin-2-amine as the desired product in 76% yield. LCMS (m/z) (M+H) = 314, Rt = 0.41 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.81 (s, 6 H) 2.37 (s, 3 H) 3.25 (s, 6 H) 3.78 (br. s., 5 H) 4.03 (br. s., 1 H) 6.52 (s, 1 H) 7.42 (d, J=8.61 Hz, 1H) 7.65 (dd, J=8.22, 1.96 Hz, 1 H) 7.81 (dd, J=5.09, 1.17 Hz, 1 H) 7.95 (d, J=1.96 Hz, 1 H) 8.07 (s, 1 H) 8.77 (d, J=5.09 Hz, 1 H), LCMS (m/z) (M+H) = 486.2, Rt = 0.73 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.03 (t, J=18.59 Hz, 3 H) 2.37 (s, 3 H) 3.25 (s, 6 H) 3.78 (br. s., 5 H) 6.52 (s, 1 H) 7.42 (d, J=8.22 Hz, 1 H) 7.66 (dd, J=8.22, 2.35 Hz, 1 H) 7.96 (d, J=2.35 Hz, 2 H) 8.17 (s, 1 H) 8.82 (d, J=5.09 Hz, 1 H), LCMS (m/z) (M+H) = 483.2, Rt = 0.76 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.11 (t, J=7.24 Hz, 1 H) 1.22 (d, J=7.04 Hz, 6 H) 2.23 (s, 3 H) 2.84 - 3.25 (m, 7 H) 3.63 (br. s., 3 H) 7.31 (br. s., 1 H) 7.55 - 8.04 (m, 3 H) 8.63 (d, J=5.09 Hz, 1 H), LCMS (m/z) (M+H) = 461.1, Rt = 0.54 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.37 (s, 3 H) 3.25 (s, 6 H) 3.78 (br. s., 5 H) 6.52 (s, 1 H) 7.42 (d, J=8.22 Hz, 1 H) 7.67 (dd, J=8.41, 2.15 Hz, 1H) 7.96 (d, J=1.96 Hz, 1 H) 8.12 (d, J=4.70 Hz, 1 H) 8.29 (s, 1 H) 8.92 (d, J=5.09 Hz, 1 H), LCMS (m/z) (M+H) = 487.1, Rt = 0.76 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.37 (s, 3 H) 3.25 (s, 7 H) 3.78 (br. s., 7 H) 6.52 (s, 1 H) 7.42 (d, J=8.61 Hz, 1 H) 7.68 (dd, J=8.22, 2.35 Hz, 1H) 7.96 (d, J=1.96 Hz, 1 H) 8.10 - 8.22 (m, 1 H) 8.54 (s, 1 H) 8.94 (d, J=5.09 Hz, 1 H), LCMS (m/z) (M+H) = 497.1, Rt = 0.63 min.
-
- To a solution of 4-chloro-N,N-dimethyl-6-morpholinopyrimidin-2-amine (1.0 equiv.) in DME was added N-(6-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-3-yl)-3-(trifluoromethyl)benzamide (Intermediate B, 1.3 equiv.), followed by PdCl2(dppf).CH2Cl2 adduct (0.10 equiv.), and 2M aqueous sodium carbonate (3.00 equiv.). The reaction was heated in the microwave for 10 min at 120 °C. LC/MS showed completion of the reaction. The organic phase was concentrated to dryness, dissolved in DMSO, filtered through a HPLC filter and purified via auto-preparative reverse phase HPLC. The pure fractions were lyophilized to yield N-(5-(2-(dimethylamino)-6-morpholinopyrimidin-4-yl)-6-methylpyridin-3-yl)-3-(trifluoromethyl)benzamide as a fluffy solid in 19% yield. 1H NMR (400 MHz, <cd3od>) δ ppm 2.57 (s, 3 H) 3.26 (s, 6 H) 3.80 (d, J=4.70 Hz, 4 H) 6.61 (s, 1 H) 7.70 - 7.80 (m, 1 H) 7.94 (d, J=7.83 Hz, 1 H) 8.24 (d, J=7.43 Hz, 1 H) 8.30 (s, 1 H) 8.46 (d, J=2.35 Hz, 1 H) 8.84 (d, J=2.35 Hz, 1 H), LCMS (m/z) (M+H) = 487.2, Rt = 0.66 min.
-
- To a solution of 4-(6-chloro-2-(methylsulfonyl)pyrimidin-4-yl)morpholine (1.0 equiv.) was added 21% sodium ethoxide in ethanol (2equiv.) and the mixture was stirred at ambient temperature for 16h. The reaction was partitioned between water and ethyl acetate the separated organic phase was dried with sodium sulfate, filtered and concentrated under vacuo. The concentrated crude was purified via silica gel chromatography and eluted with 0 to 100% ethyl acetate in heptanes to 4-(6-chloro-2-ethoxypyrimidin-4-yl) morpholine in 87% yield. LCMS (m/z) (M+H) = 244/245.9, Rt = 0.71 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.27 (t, J=7.04 Hz, 3 H) 1.99 (t, J=19.17 Hz, 3 H) 2.26 (s, 3 H) 3.63 (br. s., 8 H) 4.33 (d, J=4.30 Hz, 2 H) 6.54- 6.68 (m, 1 H) 7.22 - 7.30 (m, 1 H) 7.64 - 7.82 (m, 2 H) 7.88 - 8.02 (m, 1 H) 8.08 - 8.19 (m, 1 H) 8.75 - 8.88 (m, 1 H) 10.55 - 10.73 (m, 1 H), LCMS (m/z) (M+H) = 484.2, Rt = 0.74 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.27 (t, J=7.04 Hz, 3 H) 2.26 (s, 3 H) 3.63 (br. s., 8 H) 4.32 (d, J=4.30 Hz, 2 H) 6.55 - 6.74 (m, 1 H) 7.19 -7.40 (m, 1 H) 7.66 - 7.83 (m, 2 H) 8.03 - 8.20 (m, 1 H) 8.25 - 8.38 (m, 1 H) 8.88 - 9.01 (m, 1 H) 10.58 - 10.81 (m, 1 H), LCMS (m/z) (M+H) = 488.2, Rt = 0.76 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.27 (t, J=7.04 Hz, 3 H) 1.99 (t, J=19.17 Hz, 3 H) 2.26 (s, 3 H) 3.63 (br. s., 8 H) 4.33 (d, J=4.30 Hz, 2 H) 6.54- 6.68 (m, 1 H) 7.22 - 7.30 (m, 1 H) 7.64 - 7.82 (m, 2 H) 7.88 - 8.02 (m, 1 H) 8.08 - 8.19 (m, 1 H) 8.75 - 8.88 (m, 1 H) 10.55 - 10.73 (m, 1 H), LCMS (m/z) (M+H) = 484.2, Rt = 0.74 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.33 (s, 3 H) 1.75 (s, 6 H) 2.31 (s, 3 H) 3.69 (d, J=2.74 Hz, 9 H) 4.36 - 4.50 (m, 2 H) 6.63 - 6.78 (m, 1 H) 7.27- 7.39 (m, 1 H) 7.70 - 7.88 (m, 3 H) 7.95 - 8.05 (m, 1 H) 8.76 - 8.81 (m, 1 H) 10.59 - 10.71 (m, 1 H), LCMS (m/z) (M+H) = 487.2, Rt = 0.74 min.
-
- To a solution of 4-(6-chloro-2-(methylsulfonyl) pyrimidin-4-yl) morpholine (1.0 equiv.) in THF (0.01 M) was added azetidine-3-ol (2.0 equiv.) and DIEA (2eq) at room temperature. The reaction was stirred at ambient temperature for 16h. The reaction mixture showed 50% starting material being present by LC/MS. To the mixture was added 5ml of DMF and another portion of azetidine-3-ol (2.0 equiv.) and DIEA (2eq) and the mixture was stirred at ambient temperature for 4h. The reaction was partitioned between water and ethyl acetate the separated organic phase was dried with sodium sulfate, filtered and concentrated under vacuo to yield 1-(4-chloro-6-morpholinopyrimidin-2-yl)azetidin-3-ol in quantitative yield. LCMS (m/z) (M+H) = 271/273, Rt = 0.43 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 2.22 (s, 3 H) 3.62 (br. s., 6 H) 3.78 - 3.96 (m, 3 H) 4.25 - 4.39 (m, 1 H) 4.48 - 4.59 (m, 1 H) 6.44 - 6.69 (m, 1H) 7.28 - 7.42 (m, 1 H) 7.65 - 7.83 (m, 3 H) 7.88 - 7.98 (m, 1 H) 8.16 - 8.34 (m, 2 H) 10.45 - 10.61 (m, 1 H) 12.20 - 12.34 (m, 1 H), LCMS (m/z) (M+H) = 514.2, Rt = 0.79 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 2.27 - 2.37 (m, 3 H) 3.54 - 3.70 (m, 6 H) 3.75 - 3.95 (m, 3 H) 4.23 - 4.40 (m, 1 H) 4.44 - 4.58 (m, 1 H) 7.34 -7.43 (m, 1 H) 7.47 - 7.62 (m, 2 H) 7.86 - 8.08 (m, 3 H) 8.14 - 8.21 (m, 1 H) 10.44 - 10.53 (m, 1 H), LCMS (m/z) (M+H) = 514.2, Rt = 0.81 min.
-
-
- 1H NMR (400 MHz, <dmso>) δ ppm 2.27 - 2.37 (m, 3 H) 3.54 - 3.70 (m, 6 H) 3.75 - 3.95 (m, 3 H) 4.23 - 4.40 (m, 1 H) 4.44 - 4.58 (m, 1 H) 7.34 -7.43 (m, 1 H) 7.47 - 7.62 (m, 2 H) 7.86 - 8.08 (m, 3 H) 8.14 - 8.21 (m, 1 H) 10.44 - 10.53 (m, 1 H), LCMS (m/z) (M+H) = 515.3, Rt = 0.65 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.73 (s, 6 H) 2.38 (s, 3 H) 3.41 - 3.67 (m, 4 H) 3.71 - 4.09 (m, 3 H) 4.13 - 4.35 (m, 1 H) 4.42 - 4.59 (m, 1 H)6.53 - 6.69 (m, 1 H) 7.34 - 7.52 (m, 2 H) 7.64 - 7.73 (m, 1 H) 7.84 - 7.90 (m, 1 H) 8.73 - 8.85 (m, 1 H), LCMS (m/z) (M+H) = 514.3, Rt = 0.65 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 3.60 - 3.74 (m, 4 H) 3.84 - 3.99 (m, 2 H) 4.27 - 4.43 (m, 2 H) 4.49 - 4.69 (m, 1 H) 7.12 - 7.17 (m, 1 H) 7.63 -7.79 (m, 1 H) 7.77 - 7.90 (m, 1 H) 8.09 - 8.20 (m, 2 H) 8.24 - 8.33 (m, 1 H) 8.88 - 8.95 (m, 1 H) 10.70 - 10.83 (m, 1 H), LCMS (m/z) (M+H) = 497.3, Rt = 0.57 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.22 (d, J=7.04 Hz, 6 H) 2.22 (s, 3 H) 2.97 - 3.14 (m, 1 H) 3.56 - 3.73 (m, 5 H) 3.78 - 3.91 (m, 3 H) 4.22 - 4.40(m, 2 H) 4.45 - 4.58 (m, 1 H) 6.46 - 6.60 (m, 1 H) 7.29 - 7.39 (m, 1 H) 7.60 - 7.63 (m, 1 H) 7.66 - 7.69 (m, 1 H) 7.70 - 7.86 (m, 2 H) 8.59 - 8.67 (m,1 H) 10.49 - 10.58 (m, 1 H), LCMS (m/z) (M+H) = 489.2, Rt = 0.61 min.
-
- 1H NMR (400 MHz, <dmso>) ™δ ppm 2.04 (s, 3 H) 2.27 (s, 3 H) 3.65 - 3.70 (m, 6 H) 3.82 - 3.96 (m, 4 H) 4.30 - 4.43 (m, 2 H) 4.50 - 4.68 (m, 1 H)6.50 - 6.60 (m, 1 H) 7.33 - 7.47 (m, 1 H) 7.77 - 7.92 (m, 2 H) 7.96 - 8.08 (m, 1 H) 8.14 - 8.22 (m, 1 H) 8.79 - 8.94 (m, 1 H) 10.70 - 10.84 (m, 1 H), LCMS (m/z) (M+H) = 511.2, Rt = 0.65 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 2.28 (s, 3 H) 3.56 - 3.77 (m, 6 H) 3.80 - 3.98 (m, 3 H) 4.31 - 4.43 (m, 2 H) 4.49 - 4.68 (m, 1 H) 6.52 - 6.69 (m,1 H) 7.33 - 7.47 (m, 1 H) 7.76 - 7.91 (m, 2 H) 8.12 - 8.22 (m, 1 H) 8.32 - 8.40 (m, 1 H) 8.93 - 9.07 (m, 1 H) 10.72 - 10.92 (m, 1 H), LCMS (m/z) (M+H) = 515.3, Rt = 0.67 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.24 (t, J=7.24 Hz, 1 H) 2.38 - 2.67 (m, 6 H) 3.19 (d, J=11.74 Hz, 1 H) 3.54 (d, J=11.35 Hz, 1 H) 3.63 - 3.70(m, 4 H) 3.77 (br. s., 6 H) 4.74 (d, J=14.09 Hz, 1 H) 6.42 (s, 1 H) 7.80 - 7.85 (m, 2 H) 8.01 (d, J=7.43 Hz, 2 H) 8.27 (d, J=2.35 Hz, 1 H) 8.28 (br. s.,1 H) 8.31 (s, 1 H) 8.33 (s, 2 H) 8.91 (d, J=2.35 Hz, 1 H) 10.79 (s, 1 H), LCMS (m/z) (M+H) = 556.3, Rt = 0.63 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 2.55 (s, 1 H) 3.17 (br. s., 1 H) 3.29 (s, 1 H) 3.66 (br. s., 5 H) 3.92 (br. s., 4 H) 6.40 (s, 1 H) 7.79 - 7.85 (m, 1 H)8.01 (d, J=7.83 Hz, 1 H) 8.23 (d, J=2.35 Hz, 1 H) 8.28 (s, 1 H) 8.30 (s, 1 H) 8.33 (s, 2 H) 8.88 (d, J=2.35 Hz, 1 H) 10.74 (s, 1 H), LCMS (m/z) (M+H) = 528.2, Rt = 0.61 min.
-
- To N-BOC-3-azetidinol (1.2eq) in DMF (0.36M) in a flame dried flask was added 60% sodium hydride (1.2eq) followed by 4-(6-chloro-2-(methylsulfonyl) pyrimidin-4-yl) morpholine (1.0 equiv.) and the reaction was stirred at ambient temperature for 16h. The reaction was partitioned between water and ethyl acetate the separated organic phase was dried with sodium sulfate, filtered and concentrated under vacuo. The concentrated crude was purified via silica gel chromatography and eluted with 0 to 100% ethyl acetate in heptanes to yield tert-butyl 3-((4-chloro-6-morpholinopyrimidin-2-yl)oxy)azetidine-1-carboxylate in 84% yield. LCMS (m/z) (M+H) = 371.2, Rt = 0.85 min.
-
- To a solution of tert-butyl 3-((4-chloro-6-morpholinopyrimidin-2-yl)oxy)azetidine-1-carboxylate (1.0 equiv.) in DME was added N-(6-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-3-yl)-3-(trifluoromethyl)benzamide (Intermediate B, 1.0 equiv.), followed by PdCl2(dppf).CH2Cl2 adduct (0.10 equiv.), and 2M aqueous sodium carbonate (3.00 equiv.). The reaction mixture was heated in the microwave for 20 min at 120 °C. LC/MS showed completion of the reaction. The reaction was partitioned between water and ethyl acetate and the separated organic phase was dried with sodium sulfate, filtered and concentrated under vacuo. It was purified via silica gel chromatography and eluted with 0 to 100% ethyl acetate in heptanes to yield tert-butyl 3-((4-(2-methyl-5-(3-(trifluoromethyl)benzamido)pyridin-3-yl)-6-morpholinopyrimidin-2-yl)oxy)azetidine-1-carboxylate in 60% yield. To it was added 30% TFA in DCM and stirred for 1h. The concentrated crude was dissolved in DMSO, filtered through a HPLC filter and purified via auto-preparative reverse phase HPLC. The pure fractions were lyophilized to give N-(5-(2-(azetidin-3-yloxy)-6-morpholinopyrimidin-4-yl)-6-methylpyridin-3-yl)-3-(trifluoromethyl) benzamide.
- 1H NMR (400 MHz, <demos>) δ ppm 3.29 - 3.51 (m, 2 H) 3.60 - 3.78 (m, 4 H) 3.82 - 4.10 (m, 5 H) 4.14 - 4.27 (m, 1 H) 4.32 - 4.43 (m, 1 H) 4.58 -4.66 (m, 1 H) 4.78 (d, J=10.17 Hz, 1 H) 5.31 - 5.51 (m, 1 H) 7.15 - 7.25 (m, 1 H) 7.74 - 7.89 (m, 1 H) 7.98 - 8.07 (m, 1 H) 8.24 - 8.34 (m, 4 H) 8.43- 8.53 (m, 1 H) 8.83 - 8.90 (m, 1 H) 10.92 - 11.01 (m, 1 H), LCMS (m/z) (M+H) = 515.4, Rt = 0.57 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.75 (s, 6 H) 2.27 - 2.36 (m, 3 H) 3.66 - 3.69 (m, 8 H) 4.01 - 4.14 (m, 2 H) 4.29 - 4.40 (m, 2 H) 5.25 - 5.38 (m,1 H) 6.60 - 6.69 (m, 1 H) 7.25 - 7.33 (m, 1 H) 7.62 - 7.73 (m, 1 H) 7.79 - 7.88 (m, 2 H) 7.95 - 8.01 (m, 1 H) 8.75 - 8.84 (m, 1 H) 10.56 - 10.61 (m, 1H), LCMS (m/z) (M+H) = 515.4, Rt = 0.58 min.
-
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.96 - 2.10 (m, 3 H) 2.32 (s, 3 H) 3.64 (d, J=5.48 Hz, 6 H) 3.98 - 4.12 (m, 2 H) 4.27 - 4.43 (m, 3 H) 5.27 - 5.40(m, 1 H) 6.59 - 6.70 (m, 1 H) 7.22 - 7.37 (m, 1 H) 7.64 - 7.75 (m, 1 H) 7.79 - 7.92 (m, 1 H) 7.95 - 8.07 (m, 1 H) 8.12 - 8.20 (m, 1 H) 8.66 - 8.77 (m,1 H) 8.83 - 8.90 (m, 1 H) 8.93 - 9.07 (m, 1 H) 10.61 - 10.75 (m, 1 H), LCMS (m/z) (M+H) = 511.3, Rt = 0.61 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 2.32 (s, 3 H) 3.95 - 4.25 (m, 8 H) 4.26 - 4.44 (m, 3 H) 5.25 - 5.41 (m, 1 H) 6.59 - 6.70 (m, 1 H) 7.26 - 7.36 (m,1 H) 7.64 - 7.74 (m, 1 H) 7.80 - 7.91 (m, 1 H) 8.14 - 8.23 (m, 1 H) 8.31 - 8.38 (m, 1 H) 8.57 - 8.78 (m, 1 H) 8.92 - 9.06 (m, 2 H) 10.67 - 10.78 (m, 1H), LCMS (m/z) (M+H) = 515.2, Rt = 0.62 min.
-
- To a solution of (S)-4-methyloxazolidin-2-one (2 equiv.) in THF (0.27M) was added sodium hydride (2.1 equiv.) portion wise. The reaction mixture was stirred at RT for 10 min. To the reaction mixture was added 4-(6-chloro-2-(methylsulfonyl) pyrimidin-4-yl) morpholine (1 equiv.) and was stirred at RT 4h. The reaction was partitioned between water and ethyl acetate the separated organic phase was dried with sodium sulfate, filtered and concentrated under vacuo to give (S)-3-(4-chloro-6-morpholinopyrimidin-2-yl)-4-methyloxazolidin-2-one. LCMS (m/z) (M+H) = 299.2, Rt = 0.59 min.
-
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.39 (d, J=5.87 Hz, 4 H) 2.51 - 2.67 (m, 5 H) 3.86 - 4.07 (m, 3 H) 4.55 - 4.79 (m, 2 H) 6.82 (s, 1 H) 7.53 -7.64 (m, 1 H) 7.68 - 8.40 (m, 5 H) 8.91 - 9.06 (m, 1 H) 10.75 - 10.91 (m, 1 H), LCMS (m/z) (M+H) = 543.3, Rt = 0.69 min.
-
- 1H NMR (400 MHz, DMSO-d6) δ ppm 0.99 - 1.51 (m, 3 H) 1.75 (s, 6 H) 4.28 - 4.84 (m, 2 H) 6.25 - 6.95 (m, 1 H) 7.16 - 8.12 (m, 7 H) 8.64 - 8.89(m, 1 H) 10.51 - 10.65 (m, 1 H), LCMS (m/z) (M+H) = 542.2, Rt = 0.7 min.
-
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.33 (d, J=6.26 Hz, 3 H) 3.63 (br. s., 8 H) 7.18 - 8.30 (m, 7 H) 10.34 - 10.57 (m, 1 H), LCMS (m/z) (M+H) = 542.1, Rt = 0.86 min.
-
- 1H NMR (400 MHz, DMSO-d6) δ ppm 1.37 (d, J=5.87 Hz, 4 H) 1.54 - 1.86 (m, 9 H) 4.26 - 4.81 (m, 4 H) 6.55 - 6.85 (m, 2 H) 7.51 (br. s., 21 H) 8.65 - 9.00 (m, 2 H) 10.72 - 11.01 (m, 1 H), LCMS (m/z) (M+H) = 543.3, Rt = 0.6 min.
-
-
- To a solution of 4-(6-chloro-2-(methylsulfonyl) pyrimidin-4-yl) morpholine (1.0 equiv.) in DMF (0.36M) was added tert-butyl 3-aminoazetidine-1-carboxylate (2.0 equiv.) and DIEA (2eq) at room temperature. The reaction was stirred at ambient temperature for 16h. The reaction was partitioned between water and ethyl acetate and the separated organic phase was dried with sodium sulfate, filtered and concentrated under vacuo. The concentrated crude was purified via silica gel chromatography and eluted with 0 to 100% ethyl acetate in heptanes to yield tert-butyl 3-((4-chloro-6-morpholinopyrimidin-2-yl)amino)azetidine-1-carboxylate in 76% yield. LCMS (m/z) (M+H) = 371.2, Rt = 0.85 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.75 (s, 6 H) 2.25 - 2.34 (m, 3 H) 3.61 - 3.73 (m, 6 H) 3.90 - 4.04 (m, 1 H) 4.12 - 4.23 (m, 1 H) 4.73 - 4.94 (m,1 H) 7.67 - 7.73 (m, 1 H) 7.80 - 7.87 (m, 2 H) 7.94 - 8.05 (m, 1 H) 8.52 - 8.64 (m, 1 H) 8.74 - 8.84 (m, 1 H), LCMS (m/z) (M+H) = 513.3, Rt = 0.64 min.
-
-
- Step 1: To a solution of sodium cyanide (1.2 equiv.) in 1:1 DMSO: water (0.12M) and triethylenediamine (0.5 equiv.) was added 4-(6-chloro-2-(methylsulfonyl)pyrimidin-4-yl)morpholine(1equiv.) and the mixture was stirred at RT for 16h. As starting material remained by LC/MS to it was added sodium cyanide (4eq) and as the reaction mixture remained a suspension to it was added water 1:1 water: DMSO until the reaction mixture went in to a solution. It was then let stir at RT over 16h. The reaction was partitioned between water and ethyl acetate the separated organic phase was dried with sodium sulfate, filtered and concentrated under vacuo. The concentrated crude was purified via silica gel chromatography and eluted with 0 to 100% ethyl acetate in heptanes to yield 4-chloro-6-morpholinopyrimidine-2-carbonitrile in 20% yield. LCMS (m/z) (M+H) = 243.1, Rt = 0.39 min.
- Step 2: To a solution of 4-chloro-6-morpholinopyrimidine-2-carbonitrile (1.0equiv.) in THF (0.024M) at -78 °C was added 3M methyl magnesium bromide in THF and the reaction mixture was stirred at that temperature for 20min. The reaction was then brought to ambient temperature and quenched with saturated ammonium chloride and then partitioned between water and ethyl acetate. The separated organic phase was dried with sodium sulfate, filtered and concentrated under vacuo to give 1-(4-chloro-6-morpholinopyrimidin-2-yl)ethanone 87% yield. LCMS (m/z) (M+H) = 242.1/244, Rt = 0.59 min.
- Step 3: To a solution of 1-(4-chloro-6-morpholinopyrimidin-2-yl) ethanone (1 equiv.) at - 78 °C in THF (0.33M) was added 3M methyl magnesium bromide (5 equiv.). The reaction mixture was stirred at -78 °C for 20mins. The reaction was then brought to ambient temperature and quenched with saturated ammonium chloride and then partitioned between water and ethyl acetate. The concentrated crude was purified by silica gel chromatography and eluted with 0 to 100% ethyl acetate in heptanes to yield 2-(4-chloro-6-morpholinopyrimidin-2-yl)propan-2-ol in 22% yield.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.44 (s, 6 H) 3.56 - 3.87 (m, 7 H) 7.00 (br. s., 1 H) 7.70 - 7.82 (m, 1 H) 7.91 - 8.02 (m, 1 H) 8.17 - 8.35 (m, 3H) 8.82 - 8.88 (m, 1 H) 10.68 - 10.76 (m, 1 H), LCMS (m/z) (M+H) = 502.3, Rt = 0.69 min.
-
-
- Step 1: To 5,7-dichloropyrazolo(1,5-a)pyrimidine (1.0 eq) in Ethanol (Volume: 15 mL) was added morpholine (1.0 eq) and the mixture was heated to 120 °C for 20 mins in the microwave. 50% conversion to the product was observed by LCMS. To the reaction mixture was added morpholine (1eq) and it was reheated in the microwave for 10 mins at 120 °C. The crude reaction mixture was partitioned between ethyl acetate and water.
- The separated organic layer was dried with sodium sulfate and concentrated. The concentrated crude was purified via silica gel column chromatography eluting with 0-100% ethyl acetate in heptanes. The pure fractions were concentrated under vacuo to 4-(5-chloropyrazolo[1,5-a]pyrimidin-7-yl)morpholine as the desired product in 90% yield.
LCMS (m/z) (M+H) = 239/240.8, Rt = 0.63 min. - 1H NMR (400 MHz, <dmso>) δ ppm 3.72 - 3.87 (m, 8 H) 6.35 - 6.44 (m, 1 H) 6.48 - 6.57 (m, 1 H) 8.09 - 8.22 (m, 1 H), LCMS (m/z) (M+H) = 239/240.8, Rt = 0.63 min.
- Step 2: To a solution of 4-(5-chloropyrazolo[1,5-a]pyrimidin-7-yl)morpholine (1.0 equiv.) and 6-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-3-amine (1.2 equiv.) in DME (0.3 M) was added sodium carbonate (2.0 equiv, 2 M aqueous solution) and the mixture was degassed for 10 mins before adding PdCl2(dppf)-DCM adduct (0.05 equiv.) and the mixture was heated in an oil bath for 3 hours at 120 °C. Methanol was added and the mixture and partitioned between ethyl acetate and water. The organic layer was dried with sodium sulfate, filtered, concentrated and purified by silica gel chromatography (ISCO, 0-20% methanol in DCM). The pure fractions were concentrated to give 6-methyl-5-(7-morpholinopyrazolo[1,5-a]pyrimidin-5-yl)pyridin-3-amine in 78% yield. LCMS (m/z) (M+H) = 311.1, Rt = 0.42 min.
- Step 3: To a solution of 2-(2-fluoropropan-2-yl)isonicotinic acid (1.0 equiv.) in DMF (0.18 M) was added N1-((ethylimino)methylene)-N3,N3-dimethylpropane-1,3-diamine hydrochloride (1.0 equiv.), 1H-benzo[d][1,2,3]triazol-1-ol hydrate (1.0 equiv.) and 6-methyl-5-(7-morpholinopyrazolo[1,5-a]pyrimidin-5-yl)pyridin-3-amine (1.0 equiv.) and the mixture was stirred at rt overnight. The solution was partitioned between ethyl acetate and water. The organic phase was washed 3x with water and brine solution, dried over sodium sulfate, filtered and concentrated. The crude material was purified via silica gel chromatography (ISCO, 0-100% ethyl acetate in heptanes, then 0-20% methanol in DCM) and again via reverse phase prep-HPLC (acetonitrile, TFA/water). The pure fractions were neutralized with solid sodium bicarbonate and extracted with ethyl acetate. The organic phase was dried with sodium sulfate, filtered and concentrated to give 2-(2-fluoropropan-2-yl)-N-(6-methyl-5-(7-morpholinopyrazolo[1,5-a]pyrimidin-5-yl)pyridin-3-yl)isonicotinamide as a white solid in 46% yield. 1H NMR (400 MHz, <dmso>) δ ppm 1.60 - 1.76 (m, 6 H) 2.58 - 2.65 (m, 3 H) 3.82 (s, 8 H) 6.55 - 6.69 (m, 2 H) 7.79 - 7.89 (m, 1 H) 8.02 - 8.10 (m,1 H) 8.17 - 8.24 (m, 1 H) 8.33 - 8.42 (m, 1 H) 8.70 - 8.85 (m, 1 H) 8.94 - 9.05 (m, 1 H) 10.88 - 10.97 (m, 1 H), LCMS (m/z) (M+H) = 476.2, Rt = 0.64 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.76 (s, 6 H) 2.60 - 2.71 (m, 3 H) 3.72 - 3.93 (m, 8 H) 6.58 - 6.71 (m, 2 H) 7.85 - 7.95 (m, 1 H) 8.03 - 8.08 (m,1 H) 8.18 - 8.25 (m, 1 H) 8.42 - 8.48 (m, 1 H) 8.78 - 8.87 (m, 1 H) 9.00 - 9.13 (m, 1 H) 10.97 - 11.08 (m, 1 H), LCMS (m/z) (M+H) = 483.2, Rt = 0.64 min.
-
-
- 1H NMR (400 MHz, <dmso>) δ ppm 2.58 - 2.70 (m, 3 H) 3.79 - 3.84 (m, 8 H) 6.56 - 6.68 (m, 2H) 7.76 - 7.85 (m, 1 H) 7.93 - 8.06 (m, 1 H) 8.13 -8.23 (m, 1 H) 8.26 - 8.37 (m, 2 H) 8.39 - 8.46 (m, 1 H) 8.98 - 9.09 (m, 1 H) 10.80 - 10.91 (m, 1 H), LCMS (m/z) (M+H) = 483.4, Rt = 0.74 min.
-
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.84 (s, 6 H) 2.35 - 2.42 (m, 3 H) 3.74 - 3.89 (m, 8 H) 6.44 - 6.52 (m, 1 H) 6.57 - 6.66 (m, 1 H) 7.30 - 7.42 (m,1 H) 7.75 - 7.91 (m, 2 H) 8.16 - 8.23 (m, 1 H) 8.26 - 8.34 (m, 1 H) 9.55 - 9.69 (m, 1 H) 10.77 - 10.83 (m, 1 H), LCMS (m/z) (M+H) = 483.2, Rt =0.65 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.73 - 1.78 (m, 2 H) 1.84 - 1.88 (m, 2 H) 2.34 - 2.40 (m, 3 H) 3.74 - 3.92 (m, 8 H) 6.42 - 6.50 (m, 1 H) 6.55 -6.64 (m, 1 H) 7.27 - 7.40 (m, 1 H) 7.73 - 7.82 (m, 2 H) 7.84 - 7.97 (m, 2 H) 8.12 - 8.22 (m, 1 H) 8.62 - 8.75 (m, 1 H) 10.58 - 10.66 (m, 1 H)), LCMS (m/z) (M+H) = 480.1, Rt = 0.7 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.49 (s, 6 H) 2.59 - 2.73 (m, 3 H) 3.66 - 3.91 (m, 9 H) 6.53 - 6.69 (m, 2 H) 7.71 - 7.81 (m, 1 H) 8.16 - 8.27 (m,2 H) 8.44 - 8.57 (m, 1 H) 8.68 - 8.79 (m, 1 H) 9.04 - 9.14 (m, 1 H) 10.99 - 11.08 (m, 1 H), LCMS (m/z) (M+H) = 474.1, Rt = 0.5 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 2.52 - 2.62 (m, 3 H) 3.69 - 3.83 (m, 7 H) 6.43 - 6.63 (m, 2 H) 8.12 - 8.22 (m, 2 H) 8.28 - 8.41 (m, 2 H) 8.88 -9.01 (m, 2 H) 10.90 - 11.01 (m, 1 H), LCMS (m/z) (M+H) = 484.2, Rt = 0.66 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.91 - 2.12 (m, 3 H) 2.55 - 2.65 (m, 4 H) 3.82 (s, 8 H) 6.57 - 6.59 (m, 1 H) 6.62 - 6.64 (m, 1 H) 8.00 - 8.10 (m,1 H) 8.17 - 8.27 (m, 2 H) 8.29 - 8.38 (m, 1 H) 8.84 - 9.01 (m, 2 H) 10.88 - 10.97 (m, 1 H), LCMS (m/z) (M+H) = 480.2, Rt = 0.65 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 0.85 - 1.02 (m, 3 H) 2.54 - 2.62 (m, 4 H) 3.82 (s, 8 H) 6.55 - 6.59 (m, 1 H) 6.61 - 6.66 (m, 1 H) 7.98 - 8.10 (m,1 H) 8.15 - 8.26 (m, 2 H) 8.29 - 8.37 (m, 1 H) 8.85 - 9.02 (m, 2 H) 10.86 - 10.98 (m, 1 H)), LCMS (m/z) (M+H) = 494.1, Rt = 0.69 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 2.56 (s, 3 H) 3.77 (s, 8 H) 6.48 - 6.64 (m, 2 H) 8.08 - 8.20 (m, 1 H) 8.22 - 8.34 (m, 1 H) 8.63 - 8.75 (m, 1 H)8.82 - 8.95 (m, 1 H) 9.83 - 9.97 (m, 1 H) 11.00 - 11.19 (m, 1 H), LCMS (m/z) (M+H) = 485.1, Rt = 0.61 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.71 - 1.80 (m, 2 H) 1.83 - 1.94 (m, 2 H) 2.57 - 2.62 (m, 3 H) 3.82 (s, 8 H) 6.53 - 6.68 (m, 2 H) 7.79 - 7.84 (m,1 H) 7.94 - 7.99 (m, 1 H) 8.17 - 8.25 (m, 1 H) 8.32 - 8.38 (m, 1 H) 8.68 - 8.77 (m, 1 H) 8.92 - 9.01 (m, 1 H) 10.85 - 10.94 (m, 1 H), LCMS (m/z) (M+H) = 481.1, Rt = 0.61 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 2.53 - 2.62 (m, 3 H) 3.69 - 3.86 (m, 8 H) 6.52 - 6.65 (m, 2 H) 7.00 - 7.08 (m, 1 H) 8.00 - 8.07 (m, 1 H) 8.14 -8.20 (m, 2 H) 8.30 - 8.39 (m, 1 H) 8.83 - 8.90 (m, 1 H) 8.95 - 9.03 (m, 1 H) 10.93 - 11.01 (m, 1 H), LCMS (m/z) (M+H) = 466.1, Rt = 0.6 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 2.56 - 2.63 (m, 4 H) 3.82 (s, 8 H) 6.53 - 6.67 (m, 2 H) 7.64 - 7.73 (m, 1 H) 7.77 - 7.84 (m, 1 H) 8.11 - 8.25 (m,3 H) 8.33 - 8.47 (m, 1 H) 8.94 - 9.04 (m, 1 H) 10.69 - 10.77 (m, 1 H)LCMS (m/z) (M+H) = 465.1, Rt = 0.67 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 2.30 - 2.34 (m, 2 H) 3.26 - 3.30 (m, 4 H) 3.70 - 3.86 (m, 8 H) 6.37 - 6.46 (m, 1 H) 6.50 - 6.60 (m, 1 H) 7.25 -7.34 (m, 1 H) 7.70 - 7.89 (m, 2 H) 8.06 - 8.21 (m, 2 H) 8.42 - 8.52 (m, 1 H) 8.87 - 8.99 (m, 1 H) 10.74 - 10.83 (m, 1 H), LCMS (m/z) (M+H) = 465.3, Rt = 0.68 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 2.37 (s, 3 H) 3.81 (s, 9 H) 6.42 - 6.51 (m, 1 H) 6.55 - 6.63 (m, 1 H) 6.87 - 6.96 (m, 1 H) 7.00 - 7.09 (m, 1 H)7.15 - 7.23 (m, 1 H) 7.29 - 7.36 (m, 1 H) 7.77 - 7.84 (m, 1 H) 7.87 - 7.95 (m, 1 H) 8.03 - 8.09 (m, 1 H) 8.14 - 8.22 (m, 2 H) 8.85 - 8.93 (m, 1 H) 10.64 - 10.73 (m, 1 H), LCMS (m/z) (M+H) = 493.2, Rt = 0.59 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 2.61 (s, 3 H) 3.27 - 3.41 (m, 3 H) 3.78 - 3.89 (m, 8 H) 6.51 - 6.70 (m, 2 H) 8.14 - 8.25 (m, 2 H) 8.34 - 8.38 (m,1 H) 8.56 - 8.61 (m, 1 H) 8.94 - 9.07 (m, 2 H) 11.06 - 11.11 (m, 1 H), LCMS (m/z) (M+H) = 494.1, Rt = 0.53 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.84 (s, 6 H) 2.58 - 2.63 (m, 3 H) 3.82 (s, 8 H) 6.52 - 6.70 (m, 2 H) 8.15 - 8.24 (m, 1 H) 8.31 - 8.37 (m, 2 H)8.92 - 8.97 (m, 1 H) 9.62 - 9.71 (m, 1 H) 11.02 - 11.09 (m, 1 H), LCMS (m/z) (M+H) = 484.2, Rt = 0.58 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 2.56 - 2.61 (m, 3 H) 3.82 (s, 8 H) 6.51 - 6.70 (m, 2 H) 8.07 - 8.13 (m, 1 H) 8.18 - 8.24 (m, 1 H) 8.32 - 8.40 (m,1 H) 8.50 - 8.56 (m, 1 H) 8.99 - 9.15 (m, 2 H) 11.15 - 11.22 (m, 1 H), LCMS (m/z) (M+H) = 484.1, Rt = 0.7 min.
-
- Step 1: A solution of 2-bromo-N-methyl-5-nitro-4-pyridinamine (1.0 equiv.) in conc. HCl (0.29 M) in a 500 ml RB was heated to 90 °C. Tin(II) chloride dihydrate (5 equiv.) was added portion wise and the resulting mixture was stirred at 90°C for 90 min. and allowed to cool to RT. The acidic solution was cooled to RT and concentrated until about ¼ of liquid was left. The mixture was poured in an ice bath and made basic (pH∼10) by cautious addition of 50% aqueous NaOH while stirring. The suspension was extracted with EtOAc and the combined organic extracts were dried over Na2SO4. The solvent was evaporated to give 6-bromo-2-chloropyridine-3,4-diamine in 89% yield as a low melting brown solid. Product was used without further purification. LCMS (m/z) (M+H) = 222/224/226, Rt = 0.44 min.
- Step 2: Acetic anhydride (9.0 equiv.) was added to a solution of 6-bromo-2-chloropyridine-3,4-diamine (1.0 equiv.) in triethyl orthoformate (6.0 equiv.), and the resulting mixture was heated at 60 °C for about 2 min and slowly increased to 90 °C and maintained at this temperature for 6 hr, then allowed to cool to room temperature. The reaction mixture was concentrated to dryness, then dissolved in aqueous NaOH (10 M, 14.0 equiv.) and stirred at 55 °C for 30 minutes. After cooling, the mixture was acidified using glacial acetic acid until pH 6. The suspension was stirred in an ice bath for 1 hr, then filtered off and washed with small amounts of water The precipitate was dissolved in a 1:2 THF: ether solution. The solution was dried over sodium sulfate, filtered and concentrated, giving 6-bromo-4-chloro-1H-imidazo[4,5-c]pyridine (4.7 g, 20.22 mmol, 100 % yield) as a brown solid. LCMS (m/z) (M+H) = 231.9/233.9/235.9, Rt = 0.48 min.
- Step 3: 6-bromo-4-chloro-1H-imidazo[4,5-c]pyridine (1.0 equiv.), (R)-3-methylmorpholine (5.0 equiv.), TEA (2.0 equiv.) in NMP (1.4 M) were mixed in a 20 mL vessel, sealed and heated at 140 °C for 72 hours. The reaction vessel was left to reach RT and the mixture was partitioned between EtOAc and water. The aqueous layer was extracted three times with EtOAc. The combined organics were washed with brine dried over sodium sulfate, filtered and concentrated. The residue was purified via flash chromatography over silica gel eluting with heptane and 0-70% EtOAc gradient. (R)-4-(6-bromo-1H-imidazo[4,5-c]pyridin-4-yl)-3-methylmorpholine was isolated as a light yellow solid in 58% yield. LCMS (m/z) (M+H) = 297/299, Rt = 0.65 min.
- Step 4: To a solution of (R)-4-(6-bromo-1H-imidazo[4,5-c]pyridin-4-yl)-3-methylmorpholine (1.0 equiv.) and N-(4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-3-(trifluoromethyl)benzamide (1.0 equiv.) in DME (0.1 M) was added Na2CO3 (3.0 equiv.) and the system was flushed with nitrogen for 5 minutes. PdCl2(dppf).CH2Cl2 adduct (0.1 equiv.) was added and the system was flushed once again. The vial was capped and place in a microwave reactor for 20 minutes at 120 °C. The reaction mix was partitioned in EtOAc/H2O. The organic layer was isolated, dried over Na2SO4, filtered and concentrated. The crude was purified by HPLC. (R)-N-(4-methyl-3-(4-(3-methylmorpholino)-1H-imidazo[4,5-c]pyridin-6-yl)phenyl)-3-(trifluoromethyl)benzamidewas obtained in 12% yield. 1H NMR (400 MHz, <dmso>) δ ppm 1.17 (br. s., 1 H) 2.26 (br. s., 3 H) 2.60 (d, J=1.57 Hz, 1 H) 3.51 (br. s., 1 H) 3.68 (br. s., 2 H) 3.90 (d, J=9.39 Hz, 1 H) 5.37 (br. s., 1 H) 6.88 (br. s., 1 H) 7.21 (br. s., 1 H) 7.57 - 7.83 (m, 2 H) 7.91 (d, J=7.83 Hz, 1 H) 8.14 - 8.29 (m, 2 H) 10.28 - 10.47 (m, 1 H). LCMS (m/z) (M+H) = 496 at Rt = 0.77 mins.
-
- Step 1: Sulfuric acid (3: 1 ratio to nitric acid) was cooled to 0 °C and 2,6-dichloropyridin-4-amine (1.0 equiv.) was added portion wise so that the rate of addition did not increase the internal temperature above 10 °C. The mixture was cooled to -5 °C and 90% nitric acid fuming (0.746 M final concentration) was added over a period of 30 minutes ensuring that the internal temperature remained at 0 °C. The reaction was continued for 2 hr at 0 °C. The reaction mixture was poured on ice water and stirred at 0°C for 30 minutes, then filtered. The filter cake was suspended in water and stirred for 15 minutes, then filtered, and dried by azeotroping with toluene. N-(2,6-dichloropyridin-4-yl)nitramide was obtained in 94% yield and used as is in the next step. LCMS (m/z) (M+H) = 207.9/209.9, Rt = 0.70 min.
- Step 2: N-(2,6-dichloropyridin-4-yl)nitramide (1.0 equiv.) was added portion wise to a flask containing sulfuric acid (1 M) making sure that the temperature did not rise above 40 °C. The reaction was then heated at 100 °C for 1h. The resulting mixture was red clear. The reaction mixture was poured on ice water and the pH was adjusted to 9.5 by addition of 10N sodium hydroxide solution and then stirred for 10 minutes at RT. The precipitate was collected by filtration, suspended in water, stirred for 15 minutes and filtered. The water was removed by azeotroping with toluene. The desired 2,6-dichloro-3-nitropyridin-4-amine was isolated in 90% yield and used as is in the next step. LCMS (m/z) (M+H) = 207.9/209.9, Rt = 0.68 min.
- Step 3: Raney Nickel (1.0 equiv.) was washed with water (3 times) and methanol (3 times) and was then transferred as slurry into a flask containing 2,6-dichloro-3-nitropyridin-4-amine (1.0 equiv.) in MeOH (0.155 M) under nitrogen. The reaction mix was then hydrogenated overnight under atmospheric pressure. The system was purged with nitrogen and the reaction mixture was filtered over a celite pad. The filtrate was concentrated to give 2,6-dichloropyridine-3,4-diamine as a brown solid in 96% yield which was used as is in next step. LCMS (m/z) (M+H) = 179.8, Rt = 0.31 min.
- Step 4: 2,6-dichloropyridine-3,4-diamine (1.0 equiv.) in triethyl orthoformate (6.0 equiv.) and acetic anhydride (9.0 equiv.) in a round bottom flask was fitted a condenser and the mixture was warmed to 60 °C and then the temperature was increased to 90 °C and the mixture was stirred at that temperature for 5 hr. LCMS showed acetylated product LCMS (m/z) (M+H) = 229.8/231.7 Rt = 0.64 mins. The reaction mixture was concentrated and then dissolved in 10% NaOH (1.0 equiv.) and warmed at 60 °C for 30 mins when complete conversion to the desired product was observed. The reaction mix was cooled to room temperature, treated with acetic acid until pH=6 and the mixture cooled to 0 °C for 20 mins. The brown solid that formed was filtered and then azeotroped with toluene to give 4,6-dichloro-1H-imidazo[4,5-c]pyridine in quantitative yield. Product was used as is in the next step. LCMS (m/z) (M+H) = 187.9/189.8 Rt = 0.45 min.
- Step 5: 4,6-dichloro-1H-imidazo[4,5-c]pyridine (1.0 equiv.) and morpholine (2.0 equiv.) in ethanol (0.7 M) were stirred at 120 °C in a sealed tube overnight. Some starting material was still present, therefore 2 equivalents of morpholine were added and the reaction left for 6 hr until reaction completion. The cooled reaction mixture was concentrated to dryness. Crude 4-(6-chloro-1H-imidazo[4,5-c]pyridin-4-yl)morpholine was used as is in the next step. LCMS (m/z) (M+H) = 239.2 Rt = 0.51 min.
- Step 6: To a solution of 4-(6-chloro-1H-imidazo[4,5-c]pyridin-4-yl)morpholine (1.0 equiv.) and N-(4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-3-(trifluoromethyl)benzamide (1.0 equiv) in DME (0.1 M) was added 2M Na2CO3 (3.0 equiv.) and the system was flushed with nitrogen for 5 minutes. PdCl2(dppf).CH2Cl2 adduct (0.1 equiv.) was added and the system was flushed once again. The vial was capped and place in a microwave reactor for 20 minutes at 120 °C. The reaction mix was partitioned in EtOAc/H2O. The organic layer was isolated, dried over Na2SO4, filtered and concentrated. The crude was purified by HPLC giving N-(4-methyl-3-(4-morpholino-1H-imidazo[4,5-c]pyridin-6-yl)phenyl)-3-(trifluoromethyl)benzamide as the TFA salt in 16% yield. 1H NMR (400 MHz, <dmso>) δ ppm 2.29 (s, 3 H) 4.15 (br. s., 3 H) 7.08 (br. s., 1 H) 7.33 (br. s., 1 H) 7.68 - 7.82 (m, 2 H) 7.86 (br. s., 1 H) 7.96 (d, J=7.83 Hz, 1 H) 8.16 - 8.38 (m, 2 H) 10.52 (br. s., 1 H). LCMS (m/z) (M+H) = 482 at Rt = 0.76 mins.
-
- Step 1: To a solution of 4-(6-chloro-1H-imidazo[4,5-c]pyridin-4-yl)morpholine (1.0 equiv's), 4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline (1.2 equiv's), in DME (12 mL) and 2M aqueous Na2CO3 (6.00 mL) was added PdCl2(dppf).CH2Cl2 adduct (0.05 equiv's). The resulting mixture was then degassed by bubbling Ar through for 15 mins.The stirred mixture was then heated to 95 °C. After 6h, additional PdCl2(dppf).CH2Cl2 adduct (0.1 equiv's) was added and continued refluxing for 22h. The mixture was then allowed to cool to RT, then filtered through Celite rinsing well with EtOAc. The solvent was evaporated under reduced pressure, and the residue then partitioned between EtOAc and 1M NaOH. The organics were seperated, then washed with 1M NaOH (x2), sat. brine (x4) then dried, (Na2SO4), filtered and evaporated under reduced. The residue was purified by silica gel chromatography eluting with 0-12% MeOH/ CH2Cl2 increasing to 17% MeOH/ CH2Cl2 to give 4-methyl-3-(4-morpholino-1H-imidazo[4,5-c]pyridin-6-yl)aniline in 40% yield as a tan solid. LCMS (m/z) (M+H) = 310.1, Rt = 0.37 min.
- Step 2: To a solution of 6-methyl-5-(4-morpholino-1H-imidazo[4,5-c]pyridin-6-yl)pyridin-3-amine (1.0 equiv's), 3-(methylsulfonyl)benzoic acid (1.0 equiv's) and 1-hydroxy-7-azabenzatriazole (HOAT) (1.3 equiv's) in DMA (0.7 mL) was added Et3N (1.3 equiv's). After 5 mins, EDC.HCl (1.3 equiv's) was added. After 5d the homogeneous reaction mixture was diluted with DMSO and water then filtering through 0.45 micron filter and the solution purified by reverse phase prep HPLC. The pure fractions were collected and lyophallised to give N-(4-methyl-3-(4-morpholino-1H-imidazo[4,5-c]pyridin-6-yl)phenyl)-3-(methylsulfonyl)benzamide in 26% yield as the TFA salt. 1H NMR (500 MHz, <dmso>) δ ppm 2.30 (br. s., 5 H) 3.30 (s, 5 H) 3.80 (br. s., 6 H) 4.17 (br. s., 3 H) 7.35 (br. s., 1 H) 7.67 - 7.97 (m, 3 H) 8.15 (d, J=7.57 Hz, 1 H) 8.30 (d, J=7.88 Hz, 1 H) 8.49 (s, 1 H). LCMS (m/z) (M+H) = 492.0 at Rt = 0.58 mins.
-
- This compound was prepared following the same procedures described for Example 813. 1H NMR (500 MHz, <dmso>) δ ppm 1.39 (t, J=7.25 Hz, 3 H) 2.26 (s, 3 H) 2.35 (s, 3 H) 3.80 (br. s., 4 H) 4.10 (q, J=7.25 Hz, 2 H) 4.18 (br. s., 4 H) 7.10 (br. s., 1 H) 7.28 (br. s., 1 H) 7.66 (d, J=7.57 Hz, 1 H) 7.83 (br. s., 1 H) 8.36 (s, 1 H) 9.75 (br. s., 1 H). LCMS (m/z) (M+H) = 446.2, Rt = 0.57 mins.
-
- This compound was prepared following the same procedures described for Example 813. LCMS (m/z) (M+H) = 432.2, Rt = 0.53 mins.
-
- This compound was prepared following the same procedures described for Example 813. LCMS (m/z) (M+H) = 460.2, Rt = 0.61 mins.
-
- This compound was prepared following the same procedures described for Example 813. LCMS (m/z) (M+H) = 432.2, Rt = 0.57 mins.
-
- This compound was prepared following the same procedures described for Example 813. LCMS (m/z) (M+H) = 458.2, Rt = 0.64 mins.
-
- This compound was prepared following the same procedures described for Example 813. LCMS (m/z) (M+H) = 445.1, Rt = 0.68 mins.
-
- This compound was prepared following the same procedures described for Example 813. LCMS (m/z) (M+H) = 493.1, Rt = 0.55 mins.
-
- This compound was prepared following the same procedures described for Example 813. LCMS (m/z) (M+H) = 482.1, Rt = 0.60 mins.
-
- This compound was prepared following the same procedures described for Example 813. LCMS (m/z) (M+H) = 473.3, Rt = 0.51 mins.
-
- Step 1: To 3,5-dibromopyrazin-2-amine (1.0 equiv.) in DMF (0.4 M) was added chloroacetaldehyde 50% in water (10.0 equiv.) and the mixture was heated to 100 °C for 16 hr. The reaction mixture was concentrated to a slurry and the crude 6,8-dibromoimidazo[1,2-a]pyrazine was used as such in the next step. Yield is assumed to be quantitative. LCMS (m/z) (M+H) = 275.9/277.9/279.9 at Rt = 0.51 mins.
- Step 2: 6,8-Dibromoimidazo[1,2-a]pyrazine (1.0 equiv.) and morpholine (10.0 equiv.) were stirred in a sealed tube at 60 °C for 4 hr. The crude was transferred to a round bottom flask and concentrated to dryness. The reaction mixture was purified via flash chromatography over silica gel eluting with heptane and 0-80% EtOAc gradient. 4-(6-Bromoimidazo[1,2-a]pyrazin-8-yl)morpholine was isolated in 67% yield. LCMS (m/z) (M+H) = 285 at Rt = 0.69 mins.
- Step3: To a solution of 4-(6-bromoimidazo[1,2-a]pyrazin-8-yl)morpholine (1.0 equiv.) and N-(4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-3-(trifluoromethyl)benzamide (0.9 equiv) in DME (0.1 M) was added 2M Na2CO3 (3.0 equiv.) and the system was flushed with nitrogen for 5 minutes. PdCl2(dppf).CH2Cl2 adduct (0.1 equiv.) was added and the system was flushed once again. The vial was capped and place in a microwave reactor for 20 minutes at 120 °C. The reaction mix was partitioned in EtOAc/H2O. The organic layer was isolated, dried over Na2SO4, filtered and concentrated. The crude was purified by HPLC giving N-(4-methyl-3-(8-morpholinoimidazo[1,2-a]pyrazin-6-yl)phenyl)-3-(trifluoromethyl)benzamide as the TFA salt in 32% yield. 1H NMR (400 MHz, <dmso>) δ ppm 2.35 (s, 3 H) 4.14 - 4.26 (m, 4 H) 7.27 (d, J=8.22 Hz, 1 H) 7.60 (d, J=0.78 Hz, 1 H) 7.70 (dd, J=8.41, 2.15 Hz, 1 H) 7.78 (t, J=7.83 Hz, 1 H) 7.87 (d, J=2.35 Hz, 1 H) 7.92 - 8.02 (m, 2 H) 8.10 (s, 1 H) 8.21 - 8.33 (m, 2 H) 10.40 - 10.54 (m, 1 H). LCMS (m/z) (M+H) = 482 at Rt = 0.88 mins.
-
- Step 1: To 3,5-dichloropyrazin-2-amine (1.0 equiv.) in DMF (1.0 M) was added chloroacetaldehyde 50% in water (10.0 equiv.) and the mixture was heated to 100 °C for 16 hr. The reaction mixture was concentrated to a slurry and the crude 6,8-dibromoimidazo[1,2-a]pyrazine was used as such in the next step. Yield is assumed to be quantitative. LCMS (m/z) (M+H) = 188/190/192 at Rt = 0.46 mins.
- Step 2: 6,8-Dichloroimidazo[1,2-a]pyrazine (1.0 equiv.) and (R)-3-methylmorpholine (3.0 equiv.) were stirred in a sealed tube at 50 °C for 3 hr. Some product was observed, additional 2 equiv of (R)-3-methylmorpholine were added, the temperature increased to 65 °C and the reaction was left overnight. The crude was transferred to a round bottom flask and concentrated to dryness. The reaction mixture was purified via flash chromatography over silica gel eluting with heptane and 0-30% EtOAc gradient. (R)-4-(6-chloroimidazo[1,2-a]pyrazin-8-yl)-3-methylmorpholine was isolated in 97% yield. LCMS (m/z) (M+H) = 253/255 at Rt = 0.77 mins.
- Step3: To a solution of (R)-4-(6-chloroimidazo[1,2-a]pyrazin-8-yl)-3-methylmorpholine (1.0 equiv.) and N-(4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-3-(trifluoromethyl)benzamide (0.9 equiv) in DME (0.1 M) was added 2M sodium carbonate (3.0 equiv.) and the system was flushed with nitrogen for 5 minutes. PdCl2(dppf).CH2Cl2 adduct (0.1 equiv.) was added and the system was flushed once again. The vial was capped and place in a microwave reactor for 15 minutes at 120 °C. Some starting material was still present. Addional 0.3 equiv. of N-(4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-3-(trifluoromethyl)benzamide and 0.1 equiv of the palladium catalyst were added and the system was flushed with nitrogen. The vial was capped and placed in the microwave reactor for 15 minutes at at 120 °C. The reaction mix was partitioned in EtOAc/H2O. The organic layer was isolated, dried over Na2SO4, filtered and concentrated. The crude was purified by HPLC giving (R)-N-(4-methyl-3-(8-(3-methylmorpholino)imidazo[1,2-a]pyrazin-6-yl)phenyl)-3-(trifluoromethyl)benzamide as the TFA salt in 8% yield. 1H NMR (400 MHz, <dmso>) δ ppm 1.12 - 1.33 (m, 3 H) 2.30 (s, 3 H) 3.21 - 3.38 (m, 1 H) 3.50 (td, J=11.74, 2.35 Hz, 2 H) 4.97 (br. s., 1 H) 5.51 (br. s., 1 H) 7.18 - 7.33 (m, 1 H) 7.54 (s, 1 H) 7.65 (dd, J=8.22, 1.96 Hz, 1 H) 7.73 (t, J=7.83 Hz, 1 H) 7.81 (d, J=2.35 Hz, 1 H) 7.87 - 7.96 (m, 2 H) 8.02 (s, 1 H) 8.12 - 8.31 (m, 2 H) 10.41 (s, 1 H). LCMS (m/z) (M+H) = 496 at Rt = 0.88 mins.
-
- Step 1: 3,5-dibromo-2-hydroxybenzoic acid (1.0 equiv.), triethylamine (1.0 equiv.) and diphenyl phosphoryl azide (1.0 equiv.) were suspended in toluene (1.7 M) and the reaction mix was heated at 110 °C for 20 hr. The reaction mix was cooled to RT, quenched with brine and extracted with EtOAc. The isolated organic was washed twice with saturated solution of sodium bicarbonate, dried over MgSO4, filtered and concentrated. The crude material was purified via flash chromatography over silica gel eluting with heptane and 0-40% EtOAc gradient. Isolated 5,7-dibromobenzo[d]oxazol-2(3H)-one in 63% yield as a white solid. LCMS (m/z) (M+H) = 490./492.9/494.9, Rt = 0.80 min.
- Step2: To a solution of 5,7-dibromobenzo[d]oxazol-2(3H)-one (1.0 equiv.) and N-(4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-3-(trifluoromethyl)benzamide(1.0 equiv.) in DME (0.68 M) was added Na2CO3 (3.0 equiv.) and the system was flushed with nitrogen. PdCl2(dppf).CH2Cl2 adduct (0.1 equiv.) was added to the reaction mix and the system was flushed with nitrogen once again. The vial was capped and microwaved for 20 minutes at 120 °C. The crude was partitioned in H2O/EtOAc and the organic layer was isolated, dried over Na2SO4, filtered and concentrated. The crude material was purified via flash chromatography over silica gel eluting with heptane and 0-50% EtOAc gradient. The reaction gave an almost 1:1 ratio of the two possible products (N-(3-(5-bromo-2-oxo-2,3-dihydrobenzo[d]oxazol-7-yl)-4-methylphenyl)-3-(trifluoromethyl)benzamide and N-(3-(7-bromo-2-oxo-2,3-dihydrobenzo[d]oxazol-5-yl)-4-methylphenyl)-3-(trifluoromethyl)benzamide) which were taken together into the next step. LCMS (m/z) (M+H) = 493.1 at Rt = 1.07 and 1.08.
- Step 3: A mixture of N-(3-(5-bromo-2-oxo-2,3-dihydrobenzo[d]oxazol-7-yl)-4-methylphenyl)-3-(trifluoromethyl)benzamide and N-(3-(7-bromo-2-oxo-2,3-dihydrobenzo[d]oxazol-5-yl)-4-methylphenyl)-3-(trifluoromethyl)benzamide (1.0 equiv.), morpholine (4.0 equiv.), RuPhos precatalyst (0.1 equiv.), 2-dicyclehexylphosphino-2",6"-diisopropoxybiphenyl (0.1 equiv.) were dissolved in THF (0.055)and the system was purged with nitrogen. HMDS (7.0 equiv.) was added to the mix and the reaction vessel was sealed and heated at 70 °C overnight. The reaction mixture was cooled to room temperature, diluted with a saturated solution of NH4CI and extracted three times with EtOAc. The combined organics were dried over MgSO4, filtered and concentrated. The crude material was purified via preparative reverse phase HPLC. Upon lyophilization of the pure fractions, N-(4-methyl-3-(5-morpholino-2-oxo-2,3-dihydrobenzo[d]oxazol-7-yl)phenyl)-3-(trifluoromethyl)benzamide and N-(4-methyl-3-(7-morpholino-2-oxo-2,3-dihydrobenzo[d]oxazol-5-yl)phenyl)-3-(trifluoromethyl)benzamide were isolated as the TFA salt in 9 and 8% yield respectively. LCMS (m/z) (M+H) = 498 at Rt = 0.84 and LCMS (m/z) (M+H) = 498 at Rt = 0.93. Structure assignment is tentative; no HNMR data available at this time.
-
- Step 1: To 6-chloro-2-(methylthio)pyrimidin-4-amine (1.0 equiv.) in EtOH (0.7 M)) was added chloroacetaldehyde 50% in water (10.0 equiv.) and the mixture was refluxed for 3 h. LCMS showed product (m/z) (M+H) = 200 at Rt = 0.41 mins and small amounts of starting material. Reaction was left for additional 40 minutes. The reaction mixture was cooled to RT and concentrated. The residue was dissolved in DCM, washed with saturated solution of sodium bicarbonate, brine, dried over sodium sulfate, filtered and concentrated. The crude material was purified via flash chromatography over silica gel eluting with DCM and 0-4% MeOH gradient. The desired 7-chloro-5-(methylthio)imidazo[1,2-c]pyrimidine was isolated in quantitative yield. LCMS (m/z) (M+H) = 201.9 at Rt = 0.40 mins.
- Step 2: 7-chloro-5-(methylthio)imidazo[1,2-c]pyrimidine (1.0 equiv.) in MeOH (1.13M) and 2N potassium hydroxide solution(3.5 equiv.) was refluxed for 2 h. The reaction mixture was concentrated and the residue was dissolved in DCM and small amounts of MeOH, loaded onto celite, concentrated and transferred to a cartridge. The crude material was purified via flash chromatography over silica gel eluting with DCM and 0-13% MeOH gradient. Isolated 7-chloroimidazo[1,2-c]pyrimidin-5-ol in 75%. LCMS (m/z) (M+H) = 170 at Rt = 0.23 mins.
- Step 3: To a flask containing 7-chloroimidazo[1,2-c]pyrimidin-5-ol (1.0 equiv.) was added POCl3 (13.0 equiv.) and the reaction mix was refluxed overnight. The reaction mixture was concentrated, loaded on celite and purified via flash chromatography over silica gel eluting with DCM and 0-10% MeOH gradient. Isolated 5,7-dichloroimidazo[1,2-c]pyrimidine in 56% yield. LCMS (m/z) (M+H) = 188/190 at Rt = 0.49 mins.
- Step 4: To a flask containing 5,7-dichloroimidazo[1,2-c]pyrimidine (1.0 equiv.) in a 3:1 mixture of DCM and MeOH (0.7 M) at 0 °C was added morpholine (4.0 equiv.) and the reaction mix was brought to RT. After 3 h there was little starting material left. Reaction mix was stirred for 1 h more to ensure completion. The reaction mixture was concentrated and purified via flash chromatography over silica gel eluting with DCM and 0-5% MeOH gradient. Isolated 4-(7-chloroimidazo[1,2-c]pyrimidin-5-yl)morpholine in 27% yield. LCMS (m/z) (M+H) = 238.9 at Rt = 0.41 mins.
- Step 5: To a solution of 4-(7-chloroimidazo[1,2-c]pyrimidin-5-yl)morpholine (1.0 equiv.) and N-(4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-3-(trifluoromethyl)benzamide (0.9 equiv) in DME (0.1 M) was added 2M sodium carbonate (3.0 equiv.) and the system was flushed with nitrogen for 5 minutes. PdCl2(dppf).CH2Cl2 adduct (0.1 equiv.) was added and the system was flushed once again. The vial was capped and place in a microwave reactor for 15 minutes at 120 °C. Some starting material was still present. Addional 0.1 equiv. of the palladium catalyst were added and the system was flushed with nitrogen. The vial was capped and placed in the microwave reactor for 15 minutes at at 120 °C. The reaction mix was partitioned in EtOAc/H2O. The organic layer was isolated, dried over Na2SO4, filtered and concentrated. The crude was purified by HPLC giving N-(4-methyl-3-(5-morpholinoimidazo[1,2-c]pyrimidin-7-yl)phenyl)-3-(trifluoromethyl)benzamide as the TFA salt in 20% yield. 1H NMR (400 MHz, <dmso>) δ ppm 2.41 (s, 3 H) 2.52 (s, 1 H) 3.54 (br. s., 4 H) 3.82 (d, J=4.30 Hz, 4 H) 7.33 (s, 1 H) 7.49 (s, 1 H) 7.71 - 7.83 (m, 2 H) 7.97 (d, J=7.83 Hz, 1 H) 8.03 - 8.10 (m, 2 H) 8.17 (s, 1 H) 8.23 - 8.35 (m, 2 H) 10.56 (s, 1 H). LCMS (m/z) (M+H) = 482 at Rt = 0.78 mins.
-
- Step 1: 2,4-Dichlorothieno[3,2-d]pyrimidine (1.0 equiv.) and morpholine (2.2 equiv.) were stirred in a sealed tube at RT for 2 hr. The reaction mixture was concentrated and the residue was purified via flash chromatography over silica gel eluting with heptane and 0-100% EtOAc gradient. The desired 4-(2-chlorothieno[3,2-d]pyrimidin-4-yl)morpholine was isolated in 90% yield. LCMS (m/z) (M+H) = 256 at Rt = 0.68 mins.
- Step 2: To a solution of 4-(2-chlorothieno[3,2-d]pyrimidin-4-yl)morpholine (1.0 equiv.) and N-(4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-3-(trifluoromethyl)benzamide (0.9 equiv) in DME (0.1 M) was added 2M sodium carbonate (3.0 equiv.) and the system was flushed with nitrogen for 5 minutes. PdCl2(dppf).CH2Cl2 adduct (0.1 equiv.) was added and the system was flushed once again. The vial was capped and place in a microwave reactor for 20 minutes at 120 °C. Some starting material was still present. The vial was placed in the microwave reactor for additional 20 minutes at at 120 °C. The reaction mix was partitioned in EtOAc/H2O. The organic layer was isolated, dried over Na2SO4, filtered and concentrated. The crude was purified by HPLC giving N-(4-methyl-3-(4-morpholinothieno[3,2-d]pyrimidin-2-yl)phenyl)-3-(trifluoromethyl)benzamide as the TFA salt in 14% yield. 1H NMR (400 MHz, <dmso>) δ ppm 3.67 - 3.71 (m, 1 H) 3.75 (t, J=4.70 Hz, 4 H) 3.82 - 3.88 (m, 1 H) 3.97 (d, J=4.30 Hz, 4 H) 7.29 (d, J=8.61 Hz, 1 H) 7.47 (d, J=5.48 Hz, 1 H) 7.68 - 7.82 (m, 2 H) 7.91 (d, J=7.83 Hz, 1 H) 8.12 (d, J=1.96 Hz, 1 H) 8.19 - 8.29 (m, 2 H) 8.33 (d, J=5.09 Hz, 1 H) 10.51 (s, 1 H). LCMS (m/z) (M+H) = 499 at Rt = 0.83 mins.
-
- Step 1: To a solution of 2,4-dichloro-5H-pyrrolo[3,2-d]pyrimidine (1.0 equiv.) in THF (0.53 M) was added morpholine (1.2 equiv.) followed by DIEA (2.0 equiv.) and the reaction mixture was stirred at RT for overnight. The reaction mixture was concentrated and the crude was patitioned in EtOAc/NaHCO3. The organic layer was isolated, washed with brine, dried over Na2SO4, filtered and concentrated. The desired 4-(2-chloro-5H-pyrrolo[3,2-d]pyrimidin-4-yl)morpholine was used as is in the next step. LCMS (m/z) (M+H) = 239 at Rt = 0.56 mins.
- Step 2: To a solution of 4-(2-chloro-5H-pyrrolo[3,2-d]pyrimidin-4-yl)morpholine (1.0 equiv.) and N-(4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-3-(trifluoromethyl)benzamide (0.9 equiv) in DME (0.1 M) was added 2M sodium carbonate (3.0 equiv.) and the system was flushed with nitrogen for 5 minutes. PdCl2(dppf).CH2Cl2 adduct (0.1 equiv.) was added and the system was flushed once again. The vial was capped and place in a microwave reactor for 20 minutes at 120 °C. The reaction mix was partitioned in EtOAc/H2O. The organic layer was isolated, dried over Na2SO4, filtered and concentrated. The crude was purified by HPLC giving N-(4-methyl-3-(4-morpholino-5H-pyrrolo[3,2-d]pyrimidin-2-yl)phenyl)-3-(trifluoromethyl)benzamide as the TFA salt in 20% yield. 1H NMR (400 MHz, <dmso>) δ ppm 2.38 (s, 3 H) 3.80 (t, J=4.50 Hz, 4 H) 4.04 (br. s., 4 H) 6.60 (br. s., 1 H) 7.42 (d, J=7.83 Hz, 1 H) 7.74 - 7.87 (m, 2 H) 7.87 - 8.01 (m, 2 H) 8.11 (d, J=1.96 Hz, 1 H) 8.21 - 8.32 (m, 2 H) 10.64 (br. s., 1 H). LCMS (m/z) (M+H) = 482 at Rt = 0.81 mins.
-
- Step 1: To 6-chloropyridazin-3-amine (1.0 equiv.) and NaHCO3 (1.84 equiv.) in MeOH (2.3 M) at 0 °C was added bromine (1.1 equiv.) drop wise and the mixture was left stirring for 3 hr at RT. The reaction mixture was quenched by addition of water and concentrated until the solid precipitated. The mixture was then cooled in an ice water bath, filtered and dried to afford the desired 4-bromo-6-chloropyridazin-3-amine as a brown solid in 86% yield. LCMS (m/z) (M+H) = 207.9/209.9/211.9 at Rt = 0.50 mins.
- Step 2: To 4-bromo-6-chloropyridazin-3-amine (1.0 equiv.) in EtOH (0.48 M) was added chloroacetaldehyde 50% in water (10.0 equiv.) and the mixture was heated to 100 °C for 16h. The reaction mixture was concentrated to a brown slurry and the desired 8-bromo-6-chloroimidazo[1,2-b]pyridazine was used as such in the next step. Yield was assumed to be quantitative. LCMS (m/z) (M+H) = 231.9/233.9/235.9 at Rt = 0.55 mins.
- Step 3: To a flask containing 8-bromo-6-chloroimidazo[1,2-b]pyridazine (1.0 equiv.) in EtOH (0.650 M) was added morpholine (10.0 equiv.) and the reaction mix was stirred at RT for 3 hr when the reaction was complete. The solvent was removed under vacuum and the crude 4-(6-chloroimidazo[1,2-b]pyridazin-8-yl)morpholine was used as is in the next step. Yield was assumed to be quantitative. LCMS (m/z) (M+H) = 239.1 at Rt = 0.68 mins.
- Step 4: To a solution of 4-(6-chloroimidazo[1,2-b]pyridazin-8-yl)morpholine (1.0 equiv.) and N-(4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-3-(trifluoromethyl)benzamide (0.9 equiv) in DME (0.1 M) was added 2M sodium carbonate (3.0 equiv.) and the system was flushed with nitrogen for 5 minutes. PdCl2(dppf).CH2Cl2 adduct (0.1 equiv.) was added and the system was flushed once again. The vial was capped and place in a microwave reactor for 15 minutes at 120 °C. Some unreacted starting material was still present, additional 0.3 equivalents of N-(4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-3-(trifluoromethyl)benzamide were added and the vial mas placed in the microwave reactor for 15 minutes at 130 °C. The reaction mix was partitioned in EtOAc/H2O. The organic layer was isolated, dried over Na2SO4, filtered and concentrated. The crude was purified by HPLC giving N-(4-methyl-3-(8-morpholinoimidazo[1,2-b]pyridazin-6-yl)phenyl)-3-(trifluoromethyl)benzamide as the TFA salt in 20% yield. 1H NMR (400 MHz, <dmso>) δ ppm 0.96 - 1.10 (m, 5 H) 2.25 - 2.35 (m, 3 H) 3.42 (q, J=7.04 Hz, 4 H) 3.71 - 3.80 (m, 5 H) 6.31 - 6.41 (m, 1 H) 7.26 - 7.37 (m, 1 H) 7.55 - 7.65 (m, 1 H) 7.71 - 7.86 (m, 3 H) 7.90 - 8.00 (m, 1 H) 8.06 - 8.13 (m, 1 H) 8.20 - 8.34 (m, 2 H) 10.44 - 10.55 (m, 1 H). LCMS (m/z) (M+H) = 482 at Rt = 0.89 mins.
-
- Step 1: A solution of 8-bromo-6-chloroimidazo[1,2-b]pyridazine (1.0 equiv.), 2-(1H-imidazol-2-yl)morpholine bis-hydrochloride salt (1.0 equiv.) and triethylamine (3.0 equiv.) in NMP (0.143 M) was heated at 60°C for 1 hr. The mixture was purified via preparative reverse phase HPLC. Upon lyophilization of the pure fractions, 4-(6-chloroimidazo[1,2-b]pyridazin-8-yl)-2-(1H-imidazol-2-yl)morpholine was isolated as the TFA salt in 14% yield. LCMS (m/z) (M+H) = 304.9, Rt = 0.50 min.
- Step 2: A mixture of 4-(6-chloroimidazo[1,2-b]pyridazin-8-yl)-2-(1H-imidazol-2-yl)morpholine (1.0 equiv.), N-(6-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-3-yl)-3-(trifluoromethyl)benzamide (1.0 equiv.), sodium carbonate (2 M, 3 equiv.) and PdCl2(dppf) (0.5 equiv.) in DME (0.08 M) were heated to 120 °C for 30 min in the microwave. After cooling to RT, the organic phase purified via preparative reverse phase HPLC. Upon lyophilization of the pure fractions, N-(5-(8-(2-(1H-imidazol-2-yl)morpholino)imidazo[1,2-b]pyridazin-6-yl)-6-methylpyridin-3-yl)-3-(trifluoromethyl)benzamide was isolated as the TFA salt in 3.1% yield. LCMS (m/z) (M+H) = 549.2, Rt = 0.67 min. 1H NMR (400 MHz, <cd3od>) δ ppm 3.12 - 3.21 (m, 4 H), 3.64 (s, 3 H), 3.80 - 3.90 (m, 4 H), 6.96 (d, J=1.96 Hz, 2 H), 7.41 (d, J=1.96 Hz, 2 H), 7.52- 7.62 (m, 1 H), 7.84 - 7.92 (m, 1 H), 7.97 (br. s., 2 H), 8.05 - 8.12 (m, 1 H), 8.14 - 8.20 (m, 1 H).
-
- Step 1: To a flask containing 2,4-dichloropyrido[2,3-d]pyrimidine (1.0 equiv.) in THF (0.42 M) was added morpholine (1.2 equiv.) and DIEA (2.0 equiv.) and the reaction mix was stirred at RT for 1 hr. The solvent was removed under vacuum and the residue was partitioned in EtOAC/NaHCO3. The organic layer was isolated, washed with brine, dried over Na2SO4, filtered and concentrated. The crude 4-(2-chloropyrido[2,3-d]pyrimidin-4-yl)morpholine was used as is in the next step. Yield was assumed to be quantitative. LCMS (m/z) (M+H) = 251 at Rt = 0.58 mins.
- Step 2: To a solution of 4-(2-chloropyrido[2,3-d]pyrimidin-4-yl)morpholine (1.0 equiv.) and N-(4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-3-(trifluoromethyl)benzamide (0.9 equiv) in DME (0.1 M) was added 2M sodium carbonate (3.0 equiv.) and the system was flushed with nitrogen for 5 minutes. PdCl2(dppf).CH2Cl2 adduct (0.1 equiv.) was added and the system was flushed once again. The vial was capped and place in a microwave reactor for 20 minutes at 120 °C. The reaction mix was partitioned in EtOAc/H2O. The organic layer was isolated, dried over Na2SO4, filtered and concentrated. The crude was purified by HPLC giving N-(4-methyl-3-(4-morpholinopyrido[2,3-d]pyrimidin-2-yl)phenyl)-3-(trifluoromethyl)benzamide as the TFA salt in 40% yield. 1H NMR (400 MHz, <dmso>) δ ppm 2.40 - 2.47 (m, 9 H) 2.47 (s, 1 H) 3.68 - 3.83 (m, 1 H) 3.76 (t, J=4.50 Hz, 1 H) 4.04 (br. s., 1 H) 7.34 (d, J=8.22 Hz, 1 H) 7.62 (dd, J=8.22, 4.30 Hz, 1 H) 7.70 - 7.77 (m, 1 H) 7.80 (dd, J=8.22, 1.96 Hz, 1 H) 7.92 (d, J=7.43 Hz, 1 H) 8.12 - 8.32 (m, 1 H) 8.61 (d, J=8.22 Hz, 1 H) 8.93 - 9.05 (m, 1 H) 10.58 (s, 1 H). LCMS (m/z) (M+H) = 494 at Rt = 0.78 mins.
-
- Step 1. To a flask containing tert-butyl 2,4-dichloro-5,6-dihydropyrido[3,4-d]pyrimidine-7(8H)-carboxylate (1.0 equiv.) in THF (0.55 M) was added morpholine (1.2 equiv.) and DIEA (2.0 equiv.) and the reaction mix was stirred at RT for 2 h. LCMS showed one major product. The reaction mixture was concentrated and the mixture used as is in the next step. LCMS (m/z) (M+H) = 355 at Rt = 0.82 mins.
- Step 2. To a solution of the crude tert-butyl 2-chloro-4-morpholino-5,6-dihydropyrido[3,4-d]pyrimidine-7(8H)-carboxylate (1.0 equiv.) and N-(4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-3-(trifluoromethyl)benzamide (1.0 equiv.) in DME (0.14 M) was added 2M Na2CO3 solution (3.0 equiv.) and the system was flushed with nitrogen. PdCl2(dppf).CH2Cl2 adduct (0.1 equiv.) was added to the reaction mix and the system was flushed once again with nitrogen. The reaction vial was capped and microwaved for 20 minutes at 120 °C. The crude was partitioned in H2O/EtOAc. The organic layer was isolated, dried over Na2SO4, filtered and concentrated. Crude was purified on a silica gel column using heptane to 50% EtOAc in heptane. Isolated tert-butyl 2-(2-methyl-5-(3-(trifluoromethyl)benzamido)phenyl)-4-morpholino-5,6-dihydropyrido[3,4-d]pyrimidine-7(8H)-carboxylate in 27% yield. LCMS (m/z) [M+H]+= 598 at Rt = 0.89 min.
- Step 3. To a solution of tert-butyl 2-(2-methyl-5-(3-(trifluoromethyl)benzamido)phenyl)-4-morpholino-5,6-dihydropyrido[3,4-d]pyrimidine-7(8H)-carboxylate (1.0 equiv.) in DCM (0.04 M) was added TFA (15 equiv.) and the reaction mix was stirred at RT for 1h. The solvent was removed under vacuum and the residue was taken in DMSO and purified on the prep. Isolated N-(4-methyl-3-(4-morpholino-5,6,7,8-tetrahydropyrido[3,4-d]pyrimidin-2-yl)phenyl)-3-(trifluoromethyl)benzamide as the TFA salt in 68% yield. 1H NMR (400 MHz, <dmso>) δ ppm 2.75 - 3.01 (m, 2 H) 3.22 (s, 1 H) 3.73 (d, J=4.30 Hz, 4 H) 4.08 - 4.37 (m, 2 H) 5.74 (s, 1 H) 7.28 (d, J=8.22 Hz, 1 H) 7.67 - 7.83 (m, 2 H) 7.96 (d, J=7.83 Hz, 1 H) 8.11 - 8.40 (m, 3 H) 9.17 (br. s., 2 H) 10.34 - 10.65 (m, 1 H). LCMS (m/z) (M+H) = 498 at Rt = 0.57 mins.
-
- This compound was prepared following the same procedure reported for compound Example 834. 1H NMR (400 MHz, <dmso>) δ ppm 3.02 (t, J=6.26 Hz, 2 H) 3.35 (d, J=4.30 Hz, 5 H) 3.67 (d, J=4.30 Hz, 5 H) 4.07 - 4.26 (m, 2 H) 7.08 - 7.37 (m, 1 H) 7.61 - 7.79 (m, 2 H) 7.91 (d, J=7.83 Hz, 1 H) 8.06 - 8.33 (m, 3 H) 8.80 - 9.08 (m, 2 H) 10.47 (s, 1 H). LCMS (m/z) (M+H) = 498 at Rt = 0.68 mins.
-
- This compound was prepared following the same procedure reported for compound Example 834. 1H NMR (400 MHz, <dmso>) δ ppm 2.37 - 2.61 (m, 11 H) 3.68 (br. s., 5 H) 4.39 (br. s., 1 H) 4.75 (br. s., 1 H) 7.28 (d, J=8.22 Hz, 1 H) 7.69 - 7.82 (m, 1 H) 7.96 (d, J=7.83 Hz, 1 H) 8.12 - 8.36 (m, 1 H) 9.59 (br. s., 1 H) 10.51 (s, 1 H). LCMS (m/z) (M+H) = 484 at Rt = 0.72 mins.
-
- Step 1: To a flask containing 5,7-dichloro-1-methyl-3a,7a-dihydro-1H-pyrazolo[4,3-d]pyrimidine (1.0 equiv.) in EtOH (0.25 M) was added morpholine (10.0 equiv.) and the reaction mix was stirred at RT for 45 min. The solvent was removed under vacuum and the crude 4-(5-chloro-1-methyl-1H-pyrazolo[4,3-d]pyrimidin-7-yl)morpholine was used as is in the next step. Yield was assumed to be quantitative. LCMS (m/z) (M+H) = 254 at Rt = 0.56 mins.
- Step 2: To a solution of 4-(5-chloro-1-methyl-1H-pyrazolo[4,3-d]pyrimidin-7-yl)morpholine (1.0 equiv.) and N-(4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-3-(trifluoromethyl)benzamide (0.9 equiv) in DME (0.1 M) was added 2M sodium carbonate (3.0 equiv.) and the system was flushed with nitrogen for 5 minutes. PdCl2(dppf).CH2Cl2 adduct (0.1 equiv.) was added and the system was flushed once again. The vial was capped and place in a microwave reactor for 20 minutes at 120 °C. The reaction mix was partitioned in EtOAc/H2O. The organic layer was isolated, dried over Na2SO4, filtered and concentrated. The crude was purified by HPLC giving N-(4-methyl-3-(1-methyl-7-morpholino-1H-pyrazolo[4,3-d]pyrimidin-5-yl)phenyl)-3-(trifluoromethyl)benzamide as the TFA salt in 20% yield. 1H NMR (400 MHz, <dmso>) δ ppm 3.72 - 3.88 (m, 5 H) 4.09 - 4.25 (m, 3 H) 7.14 - 7.41 (m, 1 H) 7.70 - 7.84 (m, 2 H) 7.89 - 8.03 (m, 1 H) 8.15 - 8.38 (m, 4 H) 10.51 (s, 1 H). LCMS (m/z) (M+H) = 497 at Rt = 0.82 mins.
-
- Step 1: To a flask containing 2,4-dichlorofuro[3,2-d]pyrimidine (1.0 equiv.) in EtOH (0.79 M) was added morpholine (10.0 equiv.) and the reaction mix was stirred at RT for 2 hr. The solvent was removed under vacuum and the crude 2-chloro-4-morpholinofuro[3,2-d]pyrimidine was used as is in the next step. Yield was assumed to be quantitative. LCMS (m/z) (M+H) = 240/242 at Rt = 0.59 mins.
- Step 2: To a solution of 2-chloro-4-morpholinofuro[3,2-d]pyrimidine (1.0 equiv.) and N-(4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-3-(trifluoromethyl)benzamide (1.0 equiv) in DME (0.1 M) was added 2M sodium carbonate (3.0 equiv.) and the system was flushed with nitrogen for 5 minutes. PdCl2(dppf).CH2Cl2 adduct (0.1 equiv.) was added and the system was flushed once again. The vial was capped and place in a microwave reactor for 20 minutes at 120 °C. The reaction mix was partitioned in EtOAc/H2O. The organic layer was isolated, dried over Na2SO4, filtered and concentrated. The crude was purified by HPLC giving N-(4-methyl-3-(4-morpholinofuro[3,2-d]pyrimidin-2-yl)phenyl)-3-(trifluoromethyl)benzamide as the TFA salt in 40% yield. 1H NMR (400 MHz, <dmso>) δ ppm 2.45 (s, 3 H) 3.76 (t, J=4.50 Hz, 4 H) 3.98 (d, J=4.30 Hz, 4 H) 7.07 (d, J=1.96 Hz, 1 H) 7.28 (d, J=8.22 Hz, 1 H) 7.66 - 7.85 (m, 2 H) 7.95 (d, J=7.43 Hz, 1 H) 8.12 (d, J=1.96 Hz, 1 H) 8.21 - 8.39 (m, 3 H) 10.50 (s, 1 H). LCMS (m/z) (M+H) = 483 at Rt = 0.81 mins.
-
- Step 1: To a flask containing 5,7-dichlorothiazolo[5,4-d]pyrimidine (1.0 equiv.) in EtOH (0.73 M) was added morpholine (10.0 equiv.) and the reaction mix was stirred at RT for 2 hr. The solvent was removed under vacuum and the crude 4-(5-chlorothiazolo[5,4-d]pyrimidin-7-yl)morpholine was used as is in the next step. Yield was assumed to be quantitative. LCMS (m/z) (M+H) = 257/259 at Rt = 0.70 mins.
- Step 2: To a solution of 4-(5-chlorothiazolo[5,4-d]pyrimidin-7-yl)morpholine (1.0 equiv.) and N-(4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-3-(trifluoromethyl)benzamide (1.0 equiv) in DME (0.1 M) was added 2M Na2CO3 (3.0 equiv.) and the system was flushed with nitrogen for 5 minutes. PdCl2(dppf).CH2Cl2 adduct (0.1 equiv.) was added and the system was flushed once again. The vial was capped and place in a microwave reactor for 20 minutes at 125 °C. The reaction mix was partitioned in EtOAc/H2O. The organic layer was isolated, dried over Na2SO4, filtered and concentrated. The crude was purified by HPLC giving N-(4-methyl-3-(7-morpholinothiazolo[5,4-d]pyrimidin-5-yl)phenyl)-3-(trifluoromethyl)benzamide as the TFA salt in 40% yield. 1H NMR (400 MHz, <dmso>) δ ppm 1.73 (s, 1 H) 2.52 (s, 1 H) 3.76 (t, J=4.50 Hz, 4 H) 4.33 (br. s., 3 H) 7.29 (d, J=8.22 Hz, 1 H) 7.77 (t, J=7.83 Hz, 1 H) 7.84 (dd, J=8.22, 1.96 Hz, 1 H) 7.95 (d, J=7.83 Hz, 1 H) 8.20 (d, J=1.96 Hz, 1 H) 8.24 - 8.35 (m, 2 H) 9.26 (s, 1 H) 10.52 (s, 1 H). LCMS (m/z) (M+H) = 500 at Rt = 1.02 mins.
-
- Step 1: To a flask containing 4,6-dichloro-1-methyl-1H-pyrazolo[3,4-d]pyrimidine (1.0 equiv.) in EtOH (0.70 M) was added morpholine (10.0 equiv.) and the reaction mix was stirred at RT for 2 hr. The solvent was removed under vacuum and the crude 4-(6-chloro-1-methyl-1H-pyrazolo[3,4-d]pyrimidin-4-yl)morpholine was used as is in the next step. Yield was assumed to be quantitative. LCMS (m/z) (M+H) = 254/256 at Rt = 0.60 mins.
- Step 2: To a solution of 4-(6-chloro-1-methyl-1H-pyrazolo[3,4-d]pyrimidin-4-yl)morpholine (1.0 equiv.) and N-(4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-3-(trifluoromethyl)benzamide (1.0 equiv) in DME (0.1 M) was added 2M sodium carbonate (3.0 equiv.) and the system was flushed with nitrogen for 5 minutes. PdCl2(dppf).CH2Cl2 adduct (0.1 equiv.) was added and the system was flushed once again. The vial was capped and place in a microwave reactor for 15 minutes at 125 °C. The reaction mix was partitioned in EtOAc/H2O. The organic layer was isolated, dried over Na2SO4, filtered and concentrated. The crude was purified by HPLC giving N-(4-methyl-3-(1-methyl-4-morpholino-1H-pyrazolo[3,4-d]pyrimidin-6-yl)phenyl)-3-(trifluoromethyl)benzamide as the TFA salt in 40% yield. 1H NMR (400 MHz, <dmso>) δ ppm 1.73 (s, 1 H) 3.72 - 3.78 (m, 8 H) 7.27 (d, J=8.22 Hz, 2 H) 7.70 - 7.85 (m, 3 H) 7.95 (d, J=7.83 Hz, 1 H) 8.16 (d, J=1.96 Hz, 1 H) 8.23 - 8.36 (m, 5 H) 10.50 (s, 2 H). LCMS (m/z) (M+H) = 497 at Rt = 0.93 mins.
-
- Step 1: A round bottom flask containing a solution of 4-(6-chloroimidazo[1,2-b]pyridazin-8-yl)morpholine (1.0 equiv.) and 4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline (1.0 equiv) and 2M Na2CO3 (3.0 equiv.) in DME (1.3M) was flushed with nitrogen for 5 minutes. PdCl2(dppf).CH2Cl2 adduct (0.07 equiv.) was added to the solution and the system was flushed again for 10 more minutes. The reaction mix was refluxed at 120 °C overnight under an inert atmosphere. The reqaction mix was cooled to RT, diluted with water and extracted with EtOAc. The combined organics were dried over MgSO4, filtered and concentrated. The crude was purified on a neutral reverse phase column using 40% acetonitrile/water giving 4-methyl-3-(8-morpholinoimidazo[1,2-b]pyridazin-6-yl)aniline in 60% yield. 1H NMR (400 MHz, <dmso>) δ ppm 2.01 - 2.19 (m, 3 H) 3.65 - 3.80 (m, 4 H) 3.89 - 4.04 (m, 4 H) 4.96 (s, 2 H) 6.24 (s, 1 H) 6.55 (dd, J=8.22, 2.35 Hz, 1 H) 6.61 (d, J=2.35 Hz, 1 H) 6.93 (d, J=7.83 Hz, 1 H) 7.54 (d, J=0.78 Hz, 1 H) 8.03 (d, J=0.78 Hz, 1 H). LCMS (m/z) (M+H) = 310 at Rt = 0.42 mins.
- Step 2: To a round bottom flask containing a solution of 4-methyl-3-(8-morpholinoimidazo[1,2-b]pyridazin-6-yl)aniline (1.0 equiv.) and 2-(2-hydroxypropan-2-yl)isonicotinic acid (1.1 equiv) in DMF (3.9 M) was added HATU (1.1equiv.) and DIEA (3.0 equiv.) and the reaction mix was left stirring overnight at RT. The reaction mix was diluted with water and was extracted three times with EtOAc/H2O. The combined organics were dried over MgSO4, filtered and concentrated. purified on a neutral reverse phase column using 40% acetonitrile/water giving 2-(2-hydroxypropan-2-yl)-N-(4-methyl-3-(8-morpholinoimidazo[1,2-b]pyridazin-6-yl)phenyl)isonicotinamide in 64% yield. 1H NMR (400 MHz, <dmso>) δ ppm 1.39 - 1.54 (m, 6 H) 2.30 (s, 3 H) 3.30 (s, 6 H) 3.69 - 3.84 (m, 4 H) 3.93 - 4.10 (m, 4 H) 5.34 (s, 1 H) 6.34 (s, 1
H) 7.32 (d, J=8.61 Hz, 1 H) 7.58 (d, J=1.17 Hz, 1 H) 7.69 (dd, J=5.09, 1.57 Hz, 1 H) 7.75 - 7.86 (m, 2 H) 8.08 (d, J=0.78 Hz, 1 H) 8.12 (s, 1 H) 8.66 (d, J=4.70 Hz, 1 H) 10.40 - 10.66 (m, 1 H). LCMS (m/z) (M+H) = 473 at Rt = 0.58 mins. -
- This compound was prepared following the same procedure reported for Example 841. 1H NMR (400 MHz, <dmso>) δ ppm 1.28 (d, J=6.65 Hz, 6 H) 2.30 (s, 3 H) 3.15 (spt, J=6.91 Hz, 1 H) 3.70 - 3.80 (m, 5 H) 6.36 (s, 1 H) 7.33 (d, J=8.22 Hz, 1 H) 7.60 (s, 1 H) 7.71 - 7.86 (m, 4 H) 7.99 - 8.17 (m, 1 H) 8.55 - 8.86 (m, 1 H) 10.53 (s, 1 H). LCMS (m/z) (M+H) = 457.3 at Rt = 0.59 mins.
-
- This compound was prepared following the same procedure reported for Example 841. 1H NMR (400 MHz, <dmso>) δ ppm 2.03 (t, J=19.17 Hz, 3 H) 2.31 (s, 3 H) 3.76 (d, J=4.30 Hz, 5 H) 3.99 (d, J=4.70 Hz, 8 H) 6.36 (s, 1 H) 7.34 (d, J=8.22 Hz, 1 H) 7.60 (s, 1 H) 7.75 - 7.85 (m, 2 H) 8.02 (d, J=4.70 Hz, 1 H) 8.10 (s, 1 H) 8.18 (s, 1 H) 8.73 - 9.01 (m, 1 H) 10.55 - 10.80 (m, 1 H). LCMS (m/z) (M+H) = 479.3 at Rt = 0.74 mins.
-
- This compound was prepared following the same procedure reported for compound Example 841. 1H NMR (400 MHz, <dmso>) δ ppm 1.67 - 1.75 (m, 6 H) 2.26 (s, 4 H) 3.66 - 3.76 (m, 4 H) 3.95 (d, J=4.30 Hz, 4 H) 6.30 (s, 1 H) 7.29 (d, J=8.61 Hz, 1 H) 7.54 (s, 1 H) 7.70 - 7.76 (m, 2 H) 7.80 (d, J=4.70 Hz, 1 H) 7.95 (s, 1 H) 8.04 (s, 1 H) 8.74 (d, J=5.09 Hz, 1 H) 10.53 (s, 1 H). LCMS (m/z) (M+H) = 482 at Rt = 0.74 mins.
-
- This compound was prepared following the same procedure reported for Example 841. 1H NMR (400 MHz, <dmso>) δ ppm 1.31 (s, 9 H) 2.25 (s, 3 H) 3.58 - 3.77 (m, 5 H) 6.32 (s, 1 H) 7.28 (d, J=8.22 Hz, 1 H) 7.57 (s, 1 H) 7.65 (d, J=3.91 Hz, 1 H) 7.70 - 7.78 (m, 2 H) 7.83 (s, 1 H) 8.05 (s, 1 H) 8.66 (d, J=5.09 Hz, 1 H) 10.46 (s, 1 H). LCMS (m/z) (M+H) = 471 at Rt = 0.63 mins.
-
- This compound was prepared following the same procedure reported for Example 841. 1H NMR (400 MHz, <dmso>) δ ppm 1.69 - 1.78 (m, 6 H) 2.30 (s, 3 H) 3.71 - 3.81 (m, 4 H) 3.94 - 4.01 (m, 5 H) 6.38 (s, 1 H) 7.31 (d, J=7.83 Hz, 1 H) 7.54 - 7.63 (m, 2 H) 7.73 (d, J=8.22 Hz, 1 H) 7.76 - 7.83 (m, 2 H) 7.93 (d, J=7.83 Hz, 1 H) 8.04 (s, 1 H) 8.11 (s, 1 H) 10.34 (s, 1 H). LCMS (m/z) (M+H) = 481 at Rt = 0.78 mins.
-
- This compound was prepared following the same procedure reported for Example 841. 1H NMR (400 MHz, <dmso>) δ ppm 2.30 (s, 3 H) 3.95 - 4.04 (m, 5 H) 6.38 (s, 1 H) 6.99 (s, 1 H) 6.96 - 7.28 (m, 1 H) 7.13 (s, 1 H) 7.27 (s, 1 H) 7.31 (d, J=8.61 Hz, 1 H) 7.61 (s, 1 H) 7.64 - 7.71 (m, 1 H) 7.74 - 7.86 (m, 3 H) 8.01 - 8.23 (m, 3 H) 10.35 - 10.55 (m, 1 H). LCMS (m/z) (M+H) = 464 at Rt = 0.77 mins.
-
- Step 1: NaH (3.0 equiv.) was added to a solution of 6-bromoimidazo[1,2-a]pyridin-8-amine (1.0 equiv.) in DMF (2.4 M) at 0 °C. The mix was left to reach RT and stirred for 15 min. 1-Bromo-2-(2-bromoethoxy)ethane (1.5 equiv) was added to it and the reaction mixture was warmed to 80 °C overnight. The reaction mix was cooled in an ice bath and quenched by dropwise addition of water. A solid precipitated which was filtered and the aqueous layer was back extracted twice with EtOAc. The combined organics were dried over MgSO4, filtered and concentrated. The precipitate and the extraction product were combined to give the desired 4-(6-bromoimidazo[1,2-a]pyridin-8-yl)morpholine in 56% yield which was used as is in the next step. LCMS (m/z) (M+H) = 284 at Rt = 0.38 mins.
- Step 2: To a solution of 4-(6-bromoimidazo[1,2-a]pyridin-8-yl)morpholine (1.0 equiv.) and 4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline (1.0 equiv) in DME (0.07 M) was added 2M Na2CO3 (3.0 equiv.) and the system was flushed with nitrogen for 5 minutes. PdCl2(dppf).CH2Cl2 adduct (0.1 equiv.) was added to the solution and the system was flushed once again. The vial was capped and place in a microwave reactor for 20 minutes at 120 °C. Some boronate ester was still present therefore additional 0.5 equiv. of 4-(6-bromoimidazo[1,2-a]pyridin-8-yl)morpholine were added and the vial was placed in the microwave reactor for additional 20 min at 120 °C. The reaction mix was patitioned in EtOAc/H2O. The organic layer was isolated, dried over Na2SO4, filtered and concentrated. The crude was purified on a silica gel column using heptane to 100% EtOAc in heptane. 4-Methyl-3-(8-morpholinoimidazo[1,2-a]pyridin-6-yl)aniline was obtained in 61 % yield. LCMS (m/z) (M+H) = 309 at Rt = 0.37 mins.
- Step 3: HATU (1.1 equiv.) was added to a solution of 4-methyl-3-(8-morpholinoimidazo[1,2-a]pyridin-6-yl)aniline (1.0 equiv.), 3-(difluoromethyl)benzoic acid (1.0 equiv) and DIEA (2.0 equiv.) in DMF (0.1 M) and the reaction mix was left stirring overnight at RT. The reaction was treated with water and the precipitate was removed by filtration. The solid was dissolved in DCM and purified on a silica gel column using heptane to 85% EtOAc in heptane. 3-(difluoromethyl)-N-(4-methyl-3-(8-morpholinoimidazo[1,2-a]pyridin-6-yl)phenyl)benzamide was obtained in 76 % yield. 1H NMR (400 MHz, <dmso>) δ ppm 2.26 (s, 3 H) 2.67 (s, 1 H) 3.54 (d, J=4.30 Hz, 4 H) 3.75 - 3.84 (m, 4 H) 6.38 (s, 1 H) 6.98 - 7.27 (m, 1 H) 7.30 (d, J=9.00 Hz, 1 H) 7.50 (s, 1 H) 7.64 - 7.80 (m, 4 H) 7.89 (s, 1 H) 8.06 - 8.23 (m, 3 H) 10.26 - 10.51 (m, 1 H). LCMS (m/z) (M+H) = 463.2 at Rt = 0.76 mins.
-
- This compound was prepared following the same procedure described for Example 848. The crude was purified by HPLC and the product isolated as the TFA salt in 71% yield. 1H NMR (400 MHz, <dmso>) δ ppm 2.22 (s, 3 H) 3.20 (br. s., 4 H) 3.74 - 3.84 (m, 4 H) 6.97 - 7.15 (m, 1 H) 7.33 (d, J=8.22 Hz, 1 H) 7.66 (dd, J=8.22, 1.96 Hz, 1 H) 7.77 (d, J=1.96 Hz, 1 H) 8.00 (br. s., 1 H) 8.06 - 8.22 (m, 2 H) 8.30 (s, 1 H) 8.45 (br. s., 1 H) 8.93 (d, J=5.09 Hz, 1 H) 10.70 (s, 1 H). LCMS (m/z) (M+H) = 482.2 at Rt = 0.74 mins.
-
- This compound was prepared following the same procedure described for Example 848. 1H NMR (400 MHz, <dmso>) δ ppm 2.26 (s, 3 H) 3.54 (d, J=4.30 Hz, 4 H) 3.71 - 3.85 (m, 4 H) 6.37 (s, 1 H) 6.88 - 7.23 (m, 1 H) 7.32 (d, J=9.00 Hz, 1 H) 7.50 (s, 1 H) 7.69 - 7.75 (m, 2 H) 7.90 (s, 1 H) 8.04 (d, J=4.70 Hz, 1 H) 8.16 (d, J=2.35 Hz, 2 H) 8.89 (d, J=4.70 Hz, 1 H) 10.64 (s, 1 H). LCMS (m/z) (M+H) = 464.4 at Rt = 0.68 mins.
-
- This compound was prepared following the same procedure described for Example 848. The crude was purified by HPLC and the product isolated as the TFA salt in 37% yield. 1H NMR (400 MHz, <dmso>) δ ppm 2.27 (s, 3 H) 3.24 (br. s., 4 H) 3.30 - 3.37 (m, 4 H) 3.79 - 3.90 (m, 4 H) 7.04 - 7.23 (m, 1 H) 7.39 (d, J=8.22 Hz, 1 H) 7.72 (dd, J=8.22, 1.96 Hz, 1 H) 7.83 (d, J=1.56 Hz, 1 H) 8.08 (br. s., 1 H) 8.17 - 8.29 (m, 2 H) 8.51 (s, 2 H) 8.99 (d, J=4.70 Hz, 1 H) 10.84 (s, 1 H). LCMS (m/z) (M+H) = 492.2 at Rt = 0.61 mins.
-
- This compound was prepared following the same procedure described for Example 848. The crude was purified by HPLC and the product isolated as the TFA salt in 36% yield. 1H NMR (400 MHz, <dmso>) δ ppm 2.27 (s, 6 H) 3.26 (br. s., 8 H) 3.78 - 3.90 (m, 7 H) 7.08 (d, J=7.83 Hz, 1 H) 7.41 (d, J=8.22 Hz, 1 H) 7.70 (dd, J=8.22, 2.35 Hz, 1 H) 7.81 (d, J=1.57 Hz, 1 H) 8.05 (br. s., 1 H) 8.23 (br. s., 1 H) 8.49 (br. s., 1 H) 8.66 (d, J=1.57 Hz, 1 H) 9.90 (d, J=1.56 Hz, 1H) 10.92 (s, 1 H). LCMS (m/z) (M+H) = 483.2 at Rt = 0.69 mins.
-
- Step 1: 1-Hydroxy-7-azabenzotriazole (1.0 equiv.) was added to a solution of 4-methyl-3-(8-morpholinoimidazo[1,2-a]pyridin-6-yl)aniline (1.0 equiv.), 4-(bromomethyl)-3-(trifluoromethyl)benzoic acid (1.0 equiv) and EDC.HCl (1.0 equiv.) in DMF (0.1 M) and the reaction mix was left stirring overnight at RT. The reaction was treated with water and the precipitate was removed by filtration. The solid was dried and used as is in the next step.
- Step 2: Methylamine 2M in THF (70 equiv.) was added to a solution 4-(bromomethyl)-N-(4-methyl-3-(8-morpholinoimidazo[1,2-a]pyridin-6-yl)phenyl)-3-(trifluoromethyl)benzamide (1.0 equiv.) and and the vial was sealed and heated to 70 °C overnight. The reaction mix was concentrated to dryness and the crude was purified by HPLC to give the desired N-(4-methyl-3-(8-morpholinoimidazo[1,2-a]pyridin-6-yl)phenyl)-4-((methylamino)methyl)-3-(trifluoromethyl)benzamide as the TFA salt in 53% yield. 1H NMR (400 MHz, <dmso>) δ ppm 2.26 (s, 3 H) 2.71 (br. s., 3 H) 3.30 (br. s., 4 H) 3.79 - 3.87 (m, 4 H) 4.38 (br. s., 2 H) 7.36 (d, J=8.61 Hz, 1 H) 7.72 (dd, J=8.22, 1.96 Hz, 1 H) 7.79 (s, 1 H) 7.88 (d, J=8.61 Hz, 1 H) 7.96 (br. s., 1 H) 8.17 (br. s., 1 H) 8.29 - 8.38 (m, 2 H) 8.43 (br. s., 1 H) 9.08 (br. s., 2 H) 10.59 (s, 1 H) LCMS (m/z) (M+H) = 524 at Rt = 0.59 mins.
-
- Step 1: To a flask containing 2,4-dichloro-6,7-dihydrothieno[3,2-d]pyrimidine (1.0 equiv.) in EtOH (0.48 M) was added morpholine (10.0 equiv.) and the reaction mix was stirred at RT for 30min. The solvent was removed under vacuum and the crude 4-(2-chloro-6,7-dihydrothieno[3,2-d]pyrimidin-4-yl)morpholine was used as is in the next step. Yield was assumed to be quantitative. LCMS (m/z) (M+H) = 254/258 at Rt = 0.68 mins.
- Step 2: A round bottom flask containing a solution of 4-(2-chloro-6,7-dihydrothieno[3,2-d]pyrimidin-4-yl)morpholine (1.0 equiv.) and 4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline (1.0 equiv) and 2M Na2CO3 (3.0 equiv.) in DME (1.3M) was flushed with nitrogen for 5 minutes. PdCl2(dppf).CH2Cl2 adduct (0.07 equiv.) was added to the solution and the system was flushed again for 10 more minutes. The reaction mix was refluxed at 120 °C overnight under an inert atmosphere. The reaction mix was cooled to RT, diluted with water and extracted with EtOAc. The combined organics were dried over MgSO4, filtered and concentrated. The crude was purified on a silica gel column using heptane to 100% EtOAc in heptane giving 4-methyl-3-(4-morpholino-6,7-dihydrothieno[3,2-d]pyrimidin-2-yl)aniline in 41% yield. LCMS (m/z) (M+H) = 329 at Rt = 0.44 mins.
- Step 3: HATU (1.1 equiv.) was added to a solution of 4-methyl-3-(4-morpholino-6,7-dihydrothieno[3,2-d]pyrimidin-2-yl)aniline (1.0 equiv.), 3-(difluoromethyl)benzoic acid (1.0 equiv.) and DIEA (2.0) in DMF (0.17 M), and the mixture was left stirring at RT overnight. The reaction flask was cooled in an ice bath and water was added dropwise to it. A precipitate formed that was removed by filtration and an additional amount of product was obtained by extracting the filtrate with EtOAc and concentrating it to dryness. The solid and extraction were purified on a silica gel column using heptane to 60% Heptane EtOAc.). LCMS (m/z) (M+H) = 483 at Rt = 0.81 mins.
- Step 4: mCPBA (2.2 equiv.) was added protionwise to a solution of 3-(difluoromethyl)-N-(4-methyl-3-(4-morpholino-6,7-dihydrothieno[3,2-d]pyrimidin-2-yl)phenyl)benzamide (1.0 equiv.) in DCM (0.03 M) at 0 °C and the reaction mix was left stirring overnight at RT. The reaction mix was diluted with DCM and washed three times with 0.5 M aqueous Na2CO3. It was dried over Na2SO4, filtered and concentrated to give the crude product as a white solid. Crude was purified on silica gel column using heptane to 80% EtOAc in heptane giving 3-(difluoromethyl)-N-(4-methyl-3-(4-morpholino-5,5-dioxido-6,7-dihydrothieno[3,2-d]pyrimidin-2-yl)phenyl)benzamide in 45% yield. 1H NMR (400 MHz, <dmso>) δ ppm 3.32 (t, J=7.24 Hz, 2 H) 3.56 - 3.74 (m, 6 H) 3.82 - 3.98 (m, 4 H) 6.93 - 7.23 (m, 1 H) 7.24 (d, J=8.22 Hz, 1 H) 7.58 - 7.67 (m, 1 H) 7.73 (d, J=7.43 Hz, 1 H) 7.79 (dd, J=8.22, 1.96 Hz, 1 H) 8.04 - 8.14 (m, 2 H) 8.17 (d, J=1.96 Hz, 1 H) 10.29 - 10.53 (m, 1 H). LCMS (m/z) (M+H) = 515 at Rt = 0.89 mins.
-
- This compound was prepared following the same procedure described for Example 855. 1H NMR (400 MHz, <dmso>) δ ppm 1.60 - 1.91 (m, 6 H) 3.36 (t, J=7.24 Hz, 2 H) 3.57 - 3.81 (m, 6 H) 3.87 - 4.06 (m, 4 H) 7.22 - 7.42 (m, 1 H) 7.80 - 7.90 (m, 2 H) 8.01 (s, 1 H) 8.09 - 8.30 (m, 1 H) 8.68 - 8.90 (m, 1 H) 10.51 - 10.73 (m, 1 H). LCMS (m/z) (M+H) = 533 at Rt = 0.81 mins.
-
- This compound was prepared following the same procedure described for Example 855. 1H NMR (400 MHz, <dmso>) δ ppm 3.60 - 3.73 (m, 7 H) 3.91 (t, J=4.50 Hz, 4 H) 6.84 - 7.17 (m, 1 H) 7.27 (d, J=8.61 Hz, 1 H) 7.80 (dd, J=8.41, 2.15 Hz, 1 H) 8.01 (d, J=5.09 Hz, 1 H) 8.13 (s, 1 H) 8.17 (d, J=1.96 Hz, 1 H) 8.84 (d, J=5.09 Hz, 1 H) 10.56 - 10.77 (m, 1 H). LCMS (m/z) (M+H) = 516 at Rt = 0.78 mins.
-
- Step 1: To a solution of 4-(2-chloro-6,7-dihydrothieno[3,2-d]pyrimidin-4-yl)morpholine (1.0 equiv.) and N-(4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-3-(trifluoromethyl)benzamide (0.9 equiv) in DME (0.1 M) was added 2M Na2CO3 (3.0 equiv.) and the system was flushed with nitrogen for 5 minutes. PdCl2(dppf).CH2Cl2 adduct (0.1 equiv.) was added and the system was flushed once again. The vial was capped and place in a microwave reactor for 15 minutes at 120 °C. Some starting boronic ester was present therefore, additional 0.5 quiv. of 4-(2-chloro-6,7-dihydrothieno[3,2-d]pyrimidin-4-yl)morpholine were added and the vial microwaved for 30 minutes at 100 °C. The reaction mix was partitioned in EtOAc/H2O. The organic layer was isolated, dried over Na2SO4, filtered and concentrated. The crude was purified on a silica gel column using heptane to 35% EtOAc in heptane giving N-(4-methyl-3-(5-morpholinoimidazo[1,2-c]pyrimidin-7-yl)phenyl)-3-(trifluoromethyl)benzamide in 39% yield. LCMS (m/z) (M+H) = 501 at Rt = 0.82 mins.
- Step 2: mCPBA (2.2 equiv.) was added protionwise to a solution of N-(4-methyl-3-(5-morpholinoimidazo[1,2-c]pyrimidin-7-yl)phenyl)-3-(trifluoromethyl)benzamide (1.0 equiv.) in DCM (0.02 M) at 0 °C and the reaction mix was left stirring overnight at RT. The reaction mix was diluted with DCM and washed three times with 0.5 M aqueous Na2CO3. It was dried over Na2SO4, filtered and concentrated to give the crude product as a white solid. Crude was purified on silica gel column using heptane to 50% EtOAc in heptane giving N-(4-methyl-3-(4-morpholino-5,5-dioxido-6,7-dihydrothieno[3,2-d]pyrimidin-2-yl)phenyl)-3-(trifluoromethyl)benzamide in 85% yield. 1H NMR (500 MHz, DMSO-d6) δ ppm 3.32 (s, 2 H) 3.39 (t, J=7.25 Hz, 2 H) 3.69 - 3.79 (m, 6 H) 3.99 (t, J=4.57 Hz, 4 H) 7.33 (d, J=8.20 Hz, 1 H) 7.80 (t, J=7.72 Hz, 1 H) 7.88 (dd, J=8.35, 2.05 Hz, 1 H) 7.98 (d, J=7.57 Hz, 1 H) 8.24 (d, J=1.89 Hz, 1 H) 8.29 (d, J=7.88 Hz, 1 H) 8.33 (s, 1 H) 10.45 - 10.77 (m, 1 H). LCMS (m/z) (M+H) = 533 at Rt = 0.90 mins.
-
- Step 2: To a solution of (R)-4-(6-bromo-1H-imidazo[4,5-c]pyridin-4-yl)-3-methylmorpholine (1.0 equiv.) and 2-(2-cyanopropan-2-yl)-N-(4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)isonicotinamide (1.0 equiv) in DME (0.1 M) was added 2M Na2CO3 (3.0 equiv.) and the system was flushed with nitrogen for 5 minutes. PdCl2(dppf).CH2Cl2 adduct (0.1 equiv.) was added and the system was flushed once again. The vial was capped and place in a microwave reactor for 20 minutes at 120 °C. The reaction mix was partitioned in EtOAc/H2O. The organic layer was isolated, dried over Na2SO4, filtered and concentrated. The crude was purified by HPLC. (R)-2-(2-cyanopropan-2-yl)-N-(4-methyl-3-(4-(3-methylmorpholino)-1H-imidazo[4,5-c]pyridin-6-yl)phenyl)isonicotinamide was obtained in 24% yield. 1H NMR (400 MHz, <dmso>) δ ppm 1.11 - 1.48 (m, 3 H) 1.75 (s, 6 H) 2.29 (br. s., 3 H) 2.65 (d, J=1.57 Hz, 1 H) 3.74 (br. s., 2 H) 3.96 (d, J=8.61 Hz, 1 H) 5.41 (br. s., 1 H) 7.32 (br. s., 1 H) 7.72 (br. s., 1 H) 7.79 - 7.89 (m, 2 H) 7.95 - 8.04 (m, 1 H) 8.80 (d, J=5.09 Hz, 1 H) 10.44 - 10.69 (m, 1H). LCMS (m/z) (M+H) = 496 at Rt = 0.67 mins.
-
- To a solution 4-(6-chloroimidazo[1,2-a]pyrazin-8-yl)morpholine (1.0 equiv.) and 2-(2-cyanopropan-2-yl)-N-(4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)isonicotinamide (1.0 equiv) in DME (0.1 M) was added 2M Na2CO3 (3.0 equiv.) and the system was flushed with nitrogen for 5 minutes. PdCl2(dppf).CH2Cl2 adduct (0.1 equiv.) was added and the system was flushed once again. The vial was capped and place in a microwave reactor for 20 minutes at 120 °C. The reaction mix was extracted three times with EtOAc. The combined organic layers were dried over Na2SO4, filtered and concentrated. The crude was purified by HPLC giving 2-(2-cyanopropan-2-yl)-N-(4-methyl-3-(8-morpholinoimidazo[1,2-a]pyridin-6-yl)phenyl)isonicotinamide as the TFA salt in 27% yield. 1H NMR (400 MHz, <dmso>) δ ppm 1.68 (s, 6 H) 2.40 (s, 3 H) 2.52 (s, 1 H) 2.99 (br. s., 4 H) 7.20 (br. s., 1 H) 7.31 - 7.40 (m, 2 H) 7.42 - 7.48 (m, 1 H) 7.68 (d, J=4.30 Hz, 1 H) 7.86 (s, 1 H) 8.07 (br. s., 1 H) 8.27 (s, 1 H) 8.63 (s, 1 H) 8.72 (d, J=4.70 Hz, 1 H) 10.36 (s, 1 H). LCMS (m/z) (M+H) = 481 at Rt = 0.67 mins.
-
- To a solution 4-(6-chloroimidazo[1,2-a]pyrazin-8-yl)morpholine (1.0 equiv.) and 2-(2-cyanopropan-2-yl)-N-(4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)isonicotinamide (1.0 equiv) in DME (0.1 M) was added 2M Na2CO3 (3.0 equiv.) and the system was flushed with nitrogen for 5 minutes. PdCl2(dppf).CH2Cl2 adduct (0.1 equiv.) was added and the system was flushed once again. The vial was capped and place in a microwave reactor for 20 minutes at 120 °C. The reaction mix was partitioned in EtOAc/H2O. The organic layer was isolated, dried over Na2SO4, filtered and concentrated. The crude was purified by HPLC giving 2-(2-cyanopropan-2-yl)-N-(4-methyl-3-(8-morpholinoimidazo[1,2-a]pyrazin-6-yl)phenyl)isonicotinamide as the TFA salt in 23 % yield. 1H NMR (400 MHz, <dmso>) δ ppm 1.69 - 1.83 (m, 6 H) 2.36 (s, 3 H) 3.74 (t, J=4.50 Hz, 4 H) 4.20 (br. s., 4 H) 7.29 (d, J=8.61 Hz, 1 H) 7.60 (s, 1 H) 7.68 (dd, J=8.22, 1.96 Hz, 1 H) 7.85 (d, J=2.35 Hz, 2 H) 7.94 - 8.04 (m, 2 H) 8.10 (s, 1 H) 8.79 (d, J=4.70 Hz, 1 H) 10.55 (s, 1 H)1H LCMS (m/z) (M+H) = 482 at Rt = 0.74 mins.
-
- To a solution 4-(5-chloro-1-methyl-1H-pyrazolo[4,3-d]pyrimidin-7-yl)morpholine (1.0 equiv.) and 2-(2-cyanopropan-2-yl)-N-(4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)isonicotinamide (1.0 equiv) in DME (0.1 M) was added 2M sodium carbonate (3.0 equiv.) and the system was flushed with nitrogen for 5 minutes. PdCl2(dppf).CH2Cl2 adduct (0.1 equiv.) was added and the system was flushed once again. The vial was capped and place in a microwave reactor for 15 minutes at 125 °C. The reaction mix was partitioned in EtOAc/H2O. The organic layer was isolated, dried over Na2SO4, filtered and concentrated. The crude was purified by HPLC giving 2-(2-cyanopropan-2-yl)-N-(4-methyl-3-(1-methyl-7-morpholino-1H-pyrazolo[4,3-d]pyrimidin-5-yl)phenyl)isonicotinamide as the TFA salt in 22 % yield. 1H NMR (400 MHz, <dmso>) δ ppm 1.70 - 1.79 (m, 6 H) 3.59 (br. s., 5 H) 4.19 (s, 3 H) 7.31 (d, J=8.22 Hz, 1 H) 7.79 (dd, J=8.22, 1.96 Hz, 1 H) 7.87 (d, J=4.30 Hz, 1 H) 8.01 (s, 1 H) 8.21 (d, J=1.96 Hz, 1 H) 8.26 (s, 1 H) 8.79 (d, J=5.09 Hz, 1 H) 10.60 (s, 1 H). LCMS (m/z) (M+H) = 497 at Rt = 0.71 mins.
-
- To a solution 4-(2-chlorothieno[3,2-d]pyrimidin-4-yl)morpholine (1.0 equiv.) and 2-(2-cyanopropan-2-yl)-N-(4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)isonicotinamide (1.0 equiv) in DME (0.1 M) was added 2M sodium carbonate (3.0 equiv.) and the system was flushed with nitrogen for 5 minutes. PdCl2(dppf).CH2Cl2 adduct (0.1 equiv.) was added and the system was flushed once again. The vial was capped and place in a microwave reactor for 20 minutes at 120 °C. The reaction mix was partitioned in EtOAc/H2O. The organic layer was isolated, dried over Na2SO4, filtered and concentrated. he crude was purified by HPLC giving 2-(2-cyanopropan-2-yl)-N-(4-methyl-3-(4-morpholinothieno[3,2-d]pyrimidin-2-yl)phenyl)isonicotinamide as the TFA salt in 19 % yield. 1H NMR (400 MHz, <dmso>) δ ppm 1.75 (s, 6 H) 3.76 - 3.85 (m, 5 H) 3.96 - 4.07 (m, 4 H) 7.34 (d, J=8.61 Hz, 1 H) 7.51 (d, J=5.48 Hz, 1 H) 7.78 - 7.89 (m, 2 H) 8.01 (s, 1 H) 8.14 (d, J=1.96 Hz, 1 H) 8.36 (d, J=5.09 Hz, 1 H) 8.80 (d, J=5.09 Hz, 1 H) 10.64 (s, 1 H). LCMS (m/z) (M+H) = 499 at Rt = 0.72 mins.
-
- To a solution 4-(2-bromo-5H-pyrrolo[3,2-d]pyrimidin-4-yl)morpholine (1.0 equiv.) and 2-(2-cyanopropan-2-yl)-N-(4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)isonicotinamide (1.0 equiv) in DME (0.1 M) was added 2M sodium carbonate (3.0 equiv.) and the system was flushed with nitrogen for 5 minutes. PdCl2(dppf).CH2Cl2 adduct (0.1 equiv.) was added and the system was flushed once again. The vial was capped and place in a microwave reactor for 20 minutes at 125 °C. The reaction mix was partitioned in EtOAc/H2O. The organic layer was isolated, dried over Na2SO4, filtered and concentrated. The crude was purified by HPLC giving 2-(2-cyanopropan-2-yl)-N-(4-methyl-3-(4-morpholino-5H-pyrrolo[3,2-d]pyrimidin-2-yl)phenyl)isonicotinamide as the TFA salt in 45% yield. 1H NMR (400 MHz, <dmso>) δ ppm 1.75 (s, 6 H) 2.34 - 2.43 (m, 3 H) 3.81 (d, J=4.30 Hz, 4 H) 4.04 (br. s., 4 H) 6.61 (br. s., 1 H) 7.44 (d, J=8.22 Hz, 1 H) 7.78 - 7.88 (m, 2 H) 7.89 - 7.97 (m, 1 H) 8.00 (s, 1 H) 8.08 (d, J=1.57 Hz, 1 H) 8.81 (d, J=5.09 Hz, 1 H) 10.74 (s, 1 H). LCMS (m/z) (M+H) = 482 at Rt = 0.70 mins.
-
- Step 2. To a solution of tert-butyl 2-chloro-4-morpholino-7,8-dihydropyrido[4,3-d]pyrimidine-6(5H)-carboxylate (1.0 equiv.) and N-(4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-3-(trifluoromethyl)benzamide (1.0 equiv.) in DME (0.14 M) was added 2M Na2CO3 solution (3.0 equiv.) and the system was flushed with nitrogen. PdCl2(dppf).CH2Cl2 adduct (0.1 equiv.) was added to the reaction mix and the system was flushed once again with nitrogen. The reaction vial was capped and microwaved for 20 minutes at 120 °C. The crude was partitioned in H2O/EtOAc. The organic layer was isolated, dried over Na2SO4, filtered and concentrated. Crude was purified on a silica gel column using heptane to 50% EtOAc in heptane. Isolated tert-butyl 2-(5-(2-(2-cyanopropan-2-yl)isonicotinamido)-2-methylphenyl)-4-morpholino-7,8-dihydropyrido[4,3-d]pyrimidine-6(5H)-carboxylate in 35% yield. LCMS (m/z) [M+H]+= 598 at Rt = 1.03 min.
- Step 3. To a solution of tert-butyl 2-(5-(2-(2-cyanopropan-2-yl)isonicotinamido)-2-methylphenyl)-4-morpholino-7,8-dihydropyrido[4,3-d]pyrimidine-6(5H)-carboxylate (1.0 equiv.) in DCM (0.04 M) was added TFA (15 equiv.) and the reaction mix was stirred at RT for 1h. The solvent was removed under vacuum and the residue was taken in DMSO and purified on the prep. Isolated 2-(2-cyanopropan-2-yl)-N-(4-methyl-3-(4-morpholino-5,6,7,8-tetrahydropyrido[4,3-d]pyrimidin-2-yl)phenyl)isonicotinamide as the TFA salt in 75% yield. 1H NMR (400 MHz, <dmso>) δ ppm 1.75 (s, 6 H) 2.37 (s, 3 H) 3.03 (t, J=6.26 Hz, 2 H) 3.40 - 3.53 (m, 7 H) 3.71 (d, J=4.30 Hz, 5 H) 4.24 (br. s., 3 H) 7.39 (dd, J=8.22, 1.56 Hz, 1 H) 7.81 - 7.91 (m, 1 H) 7.99 (s, 1 H) 8.27 (s, 1 H) 8.48 (d, J=8.22 Hz, 1 H) 8.88 (d, J=5.09 Hz, 1 H) 9.08 (br. s., 2 H) 13.31 (s, 1 H). LCMS (m/z) (M+H) = 498 at Rt = 0.57 mins.
-
- This compound was prepared following the same synthetic procedure reported for Example 864. 1H NMR (400 MHz, <dmso>) δ ppm 1.63 - 1.85 (m, 6 H) 2.37 (s, 3 H) 2.79 - 2.91 (m, 2 H) 3.50 (d, J=4.30 Hz, 5 H) 3.70 (d, J=4.30 Hz, 4 H) 4.24 (br. s., 2 H) 5.74 (s, 1 H) 7.38 (d, J=8.61 Hz, 1 H) 7.89 (d, J=4.30 Hz, 1 H) 7.98 (s, 1 H) 8.27 (s, 1 H) 8.47 (d, J=8.22 Hz, 1 H) 8.86 (d, J=5.09 Hz, 1 H) 9.16 (br. s., 2 H) 13.07 (s, 1 H). LCMS (m/z) (M+H) = 498 at Rt = 0.77 mins.
-
- This compound was prepared following a similar synthetic procedure as reported for Example 864. H NMR (400 MHz, <dmso>) δ ppm 1.63 - 1.76 (m, 6 H) 2.47 (s, 1 H) 4.02 (br. s., 1 H) 4.34 (br. s., 2 H) 4.70 (br. s., 2 H) 7.25 (d, J=8.22 Hz, 1 H) 7.70 (dd, J=8.22, 1.96 Hz, 1 H) 7.81 (d, J=4.30 Hz, 1 H) 7.88 - 8.01 (m, 1 H) 8.13 (d, J=1.96 Hz, 1 H) 8.74 (d, J=5.09 Hz, 1 H) 9.43 - 9.66 (m, 2 H) 10.55 (s, 1 H). LCMS (m/z) (M+H) = 484 at Rt = 0.64 mins.
-
- Step 4: To a solution of 4-(6-chloroimidazo[1,2-b]pyridazin-8-yl)morpholine (1.0 equiv.) and N-(6-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-3-yl)-3-(trifluoromethyl)benzamide (0.9 equiv) in DME (0.1 M) was added 2M Na2CO3 (3.0 equiv.) and the system was flushed with nitrogen for 5 minutes. PdCl2(dppf).CH2Cl2 adduct (0.1 equiv.) was added and the system was flushed once again. The reaction mix was partitioned in EtOAc/H2O. The organic layer was isolated, dried over Na2SO4, filtered and concentrated. The crude was purified by HPLC giving N-(6-methyl-5-(8-morpholinoimidazo[1,2-b]pyridazin-6-yl)pyridin-3-yl)-3-(trifluoromethyl)benzamide as the TFA salt in 6% yield. 1H NMR (400 MHz, <dmso>) δ ppm 2.13 - 2.66 (m, 230 H) 3.68 - 3.76 (m, 4 H) 3.99 (d, J=4.70 Hz, 4 H) 5.69 (s, 4 H) 6.40 (s, 1 H) 7.56 (s, 1 H) 7.75 (t, J=7.83 Hz, 1 H) 7.94 (d, J=7.83 Hz, 1 H) 8.07 (s, 1 H) 8.20 (d, J=2.35 Hz, 1 H) 8.23 (d, J=7.83 Hz, 1 H) 8.28 (s, 1 H) 8.90 (d, J=2.35 Hz, 1 H) 10.68 (s, 1 H). LCMS (m/z) (M+H) = 483 at Rt = 0.69 mins.
-
- Step 1: A round bottom flask containing a solution of 4-(6-chloroimidazo[1,2-b]pyridazin-8-yl)morpholine (1.0 equiv.) and 6-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-3-amine (1.0 equiv) and 2M Na2CO3 (3.0 equiv.) in DME (0.1 M) was flushed with nitrogen for 5 minutes. PdCl2(dppf).CH2Cl2 adduct (0.07 equiv.) was added to the solution and the system was flushed again for 10 more minutes. The reaction mix was heated at 120 °C for 4 hr. under an inert atmosphere. The reaction mix was cooled to RT, diluted with water and extracted three times with EtOAc. The combined organics were dried over MgSO4, filtered and concentrated. The crude was purified on a silica gel column using DCM to 5% MeOH in DCM giving 6-methyl-5-(8-morpholinoimidazo[1,2-b]pyridazin-6-yl)pyridin-3-amine in 35% yield. LCMS (m/z) (M+H) = 311 at Rt = 0.38 mins.
- Step 2: To a round bottom flask containing a solution of 6-methyl-5-(8-morpholinoimidazo[1,2-b]pyridazin-6-yl)pyridin-3-amine (1.0 equiv.) and 4-(trifluoromethyl)picolinic acid (1.0 equiv) in DMF (0.1 M) was added HATU (1.0 equiv.) and DIEA (3.0 equiv.) and the reaction mix was left stirring overnight at RT. The reaction mix was diluted with water and was extracted three times with EtOAc/H2O. The combined organics were dried over MgSO4, filtered and concentrated. The crude was purifed by HPLC giving N-(6-methyl-5-(8-morpholinoimidazo[1,2-b]pyridazin-6-yl)pyridin-3-yl)-4-(trifluoromethyl)picolinamide as the TFA salt in 21% yield. 1H NMR (400 MHz, <dmso>) δ ppm 2.54 (s, 4 H) 3.74 - 3.81 (m, 5 H) 4.04 (d, J=4.30 Hz, 4 H) 6.46 (s, 1 H) 7.61 (d, J=0.78 Hz, 1 H) 8.08 - 8.16 (m, 2 H) 8.36 (s, 1 H) 8.45 (d, J=1.96 Hz, 1 H) 8.98 - 9.15 (m, 2 H) 11.20 (s, 1 H). LCMS (m/z) (M+H) = 484 at Rt = 0.71 mins.
-
- This compound was prepared following the same procedures described for Example 868. LCMS (m/z) (M+H) = 458.1 at Rt = 0.52 mins.
-
- This compound was prepared following the same procedures described for Example 868. 1H NMR (400 MHz, <dmso>) δ ppm 1.43 - 1.52 (m, 7 H) 2.52 - 2.57 (m, 4 H) 3.74 - 3.80 (m, 6 H) 4.04 (d, J=4.30 Hz, 4 H) 6.47 (s, 1 H) 7.62 (s, 1 H) 7.74 (d, J=5.09 Hz, 1 H) 8.13 (s, 1 H) 8.18 (s, 1 H) 8.30 (s, 1 H) 8.70 (d, J=5.09 Hz, 1 H) 8.98 (d, J=1.96 Hz, 1 H) 10.87 (s, 1 H). LCMS (m/z) (M+H) = 474.2 at Rt = 0.49 mins.
-
- This compound was prepared following the same procedures described for Example 868.. The final compound was purified on silica gel prep plate obtaining 2-(1,1-difluoroethyl)-N-(6-methyl-5-(8-morpholinoimidazo[1,2-b]pyridazin-6-yl)pyridin-3-yl)isonicotinamide as the free base. 1H NMR (400 MHz, <dmso>) δ ppm 1.90 - 2.08 (m, 3 H) 3.63 - 3.79 (m, 4 H) 3.99 (d, J=4.30 Hz, 4 H) 6.40 (s, 1 H) 7.56 (s, 1 H) 7.99 (d, J=5.09 Hz, 1 H) 8.07 (s, 1 H) 8.16 (s, 1 H) 8.20 (d, J=1.96 Hz, 1 H) 8.72 - 8.98 (m, 2 H) 10.74 - 10.94 (m, 1 H). LCMS (m/z) (M+H) = 480.1 at Rt = 0.64 mins.
-
- This compound was prepared following the same procedures described for Example 868.. 1H NMR (400 MHz, <dmso>) δ ppm 3.72 - 3.82 (m, 4 H) 4.04 (d, J=4.30 Hz, 4 H) 6.46 (s, 1 H) 6.97 - 7.32 (m, 1 H) 7.61 (s, 1 H) 7.67 - 7.74 (m, 1 H) 7.81 (d, J=7.83 Hz, 1 H) 8.09 - 8.21 (m, 3 H) 8.28 (d, J=1.96 Hz, 1 H) 8.97 (d, J=2.35 Hz, 1 H) 10.70 (s, 1 H). LCMS (m/z) (M+H) = 465.1 at Rt = 0.67 mins.
-
- This compound was prepared following the same procedures described for Example 868.. LCMS (m/z) (M+H) = 543.1 at Rt = 0.57 mins.
-
- Step 1: A mixture of 8-bromo-6-chloroimidazo[1,2-b]pyridazine (1.0 equiv.), R,S-2-carboxymorpholine hydrochloride (1.0 equiv.) and DIEA (3.0 equiv.) in DMF (0. 57 M) was stirred at RT overnight. LCMS showed conversion to the desired product. The reaction mix was concentrated to dryness to give 4-(6-chloroimidazo[1,2-b]pyridazin-8-yl)morpholine-2-carboxylic acid as a brown syrup which was used as is in the next step. LCMS (m/z) (M+H) = 282 at Rt = 0.53 mins.
- Step 2: 1-hydroxy-7-azabenzotriazole (1.0 equiv.) was added to a solution of 4-(6-chloroimidazo[1,2-b]pyridazin-8-yl)morpholine-2-carboxylic acid (1.0 equiv.), EDC.HCl (1.0 equiv.) methyl amine (2M THF, 1.2 equiv.) and DIEA (30. Equiv.) in DMF (0.14 M), and the mixture was left stirring at RT during the weekend. The reaction mix was treated with water and extracted three times with EtOAc. The combined organics were dried over Na2SO4, filtered and concentrated and the crude was purified on the HPLC. The desired 4-(6-chloroimidazo[1,2-b]pyridazin-8-yl)-N-methylmorpholine-2-carboxamide was isolated as the TFA salt in 60% yield. LCMS (m/z) (M+H) = 296 at Rt = 0.56 mins.
- Step 3: To a solution of 4-(6-chloroimidazo[1,2-b]pyridazin-8-yl)-N-methylmorpholine-2-carboxamide (1.0 equiv.) and 6-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-3-amine (1.0 equiv) in DME (0.04 M) was added 2M Na2CO3 (5.0 equiv.) and the system was flushed with nitrogen for 5 minutes. PdCl2(dppf).CH2Cl2 adduct (0.1 equiv.) was added and the system was flushed once again. The vial was capped and place in a microwave reactor for 20 minutes at 120 °C. The reaction mix was concentrated to dryness and the crude was purified by HPLC giving 4-(6-(5-amino-2-methylpyridin-3-yl)imidazo[1,2-b]pyridazin-8-yl)-N-methylmorpholine-2-carboxamide as the TFA salt in 32% yield. LCMS (m/z) (M+H) = 368 at Rt = 0.48 mins.
- Step 4: 1-Hydroxy-7-azabenzotriazole was added to a solution of 4-(6-(5-amino-2-methylpyridin-3-yl)imidazo[1,2-b]pyridazin-8-yl)-N-methylmorpholine-2-carboxamide (1.0 equiv.) and 3-(trifluoromethyl)benzoic acid (1.1 equiv) and EDC.HCl (1.0 equiv.) in DMF (0.03 M) and the reaction mix was left stirring overnight at RT. The reaction was not complete, additional 0.3 equiv. of EDC.HCl and HOAt were added and the reantion was left stirring for additional 24 hr. The reaction mix was concentrated to drynes and the crude was purified by HPLC. N-methyl-4-(6-(2-methyl-5-(3-(trifluoromethyl)benzamido)pyridin-3-yl)imidazo[1,2-b]pyridazin-8-yl)morpholine-2-carboxamide was obtained as the TFA salt in 39% yield. 1H NMR (400 MHz, <dmso>) δ ppm 2.61 (d, J=4.70 Hz, 3 H) 3.15 (dd, J=12.91, 10.56 Hz, 1 H) 3.71 - 3.84 (m, 1 H) 4.04 (d, J=11.35 Hz, 1 H) 4.13 (dd, J=10.37, 2.54 Hz, 1 H) 4.71 (d, J=12.13 Hz, 1 H) 5.19 (br. s., 1 H) 6.49 (s, 1 H) 7.64 (s, 1 H) 7.80 (t, J=7.83 Hz, 1 H) 7.89 (d, J=4.70 Hz, 1 H) 7.99 (d, J=7.83 Hz, 1 H) 8.14 (s, 1 H) 8.24 - 8.37 (m, 3 H) 8.98 (d, J=1.96 Hz, 1 H) 10.78 (s, 1 H). LCMS (m/z) (M+H) = 540 at Rt = 0.72 mins.
-
- Step 1: 1-Hydroxy-7-azabenzotriazole (1.0 equiv.) was added to a solution of 6-methyl-5-(8-morpholinoimidazo[1,2-b]pyridazin-6-yl)pyridin-3-amine (1.0 equiv.), 4-(bromomethyl)-3-(trifluoromethyl)benzoic acid (1.0 equiv) and EDC.HCl (1.0 equiv.) in DMF (0.11 M) and the reaction mix was left stirring at RT for 2 hr. The reaction was treated with water and the precipitate was removed by filtration. The crude was p[urified on silica gel column using DCM to 10% MeOH in DCM. 4-(Bromomethyl)-N-(6-methyl-5-(8-morpholinoimidazo[1,2-a]pyridin-6-yl)pyridin-3-yl)-3-(trifluoromethyl)benzamide was isolated in 59% yield. LCMS (m/z) (M+H) = 531 at Rt = 0.78 mins.
- Step 2: Methylamine 2M in THF (60 equiv.) was added to a solution 4-(Bromomethyl)-N-(6-methyl-5-(8-morpholinoimidazo[1,2-a]pyridin-6-yl)pyridin-3-yl)-3-(trifluoromethyl)benzamide (1.0 equiv.) and and the vial was sealed and heated to 70 °C overnight. The reaction mix was concentrated to dryness and the crude was purified by HPLC to give the desired N-(6-methyl-5-(8-morpholinoimidazo[1,2-b]pyridazin-6-yl)pyridin-3-yl)-4-((methylamino)methyl)-3-(trifluoromethyl)benzamide as the TFA salt in 63% yield. 1H NMR (400 MHz, <dmso>) δ ppm 2.52 - 2.57 (m, 4 H) 2.71 (t, J=4.70 Hz, 3 H) 3.72 - 3.80 (m, 5 H) 4.39 (br. s., 2 H) 6.46 (s, 1 H) 7.62 (d, J=0.78 Hz, 1 H) 7.90 (d, J=8.22 Hz, 1 H) 8.12 (d, J=1.17 Hz, 1 H) 8.27 (d, J=2.35 Hz, 1 H) 8.35 - 8.43 (m, 2 H) 8.97 (d, J=2.35 Hz, 1 H) 9.07 (br. s., 2 H) 10.83 (s, 1 H). LCMS (m/z) (M+H) = 526 at Rt = 0.52 mins.
-
- Step 1: A round bottom flask containing a solution of 4-(6-bromoimidazo[1,2-a]pyridin-8-yl)morpholine (1.0 equiv.) and 6-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-3-amine (1.0 equiv) and 2M Na2CO3 (3.0 equiv.) in DME (0.1 M) was flushed with nitrogen for 5 minutes. PdCl2(dppf).CH2Cl2 adduct (0.07 equiv.) was added to the solution and the system was flushed again for 10 more minutes. The reaction mix was heated at 120 °C for 4 hr. under an inert atmosphere. The reaction mix was cooled to RT, diluted with water and extracted three times with EtOAc. The combined organics were dried over MgSO4, filtered and concentrated. The crude was purified on a silica gel column using DCM to 5% MeOH in DCM giving 6-methyl-5-(8-morpholinoimidazo[1,2-a]pyridin-6-yl)pyridin-3-amine in 27% yield. LCMS (m/z) (M+H) = 310 at Rt = 0.29 mins.
- Step 2: To a round bottom flask containing a solution of 6-methyl-5-(8-morpholinoimidazo[1,2-a]pyridin-6-yl)pyridin-3-amine (1.0 equiv.) and 4-(trifluoromethyl)picolinic acid (1.0 equiv) in DMF (0.07 M) was added HATU (1.1 equiv.) and DIEA (2.0 equiv.) and the reaction mix was left stirring overnight at RT. The reaction mix was diluted with water and was extracted three times with EtOAc/H2O. The combined organics were dried over MgSO4, filtered and concentrated. The crude was purifed by HPLC giving N-(6-methyl-5-(8-morpholinoimidazo[1,2-a]pyridin-6-yl)pyridin-3-yl)-4-(trifluoromethyl)picolinamide as the TFA salt in 38% yield. 1H NMR (400 MHz, <dmso>) δ ppm 3.76 - 3.89 (m, 21 H) 7.97 (br. s., 1 H) 8.12 (d, J=4.30 Hz, 1 H) 8.19 (br. s., 1 H) 8.31 - 8.40 (m, 3 H) 8.53 (br. s., 1 H) 8.95 - 9.14 (m, 2 H) 11.19 (s, 1 H). LCMS (m/z) (M+H) = 483 at Rt = 0.6 mins.
-
- This compound was prepared following the same procedures described for Example 876. LCMS (m/z) (M+H) = 507.1 at Rt = 0.59 mins.
-
- This compound was prepared following the same procedures described for Example 876. 1H NMR (400 MHz, <dmso>) δ ppm 1.47 (s, 6 H) 3.28 (br. s., 5 H) 3.83 (br. s., 4 H) 7.71 (d, J=3.91 Hz, 1 H) 8.05 (br. s., 1 H) 8.16 (s, 1 H) 8.20 - 8.28 (m, 2 H) 8.57 (br. s., 1 H) 8.70 (d, J=5.09 Hz, 1 H) 8.89 (d, J=1.96 Hz, 1 H) 10.84 (s, 1 H). LCMS (m/z) (M+H) = 473.3 at Rt = 0.39 mins.
-
- This compound was prepared following the same procedures described for Example 876. 1H NMR (400 MHz, <dmso>) δ ppm 2.06 (t, J=19.17 Hz, 3 H) 3.27 (br. s., 5 H) 7.25 (br. s., 1 H) 8.01 - 8.15 (m, 2 H) 8.22 (s, 1 H) 8.28 (s, 2 H) 8.62 (s, 1 H) 8.89 - 8.95 (m, 2 H) 10.95 - 11.08 (m, 1 H). LCMS (m/z) (M+H) = 479.3 at Rt = 0.52 mins.
-
- This compound was prepared following the same procedures described for Example 876. 1H NMR (400 MHz, <dmso>) δ ppm 3.67 - 3.92 (m, 7 H) 6.92 - 7.36 (m, 2 H) 7.66 - 7.74 (m, 2 H) 7.81 (d, J=7.83 Hz, 2 H) 8.11 - 8.20 (m, 5 H) 8.23 (s, 2 H) 8.50 (br. s., 1 H) 8.88 (d, J=1.96 Hz, 1 H) 10.70 (s, 1 H). LCMS (m/z) (M+H) = 464.2 at Rt = 0.53 mins.
-
- This compound was prepared following the same procedures described for Example 876. 1H NMR (400 MHz, <dmso>) δ ppm 1.61 - 1.83 (m, 7 H) 3.25 (br. s., 4 H) 7.24 (br. s., 1 H) 7.88 (d, J=3.91 Hz, 1 H) 8.02 (s, 1 H) 8.11 (br. s., 1 H) 8.20 - 8.30 (m, 2 H) 8.60 (s, 1 H) 8.83 (d, J=4.70 Hz, 1 H) 8.88 (d, J=1.96 Hz, 1 H) 10.92 (s, 1 H). LCMS (m/z) (M+H) = 482.4 at Rt = 0.52 mins.
-
- This compound was prepared following the same procedures described for Example 876. 1H NMR (400 MHz, <dmso>) δ ppm 1.25 - 1.34 (m, 7 H) 2.52 (s, 7 H) 3.05 - 3.18 (m, 1 H) 3.20 - 3.35 (m, 4 H) 7.07 - 7.26 (m, 1 H) 7.70 (dd, J=5.09, 1.17 Hz, 1 H) 7.76 (s, 1 H) 8.06 (br. s., 1 H) 8.24 (d, J=1.96 Hz, 2 H) 8.57 (s, 1 H) 8.71 (d, J=5.09 Hz, 1 H) 8.88 (d, J=1.96 Hz, 1 H) 10.64- 10.91 (m, 1 H). LCMS (m/z) (M+H) = 457.2 at Rt = 0.42 mins.
-
- This compound was prepared following the same procedures described for Example 876. 1H NMR (400 MHz, <dmso>) δ ppm 3.25 (br. s., 4 H) 3.83 (d, J=4.70 Hz, 3 H) 3.84 (br. s., 1 H) 7.23 (br. s., 1 H) 7.75 - 7.86 (m, 1 H) 8.00 (d, J=7.83 Hz, 1 H) 8.10 (br. s., 1 H) 8.23 - 8.35 (m, 4 H) 8.51 - 8.68 (m, 1 H) 8.91 (d, J=2.35 Hz, 1 H) 10.83 (s, 1 H). LCMS (m/z) (M+H) = 482.3 at Rt = 0.60 mins.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 3.25 (br. s., 4 H) 3.83 (d, J=4.70 Hz, 3 H) 3.84 (br. s., 1 H) 7.23 (br. s., 1 H) 7.75 - 7.86 (m, 1 H) 8.00 (d, J=7.83 Hz, 1 H) 8.10 (br. s., 1 H) 8.23 - 8.35 (m, 4 H) 8.51 - 8.68 (m, 1 H) 8.91 (d, J=2.35 Hz, 1 H) 10.83 (s, 1 H). LCMS (m/z) (M+H) = 482.3 at Rt = 0.60 mins.
-
- Step 1: 1-Hydroxy-7-azabenzotriazole (1.0 equiv.) was added to a solution of 4-methyl-3-(8-morpholinoimidazo[1,2-a]pyridin-6-yl)aniline (1.0 equiv.), 4-(bromomethyl)-3-(trifluoromethyl)benzoic acid (1.0 equiv) and EDC.HCl (1.0 equiv.) in DMF (0.1 M) and the reaction mix was left stirring at RT for 1 hr. The reaction was treated with water and the precipitate was removed by filtration. The solid 4-(bromomethyl)-N-(6-methyl-5-(8-morpholinoimidazo[1,2-a]pyridin-6-yl)pyridin-3-yl)-3-(trifluoromethyl)benzamide was dried and used as is in the next step. LCMS (m/z) (M+H) = 530 at Rt = 0.65 mins.
- Step 2: Methylamine 2M in THF (60 equiv.) was added to a solution 4-(bromomethyl)-N-(6-methyl-5-(8-morpholinoimidazo[1,2-a]pyridin-6-yl)pyridin-3-yl)-3-(trifluoromethyl)benzamide (1.0 equiv.) and and the vial was sealed and heated to 70 °C overnight. The reaction mix was concentrated to dryness and the crude was purified by HPLC to give the desired N-(6-methyl-5-(8-morpholinoimidazo[1,2-a]pyridin-6-yl)pyridin-3-yl)-4-((methylamino)methyl)-3-(trifluoromethyl)benzamide as the TFA salt in 33% yield. LCMS (m/z) (M+H) = 526 at Rt = 0.56 mins.
-
- Step 1: To a flask containing 2,4-dichloro-5,7-dihydrothieno[3,4-d]pyrimidine (1.0 equiv.) in EtOH (2.4 M) was added morpholine (10.0 equiv.) and the reaction mix was stirred at RT for 30 min. The solvent was removed under vacuum and the crude 4-(2-chloro-6,7-dihydrothieno[3,2-d]pyrimidin-4-yl)morpholine was used as is in the next step. Yield was assumed to be quantitative. LCMS (m/z) (M+H) = 254/258 at Rt = 0.68 mins.
- Step 2: To a solution of 4-(2-chloro-6,7-dihydrothieno[3,2-d]pyrimidin-4-yl)morpholine (1.0 equiv.) and N-(4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-3-(trifluoromethyl)benzamide (1.0 equiv) in DME (0.12 M) was added 2M sodium carbonate (3.0 equiv.) and the system was flushed with nitrogen for 5 minutes. PdCl2(dppf).CH2Cl2 adduct (0.1 equiv.) was added and the system was flushed once again. The vial was capped and place in a microwave reactor for 20 minutes at 120 °C. The reaction mix was partitioned in EtOAc/H2O. The organic layer was isolated, dried over Na2SO4, filtered and concentrated. The crude was purified by on a silica gel column using heptane to 90% EtOAc in heptane giving N-(6-methyl-5-(4-morpholino-5,7-dihydrothieno[3,4-d]pyrimidin-2-yl)pyridin-3-yl)-3-(trifluoromethyl)benzamide in 51% yield. LCMS (m/z) (M+H) = 502 at Rt = 0.81 mins.
- Step 3: A solution of oxone (2.3 equiv.) in 3 ml of water was added protionwise to a solution of N-(6-methyl-5-(4-morpholino-5,7-dihydrothieno[3,4-d]pyrimidin-2-yl)pyridin-3-yl)-3-(trifluoromethyl)benzamide (1.0 equiv.) in THF (0.013 M) at 0 °C and the reaction mix was left stirring for 4 hr at the same temperature. The reaction mix was diluted with DCM and washed three times with 0.5 M aqueous Na2CO3. It was dried over Na2SO4, filtered and concentrated. The crude was purified by HPLC giving N-(6-methyl-5-(4-morpholino-6,6-dioxido-5,7-dihydrothieno[3,4-d]pyrimidin-2-yl)pyridin-3-yl)-3-(trifluoromethyl)benzamide as the TFA salt in 38% yield. 1H NMR (400 MHz, <dmso>) δ ppm 2.52 (s, 1 H) 2.69 - 2.81 (m, 3 H) 3.68 (d, J=4.30 Hz, 10 H) 4.56 (s, 2 H) 4.74 (s, 2 H) 7.81 (t, J=7.83 Hz, 1 H) 8.00 (d, J=7.83 Hz, 1 H) 8.21 - 8.42 (m, 2 H) 8.72 (d, J=1.96 Hz, 1 H) 9.04 (d, J=1.96 Hz, 1 H) 10.84 (s, 1 H). LCMS (m/z) (M+H) = 515 at Rt = 0.89 mins.
-
- mCPBA (2.2 equiv was added protionwise to a solution of N-(6-methyl-5-(4-morpholino-5,7-dihydrothieno[3,4-d]pyrimidin-2-yl)pyridin-3-yl)-3-(trifluoromethyl)benzamide (1.0 equiv.) in DCM (0.024 M) at 0 °C and the reaction mix was left stirring overnight at RT. The reaction mix was diluted with DCM and washed three times with 0.5 M aqueous Na2CO3. It was dried over Na2SO4, filtered and concentrated. The crude was purified by HPLC giving 2-methyl-3-(4-morpholino-6,6-dioxido-5,7-dihydrothieno[3,4-d]pyrimidin-2-yl)-5-(3-(trifluoromethyl)benzamido)pyridine 1-oxide as the TFA salt in 19% yield. 1H NMR (400 MHz, <dmso>) δ ppm 2.54 (s, 2 H) 3.53 - 3.79 (m, 6 H) 3.81 - 4.27 (m, 6 H) 4.56 (s, 2 H) 4.75 (s, 1 H) 7.75 - 7.85 (m, 1 H) 7.96 - 8.05 (m, 1 H) 8.20 - 8.37 (m, 1 H) 8.98 - 9.11 (m, 1 H) 10.79 (s, 1 H). LCMS (m/z) (M+H) = 550 at Rt = 0.76 mins.
-
- Step 2: To a solution of 4-(6-chloroimidazo[1,2-b]pyridazin-8-yl)morpholine (1.0 equiv.) 4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-N-(3-(trifluoromethyl)phenyl)benzamide (0.9 equiv) in DME (0.11 M) was added 2M sodium carbonate (3.0 equiv.) and the system was flushed with nitrogen for 5 minutes. PdCl2(dppf).CH2Cl2 adduct (0.1 equiv.) was added and the system was flushed once again. The vial was capped and place in a microwave reactor for 20 minutes at 120 °C. The reaction mix was partitioned in EtOAc/H2O. The organic layer was isolated, dried over Na2SO4, filtered and concentrated. The crude was purified by HPLC giving 4-methyl-3-(8-morpholinoimidazo[1,2-b]pyridazin-6-yl)-N-(3-(trifluoromethyl)phenyl)benzamide in 40% yield. 1H NMR (400 MHz, <dmso>) δ ppm 2.35 (s, 3 H) 3.66 - 3.76 (m, 4 H) 3.99 (br. s., 4 H) 6.36 (s, 1 H) 7.39 (d, J=7.83 Hz, 1 H) 7.46 (d, J=7.83 Hz, 1 H) 7.50 - 7.57 (m, 2 H) 7.89 - 7.96 (m, 1 H) 7.97 - 8.03 (m, 2 H) 8.05 (s, 1 H) 8.18 (s, 1 H) 10.46 (s, 1 H). LCMS (m/z) (M+H) = 482 at Rt = 0.88 mins.
-
- Step 1: To a flask containing 2,4-dichloropyrido[2,3-d]pyrimidine (1 equiv.) in THF (0.46) was added morpholine (1.2 equiv.) and the reaction mix was stirred at RT for 1 h. The reaction mixture was concentrated to dryness and the crude tert-butyl 2-chloro-4-morpholino-5H-pyrrolo[3,4-d]pyrimidine-6(7H)-carboxylate was used as is in the next step. Yield is assumed to be quantitative. LCMS (m/z) [M+H]+= 341 at Rt = 0.91 min.
- Step 2: To a solution of tert-butyl 2-chloro-4-morpholino-5H-pyrrolo[3,4-d]pyrimidine-6(7H)-carboxylate (1.0 equiv.) and 4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-N-(3-(trifluoromethyl)phenyl)benzamide (0.9 equiv.) in DME (0.44 M) was added 2M Na2CO3 solution (3.0 equiv.) and the system was flushed with nitrogen. PdCl2(dppf).CH2Cl2 adduct (0.1 equiv.) was added to the reaction mix and the system was flushed once again with nitrogen. The reaction vial was capped and microwaved for 20 minutes at 120 °C. The crude was partitioned in H2O/EtOAc. The organic layer was isolated, dried over Na2SO4, filtered and concentrated. The crude was purified on a silica gel column using heptane to 50% EtOAc in heptane. Isolated tert-butyl 2-(2-methyl-5-((3-(trifluoromethyl)phenyl)carbamoyl)phenyl)-4-morpholino-5H-pyrrolo[3,4-d]pyrimidine-6(7H)-carboxylate in 28% yield. LCMS (m/z) [M+H]+= 584 at Rt = 0.95 min.
- Step 3. To a solution of tert-butyl 2-(2-methyl-5-((3-(trifluoromethyl)phenyl)carbamoyl)phenyl)-4-morpholino-5H-pyrrolo[3,4-d]pyrimidine-6(7H)-carboxylate (1.0 equiv.) in DCM (0.07 M) was added TFA (10 equiv.) and the reaction mix was stirred at RT overnight. The solvent was removed under vacuum and the residue was taken in DMSO and purified on the prep. Isolated 4-methyl-3-(4-morpholino-6,7-dihydro-5H-pyrrolo[3,4-d]pyrimidin-2-yl)-N-(3-(trifluoromethyl)phenyl)benzamide as the TFA salt in 24% yield. 1H NMR (400 MHz, <dmso>) δ ppm 2.56 (s, 3 H) 3.69 (br. s., 10 H) 4.43 (br. s., 2 H) 4.76 (br. s., 2 H) 7.46 (dd, J=14.09, 7.83 Hz, 2 H) 7.59 (t, J=8.02 Hz, 1 H) 7.98 (dd, J=7.83, 1.57 Hz, 1 H) 8.04 (d, J=8.22 Hz, 1 H) 8.24 (s, 1 H) 8.34 (d, J=1.17 Hz, 1 H) 9.67 (br. s., 2 H) 10.42 - 10.65 (m, 1 H). LCMS (m/z) (M+H) = 484 at Rt = 0.76 mins.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.83 - 1.92 (m, 2 H) 1.94 - 2.03 (m, 2 H) 2.20 (s, 3 H) 2.88 (br. s., 4 H) 3.40 (s, 3 H) 3.69 (d, J=3.91 Hz, 4 H) 5.75 (d, J=1.57 Hz, 1 H) 6.00 (d, J=1.17 Hz, 1 H) 7.26 (d, J=8.22 Hz, 1 H) 7.56 (d, J=1.96 Hz, 1 H) 7.63 (dd, J=8.22, 1.96 Hz, 1 H) 7.96 (d, J=1.56 Hz, 1 H) 9.49 (d, J=1.57 Hz, 1 H) 10.67 (s, 1 H). LCMS (m/z) (M+H) = 471.1, Rt = 0.71 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.67 - 1.78 (m, 6 H) 2.25 (s, 3 H) 2.94 (br. s., 4 H) 3.45 (s, 3 H) 3.70 - 3.76 (m, 4 H) 5.82 (d, J=1.57 Hz, 1 H) 6.02 - 6.13 (m, 1 H) 7.27 (d, J=8.61 Hz, 1 H) 7.75 - 7.89 (m, 3 H) 8.24 (d, J=1.57 Hz, 1 H) 8.77 (d, J=5.48 Hz, 1 H) 10.69 (s, 1 H). LCMS (m/z) (M+H) = 472.2, Rt = 0.84 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 2.24 (s, 3 H) 2.93 (br. s., 4 H) 3.45 (s, 3 H) 3.70 - 3.75 (m, 4 H) 5.80 (d, J=1.57 Hz, 1 H) 6.05 (d, J=1.57 Hz, 1 H) 7.29 (d, J=8.22 Hz, 1 H) 7.63 (d, J=1.96 Hz, 1 H) 7.70 (dd, J=8.22, 2.35 Hz, 1 H) 8.66 (s, 1 H) 9.16 (d, J=0.78 Hz, 1 H) 9.35 (d, J=1.57 Hz, 1 H) 10.61 (s, 1 H). LCMS (m/z) (M+H) = 473.1, Rt = 0.80 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.87 - 1.97 (m, 2 H) 1.97 - 2.06 (m, 2 H) 2.25 (s, 3 H) 3.08 (br. s., 4 H) 3.48 (s, 3 H) 3.65 - 3.77 (m, 4 H) 6.68 (d, J=1.96 Hz, 1 H) 7.29 (d, J=8.22 Hz, 1 H) 7.38 (d, J=1.96 Hz, 1 H) 7.59 (d, J=1.96 Hz, 1 H) 7.63 (dd, J=8.22, 2.35 Hz, 1 H) 8.01 (d, J=1.96 Hz, 1 H) 9.54 (d, J=1.96 Hz, 1 H) 10.68 (s, 1 H). LCMS (m/z) (M+H) = 471.1, Rt = 0.67 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.74 (s, 6 H) 2.25 (s, 3 H) 3.10 (br. s., 4 H) 3.48 (s, 3 H) 3.67 - 3.73 (m, 4 H) 6.71 (d, J=1.96 Hz, 1 H) 7.25 (d, J=8.22 Hz, 1 H) 7.40 (d, J=2.35 Hz, 1 H) 7.73 - 7.86 (m, 3 H) 8.24 (d, J=1.57 Hz, 1 H) 8.77 (d, J=5.09 Hz, 1 H) 10.63 (s, 1 H). LCMS (m/z) (M+H) = 472.1, Rt = 0.82 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 2.25 (s, 3 H) 3.09 (br. s., 4 H) 3.48 (s, 3 H) 3.66 - 3.73 (m, 4 H) 6.69 (d, J=1.96 Hz, 1 H) 7.27 (d, J=8.22 Hz, 1 H) 7.39 (d, J=2.35 Hz, 1 H) 7.61 (d, J=1.96 Hz, 1 H) 7.66 (dd, J=8.22, 1.96 Hz, 1 H) 8.66 (s, 1 H) 9.16 (s, 1 H) 9.35 (d, J=1.57 Hz, 1 H) 10.57 (s, 1 H). LCMS (m/z) (M+H) = 473.0, Rt = 0.77 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 2.03 (t, J=19.17 Hz, 3 H) 2.26 (s, 3 H) 3.10 (br. s., 4 H) 3.48 (s, 3 H) 3.63 - 3.76 (m, 4 H) 6.72 (d, J=1.96 Hz, 1 H) 7.26 (d, J=8.22 Hz, 1 H) 7.40 (d, J=1.96 Hz, 1 H) 7.77 (d, J=1.96 Hz, 1 H) 7.81 (dd, J=8.22, 1.96 Hz, 1 H) 7.83 - 7.87 (m, 1 H) 8.22 (s, 1 H) 8.88 (d, J=5.09 Hz, 1 H) 10.67 (s, 1 H). LCMS (m/z) (M+H) = 469.1, Rt = 0.85 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.45 (s, 6 H) 2.25 (s, 3 H) 3.10 (br. s., 4 H) 3.48 (s, 3 H) 3.66 - 3.74 (m, 4 H) 6.72 (d, J=1.96 Hz, 1 H) 7.24 (d, J=8.61 Hz, 1 H) 7.40 (d, J=1.96 Hz, 1 H) 7.70 (dd, J=5.09, 1.57 Hz, 1 H) 7.76 (d, J=1.96 Hz, 1 H) 7.80 (dd, J=8.41, 2.15 Hz, 1 H) 8.23 (d, J=1.17 Hz, 1 H) 8.63 (d, J=5.09 Hz, 1 H) 10.55 (s, 1 H). LCMS (m/z) (M+H) = 463.1, Rt = 0.71 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.66 (s, 3 H) 1.72 (s, 3 H) 2.26 (s, 3 H) 3.10 (br. s., 4 H) 3.48 (s, 3 H) 3.67 - 3.74 (m, 4 H) 6.72 (d, J=1.96 Hz, 1 H) 7.25 (d, J=8.22 Hz, 1 H) 7.40 (d, J=1.96 Hz, 1 H) 7.68 (dd, J=5.09, 1.96 Hz, 1 H) 7.76 (d, J=1.96 Hz, 1 H) 7.80 (dd, J=8.22, 1.96 Hz, 1 H) 8.13 (d, J=1.17 Hz, 1 H) 8.72 (d, J=5.09 Hz, 1 H) 10.60 (s, 1 H). LCMS (m/z) (M+H) = 465.1, Rt = 0.87 min.
-
- Step 1: To a solution of 5-(5-amino-2-methylphenyl)-1-methyl-3-morpholinopyridin-2(1H)-one (1.0 equiv.) and 3-(2-((tert-butoxycarbonyl)amino)propan-2-yl)-5-(trifluoromethyl)benzoic acid (1.0 equiv.) in DMF (0.1 M) was added EDC (2.2 equiv.) and HOAt (2.2 equiv.) and the reaction was stirred at rt until completion. Purified via reverse phase HPLC and lyophilize to give tert-butyl (2-(3-((4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)carbamoyl)-5-(trifluoromethyl)phenyl)propan-2-yl)carbamate that was used for the next step. LCMS (m/z) (M+H) = 629.3, Rt = 1.00 min.
- Step 2: A solution of tert-butyl (2-(3-((4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)carbamoyl)-5-(trifluoromethyl)phenyl)propan-2-yl)carbamate (1.0 equiv.) was dissolved in DCM and TFA (4:1) and the reaction was stirred at rt for 4 hours. Concentrated to dryness and dissolved in acetonitrile and water and lyophilized to give 3-(2-aminopropan-2-yl)-N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)-5-(trifluoromethyl)benzamide in 57% yield. 1H NMR (400 MHz, <dmso>) δ ppm 1.70 (s, 6 H) 2.26 (s, 3 H) 3.02 - 3.13 (m, 4 H) 3.48 (s, 3 H) 3.65 - 3.75 (m, 4 H) 6.68 (d, J=2.35 Hz, 1 H) 7.28 (d, J=8.61 Hz, 1 H) 7.38 (d, J=2.35 Hz, 1 H) 7.59 (d, J=2.35 Hz, 1 H) 7.68 (dd, J=8.22, 2.35 Hz, 1 H) 8.08 (s, 1 H) 8.34 (s, 2 H) 10.49 (s, 1 H). LCMS (m/z) (M+H) = 529.1, Rt = 0.68 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 2.29 (s, 3 H) 3.42 - 3.47 (m, 4 H) 3.65 - 3.72 (m, 7 H) 6.58 (s, 1 H) 7.30 (d, J=8.22 Hz, 1 H) 7.67 - 7.80 (m, 2 H) 8.68 (s, 1 H) 9.16 (d, J=0.78 Hz, 1 H) 9.36 (d, J=1.57 Hz, 1 H) 10.62 (s, 1 H). LCMS (m/z) (M+H) = 474.2, Rt = 0.85 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.74 (s, 6 H) 2.30 (s, 3 H) 3.41 - 3.50 (m, 4 H) 3.67 (s, 3 H) 3.68 - 3.72 (m, 4 H) 6.60 (s, 1 H) 7.24 - 7.31 (m, 1 H) 7.82 (dd, J=5.09, 1.96 Hz, 1 H) 7.86 (dd, J=8.22, 2.35 Hz, 1 H) 7.92 (d, J=1.96 Hz, 1 H) 8.25 (d, J=1.57 Hz, 1 H) 8.77 (d, J=5.09 Hz, 1 H) 10.68 (s, 1 H). LCMS (m/z) (M+H) = 473.3, Rt = 0.92 min.
-
- Step 1: To a solution of 4-(3,6-dichloropyridazin-4-yl)morpholine (1.0 equiv.) and propan-2-ol (1.8 equiv.) in THF (0.3M) was added sodium hydride (2.0 equiv.) and the reaction was stirred at room temperature until completion. The mixture was quenched with water and extracted with ethyl acetate twice. The combined organics were washed with brine and dried over sodium sulfate. The crude material was purified via silica gel chromatography (ISCO, 10% methanol/DCM) to give 4-(6-chloro-3-isopropoxypyridazin-4-yl)morpholine in 72% yield as a white solid. LCMS (m/z) (M+H) = 258.2/259.7, Rt = 0.59 min.
- Step 2: To a solution of 4-(6-chloro-3-isopropoxypyridazin-4-yl)morpholine (1.1 equiv.) and 6-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-3-amine (1.0 equiv.) in DME (0.1 M) was added PdCl2(dppf)-DCM adduct (0.5 equiv.) and sodium carbonate (8.0 equiv, 2M aqueous solution) and the mixture was heated to 110 °C for 15 min in the microwave. The reaction was concentrated to dryness and then partitioned between ethyl acetate and water. The organic layer was washed with brine and dried over sodium sulfate. The crude material was purified via silica gel chromatography (ISCO, 10% methanol/DCM) to give 5-(6-isopropoxy-5-morpholinopyridazin-3-yl)-6-methylpyridin-3-amine in 88% yield. LCMS (m/z) (M+H) = 330.0, Rt = 0.46 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.42 (s, 3 H) 1.43 (s, 3 H) 1.66 (s, 3 H) 1.72 (s, 3 H) 3.74 (s, 7 H) 5.28 - 5.43 (m, 1 H) 7.37 (s, 1 H) 7.83 (dd, J=4.89, 1.37 Hz, 1 H) 8.04 (s, 1 H) 8.36 (d, J=2.35 Hz, 1 H) 8.78 (d, J=5.09 Hz, 1 H) 8.94 (d, J=2.35 Hz, 1 H) 10.95 (s, 1 H). LCMS (m/z) (M+H) = 495.3, Rt = 0.70 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.42 (d, J=6.26 Hz, 6 H) 1.98 - 2.11 (m, 3 H) 3.73 (br. s., 7 H) 5.36 (spt, J=6.13 Hz, 1 H) 7.34 (s, 1 H) 8.03 (d, J=4.70 Hz, 1 H) 8.19 (s, 1 H) 8.35 (d, J=2.35 Hz, 1 H) 8.90 (d, J=5.09 Hz, 1 H) 8.93 (d, J=2.35 Hz, 1 H) 11.02 (s, 1 H). LCMS (m/z) (M+H) = 499.3, Rt = 0.69 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.42 (d, J=6.26 Hz, 6 H) 3.74 (s, 7 H) 5.27 - 5.42 (m, 1 H) 6.86 - 7.25 (m, 1 H) 7.36 (s, 1 H) 8.07 (d, J=4.69 Hz, 1 H) 8.19 (s, 1 H) 8.36 (d, J=2.35 Hz, 1 H) 8.87 - 8.98 (m, 2 H) 11.04 (s, 1 H). LCMS (m/z) (M+H) = 485.3, Rt = 0.66 min.
-
- Step 1: NaH (3.0 equiv.) was added slowly in portions to a solution of 2,2-difluoroethanol (3.0 equiv.) and 4-(3,6-dichloropyridazin-4-yl)morpholine (1.0 equiv.) in THF (0.15 M) under nitrogen. The solution was stirred at room temperature for 2 hours. Quenched by the addition of water and extracted 3 times with ethyl acetate. The organics were combined dried with sodium sulfate, filtered and concentrated. The curde material was purified via silica gel column chromatography eluting with ethyl acetate and hepanes (product elutes at about 50/50 ethyl acetate/heptanes). The pure fractions were concentrated to give 4-(6-chloro-3-(2,2-difluoroethoxy)pyridazin-4-yl)morpholine as a white solid in 65% yield. LCMS (m/z) (M+H) = 279.9, Rt = 0.59 min.
- Step 2: To a solution of 4-(6-chloro-3-(2,2-difluoroethoxy)pyridazin-4-yl)morpholine (1.0 equiv.) in DME and 2M Na2CO3 (3:1, 0.18 M) was added 6-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-3-amine (1.2 equiv.) and PdCl2(dppf).CH2Cl2 adduct (0.1 equiv.). The reaction was heated to reflux for 3 hours, then cooled to room temperature. Partitioned between water and ethyl acetate, the organic phase was dried with sodium sulfate, filtered and concentrated. Purification via silica gel column chromatography eluting with 0-100 ethyl acetate in heptanes followed by 10% methanol in ethyl acetate give 5-(6-(2,2-difluoroethoxy)-5-morpholinopyridazin-3-yl)-6-methylpyridin-3-amine in 60% yield. LCMS (m/z) (M+H) = 352, Rt = 0.39 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.01 (t, J=7.43 Hz, 3 H) 2.20 - 2.47 (m, 2 H) 2.56 (s, 3 H) 3.89 (d, J=5.09 Hz, 8 H) 4.77 (td, J=14.28, 3.13 Hz, 2 H) 6.17 - 6.56 (m, 1 H) 7.39 (s, 1 H) 7.99 (d, J=3.91 Hz, 1 H) 8.20 (s, 1 H) 8.56 (d, J=2.74 Hz, 1 H) 8.85 (d, J=5.09 Hz, 1 H) 8.93 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 535.2, Rt = 0.72 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.94 (t, J=18.78 Hz, 3 H) 2.43 (s, 3 H) 3.31 - 3.44 (m, 4 H) 3.69 - 3.86 (m, 4 H) 4.63 - 4.73 (m, 2 H) 6.07 - 6.47 (m, 1 H) 7.01 (s, 1 H) 7.90 (d, J=4.70 Hz, 1 H) 8.12 (s, 1 H) 8.19 (d, J=2.35 Hz, 1 H) 8.73 (d, J=4.70 Hz, 1 H) 8.80 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 521.1, Rt = 0.64 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.57 (s, 3 H) 3.89 (d, J=4.30 Hz, 7 H) 4.77 (td, J=14.28, 3.13 Hz, 2 H) 6.13 - 6.59 (m, 1 H) 7.40 (s, 1 H) 7.97 (d, J=3.91 Hz, 1 H) 8.45 (s, 1 H) 8.63 (d, J=2.35 Hz, 1 H) 9.00 (d, J=5.09 Hz, 1 H) 9.11 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 525.1, Rt = 0.73 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.43 (s, 3 H) 3.34 - 3.42 (m, 4 H) 3.70 - 3.79 (m, 4 H) 4.62 - 4.74 (m, 2 H) 6.03 - 6.47 (m, 1 H) 7.02 (s, 1 H) 8.19 (d, J=2.35 Hz, 1 H) 8.60 (s, 1 H) 8.80 (d, J=2.35 Hz, 1 H) 9.00 (s, 1 H) 9.28 (d, J=1.57 Hz, 1 H). LCMS (m/z) (M+H) = 525.1, Rt = 0.67 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.56 (s, 3 H) 3.88 (s, 8 H) 4.77 (td, J=14.28, 3.52 Hz, 2 H) 6.16 - 6.69 (m, 1 H) 7.38 (s, 1 H) 7.72 - 7.81 (m, 1 H) 7.94 (d, J=7.83 Hz, 1 H) 8.17 - 8.35 (m, 2 H) 8.55 (d, J=2.35 Hz, 1 H) 8.93 (d, J=2.74 Hz, 1 H). LCMS (m/z) (M+H) = 524.1, Rt = 0.72 min.
-
- To a solution of 4-(6-chloro-3-(methylsulfonyl)pyridazin-4-yl)morpholine (1.0 equiv.) and 6-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-3-amine (1.0 equiv.) in DME (0.05 M) was added sodium carbonate (3.0 equiv., 2M) and purged with nitrogen. PdCl2(dppf)-DCM adduct (0.06 equiv.) was added to the reaction and the system was flushed once again with nitrogen. The reaction was heated to 120 °C for 20 min in the microwave. The crude was partitioned between water and ethyl acetate, the organic layer was isolated, dried over sodium sulfate, filtered and concentrated. The crude material was purified via reverse phase chromatography (Grace ssytem, 0-30% acetonitrile in water). Upon partial concentration, the precipitate was filtered off and dried under high vacuo to give 6-methyl-5-(6-(methylsulfonyl)-5-morpholinopyridazin-3-yl)pyridin-3-amine in 54% yield. LCMS (m/z) (M+H) = 350.2, Rt = 0.40 min.
-
- To a solution of 4-(6-chloro-3-(methylsulfonyl)pyridazin-4-yl)morpholine (1.0 equiv.) and 4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline (1.0 equiv.) in DME (0.04 M) was added sodium carbonate (3.0 equiv., 2M) and purged with nitrogen. PdCl2(dppf)-DCM adduct (0.06 equiv.) was added to the reaction and the system was flushed once again with nitrogen. The reaction was heated to 120 °C for 20 min in the microwave. The crude was partitioned between water and ethyl acetate, the organic layer was isolated, dried over sodium sulfate, filtered and concentrated. The crude material was purified via silica gel chromatography (5% methanol in DCM) to give 4-methyl-3-(6-(methylsulfonyl)-5-morpholinopyridazin-3-yl)aniline
in 60% yield. LCMS (m/z) (M+H) = 349.2, Rt = 0.43 min. -
- To a solution of 6-methyl-5-(6-(methylsulfonyl)-5-morpholinopyridazin-3-yl)pyridin-3-amine (1.0 equiv.) in DMF was added DIEA (3.0 equiv.), 3-(trifluoromethyl)benzoic acid (1.0 equiv.) and HATU (1.0 equiv.) and the reaction was stirred at rt overnight. Partitioned between water and ethyl acetate, the organic layer was isolated and the aqueous layer was back-extracted with ethyl acetate. The combined organics were dried over sodium sulfate, filtered and concentrated. The crude material was dissolved in DMSO and purified via reverse phase HPLC. The pure fractions were lyophilized to give N-(6-methyl-5-(6-(methylsulfonyl)-5-morpholinopyridazin-3-yl)pyridin-3-yl)-3-(trifluoromethyl)benzamide in 35% yield. LCMS (m/z) (M+H) = 522.1, Rt = 0.68 min.
- The compounds listed below were prepared using methods similar to those described for the preparation of Example 919 above using the appropriate starting materials.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.97 - 2.12 (m, 3 H) 2.52 - 2.56 (m, 4 H) 3.47 - 3.56 (m, 8 H) 3.70 - 3.78 (m, 4 H) 4.09 (br. s., 1 H) 7.54 (s, 1H) 8.05 (d, J=4.70 Hz, 1 H) 8.21 (s, 1 H) 8.35 (d, J=2.35 Hz, 1 H) 8.90 (d, J=5.09 Hz, 1 H) 8.96 (d, J=2.35 Hz, 1 H) 10.90 - 11.02 (m, 1 H). LCMS (m/z) (M+H) = 519.2, Rt = 0.59 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 2.52 - 2.56 (m, 3 H) 3.47 - 3.57 (m, 7 H) 3.71 - 3.79 (m, 4 H) 7.54 (s, 1 H) 8.21 (d, J=4.69 Hz, 1 H) 8.35 (d, J=2.35 Hz, 1 H) 8.39 (s, 1 H) 8.95 (d, J=2.35 Hz, 1 H) 9.01 (d, J=4.70 Hz, 1 H) 11.02 (s, 1 H). LCMS (m/z) (M+H) = 523.1, Rt = 0.61 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 2.53 (s, 5 H) 3.72 - 3.78 (m, 7 H) 7.54 (s, 2 H) 8.12 (d, J=4.69 Hz, 2 H) 8.35 (s, 1 H) 8.49 (d, J=2.35 Hz, 1 H) 9.05 (d, J=4.70 Hz, 1 H) 9.11 (d, J=2.35 Hz, 1 H) 11.10 - 11.28 (m, 1 H). LCMS (m/z) (M+H) = 523.1, Rt = 0.65 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.76 (s, 6 H) 2.52 - 2.56 (m, 4 H) 3.47 - 3.56 (m, 7 H) 3.70 - 3.78 (m, 4 H) 7.54 (s, 1 H) 7.89 (dd, J=4.89, 1.37Hz, 1 H) 8.03 (s, 1 H) 8.33 (d, J=1.96 Hz, 1 H) 8.83 (d, J=5.09 Hz, 1 H) 8.95 (d, J=2.35 Hz, 1 H) 10.90 (s, 1 H). LCMS (m/z) (M+H) = 522.2, Rt = 0.59 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 0.93 (t, J=7.63 Hz, 3 H) 2.26 - 2.42 (m, 2 H) 2.53 (s, 3 H) 3.47 - 3.57 (m, 7 H) 3.67 - 3.81 (m, 4 H) 7.54 (s, 1H) 8.04 (d, J=3.91 Hz, 1 H) 8.19 (s, 1 H) 8.35 (d, J=2.35 Hz, 1 H) 8.91 (d, J=4.70 Hz, 1 H) 8.96 (d, J=2.35 Hz, 1 H) 10.97 (s, 1 H). LCMS (m/z) (M+H) = 533.1, Rt = 0.64 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 0.93 (t, J=7.43 Hz, 3 H) 2.31 (s, 3 H) 2.33 - 2.42 (m, 2 H) 3.52 (s, 4 H) 3.69 - 3.78 (m, 4 H) 7.35 - 7.44 (m, 2H) 7.81 (dd, J=8.41, 2.15 Hz, 1 H) 7.90 (d, J=2.35 Hz, 1 H) 8.02 (d, J=4.30 Hz, 1 H) 8.16 (s, 1 H) 8.88 (d, J=5.09 Hz, 1 H) 10.61 - 10.77 (m, 1 H). LCMS (m/z) (M+H) = 532.1, Rt = 0.78 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.67 (s, 3 H) 1.72 (s, 3 H) 3.74 (d, J=4.70 Hz, 4 H) 7.53 (s, 1 H) 7.84 (d, J=5.09 Hz, 1 H) 8.05 (s, 1 H) 8.33 (d, J=2.35Hz, 1 H) 8.77 (d, J=4.70 Hz, 1 H) 8.94 (d, J=2.74 Hz, 1 H) 10.87 (s, 1 H). LCMS (m/z) (M+H) = 515.2, Rt = 0.59 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.57 - 1.77 (m, 7 H) 2.31 (s, 3 H) 7.29 - 7.46 (m, 2 H) 7.77 - 7.84 (m, 2 H) 7.90 (d, J=1.96 Hz, 1 H) 7.94 - 8.07 (m, 1 H) 8.75 (d, J=5.09 Hz, 1 H) 10.64 (s, 1 H). LCMS (m/z) (M+H) = 514.1, Rt = 0.72 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.95 - 2.11 (m, 3 H) 2.28 - 2.34 (m, 3 H) 3.43 - 3.57 (m, 7 H) 3.69 - 3.78 (m, 4 H) 7.34 - 7.45 (m, 2 H) 7.81 (dd, J=8.22, 1.96 Hz, 1 H) 7.91 (d, J=2.35 Hz, 1 H) 7.99 - 8.05 (m, 1 H) 8.18 (s, 1 H) 8.77 - 8.95 (m, 1 H) 10.72 (s, 1 H). LCMS (m/z) (M+H) = 518.1, Rt = 0.74 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 2.27 - 2.36 (m, 3 H) 3.43 - 3.56 (m, 8 H) 7.27 - 7.51 (m, 2 H) 7.80 (dd, J=8.22, 2.35 Hz, 1 H) 7.90 (d, J=1.96 Hz, 1 H) 8.10 - 8.27 (m, 1 H) 8.29 - 8.45 (m, 1 H) 8.89 - 9.06 (m, 1 H) 10.77 (s, 1 H). LCMS (m/z) (M+H) = 522.1, Rt = 0.76 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.66 - 1.83 (m, 8 H) 2.32 (s, 4 H) 3.49 (d, J=4.70 Hz, 5 H) 3.72 - 3.78 (m, 6 H) 7.36 - 7.45 (m, 2 H) 7.79 (dd, J=8.22, 1.96 Hz, 1 H) 7.83 - 7.91 (m, 2 H) 7.94 - 8.06 (m, 1 H) 8.70 - 8.87 (m, 1 H) 10.57 - 10.71 (m, 1 H). LCMS (m/z) (M+H) = 521.1, Rt = 0.72 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.48 (s, 6 H) 2.27 - 2.34 (m, 3 H) 3.42 - 3.57 (m, 7 H) 3.69 - 3.80 (m, 4 H) 7.34 - 7.44 (m, 2 H) 7.73 (dd, J=4.89, 1.37 Hz, 1 H) 7.80 (dd, J=8.22, 2.35 Hz, 1 H) 7.90 (d, J=1.96 Hz, 1 H) 8.16 (s, 1 H) 8.68 (d, J=5.09 Hz, 1 H) 10.62 (s, 1 H). LCMS (m/z) (M+H) = 512.1, Rt = 0.55 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 2.25 - 2.37 (m, 3 H) 3.37 - 3.62 (m, 7 H) 3.66 - 3.84 (m, 4 H) 7.29 - 7.47 (m, 2 H) 7.96 (dd, J=8.41, 2.15 Hz, 1 H) 8.05 (d, J=2.35 Hz, 1 H) 8.09 (d, J=3.91 Hz, 1 H) 8.33 (s, 1 H) 9.02 (d, J=4.70 Hz, 1 H) 10.80 - 10.91 (m, 1 H). LCMS (m/z) (M+H) = 522.1, Rt = 0.83 min.
-
- Step 1: To a degassed mixture of 4-(2-methoxy-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-3-yl)morpholine (1.0 equiv.) and 4,6-dichloro-3-methylpyridazine (1.0 equiv.) in 4:1 1,4-dioxane:water (0.2 M) was added cesium carbonate (3.0 equiv.), Pd(OAc)2 (0.1 equiv.) and tri-t-butylphosphine (1.0 M in toluene, 0.2 equiv.). The reaction mixture was stirred at 75 °C for 5 hr. LC-MS shows a mixture of isomeric products. The cooled reaction mixture was diluted with water and extracted with ethyl acetate (2x). The combined extracts were dried over sodium sulfate, filtered, concentrated, and purified by flash chromatography over silica gel (ISCO, ethyl acetate wtih 0-5% methanol gradient) to give 4-(5-(6-chloro-3-methylpyridazin-4-yl)-2-methoxypyridin-3-yl)morpholine in 68% yield as a light brown, crystalline solid. The minor isomer is also present (20%). LCMS (m/z) (M+H) = 321.0, Rt = 0.66 min.
- Step 2: To a solution of 4-(5-(6-chloro-3-methylpyridazin-4-yl)-2-methoxypyridin-3-yl)morpholine and 4-(5-(5-chloro-6-methylpyridazin-3-yl)-2-methoxypyridin-3-yl)morpholine (1.0 equiv.) in 1,4-dioxane (0.2 M) was added ammonium hydroxide (32 equiv.) and the mixture was stirred at 140 °C overnight. Upon overnight stirring, an additional 32 equiv. of ammonium hydroxide was added and the mixture was stirred at 175 °C for 3 days. The reaction was concentrated to dryness to give 5-(6-methoxy-5-morpholinopyridin-3-yl)-6-methylpyridazin-3-amine and 6-(6-methoxy-5-morpholinopyridin-3-yl)-3-methylpyridazin-4-amine as a mixture of isomers (1:1 ratio). LCMS (m/z) (M+H) = 301.9, Rt = 0.45 and 0.47 min.
- Step 3: To a solution of 5-(6-methoxy-5-morpholinopyridin-3-yl)-6-methylpyridazin-3-amine and 6-(6-methoxy-5-morpholinopyridin-3-yl)-3-methylpyridazin-4-amine (1.0 equiv, mixture of isomers) in DCM (0.1 M) was added DIEA (5.0 equiv.) and 3-(trifluoromethyl)benzoyl chloride (2.2 equiv.). The mixture was stirred at ambient temperature. LC-MS at 4 hr showed partial conversion to product. An additional 3.00 equiv of DIEA and 1.3 equiv of acyl chloride were added. The reaction was stirred for 7 days at ambient temperature. The reaction mixture was quenched with saturated aqueous sodium bicarbonate and extracted with DCM (2x). The combined extracts were dried over sodium sulfate, filtered, and concentrated. The crude product was purified by reverse phase HPLC and lyophilized to give N-(5-(6-methoxy-5-morpholinopyridin-3-yl)-6-methylpyridazin-3-yl)-3-(trifluoromethyl)benzamide in 28 % yield as its TFA salt, a yellow solid. 1H NMR (400 MHz, <cd3od>) δ ppm 2.76 (s, 3 H) 3.15 - 3.23 (m, 4 H) 3.83 - 3.93 (m, 4 H) 4.08 (s, 3 H) 7.39 (d, J=2.35 Hz, 1 H) 7.76 - 7.85 (m, 1 H) 7.95 - 8.02 (m, 2 H) 8.31 (d, J=8.22 Hz, 1 H) 8.37 (s, 1 H) 8.70 (s, 1 H). LCMS (m/z) (M+H) = 474.1, Rt = 0.85 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 3.08 (d, J=3.91 Hz, 4 H) 3.69 - 3.75 (m, 4 H) 4.64 (td, J=15.16, 3.33 Hz, 2 H) 6.21 - 6.64 (m, 1 H) 7.32 (d, J=1.96 Hz, 1 H) 7.83 (d, J=1.96 Hz, 1 H) 8.17 (d, J=1.96 Hz, 1 H) 8.70 (s, 1 H) 8.91 - 9.01 (m, 1 H) 9.21 (s, 1 H) 9.39 (d, J=1.57 Hz, 1 H) 11.00 (s, 1 H). LCMS (m/z) (M+H) = 524.3, Rt = 0.74 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.87 - 1.96 (m, 2 H) 2.00 - 2.08 (m, 2 H) 3.07 (br. s., 4 H) 3.70 - 3.75 (m, 4 H) 4.64 (d, J=3.52 Hz, 2 H) 6.26 - 6.63 (m, 1 H) 7.29 (d, J=1.96 Hz, 1 H) 7.81 (d, J=1.96 Hz, 1 H) 8.06 (dd, J=4.50, 2.15 Hz, 2 H) 8.87 (d, J=2.35 Hz, 1 H) 9.56 (d, J=1.96 Hz, 1 H) 11.03 (s, 1 H). LCMS (m/z) (M+H) = 522.1, Rt = 0.68 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.86 (dtd, J=12.67, 8.34, 8.34, 3.91 Hz, 2 H) 2.08 - 2.22 (m, 2 H) 2.71 (s, 3 H) 3.15 - 3.26 (m, 7 H) 3.69 (ddd, J=11.64, 8.31, 3.13 Hz, 2 H) 3.82 - 3.93 (m, 4 H) 3.94 - 4.06 (m, 2 H) 5.46 (tt, J=7.92, 3.81 Hz, 1 H) 7.34 (d, J=2.35 Hz, 1 H) 7.82 - 7.92 (m, 2 H) 8.25 (d, J=8.22 Hz, 1 H) 8.36 (d, J=7.83 Hz, 1 H) 8.48 (d, J=2.35 Hz, 1 H) 8.61 (s, 1 H) 9.36 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 553.1, Rt = 0.61 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.86 (dtd, J=12.67, 8.34, 8.34, 3.91 Hz, 2 H) 2.07 (t, J=18.78 Hz, 3 H) 2.12 - 2.22 (m, 2 H) 2.71 (s, 3 H) 3.16 - 3.23 (m, 4 H) 3.69 (ddd, J=11.64, 8.31, 3.13 Hz, 2 H) 3.83 - 3.93 (m, 4 H) 3.94 - 4.07 (m, 2 H) 5.46 (tt, J=7.83, 3.91 Hz, 1 H) 7.33 (d, J=2.35 Hz, 1 H) 7.87 (d, J=1.96 Hz, 1 H) 8.04 (d, J=4.30 Hz, 1 H) 8.27 (s, 1 H) 8.46 (d, J=2.35 Hz, 1 H) 8.88 (d, J=5.09 Hz, 1 H) 9.34 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 540.1, Rt = 0.69 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.64 (s, 6 H) 1.76 - 1.91 (m, 2 H) 2.06 - 2.20 (m, 2 H) 2.70 (s, 3 H) 3.10 - 3.23 (m, 4 H) 3.66 (ddd, J=11.64, 8.31, 3.13 Hz, 2 H) 3.80 - 3.91 (m, 4 H) 3.91 - 4.04 (m, 2 H) 5.44 (tt, J=7.83, 3.91 Hz, 1 H) 7.32 (d, J=1.96 Hz, 1 H) 7.85 (d, J=2.35 Hz, 1 H) 8.03 (dd, J=5.48, 1.57 Hz, 1 H) 8.39 (s, 1 H) 8.51 (d, J=2.35 Hz, 1 H) 8.78 (d, J=5.48 Hz, 1 H) 9.36 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 534.2, Rt = 0.53 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.77 - 1.94 (m, 6 H) 2.07 - 2.23 (m, 2 H) 2.67 (s, 3 H) 3.15 - 3.23 (m, 4 H) 3.69 (ddd, J=11.64, 8.31, 3.13 Hz, 2 H) 3.83 - 3.93 (m, 4 H) 3.94 - 4.05 (m, 2 H) 5.46 (dt, J=8.12, 3.96 Hz, 1 H) 7.33 (d, J=1.96 Hz, 1 H) 7.78 (dd, J=5.09, 1.57 Hz, 1 H) 7.86 (d, J=2.35 Hz, 1 H) 8.17 (s, 1 H) 8.39 (d, J=2.35 Hz, 1 H) 8.71 (d, J=5.09 Hz, 1 H) 9.24 (d, J=1.96 Hz, 1 H). LCMS (m/z) (M+H) = 531.2, Rt = 0.68 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.07 - 1.18 (m, 2 H) 1.22 (dt, J=8.02, 3.03 Hz, 2 H) 1.86 (dtd, J=12.77, 8.29, 8.29, 3.91 Hz, 2 H) 2.08 - 2.21 (m, 2 H) 2.23 - 2.36 (m, 1 H) 2.71 (s, 3 H) 3.15 - 3.24 (m, 4 H) 3.68 (ddd, J=11.54, 8.22, 3.33 Hz, 2 H) 3.82 - 3.93 (m, 4 H) 3.94 - 4.06 (m, 2 H) 5.46 (tt, J=7.83, 3.91 Hz, 1 H) 7.33 (d, J=1.96 Hz, 1 H) 7.81 (dd, J=5.48, 1.57 Hz, 1 H) 7.87 (d, J=2.35 Hz, 2 H) 8.46 (d, J=2.35 Hz, 1 H) 8.65 (d, J=5.48 Hz, 1 H) 9.34 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 516.2, Rt = 0.56 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.87 (dtd, J=12.67, 8.34, 8.34, 3.91 Hz, 2 H)2.10 - 2.22 (m, 2 H) 2.71 (s, 3 H) 3.16 - 3.24 (m, 4 H) 3.69 (ddd, J=11.64, 8.31, 3.13 Hz, 2 H) 3.84 - 3.94 (m, 4 H) 3.94 - 4.06 (m, 2 H) 5.47 (dt, J=8.12, 3.96 Hz, 1 H) 7.35 (d, J=1.96 Hz, 1 H) 7.89 (d, J=1.96 Hz, 1 H) 8.01 (d, J=3.91 Hz, 1 H) 8.51 (s, 1 H) 8.69 (d, J=2.35 Hz, 1 H) 9.03 (d, J=5.09 Hz, 1 H) 9.44 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 544.2, Rt = 0.75 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.76 - 1.93 (m, 8 H) 2.09 - 2.22 (m, 2 H) 2.71 (s, 3 H) 3.16 - 3.25 (m, 4 H) 3.69 (ddd, J=11.64, 8.31, 3.13 Hz, 2 H) 3.83 - 3.94 (m, 4 H) 3.94 - 4.05 (m, 2 H) 5.47 (dt, J=7.83, 3.91 Hz, 1 H) 7.35 (d, J=1.96 Hz, 1 H) 7.85 (dd, J=5.09, 1.96 Hz, 1 H) 7.89 (d, J=2.35 Hz, 1 H) 8.44 (d, J=1.57 Hz, 1 H) 8.69 (d, J=2.35 Hz, 1 H) 8.82 (d, J=5.09 Hz, 1 H) 9.45 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 543.3, Rt = 0.70 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.87 (dtd, J=12.77, 8.29, 8.29, 3.91 Hz, 2 H) 1.99 - 2.11 (m, 4 H) 2.11 - 2.21 (m, 2 H) 2.64 - 2.69 (m, 3 H) 3.16 - 3.22 (m, 4 H) 3.69 (ddd, J=11.44, 8.31, 3.33 Hz, 2 H) 3.83 - 3.93 (m, 4 H) 3.94 - 4.05 (m, 2 H) 5.46 (dt, J=7.83, 3.91 Hz, 1 H) 7.32 (d, J=1.96 Hz, 1 H) 7.85 (d, J=1.96 Hz, 1 H) 8.36 (d, J=1.96 Hz, 2 H) 9.20 (d, J=2.35 Hz, 1 H) 9.59 (d, J=1.96 Hz, 1 H). LCMS (m/z) (M+H) = 542.2, Rt = 0.61 min.
-
- Step 1: Sodium hydride (3.0 equiv.) was added to 2-propanol (0.4M) at rt and the mixture was stirred for 20 min at 90 °C. The reaction was cooled to rt and 4-(5-bromo-2-fluoropyridin-3-yl)morpholine (1.0 equiv.) was added. The mixture was stirred at 90 °C for 1.5 hours. The cooled reaction was poured into water and extracted with ethyl acetate (2x). The combined extracts were dried over sodium sulfate, filtered and concentrated. The crude material was purified via silica gel chromatography (DCM with 0-10% methanol) to give 4-(5-bromo-2-isopropoxypyridin-3-yl)morpholine as a yellow green oil. LCMS (m/z) (M+H) = 301/303.1, Rt = 0.99 min.
- Step 2: To a degassed mixture of 4-(5-bromo-2-isopropoxypyridin-3-yl)morpholine (1.0 equiv.) and 4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline (1.2 equiv.) and 2M aqueous sodium carbonate (3.0 equiv.) in DME (0.18 M) was added PdCl2(dppf)-DCM adduct (0.1 equiv.) and the reaction mixture was heated in the microwave at 120 °C for 15 min. The cooled reaction mixture was diluted with water and extracted with ethyl acetate. The combined organics were dried over sodium sulfate, filtered and concentrated. The crude product was purified via silica gel flash chromatography (10-70% ethyl acetate/heptanes) to give 3-(6-isopropoxy-5-morpholinopyridin-3-yl)-4-methylaniline as a yellow oil in 37% yield. LCMS (m/z) (M+H) = 328.0, Rt = 0.65 min.
-
- To a soluton of 4-(5-bromo-2-isopropoxypyridin-3-yl)morpholine (1.0 equiv.) and 6-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-3-amine (1.2 equiv.) in DME (0.18 M) was added PdCl2(dppf)-DCM adduct (0.1 equiv.) and 2M aqueous sodium carbonate (3.0 equiv.) and the mixture was heated to 125 °C for 20 min the microwave followed by 130 °C for 15 min. The cooled reaction mixture was diluted with water and extracted with ethyl acetate. The combined organics were dried over sodium sulfate, filtered and concentrated. The crude product was purified via silica gel chromatography (ethyl acetate/5-15% methanol) to give 6'-isopropoxy-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-amine as a purple oil in 54% yield. LCMS (m/z) (M+H) = 329.2, Rt = 0.60 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.43 (d, J=6.26 Hz, 6 H) 2.05 (t, J=18.78 Hz, 3 H) 2.29 (s, 3 H) 3.15 - 3.24 (m, 4 H) 3.83 - 3.95 (m, 4 H) 5.42 (dt, J=12.23, 6.21 Hz, 1 H) 7.29 (d, J=2.35 Hz, 1 H) 7.33 (d, J=9.39 Hz, 1 H) 7.61 - 7.67 (m, 2 H) 7.79 (d, J=2.35 Hz, 1 H) 7.95 - 8.00 (m, 1 H) 8.19 (s, 1 H) 8.81 (d, J=5.09 Hz, 1 H). LCMS (m/z) (M+H) = 497.1, Rt = 1.06 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.43 (d, J=6.26 Hz, 6 H) 1.69 - 1.81 (m, 6 H) 2.29 (s, 3 H) 3.17 - 3.26 (m, 4 H) 3.84 - 3.94 (m, 4 H) 5.42 (quin, J=6.16 Hz, 1 H) 7.29 - 7.36 (m, 2 H) 7.60 - 7.66 (m, 2 H) 7.80 (d, J=2.35 Hz, 1 H) 7.83 (dd, J=5.28, 1.76 Hz, 1 H) 8.08 - 8.12 (m, 1 H) 8.69 - 8.75 (m, 1 H). LCMS (m/z) (M+H) = 493.1, Rt = 1.05 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.42 (d, J=6.26 Hz, 6 H) 1.70 (s, 6 H) 2.30 (s, 3 H) 3.09 - 3.21 (m, 4 H) 3.81 - 3.93 (m, 4 H) 5.41 (quin, J=6.16 Hz, 1 H) 7.22 (d, J=1.96 Hz, 1 H) 7.35 (d, J=8.22 Hz, 1 H) 7.63 (d, J=2.35 Hz, 1 H) 7.68 (dd, J=8.22, 2.35 Hz, 1 H) 7.75 (d, J=1.96 Hz, 1 H) 8.18 (dd, J=5.67, 1.76 Hz, 1 H) 8.46 (dd, J=1.57, 0.78 Hz, 1 H) 8.77 - 8.81 (m, 1 H). LCMS (m/z) (M+H) = 491.1, Rt = 0.81 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.44 (d, J=6.26 Hz, 6 H) 1.81 (s, 6 H) 2.29 (s, 3 H) 3.21 (dd, J=5.48, 3.91 Hz, 4 H) 3.83 - 3.94 (m, 4 H) 5.43 (quin, J=6.16 Hz, 1 H) 7.29 - 7.37 (m, 2 H) 7.68 - 7.74 (m, 2 H) 7.76 - 7.82 (m, 2 H) 8.37 (dd, J=1.96, 0.78 Hz, 1 H) 8.73 - 8.78 (m, 1 H). LCMS (m/z) (M+H) = 500.1, Rt = 1.11 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.44 (d, J=6.26 Hz, 6 H) 1.58 (s, 6 H) 2.29 (s, 3 H) 3.22 (dd, J=5.48, 3.91 Hz, 4 H) 3.86 - 3.95 (m, 4 H) 5.43 (quin, J=6.16 Hz, 1 H) 7.31 - 7.36 (m, 2 H) 7.67 - 7.74 (m, 2 H) 7.76 (dd, J=5.28, 1.76 Hz, 1 H) 7.81 (d, J=2.35 Hz, 1 H) 8.38 (dd, J=1.96, 0.78 Hz, 1 H) 8.64 - 8.68 (m, 1 H). LCMS (m/z) (M+H) = 491.1, Rt = 1.00 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.43 (d, J=6.26 Hz, 6 H) 2.30 (s, 3 H) 3.16 - 3.24 (m, 4 H) 3.83 - 3.94 (m, 4 H) 5.43 (quin, J=6.16 Hz, 1 H) 7.27 (d, J=1.96 Hz, 1 H) 7.34 (d, J=7.83 Hz, 1 H) 7.62 - 7.69 (m, 2 H) 7.78 (d, J=1.96 Hz, 1 H) 8.17 (dd, J=5.09, 1.57 Hz, 1 H) 8.54 - 8.58 (m, 1 H) 8.95 (dd, J=4.69, 0.78 Hz, 1 H). LCMS (m/z) (M+H) = 511.1, Rt = 0.93 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.43 (d, J=6.26 Hz, 6 H) 2.29 (s, 3 H) 3.19 (dd, J=5.48, 3.91 Hz, 4 H) 3.83 - 3.94 (m, 4 H) 5.42 (dt, J=12.23, 6.21 Hz, 1 H) 7.28 (d, J=1.96 Hz, 1 H) 7.30 - 7.36 (m, 1 H) 7.60 - 7.67 (m, 2 H) 7.78 (d, J=1.96 Hz, 1 H) 8.64 - 8.70 (m, 1 H) 9.08 (d, J=1.17 Hz, 1 H) 9.36 (d, J=1.96 Hz, 1 H). LCMS (m/z) (M+H) = 501.1, Rt = 1.06 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.43 (d, J=6.26 Hz, 6 H) 2.06 (t, J=18.78 Hz, 3 H) 2.72 (s, 3 H) 3.12 - 3.21 (m, 4 H) 3.82 - 3.92 (m, 4 H) 5.47 (quin, J=6.16 Hz, 1 H) 7.31 (d, J=1.96 Hz, 1 H) 7.88 (d, J=2.35 Hz, 1 H) 8.02 - 8.07 (m, 1 H) 8.26 - 8.29 (m, 1 H) 8.48 (d, J=2.35 Hz, 1 H) 8.88 (dd, J=5.09, 0.78 Hz, 1 H) 9.37 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 498.1, Rt = 0.79 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.43 (d, J=6.26 Hz, 6 H) 1.66 - 1.83 (m, 6 H) 2.73 (s, 3 H) 3.10 - 3.22 (m, 4 H) 3.82 - 3.93 (m, 4 H) 5.47 (quin, J=6.16 Hz, 1 H) 7.31 (d, J=2.35 Hz, 1 H) 7.85 (dd, J=5.09, 1.56 Hz, 1 H) 7.88 (d, J=2.35 Hz, 1 H) 8.14 - 8.18 (m, 1 H) 8.50 (d, J=2.35 Hz, 1 H) 8.75 - 8.80 (m, 1 H) 9.39 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 494.1, Rt = 0.79 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.43 (d, J=5.87 Hz, 6 H) 1.84 (s, 6 H) 2.72 (s, 3 H) 3.12 - 3.21 (m, 4 H) 3.83 - 3.93 (m, 4 H) 5.47 (quin, J=6.16 Hz, 1 H) 7.31 (d, J=2.35 Hz, 1 H) 7.86 - 7.92 (m, 2 H) 8.14 - 8.18 (m, 1 H) 8.47 (d, J=2.35 Hz, 1 H) 8.84 (dd, J=5.09, 0.78 Hz, 1 H) 9.38 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 501.1, Rt = 0.77 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.43 (d, J=6.26 Hz, 6 H) 1.64 (s, 6 H) 2.71 (s, 3 H) 3.13 - 3.20 (m, 4 H) 3.84 - 3.92 (m, 4 H) 5.47 (dt, J=12.23, 6.21 Hz, 1 H) 7.30 (d, J=2.35 Hz, 1 H) 7.87 (d, J=2.35 Hz, 1 H) 7.91 - 7.95 (m, 1 H) 8.34 (dd, J=1.76, 0.98 Hz, 1 H) 8.48 (d, J=2.35 Hz, 1 H) 8.77 (dd, J=5.28, 0.98 Hz, 1 H) 9.36 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 492.1, Rt = 0.62 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.43 (d, J=5.87 Hz, 6 H) 2.02 (t, J=18.58 Hz, 3 H) 2.72 (s, 3 H) 3.14 - 3.22 (m, 4 H) 3.81 - 3.93 (m, 4 H) 5.48 (dt, J=12.23, 6.21 Hz, 1 H) 7.32 (d, J=2.35 Hz, 1 H) 7.81 - 7.86 (m, 1 H) 7.89 (d, J=2.35 Hz, 1 H) 8.38 - 8.41 (m, 1 H) 8.70 (d, J=2.35 Hz, 1 H) 8.88 - 8.92 (m, 1 H) 9.46 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 498.1, Rt = 0.85 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.43 (d, J=6.26 Hz, 6 H) 1.67 - 1.81 (m, 6 H) 2.72 (s, 3 H) 3.15 - 3.23 (m, 4 H) 3.83 - 3.93 (m, 4 H) 5.48 (dt, J=12.23, 6.21 Hz, 1 H) 7.32 (d, J=2.35 Hz, 1 H) 7.71 (dd, J=5.28, 1.76 Hz, 1 H) 7.89 (d, J=2.35 Hz, 1 H) 8.28 - 8.32 (m, 1 H) 8.70 (d, J=2.35 Hz, 1 H) 8.76 (d, J=5.09 Hz, 1 H) 9.46 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 494.1, Rt = 0.87 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.43 (d, J=5.87 Hz, 6 H) 1.83 (s, 6 H) 2.72 (s, 3 H) 3.15 - 3.23 (m, 4 H) 3.80 - 3.92 (m, 4 H) 5.42 - 5.54 (m, 1 H) 7.32 (d, J=2.35 Hz, 1 H) 7.85 (dd, J=5.09, 1.96 Hz, 1 H) 7.89 (d, J=1.96 Hz, 1 H) 8.44 (dd, J=1.96, 0.78 Hz, 1 H) 8.70 (d, J=2.35 Hz, 1 H) 8.79 - 8.84 (m, 1 H) 9.47 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 501.1, Rt = 0.82 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.44 (d, J=6.26 Hz, 6 H) 1.59 (s, 6 H) 2.71 (s, 3 H) 3.15 - 3.21 (m, 4 H) 3.83 - 3.92 (m, 4 H) 5.48 (dt, J=12.23, 6.21 Hz, 1 H) 7.32 (d, J=2.35 Hz, 1 H) 7.77 (dd, J=5.09, 1.96 Hz, 1 H) 7.89 (d, J=2.35 Hz, 1 H) 8.41 (dd, J=1.96, 0.78 Hz, 1 H) 8.67 (d, J=2.35 Hz, 1 H) 8.70 (dd, J=5.09, 0.78 Hz, 1 H) 9.45 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 492.1, Rt = 0.74 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.43 (d, J=6.26 Hz, 6 H) 2.71 (s, 3 H) 3.14 - 3.21 (m, 4 H) 3.83 - 3.93 (m, 4 H) 5.47 (quin, J=6.26 Hz, 1 H) 7.31 (d, J=2.35 Hz, 1 H) 7.87 (d, J=2.35 Hz, 1 H) 8.44 (d, J=2.35 Hz, 1 H) 8.73 - 8.77 (m, 1 H) 9.14 - 9.18 (m, 1 H) 9.33 (d, J=2.35 Hz, 1 H) 9.43 (d, J=1.96 Hz, 1 H). LCMS (m/z) (M+H) = 502.1, Rt = 0.79 min.
-
- Step 1: To a solution of 3-(6-ethoxy-5-morpholinopyridin-3-yl)-4-methylbenzoic acid (1.0 equiv.) in DCM (0.06 M) was added 1-chloro-N,N,2-trimethylprop-1-en-1-amine (2.0 equiv.) and the mixture was stirred at 0 °C for 1 hour. Upon concentration under vacuo, the crude residue was used for the next step without further purification.
- Step 2: 5-fluoro-2-(trifluoromethyl)pyridin-4-amine (1.0 equiv.) was dissolved in 2-methyltetrahydrofurn (0.17 M) and NaHMDS (2.0 equiv.) was added and stirred for 1 h at rt. The crude solution from the above reaction was added to this mixture and stirred for 1 h at rt. The reaction was quenched by the addition of water, then partitioned between with ethyl acetate and the organic phase was concentrated to dryness. The residue was purified via silica gel chromatography followed by reverse phase HPLC to give 3-(6-ethoxy-5-morpholinopyridin-3-yl)-N-(5-fluoro-2-(trifluoromethyl)pyridin-4-yl)-4-methylbenzamide in 10% yield. 1H NMR (500 MHz, METHANOL-d 4) δ ppm 1.48 (t, J=6.94 Hz, 3 H) 2.40 (s, 3 H) 3.14 - 3.23 (m, 4 H) 3.84 - 3.93 (m, 4 H) 4.51 (d, J=6.94 Hz, 2 H) 7.32 (d, J=1.89 Hz, 1 H) 7.53 (s, 1 H) 7.82 (d, J=2.21 Hz, 1 H) 7.86 (d, J=2.21 Hz, 1 H) 7.89 - 7.95 (m, 1 H) 8.64 (d, J=2.21 Hz, 1 H) 8.79 (d, J=5.99 Hz, 1 H). LCMS (m/z) (M+H) = 505.0, Rt = 1.07 min.
-
- To a degassed solution of 4-(5-bromo-2-(2,2-difluoroethoxy)pyridin-3-yl)morpholine (1.0 equiv.) in DME and 2M Na2CO3 (3:1, 0.1 M) was added 6-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-3-amine (1.1 equiv.) and PdCl2(dppf)-DCM adduct (0.1 equiv.). The reaction was heated to 100 °C for 2 hours in an oil bath. LCMS indicated completion. Cooled to rt, partitioned between water and ethyl acetate, the organic phase was dried with sodium sulfate, filtered and concentrated. The crude material was purified via silica gel column chromatography (ISCO, eluting with 0-100% ethyl acetate in heptanes, followed by 10% methanol in ethyl acetate). The pure fractions were combined and concentrated under vacuo to give 6'-(2,2-difluoroethoxy)-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-amine in 79% yield. LCMS (m/z) (M+H) = 351, Rt = 0.55 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.92 (s, 6 H) 2.63 (s, 3 H) 3.12 - 3.19 (m, 4 H) 3.79 - 4.03 (m, 4 H) 4.66 (td, J=14.18, 3.72 Hz, 2 H) 6.04 - 6.57 (m, 1 H) 7.34 (d, J=1.96 Hz, 1 H) 7.85 (d, J=1.96 Hz, 1 H) 8.28 - 8.48 (m, 2 H) 9.16 (d, J=2.35 Hz, 1 H) 9.66 (d, J=1.96 Hz, 1 H). LCMS (m/z) (M+H) = 524.1, Rt = 0.66 min.
-
- Step 1: To a solution of 2-oxaspiro[3.3]heptan-6-ol (1.5 equiv.) in dioxane (0.13 M) at rt was added sodium hydride (1.5 equiv.) and the mixture was stirred for 15 min. 4-(5-bromo-2-fluoropyridin-3-yl)morpholine (1.0 equiv.) was then added, and the reaction was heated to 105 °C and stirred for 1.5 hours. Added another 1.5 equiv. of 2-oxaspiro[3.3]heptan-6-ol and sodium hydride and heated for 3 more hours. The mixture was carefully poured into water and extracted three times with ethyl acetate. The combined organics were washed with water, brine, dried over magnesium sulfate, filtered and concentrated. The crude residue was purified via Grace flash column chromatography over silica gel, eluting with heptanes and 0-50% ethyl acetate. The pure fractions were concentrated to give 4-(2-(2-oxaspiro[3.3]heptan-6-yloxy)-5-bromopyridin-3-yl)morpholine as a pale yellow oil in 72% yield. LCMS (m/z) (M+H) = 355.1/357.1, Rt = 0.86 min.
- Step 2: A solution of 4-(2-(2-oxaspiro[3.3]heptan-6-yloxy)-5-bromopyridin-3-yl)morpholine (1.0 equiv.) and 6-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-3-amine (1.2 equiv.) in DME (0.1 M) and sodium carbonate (2M aqueous, 3.0 equiv.) was purged with argon for 5 min. PdCl2(dppf)-DCM adduct (0.05 equiv.) was then added, and the mixture was purged with argon again, then heated to 100 °C for 1 hour. The mixture was poured onto water and extracted three times with ethyl acetate. The combined organics were washed with brine, dried over magnesium sulfate, filtered and concentrated. The crude residue was purified via Grace flash column chromatography over silica gel eluting with DCM and 0-15% methanol. Product fractions were concentrated to give 6'-(2-oxaspiro[3.3]heptan-6-yloxy)-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-amine as a light brown foam in 86% yield. LCMS (m/z) (M+H) = 383.1, Rt = 0.52 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.74 (d, J=1.00 Hz, 6 H) 2.32 - 2.42 (m, 2 H) 2.50 (s, 3 H) 2.81 - 2.92 (m, 2 H) 3.09 - 3.18 (m, 4 H) 3.83 - 3.90 (m, 4 H) 4.71 (s, 2 H) 4.79 (s, 2 H) 5.17 (t, J=7.04 Hz, 1 H) 7.25 (d, J=2.35 Hz, 1 H) 7.76 (d, J=2.35 Hz, 1 H) 7.80 (dd, J=5.09, 1.57 Hz, 1 H) 8.10 (s, 1 H) 8.13 (d, J=2.35 Hz, 1 H) 8.72 (d, J=5.09 Hz, 1 H) 8.86 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 548.3, Rt = 0.72 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.59 (s, 6 H) 2.30 - 2.43 (m, 2 H) 2.50 (s, 3 H) 2.82 - 2.93 (m, 2 H) 3.10 - 3.18 (m, 4 H) 3.79 - 3.91 (m, 4 H) 4.71 (s, 2 H) 4.79 (s, 2 H) 5.17 (quin, J=6.95 Hz, 1 H) 7.25 (d, J=1.96 Hz, 1 H) 7.74 (dd, J=5.28, 1.76 Hz, 1 H) 7.76 (d, J=1.96 Hz, 1 H) 8.13 (d, J=2.35 Hz, 1 H) 8.19 (s, 1 H) 8.69 (d, J=4.69 Hz, 1 H) 8.87 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 546.3, Rt = 0.57 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.28 - 2.41 (m, 2 H) 2.49 (s, 3 H) 2.81 - 2.94 (m, 2 H) 3.07 - 3.16 (m, 4 H) 3.75 - 3.92 (m, 4 H) 4.71 (s, 2 H) 4.79 (s, 2 H) 5.17 (t, J=6.85 Hz, 1 H) 6.83 (t, J=1.00 Hz, 1 H) 7.25 (d, J=1.96 Hz, 1 H) 7.76 (d, J=2.35 Hz, 1 H) 8.04 (d, J=4.70 Hz, 1 H) 8.12 (d, J=2.35 Hz, 1 H) 8.22 (s, 1 H) 8.80 - 8.90 (m, 2 H). LCMS (m/z) (M+H) = 538.3, Rt = 0.67 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.02 - 1.14 (m, 4 H) 2.16 - 2.26 (m, 1 H) 2.33 - 2.41 (m, 2 H) 2.49 (s, 3 H) 2.88 (ddd, J=10.47, 7.14, 3.13 Hz, 2 H) 3.09 - 3.16 (m, 4 H) 3.81 - 3.90 (m, 4 H) 4.71 (s, 2 H) 4.79 (s, 2 H) 5.16 (t, J=6.85 Hz, 1 H) 7.24 (d, J=1.96 Hz, 1 H) 7.61 (dd, J=5.09, 1.57 Hz, 1 H) 7.71 (s, 1 H) 7.75 (d, J=1.96 Hz, 1 H) 8.11 (d, J=2.35 Hz, 1 H) 8.55 (d, J=5.09 Hz, 1 H) 8.84 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 528.3, Rt = 0.59 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.82 (s, 6 H) 2.32 - 2.41 (m, 2 H) 2.50 (s, 3 H) 2.81 - 2.93 (m, 2 H) 3.04 - 3.16 (m, 4 H) 3.79 - 3.90 (m, 4 H) 4.71 (s, 2 H) 4.79 (s, 2 H) 5.17 (quin, J=6.95 Hz, 1 H) 7.25 (d, J=1.96 Hz, 1 H) 7.76 (d, J=1.96 Hz, 1 H) 7.85 (dd, J=4.89, 1.37 Hz, 1 H) 8.10 (s, 1 H) 8.13 (d, J=2.35 Hz, 1 H) 8.79 (d, J=5.09 Hz, 1 H) 8.86 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 555.3, Rt = 0.70 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.72 (d, J=1.00 Hz, 6 H) 2.34 - 2.42 (m, 2 H) 2.49 (s, 3 H) 2.78 - 2.93 (m, 2 H) 3.10 - 3.19 (m, 4 H) 3.79 - 3.90 (m, 4 H) 4.72 (s, 2 H) 4.80 (s, 2 H) 5.17 (t, J=6.85 Hz, 1 H) 7.26 (d, J=1.96 Hz, 1 H) 7.65 (dd, J=4.89, 1.76 Hz, 1 H) 7.77 (d, J=1.96 Hz, 1 H) 8.21 (d, J=2.35 Hz, 1 H) 8.24 (d, J=1.17 Hz, 1 H) 8.72 (d, J=5.09 Hz, 1 H) 8.95 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 548.3, Rt = 0.78 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.57 (s, 6 H) 2.32 - 2.43 (m, 2 H) 2.50 (s, 3 H) 2.75 - 2.95 (m, 2 H) 3.06 - 3.18 (m, 4 H) 3.76 - 3.93 (m, 4 H) 4.72 (s, 2 H) 4.80 (s, 2 H) 5.17 (t, J=6.85 Hz, 1 H) 7.26 (d, J=1.96 Hz, 1 H) 7.72 (dd, J=5.28, 1.76 Hz, 1 H) 7.77 (d, J=1.96 Hz, 1 H) 8.22 (d, J=2.35 Hz, 1 H) 8.35 (d, J=1.17 Hz, 1 H) 8.66 (d, J=5.09 Hz, 1 H) 8.96 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 546.3, Rt = 0.66 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.81 (s, 6 H) 2.34 - 2.42 (m, 2 H) 2.50 (s, 3 H) 2.80 - 2.93 (m, 2 H) 3.10 - 3.17 (m, 4 H) 3.75 - 3.92 (m, 4 H) 4.72 (s, 2 H) 4.80 (s, 2 H) 5.17 (quin, J=6.95 Hz, 1 H) 7.26 (d, J=2.35 Hz, 1 H) 7.77 (d, J=2.35 Hz, 1 H) 7.80 (dd, J=5.09, 1.96 Hz, 1 H) 8.23 (d, J=2.35 Hz, 1 H) 8.38 (d, J=1.57 Hz, 1 H) 8.77 (d, J=5.09 Hz, 1 H) 8.97 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 555.3, Rt = 0.74 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.68 - 1.78 (m, 6 H) 2.71 (s, 3 H) 3.13 - 3.23 (m, 4 H) 3.80 - 3.90 (m, 4 H) 3.93 - 3.98 (m, 2 H) 4.51 - 4.56 (m, 2 H) 7.33 - 7.37 (m, 1 H) 7.70 (dd, J=5.09, 1.57 Hz, 1 H) 7.86 - 7.91 (m, 1 H) 8.29 (d, J=1.17 Hz, 1 H) 8.72 (d, J=2.35 Hz, 1 H) 8.75 (d, J=5.09 Hz, 1 H) 9.48 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 496.1, Rt = 0.55 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.58 (s, 6 H) 2.71 (s, 3 H) 3.12 - 3.24 (m, 4 H) 3.81 - 3.91 (m, 4 H) 3.93 - 3.98 (m, 2 H) 4.52 - 4.57 (m, 2 H) 7.33 - 7.37 (m, 1 H) 7.76 (dd, J=5.09, 1.57 Hz, 1 H) 7.87 - 7.91 (m, 1 H) 8.40 (d, J=1.17 Hz, 1 H) 8.69 (d, J=5.09 Hz, 1 H) 8.72 (d, J=1.96 Hz, 1 H) 9.49 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 494.1, Rt = 0.53 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.81 (s, 6 H) 2.71 (s, 3 H) 3.13 - 3.23 (m, 4 H) 3.79 - 3.91 (m, 4 H) 3.93 - 3.99 (m, 2 H) 4.49 - 4.58 (m, 2 H) 7.31 - 7.37 (m, 1 H) 7.84 (dd, J=5.48, 1.96 Hz, 1 H) 7.87 - 7.91 (m, 1 H) 8.43 (d, J=1.57 Hz, 1 H) 8.72 (d, J=2.35 Hz, 1 H) 8.80 (d, J=5.09 Hz, 1 H) 9.48 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 503.1, Rt = 0.61 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.01 (t, J=18.78 Hz, 3 H) 2.65 (s, 3 H) 3.16 - 3.24 (m, 4 H) 3.84 - 3.91 (m, 4 H) 3.93 - 4.01 (m, 2 H) 4.47 - 4.57 (m, 2 H) 7.33 (d, J=1.96 Hz, 1 H) 7.82 (d, J=5.09 Hz, 1 H) 7.86 (d, J=1.96 Hz, 1 H) 8.37 (s, 1 H) 8.57 (d, J=1.96 Hz, 1 H) 8.88 (d, J=5.09 Hz, 1 H) 9.33 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 500.1, Rt = 0.66 min.
-
- 1H NMR (500 MHz, CHLOROFORM-d) δ ppm 1.45 (t, J=7.09 Hz, 3 H) 2.28 (s, 3 H) 3.14 (br. s., 4 H) 3.67 (s, 3 H) 3.81 - 3.91 (m, 4 H) 4.46 (q, J=7.15 Hz, 2 H) 7.23 (d, J=1.89 Hz, 1 H) 7.32 (d, J=8.51 Hz, 1 H) 7.60 (d, J=2.21 Hz, 1 H) 7.64 (dd, J=8.20, 2.21 Hz, 1 H) 7.73 (d, J=2.21 Hz, 1 H) 7.91 (t, J=7.88 Hz, 1 H) 8.30 - 8.35 (m, 1 H) 8.41 (d, J=7.88 Hz, 1 H) 8.67 (t, J=1.73 Hz, 1 H). LCMS (m/z) (M+H) = 495.1, Rt = 0.74 min.
-
- 1H NMR (500 MHz, CHLOROFORM-d) δ ppm 1.46 (t, J=7.09 Hz, 3 H) 2.70 (s, 3 H) 3.16 (dd, J=5.36, 3.78 Hz, 4 H) 3.49 (s, 3 H) 3.84 - 3.89 (m, 4 H) 4.50 (q, J=7.04 Hz, 2 H) 7.32 (d, J=2.21 Hz, 1 H) 7.87 (d, J=2.21 Hz, 1 H) 7.91 (t, J=7.88 Hz, 1 H) 8.34 (ddd, J=7.88, 1.89, 0.95 Hz, 1 H) 8.42 (dt, J=7.80, 1.30 Hz, 1 H) 8.47 (d, J=2.21 Hz, 1 H) 8.71 (t, J=1.89 Hz, 1 H) 9.37 (d, J=2.21 Hz, 1 H). LCMS (m/z) (M+H) = 496.1, Rt = 0.55 min
-
-
- To a solution of 4-(5-bromo-2-(difluoromethoxy)pyridin-3-yl)morpholine (1.0 equiv.) and 6-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-3-amine (1.2 equiv.) in DME (0.4 M) was added sodium carbonate (2M, 1.0 equiv.) and PdCl2(dppf)-DCM adduct (0.1 equiv.) and the mixture was heated in the microwave at 120 °C for 20 min. The reaction was partitioned between ethyl acetate and water, the organic layer was dried with sodium sulfate, filtered and concentrated. The residue was purified via silica gel chromatography (ISCO, 0-15% methanol in DCM) to give 6'-(difluoromethoxy)-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-amine in 92% yield. LCMS (m/z) (M+H) = 337.0, Rt = 0.54 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 3.05 - 3.13 (m, 4 H) 3.74 - 3.75 (m, 3 H) 7.43 - 7.50 (m, 1 H) 7.76 - 7.81 (m, 1 H) 7.85 - 7.98 (m, 1 H) 8.08 -8.11 (m, 1 H) 8.18 - 8.24 (m, 1 H) 8.36 - 8.41 (m, 1 H) 8.86 - 8.92 (m, 1 H) 8.99 - 9.05 (m, 1 H) 10.96 - 10.99 (m, 1 H). LCMS (m/z) (M+H) = 510.1, Rt = 0.74 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.48 (s, 6 H) 3.00 - 3.16 (m, 4 H) 3.69 - 3.82 (m, 4 H) 4.17 - 4.27 (m, 1 H) 7.48 - 7.63 (m, 1 H) 7.70 - 7.81 (m,1 H) 7.87 - 7.99 (m, 1 H) 8.12 - 8.26 (m, 2 H) 8.67 - 8.78 (m, 1 H) 8.94 - 9.02 (m, 1 H) 10.87 - 10.97 (m, 1 H). LCMS (m/z) (M+H) = 500.2, Rt = 0.57 min.
-
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.75 (s, 6 H) 3.04 - 3.16 (m, 4 H) 3.66 - 3.87 (m, 4 H) 7.45 - 7.55 (m, 1 H) 7.75 - 7.79 (m, 1 H) 7.82 - 7.98 (m,2 H) 8.23 - 8.30 (m, 2 H) 8.75 - 8.83 (m, 1 H) 9.04 - 9.12 (m, 1 H) 11.01 - 11.13 (m, 1 H). LCMS (m/z) (M+H) = 509.2, Rt = 0.74 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 0.85 - 1.02 (m, 3 H) 2.26 - 2.38 (m, 1 H) 3.04 - 3.11 (m, 3 H) 3.67 - 3.81 (m, 4 H) 7.46 - 7.54 (m, 1 H) 7.75 -7.83 (m, 1 H) 7.88 - 7.92 (m, 1 H) 8.00 - 8.08 (m, 1 H) 8.13 - 8.24 (m, 2 H) 8.86 - 8.99 (m, 2 H) 10.93 - 11.02 (m, 1 H). LCMS (m/z) (M+H) = 492.2, Rt = 0.68 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 3.04 - 3.16 (m, 4 H) 3.70 - 3.72 (m, 4 H) 7.05 - 7.12 (m, 1 H) 7.44 - 7.53 (m, 1 H) 7.72 - 7.79 (m, 1 H) 7.86 -7.91 (m, 1 H) 8.02 - 8.13 (m, 2 H) 8.17 - 8.25 (m, 1 H) 8.88 - 8.97 (m, 2 H) 10.89 - 10.99 (m, 1 H). LCMS (m/z) (M+H) = 520.2, Rt = 0.77 min.
-
- To a solution of sodium hydride (4.2 equiv.) in DMA was added R-1,2-propanediol (4.0 equiv.) and the mixture was stirred for 15 min at rt. N-(6'-fluoro-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide (1.0 equiv.) was added, and the reaction was heated to 100 °C and stirred for 16 hours. The cooled mixture was quenched with water and extracted with ethyl acetate (3x). The combined organics were washed with water, brine, dried over sodium sulfate, filtered and concentrated. The residue was purified via reverse phase prep-HPLC and the pure fractions were free based and lyophilized to give (R)-N-(6'-(2-hydroxypropoxy)-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide as the major project in 10% yield. LCMS (m/z) (M+H) = 517.1, Rt = 0.69 min.
-
- To a solution of (S)-N-(6'-((1-methoxypropan-2-yl)oxy)-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide (1.0 equiv.) in DCM (0.04 M) at -78 °C was added 1M boron tribromide in DCM (1.2 equiv.) and the mixture was warmed to rt. The reaction was quenched with one drop of methanol and partitioned between DCM and water. The organic phase was dried with sodium sulfate, filtered and concentrated. The residue was purified via reverse phase HPLC to give (S)-N-(6'-((1-hydroxypropan-2-yl)oxy)-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide in 17% yield. LCMS (m/z) (M+H) = 517.1, Rt = 0.69 min.
-
- To a solution of N-(6'-fluoro-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide (1.0 equiv.) in DMF (0.25 M) was added 2-(methylamino)ethanol (3.0 equiv.) and the mixture was stirred at 90 °C for 3 days. The cooled reaction mixture was diluted with DMSO, filtered and purified via reverse phase HPLC. The pure fractions were lyophilized to give N-(6'-((2-hydroxyethyl)(methyl)amino)-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide in 12% yield. 1H NMR (400 MHz, <cd3od>) δ ppm 2.63 (s, 3 H) 3.05 - 3.13 (m, 4 H) 3.35 (s, 3 H) 3.84 - 3.89 (m, 2 H) 3.90 - 3.95 (m, 4 H) 3.96 - 4.03 (m, 2 H) 7.70 (d, J=1.96 Hz, 1 H) 7.79 (t, J=7.83 Hz, 1 H) 7.92 - 8.00 (m, 2 H) 8.28 (d, J=7.83 Hz, 1 H) 8.34 (s, 1 H) 8.44 (d, J=2.35 Hz, 1 H) 9.07 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 516.1, Rt = 0.59 min.
-
- Step 1: A solution of 5-bromo-3-fluoropicolinonitrile (1.0 equiv.), morpholine (1.1 equiv.) and DIEA (2.0 equiv.) in CAN (0.5 M) was heated to 90 °C overnight. The cooled reaction was diluted with water and filtered. The precipitate was dried to give 5-bromo-3-morpholinopicolinonitrile as a yellow crystalline solid in 87% yield. LCMS (m/z) (M+H) = 267.9/269.9, Rt = 0.79 min.
- Step 2: A solution of 5-bromo-3-morpholinopicolinonitrile (1.0 equiv.) in ethanol (1.0 M) was treated with 6M aqueous sodium hydroxide (10.0 equiv.) and stirred at 85 °C for 4 hours. The volatiles were removed under vacuo and the mixture was acidified to pH =4 with 2M HCl. Acetonitrile was added to this mixture and lyophilized to give 5-bromo-3-morpholinopicolinic acid as a yellow solid in 50% yield. LCMS (m/z) (M+H) = 286.9/288.9, Rt = 0.41 min.
- Step 3: To a solution of 5-bromo-3-morpholinopicolinic acid (1.0 equiv.), EDC (1.1 equiv.) and HOAt (1.1 equiv.) and methylamine hydrochloride (1.2 equiv.) in DMF (0.3M) was added DIEA (2.2 equiv.) and the mixture was stirred overnight at rt. The solution was diluted with water and extracted with ethyl acetate. The combined extracts were washed with sat. sodium bicarbonate, dried over sodium sulfate, filtered and concentrated to give 5-bromo-N-methyl-3-morpholinopicolinamide in 58% yield as a colorless residue. LCMS (m/z) (M+H) = 299.9/301.9, Rt = 0.47 min.
- Note: the next several examples were made via a last-step Suzuki coupling.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.05 (t, J=18.78 Hz, 3 H) 2.32 (s, 3 H) 3.03 (s, 3 H) 3.91 - 4.01 (m, 4 H) 7.41 (d, J=8.22 Hz, 1 H) 7.69 (dd, J=8.22, 1.96 Hz, 1 H) 7.78 (d, J=2.35 Hz, 1 H) 7.93 (s, 1 H) 7.98 (d, J=4.70 Hz, 1 H) 8.20 (s, 1 H) 8.43 (s, 1 H) 8.83 (d, J=5.09 Hz, 1 H). LCMS (m/z) (M+H) = 496.2, Rt = 0.69 min.
-
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.10 - 1.21 (m, 3 H) 2.17-2.27 (m, 4 H) 3.03 - 3.11 (m, 4 H) 3.67 - 3.79 (m, 4 H) 7.07 - 7.13 (m, 1 H) 7.26 -7.34 (m, 1 H) 7.57 - 7.77 (m, 4 H) 8.16 - 8.25 (m, 1 H) 8.47 - 8.53 (m, 1 H) 8.93 - 9.01 (m, 1 H) 10.71 - 10.77 (m, 1 H). LCMS (m/z) (M+H) = 527.1, Rt = 0.71 min.
-
- 1H NMR (500 MHz, DMSO-d6) δ ppm 1.14 - 1.25 (m, 3 H) 1.65 - 1.77 (m, 6 H) 2.45 (s, 3 H) 3.04 - 3.16 (m, 4 H) 3.69 - 3.80 (m, 4 H) 3.98 - 4.08 (m, 1 H) 4.11 - 4.17 (m, 1 H) 4.20 - 4.28 (m, 2 H) 4.76 - 4.91 (m, 2 H) 7.15 - 7.28 (m, 2 H) 7.73 - 7.80 (m, 2 H) 7.83 - 7.89 (m, 2 H) 8.00 - 8.12 (m,4 H) 8.74 - 8.79 (m, 1 H) 8.85 - 8.93 (m, 1 H) 10.72 - 10.80 (m, 1 H). LCMS (m/z) (M+H) = 510.2, Rt = 0.62 min.
-
- A solution of N-(3-(2-chloro-6-morpholinopyridin-4-yl)-4-methylphenyl)-2-(trifluoromethyl)isonicotinamide (1.0 equiv.), (R)-1-aminopropan-2-ol (2.0 equiv.), Pd-BrettPhos (0.1 equiv.) and cesium carbonate (1.5 equiv.) in t-BuOH (0.5M) was purged with Argon and heated to 90 °C overnight. The reaction was cooled to rt, diluted with aqueous sodium bicarbonate, extracted with ethyl acetate, dried over magnesium sulfate, filtered and concentrated. The residue was diluted with DMSO and purified via reverse phase HPLC to give (R)-N-(3-(2-((2-hydroxypropyl)amino)-6-morpholinopyridin-4-yl)-4-methylphenyl)-2-(trifluoromethyl)isonicotinamide in 37% yield. LCMS (m/z) (M+H) = 516.1, Rt = 0.77 min.
-
- Sodium hydride (3.1 equiv.) was added to dioxane (0.15 M) at rt. (1,4-dioxan-2-yl)methanol (3.0 equiv.) was added and the mixture was stirred for 30 min. N-(6'-fluoro-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide (1.0 equiv.) was added and the reaction was stirred at 105 °C for 3 hours. The cooled reaction mixture was poured into water and extracted with ethyl acetate. The combined organics were washed with brine, dried over sodium sulfate, filtered and concentrated. The mixture was purified via flash chromatography (0-10% methanol/DCM) to give N-(6'-((1,4-dioxan-2-yl)methoxy)-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide in 49% yield. 1H NMR (400 MHz, Methanol-d 4) δ 8.80 (d, J = 2.5 Hz, 1H), 8.21 (dt, J = 1.8, 1.1 Hz, 1H), 8.15 (ddd, J = 8.0, 1.4, 0.7 Hz, 1H), 8.06 (d, J = 2.5 Hz, 1H), 7.82 (ddt, J = 7.8, 1.8, 1.0 Hz, 1H), 7.71 - 7.61 (m, 2H), 7.16 (d, J = 2.1 Hz, 1H), 4.31 (d, J = 4.9 Hz, 2H), 3.91 (dtd, J = 9.9, 4.9, 2.6 Hz, 1H), 3.86 - 3.59 (m, 9H), 3.58 - 3.44 (m, 2H), 3.15 - 2.98 (m, 4H), 2.42 (s, 3H). LCMS (m/z) (M+H) = 559.2, Rt = 0.77 min.
-
- Step 1: To a stirred solution of bis(2-bromoethyl) ether (2.0 equiv.) in DMF at 0 °C was slowly added sodium hydride (4.0 equiv.) and the mixture was allowed to warm to rt over 15 min followed by the addition of 5-bromo-2-methylpyridin-3-amine (1.0 equiv.) The mixture was heated to 90 °C and stirred for 48 hours. Upon cooling to rt, the mixture was poured onto ice water and extracted with ethyl acetate. The organic layer was dried over magnesium sulfate, filtered and concentrated. The residue was purified via silica gel chromatography to give 4-(5-bromo-2-methylpyridin-3-yl)morpholine in 63% yield. LCMS (m/z) (M+H) = 258.9, Rt = 0.43 min.
- Step 2: A solution of 4-(5-bromo-2-methylpyridin-3-yl)morpholine (1.0 equiv.) in THF under argon was cooled to - 78 °C and treated with LDA (2.0 equiv.). The deep red solution was stirred for 1 hour at - 78 °C at which time dihydro-2H-pyran-4(3H)-one (2.2 equiv.) was added dropwise. The mixture was stirred for 1 hour at - 78 °C, then warmed to rt and quenched with ammnoium chloride (aq.), extracted with ethyl acetate (3x), dried, filtered and concentrated to give a crude oil. The residue was purified via silica gel chromatography (0-100% ethyl acetate/heptanes) to give 4-((5-bromo-3-morpholinopyridin-2-yl)methyl)tetrahydro-2H-pyran-4-ol in 94% yield. LCMS (m/z) (M+H) = 357.0/359.0, Rt = 0.53 min.
- Step 3: To a solution of N-(6-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-3-yl)-3-(trifluoromethyl)benzamide (1.5 equiv.) and 4-((5-bromo-3-morpholinopyridin-2-yl)methyl)tetrahydro-2H-pyran-4-ol (1.0 equiv.) in DME (0.1 M) was added PdCl2(dppf)-DCM adduct (0.1 equiv.) and sodium carbonate (3.0 equiv., 2M aqueous sln) and the reaction was purged with nitrogen. The mixture was heated in the microwave at 120 °C for 30 mins, then quenched with sat. sodium bicarbonate, extracted with ethyl acetate (3x), dried over magnesium sulfate, filtered and concentrated. The residue was dissolved in DMSO and purified via reverse phase HPLC to give N-(6'-((4-hydroxytetrahydro-2H-pyran-4-yl)methyl)-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide in 24% yield. 1H NMR (400 MHz, Methanol-d 4) δ ppm 9.13 (d, J = 2.4 Hz, 1H), 8.51 (dd, J = 9.7, 2.2 Hz, 2H), 8.32 (dq, J = 1.8, 0.9 Hz, 1H), 8.30 - 8.23 (m, 1H), 8.12 (d, J = 1.9 Hz, 1H), 7.95 (ddt, J = 7.8, 1.8, 1.0 Hz, 1H), 7.78 (ddt, J = 7.9, 7.2, 0.8 Hz, 1H), 3.93 - 3.86 (m, 4H), 3.86 - 3.71 (m, 4H), 3.26 (s, 2H), 3.11 - 3.04 (m, 4H), 2.63 (s, 3H), 1.81 (ddd, J = 14.4, 10.1, 4.8 Hz, 2H), 1.56 (d, J = 13.8 Hz, 2H). LCMS (m/z) (M+H) = 557.2, Rt = 0.64 min.
-
- To a solution of N-(6'-((4-hydroxytetrahydro-2H-pyran-4-yl)methyl)-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide (1.0 equiv.) in DCM (0.1 M) at - 78 °C under argon was added DAST (1.3 equiv.) and the solution was stirred at - 78 °C for 2 hours. Quenched by the addition of sat. sodium bicarbonate, extracted with DCM (3x), the organic layer was dried over magnesium sulfate, filtered and concentrated. The residue was purified via reverse phase prep-HPLC and the pure fractions were lyophilized to give N-(6'-((dihydro-2H-pyran-4(3H)-ylidene)methyl)-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide in 42% yield. 1H NMR (400 MHz, Methanol-d 4) δ 9.12 (t, J = 1.9 Hz, 1H), 8.48 - 8.42 (m, 2H), 8.32 (dd, J = 1.7, 0.9 Hz, 1H), 8.30 - 8.23 (m, 1H), 8.02 - 7.91 (m, 2H), 7.82 - 7.73 (m, 1H), 5.47 (t, J = 1.5 Hz, 1H), 4.12 (q, J = 2.4 Hz, 2H), 3.91 - 3.84 (m, 5H), 3.84 - 3.75 (m, 4H), 3.09 - 3.02 (m, 4H), 2.62 (s, 3H), 2.14 (s, 2H). LCMS (m/z) (M+H) = 539.2, Rt = 0.69 min.
-
- Step 1: To a soluton of ethylene glycol (5.0 equiv.) in dioxane and DMF (4:1, 0.08 M) was added sodium hydride (5.0 equiv.) and the mixture was stirred for 15 min at rt. 4-(5-bromo-2-fluoropyridin-3-yl)morpholine (1.0 equiv.) was then added, and the reaction was heated to 90 °C and stirred overnight. The mixture was carefully poured onto water and extracted three times with ethyl acetate. The combined organics were washed with water, brine, dried over magnesium sulfate, filtered and concentrated. The crude residue was purified via silica gel chromatography (0-100% ethyl acetate/heptanes) to give 2-((5-bromo-3-morpholinopyridin-2-yl)oxy)ethanol as a yellow oil in 54% yield. LCMS (m/z) (M+H) = 302.9/304.9, Rt = 0.63 min.
- Step 2: A solution of 2-((5-bromo-3-morpholinopyridin-2-yl)oxy)ethanol (1.0 equiv.), 4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline (1.9 equiv.), PdCl2(dppf)-DCM (0.1 equiv.), and sodium carbonate (4.0 equiv, 2M aqueous sln) was heated at 80 °C overnight. The cooled reaction was partitioned between water and ethyl acetate, the organic phase was dried with sodium sulfate, filtered and concentrated. The crude material was purified via silica gel chromatography (ISCO, eluting with 0-10% methanol in DCM) and the pure fractions were concentrated to give 2-((5-(5-amino-2-methylphenyl)-3-morpholinopyridin-2-yl)oxy)ethanol as a brown foam in 56% yield. LCMS (m/z) (M+H) = 330.0, Rt = 0.46 min.
- The compounds listed below were prepared using methods similar to those described for the preparation of Example 919 above using the appropriate starting materials.
-
-
-
-
-
-
-
- Step 1: Sodium hydride (3.1 equiv.) was added to dioxane (0.09 M) at rt. (R)-1-aminopropan-2-ol (3.0 equiv.) was added, and the mixture was stirred for 30 min. N-(6'-fluoro-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide (1.0 equiv.) was added and the reaction was stirred at rt for 18 hours. Upon overnight stirring at rt, the reaction was heated to 60 °C for 5 hours. The cooled reaction mixture was poured into water and extracted with ethyl acetate (3x). The combined organics were washed with brine, dried over sodium sulfate, filtered and concentrated. The mixture was purified by silica gel chromatography (0-10% methanol:DCM) and the pure fractions were concentrated to give (R)-N-(6'-((1-aminopropan-2-yl)oxy)-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide in 20% yield. LCMS (m/z) (M+H) = 516.1, Rt = 0.64 min.
- Step 2: (R)-N-(6'-((1-aminopropan-2-yl)oxy)-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide (1.0 equiv.) in DCM (0.03 M) followed by methyl chloroformate (1.2 equiv.) and the reaction was stirred at rt for 2 hours. Quenched by the addition of sat. sodium bicarbonate, extracted with DCM (3x), dried over magnesium sulfate, filtered and concentrated. The residue was redissolved in DMSO and purified via reverse phase prep-HPLC to give (R)-methyl (2-((2'-methyl-5-morpholino-5'-(3-(trifluoromethyl)benzamido)-[3,3'-bipyridin]-6-yl)oxy)propyl)carbamate in 32% yield. 1H NMR (400 MHz, Methanol-d 4) δ 9.36 (d, J = 2.4 Hz, 1H), 8.46 (d, J = 2.4 Hz, 1H), 8.34 (dt, J = 1.7, 1.0 Hz, 1H), 8.32 - 8.24 (m, 1H), 8.00 - 7.92 (m, 1H), 7.87 (d, J = 2.2 Hz, 1H), 7.83 - 7.74 (m, 1H), 7.31 (d, J = 2.2 Hz, 1H), 5.44 (td, J = 6.6, 4.5 Hz, 1H), 3.86 (t, J = 4.7 Hz, 4H), 3.62 (s, 3H), 3.53 - 3.36 (m, 2H), 3.21 - 3.07 (m, 4H), 2.70 (s, 3H), 1.37 (d, J = 6.3 Hz, 3H). LCMS (m/z) (M+H) = 574.2, Rt = 0.77 min.
-
- Step 1: 4-(4-bromo-6-chloropyridin-2-yl)morpholine (1.0 equiv.) was dissolved in acetonitrile (0.1 M). Selectfluor (1.1 equiv.) was added at rt and stirred for 18 hours. The reaction was diluted with ethyl acetate and washed with water, brine, dried over sodium sulfate, filtered and concentrated. The residue was purified by silica gel chromatography (ISCO, 0-10% ethyl acetate/heptanes) to give 4-(4-bromo-6-chloro-3-fluoropyridin-2-yl)morpholine in 42% yield and 4-(4-bromo-6-chloro-5-fluoropyridin-2-yl)morpholine in 14% yield. LCMS (m/z) (M+H) = 294.7, Rt = 0.95 and 0.99 min.
- Step 2: To a solution of 4-(4-bromo-6-chloro-3-fluoropyridin-2-yl)morpholine (1.0 euqiv.) and 6-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-3-amine (1.7 equiv.) in DME (0.04 M) and sodium carbonate (2M, 3.0 equiv.) was added Pd(PPh3)4 (0.03 equiv.) and the reaction was heated at 100 °C for 2 hours. The mixture was poured onto ice water and extracted with ethyl acetate. The combined organics were washed with brine, dried over magnesium sulfate, filtered and concentrated. The mixture was purified via silica gel chromatography (10% methanol:ethyl acetate:heptanes) to give 6'-chloro-3'-fluoro-2-methyl-2'-morpholino-[3,4'-bipyridin]-5-amine as a yellow solid in 39% yield. 1H NMR (400 MHz, <cdcl3>) δ ppm 2.32 (s, 3 H) 3.52 - 3.59 (m, 4 H) 3.66 (br. s., 2 H) 3.80 - 3.85 (m, 4 H) 6.63 (d, J=3.91 Hz, 1 H) 6.79 - 6.84 (m, 1 H) 8.08 (d, J=2.74 Hz, 1 H)
-
- To a solution of 4-(4-bromo-6-chloro-5-fluoropyridin-2-yl)morpholine
(1.0 equiv.) and 6-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-3-amine (1.4 equiv.) in DME (0.02 M)) and Na2CO3 (2 M aq.) (3.0 equiv.) was added Pd(PPh3)4 and heated (thermally) at 100 °C for 2 h. LCMS shows complete consumption of starting material with fairly clean conversion to desired product. The mixture was poured onto ice-water and extracted with EtOAc (3 X). The combined organics were washed with brine, dried (MgSO4) and concentrated. The mixture was adsorbed onto Celite and purified by ISCO flash column chromatography (silica gel, 10% methanol in EtOAc:heptane). Product fractions eluted around 40% EtOAc and were concentrated to give 2'-chloro-3'-fluoro-2-methyl-6'-morpholino-[3,4'-bipyridin]-5-amine in 77% yield as a pale yellow solid. LCMS (m/z) (M+H) = 322.9, Rt = 0.62 min. -
- Step 1: To a solution of 4-(4-bromo-6-chloro-5-fluoropyridin-2-yl)morpholine (1.0 equiv.) and 4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline (1.2 equiv.) in DME (0.1 M) and Na2CO3 (2 M aq.) (3.0 equiv.) was added Pd(PPh3)4 and heated (thermally) at 100 °C for 2 h. LCMS shows complete consumption of starting material with fairly clean conversion to desired product. The mixture was poured onto ice-water and extracted with EtOAc (3 X). The combined organics were washed with brine, dried (MgSO4) and concentrated. The mixture was adsorbed onto Celite and purified by ISCO flash column chromatography (silica gel, 10% methanol in EtOAc:heptane). Product fractions eluted around 40% EtOAc and were concentrated to give 3-(2-chloro-3-fluoro-6-morpholinopyridin-4-yl)-4-methylaniline in 87% yield. LCMS (m/z) (M+H) = 322, Rt = 0.62 min.
- Step 2: In a microwave vial was added 3-(2-chloro-3-fluoro-6-morpholinopyridin-4-yl)-4-methylaniline (1.0 equiv.), 2-aminoethanol (50 equiv.), DIPEA (2.0 equiv.) in NMP (0.2). The vial was sealed with a crimp top. The reaction was then heated to 250 °C for 30 min heated by microwave. LC-MS showed completion of the reaction. The reaction mixture was diluted with ethyl acetate, washed with water, brine then dried over sodium sulfate. Concentrated to yield crude. Purified by 10% methanol in ethyl acetate to yield 2-((4-(5-amino-2-methylphenyl)-3-fluoro-6-morpholinopyridin-2-yl)amino)ethanol in 43% yield. LCMS (m/z) (M+H) = 347.0, Rt = 0.50 min.
-
- 6-(trifluoromethyl)pyridazine-4-carboxylic acid (1.2 equiv.), 2-((5-amino-5'-fluoro-2-methyl-6'-morpholino-[3,4'-bipyridin]-2'-yl)amino)ethanol (1.0 equiv.) and DIPEA (1.5 equiv.) were added into DCM (0.09 M). 2,4,6-tripropyl-1,3,5,2,4,6-trioxatriphosphinane 2,4,6-trioxide (1.3 equiv.) was added and the mixture was stirred at rt over the weekend. The reaction mixture was purified directly via silica gel chromatography followed by neutral reverse phase prep-HPLC and the pure fractions were lyophilized to give N-(3'-fluoro-6'-((2-hydroxyethyl)amino)-2-methyl-2'-morpholino-[3,4'-bipyridin]-5-yl)-6-(trifluoromethyl)pyridazine-4-carboxamide in 8% yield. 1H NMR (400 MHz, <cdcl3>) δ ppm 2.48 (s, 3 H) 3.39 - 3.54 (m, 7 H) 3.73 - 3.88 (m, 7 H) 4.61 - 4.71 (m, 1 H) 5.76 (d, J=2.74 Hz, 1 H) 8.08 (d, J=1.96 Hz, 1 H) 8.29 (d, J=1.96 Hz, 1 H) 8.70 (d, J=2.35 Hz, 1 H) 9.83 (s, 1 H). LCMS (m/z) (M+H) = 522.1, Rt = 0.62 min.
- The compounds listed below were prepared using methods similar to those described for the preparation of Example 1004 above using the appropriate starting materials.
-
- 1H NMR (500 MHz, CHLOROFORM-d) δ ppm 2.26 (s, 3 H) 3.36 - 3.43 (m, 4 H) 3.70 (m,, 3 H) 3.80 - 3.86 (m, 4 H) 3.86 - 3.92 (m, 2 H) 5.03 (br. s., 1 H) 5.72 (br. s., 1 H) 7.33 (d, J=8.20 Hz, 1 H) 7.52 (br. s., 1 H) 7.61 (d, J=8.20 Hz, 1 H) 7.94 (d, J=2.84 Hz, 1 H) 8.03 (br. s., 1 H) 8.13 (s, 1 H) 8.94 (d, J=4.73 Hz, 1 H). LCMS (m/z) (M+H) = 520.1, Rt = 0.86 min.
-
- 1H NMR (400 MHz, <cdcl3>) δ ppm 2.23 (br. s., 3 H) 3.35 (br. s., 4 H) 3.66 (br. s., 2 H) 3.76 - 3.88 (m, 8 H) 5.01 (br. s., 1 H) 5.66 (br. s., 1 H) 7.30 (d, J=7.83 Hz, 1 H) 7.45 (br. s., 1 H) 7.62 (d, J=7.43 Hz, 1 H) 8.28 (br. s., 1 H) 8.64 (br. s., 1 H) 9.78 (br. s., 1 H). LCMS (m/z) (M+H) = 521.1, Rt = 0.81 min.
-
- 1H NMR (500 MHz, CHLOROFORM-d) δ ppm 2.19 - 2.31 (m, 3 H) 2.97 - 3.29 (m, 1 H) 3.36 - 3.55 (m, 6 H) 3.76 - 3.92 (m, 6 H) 4.64 (br. s., 1 H) 7.29 - 7.39 (m, 2 H) 7.51 (br. s., 1 H) 7.58 (d, J=8.20 Hz, 1 H) 7.94 (d, J=3.47 Hz, 1 H) 8.13 (br. s., 2 H) 8.93 (d, J=4.41 Hz, 1 H). LCMS (m/z) (M+H) = 519.9, Rt = 0.83 min.
-
- 1H NMR (500 MHz, CHLOROFORM-d) δ ppm 2.24 (s, 3 H) 3.18 (br. s., 1 H) 3.38 - 3.53 (m, 6 H) 3.76 - 3.87 (m, 6 H) 4.64 (br. s., 1 H) 5.79 (d, J=2.84 Hz, 1 H) 6.55 - 6.89 (m, 1 H) 7.31 (s, 1 H) 7.52 (s, 1 H) 7.58 (d, J=8.20 Hz, 1 H) 7.87 (d, J=4.41 Hz, 1 H) 8.04 (s, 1 H) 8.17 (s, 1 H) 8.84 (d, J=5.04 Hz, 1 H). LCMS (m/z) (M+H) = 502.1, Rt = 0.76 min.
-
- 1H NMR (500 MHz, CHLOROFORM-d) δ ppm 1.61 (s, 6 H) 2.24 (s, 3 H) 3.13 - 3.31 (m, 1 H) 3.39 - 3.56 (m, 6 H) 3.83 (d, J=2.84 Hz, 6 H) 4.48 - 4.78 (m, 2 H) 5.78 (br. s., 1 H) 7.29 - 7.31 (m, 1 H) 7.51 (s, 1 H) 7.55 - 7.65 (m, 2 H) 7.87 (s, 1 H) 8.16 (s, 1 H) 8.68 (d, J=5.04 Hz, 1 H). LCMS (m/z) (M+H) = 510.2, Rt = 0.62 min.
-
- 1H NMR (500 MHz, CHLOROFORM-d) δ ppm 1.79 - 1.96 (m, 4 H) 2.25 (d, J=2.84 Hz, 3 H) 3.04 (br. s., 1 H) 3.41 - 3.56 (m, 6 H) 3.80 - 3.92 (m, 6 H) 4.62 (br. s., 1 H) 5.84 (d, J=3.15 Hz, 1 H) 7.32 (d, J=3.15 Hz, 1 H) 7.54 (br. s., 1 H) 7.58 - 7.71 (m, 2 H) 7.94 (br. s., 1 H) 8.04 (br. s., 1 H) 8.60 - 8.71 (m, 1 H). LCMS (m/z) (M+H) = 517.1, Rt = 0.79 min.
-
- 1H NMR (500 MHz, CHLOROFORM-d) δ ppm 1.96 (s, 6 H) 2.26 (s, 3 H) 2.99 - 3.07 (m, 1 H) 3.46 - 3.52 (m, 6 H) 3.82 - 3.87 (m, 6 H) 4.58 - 4.68 (m, 1 H) 5.77 - 5.85 (m, 1 H) 7.33 (d, J=8.20 Hz, 1 H) 7.53 (s, 1 H) 7.59 - 7.66 (m, 1 H) 8.17 (s, 1 H) 8.20 - 8.27 (m, 1 H) 9.62 (s, 1 H). LCMS (m/z) (M+H) = 520.1, Rt = 0.74 min.
-
- 1H NMR (400 MHz, <cdcl3>) δ ppm 2.23 (s, 3 H) 3.43 - 3.50 (m, 7 H) 3.76 - 3.88 (m, 7 H) 5.76 (d, J=2.35 Hz, 1 H) 7.30 (d, J=8.61 Hz, 1 H) 7.47 (s, 1 H) 7.60 (d, J=7.43 Hz, 1 H) 8.26 (s, 1 H) 8.40 (s, 1 H) 9.78 (s, 1 H). LCMS (m/z) (M+H) = 521.1, Rt = 0.84 min.
-
- 1H NMR (500 MHz, CHLOROFORM-d) δ ppm 2.20 - 2.32 (m, 3 H) 3.04 (br. s., 1 H) 3.33 - 3.46 (m, 4 H) 3.60 - 3.73 (m, 2 H) 3.81 - 3.93 (m, 6 H) 4.84 (br. s., 1 H) 7.34 - 7.42 (m, 1 H) 7.57 (br. s., 1 H) 7.63 (d, J=7.88 Hz, 1 H) 7.94 (d, J=3.47 Hz, 1 H) 8.04 (br. s., 1 H) 8.12 (br. s., 1 H) 8.94 (d, J=4.41 Hz, 1 H). LCMS (m/z) (M+H) = 538.1, Rt = 0.94 min.
-
- 1H NMR (500 MHz, CHLOROFORM-d) δ ppm 2.17 - 2.30 (m, 3 H) 3.19 (br. s., 1 H) 3.37 (d, J=3.78 Hz, 4 H) 3.55 - 3.73 (m, 2 H) 3.80 - 3.90 (m, 6 H) 4.84 (br. s., 1 H) 7.32 - 7.41 (m, 1 H) 7.47 - 7.56 (m, 1 H) 7.60 - 7.71 (m, 1 H) 8.23 - 8.34 (m, 1 H) 8.55 - 8.66 (m, 1 H) 9.75 - 9.84 (m, 1 H). LCMS (m/z) (M+H) = 539.1, Rt = 0.90 min.
-
- 1H NMR (500 MHz, CHLOROFORM-d) δ ppm 2.26 (s, 3 H) 3.35 - 3.44 (m, 4 H) 3.70 (br. s., 2 H) 3.80 - 3.86 (m, 4 H) 3.87 - 3.93 (m, 2 H) 4.96 - 5.11 (m, 1 H) 5.73 (br. s., 1 H) 6.60 - 6.89 (m, 1 H) 7.32 - 7.36 (m, 1 H) 7.54 (br. s., 1 H) 7.62 (d, J=8.20 Hz, 1 H) 7.88 (d, J=4.10 Hz, 1 H) 7.95 (br. s., 1 H) 8.04 (s, 1 H) 8.87 (d, J=5.04 Hz, 1 H). LCMS (m/z) (M+H) = 502.1, Rt = 0.79 min.
-
- Step 1: To a degassed solution of 4-(6-chloro-3-methoxypyridazin-4-yl)morpholine (1.0 equiv.), methyl 4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzoate (2.0 equiv.) and X-Phos (0.1 equiv.) in THF (0.3 M) was added K3PO4 (0.5 M, 2.0 equiv.). The reaction was heated at 40 °C overnight then partitioned between ethyl acetate and water. The aqueous phase was extracted with ethyl acetate (2x), the combined organics were dried over magnesium sulfate, filtered and concentrated. The crude was purified via silica gel chromatography (ISCO, 0-80% ethyl acetate/heptanes) and the pure fractions were concentrated to give methyl 3-(6-methoxy-5-morpholinopyridazin-3-yl)-4-methylbenzoate as a yellow oil in 55% yield. LCMS (m/z) (M+H) = 344, Rt = 0.58 min.
- Step 2: To a solution of methyl 3-(6-methoxy-5-morpholinopyridazin-3-yl)-4-methylbenzoate (1.0 equiv.) in THF (0.13 M) was added lithium hydroxide (2.5 equiv., 1M aqueous solution) and the reaction was stirred at rt overnight. The solution was neutralized with 1M HCI and the volatiles were removed under reduced pressure. The product was extracted with ethyl acetate, dried over magnesium sulfate, filtered and concentrated to give 3-(6-methoxy-5-morpholinopyridazin-3-yl)-4-methylbenzoic acid in 70% yield. LCMS (m/z) (M+H) = 330.0, Rt = 0.48 min.
-
- To a stirred solution of 3-(6-methoxy-5-morpholinopyridazin-3-yl)-4-methylbenzoic acid (1.0 equiv.) in DCM (0.06 M) at 0 °C was added 1-chloro-N,N,2-trimethylprop-1-en-1-amine (1.2 equiv.) and the mixture was allowed to stir at 0 °C for 1 hour. This solution was added to another solution containing 2-(trifluoromethyl)pyridin-4-amine (1.3 equiv.) and TEA (3.0 equiv.) in DCM and the reaction was allowed to warm to rt and stirred for 1 hour. The mixture was concentrated to dryness, dissolved in DMSO and purified via reverse phase prep-HPLC. The pure fractions were lyophilized to give 3-(6-methoxy-5-morpholinopyridazin-3-yl)-4-methyl-N-(2-(trifluoromethyl)pyridin-4-yl)benzamide in 23% yield. 1H NMR (400 MHz, <cd3od>) δ ppm 2.45 (s, 3 H) 3.83 - 3.90 (m, 4 H) 3.97 (br. s., 4 H) 4.18 (s, 3 H) 7.32 (s, 1 H) 7.65 (d, J=8.22 Hz, 1 H) 8.02 (dd, J=5.48, 1.96 Hz, 1 H) 8.10 (d, J=1.57 Hz, 1 H) 8.16 (dd, J=7.83, 1.96 Hz, 1 H) 8.30 (d, J=1.56 Hz, 1 H) 8.61 (d, J=5.87 Hz, 1 H). LCMS (m/z) (M+H) = 474.0, Rt = 0.71 min.
- The compounds listed below were prepared using methods similar to those described for the preparation of Example 1017 above using the appropriate starting materials.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.99 (t, J=18.59 Hz, 3 H) 2.45 (s, 3 H) 3.84 - 3.89 (m, 4 H) 3.98 (br. s., 4 H) 4.18 (s, 3 H) 7.32 (s, 1 H) 7.65 (d, J=8.22 Hz, 1 H) 7.94 (dd, J=5.87, 1.96 Hz, 1 H) 8.10 (d, J=1.96 Hz, 1 H) 8.14 (d, J=1.96 Hz, 1 H) 8.14 - 8.17 (m, 1 H) 8.53 (d, J=5.48 Hz, 1 H). LCMS (m/z) (M+H) = 470.1, Rt = 0.66 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.51 - 1.57 (m, 3 H) 1.99 (t, J=18.78 Hz, 3 H) 2.45 (s, 3 H) 3.84 - 3.91 (m, 4 H) 3.99 (br. s., 4 H) 4.59 (q, J=7.04 Hz, 2 H) 7.32 (s, 1 H) 7.65 (d, J=8.22 Hz, 1 H) 7.94 (dd, J=5.87, 1.96 Hz, 1 H) 8.09 (d, J=1.56 Hz, 1 H) 8.13 - 8.17 (m, 2 H) 8.53 (d, J=5.87 Hz, 1 H). LCMS (m/z) (M+H) = 484.3, Rt = 0.71 min.
-
- Step 1: To a solution of sodium hydride (4.2 equiv.) in DMAC at 90 °C was added R-1-methoxy-2-propanol (4.0 equiv.) and the mixture was stirred for 15 min. N-(6'-fluoro-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide (1.0 equiv.) was added and the reaction was heated at 90 °C for 5 hours. The mixture was cooled and quenched with water and extracted with ethyl acetate. The combined organics were washed with water, brine, dried over sodium sulfte, filtered and concentrated. The crude residue was purified via silica gel chromatography eluting with 0-100% ethyl acetate in heptanes to give (R)-N-(6'-((1-methoxypropan-2-yl)oxy)-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide as the desired product. LCMS (m/z) (M+H) = 531.2 Rt = 0.78 min.
- Step 2: To a solution of (R)-N-(6'-((1-methoxypropan-2-yl)oxy)-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide (1.0 equiv.) in DCM (0.06 M) at 90 °C was added boron tribromide in DCM (1M, 1.0 equiv.) and the mixture was stirred at 90 °C for 16 hours. Upon cooling to rt, the reaction was quenched with methanol and concentrated to dryness. The crude residue was purified via reverse phase prep-HPLC and the pure fractions were lyophilized to give (R)-N-(6'-((1-hydroxypropan-2-yl)oxy)-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide. LCMS (m/z) (M+H) = 517.3 Rt = 0.71 min.
-
- Step 1: To a solution of sodium hydride (4.2 equiv.) in dioxane (0.02 M) at 100 °C was added (S)-2-methoxypropan-1-ol (4.0 equiv.) and the mixture was stirred for 15 min. N-(6'-fluoro-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide (1.0 equiv.) was added and the reaction was heated at 100 °C for 4 hours. The mixture was cooled and quenched with water and extracted with ethyl acetate. The combined organics were washed with water, brine, dried over sodium sulfte, filtered and concentrated. The crude residue was purified via silica gel chromatography eluting with 0-100% ethyl acetate in heptanes to (S)-N-(6'-(2-methoxypropoxy)-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide as the desired product in 44% yield. LCMS (m/z) (M+H) = 531.2 Rt = 0.77 min.
- Step 2: To a solution of (S)-N-(6'-(2-methoxypropoxy)-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide (1.0 equiv.) in DCM (0.05 M) was added boron tribromide in DCM (1M, 1.2 equiv.) and the mixture was stirred at rt for 30 mins. The reaction was quenched with methanol and concentrated to dryness. The crude residue was purified via reverse phase prep-HPLC and the pure fractions were lyophilized to give (S)-N-(6'-(2-hydroxypropoxy)-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide in 9% yield. 1H NMR (400 MHz, <dmso>) δ ppm 1.07 - 1.18 (m, 3 H) 2.45 - 2.46 (m, 3 H) 2.99 - 3.10 (m, 4 H) 3.63 - 3.71 (m, 5 H) 4.03 - 4.26 (m, 5 H) 7.13 - 7.24 (m, 1 H) 7.72 - 7.82 (m, 2 H) 7.92 - 8.01 (m, 1 H) 8.10 - 8.17 (m, 1 H) 8.21 - 8.32 (m, 2 H) 8.90 - 8.98 (m, 1 H) 10.76 - 10.83 (m, 1 H). LCMS (m/z) (M+H) = 517.2, Rt = 0.69 min.
-
- Step 1: To a solution of 2,4,6-trichloropyrimidine (1.0 equiv.) in dioxane (0.36 M) at 0 °C was added DIEA (1.1 equiv.) and (R)-1-aminopropan-2-ol (1.1 equiv.) dropwise. The reaction was stirred at rt for 2 hours at which point, two isomeric products were observed by TLC. The dioxane was evaporated in vacuo and the residue was partitioned between water and DCM. The organic layer was separated and the aqueous layer was further extracted with DCM. The combined organics were dried over sodium sulfate, filtered and concentrated in vacuo. The crude was purified via silica gel chromatography (ISCO, 0-60% ethyl acetate in heptanes) to give (R)-1-((4,6-dichloropyrimidin-2-yl)amino)propan-2-ol and (R)-1-((4,6-dichloropyrimidin-2-yl)amino)propan-2-ol as white solids in 41% and 42% yields respectively. 1H NMR (400 MHz, <dmso>) δ ppm 1.05 (d, J=6.26 Hz, 3 H) 3.08 - 3.27 (m, 2 H) 3.76 (spt, J=6.00 Hz, 1 H) 4.71 (d, J=5.09 Hz, 1 H) 6.86 (s, 1 H) 8.05 (t, J=5.67 Hz, 1 H) and 1H NMR (400 MHz, <dmso>) δ ppm 1.07 (d, J=6.26 Hz, 3 H) 3.05 - 3.30 (m, 2 H) 3.75 (dq, J=11.44, 5.71 Hz, 1 H) 4.84 (d, J=4.70 Hz, 1 H) 6.60 (s, 1 H) 8.22 (d, J=5.48 Hz, 1 H).
- Step 2: To a solution of (R)-1-((2,6-dichloropyrimidin-4-yl)amino)propan-2-ol (1.0 equiv.) in dioxane (0.2 M) was added DIEA (1.5 equiv.) and morpholine (1.8 equiv.) and the reaction was heated to 70 °C for 5 hours. The precipitate was filtered and the dioxane was evaporated in vacuo. The crude solid was taken up in DCM and washed with water. The combined organics were dried over sodium sulfate, filtered and concentrated to give (R)-1-((6-chloro-2-morpholinopyrimidin-4-yl)amino)propan-2-ol in 93% yield. 1H NMR (400 MHz, <cdcl3>) δ ppm 1.24 (d, J=6.26 Hz, 3 H) 3.26 (dt, J=13.21, 6.50 Hz, 1 H) 3.44 - 3.57 (m, 1 H) 3.69 - 3.79 (m, 9 H) 4.01 (br. s., 1 H) 5.04 (br. s., 1 H) 5.75 (s, 1 H). LCMS (m/z) (M+H) = 273, 275; Rt = 0.52 min.
- Step 3: To a degassed solution of (R)-1-((6-chloro-2-morpholinopyrimidin-4-yl)amino)propan-2-ol (1.0 equiv.) and 4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline (1.3 equiv.) in DME and 2M sodium carbonate (3:1, 0.2 M) was added PdCl2(dppf)-DCM adduct (0.1 equiv.) and the reaction was heated to 70 °C for 4 hours. The cooled reaction was diluted with ethyl acetate and washed with water and brine. The organics were dried over magnesium sulfate, filtered and concentrated. The residue was purified via silica gel chromatography (ISCO, 0-100% ethyl acetate in heptanes, then 0-10% methanol in DCM) to give (R)-1-((6-(5-amino-2-methylphenyl)-2-morpholinopyrimidin-4-yl)amino)propan-2-ol as a light brown foam in 56% yield. LCMS (m/z) (M+H) = 344, Rt = 0.41 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.24 (d, J=6.26 Hz, 3 H) 2.37 (s, 3 H) 3.46 - 3.62 (m, 2 H) 3.81 (s, 8 H) 3.98 - 4.04 (m, 1 H) 6.17 (s, 1 H) 7.43 (d, J=8.61 Hz, 1 H) 7.67 (dd, J=8.22, 2.35 Hz, 1 H) 7.97 (d, J=1.96 Hz, 1 H) 8.12 (d, J=4.70 Hz, 1 H) 8.30 (s, 1 H) 8.92 (d, J=5.09 Hz, 1 H). LCMS (m/z) (M+H) = 517.3, Rt = 0.68 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.24 (d, J=6.26 Hz, 3 H) 2.04 (t, J=18.78 Hz, 3 H) 2.37 (s, 3 H) 3.45 - 3.63 (m, 2 H) 3.76 - 3.86 (m, 8 H) 3.97 - 4.06 (m, 1 H) 6.17 (s, 1 H) 7.42 (d, J=8.61 Hz, 1 H) 7.67 (dd, J=8.41, 2.15 Hz, 1 H) 7.96 (d, J=2.35 Hz, 2 H) 8.18 (s, 1 H) 8.82 (d, J=5.09 Hz, 1 H). LCMS (m/z) (M+H) = 513.1, Rt = 0.69 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.24 (d, J=6.26 Hz, 3 H) 1.68 - 1.80 (m, 6 H) 2.37 (s, 3 H) 3.45 - 3.63 (m, 2 H) 3.76 - 3.85 (m, 8 H) 3.96 - 4.06 (m, 1 H) 6.18 (s, 1 H) 7.42 (d, J=8.22 Hz, 1 H) 7.66 (dd, J=8.22, 1.96 Hz, 1 H) 7.77 (dd, J=5.09, 1.57 Hz, 1 H) 7.96 (d, J=2.35 Hz, 1 H) 8.06 (s, 1 H) 8.71 (d, J=5.09 Hz, 1 H). LCMS (m/z) (M+H) = 509.1, Rt = 0.67 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.24 (d, J=6.26 Hz, 3 H) 1.81 (s, 6 H) 2.37 (s, 3 H) 3.45 - 3.62 (m, 2 H) 3.76 - 3.85 (m, 10 H) 3.97 - 4.06 (m, 1 H) 6.18 (s, 1 H) 7.42 (d, J=8.22 Hz, 1 H) 7.66 (dd, J=8.22, 1.96 Hz, 1 H) 7.81 (dd, J=4.89, 1.37 Hz, 1 H) 7.96 (d, J=1.96 Hz, 1 H) 8.07 (s, 1 H) 8.78 (d, J=4.70 Hz, 1 H). LCMS (m/z) (M+H) = 516.4, Rt = 0.67 min.
-
- A solution of 2,6-dichloro-3-ethoxypyridine (1.0 equiv.) and morpholine (1.0 equiv.) in NMP (0.6 M) was heated at 150 °C in the microwave for 30 min. At this point, LC/MS indicated incompletion of the reaction, heated for 1 hour at 150 °C. The cooled reaction mixture was purified via silica gel chromatography and the pure fractions were used for the next reaction. To a solution of 4-(6-bromo-3-ethoxypyridin-2-yl)morpholine (1.0 equiv.) in DME (0.4 M) was added sodium carbonate (3.0 equiv, 2M aqueous solution), 6-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-3-amine (1.0 equiv.), PdCl2(dppf)-DCM (0.05 equiv.) and the reaction was heated at 130 °C in the microwave for 30 min. The cooled reaction mixture was partitioned between brine and ethyl acetate. The organic phase was dried with MgSO4, filtered and concentrated. The crude material was purified via reverse phase prep-HPLC to give 5-ethoxy-2'-methyl-6-morpholino-[2,3'-bipyridin]-5'-amine in 14% yield. LCMS (m/z) (M+H) = 315.1, Rt = 0.58 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.37 (t, J=7.04 Hz, 2 H) 1.64 - 1.80 (m, 4 H) 2.60 (s, 2 H) 3.30 - 3.43 (m, 2 H) 3.54 - 3.78 (m, 5 H) 4.11 (d, J=7.04 Hz, 1 H) 7.15 (d, J=7.83 Hz, 1 H) 7.38 (d, J=8.22 Hz, 1 H) 7.84 (dd, J=4.89, 1.37 Hz, 1 H) 8.05 (s, 1 H) 8.35 (br. s., 1 H) 8.78 (d, J=5.09 Hz, 1 H) 8.87 - 8.96 (m, 1 H) 10.88 (br. s., 1 H). LCMS (m/z) (M+H) = 480.1, Rt = 0.73 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.37 (t, J=6.85 Hz, 1 H) 2.05 (t, J=18.98 Hz, 1 H) 2.62 (s, 1 H) 3.29 - 3.46 (m, 2 H) 3.66 - 3.82 (m, 2 H) 4.03 -4.22 (m, 1 H) 7.16 (d, J=7.83 Hz, 1 H) 7.39 (d, J=8.22 Hz, 1 H) 8.05 (d, J=4.69 Hz, 1 H) 8.20 (s, 1 H) 8.38 (br. s., 1 H) 8.84 - 9.02 (m, 1 H) 11.00 (s, 1 H). LCMS (m/z) (M+H) = 484.1, Rt = 0.73 min.
-
- To a solution of N-(6-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-3-yl)-3-(trifluoromethyl)benzamide (1.0 equiv.), 4-(5-bromo-2-(((3R,4S)-3-fluorotetrahydro-2H-pyran-4-yl)oxy)pyridin-3-yl)morpholine (1.0 equiv.) and sodium carbonate (2M aqueous solution, 3.0 equiv.) in DME (0.15 M) was added PdCl2(dppf)-DCM (0.05 equiv.) and the reaction was stirred at rt overnight. The mixture was purified via reverse phase prep-HPLC and the pure fractions were lyophilized to give racemic product. The two enantiomers were separated via chiral HPLC (heptanes/ethanol:85/15, AD-H column, HPLC:1 mL/min) to give peak 1 (6.889 min, 12 min run) and peak 2 (9.523 min, 12 min run). LCMS (m/z) (M+H) = 561.2, Rt = 0.78 min.
-
- To a solution of dihydro-2H-pyran-4(3H)-one (1.0 equiv.) in CD3OD (0.1 M) was added NaBD4 at rt. The mixture was stirred at rt until no more bubbling. Quenched with saturated ammonium chloride and extracted twice with DCM. The organic phase was dried over sodium sulfate, filtered and concentrated. The crude was used directly for the next step. To a solution of N-(6'-fluoro-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide (0.4 equiv.) and 4-deuterio-3-fluorotetrahydro-2H-pyran-4-ol (1.0 equiv., containing CD3ONa from previous reaction) in THF (0.6 M) was added sodium hydride (3.0 equiv.) and the mixture was heated to 90 °C for 2 hours. The solution was quenched with water and purified via reverse phase prep-HPLC to give N-(6'-((4-deuterio-3-fluorotetrahydro-2H-pyran-4-yl)oxy)-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide and N-(2-methyl-5'-morpholino-6'-(trideuteriomethoxy)-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide. LCMS (m/z) (M+H) = 562.0, Rt = 0.79 min and LCMS (m/z) (M+H) = 476.1 Rt = 0.76 min respectively.
-
- To a soluton of N-(6'-fluoro-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide (1.0 equiv.) and 2,2'-oxydiethanol (4.0 equiv.) in THF (0.1 M) was added sodium hydride (4.0 equiv.) and the reaction was heated to 90 °C for two hours. The cooled reaction mixture was quenched with sat. ammonium chloride, the organic phase was concentrated to dryness and purified via reverse phase prep-HPLC to give N-(6'-(2-(2-hydroxyethoxy)ethoxy)-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide in 27% yield. LCMS (m/z) (M+H) = 547.1, Rt = 0.69 min.
-
- To a soluton of N-(6'-fluoro-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide (1.0 equiv.) and 4-hydroxytetrahydro-2H-thiopyran 1,1-dioxide (4.0 equiv.) in THF (0.1 M) was added sodium hydride (4.0 equiv.) and the reaction was heated to 90 °C for two hours. The cooled reaction mixture was quenched with sat. ammonium chloride, the organic phase was concentrated to dryness and purified via reverse phase prep-HPLC to give N-(6'-((1,1-dioxidotetrahydro-2H-thiopyran-4-yl)oxy)-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide in 65% yield. LCMS (m/z) (M+H) = 591.1, Rt = 0.72 min.
-
- To a soluton of N-(6'-fluoro-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide (1.0 equiv.) and 4-deuteriotetrahydro-2H-pyran-4-ol (1.0 equiv.) in THF (0.7 M) was added sodium hydride (3.0 equiv.) and the reaction was heated to 90 °C for two hours. The cooled reaction mixture was quenched with water, the organic phase was concentrated to dryness and purified via reverse phase prep-HPLC to give N-(2-methyl-5'-morpholino-6'-((4-deuteriotetrahydro-2H-pyran-4-yl)oxy)-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamidein 65% yield. LCMS (m/z) (M+H) = 544.1, Rt = 0.79 min.
-
- 1H NMR (500 MHz, <cd3od>) δ ppm 2.34 (s, 3 H) 3.54 (q, J=5.04 Hz, 6 H) 3.85 (dt, J=10.48, 5.00 Hz, 6 H) 6.25 (d, J=14.82 Hz, 2 H) 6.90 (t, J=56.40 Hz, 1 H) 7.35 (d, J=8.20 Hz, 1 H) 7.56 - 7.61 (m, 1 H) 7.66 - 7.70 (m, 1 H) 7.77 - 7.81 (m, 2 H) 8.10 (d, J=7.88 Hz, 1 H) 8.15 (s, 1 H). LCMS (m/z) (M+H) = 483.1, Rt = 0.72 min.
-
- 1H NMR (500 MHz,<cd3od>) δ ppm 2.06 (t, J=18.76 Hz, 3 H) 2.35 (s, 3 H) 3.51 - 3.58 (m, 6 H) 3.85 (dt, J=9.54, 4.85 Hz, 6 H) 6.26 (d, J=14.82 Hz, 2 H) 7.37 (d, J=8.20 Hz, 1 H) 7.62 (dd, J=8.20, 2.21 Hz, 1 H) 7.81 (d, J=1.89 Hz, 1 H) 7.98 (d, J=5.04 Hz, 1 H) 8.20 (s, 1 H) 8.84 (d, J=5.04 Hz, 1 H). LCMS (m/z) (M+H) = 498.1, Rt = 0.72 min.
-
- 1H NMR (500 MHz,<cd3od>) δ ppm 2.63 (s, 3 H) 3.51 - 3.59 (m, 6 H) 3.79 - 3.87 (m, 6 H) 6.17 - 6.24 (m, 1 H) 6.92 (t, J=54.90 Hz, 1 H) 7.69 - 7.75 (m, 1 H) 7.84 (d, J=7.88 Hz, 1 H) 8.16 (d, J=7.88 Hz, 1 H) 8.21 (s, 1 H) 8.41 (d, J=2.21 Hz, 1 H) 9.09 (s, 1 H). LCMS (m/z) (M+H) = 484.2, Rt = 0.54 min.
-
- 1H NMR (500 MHz,<cd3od>) δ ppm 2.61 (s, 3 H) 3.52 - 3.59 (m, 6 H) 3.80 - 3.88 (m, 6 H) 6.17 - 6.27 (m, 1 H) 6.87 (t, J=54.90 Hz, 1 H) 8.07 (d, J=5.04 Hz, 1 H) 8.24 (s, 1 H) 8.37 (d, J=2.21 Hz, 1 H) 8.89 (d, J=5.04 Hz, 1 H) 9.00 (br. s., 1 H). LCMS (m/z) (M+H) = 485.1, Rt = 0.48 min.
-
- 1H NMR (500 MHz, <cd3od>) δ ppm 2.63 (s, 3 H) 3.52 - 3.59 (m, 6 H) 3.80 - 3.88 (m, 6 H) 6.20 - 6.28 (m, 1 H) 8.41 (d, J=2.52 Hz, 1 H) 8.73 (s, 1 H) 9.06 (s, 1 H) 9.15 (s, 2 H) 9.41 (d, J=1.89 Hz, 1 H). LCMS (m/z) (M+H) = 503.2, Rt = 0.52 min.
-
- 1H NMR (500 MHz, <cd3od>) δ ppm 2.07 (t, J=18.76 Hz, 3 H) 2.64 (s, 3 H) 3.52 - 3.59 (m, 6 H) 3.80 - 3.88 (m, 6 H) 6.20 - 6.28 (m, 1 H) 8.03 (d, J=5.04 Hz, 1 H) 8.25 (s, 1 H) 8.43 (d, J=2.52 Hz, 1 H) 8.88 (d, J=4.73 Hz, 1 H) 9.09 (d, J=1.58 Hz, 1 H). LCMS (m/z) (M+H) = 499.2, Rt = 0.52 min.
-
-
-
- 1H NMR (500 MHz, <cd3od>) δ ppm 1.44 (t, J=7.09 Hz, 3 H) 2.62 (s, 3 H) 3.51 - 3.58 (m, 6 H) 3.80 - 3.87 (m, 6 H) 4.19 (q, J=7.04 Hz, 2 H) 8.35 (d, J=2.52 Hz, 1 H) 8.53 (d, J=1.89 Hz, 1 H) 8.80 (d, J=2.52 Hz, 1 H) 9.02 (s, 1 H). LCMS (m/z) (M+H) = 547.2, Rt = 0.52 min.
-
-
- 1H NMR (500 MHz, <cd3od>) δ ppm 1.66 (s, 6 H) 2.64 (s, 3 H) 3.52 - 3.60 (m, 6 H) 3.80 - 3.88 (m, 6 H) 7.97 (dd, J=5.36, 1.58 Hz, 1 H) 8.36 (d, J=0.95 Hz, 1 H) 8.43 (d, J=2.21 Hz, 1 H) 8.78 (d, J=5.36 Hz, 1 H) 9.09 (d, J=2.21 Hz, 1 H). LCMS (m/z) (M+H) = 493.2, Rt = 0.39 min.
-
- 1H NMR (500 MHz,<cd3od>) δ ppm 2.35 (s, 3 H) 3.49 - 3.58 (m, 6 H) 3.85 (dt, J=9.69, 4.77 Hz, 6 H) 6.22 - 6.28 (m, 2 H) 7.39 (d, J=8.51 Hz, 1 H) 7.65 (dd, J=8.35, 2.05 Hz, 1 H) 7.83 (d, J=2.21 Hz, 1 H) 8.60 (d, J=1.89 Hz, 1 H) 9.89 (d, J=1.58 Hz, 1 H). LCMS (m/z) (M+H) = 503.1, Rt = 0.67 min.
-
- 1H NMR (500 MHz,<cd3od>) δ ppm 1.23 - 1.32 (m, 4 H) 2.35 (s, 3 H) 2.37 - 2.44 (m, 1 H) 3.46 - 3.61 (m, 6 H) 3.85 (dt, J=9.30, 4.81 Hz, 6 H) 6.24 - 6.29 (m, 1 H) 7.38 (d, J=8.51 Hz, 1 H) 7.63 (dd, J=8.20, 2.21 Hz, 1 H) 7.80 (d, J=2.21 Hz, 1 H) 7.97 (d, J=1.89 Hz, 1 H) 9.40 (d, J=1.89 Hz, 1 H). LCMS (m/z) (M+H) = 475.2, Rt = 0.61 min.
-
- 1H NMR (500 MHz,<cd3od>) d ppm 1.90 - 1.95 (m, 6 H) 2.36 (s, 3 H) 3.48 - 3.61 (m, 6 H) 3.86 (dt, J=9.46, 4.73 Hz, 6 H) 6.23 - 6.31 (m, 1 H) 7.39 (d, J=8.51 Hz, 1 H) 7.64 (dd, J=8.20, 2.21 Hz, 1 H) 7.82 (d, J=2.21 Hz, 1 H) 8.38 (d, J=1.89 Hz, 1 H) 9.63 (d, J=1.89 Hz, 1 H). LCMS (m/z) (M+H) = 502.2, Rt = 0.63 min.
-
- 1H NMR (500 MHz,<cd3od>) δ ppm 1.81 - 1.90 (m, 4 H) 2.35 (s, 3 H) 3.46 - 3.61 (m, 7 H) 3.85 (dt, J=9.54, 4.85 Hz, 7 H) 6.24 - 6.30 (m, 1 H) 7.37 (d, J=8.20 Hz, 1 H) 7.61 (dd, J=8.20, 2.21 Hz, 1 H) 7.71 - 7.75 (m, 1 H) 7.81 (d, J=1.89 Hz, 1 H) 8.10 (s, 1 H) 8.68 (d, J=5.04 Hz, 1 H). LCMS (m/z) (M+H) = 499.2, Rt = 0.69 min.
-
- 1H NMR (500 MHz,<cd3od>) δ ppm 2.60 (s, 3 H) 3.52 - 3.59 (m, 6 H) 3.84 (dt, J=12.45, 4.97 Hz, 6 H) 6.19 - 6.28 (m, 1 H) 8.35 (d, J=2.21 Hz, 1 H) 8.64 (d, J=1.89 Hz, 1 H) 8.96 (s, 1 H) 9.92 (d, J=1.89 Hz, 1 H). LCMS (m/z) (M+H) = 504.2, Rt = 0.49 min.
-
- 1H NMR (500 MHz,<cd3od>) δ ppm 1.22 - 1.33 (m, 4 H) 2.38 - 2.45 (m, 1 H) 2.63 (s, 3 H) 3.51 - 3.60 (m, 6 H) 3.84 (dt, J=12.06, 4.85 Hz, 6 H) 6.21 - 6.28 (m, 1 H) 7.99 (d, J=2.21 Hz, 1 H) 8.39 (d, J=2.21 Hz, 1 H) 9.02 (d, J=2.21 Hz, 1 H) 9.43 (d, J=1.89 Hz, 1 H). LCMS (m/z) (M+H) = 476.1, Rt = 0.44 min.
-
- 1H NMR (500 MHz, METHANOL-d ) δ ppm 2.30 (s, 5 H) 3.43 - 3.55 (m, 10 H) 3.69 - 3.85 (m, 10 H) 5.85 - 5.99 (m, 1 H) 6.65 - 7.03 (m, 1 H) 7.30 (d, J=8.20 Hz, 1 H) 7.57 - 7.68 (m, 2 H) 8.03 (d, J=4.41 Hz, 1 H) 8.19 (s, 1 H) 8.85 (d, J=5.04 Hz, 1 H). LC/MS (m/z): 484.3 (MH+), Rt = 0.66 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.88 - 2.02 (m, 1 H) 2.33 (s, 4 H) 2.35 - 2.42 (m, 1 H) 3.45 - 3.57 (m, 4 H) 3.73 - 3.90 (m, 6 H) 3.91 - 4.04 (m, 2 H) 4.37 (br. s., 1 H) 6.05 - 6.35 (m, 1 H) 7.34 (d, J=8.22 Hz, 1 H) 7.61 (dd, J=8.22, 2.35 Hz, 1 H) 7.76 (br. s., 1 H) 8.12 (d, J=4.30 Hz, 1 H) 8.29 (s, 1 H) 8.92 (d, J=5.09 Hz, 1 H). LC/MS (m/z): 528.2 (MH+), Rt = 0.78 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.53 - 1.70 (m, 1 H) 2.04 (dtd, J=12.77, 7.90, 7.90, 5.48 Hz, 1 H) 2.23 (s, 3 H) 2.46 - 2.59 (m, 1 H) 3.25 (d,J=7.43 Hz, 3 H) 3.35 - 3.46 (m, 4 H) 3.52 (dd, J=8.80, 5.28 Hz, 1 H) 3.66 (q, J=7.83 Hz, 1 H) 3.70 - 3.77 (m, 5 H) 3.77 - 3.87 (m, 1 H) 6.02 - 6.17 (m, 1 H) 7.25 (d, J=8.22 Hz, 1 H) 7.50 (dd, J=8.22, 2.35 Hz, 1 H) 7.67 (s, 1 H) 8.02 (d, J=3.91 Hz, 1 H) 8.19 (s, 1 H) 8.82 (d, J=5.09 Hz, 1 H). LC/MS (m/z): 542.2 (MH+), Rt = 0.79 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.71 (s, 3 H) 1.77 (s, 4 H) 2.62 (s, 3 H) 3.43 - 3.62 (m, 7 H) 3.82 (dt, J=10.08, 4.94 Hz, 7 H) 6.13 - 6.30 (m, 1 H) 7.81 (dd, J=5.09, 1.57 Hz, 1 H) 8.11 (s, 1 H) 8.41 (d, J=2.35 Hz, 1 H) 8.74 (d, J=5.09 Hz, 1 H) 9.07 (d, J=1.96 Hz, 1 H). LC/MS (m/z): 495.2 (MH+), Rt = 0.52 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.06 - 1.34 (m, 4 H) 2.23 - 2.35 (m, 1 H) 2.61 (s, 3 H) 3.42 - 3.60 (m, 6 H) 3.81 (dt, J=9.78, 4.89 Hz, 6 H) 6.14 - 6.29 (m, 1 H) 7.71 - 7.91 (m, 2 H) 8.39 (d, J=2.35 Hz, 1 H) 8.64 (d, J=5.48 Hz, 1 H) 9.05 (d, J=2.35 Hz, 1 H). LC/MS (m/z): 475.2 (MH+), Rt = 0.40 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.01 (t, J=7.63 Hz, 3 H) 2.39 (td, J=16.63, 7.43 Hz, 2 H) 2.60 (s, 3 H) 3.44 - 3.63 (m, 7 H) 3.82 (dt, J=10.37, 4.99 Hz, 7 H) 6.10 - 6.29 (m, 1 H) 8.00 (d, J=5.09 Hz, 1 H) 8.21 (s, 1 H) 8.37 (d, J=2.35 Hz, 1 H) 8.86 (d, J=5.09 Hz, 1 H) 9.01 (s, 1 H). LC/MS (m/z): 513.2 (MH+), Rt = 0.57 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.81 (s, 6 H) 2.32 (s, 3 H) 3.40 - 3.53 (m, 5 H) 3.80 - 3.89 (m, 4 H) 4.05 (dd, J=9.39, 4.30 Hz, 2 H) 4.42 - 4.51 (m, 2 H) 4.70 - 4.79 (m, 1 H) 5.94 - 6.24 (m, 1 H) 7.34 (d, J=8.61 Hz, 1 H) 7.59 (dd, J=8.22, 1.96 Hz, 1 H) 7.75 (s, 1 H) 7.81 (d, J=4.70 Hz, 1H) 8.06 (s, 1 H) 8.77 (d, J=5.09 Hz, 1 H). LC/MS (m/z): 513.2 (MH+), Rt = 0.70 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.31 (s, 3 H) 3.38 - 3.54 (m, 4 H) 3.69 - 3.89 (m, 4 H) 3.98 (dd, J=9.39, 4.30 Hz, 2 H) 4.31 - 4.49 (m, 2 H) 4.66 - 4.78 (m, 1 H) 5.85 - 6.20 (m, 1 H) 7.33 (d, J=8.61 Hz, 1 H) 7.61 (dd, J=8.22, 1.96 Hz, 1 H) 7.72 (s, 1 H) 8.11 (d, J=5.09 Hz, 1 H) 8.29 (s, 1H) 8.91 (d, J=5.09 Hz, 1 H). LC/MS (m/z): 514.1 (MH+), Rt = 0.74 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.42 (t, J=7.04 Hz, 3 H) 2.30 (s, 3 H) 3.37 - 3.52 (m, 4 H) 3.75 - 3.88 (m, 4 H) 3.99 (dd, J=9.00, 4.30 Hz, 2H) 4.16 (q, J=7.17 Hz, 2 H) 4.34 - 4.49 (m, 2 H) 4.68 - 4.78 (m, 1 H) 5.86 - 6.21 (m, 1 H) 7.30 (d, J=8.22 Hz, 1 H) 7.53 (dd, J=8.22, 1.96 Hz, 1 H) 7.65 (s, 1 H) 8.47 (s, 1 H) 8.70 (d, J=2.35 Hz, 1 H). LC/MS (m/z): 558.2 (MH+), Rt = 0.72 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.33 (s, 6 H) 2.32 (s, 3 H) 3.37 (s, 2 H) 3.46 - 3.58 (m, 4 H) 3.76 - 3.89 (m, 4 H) 6.22 (d, J=6.26 Hz, 1 H) 7.33 (d, J=8.22 Hz, 1 H) 7.57 (dd, J=8.22, 1.96 Hz, 1 H) 7.68 - 7.80 (m, 2 H) 7.90 (d, J=7.83 Hz, 1 H) 8.20 (d, J=7.83 Hz, 1 H) 8.25 (s, 1 H). LC/MS (m/z): 529.2 (MH+), Rt = 0.87 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.31 (s, 3 H) 3.45 - 3.62 (m, 5 H) 3.71 - 3.90 (m, 5 H) 4.28 (td, J=7.14, 3.33 Hz, 1 H) 6.09 - 6.25 (m, 1 H) 7.32 (d, J=8.22 Hz, 1 H) 7.57 (dd, J=8.22, 2.35 Hz, 1 H) 7.66 - 7.79 (m, 2 H) 7.90 (d, J=7.83 Hz, 1 H) 8.20 (d, J=7.83 Hz, 1 H) 8.25 (s, 1 H). LC/MS (m/z): 569.1 (MH+), Rt = 0.91 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.28 (s, 3 H) 2.52 (d, J=17.22 Hz, 1 H) 3.01 (dd, J=17.41, 6.06 Hz, 1 H) 3.49 - 3.63 (m, 4 H) 3.74 - 3.89 (m, 4 H) 4.07 - 4.17 (m, 1 H) 4.18 - 4.29 (m, 1 H) 4.52 (t, J=5.28 Hz, 1 H) 6.56 (s, 1 H) 7.31 (d, J=7.83 Hz, 1 H) 7.56 (br. s., 1 H) 7.59 - 7.68 (m, 2 H) 7.68 - 7.77 (m, 1 H) 7.89 (d, J=7.83 Hz, 1 H) 8.20 (d, J=8.22 Hz, 1 H) 8.26 (s, 1 H). LC/MS (m/z): 541.2 (MH+), Rt = 0.91 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.86 - 2.06 (m, 1 H) 2.28 (s, 3 H) 2.46 - 2.61 (m, 1 H) 3.49 - 3.64 (m, 4 H) 3.70 - 3.93 (m, 5 H) 4.21 (t, J=9.39 Hz, 1 H) 4.49 (t, J=8.80 Hz, 1 H) 6.57 (s, 1 H) 7.31 (d, J=9.00 Hz, 1 H) 7.59 (s, 1 H) 7.61 - 7.67 (m, 2 H) 7.68 - 7.76 (m, 1 H) 7.89 (d, J=7.83 Hz, 1 H) 8.20 (d, J=7.83 Hz, 1 H) 8.26 (s, 1 H). LC/MS (m/z): 541.2 (MH+), Rt = 0.94 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.44 (d, J=6.65 Hz, 3 H) 2.30 (s, 3 H) 3.50 - 3.62 (m, 4 H) 3.74 - 3.87 (m, 4 H) 4.30 (q, J=7.04 Hz, 1 H) 6.63 (s, 1 H) 7.32 (d, J=8.61 Hz, 1 H) 7.37 (s, 1 H) 7.59 - 7.69 (m, 2 H) 7.69 - 7.78 (m, 1 H) 7.89 (d, J=7.43 Hz, 1 H) 8.20 (d, J=7.83 Hz, 1 H) 8.26 (s, 1H). LC/MS (m/z): 529.2 (MH+), Rt = 0.91 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.26 (s, 3 H) 3.40 - 3.52 (m, 4 H) 3.67 - 3.85 (m, 6 H) 4.09 - 4.28 (m, 2 H) 4.66 (t, J=5.48 Hz, 1 H) 5.73 (s, 1H) 6.00 (s, 1 H) 6.59 - 7.02 (m, 1 H) 7.28 (d, J=8.22 Hz, 1 H) 7.51 - 7.67 (m, 2 H) 8.00 (d, J=4.70 Hz, 1 H) 8.17 (s, 1 H) 8.82 (d, J=5.09 Hz, 1 H). LC/MS (m/z): 496.1 (MH+), Rt = 0.68 min.
-
- 1H NMR (400 MHz, <cd3od>) vppm 0.98 - 1.15 (m, 4 H) 2.12 - 2.23 (m, 1 H) 2.26 (s, 3 H) 3.12 (d, J=6.65 Hz, 1 H) 3.42 - 3.53 (m, 5 H) 3.67 - 3.85 (m, 6 H) 4.12 - 4.28 (m, 2 H) 4.58 (s, 2 H) 4.66 (t, J=5.28 Hz, 1 H) 5.73 (s, 1 H) 6.00 (s, 1 H) 7.27 (d, J=8.22 Hz, 1 H) 7.51 - 7.73 (m, 4 H)
8.52 (d, J=5.09 Hz, 1 H). LC/MS (m/z): 486.1 (MH+), Rt = 0.57 min. -
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.40 (d, J=7.04 Hz, 6 H) 2.31 (s, 3 H) 3.16 - 3.27 (m, 1 H) 3.39 - 3.51 (m, 4 H) 3.73 - 3.88 (m, 4 H) 3.97 (dd, J=9.39, 4.30 Hz, 2 H) 4.41 (t, J=7.83 Hz, 2 H) 4.63 - 4.78 (m, 1 H) 5.86 - 6.19 (m, 1 H) 7.33 (d, J=8.22 Hz, 1 H) 7.42 - 7.51 (m, 1 H) 7.61 (dd, J=8.22, 1.96 Hz, 1 H) 7.71 (s, 1 H) 7.86 (d, J=4.70 Hz, 1 H) 7.97 (s, 1 H) 8.02 (d, J=7.04 Hz, 1 H) 8.69 (d, J=5.09 Hz, 1 H). LC/MS (m/z): 488.2 (MH+), Rt = 0.57 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.29 (s, 3 H) 2.59 - 2.76 (m, 1 H) 3.08 - 3.21 (m, 3 H) 3.42 - 3.51 (m, 6 H) 3.69 - 3.93 (m, 6 H) 4.29 (t, J=7.83 Hz, 2 H) 4.64 - 4.73 (m, 1 H) 5.81 (s, 1 H) 6.06 (s, 1 H) 7.31 (d, J=9.00 Hz, 1 H) 7.42 - 7.50 (m, 1 H) 7.65 (d, J=6.26 Hz, 2 H) 8.02 (d, J=7.04 Hz, 1 H) 8.58 (d, J=1.96 Hz, 1 H) 9.87 (d, J=1.96 Hz, 1 H). LC/MS (m/z): 515.1 (MH+), Rt = 0.70 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.82 (d, J=12.52 Hz, 4 H) 2.26 (s, 3 H) 3.12 (d, J=9.00 Hz, 5 H) 3.43 - 3.53 (m, 8 H) 3.69 - 3.85 (m, 6 H) 4.20 (t, J=7.63 Hz, 2 H) 5.73 (s, 1 H) 6.00 (s, 1 H) 7.27 (d, J=8.61 Hz, 1 H) 7.55 (s, 1 H) 7.61 (d, J=8.22 Hz, 1 H) 7.71 (d, J=5.09 Hz, 1 H) 8.06 (s, 1 H) 8.64 (d, J=5.09 Hz, 1 H). LC/MS (m/z): 511.1 (MH+), Rt = 0.71 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.54 (s, 3 H) 2.27 (s, 3 H) 3.41 - 3.51 (m, 4 H) 3.68 - 3.81 (m, 4 H) 3.81 - 3.96 (m, 4 H) 5.74 (s, 1 H) 6.01 (s, 1 H) 6.59 - 7.01 (m, 1 H) 7.28 (d, J=8.22 Hz, 1 H) 7.53 - 7.69 (m, 2 H) 8.00 (d, J=4.70 Hz, 1 H) 8.17 (s, 1 H) 8.82 (d, J=5.09 Hz, 1 H). LC/MS (m/z): 510.1 (MH+), Rt = 0.70 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.54 (s, 3 H) 2.16 (s, 4 H) 2.27 (s, 3 H) 3.40 - 3.52 (m, 6 H) 3.70 - 3.81 (m, 4 H) 3.81 - 3.92 (m, 4 H) 4.58 (s, 2 H) 5.73 (s, 1 H) 6.00 (s, 1 H) 7.29 (d, J=8.22 Hz, 1 H) 7.56 - 7.73 (m, 1 H) 8.58 (d, J=1.96 Hz, 1 H) 9.87 (d, J=1.57 Hz, 1 H). LC/MS (m/z): 529.1 (MH+), Rt = 0.72 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.54 (s, 3 H) 2.27 (s, 3 H) 3.19 (s, 3 H) 3.41 - 3.53 (m, 4 H) 3.71 - 3.81 (m, 4 H) 3.81 - 3.97 (m, 4 H) 5.75 (s, 1 H) 6.01 (s, 1 H) 7.27 (d, J=8.61 Hz, 1 H) 7.52 - 7.65 (m, 2 H) 7.79 (t, J=7.83 Hz, 1 H) 8.16 (d, J=8.22 Hz, 1 H) 8.26 (d, J=7.83 Hz, 1 H) 8.50 (s, 1 H). LC/MS (m/z): 537.1 (MH+), Rt = 0.66 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.26 (s, 3 H) 3.41 - 3.52 (m, 4 H) 3.70 - 3.84 (m, 6 H) 4.15 - 4.26 (m, 2 H) 4.58 (s, 1 H) 4.62 - 4.70 (m, 1 H) 5.71 (s, 1 H) 5.99 (s, 1 H) 7.19 - 7.65 (m, 1 H) 7.25 (s, 1 H) 7.28 (d, J=8.22 Hz, 1 H) 7.38 (s, 1 H) 7.49 - 7.55 (m, 1 H) 7.59 (dd, J=8.22, 1.96 Hz, 1 H) 9.58 (s, 2 H). LC/MS (m/z): 497.1 (MH+), Rt = 0.61 min.
-
- 1H NMR (500 MHz, cd3od) δ ppm 1.10 - 1.37 (m, 4 H) 1.56 (s, 3 H) 2.30 (s, 3 H) 2.33 - 2.42 (m, 1 H) 3.38 - 3.51 (m, 4 H) 3.74 - 3.86 (m, 4 H) 3.96 - 4.13 (m, 4 H) 5.94 (s, 1 H) 6.14 (s, 1 H) 7.32 (d, J=8.51 Hz, 1 H) 7.60 (dd, J=8.20, 2.21 Hz, 1 H) 7.70 (s, 1 H) 7.91 (d, J=1.89 Hz, 1H) 9.37 (d, J=1.58 Hz, 1 H). LC/MS (m/z): 501.3 (MH+), Rt = 0.64 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.31 (s, 3 H) 3.41 - 3.51 (m, 4 H) 3.79 - 3.87 (m, 4 H) 4.03 (dd, J=9.59, 4.11 Hz, 2 H) 4.43 - 4.49 (m, 2 H) 4.71 - 4.78 (m, 1 H) 6.00 - 6.20 (m, 1 H) 6.87 (t, J=56.00 Hz, 1 H) 7.32 (d, J=8.22 Hz, 1 H) 7.57 (dd, J=8.22, 2.35 Hz, 1 H) 7.65 (t, J=7.83 Hz, 1 H) 7.73 (s, 1 H) 7.77 (d, J=7.83 Hz, 1 H) 8.08 (d, J=7.83 Hz, 1 H) 8.12 (s, 1 H). LCMS (m/z) (M+H) = 495.1, Rt = 0.75 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.03 (t, J=18.78 Hz, 3 H) 2.31 (s, 3H) 3.41 - 3.49 (m, 4 H) 3.79 - 3.85 (m, 4 H) 4.03 (dd, J=9.59, 4.11 Hz, 2 H) 4.42 - 4.50 (m, 2 H) 4.71 - 4.78 (m, 1H) 6.00 - 6.20 (m, 1 H) 7.33 (d, J=8.22 Hz, 1 H) 7.59 (dd, J=8.41, 2.15 Hz, 1 H) 7.75 (s, 1 H) 7.95 (d, J=4.70 Hz, 1 H) 8.17 (s, 1 H) 8.80 (d, J=5.09 Hz, 1 H). LCMS (m/z) (M+H) = 510.2, Rt = 0.72 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.68 (s, 3 H) 3.48 - 3.53 (m, 4 H) 3.76 - 3.82 (m, 4 H) 3.85 (dd, J=9.19, 4.50 Hz, 2 H) 4.25 - 4.34 (m, 2 H) 4.66 - 4.74 (m, 1 H) 6.90 (t, J=56.00 Hz, 1 H) 7.67 - 7.74 (m, 1 H) 7.83 (d, J=7.83 Hz, 1 H) 8.16 (d, J=7.43 Hz, 1 H) 8.21 (s, 1 H) 8.47 (d, J=2.35 Hz, 1 H) 9.36 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 496.1, Rt = 0.61 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.05 (t, J=18.78 Hz, 3 H) 2.67 (s, 3 H) 3.48 - 3.53 (m, 4 H) 3.75 - 3.82 (m, 4 H) 3.85 (dd, J=9.00, 4.30 Hz, 2 H) 4.27 - 4.33 (m, 2 H) 4.67 - 4.75 (m, 1 H) 8.02 (d, J=4.69 Hz, 1 H) 8.25 (s, 1 H) 8.44 (d, J=2.35 Hz, 1 H) 8.86 (d, J=5.09 Hz, 1 H) 9.31 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 511.1, Rt = 0.57 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.41 (d, J=7.04 Hz, 7 H) 2.66 (s, 3 H) 3.48 - 3.53 (m, 4 H) 3.76 - 3.82 (m, 4 H) 3.85 (dd, J=9.00, 4.70 Hz, 2 H) 4.26 - 4.33 (m, 2 H) 4.67 - 4.74 (m, 1 H) 7.93 (dd, J=5.48, 1.57 Hz, 1 H) 8.04 (s, 1 H) 8.41 (d, J=2.35 Hz, 1 H) 8.76 (d, J=5.48 Hz, 1 H) 9.27 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 489.1, Rt = 0.46 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.63 (s, 6 H) 2.67 (s, 3 H) 3.47 - 3.53 (m, 4 H) 3.76 - 3.82 (m, 4 H) 3.85 (dd, J=9.00, 4.70 Hz, 2 H) 4.27 - 4.33 (m, 2 H) 4.67 - 4.74 (m, 1 H) 7.94 (dd, J=5.48, 1.57 Hz, 1 H) 8.34 (s, 1 H) 8.43 (d, J=2.35 Hz, 1 H) 8.76 (d, J=5.48 Hz, 1 H) 9.29 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 505.2, Rt = 0.43 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.82 (s, 6 H) 2.68 (s, 3 H) 3.47 - 3.53 (m, 4 H) 3.75 - 3.82 (m, 4 H) 3.85 (dd, J=9.19, 4.50 Hz, 2 H) 4.27 - 4.33 (m, 2 H) 4.67 - 4.75 (m, 1 H) 7.87 (dd, J=4.89, 1.37 Hz, 1 H) 8.13 (s, 1 H) 8.44 (d, J=1.96 Hz, 1 H) 8.82 (d, J=5.09 Hz, 1 H) 9.31 (d, J=1.96 Hz, 1 H). LCMS (m/z) (M+H) = 514.2, Rt = 0.66 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.67 (s, 3 H) 3.20 (s, 3 H) 3.47 - 3.54 (m, 4 H) 3.76 - 3.81 (m, 4 H) 3.83 (dd, J=9.00, 4.30 Hz, 2 H) 4.24 - 4.31 (m, 2 H) 4.67 - 4.74 (m, 1 H) 7.85 (t, J=8.02 Hz, 1 H) 8.23 (d, J=7.83 Hz, 1 H) 8.34 (d, J=7.83 Hz, 1 H) 8.43 (d, J=2.35 Hz, 1 H) 8.59 (s, 1 H) 9.32 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 524.2, Rt = 0.52 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.64 (s, 3 H) 2.93 (s, 6 H) 3.47 - 3.53 (m, 4 H) 3.76 - 3.80 (m, 4 H) 3.83 (dd, J=9.00, 4.30 Hz, 2 H) 4.24 - 4.31 (m, 2 H) 4.53 (s, 2 H) 4.66 - 4.74 (m, 1 H) 8.16 (s, 1 H) 8.38 (d, J=2.35 Hz, 1 H) 8.46 (s, 1 H) 8.50 (s, 1 H) 9.22 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 571.2, Rt = 0.50 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.42 (t, J=7.24 Hz, 3 H) 2.66 (s, 3 H) 3.47 - 3.53 (m, 4 H) 3.75 - 3.80 (m, 4 H) 3.83 (dd, J=9.00, 4.70 Hz, 2 H) 4.18 (q, J=7.04 Hz, 2 H) 4.25 - 4.31 (m, 2 H) 4.67 - 4.73 (m, 1 H) 8.36 (d, J=2.35 Hz, 1 H) 8.52 (d, J=1.96 Hz, 1 H) 8.79 (d, J=2.35 Hz, 1 H) 9.25 (d, J=1.96 Hz, 1 H). LCMS (m/z) (M+H) = 559.2, Rt = 0.54 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.41 (t, J=7.24 Hz, 3 H) 2.65 (s, 3 H) 3.15 - 3.27 (m, 2 H) 3.47 - 3.54 (m, 4 H) 3.64 - 3.86 (m, 8 H) 4.09 (br. s., 2 H) 4.24 - 4.31 (m, 2 H) 4.66 - 4.74 (m, 1 H) 7.56 (s, 1 H) 7.87 (d, J=10.56 Hz, 2 H) 8.40 (d, J=2.35 Hz, 1 H) 9.26 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 626.2, Rt = 0.61 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.66 (s, 3 H) 3.47 - 3.53 (m, 4 H) 3.76 - 3.81 (m, 4 H) 3.85 (dd, J=9.19, 4.50 Hz, 2 H) 4.26 - 4.32 (m, 2 H) 4.67 - 4.74 (m, 1 H) 8.17 (d, J=4.30 Hz, 1 H) 8.36 (s, 1 H) 8.40 (d, J=2.35 Hz, 1 H) 8.97 (d, J=5.09 Hz, 1 H) 9.26 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 515.2, Rt = 0.57 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.45 (s, 9 H) 2.66 (s, 3 H) 3.48 - 3.53 (m, 4 H) 3.76 - 3.81 (m, 4 H) 3.84 (dd, J=9.00, 4.70 Hz, 2 H) 4.25 - 4.32 (m, 2 H) 4.67 - 4.74 (m, 1 H) 7.81 (dd, J=5.09, 1.57 Hz, 1 H) 8.06 (s, 1 H) 8.41 (d, J=2.35 Hz, 1 H) 8.74 (d, J=5.09 Hz, 1 H) 9.28 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 503.3, Rt = 0.50 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.66 (s, 3 H) 3.47 - 3.53 (m, 4 H) 3.76 - 3.81 (m, 4 H) 3.84 (dd, J=9.00, 4.30 Hz, 2 H) 4.26 - 4.32 (m, 2 H) 4.67 - 4.74 (m, 1 H) 8.20 (dd, J=4.89, 1.37 Hz, 1 H) 8.40 (d, J=2.35 Hz, 1 H) 8.61 (s, 1 H) 8.99 (d, J=4.69 Hz, 1 H) 9.25 (d, J=1.96 Hz, 1 H). LCMS (m/z) (M+H) = 525.2, Rt = 0.45 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.92 (s, 6 H) 2.66 (s, 3 H) 2.72 (s, 3 H) 3.47 - 3.55 (m, 4 H) 3.76 - 3.81 (m, 4 H) 3.81 - 3.84 (m, 2 H) 4.23 - 4.30 (m, 2 H) 4.66 - 4.73 (m, 1 H) 5.82 (s, 1 H) 6.09 (s, 1 H) 7.63 (t, J=7.83 Hz, 1 H) 7.97 (d, J=8.22 Hz, 1 H) 8.03 (d, J=7.83 Hz, 1 H) 8.28 (s, 1 H) 8.41 (d, J=1.96 Hz, 1 H) 9.32 (d, J=1.96 Hz, 1 H). LCMS (m/z) (M+H) = 566.2, Rt = 0.52 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.66 (s, 3 H) 3.49 - 3.54 (m, 4 H) 3.76 - 3.85 (m, 6 H) 4.24 - 4.31 (m, 2 H) 4.69 (d, J=6.26 Hz, 1 H) 5.83 (s, 1 H) 6.10 (s, 1 H) 7.80 (t, J=7.83 Hz, 1 H) 8.25 (d, J=7.83 Hz, 1 H) 8.35 (d, J=7.83 Hz, 1 H) 8.42 (d, J=2.35 Hz, 1 H) 8.73 (s, 1 H) 9.10 (s, 1 H) 9.31 (s, 1 H). LCMS (m/z) (M+H) = 514.2, Rt = 0.50 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 0.97 - 1.04 (m, 2 H) 1.14 - 1.21 (m, 2 H) 2.17 - 2.26 (m, 1 H) 2.63 (s, 3 H) 3.46 - 3.53 (m, 4 H) 3.74 - 3.85 (m, 6 H) 4.24 - 4.30 (m, 2 H) 4.67 - 4.72 (m, 1 H) 5.81 (s, 1 H) 6.07 (s, 1 H) 6.53 (s, 1 H) 8.39 (d, J=2.35 Hz, 1 H) 9.19 (d, J=1.96 Hz, 1 H). LCMS (m/z) (M+H) = 477.2 Rt = 0.57 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.63 (s, 3 H) 3.47 - 3.54 (m, 4 H) 3.75 - 3.84 (m, 6 H) 4.23 - 4.30 (m, 2 H) 4.66 - 4.72 (m, 1 H) 5.81 (s, 1 H) 6.08 (s, 1 H) 7.78 (t, J=7.83 Hz, 1 H) 7.96 (d, J=7.43 Hz, 1 H) 8.27 (d, J=7.83 Hz, 1 H) 8.31 - 8.36 (m, 2 H) 9.22 (s, 1 H). LCMS (m/z) (M+H) = 514.2, Rt = 0.64 min
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 0.96 - 1.03 (m, 2 H) 1.12 - 1.19 (m, 2 H) 2.15 - 2.23 (m, 1 H) 2.29 (s, 3 H) 3.41 - 3.48 (m, 4 H) 3.78 - 3.85 (m, 4 H) 3.99 (dd, J=9.39, 4.30 Hz, 2 H) 4.42 (t, J=8.02 Hz, 2 H) 4.69 - 4.77 (m, 1 H) 5.96 (s, 1 H) 6.14 (s, 1 H) 6.46 (s, 1 H) 7.30 (d, J=8.22 Hz, 1 H) 7.59 (dd, J=8.22, 1.96 Hz, 1 H) 7.66 (s, 1 H). LCMS (m/z) (M+H) = 476.2, Rt = 0.73 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.32 (s, 3 H) 3.19 (s, 3 H) 3.41 - 3.50 (m, 4 H) 3.79 - 3.86 (m, 4 H) 4.03 (dd, J=9.39, 4.30 Hz, 2 H) 4.41 - 4.50 (m, 2 H) 4.71 - 4.79 (m, 1 H) 5.99 - 6.20 (m, 1 H) 7.33 (d, J=8.22 Hz, 1 H) 7.59 (dd, J=8.22, 2.35 Hz, 1 H) 7.74 (s, 1 H) 7.80 (t, J=7.83 Hz, 1 H) 8.17 (d, J=7.83 Hz, 1 H) 8.26 (d, J=7.83 Hz, 1 H) 8.51 (s, 1 H). LCMS (m/z) (M+H) = 523.2, Rt = 0.62 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.31 (s, 3 H) 3.42 - 3.49 (m, 4 H) 3.79 - 3.86 (m, 4 H) 4.01 (dd, J=9.39, 3.91 Hz, 2 H) 4.40 - 4.47 (m, 2 H) 4.70 - 4.78 (m, 1 H) 5.97 - 6.19 (m, 1 H) 7.34 (d, J=8.61 Hz, 1 H) 7.62 (dd, J=8.22, 1.96 Hz, 1 H) 7.74 (s, 1 H) 8.15 (dd, J=4.89, 1.37 Hz, 1 H) 8.54 (s, 1 H) 8.94 (d, J=5.09 Hz, 1 H). LCMS (m/z) (M+H) = 524.2, Rt = 0.59 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.64 (s, 6 H) 2.32 (s, 3 H) 3.41 - 3.50 (m, 4 H) 3.79 - 3.86 (m, 4 H) 4.02 (dd, J=9.39, 4.30 Hz, 2 H) 4.41 - 4.49 (m, 2 H) 4.70 - 4.78 (m, 1 H) 5.99 - 6.18 (m, 1 H) 7.34 (d, J=8.22 Hz, 1 H) 7.61 (dd, J=8.22, 1.96 Hz, 1 H) 7.74 (s, 1 H) 7.94 (d, J=4.30 Hz, 1 H) 8.30 (s, 1 H) 8.73 (d, J=5.48 Hz, 1 H). LCMS (m/z) (M+H) = 504.2, Rt = 0.53 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.91 (s, 6 H) 2.31 (s, 3 H) 2.69 (s, 3 H) 3.42 - 3.49 (m, 4 H) 3.80 - 3.86 (m, 4 H) 4.03 (dd, J=9.59, 4.11 Hz, 2 H) 4.42 - 4.49 (m, 2 H) 4.71 - 4.78 (m, 1 H) 6.00 - 6.20 (m, 1 H) 7.32 (d, J=8.22 Hz, 1 H) 7.54 - 7.61 (m, 2 H) 7.72 (s, 1 H) 7.94 (dd, J=13.30, 8.22 Hz, 2 H) 8.20 (s, 1 H). LCMS (m/z) (M+H) = 565.3, Rt = 0.66 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.31 (s, 3 H) 3.42 - 3.49 (m, 4 H) 3.79 - 3.86 (m, 4 H) 4.01 (dd, J=9.19, 4.11 Hz, 2 H) 4.40 - 4.48 (m, 2 H) 4.70 - 4.78 (m, 1 H) 5.98 - 6.19 (m, 1 H) 7.33 (d, J=8.22 Hz, 1 H) 7.60 (dd, J=8.22, 1.96 Hz, 1 H) 7.71 - 7.79 (m, 2 H) 8.17 (d, J=8.22 Hz, 1 H) 8.29 (d, J=7.83 Hz, 1 H) 8.65 (s, 1 H) 9.08 (s, 1 H). LCMS (m/z) (M+H) = 513.2, Rt = 0.64 min.
-
- 1H NMR (500 MHz,<cd3od>) δ ppm 1.22 - 1.33 (m, 4 H) 1.57 (s, 3 H) 2.38 - 2.45 (m, 1 H) 2.68 (s, 3 H) 3.50 - 3.55 (m, 4 H) 3.78 - 3.84 (m, 4 H) 3.91 - 4.01 (m, 4 H) 5.85 - 6.14 (m, 1 H) 8.00 (d, J=2.21 Hz, 1 H) 8.40 (d, J=2.21 Hz, 1 H) 9.26 (d, J=2.21 Hz, 1 H) 9.44 (d, J=2.21 Hz, 1 H). LCMS (m/z) (M+H) = 502.2, Rt = 0.51 min.
-
- 1H NMR (500 MHz,<cd3od>) δ ppm 1.13 - 1.26 (m, 4 H) 1.57 (s, 3 H) 2.26 - 2.33 (m, 1 H) 2.68 (s, 3 H) 3.50 - 3.55 (m, 4 H) 3.77 - 3.83 (m, 4 H) 3.91 - 4.00 (m, 4 H) 5.85 - 6.13 (m, 1 H) 7.79 (dd, J=5.36, 1.58 Hz, 1 H) 7.85 (s, 1 H) 8.42 (d, J=2.52 Hz, 1 H) 8.65 (d, J=5.36 Hz, 1 H) 9.30 (d, J=2.21 Hz, 1 H). LCMS (m/z) (M+H) = 501.2, Rt = 0.46 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.55 (s, 3 H) 2.67 (s, 3 H) 3.47 - 3.55 (m, 4 H) 3.75 - 3.83 (m, 4 H) 3.89 - 3.99 (m, 4 H) 6.85 (t, J=55.60 Hz, 1 H) 8.06 (d, J=5.09 Hz, 1 H) 8.24 (s, 1 H) 8.43 (d, J=2.35 Hz, 1 H) 8.89 (d, J=5.09 Hz, 1 H) 9.29 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 511.2, Rt = 0.54 min.
-
- 1H NMR (500 MHz,<cd3od>) δ ppm 1.57 (s, 3 H) 2.68 (s, 3 H) 3.50 - 3.55 (m, 4 H) 3.78 - 3.83 (m, 4 H) 3.91 - 4.00 (m, 4 H) 5.85 - 6.13 (m, 1 H) 8.20 (d, J=5.67 Hz, 1 H) 8.36 - 8.39 (m, 1 H) 8.41 (d, J=2.21 Hz, 1 H) 8.99 (d, J=5.04 Hz, 1 H) 9.27 (d, J=1.89 Hz, 1 H). LCMS (m/z) (M+H) = 529.2, Rt = 0.60 min.
-
- 1H NMR (500 MHz,<cd3od>) δ ppm 1.57 (s, 3 H) 2.02 - 2.12 (m, 3 H) 2.70 (s, 3 H) 3.51 - 3.55 (m, 4 H) 3.79 - 3.83 (m, 4 H) 3.92 - 4.00 (m, 4 H) 5.87 - 6.14 (m, 1 H) 8.04 (d, J=5.36 Hz, 1 H) 8.27 (s, 1 H) 8.46 (d, J=2.21 Hz, 1 H) 8.89 (d, J=5.04 Hz, 1 H) 9.33 (d, J=2.21 Hz, 1 H). LCMS (m/z) (M+H) = 525.2, Rt = 0.59 min.
-
- 1H NMR (500 MHz,<cd3od>) δ ppm 1.58 (s, 3 H) 1.74 (s, 3 H) 1.78 (s, 3 H) 2.70 (s, 3 H) 3.50 - 3.55 (m, 4 H) 3.78 - 3.83 (m, 4 H) 3.92 - 4.01 (m, 4 H) 7.83 - 7.88 (m, 1 H) 8.16 (s, 1 H) 8.49 (d, J=2.52 Hz, 1 H) 8.78 (dd, J=5.04, 0.63 Hz, 1 H) 9.36 (d, J=2.52 Hz, 1 H). LCMS (m/z) (M+H) = 521.2, Rt = 0.60 min.
-
- 1H NMR (500 MHz,<cd3od>) δ ppm 1.58 (s, 3 H) 2.67 (s, 3 H) 3.50 - 3.55 (m, 4 H) 3.79 - 3.83 (m, 4 H) 3.93 - 4.02 (m, 4 H) 8.39 (d, J=2.21 Hz, 1 H) 8.65 (d, J=1.89 Hz, 1 H) 9.23 (d, J=2.21 Hz, 1 H) 9.93 (d, J=1.89 Hz, 1 H). LCMS (m/z) (M+H) = 530.2, Rt = 0.56 min.
-
- 1H NMR (500 MHz,<cd3od>) δ ppm 1.57 (s, 3 H) 1.84 (s, 6 H) 2.70 (s, 3 H) 3.50 - 3.55 (m, 4 H) 3.78 - 3.83 (m, 4 H) 3.93 - 4.02 (m, 4 H) 7.90 (dd, J=4.89, 1.42 Hz, 1 H) 8.16 (d, J=0.63 Hz, 1 H) 8.47 (d, J=2.21 Hz, 1 H) 8.85 (d, J=5.04 Hz, 1 H) 9.35 (d, J=2.21 Hz, 1 H). LCMS (m/z) (M+H) = 528.2, Rt = 0.58 min.
-
- 1H NMR (500 MHz,<cd3od>) δ ppm 1.57 (s, 3 H) 1.79 - 1.91 (m, 4 H) 2.70 (s, 3 H) 3.50 - 3.55 (m, 4 H) 3.78 - 3.83 (m, 4 H) 3.92 - 4.01 (m, 4 H) 7.79 (dd, J=4.89, 1.10 Hz, 1 H) 8.18 (s, 1 H) 8.45 (d, J=2.52 Hz, 1 H) 8.73 (d, J=5.04 Hz, 1 H) 9.34 (d, J=2.21 Hz, 1 H). LCMS (m/z) (M+H) = 526.2, Rt = 0.58 min.
-
- 1H NMR (500 MHz,<cd3od>) δ ppm 1.59 (s, 3 H) 1.84 (s, 6 H) 2.34 (s, 3 H) 3.45 - 3.50 (m, 4 H) 3.82 - 3.87 (m, 4 H) 4.08 - 4.17 (m, 4 H) 7.36 (d, J=8.51 Hz, 1 H) 7.61 (dd, J=8.51, 2.21 Hz, 1 H) 7.77 (d, J=1.89 Hz, 1 H) 7.83 (dd, J=5.04, 1.58 Hz, 1 H) 8.09 (s, 1 H) 8.79 (d, J=5.04 Hz, 1 H). LCMS (m/z) (M+H) = 527.2, Rt = 0.72 min.
-
- 1H NMR (500 MHz,<cd3od>) δ ppm 1.59 (s, 3 H) 1.81 - 1.90 (m, 4 H) 2.34 (s, 3 H) 3.45 - 3.50 (m, 4 H) 3.83 - 3.87 (m, 4 H) 4.09 - 4.19 (m, 4 H) 7.36 (d, J=8.51 Hz, 1 H) 7.61 (dd, J=8.20, 1.89 Hz, 1 H) 7.73 (d, J=5.04 Hz, 1 H) 7.77 (s, 1 H) 8.10 (s, 1 H) 8.67 (d, J=5.04 Hz, 1 H). LCMS (m/z) (M+H) = 525.2, Rt = 0.72 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.28 (s, 3 H) 3.42 - 3.58 (m, 8 H) 3.72 - 3.87 (m, 8 H) 7.30 (d, J=8.22 Hz, 1 H) 7.55 - 7.69 (m, 2 H) 8.11 (d, J=4.30 Hz, 1 H) 8.29 (s, 1 H) 8.90 (d, J=5.09 Hz, 1 H). LC/MS (m/z): 528.1 (MH+), Rt = 0.93 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.81 (s, 6 H) 2.29 (s, 3 H) 3.39 - 3.55 (m, 8 H) 3.72 - 3.87 (m, 8 H) 7.31 (d, J=8.22 Hz, 1 H) 7.60 (dd, J=8.22, 1.96 Hz, 1 H) 7.67 (d, J=1.96 Hz, 1 H) 7.81 (dd, J=4.89, 0.98 Hz, 1 H) 8.06 (s, 1 H) 8.76 (d, J=5.09 Hz, 1 H). LC/MS (m/z): 527.2 (MH+), Rt = 0.88 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.41 (t, J=7.04 Hz, 3 H) 2.27 (s, 3 H) 3.41 - 3.59 (m, 8 H) 3.74 - 3.90 (m, 8 H) 4.15 (q, J=7.30 Hz, 2 H) 7.27 (d, J=8.22 Hz, 1 H) 7.46 - 7.64 (m, 2 H) 8.47 (d, J=1.57 Hz, 1 H) 8.69 (d, J=2.35 Hz, 1 H). LC/MS (m/z): 572.2 (MH+), Rt = 0.89 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.28 (s, 3 H) 3.39 - 3.57 (m, 9 H) 3.69 - 3.90 (m, 8 H) 6.13 (s, 1 H) 6.60 - 7.01 (m, 1 H) 7.29 (d, J=9.00 Hz, 1 H) 7.62 (d, J=5.87 Hz, 2 H) 8.00 (d, J=4.70 Hz, 1 H) 8.17 (s, 1 H) 8.83 (d, J=4.70 Hz, 1 H). LC/MS (m/z): 510.1 (MH+), Rt = 0.85 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.28 (s, 3 H) 3.41 - 3.60 (m, 9 H) 3.69 - 3.89 (m, 9 H) 6.64 - 7.07 (m, 1 H) 7.29 (d, J=8.22 Hz, 1 H) 7.57 (dd, J=8.22, 1.96 Hz, 1 H) 7.60 - 7.70 (m, 2 H) 7.76 (d, J=7.43 Hz, 1 H) 7.98 - 8.16 (m, 1 H). LC/MS (m/z): 509.2 (MH+), Rt = 0.92 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.34 (d, J=7.04 Hz, 6 H) 2.18 (s, 3 H) 3.30 - 3.49 (m, 8 H) 3.60 - 3.78 (m, 8 H) 7.20 (d, J=8.22 Hz, 1 H) 7.43 - 7.61 (m, 2 H) 7.95 (d, J=5.09 Hz, 1 H) 8.07 (s, 1 H) 8.67 (d, J=5.87 Hz, 1 H). LC/MS (m/z): 502.2 (MH+), Rt = 0.72 min.
-
- 1H NMR (400 MHz, <dmso>) ppm 2.21 (s, 3 H) 3.33 (br. s., 5 H) 3.40 (br. s., 17 H) 3.54 - 3.78 (m, 8 H) 6.03 (s, 1 H) 7.28 (d, J=8.22 Hz, 1 H) 7.60 (d, J=1.96 Hz, 1 H) 7.66 - 7.76 (m, 1 H) 8.07 - 8.27 (m, 1 H) 8.51 (s, 1 H) 8.98 (d, J=4.69 Hz, 1 H) 10.74 (s, 1 H). LC/MS (m/z): 538.2 (MH+), Rt = 0.77 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.42 (d, J=7.04 Hz, 6 H) 2.69 (s, 3 H) 3.49 - 3.55 (m, 8 H) 3.75 - 3.82 (m, 8 H) 7.97 (dd, J=5.48, 1.57 Hz, 1 H) 8.08 (s, 1 H) 8.45 (d, J=1.96 Hz, 1 H) 8.77 (d, J=5.48 Hz, 1 H) 9.36 (d, J=2.35 Hz, 1 H). LC/MS (m/z): 503.2 (MH+), Rt = 0.60 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.68 (s, 3 H) 3.49 - 3.56 (m, 8 H) 3.75 - 3.82 (m, 8 H) 6.13 (s, 1 H) 8.18 (d, J=4.30 Hz, 1 H) 8.36 (s, 1 H) 8.4 (d, J=2.35 Hz, 1 H) 8.97 (d, J=5.09 Hz, 1 H) 9.33 (d, J=2.35 Hz, 1 H). LC/MS (m/z): 529.2 (MH+), Rt = 0.75 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.68 (s, 3 H) 3.49 - 3.56 (m, 8 H) 3.75 - 3.82 (m, 8 H) 6.14 (s, 1 H) 6.90 (t, J=56.30 Hz, 1 H) 7.67 - 7.73 (m, 1 H) 7.83 (d, J=7.83 Hz, 1 H) 8.16 (d, J=7.83 Hz, 1 H) 8.22 (s, 1 H) 8.45 (d, J=2.35 Hz, 1 H) 9.39 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 510.2, Rt = 0.76 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.69 (s, 3 H) 3.49 - 3.55 (m, 8 H) 3.76 - 3.81 (m, 8 H) 6.14 (s, 1 H) 6.85 (t, J=54.80 Hz, 1 H) 8.07 (d, J=5.09 Hz, 1 H) 8.25 (s, 1 H) 8.44 (d, J=2.35 Hz, 1 H) 8.89 (d, J=5.09 Hz, 1 H) 9.37 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 511.1, Rt = 0.69 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.82 (s, 6 H) 2.68 (s, 3 H) 3.49 - 3.56 (m, 8 H) 3.74 - 3.82 (m, 8 H) 6.14 (s, 1 H) 7.87 (dd, J=4.89, 1.37 Hz, 1 H) 8.14 (s, 1 H) 8.43 (d, J=2.35 Hz, 1 H) 8.82 (d, J=5.09 Hz, 1 H) 9.36 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 528.1, Rt = 0.72 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.68 (s, 3 H) 3.48 - 3.55 (m, 8 H) 3.75 - 3.82 (m, 8 H) 6.13 (s, 1 H) 8.21 (dd, J=4.70, 1.57 Hz, 1 H) 8.43 (d, J=1.96 Hz, 1 H) 8.62 (s, 1 H) 8.99 (d, J=4.70 Hz, 1 H) 9.33 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 539.0, Rt = 0.62 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.42 (t, J=7.24 Hz, 3 H) 2.67 (s, 3 H) 3.51 (t, J=4.89 Hz, 8 H) 3.74 - 3.83 (m, 8 H) 4.18 (q, J=7.30 Hz, 2 H) 6.13 (s, 1 H) 8.37 (d, J=2.35 Hz, 1 H) 8.52 (d, J=1.96 Hz, 1 H) 8.80 (d, J=2.35 Hz, 1 H) 9.30 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 573.1, Rt = 0.73 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.33 (s, 3 H) 3.67 (t, J=4.70 Hz, 4 H) 3.82 - 3.89 (m, 4 H) 3.96 (s, 3 H) 6.81 (s, 1 H) 7.09 (s, 1 H) 7.36 (d, J=8.22 Hz, 1 H) 7.65 (dd, J=8.41, 2.15 Hz, 1 H) 7.76 (d, J=1.96 Hz, 1 H) 8.04 (s, 1 H) 8.12 (d, J=4.30 Hz, 1 H) 8.23 (s, 1 H) 8.30 (s, 1 H) 8.91 (d, J=5.09 Hz, 1 H). LCMS (m/z) (M+H) = 523.1, Rt = 0.84 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.38 (s, 3 H) 2.45 (s, 6 H) 3.64 - 3.70 (m, 4 H) 3.83 - 3.89 (m, 4 H) 6.92 (s, 1 H) 6.99 (s, 1 H) 7.38 (d, J=8.22 Hz, 1 H) 7.64 (dd, J=8.22, 2.35 Hz, 1 H) 7.83 (d, J=1.96 Hz, 1 H) 8.12 (d, J=4.70 Hz, 1 H) 8.30 (s, 1 H) 8.92 (d, J=5.09 Hz, 1 H). LCMS (m/z) (M+H) = 537.2, Rt = 0.74 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.27 (s, 3 H) 3.47 - 3.53 (m, 6 H) 3.79 (q, J=4.83 Hz, 10 H) 6.18 (d, J=13.69 Hz, 2 H) 7.30 (d, J=8.22 Hz, 1 H) 7.55 (dd, J=8.22, 1.96 Hz, 1 H) 7.67 (d, J=2.35 Hz, 1 H) 8.11 (d, J=5.09 Hz, 1 H) 8.29 (s, 1 H) 8.91 (d, J=5.09 Hz, 1 H).). LCMS (m/z) (M+H) = 527.2, Rt = 0.78 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.56 (s, 3 H) 3.50 - 3.56 (m, 6 H) 3.81 (dt, J=14.97, 5.04 Hz, 10 H) 6.23 (d, J=10.17 Hz, 2 H) 7.74 - 7.80 (m, 1 H) 7.95 (d, J=7.83 Hz, 1 H) 8.25 (d, J=7.83 Hz, 1 H) 8.31 (d, J=2.35 Hz, 2 H) 8.98 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 527.3, Rt = 0.64 min.
-
- 1H NMR (500 MHz,<cd3od>) δ ppm 2.13 (br. s., 1 H) 2.17 - 2.25 (m, 1 H) 2.35 (s, 3 H) 3.44 - 3.58 (m, 5 H) 3.66 - 3.76 (m, 3 H) 3.86 (t, J=4.73 Hz, 4 H) 4.60 (br. s., 1 H) 6.15 (s, 1 H) 7.36 (d, J=8.51 Hz, 1 H) 7.64 (dt, J=8.20, 2.52 Hz, 1 H) 7.76 (br. s., 1 H) 8.14 (d, J=4.73 Hz, 1 H) 8.32 (s, 1 H) 8.94 (d, J=5.04 Hz, 1 H). LCMS (m/z) (M+H) = 528.2, Rt = 0.75 min.
-
- 1H NMR (500 MHz,<cd3od>) δ ppm 2.13 (d, J=3.78 Hz, 1 H) 2.17 - 2.26 (m, 1 H) 2.35 (s, 3 H) 3.43 - 3.57 (m, 5 H) 3.66 - 3.76 (m, 3 H) 3.86 (t, J=4.73 Hz, 4 H) 4.59 (d, J=1.89 Hz, 1 H) 6.15 (br. s., 1 H) 7.36 (d, J=8.20 Hz, 1 H) 7.65 (dd, J=8.35, 2.36 Hz, 1 H) 7.76 (br. s., 1 H) 8.14 (d, J=4.73 Hz, 1 H) 8.32 (s, 1 H) 8.94 (d, J=4.73 Hz, 1 H). LCMS (m/z) (M+H) = 528.2, Rt = 0.75 min.
-
- 1H NMR (500 MHz,<cd3od>) δ ppm 1.90 - 2.04 (m, 2 H) 2.23 (s, 3 H) 2.38 (d, J=12.93 Hz, 1 H) 2.76 - 2.86 (m, 1 H) 3.49 - 3.57 (m, 5 H) 3.62 - 3.71 (m, 2 H) 3.75 - 3.83 (m, 5 H) 3.84 - 3.97 (m, 2 H) 4.14 (dd, J=11.51, 2.68 Hz, 1 H) 4.30 (ddd, J=9.62, 6.46, 3.15 Hz, 1 H) 4.61 (dd, J=9.93, 2.68 Hz, 1 H) 6.66 (s, 1 H) 6.81 (s, 1 H) 7.26 (d, J=8.20 Hz, 1 H) 7.45 (dd, J=8.20, 2.21 Hz, 1 H) 7.47 (d, J=2.21 Hz, 1 H) 9.95 (s, 1 H). LCMS (m/z) (M+H) = 535.3, Rt = 0.61 min.
-
-
- To a suspension of 3-morpholinone (1.50 equiv.) in toluene was added potassium tert-butoxide, 1.0M in THF (1.40 equiv.). The mixture was stirred for 10 min. 4-bromo-2-fluoropyridine (1.00 equiv.) was added. The mixture was stirred at 110 °C for 5 hr. The cooled reaction mixture was diluted with ethyl acetate and washed with saturated aqueous sodium bicarbonate. The separated organic phase was dried over sodium sulfate, filtered, and concentrated to give 4-(4-bromopyridin-2-yl)morpholin-3-one. LCMS (m/z) (M+H) = 256.9/258.8, Rt = 0.59 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.33 (s, 3 H) 4.10 (s, 4 H) 4.35 (s, 2 H) 7.32 - 7.40 (m, 2 H) 7.66 - 7.78 (m, 3 H) 7.90 (d, J=7.83 Hz, 1 H) 7.95 (s, 1 H) 8.22 (d, J=7.83 Hz, 1 H) 8.27 (s, 1 H) 8.53 (d, J=5.09 Hz, 1 H)LCMS (m/z) (M+H) = 456.1, Rt = 0.97 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 2.70 (s, 3 H) 4.06 - 4.20 (m, 4 H) 4.36 (s, 2 H) 7.40 (dd, J=5.09, 1.57 Hz, 1 H) 7.74 - 7.84 (m, 1 H) 7.97 (d, J=7.83 Hz, 1 H) 8.18 (s, 1 H) 8.29 (d, J=8.22 Hz, 1 H) 8.36 (s, 1 H) 8.50 (d, J=1.96 Hz, 1 H) 8.66 (d, J=5.09 Hz, 1 H) 9.36 (d, J=2.35 Hz, 1 H). LCMS (m/z) (M+H) = 457.1, Rt = 0.72 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.43 (d, J=6.65 Hz, 6 H) 2.60 (s, 3 H) 3.24 - 3.31 (m, 1 H) 3.66 - 3.76 (m, 4 H) 3.83 - 3.93 (m, 4 H) 7.06 (d, J=6.26 Hz, 1 H) 7.36 (s, 1 H) 7.96 (dd, J=5.67, 1.37 Hz, 1 H) 8.08 (s, 1 H) 8.14 (d, J=6.26 Hz, 1 H) 8.43 (d, J=2.35 Hz, 1 H) 8.77 (d, J=5.48 Hz, 1 H) 9.01 (d, J=1.96 Hz, 1 H). LCMS (m/z) (M+H) = 418.2, Rt = 0.41 min.
-
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.35 (d, J=6.65 Hz, 3 H) 1.60 - 1.85 (m, 7 H) 2.63 (s, 3 H) 3.36 - 3.72 (m, 6 H) 3.72 - 3.87 (m, 5 H) 4.03 (d, J=10.96 Hz, 1 H) 4.17 (d, J=6.65 Hz, 1 H) 6.07 - 6.32 (m, 1 H) 7.81 (dd, J=5.09, 1.57 Hz, 1 H) 8.11 (s, 1 H) 8.42 (d, J=2.35 Hz, 1 H) 8.74 (d, J=5.09 Hz, 1 H) 9.07 (d, J=1.96 Hz, 1 H). LC/MS (m/z): 509.4 (MH+), Rt = 0.57 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.34 (d, J=6.65 Hz, 3 H) 2.05 (t, J=18.59 Hz, 3 H) 2.60 (s, 3 H) 3.36 - 3.55 (m, 3 H) 3.57 - 3.72 (m, 2 H) 3.73 - 3.89 (m, 4 H) 4.02 (d, J=11.35 Hz, 1 H) 4.18 (d, J=5.87 Hz, 1 H) 6.05 - 6.33 (m, 1 H) 8.00 (d, J=4.70 Hz, 1 H) 8.22 (s, 1 H) 8.37 (d, J=2.35 Hz, 1H) 8.85 (d, J=5.09 Hz, 1 H) 9.00 (s, 1 H). LC/MS (m/z): 513.4 (MH+), Rt = 0.56 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.34 (d, J=6.65 Hz, 3 H) 2.59 (s, 3 H) 3.36 - 3.55 (m, 3 H) 3.58 - 3.71 (m, 2 H) 3.74 - 3.89 (m, 4 H) 3.92 - 4.08 (m, 1 H) 4.17 (d, J=6.26 Hz, 1 H) 6.04 - 6.29 (m, 1 H) 8.15 (d, J=4.30 Hz, 1 H) 8.28 - 8.41 (m, 1 H) 8.87 - 9.06 (m, 1 H). LC/MS (m/z): 517.3 (MH+), Rt = 0.58 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.35 (d, J=6.65 Hz, 3 H) 2.61 (s, 3 H) 3.36 - 3.71 (m, 6 H) 3.71 - 3.87 (m, 5 H) 3.93 - 4.09 (m, 1 H) 4.17 (d, J=6.65 Hz, 1 H) 6.08 - 6.32 (m, 1 H) 6.66 - 7.09 (m, 1 H) 8.05 (d, J=5.09 Hz, 1 H) 8.16 - 8.28 (m, 1 H) 8.32 - 8.48 (m, 1 H) 8.84 - 8.94 (m, 1 H) 9.04 (d, J=1.96 Hz, 1 H). LC/MS (m/z): 499.4 (MH+), Rt = 0.51 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.38 (t, J=7.04 Hz, 4 H) 1.62 - 1.86 (m, 6 H) 2.68 (s, 3 H) 3.45 - 3.63 (m, 4 H) 3.70 - 3.87 (m, 4 H) 4.37 (q, J=7.04 Hz, 2 H) 6.14 (s, 1 H) 6.31 (s, 1 H) 7.83 (dd, J=5.09, 1.57 Hz, 1 H) 8.13 (s, 1 H) 8.45 (d, J=2.35 Hz, 1 H) 8.76 (d, J=5.09 Hz, 1 H) 9.38 (d, J=2.35 Hz, 1 H). LC/MS (m/z): 480.2 (MH+), Rt = 0.82 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.24 - 1.46 (m, 5 H) 2.05 (t, J=18.78 Hz, 3 H) 2.66 (s, 3 H) 3.46 - 3.62 (m, 4 H) 3.71 - 3.88 (m, 4 H) 4.37 (q, J=7.04 Hz, 2 H) 6.14 (s, 1 H) 6.30 (s, 1 H) 8.02 (d, J=4.30 Hz, 1 H) 8.25 (s, 1 H) 8.40 (d, J=2.35 Hz, 1 H) 8.86 (d, J=5.09 Hz, 1 H) 9.31 (d, J=2.35 Hz, 1 H). LC/MS (m/z): 484.2 (MH+), Rt = 0.82 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.62 - 1.83 (m, 6 H) 2.29 (s, 3 H) 3.46 - 4.02 (m, 14 H) 4.13 (dd, J=11.54, 2.54 Hz, 1 H) 4.74 (dd, J=9.78, 2.35 Hz, 1 H) 6.95 (d, J=4.30 Hz, 2 H) 7.34 (d, J=8.22 Hz, 1 H) 7.63 (dd, J=8.22, 2.35 Hz, 1 H) 7.71 (d, J=1.96 Hz, 1 H) 7.78 (dd, J=5.09, 1.57 Hz, 1 H) 8.07 (s, 1 H) 8.70 (d, J=5.09 Hz, 1 H). LC/MS (m/z): 521.2 (MH+), Rt = 0.85 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.32 (d, J=6.65 Hz, 3 H) 2.03 (t, J=18.59 Hz, 3 H) 2.30 (s, 3 H) 3.46 - 4.02 (m, 14 H) 4.14 (dd, J=11.54, 2.54 Hz, 1 H) 4.76 (dd, J=9.78, 2.74 Hz, 1 H) 6.98 (d, J=1.96 Hz, 2 H) 7.35 (d, J=8.22 Hz, 1 H) 7.64 (dd, J=8.22, 2.35 Hz, 1 H) 7.74 (d, J=1.96 Hz, 1 H) 7.96 (d, J=4.30 Hz, 1 H) 8.18 (s, 1 H) 8.81 (d, J=5.09 Hz, 1 H). LC/MS (m/z): 525.2 (MH+), Rt = 0.85 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.38 (t, J=7.04 Hz, 3 H) 2.68 (s, 3 H) 3.47 - 3.63 (m, 4 H) 3.71 - 3.85 (m, 4 H) 4.37 (q, J=7.04 Hz, 2 H) 6.14 (s, 1 H) 6.31 (s, 1 H) 6.61 - 7.04 (m, 1 H) 8.07 (d, J=5.09 Hz, 1 H) 8.25 (s, 1 H) 8.44 (d, J=2.35 Hz, 1 H) 8.89 (d, J=5.09 Hz, 1 H) 9.36 (d, J=2.35 Hz, 1 H). LC/MS (m/z): 470.2 (MH+), Rt = 0.78 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.38 (t, J=7.04 Hz, 3 H) 1.82 (s, 6 H) 2.67 (s, 3 H) 3.46 - 3.62 (m, 4 H) 3.70 - 3.87 (m, 4 H) 4.37 (q, J=7.17 Hz, 2 H) 6.15 (s, 1 H) 6.31 (s, 1 H) 7.87 (dd, J=5.09, 1.17 Hz, 1 H) 8.13 (s, 1 H) 8.42 (d, J=2.35 Hz, 1 H) 8.82 (d, J=4.70 Hz, 1 H) 9.36 (d, J=2.35 Hz, 1 H). LC/MS (m/z): 487.2 (MH+), Rt = 0.81 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.38 (t, J=7.04 Hz, 3 H) 1.64 (s, 6 H) 2.67 (s, 3 H) 3.45 - 3.62 (m, 4 H) 3.68 - 3.88 (m, 4 H) 4.37 (q, J=7.04 Hz, 2 H) 6.14 (s, 1 H) 6.31 (s, 1 H) 7.95 (dd, J=5.28, 1.76 Hz, 1 H) 8.34 (d, J=0.78 Hz, 1 H) 8.44 (d, J=2.35 Hz, 1 H) 8.77 (d, J=5.48 Hz, 1 H) 9.35 (d, J=2.35 Hz, 1 H). LC/MS (m/z): 478.3 (MH+), Rt = 0.64 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.06 - 1.27 (m, 4 H) 1.38 (t, J=7.04 Hz, 3 H) 2.20 - 2.33 (m, 1 H) 2.66 (s, 3 H) 3.42 - 3.64 (m, 4 H) 3.67 - 3.94 (m, 4 H) 4.37 (q, J=7.04 Hz, 2 H) 6.14 (s, 1 H) 6.30 (s, 1 H) 7.78 (dd, J=5.48, 1.57 Hz, 1 H) 7.84 (s, 1 H) 8.40 (d, J=1.96 Hz, 1 H) 8.64 (d, J=5.09 Hz, 1 H) 9.33 (d, J=2.35 Hz, 1 H). LC/MS (m/z): 460.3 (MH+), Rt = 0.67 min.
-
- 1H NMR (400 MHz, Methanol-d4) δ 8.76 (dd, J = 5.8, 0.8 Hz, 1H), 8.41 (dd, J = 1.7, 0.8 Hz, 1H), 8.13 (dd, J = 5.8, 1.7 Hz, 1H), 7.69 - 7.57 (m, 2H), 7.34 - 7.27 (m, 1H), 6.22 (d, J = 0.9 Hz, 1H), 6.06 (d, J = 0.9 Hz, 1H), 5.26 - 5.15 (m, 1H), 3.96 (dt, J = 11.7, 4.5 Hz, 2H), 3.83 - 3.75 (m, 4H), 3.62 (ddd, J = 11.8, 8.9, 3.0 Hz, 2H), 3.52 - 3.44 (m, 4H), 2.27 (s, 3H), 2.13 - 2.03 (m, 2H), 1.78 (ddd, J = 13.0, 8.6, 4.0 Hz, 2H), 1.67 (s, 6H). LC/MS (m/z): 533.2 (MH+), Rt = 0.81 min.
-
- 1H NMR (400 MHz, Methanol-d4) δ 8.83 (dd, J = 5.1, 0.7 Hz, 1H), 8.17 (d, J = 1.7 Hz, 1H), 8.00 (ddd, J = 4.4, 1.7, 0.9 Hz, 1H), 7.63 (dd, J = 4.5, 2.1 Hz, 2H), 7.34 - 7.26 (m, 1H), 6.82 (t, J = 55.1 Hz, 1H), 6.32 - 6.26 (m, 1H), 6.13 (d, J = 1.0 Hz, 1H), 5.24 - 5.14 (m, 1H), 4.02 - 3.92 (m, 2H), 3.84 - 3.76 (m, 4H), 3.62 (ddd, J = 11.8, 8.9, 3.0 Hz, 2H), 3.51 (dd, J = 5.7, 4.1 Hz, 4H), 2.27 (s, 3H), 2.14 - 2.05 (m, 2H), 1.78 (dtd, J = 12.8, 8.7, 4.0 Hz, 2H). LC/MS (m/z): 525.2 (MH+), Rt = 0.97 min.
-
- 1H NMR (400 MHz, Methanol-d4) δ 8.76 (dd, J = 5.0, 0.9 Hz, 1H), 8.06 (dd, J = 1.6, 0.9 Hz, 1H), 7.81 (dd, J = 5.1, 1.6 Hz, 1H), 7.62 (d, J = 8.2 Hz, 2H), 7.30 (dd, J = 8.0, 1.0 Hz, 1H), 6.29 (d, J = 1.3 Hz, 1H), 6.13 (d, J = 1.0 Hz, 1H), 5.25 - 5.13 (m, 1H), 4.02 - 3.92 (m, 2H), 3.84 - 3.76 (m, 4H), 3.62 (ddd, J = 11.8, 8.9, 3.0 Hz, 2H), 3.54 - 3.47 (m, 4H), 2.27 (s, 3H), 2.09 (ddd, J = 11.7, 6.1, 3.0 Hz, 2H), 1.81 (s, 8H). LC/MS (m/z): 542.2 (MH+), Rt = 0.99 min.
-
- 1H NMR (400 MHz, Methanol-d4) δ 9.61 (d, J = 2.0 Hz, 1H), 8.35 (d, J = 2.0 Hz, 1H), 7.65 (dd, J = 8.3, 2.3 Hz, 1H), 7.60 (d, J = 2.4 Hz, 1H), 7.34 - 7.27 (m, 1H), 6.23 (d, J = 0.9 Hz, 1H), 6.07 (d, J = 0.9 Hz, 1H), 5.25 - 5.16 (m, 2H), 4.01 - 3.91 (m, 2H), 3.83 - 3.75 (m, 4H), 3.62 (ddd, J = 11.8, 8.9, 3.1 Hz, 2H), 3.52 - 3.45 (m, 5H), 2.27 (s, 3H), 2.12 - 2.04 (m, 2H), 1.91 (s, 5H), 1.77 (dt, J = 8.6, 4.2 Hz, 2H). LC/MS (m/z): 543.2 (MH+), Rt = 0.93 min.
-
- 1H NMR (400 MHz, Methanol-d4) δ 9.43 (d, J = 2.0 Hz, 1H), 8.05 (d, J = 2.0 Hz, 1H), 7.67 - 7.57 (m, 2H), 7.30 (d, J = 8.2 Hz, 1H), 6.25 (d, J = 1.2 Hz, 1H), 6.09 (d, J = 1.0 Hz, 1H), 5.19 (dddt, J = 7.8, 4.9, 3.9, 0.5 Hz, 1H), 4.01 - 3.91 (m, 2H), 3.83 - 3.75 (m, 4H), 3.61 (ddd, J = 11.8, 8.9, 3.0 Hz, 2H), 3.49 (dd, J = 5.4, 4.4 Hz, 4H), 2.45 - 2.36 (m, 1H), 2.26 (s, 3H), 2.13 - 2.04 (m, 2H), 1.77 (dt, J = 8.6, 4.1 Hz, 2H), 1.37 - 1.23 (m, 4H). LC/MS (m/z): 516.2 (MH+), Rt = 0.91 min.
-
- 1H NMR (400 MHz, Methanol-d4) δ 9.86 (d, J = 2.0 Hz, 1H), 8.57 (d, J = 2.0 Hz, 1H), 7.69 - 7.61 (m, 2H), 7.34 - 7.27 (m, 1H), 6.27 (d, J = 1.3 Hz, 1H), 6.11 (d, J = 1.0 Hz, 1H), 5.24 - 5.14 (m, 1H), 3.96 (dt, J = 11.6, 4.5 Hz, 2H), 3.83 - 3.76 (m, 4H), 3.61 (ddd, J = 11.8, 8.9, 3.0 Hz, 2H), 3.53 - 3.46 (m, 4H), 2.27 (s, 3H), 2.08 (ddt, J = 11.7, 5.7, 2.8 Hz, 2H), 1.77 (dtd, J = 12.8, 8.7, 4.0 Hz, 2H). LC/MS (m/z): 544.2 (MH+), Rt = 0.99 min.
-
- Step 1: 2,6-difluoro-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridine (1.0 equiv.), 3-bromo-4-methylaniline (1.04 equiv.) and Pd-Xphos precat (0.005 equiv.) were stirred in a solution of THF (0.5 M) under nitrogen. Potassium phosphate (2.0 equiv, 0.5 M solution) was added and the mixture was heated to 35 °C overnight. Upon overnight stirring, another 0.005 equiv. of catalyst was added and the mixture was warmed to 60 °C for 18 hours. The mixture was carefully poured onto water and extracted with ethyl acetate (3x). The combined organics were washed with water, brine, dried over magnesium sulfate, filtered and concentrated. The crude residue was purified via silica gel chromatography (ISCO, 0-100% ethyl acetate in heptanes) to give 3-(2,6-difluoropyridin-4-yl)-4-methylaniline in 64% yield. LCMS (m/z) (M+H) = 220.9, Rt = 0.54 min.
- Step 2: To a solution of 3-(2,6-difluoropyridin-4-yl)-4-methylaniline (1.0 equiv.) in DMSO (1 M) was added morpholine (3.0 equiv.) and potassium carbonate (2.0 equiv.) to give a yellow suspension. The mixture was heated to 40 °C for 3 hours and upon cooling to rt, diluted with water and sodium bicarbonate, extracted with ethyl acetate (3x), dried, filtered and concentrated to give 3-(2-fluoro-6-morpholinopyridin-4-yl)-4-methylaniline in quantitative yield. LCMS (m/z) (M+H) = 288.0, Rt = 0.60 min.
- Step 3: To a solution of 3-(2-fluoro-6-morpholinopyridin-4-yl)-4-methylaniline (1.0 equiv.) in dioxane (0.2 M) was added 2-((tetrahydro-2H-pyran-2-yl)oxy)ethanol (2.0 equiv.) to give an orange solution. Sodium hydride (60% dispersion, 2.0 equiv.) was added carefully and the reaction was stirred at rt for 30 min, then warmed to 60 °C for 2 hours. At this point, about 75% conversion to product, so the mixture was heated to 70 °C for another one hour. The reaction was cooled to rt, quenched with aqueous sodium bicarbonate, extracted with ethyl acetate (3x), dried over magnesium sulfate, filtered and concentrated. The crude material was purified via silica gel chromatography (ISCO, 0-5% methanol in DCM then 0-100% ethyl acetate in heptanes to give 4-methyl-3-(2-morpholino-6-(2-((tetrahydro-2H-pyran-2-yl)oxy)ethoxy)pyridin-4-yl)aniline in 72% yield. LCMS (m/z) (M+H) = 414.1, Rt = 0.73 min.
- Step 4: A solution of 4-methyl-3-(2-morpholino-6-(2-((tetrahydro-2H-pyran-2-yl)oxy)ethoxy)pyridin-4-yl)aniline (1.0 equiv.), 2-(trifluoromethyl)isonicotinic acid (1.7 equiv.), N1-((ethylimino)methylene)-N3,N3-dimethylpropane-1,3-diamine hydrochloride (1.7 equiv.), 3H-[1,2,3]triazolo[4,5-b]pyridin-3-ol hydrate (1.7 equiv.) and Huenig's base (2.0 equiv.) in DMF (0.1 M) was stirred at rt overnight. HCl (5.0 equiv., 2.0 M aqueous solution) was added and the reaction was stirred for 90 min, at which point LC/MS indicated about 90% conversion to product. Additional 2.5 equiv. of HCl was added and stirred for 30 min at rt. The solution was diluted with water and solid sodium bicarbonate was carefully added until pH=5 was reached. The solution was extracted with ethyl acetate (3x), dried over magnesium sulfate, filtered and concentrated. The crude material was purified via silica gel chromatography (ISCO, 0-100% ethyl acetate in heptanes to give N-(3-(2-(2-hydroxyethoxy)-6-morpholinopyridin-4-yl)-4-methylphenyl)-2-(trifluoromethyl)isonicotinamide in 81% yield. 1H NMR (400 MHz, Methanol-d4) δ 8.93 - 8.86 (m, 1H), 8.31 - 8.26 (m, 1H), 8.14 - 8.07 (m, 1H), 7.68 - 7.56 (m, 2H), 7.33 - 7.25 (m, 1H), 6.32 - 6.24 (m, 1H), 6.13 (dd, J = 28.4, 0.9 Hz, 1H), 4.76 - 4.59 (m, 2H), 4.41 - 4.33 (m, 1H), 3.91 - 3.84 (m, 1H), 3.79 (ddd, J = 6.7, 4.0, 1.8 Hz, 4H), 3.51 (q, J = 4.8 Hz, 4H), 2.26 (d, J = 4.9 Hz, 3H). LC/MS (m/z): 503.2 (MH+), Rt = 0.88 min.
-
- 1H NMR (400 MHz, Methanol-d4) δ 8.64 (dd, J = 5.8, 0.8 Hz, 1H), 7.94 - 7.85 (m, 2H), 7.63 (dd, J = 8.2, 2.4 Hz, 1H), 7.57 (d, J = 2.3 Hz, 1H), 7.29 (dd, J = 8.3, 0.7 Hz, 1H), 6.22 (d, J = 0.9 Hz, 1H), 6.10 (d, J = 0.9 Hz, 1H), 4.40 - 4.33 (m, 2H), 3.90 - 3.83 (m, 2H), 3.83 - 3.75 (m, 5H), 3.54 - 3.46 (m, 5H), 2.38 - 2.26 (m, 1H), 2.26 (s, 3H), 1.38 - 1.17 (m, 5H). LC/MS (m/z): 475.2 (MH+), Rt = 0.69 min.
-
- 1H NMR (400 MHz, Methanol-d4) δ 8.71 (dd, J = 5.2, 0.9 Hz, 1H), 8.10 (dt, J = 2.0, 1.0 Hz, 1H), 7.82 (ddd, J = 5.2, 2.7, 1.7 Hz, 1H), 7.67 - 7.55 (m, 2H), 7.33 - 7.25 (m, 1H), 6.34 - 6.25 (m, 1H), 6.14 (dd, J = 32.5, 0.9 Hz, 1H), 4.76 - 4.59 (m, 2H), 4.41 - 4.34 (m, 1H), 3.92 - 3.84 (m, 1H), 3.79 (ddd, J = 5.1, 4.2, 2.3 Hz, 4H), 3.56 - 3.47 (m, 4H), 2.26 (d, J = 5.7 Hz, 3H), 1.74 (dd, J = 22.0, 0.6 Hz, 6H). LC/MS (m/z): 495.2 (MH+), Rt = 0.84 min.
-
- 1H NMR (400 MHz, Methanol-d4) δ 8.79 (dt, J = 5.1, 0.8 Hz, 1H), 8.17 (dd, J = 1.6, 0.9 Hz, 1H), 7.95 (ddd, J = 5.1, 1.5, 0.8 Hz, 1H), 7.67 - 7.55 (m, 2H), 7.33 - 7.25 (m, 1H), 6.32 - 6.24 (m, 1H), 6.13 (dd, J = 26.2, 0.9 Hz, 1H), 4.76 - 4.59 (m, 2H), 4.41 - 4.33 (m, 2H), 3.91 - 3.84 (m, 2H), 3.83 - 3.75 (m, 5H), 3.51 (dt, J = 6.2, 3.9 Hz, 5H), 2.26 (d, J = 4.6 Hz, 3H), 2.03 (t, J = 18.7 Hz, 3H). LC/MS (m/z): 499.2 (MH+), Rt = 0.85 min.
-
- 1H NMR (400 MHz, Methanol-d4) δ 8.82 (dt, J = 5.2, 0.8 Hz, 1H), 8.16 (d, J = 1.6 Hz, 1H), 8.00 (ddt, J = 5.2, 1.8, 0.9 Hz, 1H), 7.67 - 7.55 (m, 2H), 7.33 - 7.25 (m, 1H), 6.81 (t, J = 55.1 Hz, 1H), 6.32 - 6.24 (m, 1H), 6.13 (dd, J = 26.0, 0.9 Hz, 1H), 4.76 - 4.59 (m, 2H), 4.41 - 4.33 (m, 1H), 3.91 - 3.84 (m, 1H), 3.79 (ddd, J = 6.5, 3.7, 1.6 Hz, 4H), 3.52 (dd, J = 5.5, 4.0 Hz, 4H), 2.26 (d, J = 4.5 Hz, 3H). LC/MS (m/z): 485.2 (MH+), Rt = 0.81 min.
-
- 1H NMR (400 MHz, Methanol-d4) δ 8.75 (dd, J = 5.1, 1.0 Hz, 1H), 8.05 (dt, J = 1.5, 0.8 Hz, 1H), 7.80 (dd, J = 5.1, 1.6 Hz, 1H), 7.67 - 7.54 (m, 2H), 7.33 - 7.25 (m, 1H), 6.35 - 6.25 (m, 1H), 6.14 (dd, J = 33.3, 0.9 Hz, 1H), 4.76 - 4.59 (m, 2H), 4.41 - 4.34 (m, 1H), 3.92 - 3.84 (m, 1H), 3.84 - 3.75 (m, 4H), 3.56 - 3.47 (m, 4H), 2.26 (d, J = 5.9 Hz, 3H), 1.80 (s, 6H). LC/MS (m/z): 502.2 (MH+), Rt = 0.83 min.
-
- 1H NMR (400 MHz, Methanol-d4) δ 9.41 (d, J = 2.1 Hz, 1H), 8.00 (d, J = 2.0 Hz, 1H), 7.67 - 7.54 (m, 2H), 7.33 - 7.26 (m, 1H), 6.25 (d, J = 1.1 Hz, 1H), 6.13 (d, J = 0.9 Hz, 1H), 4.76 - 4.61 (m, 1H), 4.41 - 4.33 (m, 2H), 3.91 - 3.83 (m, 2H), 3.83 - 3.76 (m, 5H), 3.55 - 3.47 (m, 5H), 2.39 (tt, J = 8.2, 4.9 Hz, 1H), 2.26 (d, J = 3.0 Hz, 3H), 1.35 - 1.21 (m, 5H). LC/MS (m/z): 476.2 (MH+), Rt = 0.75 min.
-
- 1H NMR (400 MHz, Methanol-d4) δ 8.95 (dt, J = 5.1, 0.7 Hz, 1H), 8.42 (dt, J = 1.6, 0.7 Hz, 1H), 7.91 (ddd, J = 5.1, 1.8, 0.8 Hz, 1H), 7.71 (dd, J = 6.2, 2.4 Hz, 2H), 7.30 (dd, J = 8.9, 0.8 Hz, 1H), 6.27 (d, J = 1.0 Hz, 1H), 6.15 (d, J = 0.9 Hz, 1H), 4.41 - 4.33 (m, 2H), 3.91 - 3.84 (m, 2H), 3.83 - 3.76 (m, 4H), 3.56 - 3.48 (m, 5H), 2.26 (d, J = 0.6 Hz, 3H). LC/MS (m/z): 503.2 (MH+), Rt = 0.96 min.
-
- 1H NMR (400 MHz, Methanol-d4) δ 9.86 (d, J = 2.0 Hz, 1H), 8.57 (d, J = 2.0 Hz, 1H), 7.70 - 7.57 (m, 2H), 7.34 - 7.27 (m, 1H), 6.27 (dd, J = 6.5, 1.0 Hz, 1H), 6.12 (dd, J = 24.2, 0.9 Hz, 1H), 4.76 - 4.60 (m, 2H), 4.41 - 4.33 (m, 2H), 3.91 - 3.84 (m, 2H), 3.79 (ddd, J = 6.2, 3.6, 1.2 Hz, 5H), 3.55 - 3.48 (m, 4H), 2.26 (d, J = 3.8 Hz, 3H). LC/MS (m/z): 504.2 (MH+), Rt = 0.83 min.
-
- 1H NMR (400 MHz, <cd3od>) ppm 2.64 (s, 3 H) 3.47 - 3.54 (m, 1 H) 3.55 - 3.61 (m, 4 H) 3.63 - 3.71 (m, 1 H) 3.75 - 3.83 (m, 5 H) 3.85 - 3.97 (m, 2 H) 4.18 (dd, J=11.35, 2.74 Hz, 1 H) 4.62 (dd, J=9.98, 2.54 Hz, 1 H) 6.77 (s, 1 H) 6.92 (s, 1 H) 8.18 (d, J=3.91 Hz, 1 H) 8.36 (s, 1 H) 8.40 (d, J=2.35 Hz, 1 H) 8.97 (d, J=5.09 Hz, 1 H) 9.28 (d, J=2.35 Hz, 1 H). LC/MS (m/z): 530.1 (MH+), Rt = 0.72 min.
-
- 1H NMR (400 MHz, <cd3od>) ppm 2.05 (t, J=18.78 Hz, 3 H) 2.64 (s, 3 H) 3.46 - 3.54 (m, 1 H) 3.55 - 3.61 (m, 4 H) 3.63 - 3.71 (m, 1 H) 3.75 - 3.83 (m, 5 H) 3.85 - 3.96 (m, 2 H) 4.18 (dd, J=11.74, 2.74 Hz, 1 H) 4.62 (dd, J=9.78, 2.74 Hz, 1 H) 6.77 (s, 1 H) 6.92 (s, 1 H) 8.02 (d, J=4.70 Hz, 1 H) 8.25 (s, 1 H) 8.40 (d, J=2.35 Hz, 1 H) 8.86 (d, J=5.09 Hz, 1 H) 9.29 (d, J=2.35 Hz, 1 H). LC/MS (m/z): 526.2 (MH+), Rt = 0.70 min.
-
- 1H NMR (400 MHz, <cd3od>) ppm 1.67 - 1.80 (m, 6 H) 2.66 (s, 3 H) 3.50 (dd, J=11.54, 9.98 Hz, 1 H) 3.55 - 3.61 (m, 4 H) 3.63 - 3.70 (m, 1 H) 3.75 - 3.83 (m, 5 H) 3.85 - 3.98 (m, 2 H) 4.18 (dd, J=11.35, 2.74 Hz, 1 H) 4.63 (dd, J=9.78, 2.74 Hz, 1 H) 6.78 (s, 1 H) 6.93 (s, 1 H) 7.83 (dd, J=5.09, 1.96 Hz, 1 H) 8.14 (s, 1 H) 8.45 (d, J=2.35 Hz, 1 H) 8.76 (d, J=5.09 Hz, 1 H) 9.35 (d, J=2.35 Hz, 1 H). LC/MS (m/z): 522.2 (MH+), Rt = 0.71 min.
-
- 1H NMR (400 MHz, <cd3od>) δ ppm 1.01 (t, J=7.63 Hz, 3 H) 2.31 - 2.47 (m, 2 H) 2.65 (s, 3 H) 3.50 (dd, J=11.35, 10.17 Hz, 1 H) 3.55 - 3.61 (m, 4 H) 3.62 - 3.71 (m, 1 H) 3.75 - 3.84 (m, 5 H) 3.85 - 3.97 (m, 2 H) 4.18 (dd, J=11.74, 2.74 Hz, 1 H) 4.62 (dd, J=9.78, 2.74 Hz, 1 H) 6.77 (s, 1 H) 6.92 (s, 1 H) 8.02 (d, J=5.09 Hz, 1 H) 8.23 (s, 1 H) 8.42 (d, J=2.35 Hz, 1 H) 8.88 (d, J=5.09 Hz, 1 H) 9.31 (d, J=2.35 Hz, 1 H). LC/MS (m/z): 540.2 (MH+), Rt = 0.76 min.
-
- 1H NMR (400 MHz, <cd3od>) d ppm 1.10 - 1.24 (m, 4 H) 2.23 - 2.31 (m, 1 H) 2.63 (s, 3 H) 3.50 (dd, J=11.35, 10.17 Hz, 1 H) 3.54 - 3.61 (m, 4 H) 3.62 - 3.71 (m, 1 H) 3.76 - 3.84 (m, 5 H) 3.84 - 3.96 (m, 2 H) 4.18 (dd, J=11.35, 2.74 Hz, 1 H) 4.62 (dd, J=10.17, 2.74 Hz, 1 H) 6.77 (s, 1 H) 6.91 (s, 1 H) 7.76 (dd, J=5.09, 1.57 Hz, 1 H) 7.82 (s, 1 H) 8.38 (d, J=2.35 Hz, 1 H) 8.63 (d, J=5.09 Hz, 1 H) 9.27 (d, J=2.35 Hz, 1 H). LC/MS (m/z): 502.2 (MH+), Rt = 0.58 min.
-
- Step 1: A mixture of 4-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-2-yl)morpholine (1.0 equiv.), 5-bromo-6-methoxypyridin-3-amine (1.0 equiv.), sodium carbonate (2 M, 8 equiv.) and PdCl2(dppf) (0.5 equiv.) in DME (0.1 M) were heated to 110 °C for 15 min in the microwave. After removing the DME soluble portion and concentrating, the resulting solid was partitioned between EtOAc and water. The organic phase was washed with brine and then dried over sodium sulfate. After concentration, the crude material was purified via normal phase chromatography. 2-methoxy-2'-morpholino-[3,4'-bipyridin]-5-amine was isolated in 64% yield. LCMS (m/z) (M+H) = 287.1, Rt = 0.46 min.
- Step 2: 2-methoxy-2'-morpholino-[3,4'-bipyridin]-5-amine (1.0 equiv.) was dissolved in a solution of 4 M HCl in dioxane (2.0 equiv.) and heated to 110 °C for 1.5 h in the microwave. The dioxane soluble portion was concentrated and semi-crude 5-amino-2'-morpholino-[3,4'-bipyridin]-2(1H)-one was used in the next step without further purification. LCMS (m/z) (M+H) = 273.0, Rt = 0.23 min.
-
- Step 1: 2-fluoropyridin-4-amine (1.0 equiv.) and morpholine (1.4 equiv.) in THF (6 M) were heated to 110 °C for 17 h in an oil bath. The reaction mixture was concentrated and semi-crude 2-morpholinopyridin-4-amine was used in the next step without further purification. LCMS (m/z) (M+H) = 180.2, Rt = 0.26 min.
- Step 2: To a suspension of 2-morpholinopyridin-4-amine (1.0 equiv.) and (E)-3-((dimethylamino)methylene)-6-methyl-2H-pyran-2,4(3H)-dione (1.0 equiv.) in isopropanol (0.1 M) under an Ar atmosphere was added potassium 2-methylpropan-2-olate. The reaction mixture was heated to reflux for 17 h in an oil bath. The resulting thick orange mixture was concentrated and partitioned between EtOAc and water. The aqueous phase was acidified with 6 N HCl and then extracted twice with EtOAc. The resulting organic phase was dried over sodium sulfate and concentrated to give 6-methyl-2'-morpholino-4-oxo-4H-[1,4'-bipyridine]-3-carboxylic acid in 58 % yield. LCMS (m/z) (M+H) = 316.0, Rt = 0.38 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.75 (s, 6 H) 3.53 (t, J=4.30 Hz, 4 H) 3.67 - 3.76 (m, 4 H) 3.90 (s, 3 H) 6.98 (d, J=5.48 Hz, 1 H) 7.15 (br. s., 1 H) 7.88 (dd, J=4.89, 1.37 Hz, 1 H) 8.02 (s, 1 H) 8.11 - 8.23 (m, 2 H) 8.58 (d, J=2.35 Hz, 1 H) 8.82 (d, J=5.09 Hz, 1 H) 10.73 (s, 1 H). LCMS (m/z) (M+H) = 459.3, Rt = 0.69 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.94 - 2.12 (m, 3 H) 3.54 (d, J=4.70 Hz, 4 H) 3.68 - 3.79 (m, 4 H) 7.19 (d, J=5.48 Hz, 1 H) 7.56 (br. s., 1 H) 8.00 (d, J=4.70 Hz, 1 H) 8.04 - 8.15 (m, 3 H) 8.17 (s, 1 H) 8.88 (d, J=5.09 Hz, 1 H) 10.54 (s, 1 H). LCMS (m/z) (M+H) = 442.2, Rt = 0.60 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 3.53 (d, J=4.30 Hz, 4 H) 3.68 - 3.77 (m, 4 H) 7.17 (d, J=4.70 Hz, 1 H) 7.52 (br. s., 1 H) 8.00 - 8.14 (m, 3 H) 8.17 (d, J=4.70 Hz, 1 H) 8.34 (s, 1 H) 9.00 (d, J=5.09 Hz, 1 H) 10.59 (s, 1 H). LCMS (m/z) (M+H) = 446.2, Rt = 0.61 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 1.75 (s, 6 H) 3.60 (m, 4 H)3.69 - 3.79 (m, 4 H) 7.05 - 7.21 (m, 1 H) 7.50 (br. s., 1 H) 7.84 (dd, J=5.09, 1.57 Hz, 1 H) 7.99 (s, 1 H) 8.03 (br. s., 1 H) 8.06 - 8.15 (m, 2 H) 8.81 (d, J=5.09 Hz, 1 H) 10.45 (s, 1 H). LCMS (m/z) (M+H) = 445.2, Rt = 0.59 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 3.53 (d, J=4.70 Hz, 4 H) 3.65 - 3.83 (m, 4 H) 6.91 - 7.37 (m, 2 H) 7.54 (br. s., 1 H) 7.63 - 7.73 (m, 1 H) 7.79 (d, J=7.43 Hz, 1 H) 7.98 - 8.24 (m, 5 H) 10.28 (s, 1 H). LCMS (m/z) (M+H) = 427.1, Rt = 0.54 min.
-
- 1H NMR (400 MHz, <dmso>) δ ppm 2.15 (s, 3 H) 3.51 - 3.54 (m, 4 H) 3.65 - 3.73 (m, 4 H) 6.66 (s, 1 H) 6.85 - 6.93 (m, 1 H) 7.10 (s, 1 H) 7.44 (d, J=7.83 Hz, 1 H) 7.58 (t, J=8.02 Hz, 1 H) 7.78 (d, J=8.22 Hz, 1 H) 8.23 (s, 1 H) 8.31 (d, J=5.09 Hz, 1 H) 8.38 (s, 1 H) 12.92 (s, 1 H). LCMS (m/z) (M+H) = 459.0, Rt = 0.80 min.
- The following additional compounds have been made by the methods described herein.
Table A. 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 - The activity of a compound according to the present invention can be assessed by well-known in vitro & in vivo methods. Raf inhibition data provided herein was obtained using the following procedures.
- The RAF enzymes and the catalytically inactive MEK1 protein substrate were all made in-house using conventional methods. CRAF cDNA was subcloned as full length protein, with Y340E and Y341E activating mutations, into a baculovirus expression vector for Sf9 insect cell expression. h14-3-3 zeta cDNA was subcloned into a baculovirus expression vector for SF9 insect cell expression. Sf9 cells co-expressing both proteins were lysed and subjected to immobilized nickel chromatography and eluted with Imidazole. A second column (Strepll binding column) was used and eluted with desthiobiotin. Protein Tags were removed using Prescission enzyme and the protein was further purified using a flowthrough step to remove tags.
- C-Raf TR refers to a truncated C-Raf protein, a Δ1-324 deletion mutant.
- C-Raf FL refers to the full-length C-Raf protein.
- Full length MEK1 with an inactivating K97R ATP binding site mutation is utilized as a RAF substrate. The MEK1 cDNA was subcloned with an N-terminal (his)6 tag into a vector for E. Coli expression. The MEK1 substrate was purified from E. Coli lysate by nickel affinity chromatography followed by anion exchange. The final MEK1 preparation was biotinylated (Pierce EZ-Link Sulfo-NHS-LC-Biotin) and concentrated.
- Assay buffer: 50 mM Tris, pH 7.5, 15 mM MgCl2, 0.01% Bovine Serum Albumin (BSA), 1 mM dithiothreitol (DTT)
Stop buffer: 60 mM ethylenediaminetetraacetic acid (EDTA), 0.01% Tween® 20 b-Raf(V600E), active
biotinylated Mek, kinase dead
Alpha Screen detection kit (available from PerkinElmer™, #6760617R)
Anti phospho-MEK1/2 (available from Cell Signaling Technology, Inc. #9121)
384 well low volume assay plates (White Greiner® plates) - b-Raf(V600E) approximately 4 pM
c-Raf approximately 4 nM
biotinylated Mek, Kinase dead approximately 10 nM
ATP 10 µM for BRAF(V600E) and 1 uM for CRAF
Pre-incubation time with compounds 60 minutes at room temperature
Reaction time 1 or 3 hours at room temperature - Raf and biotinylated Mek, kinase dead, were combined at 2X final concentrations in assay buffer (50 mM Tris, pH 7.5, 15 mM MgCl2, 0.01% BSA and 1 mM DTT) and dispensed 5 ml per well in assay plates (Greiner white 384 well assay plates #781207) containing 0.25 ml of 40X of a Raf kinase inhibitor test compound diluted in 100% DMSO. The plate was incubated for 60 minutes at room temperature.
- The Raf kinase activity reaction was started by the addition of_5 mL per well of 2X ATP diluted in assay buffer. After 3 hours (b-Raf(V600E)) or 1 hour (c-Raf). The reactions were stopped and the phosphorylated product was measured using a rabbit anti-p-MEK (Cell Signaling, #9121) antibody and the Alpha Screen IgG (ProteinA) detection Kit (PerkinElmer #6760617R), by the addition of 10 mL to the well of a mixture of the antibody (1:2000 dilution) and detection beads (1:2000 dilution of both beads) in Stop/bead buffer (25 mM EDTA, 50 mM Tris, pH 7.5, 0.01% Tween20). The additions were carried out under dark conditions to protect the detection beads from light. A lid was placed on top of the plate and incubated for 1 hour at room temperature, then the luminescence was read on a PerkinElmer Envision instrument. The concentration of each compound for 50% inhibition (IC50) was calculated by non-linear regression using XL Fit data analysis software.
- Using the assays described above, compounds of the invention exhibit inhibitory efficacy as reported in Table 1.
Table 1. Selected compound structures and Raf inhibition data: numbering corresponds to the Examples above, most structures are found in the Examples. IC50's are micromolar. Ex. No. Structure B-Raf IC50 C-Raf FL IC50 C-Raf TR IC50 1 -structure and name are in the Example- 0.000145 0.000144 2 -structure and name are in the Example- 0.001416 0.002953 3 -structure and name are in the Example- 0.000148 4 -structure and name are in the Example- 0.000431 5 -structure and name are in the Example- 0.002996 0.000713 6 -structure and name are in the Example- 0.000408 7 -structure and name are in the Example- 0.003146 0.001183 0.001114 8 -structure and name are in the Example- 0.000837 0.000389 0.000514 9 -structure and name are in the Example- 0.001587 0.000949 0.000899 10 -structure and name are in the Example- 0.00033 0.000103 0.000118 11 -structure and name are in the Example- 0.001481 0.000542 0.00058 12 -structure and name are in the Example- 0.00182 0.000353 13 -structure and name are in the Example- 0.002168 0.000474 0.000533 14 -structure and name are in the Example- 0.002007 0.000616 0.000803 15 -structure and name are in the Example- 0.002224 0.00065 16 -structure and name are in the Example- 0.001521 0.000299 17 -structure and name are in the Example- 0.00305 0.000785 18 -structure and name are in the Example- 0.000456 0.000137 19 -structure and name are in the Example- 0.001851 0.000562 20 -structure and name are in the Example- 0.001967 0.000516 21 -structure and name are in the Example- 0.003433 0.000905 22 -structure and name are in the Example- 0.000652 0.000202 23 -structure and name are in the Example- 0.002416 0.00086 24 -structure and name are in the Example- 0.001356 0.000328 25 -structure and name are in the Example- 0.001197 0.000352 26 -structure and name are in the Example- 0.002177 0.000514 27 -structure and name are in the Example- 0.00086 0.00011 28 -structure and name are in the Example- 0.000585 0.000214 29 -structure and name are in the Example- 0.001306 0.000421 30 -structure and name are in the Example- 0.00083 0.000322 31 -structure and name are in the Example- 0.000737 0.00021 32 -structure and name are in the Example- 0.001695 0.00051 33 -structure and name are in the Example- 0.000455 0.000134 34 -structure and name are in the Example- 0.001853 0.000304 35 -structure and name are in the Example- 0.003454 0.000634 36 -structure and name are in the Example- 0.001277 0.000456 37 -structure and name are in the Example- 0.000773 0.000198 38 -structure and name are in the Example- 0.001429 0.000344 39 -structure and name are in the Example- 0.000816 0.000322 40 -structure and name are in the Example- 0.000601 0.000132 42 -structure and name are in the Example- 0.000422 0.00009 0.000137 43 -structure and name are in the Example- 0.001648 0.000388 0.000376 44 -structure and name are in the Example- 0.002875 0.000637 0.000714 45 -structure and name are in the Example- 0.005678 0.001392 0.001018 46 -structure and name are in the Example- 0.002118 0.000433 47 -structure and name are in the Example- 0.002454 0.000356 48 -structure and name are in the Example- 0.00143 0.000347 49 -structure and name are in the Example- 0.001495 0.000376 50 -structure and name are in the Example- 0.001131 0.00025 51 -structure and name are in the Example- 0.003162 0.000661 52 -structure and name are in the Example- 0.000884 0.000282 53 -structure and name are in the Example- 0.002499 0.000651 54 -structure and name are in the Example- 0.00314 0.000625 55 -structure and name are in the Example- 56 -structure and name are in the Example- 0.001001 0.000191 57 -structure and name are in the Example- 0.000994 0.000179 58 -structure and name are in the Example- 0.008715 0.00103 59 -structure and name are in the Example- 0.002655 0.000432 60 -structure and name are in the Example- 0.006966 0.001007 61 -structure and name are in the Example- 0.002273 0.000314 62 -structure and name are in the Example- 0.00108 0.000161 63 -structure and name are in the Example- 0.002553 0.000436 0.000508 64 -structure and name are in the Example- 0.000847 65 -structure and name are in the Example- 0.001142 0.000187 66 -structure and name are in the Example- 0.003002 0.000711 67 -structure and name are in the Example- 0.458152 0.077922 68 -structure and name are in the Example- 0.00064 0.000124 69 -structure and name are in the Example- 0.002054 0.000396 70 -structure and name are in the Example- 0.157 0.024002 71 -structure and name are in the Example- 0.599193 0.083265 72 -structure and name are in the Example- 0.639127 0.078004 73 -structure and name are in the Example- 0.001499 0.00025 74 -structure and name are in the Example- 75 -structure and name are in the Example- 0.000385 0.000056 76 -structure and name are in the Example- 0.003222 0.000765 77 -structure and name are in the Example- 0.000632 0.00013 78 -structure and name are in the Example- 0.00149 0.000199 79 -structure and name are in the Example- 0.101957 0.028001 80 -structure and name are in the Example- 0.030653 0.010123 81 -structure and name are in the Example- 0.014017 0.001449 82 -structure and name are in the Example- 0.014469 0.001768 83 -structure and name are in the Example- 0.002533 0.00029 84 -structure and name are in the Example- 0.002927 0.001218 85 -structure and name are in the Example- 0.010918 0.001343 86 -structure and name are in the Example- 0.00843 0.001099 87 -structure and name are in the Example- 0.012091 0.001495 88 -structure and name are in the Example- 0.037439 0.003837 89 -structure and name are in the Example- >25 7.685426 90 -structure and name are in the Example- >25 >25 91 -structure and name are in the Example- 18.59478 8 1.925371 92 -structure and name are in the Example- 93 -structure and name are in the Example- 0.000802 0.000117 94 -structure and name are in the Example- 0.005788 0.000489 95 -structure and name are in the Example- 0.013459 0.001829 96 -structure and name are in the Example- 0.001241 0.000182 97 -structure and name are in the Example- 0.009087 0.000998 98 -structure and name are in the Example- 0.025693 0.001993 99 -structure and name are in the Example- 0.00117 0.00016 100 -structure and name are in the Example- 0.004089 0.000522 101 -structure and name are in the Example- 0.002183 0.000253 102 -structure and name are in the Example- 0.028046 0.003089 103 -structure and name are in the Example- 0.018432 0.001947 104 -structure and name are in the Example- 0.038535 0.005505 106 -structure and name are in the Example- 0.001708 0.000359 107 -structure and name are in the Example- 0.001688 0.000363 108 -structure and name are in the Example- 0.006113 0.000778 109 -structure and name are in the Example- 0.005035 0.000719 110 -structure and name are in the Example- 0.002185 0.000332 111 -structure and name are in the Example- 0.000403 112 -structure and name are in the Example- 0.002384 0.0005 113 -structure and name are in the Example- 0.001137 0.000465 114 -structure and name are in the Example- 0.001626 0.000285 115 -structure and name are in the Example- 0.012797 0.000872 116 -structure and name are in the Example- 0.010923 0.000735 117 -structure and name are in the Example- 0.002035 0.000265 118 -structure and name are in the Example- 0.001003 0.000156 0.000308 119 -structure and name are in the Example- 0.00027 120 -structure and name are in the Example- 0.001214 0.000187 121 -structure and name are in the Example- 0.004451 0.000599 122 -structure and name are in the Example- 0.003877 0.000606 123 -structure and name are in the Example- 0.023164 0.004813 124 -structure and name are in the Example- 0.082672 0.017977 125 -structure and name are in the Example- 0.022327 0.006383 126 -structure and name are in the Example- 0.00107 0.000299 127 -structure and name are in the Example- 0.001667 0.00031 128 -structure and name are in the Example- 0.003782 0.000873 129 -structure and name are in the Example- 0.013441 0.002331 130 -structure and name are in the Example- 0.00577 0.001005 131 -structure and name are in the Example- 0.000483 0.000119 132 -structure and name are in the Example- 0.002708 0.000457 133 -structure and name are in the Example- 0.028875 0.001937 134 -structure and name are in the Example- 0.00364 0.000471 135 -structure and name are in the Example- 0.003957 0.000322 136 -structure and name are in the Example- 0.004173 0.000503 137 -structure and name are in the Example- 0.003792 0.000527 138 -structure and name are in the Example- 0.003112 0.000652 139 -structure and name are in the Example- 0.002454 0.000491 140 -structure and name are in the Example- 0.0025 0.000483 141 -structure and name are in the Example- 0.034633 0.005762 142 -structure and name are in the Example- 0.00223 0.000341 143 -structure and name are in the Example- 0.00998 0.002261 144 -structure and name are in the Example- 0.013851 0.002686 145 -structure and name are in the Example- 0.003786 0.000676 146 -structure and name are in the Example- 0.001918 0.000219 147 -structure and name are in the Example- 0.000756 0.000103 148 -structure and name are in the Example- 0.001889 0.000285 149 -structure and name are in the Example- 0.002181 0.000273 150 -structure and name are in the Example- 0.003933 0.000562 151 -structure and name are in the Example- 0.019733 0.002897 152 -structure and name are in the Example- 0.003295 0.000474 153 -structure and name are in the Example- 0.001023 0.000196 154 -structure and name are in the Example- 0.007186 0.001095 155 -structure and name are in the Example- 0.003831 0.000361 156 -structure and name are in the Example- 0.002484 0.000415 157 -structure and name are in the Example- 0.015761 0.002134 158 -structure and name are in the Example- 0.008383 0.000835 159 -structure and name are in the Example- 0.002618 0.000366 160 -structure and name are in the Example- 0.009738 0.00089 161 -structure and name are in the Example- 0.002648 0.000393 162 -structure and name are in the Example- 0.001835 0.000215 163 -structure and name are in the Example- 0.00769 0.000818 164 -structure and name are in the Example- 0.001575 0.000255 165 -structure and name are in the Example- 0.003127 0.000416 166 -structure and name are in the Example- 0.006933 0.000665 167 -structure and name are in the Example- 0.106629 0.007674 168 -structure and name are in the Example- 0.003139 0.000245 169 -structure and name are in the Example- 0.000775 0.00018 170 -structure and name are in the Example- 0.001278 0.000263 171 -structure and name are in the Example- 0.001254 0.000213 172 -structure and name are in the Example- 0.002908 0.000386 173 -structure and name are in the Example- 0.0118 0.000853 174 -structure and name are in the Example- 0.010049 0.002238 175 -structure and name are in the Example- 0.001542 0.00023 176 -structure and name are in the Example- 0.002474 0.000398 177 -structure and name are in the Example- 0.000706 0.000122 178 -structure and name are in the Example- 0.000862 0.000172 179 -structure and name are in the Example- 0.000905 0.00016 181 -structure and name are in the Example- 0.002664 0.000493 182 -structure and name are in the Example- 0.021222 0.002263 184 -structure and name are in the Example- 0.002202 0.000479 185 -structure and name are in the Example- 0.001819 0.000269 186 -structure and name are in the Example- 0.002242 0.000278 189 -structure and name are in the Example- 0.004735 0.000678 191 -structure and name are in the Example- 0.009525 0.001426 192 -structure and name are in the Example- 0.033857 0.002507 193 -structure and name are in the Example- 0.105813 0.011051 194 -structure and name are in the Example- 0.012407 0.002225 196 -structure and name are in the Example- 0.002191 0.000403 0.000621 197 -structure and name are in the Example- 0.006733 0.001062 198 -structure and name are in the Example- 0.000455 199 -structure and name are in the Example- 0.001292 200 0.001538 0.000205 201 0.014467 0.001991 202 0.000941 0.000155 203 0.000389 0.000065 204 0.000152 0.000039 205 0.001286 0.000185 206 0.009218 0.001619 207 0.001399 0.000225 208 0.005048 0.001099 209 0.001067 0.000171 210 0.022094 0.002729 211 0.006261 0.000873 212 214 0.00483 0.000547 215 0.007267 0.000785 216 217 218 219 0.002834 0.000362 220 - Additional in vitro Raf inhibition data is provided in the following Table for compounds shown in the synthesis Examples above-compound names and structures are in the Examples. Some of the compounds in the preceding table are also included here, and the associated data in the following table may be from a different repetition of the corresponding assay.
Table 2. Cmpd b-Raf IC-50 (µM) c-Raf FL IC-50 (µM) Example 1 0.00030 0.00010 Example 2 0.00480 0.00180 Example 3 0.00050 0.00010 Example 4 0.00130 0.00040 Example 5 0.00300 0.00070 Example 6 0.00130 0.00040 Example 7 0.00250 0.00110 Example 8 0.00090 0.00050 Example 9 0.00150 0.00090 Example 10 0.00030 0.00050 Example 11 0.00150 0.00060 Example 12 0.00180 0.00040 Example 13 0.00220 0.00050 Example 14 0.00200 0.00070 Example 15 0.00220 0.00060 Example 16 0.00150 0.00030 Example 17 0.00310 0.00080 Example 18 0.00050 0.00010 Example 19 0.00190 0.00060 Example 20 0.00200 0.00050 Example 21 0.00400 0.00090 Example 22 0.00070 0.00020 Example 23 0.00240 0.00060 Example 24 0.00140 0.00030 Example 25 0.00120 0.00040 Example 26 0.00220 0.00050 Example 27 0.00090 0.00010 Example 28 0.00060 0.00020 Example 29 0.00130 0.00040 Example 30 0.00080 0.00030 Example 31 0.00070 0.00020 Example 32 0.00170 0.00050 Example 33 0.00050 0.00010 Example 34 0.00190 0.00030 Example 35 0.00350 0.00060 Example 36 0.00130 0.00050 Example 37 0.00080 0.00020 Example 38 0.00140 0.00030 Example 39 0.00080 0.00030 Example 40 0.00080 0.00020 Example 42 0.00160 0.00040 Example 43 0.00050 0.00010 Example 44 0.00290 0.00070 Example 45 0.00570 0.00120 Example 46 0.00210 0.00040 Example 47 0.00250 0.00040 Example 48 0.00140 0.00030 Example 49 0.00150 0.00040 Example 50 0.00110 0.00030 Example 51 0.00320 0.00070 Example 52 0.00090 0.00030 Example 53 0.00250 0.00070 Example 54 0.00310 0.00060 Example 55 0.00150 0.00040 Example 56 0.00100 0.00020 Example 57 0.00100 0.00020 Example 58 0.00890 0.00110 Example 59 0.00280 0.00040 Example 60 0.00730 0.00100 Example 61 0.00230 0.00030 Example 62 0.00110 0.00020 Example 63 0.00210 0.00050 Example 64 0.00090 0.00080 Example 65 0.00110 0.00020 Example 66 0.00300 0.00070 Example 67 0.50000 0.07790 Example 68 0.00060 0.00010 Example 69 0.00210 0.00040 Example 70 0.20000 0.02400 Example 71 0.60000 0.08330 Example 72 0.60000 0.07800 Example 73 0.00190 0.00030 Example 74 0.00280 0.00040 Example 75 0.00040 0.00006 Example 76 0.00320 0.00080 Example 77 0.00060 0.00010 Example 78 0.00150 0.00020 Example 79 0.10000 0.02800 Example 80 0.03070 0.01010 Example 81 0.01400 0.00140 Example 82 0.01450 0.00180 Example 83 0.00250 0.00030 Example 84 0.00290 0.00120 Example 85 0.01090 0.00130 Example 86 0.00840 0.00110 Example 87 0.01270 0.00150 Example 88 0.03740 0.00380 Example 89 25.00034 7.70000 Example 90 25.00034 25.00034 Example 91 18.60000 1.90000 Example 92 0.00060 0.00060 Example 93 0.00080 0.00030 Example 94 0.00580 0.00050 Example 95 0.01350 0.00180 Example 96 0.00120 0.00020 Example 97 0.00910 0.00100 Example 98 0.02570 0.00200 Example 99 0.00120 0.00020 Example 100 0.00410 0.00050 Example 101 0.00220 0.00030 Example 102 0.02800 0.00310 Example 103 0.01840 0.00190 Example 104 0.03850 0.00550 Example 106 0.00170 0.00040 Example 107 0.00170 0.00040 Example 108 0.00610 0.00080 Example 109 0.00500 0.00070 Example 110 0.00220 0.00030 Example 111 0.00050 0.00040 Example 112 0.00240 0.00050 Example 113 0.00110 0.00050 Example 114 0.00160 0.00030 Example 115 0.01280 0.00090 Example 116 0.01090 0.00070 Example 117 0.00230 0.00040 Example 118 0.00070 0.00020 Example 119 0.00040 0.00030 Example 120 0.00120 0.00020 Example 121 0.00450 0.00060 Example 122 0.00390 0.00060 Example 123 0.02320 0.00480 Example 124 0.08270 0.01800 Example 125 0.02230 0.00640 Example 126 0.00110 0.00030 Example 127 0.00190 0.00040 Example 128 0.00380 0.00090 Example 129 0.01490 0.00360 Example 130 0.00580 0.00100 Example 131 0.00180 0.00050 Example 132 0.00270 0.00050 Example 133 0.02890 0.00190 Example 134 0.00240 0.00070 Example 135 0.00400 0.00030 Example 136 0.00420 0.00050 Example 137 0.00710 0.00070 Example 138 0.00470 0.00080 Example 139 0.00250 0.00050 Example 140 0.00250 0.00050 Example 141 0.04750 0.01020 Example 142 0.00220 0.00030 Example 143 0.01000 0.00230 Example 144 0.01390 0.00270 Example 145 0.00300 0.00060 Example 146 0.00190 0.00020 Example 147 0.00100 0.00010 Example 148 0.00190 0.00030 Example 149 0.00220 0.00030 Example 150 0.00400 0.00060 Example 151 0.02000 0.00290 Example 152 0.00330 0.00050 Example 153 0.00100 0.00020 Example 154 0.00730 0.00110 Example 155 0.00390 0.00040 Example 156 0.00250 0.00040 Example 157 0.01580 0.00210 Example 158 0.00840 0.00080 Example 159 0.00260 0.00040 Example 160 0.01060 0.00090 Example 161 0.00290 0.00040 Example 162 0.00180 0.00020 Example 163 0.00570 0.00070 Example 164 0.00170 0.00030 Example 165 0.00310 0.00040 Example 166 0.00690 0.00070 Example 167 0.05340 0.00790 Example 168 0.00310 0.00020 Example 169 0.00080 0.00020 Example 170 0.00130 0.00030 Example 171 0.00130 0.00020 Example 172 0.00290 0.00040 Example 173 0.00920 0.00180 Example 174 0.00690 0.00150 Example 175 0.00150 0.00020 Example 176 0.00250 0.00040 Example 177 0.00070 0.00010 Example 178 0.00090 0.00020 Example 179 0.00090 0.00020 Example 181 0.00270 0.00050 Example 182 0.02120 0.00230 Example 184 0.00310 0.00080 Example 185 0.00180 0.00030 Example 189 0.00470 0.00070 Example 190 0.00220 0.00030 Example 191 0.00540 0.00110 Example 192 0.03390 0.00250 Example 193 0.10000 0.01120 Example 194 0.01320 0.00220 Example 196 0.00150 0.00050 Example 197 0.00670 0.00110 Example 198 0.00080 0.00050 Example 199 0.00360 0.00130 Example 215 0.00730 0.00080 Example 222 0.00380 0.00040 Example 223 0.00220 0.00090 Example 224 0.00270 0.00090 Example 225 0.01230 0.00390 Example 226 0.00190 0.00070 Example 227 0.00180 0.00040 Example 228 0.00470 0.00110 Example 229 0.00070 0.00030 Example 230 0.00140 0.00040 Example 231 0.00040 0.00010 Example 232 0.00080 0.00030 Example 233 0.00060 0.00020 Example 234 0.00100 0.00050 Example 235 0.00100 0.00030 Example 236 0.00160 0.00060 Example 237 0.00040 0.00020 Example 238 0.00090 0.00040 Example 239 0.00560 0.00210 Example 240 0.01530 0.00510 Example 241 0.00570 0.00200 Example 242 0.00390 0.00180 Example 243 0.00530 0.00270 Example 244 0.00760 0.00360 Example 245 0.00130 0.00060 Example 246 0.00120 0.00060 Example 247 0.00110 0.00060 Example 248 0.00120 0.00040 Example 249 0.03650 0.00360 Example 250 0.00310 0.00080 Example 251 0.00310 0.00050 Example 252 0.00310 0.00080 Example 253 0.00260 0.00070 Example 254 0.00180 0.00050 Example 255 0.00560 0.00200 Example 256 0.00180 0.00040 Example 257 0.01000 0.00350 Example 258 0.00830 0.00220 Example 259 0.00310 0.00150 Example 260 0.00290 0.00080 Example 261 0.00180 0.00050 Example 262 0.00340 0.00100 Example 263 0.00900 0.00330 Example 264 0.00860 0.00240 Example 265 0.00450 0.00110 Example 266 0.00190 0.00050 Example 267 0.00110 0.00030 Example 268 0.00160 0.00060 Example 269 0.00240 0.00090 Example 270 0.00050 0.00020 Example 271 0.00070 0.00030 Example 272 0.00630 0.00270 Example 273 0.00270 0.00110 Example 274 0.00080 0.00040 Example 275 0.00050 0.00020 Example 276 0.00040 0.00020 Example 277 0.00100 0.00050 Example 278 0.00840 0.00240 Example 279 3.20000 0.80000 Example 280 0.00110 0.00040 Example 281 0.00630 0.00160 Example 282 0.05300 0.01780 Example 283 0.00600 0.00120 Example 284 0.00110 0.00040 Example 285 0.20000 0.05190 Example 286 0.20000 0.05190 Example 287 0.01650 0.00400 Example 288 0.00600 0.00120 Example 289 0.01560 0.00380 Example 290 0.00600 0.00140 Example 291 0.00230 0.00040 Example 292 0.00380 0.00140 Example 293 0.03230 0.00660 Example 294 0.01080 0.00270 Example 295 0.00360 0.00060 Example 296 0.02470 0.00490 Example 297 0.01880 0.00360 Example 298 0.00390 0.00190 Example 299 0.00690 0.00270 Example 300 0.01460 0.00470 Example 301 0.00320 0.00090 Example 302 0.00060 0.00020 Example 303 0.10000 0.01440 Example 304 0.00090 0.00030 Example 306 0.00110 0.00060 Example 307 0.00060 0.00010 Example 308 0.00080 0.00020 Example 309 0.00920 0.00460 Example 310 0.00180 0.00070 Example 311 0.00240 0.00090 Example 312 0.00400 0.00110 Example 313 0.00700 0.00170 Example 314 0.00600 0.00160 Example 315 0.00080 0.00030 Example 316 0.00310 0.00080 Example 317 0.00160 0.00050 Example 318 0.00330 0.00080 Example 319 0.00120 0.00040 Example 320 0.00170 0.00040 Example 321 0.02480 0.00850 Example 322 0.00110 0.00050 Example 323 0.01290 0.00280 Example 324 0.00740 0.00140 Example 325 0.30000 0.06230 Example 326 0.00370 0.00110 Example 327 0.00390 0.00100 Example 328 0.06240 0.01730 Example 329 1.10000 0.30000 Example 330 2.40000 1.30000 Example 331 0.00390 0.00040 Example 332 0.02320 0.00750 Example 333 0.01140 0.00150 Example 334 0.00230 0.00070 Example 335 0.00440 0.00200 Example 336 0.00550 0.00130 Example 337 0.01250 0.00610 Example 338 9.00000 6.40000 Example 339 0.00180 0.00070 Example 340 0.03640 0.00840 Example 341 0.00200 0.00050 Example 344 0.00310 0.00050 Example 345 0.00160 0.00030 Example 346 0.00870 0.00160 Example 347 0.01870 0.00330 Example 348 0.00270 0.00080 Example 349 0.00620 0.00130 Example 350 0.00350 0.00040 Example 351 0.01950 0.00380 Example 352 0.00220 0.00040 Example 353 0.00120 0.00020 Example 354 0.00100 0.00020 Example 355 0.00250 0.00060 Example 356 0.00390 0.00080 Example 357 0.00340 0.00080 Example 358 0.00730 0.00080 Example 359 0.00550 0.00040 Example 360 0.00600 0.00130 Example 361 0.00280 0.00040 Example 362 0.00290 0.00040 Example 363 0.00380 0.00080 Example 364 0.00210 0.00050 Example 365 0.08590 0.01330 Example 366 0.10000 0.01670 Example 367 0.01260 0.00300 Example 368 0.01220 0.00250 Example 369 0.05310 0.01270 Example 371 0.00080 0.00020 Example 372 0.00070 0.00020 Example 373 1.10000 0.20000 Example 374 3.40000 0.60000 Example 375 0.20000 0.04340 Example 376 2.80000 0.70000 Example 377 0.20000 0.06190 Example 379 0.00590 0.00140 Example 380 0.01250 0.00260 Example 381 0.10000 0.02550 Example 382 0.90000 0.30000 Example 383 2.80000 0.20000 Example 384 2.80000 0.20000 Example 389 0.06420 0.01410 Example 390 0.00540 0.00140 Example 391 0.01230 0.00450 Example 392 0.01530 0.00390 Example 393 0.00460 0.00130 Example 394 0.00360 0.00100 Example 395 0.00980 0.00220 Example 396 0.01080 0.00500 Example 397 0.01000 0.00340 Example 398 0.00840 0.00310 Example 399 0.04270 0.01480 Example 400 0.03510 0.00330 Example 401 0.10000 0.01150 Example 402 0.10000 0.01230 Example 403 0.06200 0.01020 Example 404 0.00430 0.00120 Example 405 0.00450 0.00130 Example 406 0.00130 0.00040 Example 407 0.00140 0.00050 Example 408 0.00680 0.00260 Example 409 0.00170 0.00030 Example 410 0.00200 0.00040 Example 411 3.10000 4.70000 Example 412 0.00080 0.00020 Example 413 0.00040 0.00009 Example 414 0.00140 0.00030 Example 415 10.10000 6.20000 Example 416 1.10000 0.20000 Example 417 0.00310 0.00060 Example 418 0.00350 0.00090 Example 419 0.00430 0.00120 Example 420 3.60000 5.50000 Example 421 0.00100 0.00020 Example 422 0.00370 0.00090 Example 423 0.00600 0.00190 Example 424 0.05040 0.01430 Example 425 0.00260 0.00040 Example 426 0.00240 0.00070 Example 427 0.00600 0.00120 Example 428 0.01010 0.00330 Example 429 0.03370 0.00670 Example 430 0.00160 0.00060 Example 431 0.00370 0.00110 Example 432 0.09900 0.02320 Example 433 0.20000 0.05580 Example 435 0.00240 0.00070 Example 436 0.00380 0.00090 Example 437 0.01540 0.00490 Example 438 0.02760 0.00570 Example 439 0.00630 0.00270 Example 440 0.09390 0.02250 Example 441 0.03320 0.00930 Example 442 0.06870 0.02020 Example 443 0.00620 0.00170 Example 444 0.04480 0.01460 Example 445 0.01200 0.00570 Example 446 0.10000 0.02910 Example 451 0.08370 0.01410 Example 452 0.00230 0.00050 Example 453 0.00430 0.00110 Example 454 0.00190 0.00050 Example 455 0.00280 0.00070 Example 456 0.00330 0.00080 Example 457 0.03050 0.00630 Example 460 0.01590 0.00310 Example 461 0.01100 0.00210 Example 462 0.00370 0.00070 Example 464 0.01680 0.00210 Example 465 0.10000 0.01500 Example 466 0.00550 0.00140 Example 467 0.01210 0.00240 Example 469 0.00310 0.00060 Example 470 0.00450 0.00100 Example 471 0.00100 0.00020 Example 472 0.00210 0.00050 Example 473 0.01210 0.00370 Example 474 0.00220 0.00060 Example 475 0.00080 0.00010 Example 476 0.00060 0.00010 Example 477 0.00040 0.00020 Example 478 0.00250 0.00040 Example 479 0.00180 0.00030 Example 480 0.00060 0.00010 Example 481 0.00120 0.00030 Example 482 0.00060 0.00020 Example 483 0.00350 0.00090 Example 484 0.00040 0.00010 Example 485 0.00110 0.00040 Example 486 0.00110 0.00030 Example 487 0.00280 0.00080 Example 488 0.00190 0.00040 Example 489 0.00240 0.00080 Example 490 0.00250 0.00040 Example 491 0.00210 0.00040 Example 492 0.00300 0.00050 Example 493 0.00410 0.00080 Example 494 0.01680 0.00370 Example 495 0.00450 0.00100 Example 496 0.00090 0.00020 Example 497 0.00280 0.00050 Example 498 0.00570 0.00070 Example 499 0.02190 0.00350 Example 500 0.00560 0.00130 Example 501 0.03220 0.00830 Example 502 0.02000 0.00540 Example 503 0.20000 0.06250 Example 504 0.02100 0.00530 Example 505 0.00580 0.00140 Example 506 0.00180 0.00040 Example 507 0.02060 0.00420 Example 508 0.00780 0.00270 Example 509 0.01730 0.00380 Example 510 0.00750 0.00140 Example 511 0.00640 0.00130 Example 512 0.05980 0.01560 Example 513 0.00240 0.00070 Example 514 0.00110 0.00040 Example 515 0.00450 0.00110 Example 516 0.01770 0.00650 Example 517 0.00120 0.00040 Example 518 0.07900 0.03710 Example 519 0.00060 0.00010 Example 520 0.00210 0.00050 Example 521 Example 522 0.00250 0.00060 Example 523 0.00370 0.00080 Example 524 0.04120 0.01360 Example 525 0.00380 0.00070 Example 526 0.04970 0.00940 Example 527 0.00560 0.00100 Example 528 0.01520 0.00400 Example 529 0.07610 0.02620 Example 530 0.05130 0.01650 Example 531 0.00500 0.00080 Example 532 0.00770 0.00120 Example 533 0.00440 0.00060 Example 534 0.00600 0.00110 Example 535 0.04550 0.00410 Example 536 Example 537 0.00440 0.00060 Example 538 0.00120 0.00030 Example 539 0.00280 0.00080 Example 540 0.01260 0.00220 Example 541 0.00550 0.00090 Example 542 0.00770 0.00170 Example 543 0.01690 0.00310 Example 544 0.00640 0.00130 Example 540 0.01250 0.00210 Example 541 0.00290 0.00070 Example 542 0.00360 0.00070 Example 543 0.00740 0.00130 Example 544 0.00310 0.00050 Example 545 0.01650 0.00390 Example 546 0.00500 0.00080 Example 547 0.00100 0.00030 Example 548 0.00110 0.00030 Example 549 0.00210 0.00050 Example 550 0.00120 0.00040 Example 551 0.00120 0.00050 Example 552 0.00300 0.00080 Example 553 0.00120 0.00040 Example 554 0.00120 0.00050 Example 555 0.00300 0.00080 Example 556 0.00390 0.00150 Example 557 0.00540 0.00220 Example 558 0.00210 0.00070 Example 559 0.00090 0.00030 Example 560 0.00100 0.00030 Example 561 0.00030 0.00010 Example 562 0.00060 0.00020 Example 563 0.00060 0.00020 Example 564 0.00130 0.00040 Example 565 0.00130 0.00040 Example 566 0.00070 0.00020 Example 567 0.00200 0.00080 Example 568 0.00070 0.00020 Example 569 0.00280 0.00080 Example 570 0.00080 0.00030 Example 571 0.00250 0.00080 Example 572 0.00380 0.00100 Example 573 0.00080 0.00020 Example 574 0.00220 0.00080 Example 575 0.00290 0.00090 Example 576 0.00350 0.00110 Example 577 0.00060 0.00020 Example 578 0.00080 0.00020 Example 579 0.00060 0.00020 Example 580 0.00050 0.00010 Example 581 0.00220 0.00070 Example 582 0.00080 0.00020 Example 583 0.00130 0.00030 Example 584 0.00120 0.00030 Example 585 0.00140 0.00040 Example 586 0.00100 0.00020 Example 587 0.00110 0.00030 Example 588 0.00220 0.00070 Example 589 0.00150 0.00040 Example 590 0.00090 0.00020 Example 591 0.00210 0.00060 Example 592 0.00070 0.00020 Example 593 0.00060 0.00020 Example 594 0.00080 0.00020 Example 595 0.00060 0.00020 Example 596 0.00130 0.00030 Example 597 0.00050 0.00020 Example 598 0.00110 0.00050 Example 599 0.00050 0.00020 Example 600 0.00080 0.00030 Example 601 0.00110 0.00030 Example 602 0.00120 0.00030 Example 603 0.00270 0.00090 Example 604 0.00230 0.00060 Example 605 0.00270 0.00100 Example 606 0.00350 0.00130 Example 607 0.00470 0.00150 Example 608 0.00490 0.00200 Example 609 0.00090 0.00030 Example 610 0.00450 0.00150 Example 611 0.00130 0.00050 Example 612 0.00180 0.00070 Example 613 0.01000 0.00360 Example 614 0.00420 0.00290 Example 615 0.01230 0.00860 Example 616 0.00160 0.00040 Example 617 0.00350 0.00100 Example 618 0.00500 0.00440 Example 619 0.00160 0.00050 Example 620 0.00190 0.00050 Example 621 0.00260 0.00070 Example 622 0.00490 0.00120 Example 623 0.05670 0.00930 Example 624 0.00470 0.00150 Example 625 0.07680 0.01260 Example 626 0.01400 0.00380 Example 627 0.00370 0.00110 Example 628 0.00180 0.00040 Example 629 0.00120 0.00040 Example 630 0.00290 0.00080 Example 631 0.00270 0.00080 Example 632 0.00750 0.00180 Example 633 0.00720 0.00220 Example 634 0.01710 0.00360 Example 635 0.01880 0.00660 Example 636 0.00130 0.00040 Example 637 0.02490 0.00550 Example 638 0.00960 0.00210 Example 639 0.00730 0.00140 Example 640 0.00540 0.00110 Example 641 0.00270 0.00070 Example 642 0.00140 0.00040 Example 643 0.00130 0.00030 Example 644 0.00290 0.00090 Example 645 0.05340 0.00790 Example 646 0.00840 0.00310 Example 647 0.00530 0.00150 Example 648 0.00450 0.00120 Example 649 0.00460 0.00120 Example 650 0.00470 0.00070 Example 651 0.00690 0.00070 Example 652 0.00670 0.00050 Example 653 0.00310 0.00040 Example 654 0.00170 0.00040 Example 655 0.00220 0.00030 Example 656 0.00100 0.00030 Example 657 0.00110 0.00030 Example 658 0.00310 0.00020 Example 659 0.00070 0.00010 Example 660 Example 661 0.00430 0.00090 Example 662 0.00390 0.00130 Example 663 0.00920 0.00210 Example 664 0.00290 0.00060 Example 665 0.00670 0.00210 Example 666 0.00780 0.00240 Example 667 0.00340 0.00110 Example 668 0.00410 0.00120 Example 669 0.01000 0.00250 Example 670 0.00280 0.00090 Example 671 0.02550 0.00680 Example 672 0.01580 0.00350 Example 673 0.00630 0.00270 Example 674 0.00370 0.00100 Example 675 0.00490 0.00140 Example 676 0.00240 0.00070 Example 677 0.01270 0.00460 Example 678 0.00640 0.00210 Example 679 0.00810 0.00270 Example 680 0.01460 0.00400 Example 681 0.00310 0.00100 Example 682 0.00690 0.00220 Example 683 0.01120 0.00300 Example 684 0.00290 0.00030 Example 685 0.02140 0.00190 Example 686 0.00170 0.00020 Example 687 0.00080 0.00020 Example 691 0.02380 0.00320 Example 694 0.00100 0.00040 Example 695 0.00400 0.00160 Example 696 0.00240 0.00100 Example 697 0.00100 0.00040 Example 698 0.00070 0.00020 Example 699 0.00170 0.00070 Example 700 0.00120 0.00040 Example 701 0.00130 0.00030 Example 702 0.00300 0.00130 Example 703 0.00130 0.00040 Example 704 0.00002 0.00008 Example 705 0.00410 0.00140 Example 706 0.00080 0.00030 Example 707 0.00190 0.00070 Example 708 0.00050 0.00010 Example 709 0.00340 0.00130 Example 710 0.00400 0.00160 Example 711 0.00560 0.00260 Example 712 0.01210 0.00640 Example 713 0.00250 0.00140 Example 714 0.00250 0.00090 Example 716 0.00130 0.00060 Example 717 0.00290 0.00080 Example 718 0.00840 0.00230 Example 719 0.00200 0.00050 Example 720 0.02320 0.00490 Example 721 0.00330 0.00090 Example 722 0.00160 0.00040 Example 723 0.03480 0.00680 Example 724 0.02050 0.00480 Example 725 0.00420 0.00120 Example 726 0.00900 0.00220 Example 727 0.00850 0.00270 Example 728 0.00440 0.00080 Example 729 0.01770 0.00290 Example 730 0.02720 0.00750 Example 731 0.00440 0.00150 Example 732 0.00220 0.00060 Example 733 0.00080 0.00030 Example 734 0.00690 0.00180 Example 735 0.00430 0.00050 Example 736 0.04780 0.00730 Example 737 0.01790 0.00540 Example 738 0.03320 0.01070 Example 739 0.00410 0.00140 Example 740 0.00210 0.00030 Example 741 0.00510 0.00120 Example 742 0.03860 0.00460 Example 743 0.00370 0.00080 Example 744 0.04270 0.00620 Example 745 0.00360 0.00070 Example 746 0.00460 0.00120 Example 747 0.01900 0.00300 Example 748 0.00190 0.00040 Example 749 0.00190 0.00050 Example 750 0.02240 0.00380 Example 751 0.00140 0.00040 Example 752 0.00180 0.00040 Example 753 0.03090 0.00670 Example 754 0.00340 0.00100 Example 755 0.01780 0.00720 Example 756 0.00420 0.00150 Example 757 0.00140 0.00040 Example 758 0.00280 0.00120 Example 759 0.01150 0.00470 Example 760 0.01130 0.00330 Example 761 0.00090 0.00020 Example 762 0.00070 0.00020 Example 763 0.00110 0.00020 Example 764 0.00340 0.00080 Example 765 0.00100 0.00020 Example 766 0.00180 0.00050 Example 767 0.04740 0.01210 Example 768 0.01110 0.00280 Example 769 0.01020 8.00000 Example 770 0.00530 0.00130 Example 771 0.00250 0.00080 Example 772 0.00190 0.00060 Example 773 0.00170 0.00040 Example 774 Example 775 0.02000 0.00460 Example 776 25.00034 10.60000 Example 777 0.00020 0.00008 Example 778 0.00230 0.00090 Example 779 0.00220 0.00070 Example 780 0.00210 0.00080 Example 781 0.01080 0.00270 Example 782 0.02230 0.00650 Example 783 0.00630 0.00210 Example 784 0.20000 0.05100 Example 785 0.00750 0.00310 Example 786 0.01490 0.00340 Example 787 0.00550 0.00170 Example 788 0.20000 0.03800 Example 789 Example 790 0.00350 0.00130 Example 791 0.01140 0.00260 Example 792 0.00170 0.00030 Example 793 0.00130 0.00030 Example 794 0.00260 0.00080 Example 795 0.00180 0.00090 Example 796 0.00070 0.00020 Example 797 0.02470 0.00790 Example 798 0.00110 0.00050 Example 799 0.00150 0.00040 Example 800 0.00200 0.00080 Example 801 0.00300 0.00090 Example 802 0.00310 0.00100 Example 803 0.00190 0.00090 Example 804 0.00080 0.00030 Example 805 0.00040 0.00020 Example 806 0.00110 0.00060 Example 807 0.00880 0.00280 Example 810 0.00140 0.00030 Example 811 0.00630 0.00090 Example 813 0.00270 0.00030 Example 814 0.03210 0.00310 Example 815 0.10000 0.00900 Example 816 0.01740 0.00160 Example 817 0.20000 0.01320 Example 818 0.01840 0.00110 Example 820 0.00140 0.00010 Example 821 0.00380 0.00040 Example 822 0.00770 0.00070 Example 823 0.00940 0.00090 Example 824 0.00040 0.00007 Example 825 0.00130 0.00020 Example 826 0.00500 0.00110 Example 827 0.00140 0.00020 Example 828 0.00100 0.00020 Example 829 0.00020 0.00004 Example 830 0.00060 0.00010 Example 831 0.00150 0.00020 Example 832 1.40000 0.20000 Example 833 0.00170 0.00020 Example 834 0.00060 0.00020 Example 835 0.00210 0.00060 Example 836 0.00310 0.00040 Example 837 0.00020 0.00010 Example 838 0.00090 0.00030 Example 839 0.00090 0.00030 Example 840 0.00060 0.00020 Example 841 0.00170 0.00040 Example 842 0.00130 0.00030 Example 843 0.00080 0.00020 Example 844 0.00170 0.00020 Example 845 0.00090 0.00030 Example 846 0.00060 0.00020 Example 847 0.00020 0.00004 Example 848 0.00040 0.00010 Example 849 0.00380 0.00090 Example 850 0.00060 0.00020 Example 851 0.00090 0.00030 Example 852 0.00070 0.00020 Example 853 0.00240 0.00070 Example 854 0.00080 0.00010 Example 855 0.00230 0.00040 Example 856 0.00550 0.00100 Example 857 0.00040 0.00008 Example 858 0.02210 0.00270 Example 860 0.01160 0.00070 Example 861 0.00250 0.00060 Example 862 0.00090 0.00030 Example 863 0.00280 0.00060 Example 864 0.07020 0.02400 Example 865 3.70000 7.90000 Example 866 0.00760 0.00200 Example 867 0.00140 0.00020 Example 868 0.00130 0.00030 Example 869 0.00130 0.00020 Example 870 0.00750 0.00150 Example 871 0.00060 0.00010 Example 873 0.00280 0.00050 Example 874 0.01970 0.00340 Example 875 0.00660 0.00160 Example 876 0.00240 0.00040 Example 877 0.00650 0.00140 Example 878 0.10000 0.01960 Example 879 0.00610 0.00120 Example 880 0.00320 0.00060 Example 881 0.03260 0.00570 Example 882 0.00810 0.00150 Example 883 0.00170 0.00040 Example 884 0.01970 0.00340 Example 885 0.01230 0.00270 Example 886 0.00760 0.00060 Example 887 1.30000 0.10000 Example 888 0.00160 0.00040 Example 889 0.00330 0.00060 Example 899 0.00187 0.00048 Example 900 0.00317 0.00078 Example 901 0.00085 0.00021 Example 902 0.00337 0.00070 Example 903 0.00364 0.00082 Example 904 0.00201 0.00047 Example 905 0.00233 0.00058 Example 906 0.00945 0.00238 Example 907 0.00443 0.00094 Example 908 0.00688 0.00253 Example 909 0.00156 0.00032 Example 910 0.00509 0.00102 Example 911 0.00358 0.00120 Example 912 0.00225 0.00065 Example 913 0.00216 0.00069 Example 914 0.00195 0.00070 Example 915 0.00111 0.00045 Example 916 0.00131 0.00039 Example 917 0.00080 0.00091 Example 918 0.00117 0.00037 Example 919 0.00411 0.00088 Example 920 0.00885 0.00199 Example 921 0.00773 0.00182 Example 923 0.00546 0.00107 Example 924 0.05773 0.01099 Example 925 0.01218 0.00223 Example 926 0.00213 0.00047 Example 927 0.00791 0.00353 Example 928 0.00190 0.00055 Example 929 0.00105 0.00033 Example 930 0.00103 0.00031 Example 931 0.00270 0.00077 Example 932 0.00689 0.00183 Example 933 0.00078 0.00022 Example 934 0.00420 0.00120 Example 935 0.00204 0.00058 Example 936 0.00755 0.00169 Example 937 0.00453 0.00197 Example 938 0.00236 0.00077 Example 939 0.01532 0.00684 Example 940 0.00481 0.00133 Example 941 0.00228 0.00067 Example 942 0.00217 0.00059 Example 943 0.00951 0.00269 Example 944 0.00389 0.00153 Example 945 0.00135 0.00053 Example 946 0.00236 0.00096 Example 947 0.00176 0.00061 Example 948 0.00233 0.00064 Example 949 0.00363 0.00138 Example 950 0.00047 0.00021 Example 951 0.00031 0.00011 Example 952 0.00198 0.00071 Example 953 0.00333 0.00136 Example 954 0.00730 0.00243 Example 955 0.01815 0.00801 Example 956 0.00294 0.00116 Example 957 0.00623 0.00241 Example 958 0.00915 0.00345 Example 959 0.01940 0.00629 Example 960 0.00266 0.00118 Example 961 0.00183 0.00070 Example 962 0.01543 0.00392 Example 963 0.00288 0.00104 Example 964 0.00813 0.00317 Example 965 0.00187 0.00071 Example 966 0.00135 0.00052 Example 967 0.00574 0.00215 Example 968 0.00372 0.00098 Example 969 0.01803 0.00498 Example 970 0.00879 0.00234 Example 971 0.00827 0.00255 Example 972 0.03704 0.01184 Example 973 0.01575 0.00560 Example 974 0.00278 0.00095 Example 975 0.00181 0.00078 Example 976 Example 977 0.00421 0.00177 Example 978 0.00186 0.00074 Example 979 0.01358 0.00624 Example 980 0.00199 0.00078 Example 981 0.00765 0.00317 Example 982 0.00244 0.00110 Example 983 0.00299 0.00143 Example 984 0.00228 0.00051 Example 985 0.00201 0.00060 Example 986 0.00083 0.00028 Example 987 0.00263 0.00080 Example 988 0.00583 0.00097 Example 989 0.00196 0.00056 Example 990 0.00541 0.00200 Example 991 0.00236 0.00076 Example 992 0.00163 0.00097 Example 993 0.00966 0.00249 Example 994 0.00193 0.00066 Example 997 0.00200 0.00044 Example 998 0.00300 0.00070 Example 999 0.00091 0.00019 Example 1000 0.00215 0.00051 Example 1001 0.00136 0.00031 Example 1002 0.00175 0.00041 Example 1003 0.00412 0.00116 Example 1004 0.08356 0.01395 Example 1006 0.00397 0.00114 Example 1007 0.00538 0.00114 Example 1008 0.01330 0.00277 Example 1009 0.01482 0.00263 Example 1010 0.02889 0.00447 Example 1011 0.02447 0.00381 Example 1012 0.07063 0.01867 Example 1013 0.00979 0.00199 Example 1014 0.01277 0.00243 Example 1015 0.02946 0.00497 Example 1016 0.00227 0.00070 Example 1017 0.00098 0.00035 Example 1018 0.00176 0.00057 Example 1019 0.00111 0.00038 Example 1020 0.00772 0.00220 Example 1021 0.00260 0.00069 Example 1022 0.00149 0.00037 Example 1023 0.00232 0.00118 Example 1024 0.00510 0.00104 Example 1025 0.01273 0.00197 Example 1026 0.01294 0.00290 Example 1027 0.00848 0.00179 Example 1028 0.00411 0.00160 Example 1029 0.00327 0.00156 Example 1030 0.00249 0.00091 Example 1031 0.00092 0.00023 Example 1032 0.00275 0.00076 Example 1033 0.00208 0.00059 Example 1034 0.00159 0.00046 Example 1036 0.00054 0.00015 Example 1037 0.00107 0.00030 Example 1038 0.00286 0.00045 Example 1039 0.00504 0.00096 Example 1040 0.00435 0.00068 Example 1041 0.00572 0.00074 Example 1042 0.04056 0.00504 Example 1043 0.02279 0.00371 Example 1044 0.03061 0.00467 Example 1045 0.03291 0.00818 Example 1046 0.06840 0.01062 Example 1047 0.00395 0.00051 Example 1048 0.00155 0.00028 Example 1049 0.00769 0.00114 Example 1050 0.00131 0.00026 Example 1051 0.00819 0.00104 Example 1052 0.00824 0.00148 Example 1053 0.00086 0.00020 Example 1054 0.00118 0.00033 Example 1055 0.00117 0.00038 Example 1056 0.01118 0.00219 Example 1057 0.00412 0.00081 Example 1058 0.01075 0.00177 Example 1059 0.00384 0.00085 Example 1060 0.00393 0.00095 Example 1061 0.00305 0.00065 Example 1062 0.00098 0.00025 Example 1063 0.00148 0.00025 Example 1064 0.00065 0.00018 Example 1065 0.00053 0.00018 Example 1066 0.00058 0.00021 Example 1067 0.00060 0.00027 Example 1068 0.00072 0.00014 Example 1069 0.00264 0.00053 Example 1070 0.00241 0.00073 Example 1071 0.00208 0.00086 Example 1072 0.00174 0.00041 Example 1073 0.00299 0.00055 Example 1074 0.00186 0.00057 Example 1075 0.68224 0.12035 Example 1076 0.00231 0.00039 Example 1077 0.00085 0.00046 Example 1078 0.00067 0.00079 Example 1079 0.00464 0.00117 Example 1080 0.01286 0.00242 Example 1081 0.00643 0.00201 Example 1082 0.05816 0.01047 Example 1083 0.03519 0.00540 Example 1084 0.02330 0.00339 Example 1085 0.10763 0.02762 Example 1086 0.02068 0.00329 Example 1087 0.02651 0.00523 Example 1088 0.00406 0.00112 Example 1089 0.07138 0.02035 Example 1090 0.05109 0.01271 Example 1091 1.11486 0.29498 Example 1092 0.03491 0.00506 Example 1093 0.00658 0.00090 Example 1094 0.00384 0.00082 Example 1095 0.00111 0.00027 Example 1096 0.00200 0.00045 Example 1097 0.00332 0.00096 Example 1098 0.00575 0.00117 Example 1099 0.01883 0.00317 Example 1100 0.00389 0.00068 Example 1101 0.01370 0.00264 Example 1102 0.00445 0.00085 Example 1103 0.00670 0.00144 Example 1104 0.00764 0.00143 Example 1105 0.00562 0.00119 Example 1106 0.00859 0.00182 Example 1107 0.01345 0.00175 Example 1108 0.02035 0.00278 Example 1109 0.00802 0.00145 Example 1110 0.00482 0.00075 Example 1111 0.00209 0.00036 Example 1112 0.00083 0.00024 Example 1113 0.00132 0.00037 Example 1114 0.00314 0.00068 Example 1115 0.00065 0.00019 Example 1116 0.00082 0.00022 Example 1117 0.00131 0.00030 Example 1118 0.00102 0.00030 Example 1119 0.00200 0.00035 Example 1120 0.00163 0.00028 Example 1121 0.00193 0.00026 Example 1122 0.00331 0.00037 Example 1123 0.01085 0.00134 Example 1124 0.01211 0.00158 Example 1125 0.01000 0.00093 Example 1126 0.00185 0.00050 Example 1127 0.00148 0.00038 Example 1128 0.00216 0.00074 Example 1129 0.00464 0.00126 Example 1130 0.00224 0.00067 Example 1131 0.00234 0.00072 Example 1132 0.26960 0.06134 Example 1133 0.00129 0.00030 Example 1134 0.00499 0.00082 Example 1135 0.04295 0.00735 Example 1136 0.00503 0.00058 Example 1137 0.00062 0.00012 Example 1138 0.02778 0.00476 Example 1139 0.01434 0.00280 Example 1140 0.01345 0.00289 Example 1141 0.01574 0.00371 Example 1142 0.00318 0.00110 Example 1143 0.00181 0.00054 Example 1144 0.00156 0.00046 Example 1145 0.00130 0.00040 Example 1146 0.00187 0.00032 Example 1147 0.00831 0.00152 Example 1148 0.01192 0.00229 Example 1149 0.00313 0.00056 Example 1150 0.00160 0.00050 Example 1151 0.00060 0.00018 Example 1152 0.00125 0.00033 Example 1153 0.00215 0.00049 Example 1154 0.00060 0.00012 Example 1155 0.00066 0.00014 Example 1156 0.00073 0.00020 Example 1157 0.00043 0.00009 Example 1158 0.00163 0.00037 Example 1159 0.00075 0.00015 Example 1160 0.00055 0.00016 Example 1161 0.00150 0.00030 Example 1162 0.00038 0.00007 Example 1163 0.00112 0.00020 Example 1164 0.00057 0.00012 Example 1165 0.00282 0.00072 Example 1166 0.00328 0.00074 Example 1167 0.00762 0.00212 Example 1168 0.00456 0.00121 Example 1169 0.00301 0.00060 Example 1170 0.03744 0.00384 Example 1171 25.00034 7.68543 Example 1172 25.00034 25.00034 Example 1173 18.59479 1.92537 Example 1174 25.00034 22.05985 Example 1175 0.08001 0.02036
Claims (13)
- A compound of formula (I):Z1 is O, S, S(=O) or SO2;Z2 is N, S or CRa, where Ra is H, halo, C1-4 alkyl or C1-4 haloalkyl;R1 is CN, halo, OH, C1-4 alkoxy, or C1-4 alkyl that is optionally substituted with one to three groups selected from halo, C1-4 alkoxy, CN, and hydroxyl;Ring B is selected from phenyl, pyridine, pyrimidine, pyrazine, pyridazine, pyridone, pyrimidone, pyrazinone, pyridazinone, and thiazole, each of which is optionally substituted with up to two groups selected from halo, OH, CN, C1-4 alkyl, C2-4 alkenyl, -O-(C1-4alkyl), NH2, NH-(C1-4alkyl), -N(C1-4 alkyl)2, -SO2R2, NHSO2R2, NHC(O)R2, NHCO2R2, C3-6 cycloalkyl, 5-6 membered heteroaryl, -O-C3-6 cycloalkyl, -O-(5-6-membered heteroaryl), C4-8 heterocycloalkyl, and -O-(4-8 membered heterocycloalkyl), where each heterocycloalkyl and heteroaryl contains up to three heteroatoms selected from N, O and S as ring members,where each C1-4 alkyl, C2-4 alkenyl, C3-6 cycloalkyl, 5-6 membered heteroaryl, and 4-8 membered heterocycloalkyl is each optionally substituted with up to three groups selected from oxo, hydroxyl, halo, C1-4 alkyl, C1-4 haloalkyl, C1-4 alkoxy, and - (CH2)1-2Q where Q is OH, C1-4 alkoxy, -CN, NH2, -NHR3, -N(R3)2, -SO2R3, NHSO2R3, NHC(O)OR3, or NHC(O)R3; each R2 and R3 is independently C1-4 alkyl; andRing B is optionally fused to a 5-6 membered aromatic or nonaromatic ring containing up to two heteroatoms selected from N, O and S, where the 5-6 membered ring can be substituted with halo, C1-4 alkyl, C1-4 haloalkyl, or C1-4 alkoxy, and if the fused ring is nonaromatic the substituent options can further include oxo;each Y is independently selected from C1-4 alkyl, C1-4 alkoxy, CN, halo, oxo, -(CH2)pOR4, -(CH2)pN(R4)2, -(CH2)pNHC(O)R4, -(CH2)pNHCOO(C1-4 alkyl),and imidazole,or two Y groups on Ring A are optionally taken together to form a ring fused to or bridging Ring A, where said fused or bridging ring optionally contains a heteroatom selected from N, O and S as a ring member, and is optionally substituted with up to two groups selected from C1-4 alkyl, C1-4 alkoxy, CN, halo, oxo, -(CH2)pOR4, -(CH2)p N(R4)2, -(CH2)pNHC(O)R4, and - (CH2)pNHCOO(C1-4 alkyl);each R4 is independently H or C1-4 alkyl;each p is independently 0, 1, or 2;q is 0, 1 or 2;Z3, Z4, and Z5 are independently selected from CH and N and optionally NO;L is -C(=O)-NR4-[CY] or -NR4-C(=O)-[CY], where [CY] indicates which atom of L is attached to CY; andCY is an aromatic ring selected from phenyl, pyridine, pyrimidine, pyrazine, pyridazine, pyridone, thiazole, isothiazole, oxazole, pyrazole, and isoxazole, wherein the ring is optionally fused to a thiophene, imidazole, oxazolone, or pyrrole ring;and CY is substituted with up to two groups selected from halo, CN, R5, OR5, SO2R5, - S(=NH)(=O)R5, OH, NH2, NHR5, and -N(R5)2,wherein each R5 is independently C1-4 alkyl, C2-4 alkenyl, C4-6 heterocyclyl, 5-membered heteroaryl containing up to three heteroatoms selected from N, O and S as ring members, or C3-8 cycloalkyl, and R5 is optionally substituted with up to four groups selected from oxo, halo, CN, R6, OH, OR6, SO2R6, NH2, NHR6, N(R6)2, NHSO2R6, NHCOOR6, NHC(=O)R6, -CH2OR7, -CH2N(R7)2, wherein each R6 is independently C1-4 alkyl, and each R7 is independently H or C1-4 alkyl;and two R4, R5, R6, or R7 on the same nitrogen atom can be taken together to form a 5-6 membered heterocyclic ring optionally containing an additional N, O or S as a ring member and optionally substituted with up to two groups selected from C1-4 alkyl, oxo, halo, OH, and C1-4 alkoxy.
- A compound according to claim 1 or a pharmaceutically acceptable salt thereof, wherein Z1 is O; Z2 is CH; CY is selected from phenyl, pyridine, pyrimidine, pyrazine, pyridazine, pyridone, thiazole, isothiazole, oxazole, and isoxazole; and R1 is methyl or CF3.
- A compound according to any of the preceding claims or a pharmaceutically acceptable salt thereof, wherein CY is substituted phenyl or substituted pyridin-4-yl; wherein CY is substituted with at least one group selected from CF3, OCF3, t-butyl, -C(Me)2CN, and -SO2Me.
- A compound according to any of the preceding claims or a pharmaceutically acceptable salt thereof, wherein Z4 is CH or N; and L is -C(=O)-NH-[CY], where [CY] indicates which atom of L is attached to ring CY.
- A compound according to any of the preceding claims or a pharmaceutically acceptable salt thereof, wherein L is -NH-C(=O)-[CY], where [CY] indicates which atom of L is attached to ring CY; Z3 is N or CH; and q is 0.
- A compound of any of the preceding claims, wherein ring B is selected from
- A compound of claim 1, which is selected fromN-(4-methyl-3-(6-morpholinopyrimidin-4-yl)phenyl)-3-(trifluoromethyl)benzamide;2-(2-cyanopropan-2-yl)-N-(4-methyl-3-(6-morpholinopyrimidin-4-yl)phenyl)isonicotinamide;N-(4-methyl-3-(2-morpholino-6-(3-oxomorpholino)pyrimidin-4-yl)phenyl)-3-(trifluoromethyl)benzamide;4-methyl-3-(2-morpholino-6-(3-oxomorpholino)pyrimidin-4-yl)-N-(3-(trifluoromethyl)phenyl)benzamide;N-(6-methyl-5-(2-morpholino-6-(3-oxomorpholino)pyrimidin-4-yl)pyridin-3-yl)-3-(trifluoromethyl)benzamide;N-(3-(6-(1,1-dioxidothiomorpholino)-2-morpholinopyrimidin-4-yl)-4-methylphenyl)-3-(trifluoromethyl)benzamide;3-(6-(1,1-dioxidothiomorpholino)-2-morpholinopyrimidin-4-yl)-4-methyl-N-(3-(trifluoromethyl)phenyl)benzamide;N-(3-(2-(1,1-dioxidothiomorpholino)-6-morpholinopyrimidin-4-yl)-4-methylphenyl)-3-(trifluoromethyl)benzamide;3-(2-(1,1-dioxidothiomorpholino)-6-morpholinopyrimidin-4-yl)-4-methyl-N-(3-(trifluoromethyl)phenyl)benzamide;N-(3-(2,6-dimorpholinopyrimidin-4-yl)-4-methylphenyl)-3-(trifluoromethyl)benzamide;3-(2,6-dimorpholinopyrimidin-4-yl)-4-methyl-N-(3-(trifluoromethyl)phenyl)benzamide;N-(5-(2,6-dimorpholinopyrimidin-4-yl)-6-methylpyridin-3-yl)-3-(trifluoromethyl)benzamide;N-(3-(4,6-dimorpholinopyrimidin-2-yl)-4-methylphenyl)-3-(trifluoromethyl)benzamide;3-(4,6-dimorpholinopyrimidin-2-yl)-4-methyl-N-(3-(trifluoromethyl)phenyl)benzamide;2-(2-cyanopropan-2-yl)-N-(3-(2,6-dimorpholinopyrimidin-4-yl)-4-methylphenyl)isonicotinamide;3-(2-cyanopropan-2-yl)-N-(3-(2,6-dimorpholinopyrimidin-4-yl)-4-methylphenyl)benzamide;2-chloro-3-(1-cyanocyclopropyl)-N-(3-(2,6-dimorpholinopyrimidin-4-yl)-4-methylphenyl)benzamide;5-(dimethylamino)-N-(3-(2,6-dimorpholinopyrimidin-4-yl)-4-methylphenyl)nicotinamide;5-(tert-butyl)-N-(3-(2,6-dimorpholinopyrimidin-4-yl)-4-methylphenyl)nicotinamide;3-((dimethylamino)methyl)-N-(3-(2,6-dimorpholinopyrimidin-4-yl)-4-methylphenyl)-5-(trifluoromethyl)benzamide;N-(3-(2,6-dimorpholinopyrimidin-4-yl)-4-methylphenyl)-3-(4-ethylpiperazin-1-yl)-5-(trifluoromethyl)benzamide;N-(3-(2,6-dimorpholinopyrimidin-4-yl)-4-methylphenyl)-3-(trifluoromethoxy)benzamide;N-(3-(2,6-dimorpholinopyrimidin-4-yl)-4-methylphenyl)-3-(methylsulfonyl)benzamide;3-(tert-butyl)-N-(3-(2,6-dimorpholinopyrimidin-4-yl)-4-methylphenyl)isoxazole-5-carboxamide;5-(tert-butyl)-N-(3-(2,6-dimorpholinopyrimidin-4-yl)-4-methylphenyl)isoxazole-3-carboxamide;N-(3-(2,6-dimorpholinopyrimidin-4-yl)-4-methylphenyl)-2-(trifluoromethyl)thiazole-4-carboxamide;N-(4-methyl-3-(2-(methylsulfonyl)-6-morpholinopyrimidin-4-yl)phenyl)-3-(trifluoromethyl)benzamide;N-(3-(2-(ethylamino)-6-morpholinopyrimidin-4-yl)-4-methylphenyl)-3-(trifluoromethyl)benzamide;N-(4-methyl-3-(6-morpholino-2-(2-oxa-6-azaspiro[3.3]heptan-6-yl)pyrimidin-4-yl)phenyl)-3-(trifluoromethyl)benzamide;N-(4-methyl-3-(2-(methylamino)-6-morpholinopyrimidin-4-yl)phenyl)-3-(trifluoromethyl)benzamide;N-(3-(2-((2-hydroxyethyl)amino)-6-morpholinopyrimidin-4-yl)-4-methylphenyl)-3-(trifluoromethyl)benzamide;N-(3-(2-(3-hydroxypyrrolidin-1-yl)-6-morpholinopyrimidin-4-yl)-4-methylphenyl)-3-(trifluoromethyl)benzamide;N-(3-(2-(1H-imidazol-1-yl)-6-morpholinopyrimidin-4-yl)-4-methylphenyl)-3-(trifluoromethyl)benzamide;N-(3-(2-(2-hydroxyethoxy)-6-morpholinopyrimidin-4-yl)-4-methylphenyl)-3-(trifluoromethyl)benzamide;N-(4-methyl-3-(2-(methylsulfonamido)-6-morpholinopyrimidin-4-yl)phenyl)-3-(trifluoromethyl)benzamide;N-(4-methyl-3-(6-morpholino-2-(2-oxopyrrolidin-1-yl)pyrimidin-4-yl)phenyl)-3-(trifluoromethyl)benzamide;N-(3-(2-(4-(2-hydroxypropan-2-yl)-1H-1,2,3-triazol-1-yl)-6-morpholinopyrimidin-4-yl)-4-methylphenyl)-3-(trifluoromethyl)benzamide;N-(3-(2-amino-6-morpholinopyrimidin-4-yl)-4-methylphenyl)-3-(trifluoromethyl)benzamide;N-(3-(2-((1,3-dihydroxypropan-2-yl)amino)-6-morpholinopyrimidin-4-yl)-4-methylphenyl)-3-(trifluoromethyl)benzamide;N-(3-(2-(2-hydroxyethoxy)-6-morpholinopyrimidin-4-yl)-4-methylphenyl)-3-(trifluoromethyl)benzamide;N-(4-methyl-3-(2-morpholino-6-(prop-1-en-2-yl)pyrimidin-4-yl)phenyl)-3-(trifluoromethyl)benzamide;N-(4-methyl-3-(4-morpholino-6-(prop-1-en-2-yl)pyrimidin-2-yl)phenyl)-3-(trifluoromethyl)benzamide;N-(3-(4-isopropyl-6-morpholinopyrimidin-2-yl)-4-methylphenyl)-3-(trifluoromethyl)benzamide;N-(3-(6-isopropyl-2-morpholinopyrimidin-4-yl)-4-methylphenyl)-3-(trifluoromethyl)benzamide;N-(3-(6-(2,2-dimethylmorpholino)-2-morpholinopyrimidin-4-yl)-4-methylphenyl)-3-(trifluoromethyl)benzamide;N-(4-methyl-3-(2-morpholino-6-(2-oxa-6-azaspiro[3.3]heptan-6-yl)pyrimidin-4-yl)phenyl)-3-(trifluoromethyl)benzamide;(R)-N-(3-(6-(3-(hydroxymethyl)morpholino)-2-morpholinopyrimidin-4-yl)-4-methylphenyl)-3-(trifluoromethyl)benzamide;N-(3-(6-(3-oxa-8-azabicyclo[3.2.1]octan-8-yl)-2-morpholinopyrimidin-4-yl)-4-methylphenyl)-3-(trifluoromethyl)benzamide;N-(4-methyl-3-(2-morpholino-6-(1,4-oxazepan-4-yl)pyrimidin-4-yl)phenyl)-3-(trifluoromethyl)benzamide;N-(3-(6-(2-oxa-5-azabicyclo[2.2.1]heptan-5-yl)-2-morpholinopyrimidin-4-yl)-4-methylphenyl)-3-(trifluoromethyl)benzamide;N-(3-(6-(8-oxa-3-azabicyclo[3.2.1]octan-3-yl)-2-morpholinopyrimidin-4-yl)-4-methylphenyl)-3-(trifluoromethyl)benzamide;(R)-N-(4-methyl-3-(6-(2-methylmorpholino)-2-morpholinopyrimidin-4-yl)phenyl)-3-(trifluoromethyl)benzamide;(S)-N-(4-methyl-3-(6-(2-methylmorpholino)-2-morpholinopyrimidin-4-yl)phenyl)-3-(trifluoromethyl)benzamide;N-(3-(6-(3-oxa-8-azabicyclo[3.2.1]octan-8-yl)-2-morpholinopyrimidin-4-yl)-4-methylphenyl)-3-(trifluoromethyl)benzamide;N-(4-methyl-3-(2-morpholino-6-((tetrahydro-2H-pyran-4-yl)oxy)pyrimidin-4-yl)phenyl)-3-(trifluoromethyl)benzamide;N-(4-methyl-3-(5-methyl-2,6-dimorpholinopyrimidin-4-yl)phenyl)-3-(trifluoromethyl)benzamide;N-(6-methyl-5-(6-morpholinopyridazin-4-yl)pyridin-3-yl)-3-(trifluoromethyl)benzamide;N-(4-methyl-3-(5-morpholinopyridazin-3-yl)phenyl)-3-(trifluoromethyl)benzamide;N-(6-methyl-5-(5-morpholinopyridazin-3-yl)pyridin-3-yl)-3-(trifluoromethyl)benzamide;N-(4-methyl-3-(2-morpholino-6-(trifluoromethyl)pyrimidin-4-yl)phenyl)-3-(trifluoromethyl)benzamide;N-(4-methyl-3-(2-morpholinopyridin-4-yl)phenyl)-3-(trifluoromethyl)benzamide;4-Methyl-3-(2-morpholinopyridin-4-yl)-N-(3-(trifluoromethyl)phenyl)benzamide;4-methyl-3-(4-morpholinopyridin-2-yl)-N-(3-(trifluoromethyl)phenyl)benzamide;N-(3-(2,6-dimorpholinopyridin-4-yl)-4-methylphenyl)-3-(trifluoromethyl)benzamide;2-(2-cyanopropan-2-yl)-N-(4-methyl-3-(2-morpholinopyridin-4-yl)phenyl)isonicotinamide;N-(4-methyl-3-(2-morpholinopyridin-4-yl)phenyl)pyridazine-3-carboxamide;N-(4-methyl-3-(2-morpholinopyridin-4-yl)phenyl)-3-(methylsulfonyl)benzamide;2-(tert-butyl)-N-(4-methyl-3-(2-morpholinopyridin-4-yl)phenyl)isonicotinamide;N-(4-methyl-3-(2-morpholinopyridin-4-yl)phenyl)pyrazine-2-carboxamide;N-(4-methyl-3-(2-morpholinopyridin-4-yl)phenyl)pyrimidine-5-carboxamide;N-(4-methyl-3-(2-morpholinopyridin-4-yl)phenyl)pyridazine-4-carboxamide;N-(4-methyl-3-(2-morpholinopyridin-4-yl)phenyl)-2-(methylsulfonyl)isonicotinamide;3-(4-ethylpiperazin-1-yl)-N-(4-methyl-3-(2-morpholinopyridin-4-yl)phenyl)-5-(trifluoromethyl)benzamide;3-(difluoromethyl)-N-(4-methyl-3-(2-morpholinopyridin-4-yl)phenyl)benzamide;N-(3-(2-(dimethylamino)-6-morpholinopyridin-4-yl)-4-methylphenyl)-3-(trifluoromethyl)benzamide;N-(2-methyl-2',6'-dimorpholino-[3,4'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide;(S)-N-(3-(2-(2-(hydroxymethyl)morpholino)pyridin-4-yl)-4-methylphenyl)-3-(trifluoromethyl)benzamide;2-(2-cyanopropan-2-yl)-N-(3-(2-((2R,5R)-2-((dimethylamino)methyl)-5-methylmorpholino)pyridin-4-yl)-4-methylphenyl)isonicotinamide;2-(2-cyanopropan-2-yl)-N-(3-(2-((2S,5S)-2-((dimethylamino)methyl)-5-methylmorpholino)pyridin-4-yl)-4-methylphenyl)isonicotinamide;5-(dimethylamino)-N-(2-methyl-2'-morpholino-[3,4'-bipyridin]-5-yl)nicotinamide;(R)-2-(2-cyanopropan-2-yl)-N-(4-methyl-3-(2-(3-methylmorpholino)pyridin-4-yl)phenyl)isonicotinamide;(S)-2-(2-cyanopropan-2-yl)-N-(3-(2-(2-(hydroxymethyl)morpholino)pyridin-4-yl)-4-methylphenyl)isonicotinamide;(R)-2-(2-cyanopropan-2-yl)-N-(4-methyl-3-(2-(2-((methylamino)methyl)morpholino)pyridin-4-yl)phenyl)isonicotinamide;(R)-N-(3-(2-(2-(acetamidomethyl)morpholino)pyridin-4-yl)-4-methylphenyl)-2-(2-cyanopropan-2-yl)isonicotinamide;(R)-methyl ((4-(2-methyl-5-(3-(trifluoromethyl)benzamido)-[3,4'-bipyridin]-2'-yl)morpholin-2-yl)methyl)carbamate;(R)-N-(2'-(2-((2-hydroxyacetamido)methyl)morpholino)-2-methyl-[3,4'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide;2-(2-cyanopropan-2-yl)-N-(2-methoxy-2'-morpholino-[3,4'-bipyridin]-5-yl)isonicotinamide;2-(1,1-difluoroethyl)-N-(2'-morpholino-2-oxo-1,2-dihydro-[3,4'-bipyridin]-5-yl)isonicotinamide;N-(2'-morpholino-2-oxo-1,2-dihydro-[3,4'-bipyridin]-5-yl)-2-(trifluoromethyl)isonicotinamide;2-(2-cyanopropan-2-yl)-N-(2'-morpholino-2-oxo-1,2-dihydro-[3,4'-bipyridin]-5-yl)isonicotinamide;N-(3-(6-amino-4-morpholinopyridin-2-yl)-4-methylphenyl)-3-(trifluoromethyl)benzamide;N-(3-(2-amino-6-morpholinopyridin-4-yl)-4-methylphenyl)-3-(trifluoromethyl)benzamide;1-ethyl-N-(4-methyl-3-(2-morpholinopyridin-4-yl)phenyl)-6-oxo-5-(trifluoromethyl)-1,6-dihydropyridine-3-carboxamide;2-(2-cyanopropan-2-yl)-N-(2-methyl-2'-morpholino-[3,4'-bipyridin]-5-yl)isonicotinamide;N-(2-methyl-2'-morpholino-[3,4'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide;4-methoxy-N-(2-methyl-2'-morpholino-[3,4'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide;4-fluoro-3-methoxy-N-(2-methyl-2'-morpholino-[3,4'-bipyridin]-5-yl)benzamide;3-(difluoromethyl)-N-(2-methyl-2'-morpholino-[3,4'-bipyridin]-5-yl)benzamide;2-(1,1-difluoroethyl)-N-(2-methyl-2'-morpholino-[3,4'-bipyridin]-5-yl)isonicotinamide;3-(1,1-difluoroethyl)-N-(2-methyl-2'-morpholino-[3,4'-bipyridin]-5-yl)benzamide;N-(2-methyl-2'-morpholino-[3,4'-bipyridin]-5-yl)-2-(methylsulfonyl)isonicotinamide;N-(2-methyl-2'-morpholino-[3,4'-bipyridin]-5-yl)-3-(methylsulfonyl)benzamide;2-(tert-butyl)-N-(2-methyl-2'-morpholino-[3,4'-bipyridin]-5-yl)isonicotinamide;2-(2-cyanopropan-2-yl)-N-(4-methyl-3-(2-morpholino-6-(tetrahydro-2H-pyran-4-yl)pyridin-4-yl)phenyl)isonicotinamide;N-(4-methyl-3-(2-morpholino-6-(tetrahydro-2H-pyran-4-yl)pyridin-4-yl)phenyl)-3-(trifluoromethyl)benzamide;4-(hydroxymethyl)-3-(2-morpholinopyridin-4-yl)-N-(3-(trifluoromethyl)phenyl)benzamide;4-(difluoromethyl)-3-(2-morpholinopyridin-4-yl)-N-(3-(trifluoromethyl)phenyl)benzamide;4-(fluoromethyl)-3-(2-morpholinopyridin-4-yl)-N-(3-(trifluoromethyl)phenyl)benzamide; N-(4-methyl-3-(4-morpholinopyridin-2-yl)phenyl)-3-(trifluoromethyl)benzamide;3-(2,6-dimorpholinopyridin-4-yl)-4-methyl-N-(3-(trifluoromethyl)phenyl)benzamide;N-(4-methyl-3-(2-(1-methyl-1H-pyrazol-4-yl)-6-morpholinopyridin-4-yl)phenyl)-3-(trifluoromethyl)benzamide;3-(2-cyanopropan-2-yl)-N-(4-methyl-3-(2-morpholino-6-(tetrahydro-2H-pyran-4-yl)pyridin-4-yl)phenyl)benzamide;N-(3-(2-((2-hydroxyethyl)amino)-6-morpholinopyridin-4-yl)-4-methylphenyl)-3-(trifluoromethyl)benzamide;1-ethyl-N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)-6-oxo-5-(trifluoromethyl)-1,6-dihydropyridine-3-carboxamide;N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)-3-(trifluoromethyl)benzamide;N-(4-methyl-3-(6-morpholinopyrazin-2-yl)phenyl)-3-(trifluoromethyl)benzamide;N-(4-methyl-3-(4-methyl-6-morpholino-5-oxo-4,5-dihydropyrazin-2-yl)phenyl)-3-(trifluoromethyl)benzamide;N-(4-methyl-3-(6-morpholino-5-oxo-4,5-dihydropyrazin-2-yl)phenyl)-3-(trifluoromethyl)benzamide;N-(6-methyl-5-(6-morpholino-5-oxo-4,5-dihydropyrazin-2-yl)pyridin-3-yl)-3-(trifluoromethyl)benzamide;N-(3-(2-methoxy-5-morpholinopyridin-3-yl)-4-methylphenyl)-3-(trifluoromethyl)benzamide;N-(4-methyl-3-(1-methyl-5-morpholino-2-oxo-1,2-dihydropyridin-3-yl)phenyl)-3-(trifluoromethyl)benzamide;N-(1',2-dimethyl-5'-morpholino-2'-oxo-1',2'-dihydro-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide;N-(4-methyl-3-(5-morpholino-2-oxo-1,2-dihydropyridin-3-yl)phenyl)-3-(trifluoromethyl)benzamide;N-(3-(6-methoxy-5-morpholinopyridin-3-yl)-4-methylphenyl)-3-(trifluoromethyl)benzamide;N-(6'-methoxy-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide;2-(2-cyanopropan-2-yl)-N-(3-(6-methoxy-5-morpholinopyridin-3-yl)-4-methylphenyl)isonicotinamide;2-(2-cyanopropan-2-yl)-N-(6'-methoxy-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)isonicotinamide;N-(2-methyl-5'-morpholino-6'-oxo-1'-(tetrahydro-2H-pyran-4-yl)-1',6'-dihydro-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide;N-(4-methyl-3-(5-morpholino-6-((tetrahydro-2H-pyran-4-yl)oxy)pyridin-3-yl)phenyl)-3-(trifluoromethyl)benzamide;N-(1'-isopropyl-2-methyl-5'-morpholino-6'-oxo-1',6'-dihydro-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide;N-(6'-isopropoxy-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide;N-(3-(1-isopropyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)-4-methylphenyl)-3-(trifluoromethyl)benzamide;N-(3-(6-isopropoxy-5-morpholinopyridin-3-yl)-4-methylphenyl)-3-(trifluoromethyl)benzamide;4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)-N-(3-(trifluoromethyl)phenyl)benzamide;N-(1',2-dimethyl-5'-morpholino-6'-oxo-1',6'-dihydro-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide;2-(tert-butyl)-N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)isonicotinamide;2-(2-cyanopropan-2-yl)-N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)isonicotinamide;2-(2-cyanopropan-2-yl)-N-(1',2-dimethyl-5'-morpholino-6'-oxo-1',6'-dihydro-[3,3'-bipyridin]-5-yl)isonicotinamide;N-(3-(1-(2-hydroxyethyl)-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)-4-methylphenyl)-3-(trifluoromethyl)benzamide;2-(2-cyanopropan-2-yl)-N-(3-(1-(2-hydroxyethyl)-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)-4-methylphenyl)isonicotinamide;N-(1'-(2-hydroxyethyl)-2-methyl-5'-morpholino-6'-oxo-1',6'-dihydro-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide;N-(6'-(2-hydroxyethoxy)-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide;N-(4-methyl-3-(5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)-3-(trifluoromethyl)benzamide;N-(3-(1-(cyanomethyl)-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)-4-methylphenyl)-3-(trifluoromethyl)benzamide;(R)-N-(3-(1-(1-cyanoethyl)-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)-4-methylphenyl)-3-(trifluoromethyl)benzamide;(S)-N-(3-(1-(1-cyanoethyl)-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)-4-methylphenyl)-3-(trifluoromethyl)benzamide;N-(4-methyl-3-(1-(2-(methylsulfonyl)ethyl)-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)-3-(trifluoromethyl)benzamide;N-(2-methyl-1'-(2-(methylsulfonyl)ethyl)-5'-morpholino-6'-oxo-1',6'-dihydro-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide;(S)-N-(3-(6-(1-cyanoethoxy)-5-morpholinopyridin-3-yl)-4-methylphenyl)-3-(trifluoromethyl)benzamide;(R)-N-(3-(6-(1-cyanoethoxy)-5-morpholinopyridin-3-yl)-4-methylphenyl)-3-(trifluoromethyl)benzamide;4-methyl-3-(1-(2-(methylsulfonyl)ethyl)-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)-N-(3-(trifluoromethyl)phenyl)benzamide;N-(3-(1-ethyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)-4-methylphenyl)-3-(trifluoromethyl)benzamide;N-(3-(6-ethoxy-5-morpholinopyridin-3-yl)-4-methylphenyl)-3-(trifluoromethyl)benzamide;N-(1'-ethyl-2-methyl-5'-morpholino-6'-oxo-1',6'-dihydro-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide;N-(3-(1-ethyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)-4-methylphenyl)-2-(trifluoromethyl)isonicotinamide;N-(3-(6-ethoxy-5-morpholinopyridin-3-yl)-4-methylphenyl)-2-(trifluoromethyl)isonicotinamide;2-(2-cyanopropan-2-yl)-N-(3-(1-ethyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)-4-methylphenyl)isonicotinamide;2-(2-cyanopropan-2-yl)-N-(3-(6-ethoxy-5-morpholinopyridin-3-yl)-4-methylphenyl)isonicotinamide;N-(4-methyl-3-(1-methyl-6-morpholino-2-oxo-1,2-dihydropyridin-4-yl)phenyl)-3-(trifluoromethyl)benzamide;N-(1',2-dimethyl-6'-morpholino-2'-oxo-1',2'-dihydro-[3,4'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide;N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridazin-3-yl)phenyl)-3-(trifluoromethyl)benzamide;4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridazin-3-yl)-N-(3-(trifluoromethyl)phenyl)benzamide;N-(6-methyl-5-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridazin-3-yl)pyridin-3-yl)-3-(trifluoromethyl)benzamide;2-(2-cyanopropan-2-yl)-N-(6-methyl-5-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridazin-3-yl)pyridin-3-yl)isonicotinamide;2-(2-cyanopropan-2-yl)-N-(6-methyl-5-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridazin-3-yl)pyridin-3-yl)isonicotinamide;N-(3-(4-ethyl-6-morpholino-5-oxo-4,5-dihydropyrazin-2-yl)-4-methylphenyl)-3-(trifluoromethyl)benzamide;N-(3-(4-(2,2-difluoroethyl)-6-morpholino-5-oxo-4,5-dihydropyrazin-2-yl)-4-methylphenyl)-3-(trifluoromethyl)benzamide;3-(difluoromethyl)-N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)benzamide;3-(2-cyanopropan-2-yl)-N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)benzamide;3-((dimethylamino)methyl)-N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)-5-(trifluoromethyl)benzamide;3-(4-ethylpiperazin-1-yl)-N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)-5-(trifluoromethyl)benzamide;5-(dimethylamino)-N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)nicotinamide;N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)-3-(methylsulfonyl)-5-(trifluoromethyl)benzamide;3-(1,1-difluoroethyl)-N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)benzamide;2-(1,1-difluoroethyl)-N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)isonicotinamide;N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)-2-(trifluoromethyl)isonicotinamide;N-(1',2-dimethyl-5'-morpholino-6'-oxo-1',6'-dihydro-[3,3'-bipyridin]-5-yl)-4-methoxy-3-(trifluoromethyl)benzamide;N-(1',2-dimethyl-5'-morpholino-6'-oxo-1',6'-dihydro-[3,3'-bipyridin]-5-yl)-4-fluoro-3-methoxybenzamide;N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)-2-(methylsulfonyl)isonicotinamide;N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)-3-(methylsulfonyl)benzamide;2-(difluoromethyl)-N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridazin-3-yl)phenyl)isonicotinamide;3-(difluoromethyl)-N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridazin-3-yl)phenyl)benzamide;2-(2-cyanopropan-2-yl)-N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridazin-3-yl)phenyl)isonicotinamide;4-(difluoromethyl)-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)-N-(3-(trifluoromethyl)phenyl)benzamide;methyl (2-(2'-methyl-5-morpholino-6-oxo-5'-(3-(trifluoromethyl)benzamido)-[3,3'-bipyridin]-1(6H)-yl)ethyl)carbamate;Methyl (2-(5-(2-methyl-5-(3-(trifluoromethyl)benzamido)phenyl)-3-morpholino-2-oxopyridin-1 (2H)-yl)ethyl)carbamate;N-(3-(4-methoxy-6-morpholinopyridin-2-yl)-4-methylphenyl)-3-(trifluoromethyl)benzamide;N-(4-methyl-3-(6-morpholino-4-oxo-1,4-dihydropyridin-2-yl)phenyl)-3-(trifluoromethyl)benzamide;N-(4-methyl-3-(2-morpholinothiazol-5-yl)phenyl)-3-(trifluoromethyl)benzamide;N-(4-methyl-3-(2-morpholinothiazol-4-yl)phenyl)-3-(trifluoromethyl)benzamide;2-(difluoromethyl)-N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)isonicotinamide;N-(6'-cyano-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide;2-(2-cyanopropan-2-yl)-N-(3-(6-(difluoromethoxy)-5-morpholinopyridin-3-yl)-4-methylphenyl)isonicotinamide;N-(6'-(difluoromethoxy)-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide;2-(2-cyanopropan-2-yl)-N-(6'-(difluoromethoxy)-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)isonicotinamide;N-(3-(6-(difluoromethoxy)-5-morpholinopyridin-3-yl)-4-methylphenyl)-2-(2-hydroxypropan-2-yl)isonicotinamide;N-(6'-(2,2-difluoroethoxy)-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide;2-(2-cyanopropan-2-yl)-N-(6'-(2,2-difluoroethoxy)-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)isonicotinamide;N-(3-(6-ethoxy-5-morpholinopyridin-3-yl)-4-methylphenyl)-3-(methylsulfonyl)benzamide;N-(3-(6-ethoxy-5-morpholinopyridin-3-yl)-4-methylphenyl)-3-(1,3,4-oxadiazol-2-yl)benzamide;3-(difluoromethyl)-N-(3-(6-ethoxy-5-morpholinopyridin-3-yl)-4-methylphenyl)benzamide;N-(3-(6-ethoxy-5-morpholinopyridin-3-yl)-4-methylphenyl)-2-(methylsulfonyl)isonicotinamide;2-(1,1-difluoroethyl)-N-(3-(6-ethoxy-5-morpholinopyridin-3-yl)-4-methylphenyl)isonicotinamide;N-(3-(6-ethoxy-5-morpholinopyridin-3-yl)-4-methylphenyl)-1-ethyl-6-oxo-5-(trifluoromethyl)-1,6-dihydropyridine-3-carboxamide;3-(6-ethoxy-5-morpholinopyridin-3-yl)-4-methyl-N-(3-(trifluoromethyl)phenyl)benzamide;3-(6-ethoxy-5-morpholinopyridin-3-yl)-N-(3-(2-hydroxypropan-2-yl)phenyl)-4-methylbenzamide;2-(difluoromethyl)-N-(3-(6-ethoxy-5-morpholinopyridin-3-yl)-4-methylphenyl)isonicotinamide;3-(6-ethoxy-5-morpholinopyridin-3-yl)-4-methyl-N-(3-(methylsulfonyl)phenyl)benzamide;2-(2-cyanopropan-2-yl)-N-(6'-ethoxy-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)isonicotinamide;N-(6'-ethoxy-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-2-(2-hydroxypropan-2-yl)isonicotinamide;N-(6'-ethoxy-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-1-ethyl-6-oxo-5-(trifluoromethyl)-1,6-dihydropyridine-3-carboxamide;N-(6'-ethoxy-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-3-(methylsulfonyl)benzamide;N-(6'-ethoxy-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-2-(methylsulfonyl)isonicotinamide;N-(6'-ethoxy-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-3-(1,3,4-oxadiazol-2-yl)benzamide;5-cyclopropyl-N-(6'-ethoxy-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)isoxazole-3-carboxamide;N-(6'-ethoxy-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-2-(trifluoromethyl)isonicotinamide;2-(difluoromethyl)-N-(6'-ethoxy-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)isonicotinamide;N-(6'-ethoxy-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide;N-(6'-cyano-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-3-((dimethylamino)methyl)-5-(trifluoromethyl)benzamide;N-(6'-cyano-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-2-(1,1-difluoroethyl)isonicotinamide;N-(6'-cyano-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-2-isopropylisonicotinamide;N-(6'-ethoxy-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-2-isopropylisonicotinamide;2-cyclopropyl-N-(6'-ethoxy-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)isonicotinamide;N-(6'-ethoxy-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-2-(oxetan-3-yl)isonicotinamide;3-(6-ethoxy-5-morpholinopyridin-3-yl)-N-(2-fluoro-5-(prop-1-en-2-yl)phenyl)-4-methylbenzamide;N-(6'-ethoxy-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-3-(4-ethylpiperazin-1-yl)-5-(trifluoromethyl)benzamide;3-((dimethylamino)methyl)-N-(6'-ethoxy-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-5-(trifluoromethyl)benzamide;N-(6'-ethoxy-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-6-(trifluoromethyl)pyridazine-4-carboxamide;N-(2-chloro-6'-methoxy-5'-morpholino-[3,3'-bipyridin]-5-yl)-2-(1-cyanocyclopropyl)isonicotinamide;N-(2-chloro-6'-methoxy-5'-morpholino-[3,3'-bipyridin]-5-yl)-2-(1,1-difluoroethyl)isonicotinamide;N-(2-chloro-6'-methoxy-5'-morpholino-[3,3'-bipyridin]-5-yl)-2-(2-fluoropropan-2-yl)isonicotinamide;N-(2-chloro-6'-methoxy-5'-morpholino-[3,3'-bipyridin]-5-yl)-6-(trifluoromethyl)pyridazine-4-carboxamide;N-(2-chloro-6'-methoxy-5'-morpholino-[3,3'-bipyridin]-5-yl)-2-(2-cyanopropan-2-yl)isonicotinamide;2-(2-cyanopropan-2-yl)-N-(6'-(dimethylamino)-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)isonicotinamide;2-(1-cyanocyclopropyl)-N-(6'-(dimethylamino)-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)isonicotinamide;2-(1,1-difluoroethyl)-N-(6'-(dimethylamino)-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)isonicotinamide;N-(6'-(dimethylamino)-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-2-(2-fluoropropan-2-yl)isonicotinamide;N-(6'-(dimethylamino)-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-3-((dimethylamino)methyl)-5-(trifluoromethyl)benzamide;N-(6'-(dimethylamino)-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-6-(trifluoromethyl)pyridazine-4-carboxamide;6-cyclopropyl-N-(6'-(dimethylamino)-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)pyridazine-4-carboxamide;2-(2-cyanopropan-2-yl)-N-(2-methyl-5'-morpholino-6'-((tetrahydro-2H-pyran-4-yl)oxy)-[3,3'-bipyridin]-5-yl)isonicotinamide;2-(2-fluoropropan-2-yl)-N-(2-methyl-5'-morpholino-6'-((tetrahydro-2H-pyran-4-yl)oxy)-[3,3'-bipyridin]-5-yl)isonicotinamide;N-(4-methyl-3-(5-morpholino-6-((tetrahydro-2H-pyran-4-yl)oxy)pyridin-3-yl)phenyl)-2-(methylsulfonyl)isonicotinamide;N-(4-methyl-3-(5-morpholino-6-((tetrahydro-2H-pyran-4-yl)oxy)pyridin-3-yl)phenyl)-6-(trifluoromethyl)pyridazine-4-carboxamide;6-cyclopropyl-N-(4-methyl-3-(5-morpholino-6-((tetrahydro-2H-pyran-4-yl)oxy)pyridin-3-yl)phenyl)pyridazine-4-carboxamide;2-(2-hydroxypropan-2-yl)-N-(4-methyl-3-(5-morpholino-6-((tetrahydro-2H-pyran-4-yl)oxy)pyridin-3-yl)phenyl)isonicotinamide;N-(5'-(3-oxa-8-azabicyclo[3.2.1]octan-8-yl)-2-methyl-6'-((tetrahydro-2H-pyran-4-yl)oxy)-[3,3'-bipyridin]-5-yl)-2-(trifluoromethyl)isonicotinamide;N-(5'-(3-oxa-8-azabicyclo[3.2.1]octan-8-yl)-2-methyl-6'-((tetrahydro-2H-pyran-4-yl)oxy)-[3,3'-bipyridin]-5-yl)-2-(2-fluoropropan-2-yl)isonicotinamide;N-(3-(6-ethoxy-5-morpholinopyridin-3-yl)-4-methylphenyl)-6-(trifluoromethyl)pyridazine-4-carboxamide;N-(6'-methoxy-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-2-(2-fluoropropan-2-yl)isonicotinamide;N-(5'-(3-oxa-8-azabicyclo[3.2.1]octan-8-yl)-6'-ethoxy-2-methyl-[3,3'-bipyridin]-5-yl)-6-(trifluoromethyl)pyridazine-4-carboxamide;2-(1-cyanocyclopropyl)-N-(6'-methoxy-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)isonicotinamide;6-(2-cyanopropan-2-yl)-N-(3-(6-ethoxy-5-morpholinopyridin-3-yl)-4-methylphenyl)pyridazine-4-carboxamide;(R)-N-(6'-ethoxy-2-methyl-5'-(3-methylmorpholino)-[3,3'-bipyridin]-5-yl)-6-(trifluoromethyl)pyridazine-4-carboxamide;(S)-N-(6'-ethoxy-2-methyl-5'-(3-methylmorpholino)-[3,3'-bipyridin]-5-yl)-6-(trifluoromethyl)pyridazine-4-carboxamide;6-(2-cyanopropan-2-yl)-N-(6'-ethoxy-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)pyridazine-4-carboxamide;N-(6'-chloro-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-2-(1-cyanocyclopropyl)isonicotinamide;N-(6'-chloro-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-2-(2-cyanopropan-2-yl)isonicotinamide;N-(6'-chloro-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-2-(2-fluoropropan-2-yl)isonicotinamide;N-(6'-chloro-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-2-(trifluoromethyl)isonicotinamide;N-(6'-chloro-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-6-(trifluoromethyl)pyridazine-4-carboxamide;N-(6'-chloro-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-6-(2-cyanopropan-2-yl)pyridazine-4-carboxamide;2-(2-fluoropropan-2-yl)-N-(2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)isonicotinamide;N-(2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-2-(trifluoromethyl)isonicotinamide;6-(2-cyanopropan-2-yl)-N-(2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)pyridazine-4-carboxamide;2-(2-cyanopropan-2-yl)-N-(2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)isonicotinamide;N-(6'-fluoro-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-2-(2-fluoropropan-2-yl)isonicotinamide;2-(2-fluoropropan-2-yl)-N-(6'-(2-hydroxyethoxy)-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)isonicotinamide;2-(2-cyanopropan-2-yl)-N-(6'-(2-hydroxyethoxy)-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)isonicotinamide;N-(6'-(2-hydroxyethoxy)-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-4-(trifluoromethyl)picolinamide;6-(1-cyanocyclopropyl)-N-(4-methyl-3-(5-morpholino-6-((tetrahydro-2H-pyran-4-yl)oxy)pyridin-3-yl)phenyl)pyridazine-4-carboxamide;(R)-6-(2-cyanopropan-2-yl)-N-(6'-ethoxy-2-methyl-5'-(3-methylmorpholino)-[3,3'-bipyridin]-5-yl)pyridazine-4-carboxamide;N-(3-(6-ethoxy-5-morpholinopyridin-3-yl)-4-methylphenyl)-6-(2-fluoropropan-2-yl)pyridazine-4-carboxamide;N-(6'-ethoxy-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-6-(2-fluoropropan-2-yl)pyridazine-4-carboxamide;3-(6-ethoxy-5-morpholinopyridin-3-yl)-4-methyl-N-(2-(trifluoromethyl)pyridin-4-yl)benzamide;N-(6'-(dimethylamino)-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide;N-(6'-(dimethylamino)-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-2-isopropylisonicotinamide;N-(2-methyl-5'-(3-oxomorpholino)-6'-((tetrahydro-2H-pyran-4-yl)oxy)-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide;(S)-N-(2-methyl-5'-morpholino-6'-((tetrahydrofuran-3-yl)oxy)-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide;(R)-N-(2-methyl-5'-morpholino-6'-((tetrahydrofuran-3-yl)oxy)-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide;N-(6'-(2-methoxyethoxy)-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide;2-isopropyl-N-(2-methyl-5'-morpholino-6'-((tetrahydro-2H-pyran-4-yl)oxy)-[3,3'-bipyridin]-5-yl)isonicotinamide;N-(2-methyl-5'-morpholino-6'-((tetrahydro-2H-pyran-4-yl)oxy)-[3,3'-bipyridin]-5-yl)-2-(trifluoromethyl)isonicotinamide;N-(2-methyl-5'-morpholino-6'-(oxetan-3-yloxy)-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide;N-(6'-(((1r,4r)-4-hydroxycyclohexyl)oxy)-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide;N-(6'-(((1s,4s)-4-hydroxycyclohexyl)oxy)-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide;rac-N-(6'-(((1,3-cis)-3-hydroxycyclopentyl)oxy)-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide;rac-N-(6'-(((1,3-trans)-3-hydroxycyclopentyl)oxy)-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide;N-(6'-((3-hydroxycyclohexyl)oxy)-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide;N-(2-methyl-6'-((1-methylazetidin-3-yl)oxy)-5'-morpholino-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide;N-(6'-(2-oxaspiro[3.3]heptan-6-yloxy)-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide;2-isopropyl-N-(6'-methoxy-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)isonicotinamide;N-(6'-methoxy-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-2-(trifluoromethyl)isonicotinamide;N-(6'-(azetidin-3-yloxy)-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide;N-(6'-(2-cyanopropan-2-yl)-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide;N-(2-methyl-6'-((methylsulfonyl)methyl)-5'-morpholino-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide;N-methyl-N-(2-methyl-5'-morpholino-6'-((tetrahydro-2H-pyran-4-yl)oxy)-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide;N-ethyl-N-(2-methyl-5'-morpholino-6'-((tetrahydro-2H-pyran-4-yl)oxy)-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide;N-(2-methyl-5'-morpholino-6'-((tetrahydro-2H-pyran-4-yl)oxy)-[3,3'-bipyridin]-5-yl)-N-propyl-3-(trifluoromethyl)benzamide;N-(3-(1-ethyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)-4-methylphenyl)-3-(trifluoromethyl)benzamide;2-(2-cyanopropan-2-yl)-N-(1'-ethyl-2-methyl-5'-morpholino-6'-oxo-1',6'-dihydro-[3,3'-bipyridin]-5-yl)isonicotinamide;N-(1'-(2-cyanoethyl)-2-methyl-5'-morpholino-6'-oxo-1',6'-dihydro-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide;N-(3-(1-(2-cyanoethyl)-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)-4-methylphenyl)-2-(1,1-difluoroethyl)isonicotinamide;N-(3-(1-(2-cyanoethyl)-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)-4-methylphenyl)-2-(2-cyanopropan-2-yl)isonicotinamide;N-(3-(1-(2-cyanoethyl)-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)-4-methylphenyl)-3-(difluoromethyl)benzamide;N-(4-methyl-3-(1-((3-methyloxetan-3-yl)methyl)-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)-3-(trifluoromethyl)benzamide;2-(2-cyanopropan-2-yl)-N-(4-methyl-3-(1-((3-methyloxetan-3-yl)methyl)-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)isonicotinamide;4-methoxy-N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)-3-(trifluoromethyl)benzamide;N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)-3-(trifluoromethoxy)benzamide;2-(1,1-difluoropropyl)-N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)isonicotinamide;3-ethoxy-4-fluoro-N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)benzamide;3-isopropoxy-N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)benzamide;2-chloro-3-(1-cyanocyclopropyl)-N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)benzamide;N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)benzamide;2-isopropyl-N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)isonicotinamide;N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)-3-(1,3,4-oxadiazol-2-yl)benzamide;2-(2-hydroxypropan-2-yl)-N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)isonicotinamide;N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)-3-(2-(methylsulfonyl)propan-2-yl)benzamide;N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)-3-(oxetan-3-yl)benzamide;2-ethyl-N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)isonicotinamide;2-cyclopropyl-N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)isonicotinamide;2-(2-fluoropropan-2-yl)-N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)isonicotinamide;N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)-2-(oxetan-3-yl)isonicotinamide;2-(1-cyanocyclopropyl)-N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)isonicotinamide;2-(difluoromethyl)-N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)isonicotinamide;3-(cyanomethyl)-N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)benzamide;6-(2-cyanopropan-2-yl)-N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)pyridazine-4-carboxamide;N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)-6-(trifluoromethyl)pyridazine-4-carboxamide;6-cyclopropyl-N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)pyridazine-4-carboxamide;6-(2-fluoropropan-2-yl)-N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)pyridazine-4-carboxamide;N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)-4-(trifluoromethyl)picolinamide;1-ethyl-3-methyl-N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)-1H-pyrazole-4-carboxamide;1,3-dimethyl-N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)-1H-pyrazole-4-carboxamide;1-isopropyl-3-methyl-N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)-1H-pyrazole-4-carboxamide;3-cyclopropyl-1-methyl-N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)-1H-pyrazole-5-carboxamide;1-methyl-N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)-3-(trifluoromethyl)-1H-pyrazole-5-carboxamide;5-isopropyl-N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)isoxazole-3-carboxamide;5-cyclopropyl-N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)isoxazole-3-carboxamide;N-(1',2-dimethyl-5'-morpholino-6'-oxo-1',6'-dihydro-[3,3'-bipyridin]-5-yl)-1-ethyl-3-methyl-1H-pyrazole-4-carboxamide;N-(1',2-dimethyl-5'-morpholino-6'-oxo-1',6'-dihydro-[3,3'-bipyridin]-5-yl)-1,3-dimethyl-1H-pyrazole-4-carboxamide;N-(1',2-dimethyl-5'-morpholino-6'-oxo-1',6'-dihydro-[3,3'-bipyridin]-5-yl)-1-isopropyl-3-methyl-1H-pyrazole-4-carboxamide;N-(1',2-dimethyl-5'-morpholino-6'-oxo-1',6'-dihydro-[3,3'-bipyridin]-5-yl)-1 ,3-dimethyl-1 H-pyrazole-5-carboxamide;3-cyclopropyl-N-(1',2-dimethyl-5'-morpholino-6'-oxo-1',6'-dihydro-[3,3'-bipyridin]-5-yl)-1-methyl-1H-pyrazole-5-carboxamide;N-(1',2-dimethyl-5'-morpholino-6'-oxo-1',6'-dihydro-[3,3'-bipyridin]-5-yl)-5-isopropylisoxazole-3-carboxamide;5-cyclopropyl-N-(1',2-dimethyl-5'-morpholino-6'-oxo-1',6'-dihydro-[3,3'-bipyridin]-5-yl)isoxazole-3-carboxamide;1,3-dimethyl-N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)-1H-pyrazole-5-carboxamide;N-(1',2-dimethyl-5'-morpholino-6'-oxo-1',6'-dihydro-[3,3'-bipyridin]-5-yl)-1-methyl-3-(trifluoromethyl)-1H-pyrazole-5-carboxamide;N-(1',2-dimethyl-5'-morpholino-6'-oxo-1',6'-dihydro-[3,3'-bipyridin]-5-yl)-2,5-dimethyloxazole-4-carboxamide;N-(1',2-dimethyl-5'-morpholino-6'-oxo-1',6'-dihydro-[3,3'-bipyridin]-5-yl)-2,5-dimethyloxazole-4-carboxamide;racemic trans-1,3-dimethyl-N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)-1H-pyrazole-5-carboxamide;racemic cis-1,3-dimethyl-N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)-1H-pyrazole-5-carboxamide;(R)-N-(1',2-dimethyl-5'-morpholino-6'-oxo-1',6'-dihydro-[3,3'-bipyridin]-5-yl)-2-(tetrahydrofuran-2-yl)acetamide;(S)-N-(1',2-dimethyl-5'-morpholino-6'-oxo-1',6'-dihydro-[3,3'-bipyridin]-5-yl)-2-(tetrahydrofuran-2-yl)acetamide;3-(2-cyanopropan-2-yl)-N-(1',2-dimethyl-5'-morpholino-6'-oxo-1',6'-dihydro-[3,3'-bipyridin]-5-yl)benzamide;N-(1',2-dimethyl-5'-morpholino-6'-oxo-1',6'-dihydro-[3,3'-bipyridin]-5-yl)-2-(trifluoromethyl)isonicotinamide;2-(1,1-difluoroethyl)-N-(1',2-dimethyl-5'-morpholino-6'-oxo-1',6'-dihydro-[3,3'-bipyridin]-5-yl)isonicotinamide;2-(difluoromethyl)-N-(1',2-dimethyl-5'-morpholino-6'-oxo-1',6'-dihydro-[3,3'-bipyridin]-5-yl)isonicotinamide;3-(1,1-difluoroethyl)-N-(1',2-dimethyl-5'-morpholino-6'-oxo-1',6'-dihydro-[3,3'-bipyridin]-5-yl)benzamide;3-(difluoromethyl)-N-(1',2-dimethyl-5'-morpholino-6'-oxo-1',6'-dihydro-[3,3'-bipyridin]-5-yl)benzamide;N-(1',2-dimethyl-5'-morpholino-6'-oxo-1',6'-dihydro-[3,3'-bipyridin]-5-yl)-3-ethoxy-4-fluorobenzamide;N-(1',2-dimethyl-5'-morpholino-6'-oxo-1',6'-dihydro-[3,3'-bipyridin]-5-yl)-4-fluoro-3-isopropoxybenzamide;N-(1',2-dimethyl-5'-morpholino-6'-oxo-1',6'-dihydro-[3,3'-bipyridin]-5-yl)-3-ethoxybenzamide;N-(1',2-dimethyl-5'-morpholino-6'-oxo-1',6'-dihydro-[3,3'-bipyridin]-5-yl)-3-isopropoxybenzamide;2-(tert-butyl)-N-(1',2-dimethyl-5'-morpholino-6'-oxo-1',6'-dihydro-[3,3'-bipyridin]-5-yl)isonicotinamide;N-(1',2-dimethyl-5'-morpholino-6'-oxo-1',6'-dihydro-[3,3'-bipyridin]-5-yl)-2-isopropylisonicotinamide;N-(1',2-dimethyl-5'-morpholino-6'-oxo-1',6'-dihydro-[3,3'-bipyridin]-5-yl)-3-((dimethylamino)methyl)-5-(trifluoromethyl)benzamide;N-(1',2-dimethyl-5'-morpholino-6'-oxo-1',6'-dihydro-[3,3'-bipyridin]-5-yl)-3-(4-ethylpiperazin-1-yl)-5-(trifluoromethyl)benzamide;2-chloro-3-(1-cyanocyclopropyl)-N-(1',2-dimethyl-5'-morpholino-6'-oxo-1',6'-dihydro-[3,3'-bipyridin]-5-yl)benzamide;N-(2-chloro-1'-methyl-5'-morpholino-6'-oxo-1',6'-dihydro-[3,3'-bipyridin]-5-yl)-2-(trifluoromethyl)isonicotinamide;N-(2-chloro-1'-methyl-5'-morpholino-6'-oxo-1',6'-dihydro-[3,3'-bipyridin]-5-yl)-2-(1,1-difluoroethyl)isonicotinamide;N-(2-chloro-1'-methyl-5'-morpholino-6'-oxo-1',6'-dihydro-[3,3'-bipyridin]-5-yl)-3-(difluoromethyl)benzamide;N-(2-chloro-1'-methyl-5'-morpholino-6'-oxo-1',6'-dihydro-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide;N-(2-chloro-1'-methyl-5'-morpholino-6'-oxo-1',6'-dihydro-[3,3'-bipyridin]-5-yl)-4-methoxy-3-(trifluoromethyl)benzamide;N-(4-chloro-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)-3-(trifluoromethyl)benzamide;N-(4-chloro-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)-3-(trifluoromethyl)benzamide;N-(4-cyano-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)-3-(trifluoromethyl)benzamide;N-(4-chloro-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)-3-(difluoromethyl)benzamide;N-(4-chloro-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)-2-(trifluoromethyl)isonicotinamide;N-(4-chloro-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)-2-(1,1-difluoroethyl)isonicotinamide;N-(4-cyano-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)-2-(trifluoromethyl)isonicotinamide;N-(4-cyano-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)-2-(1,1-difluoroethyl)isonicotinamide;3-(difluoromethyl)-N-(4-fluoro-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)benzamide;N-(4-cyano-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)-2-(trifluoromethyl)isonicotinamide;N-(4-cyano-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)-2-(trifluoromethyl)isonicotinamide;N-(4-cyano-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)-3-(difluoromethyl)benzamide;N-(4-chloro-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)-2-isopropylisonicotinamide;N-(2-chloro-1'-methyl-5'-morpholino-6'-oxo-1',6'-dihydro-[3,3'-bipyridin]-5-yl)-2-isopropylisonicotinamide;2-chloro-1'-methyl-5'-morpholino-6'-oxo-N-(3-(trifluoromethyl)phenyl)-1',6'-dihydro-[3,3'-bipyridine]-5-carboxamide;2-chloro-N-(3-(2-hydroxypropan-2-yl)phenyl)-1'-methyl-5'-morpholino-6'-oxo-1',6'-dihydro-[3,3'-bipyridine]-5-carboxamide;4-chloro-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)-N-(3-(trifluoromethyl)phenyl)benzamide;4-chloro-N-(3-(difluoromethyl)phenyl)-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)benzamide;4-chloro-N-(3-(2-cyanopropan-2-yl)phenyl)-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)benzamide;4-methyl-N-(3-(4-methyl-1H-imidazol-1-yl)-5-(trifluoromethyl)phenyl)-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)benzamide;4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)-N-phenylbenzamide;N-(3-(difluoromethyl)phenyl)-4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)benzamide;N-(3-(2-cyanopropan-2-yl)phenyl)-4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)benzamide;4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)-N-(pyridin-2-yl)benzamide;4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)-N-(pyridin-3-yl)benzamide;4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)-N-(4-(trifluoromethyl)pyridin-2-yl)benzamide;N-(3-ethylphenyl)-4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)benzamide;N-(3-isopropylphenyl)-4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)benzamide;N-(3-(1,3,4-oxadiazol-2-yl)phenyl)-4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)benzamide;4-methyl-N-(3-(5-methyl-1,2,4-oxadiazol-3-yl)phenyl)-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)benzamide;N-(3-(2-hydroxypropan-2-yl)phenyl)-4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)benzamide;N-(3-methoxyphenyl)-4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)benzamide;4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)-N-(3-(trifluoromethoxy)phenyl)benzamide;N-(5-methoxypyridin-3-yl)-4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)benzamide;1',2-dimethyl-5'-morpholino-6'-oxo-N-(3-(trifluoromethyl)phenyl)-1',6'-dihydro-[3,3'-bipyridine]-5-carboxamide;N-(3-(2-cyanopropan-2-yl)phenyl)-1',2-dimethyl-5'-morpholino-6'-oxo-1',6'-dihydro-[3,3'-bipyridine]-5-carboxamide;N-(3-(difluoromethyl)phenyl)-1',2-dimethyl-5'-morpholino-6'-oxo-1',6'-dihydro-[3,3'-bipyridine]-5-carboxamide;N-(3-(2-hydroxypropan-2-yl)phenyl)-1',2-dimethyl-5'-morpholino-6'-oxo-1',6'-dihydro-[3,3'-bipyridine]-5-carboxamide;N-(4-methyl-3-(1-methyl-6-oxo-5-(3-oxomorpholino)-1,6-dihydropyridin-3-yl)phenyl)-3-(trifluoromethyl)benzamide;2-(dimethylamino)-N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)isonicotinamide;2-(ethyl(methyl)amino)-N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)isonicotinamide;2-(azetidin-1-yl)-N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)isonicotinamide;2-((2-methoxyethyl)(methyl)amino)-N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)isonicotinamide;2-((2-hydroxyethyl)(methyl)amino)-N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)isonicotinamide;2-(methyl(2-(methylamino)ethyl)amino)-N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)isonicotinamide;4-(1,2-dihydroxyethyl)-N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)-3-(trifluoromethyl)benzamide;4-(1,2-dihydroxyethyl)-N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)-3-(trifluoromethyl)benzamide;4-(hydroxymethyl)-N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)-3-(trifluoromethyl)benzamide;4-(2-aminoethyl)-N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)-3-(trifluoromethyl)benzamide;N-(3-(5-(6-oxa-3-azabicyclo[3.1.1]heptan-3-yl)-1-methyl-6-oxo-1,6-dihydropyridin-3-yl)-4-methylphenyl)-3-(trifluoromethyl)benzamide;N-(3-(5-(6-oxa-3-azabicyclo[3.1.1]heptan-3-yl)-1-methyl-6-oxo-1,6-dihydropyridin-3-yl)-4-methylphenyl)-2-(2-cyanopropan-2-yl)isonicotinamide;N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)-4-((methylamino)methyl)-3-(trifluoromethyl)benzamide;N-(4-(aminomethyl)-3-(trifluoromethyl)phenyl)-4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)benzamide;N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)-3-((methylamino)methyl)-5-(trifluoromethyl)benzamide;3-(hydroxymethyl)-N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)-5-(trifluoromethyl)benzamide;3-(aminomethyl)-N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)-5-(trifluoromethyl)benzamide;2-(1,1-difluoroethyl)-N-(4-methyl-3-(1-methyl-6-morpholino-2-oxo-1,2-dihydropyridin-4-yl)phenyl)isonicotinamide;2-(tert-butyl)-N-(4-methyl-3-(1-methyl-6-morpholino-2-oxo-1,2-dihydropyridin-4-yl)phenyl)isonicotinamide;N-(4-methyl-3-(1-methyl-6-morpholino-2-oxo-1,2-dihydropyridin-4-yl)phenyl)benzamide;N-(4-methyl-3-(1-methyl-6-morpholino-2-oxo-1,2-dihydropyridin-4-yl)phenyl)-2-(methylsulfonyl)isonicotinamide;2-(1,1-difluoropropyl)-N-(4-methyl-3-(1-methyl-6-morpholino-2-oxo-1,2-dihydropyridin-4-yl)phenyl)isonicotinamide;2-ethyl-N-(4-methyl-3-(1-methyl-6-morpholino-2-oxo-1,2-dihydropyridin-4-yl)phenyl)isonicotinamide;2-cyclopropyl-N-(4-methyl-3-(1-methyl-6-morpholino-2-oxo-1,2-dihydropyridin-4-yl)phenyl)isonicotinamide;N-(4-methyl-3-(1-methyl-6-morpholino-2-oxo-1,2-dihydropyridin-4-yl)phenyl)-2-(oxetan-3-yl)isonicotinamide;2-(2-fluoropropan-2-yl)-N-(4-methyl-3-(1-methyl-6-morpholino-2-oxo-1,2-dihydropyridin-4-yl)phenyl)isonicotinamide;2-(1-cyanocyclopropyl)-N-(4-methyl-3-(1-methyl-6-morpholino-2-oxo-1,2-dihydropyridin-4-yl)phenyl)isonicotinamide;1-ethyl-N-(4-methyl-3-(1-methyl-6-morpholino-2-oxo-1,2-dihydropyridin-4-yl)phenyl)-6-oxo-5-(trifluoromethyl)-1,6-dihydropyridine-3-carboxamide;2-isopropyl-N-(4-methyl-3-(1-methyl-6-morpholino-2-oxo-1,2-dihydropyridin-4-yl)phenyl)isonicotinamide;2-(2-hydroxypropan-2-yl)-N-(4-methyl-3-(1-methyl-6-morpholino-2-oxo-1,2-dihydropyridin-4-yl)phenyl)isonicotinamide;3-(difluoromethyl)-N-(4-methyl-3-(1-methyl-6-morpholino-2-oxo-1,2-dihydropyridin-4-yl)phenyl)benzamide;N-(4-methyl-3-(1-methyl-6-morpholino-2-oxo-1,2-dihydropyridin-4-yl)phenyl)-2-(trifluoromethyl)isonicotinamide;2-(difluoromethyl)-N-(4-methyl-3-(1-methyl-6-morpholino-2-oxo-1,2-dihydropyridin-4-yl)phenyl)isonicotinamide2-(2-cyanopropan-2-yl)-N-(4-methyl-3-(1-methyl-6-morpholino-2-oxo-1,2-dihydropyridin-4-yl)phenyl)isonicotinamide;N-(4-methyl-3-(1-methyl-6-morpholino-2-oxo-1,2-dihydropyridin-4-yl)phenyl)-3-(methylsulfonyl)benzamide;6-(2-cyanopropan-2-yl)-N-(4-methyl-3-(1-methyl-6-morpholino-2-oxo-1,2-dihydropyridin-4-yl)phenyl)pyridazine-4-carboxamide;3-(4-ethylpiperazin-1-yl)-N-(4-methyl-3-(1-methyl-6-morpholino-2-oxo-1,2-dihydropyridin-4-yl)phenyl)-5-(trifluoromethyl)benzamide;3-fluoro-N-(4-methyl-3-(1-methyl-6-morpholino-2-oxo-1,2-dihydropyridin-4-yl)phenyl)-5-morpholinobenzamide;N-(4-methyl-3-(1-methyl-6-morpholino-2-oxo-1,2-dihydropyridin-4-yl)phenyl)-3-(oxetan-3-yl)benzamide;N-(4-methyl-3-(1-methyl-6-morpholino-2-oxo-1,2-dihydropyridin-4-yl)phenyl)-3-(1,3,4-oxadiazol-2-yl)benzamide;N-(4-methyl-3-(1-methyl-6-morpholino-2-oxo-1,2-dihydropyridin-4-yl)phenyl)-3-(2-(methylsulfonyl)propan-2-yl)benzamide;N-(4-methyl-3-(1-methyl-6-morpholino-2-oxo-1,2-dihydropyridin-4-yl)phenyl)-6-(trifluoromethyl)pyridazine-4-carboxamide;6-cyclopropyl-N-(4-methyl-3-(1-methyl-6-morpholino-2-oxo-1,2-dihydropyridin-4-yl)phenyl)pyridazine-4-carboxamide;3-((dimethylamino)methyl)-N-(4-methyl-3-(1-methyl-6-morpholino-2-oxo-1,2-dihydropyridin-4-yl)phenyl)-5-(trifluoromethyl)benzamide;N-(1',2-dimethyl-6'-morpholino-2'-oxo-1',2'-dihydro-[3,4'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide;2-(2-cyanopropan-2-yl)-N-(1',2-dimethyl-6'-morpholino-2'-oxo-1',2'-dihydro-[3,4'-bipyridin]-5-yl)isonicotinamide;N-(1',2-dimethyl-6'-morpholino-2'-oxo-1',2'-dihydro-[3,4'-bipyridin]-5-yl)-2-(trifluoromethyl)isonicotinamide;N-(1',2-dimethyl-6'-morpholino-2'-oxo-1',2'-dihydro-[3,4'-bipyridin]-5-yl)-2-(2-hydroxypropan-2-yl)isonicotinamide;N-(1',2-dimethyl-6'-morpholino-2'-oxo-1',2'-dihydro-[3,4'-bipyridin]-5-yl)-1-ethyl-6-oxo-5-(trifluoromethyl)-1,6-dihydropyridine-3-carboxamide;N-(1',2-dimethyl-6'-morpholino-2'-oxo-1',2'-dihydro-[3,4'-bipyridin]-5-yl)benzamide;N-(1',2-dimethyl-6'-morpholino-2'-oxo-1',2'-dihydro-[3,4'-bipyridin]-5-yl)-2-(methylsulfonyl)isonicotinamide;N-(1',2-dimethyl-6'-morpholino-2'-oxo-1',2'-dihydro-[3,4'-bipyridin]-5-yl)-2-isopropylisonicotinamide;3-(difluoromethyl)-N-(1',2-dimethyl-6'-morpholino-2'-oxo-1',2'-dihydro-[3,4'-bipyridin]-5-yl)benzamide;2-(tert-butyl)-N-(1',2-dimethyl-6'-morpholino-2'-oxo-1',2'-dihydro-[3,4'-bipyridin]-5-yl)isonicotinamide;2-(difluoromethyl)-N-(1',2-dimethyl-6'-morpholino-2'-oxo-1',2'-dihydro-[3,4'-bipyridin]-5-yl)isonicotinamide;N-(1',2-dimethyl-6'-morpholino-2'-oxo-1',2'-dihydro-[3,4'-bipyridin]-5-yl)-3-(methylsulfonyl)benzamide;2-(1,1-difluoroethyl)-N-(1',2-dimethyl-6'-morpholino-2'-oxo-1',2'-dihydro-[3,4'-bipyridin]-5-yl)isonicotinamide;2-cyclopropyl-N-(1',2-dimethyl-6'-morpholino-2'-oxo-1',2'-dihydro-[3,4'-bipyridin]-5-yl)isonicotinamide;N-(1',2-dimethyl-6'-morpholino-2'-oxo-1',2'-dihydro-[3,4'-bipyridin]-5-yl)-3-(2-(methylsulfonyl)propan-2-yl)benzamide;N-(2-chloro-1'-methyl-6'-morpholino-2'-oxo-1',2'-dihydro-[3,4'-bipyridin]-5-yl)-2-(1,1-difluoroethyl)isonicotinamide;N-(3-(difluoromethyl)phenyl)-4-methyl-3-(1-methyl-6-morpholino-2-oxo-1,2-dihydropyridin-4-yl)benzamide;N-(3-(2-cyanopropan-2-yl)phenyl)-4-methyl-3-(1-methyl-6-morpholino-2-oxo-1,2-dihydropyridin-4-yl)benzamide;N-(3-(2-hydroxypropan-2-yl)phenyl)-4-methyl-3-(1-methyl-6-morpholino-2-oxo-1,2-dihydropyridin-4-yl)benzamide;4-methyl-3-(1-methyl-6-morpholino-2-oxo-1,2-dihydropyridin-4-yl)-N-(3-(trifluoromethyl)phenyl)benzamide;4-methyl-3-(1-methyl-6-morpholino-2-oxo-1,2-dihydropyridin-4-yl)-N-phenylbenzamide;2-(1,1-difluoroethyl)-N-(3-(1-ethyl-6-morpholino-2-oxo-1,2-dihydropyridin-4-yl)-4-methylphenyl)isonicotinamide;2-(1,1-difluoropropyl)-N-(3-(1-ethyl-6-morpholino-2-oxo-1,2-dihydropyridin-4-yl)-4-methylphenyl)isonicotinamide;N-(3-(1-ethyl-6-morpholino-2-oxo-1,2-dihydropyridin-4-yl)-4-methylphenyl)-2-(2-fluoropropan-2-yl)isonicotinamide;N-(3-(1-ethyl-6-morpholino-2-oxo-1,2-dihydropyridin-4-yl)-4-methylphenyl)-2-isopropylisonicotinamide;(R)-2-(1,1-difluoroethyl)-N-(4-methyl-3-(1-methyl-6-(3-methylmorpholino)-2-oxo-1,2-dihydropyridin-4-yl)phenyl)isonicotinamide;(R)-2-(1,1-difluoroethyl)-N-(1',2-dimethyl-6'-(3-methylmorpholino)-2'-oxo-1',2'-dihydro-[3,4'-bipyridin]-5-yl)isonicotinamide;(S)-2-(1,1-difluoroethyl)-N-(4-methyl-3-(1-methyl-6-(3-methylmorpholino)-2-oxo-1,2-dihydropyridin-4-yl)phenyl)isonicotinamide;(S)-2-(1,1-difluoroethyl)-N-(1',2-dimethyl-6'-(3-methylmorpholino)-2'-oxo-1',2'-dihydro-[3,4'-bipyridin]-5-yl)isonicotinamide;N-(3-(6-(3-oxa-8-azabicyclo[3.2.1]octan-8-yl)-1-methyl-2-oxo-1,2-dihydropyridin-4-yl)-4-methylphenyl)-2-(1,1-difluoroethyl)isonicotinamide;N-(6'-(3-oxa-8-azabicyclo[3.2.1]octan-8-yl)-2-chloro-1'-methyl-2'-oxo-1',2'-dihydro-[3,4'-bipyridin]-5-yl)-2-(1,1-difluoroethyl)isonicotinamide;(R)-2-(1,1-difluoroethyl)-N-(6'-(2-(hydroxymethyl)morpholino)-1',2-dimethyl-2'-oxo-1',2'-dihydro-[3,4'-bipyridin]-5-yl)isonicotinamide;(S)-2-(1,1-difluoroethyl)-N-(6'-(2-(hydroxymethyl)morpholino)-1',2-dimethyl-2'-oxo-1',2'-dihydro-[3,4'-bipyridin]-5-yl)isonicotinamide;2-(2-cyanopropan-2-yl)-N-(4-methyl-3-(6-morpholinopyrazin-2-yl)phenyl)isonicotinamide;2-(2-cyanopropan-2-yl)-N-(6-methyl-5-(6-morpholinopyrazin-2-yl)pyridin-3-yl)isonicotinamide;2-(1,1-difluoroethyl)-N-(6-methyl-5-(6-morpholinopyrazin-2-yl)pyridin-3-yl)isonicotinamide;2-(2-fluoropropan-2-yl)-N-(6-methyl-5-(6-morpholinopyrazin-2-yl)pyridin-3-yl)isonicotinamide;2-(difluoromethyl)-N-(6-methyl-5-(6-morpholinopyrazin-2-yl)pyridin-3-yl)isonicotinamide;N-(6-methyl-5-(6-morpholinopyrazin-2-yl)pyridin-3-yl)-2-(trifluoromethyl)isonicotinamide;2-(1,1-difluoropropyl)-N-(6-methyl-5-(6-morpholinopyrazin-2-yl)pyridin-3-yl)isonicotinamide;N-(3-(5-ethoxy-6-morpholinopyrazin-2-yl)-4-methylphenyl)-3-(trifluoromethyl)benzamide;N-(5-(5-ethoxy-6-morpholinopyrazin-2-yl)-6-methylpyridin-3-yl)-3-(trifluoromethyl)benzamide;2-(2-cyanopropan-2-yl)-N-(5-(5-methoxy-6-morpholinopyrazin-2-yl)-6-methylpyridin-3-yl)isonicotinamide;2-(1-cyanocyclopropyl)-N-(5-(5-methoxy-6-morpholinopyrazin-2-yl)-6-methylpyridin-3-yl)isonicotinamide;2-(1,1-difluoroethyl)-N-(5-(5-methoxy-6-morpholinopyrazin-2-yl)-6-methylpyridin-3-yl)isonicotinamide;3-((dimethylamino)methyl)-N-(5-(5-methoxy-6-morpholinopyrazin-2-yl)-6-methylpyridin-3-yl)-5-(trifluoromethyl)benzamide;2-(2-fluoropropan-2-yl)-N-(5-(5-methoxy-6-morpholinopyrazin-2-yl)-6-methylpyridin-3-yl)isonicotinamide;2-(2-cyanopropan-2-yl)-N-(5-(5-ethoxy-6-morpholinopyrazin-2-yl)-6-methylpyridin-3-yl)isonicotinamide;N-(5-(5-ethoxy-6-morpholinopyrazin-2-yl)-6-methylpyridin-3-yl)-2-(trifluoromethyl)isonicotinamide;2-(1,1-difluoroethyl)-N-(5-(5-ethoxy-6-morpholinopyrazin-2-yl)-6-methylpyridin-3-yl)isonicotinamide;N-(5-(5-ethoxy-6-morpholinopyrazin-2-yl)-6-methylpyridin-3-yl)-2-(2-fluoropropan-2-yl)isonicotinamide;N-(5-(5-ethoxy-6-morpholinopyrazin-2-yl)-6-methylpyridin-3-yl)-4-(trifluoromethyl)picolinamide;3-((dimethylamino)methyl)-N-(5-(5-ethoxy-6-morpholinopyrazin-2-yl)-6-methylpyridin-3-yl)-5-(trifluoromethyl)benzamide;N-(3-(5-methoxy-6-morpholinopyrazin-2-yl)-4-methylphenyl)-2-(methylsulfonyl)isonicotinamide;N-(3-(6-methoxy-5-morpholinopyridazin-3-yl)-4-methylphenyl)-2-(trifluoromethyl)isonicotinamide;2-(1,1-difluoroethyl)-N-(3-(6-methoxy-5-morpholinopyridazin-3-yl)-4-methylphenyl)isonicotinamide;2-(1,1-difluoropropyl)-N-(3-(6-methoxy-5-morpholinopyridazin-3-yl)-4-methylphenyl)isonicotinamide;2-cyclopropyl-N-(3-(6-methoxy-5-morpholinopyridazin-3-yl)-4-methylphenyl)isonicotinamide;N-(3-(6-methoxy-5-morpholinopyridazin-3-yl)-4-methylphenyl)-6-(trifluoromethyl)pyridazine-4-carboxamide;2-(2-fluoropropan-2-yl)-N-(3-(6-methoxy-5-morpholinopyridazin-3-yl)-4-methylphenyl)isonicotinamide;N-(3-(6-methoxy-5-morpholinopyridazin-3-yl)-4-methylphenyl)-3-(methylsulfonyl)benzamide;N-(3-(6-methoxy-5-morpholinopyridazin-3-yl)-4-methylphenyl)-6-(trifluoromethyl)pyridazine-4-carboxamide;2-(2-fluoropropan-2-yl)-N-(3-(6-methoxy-5-morpholinopyridazin-3-yl)-4-methylphenyl)isonicotinamide;2-(2-hydroxypropan-2-yl)-N-(3-(6-methoxy-5-morpholinopyridazin-3-yl)-4-methylphenyl)isonicotinamide;6-(2-cyanopropan-2-yl)-N-(3-(6-methoxy-5-morpholinopyridazin-3-yl)-4-methylphenyl)pyridazine-4-carboxamide;2-(2-cyanopropan-2-yl)-N-(3-(6-methoxy-5-morpholinopyridazin-3-yl)-4-methylphenyl)isonicotinamide;N-(3-(6-ethoxy-5-morpholinopyridazin-3-yl)-4-methylphenyl)-3-(methylsulfonyl)benzamide;2-(1,1-difluoropropyl)-N-(3-(6-ethoxy-5-morpholinopyridazin-3-yl)-4-methylphenyl)isonicotinamide;3-(difluoromethyl)-N-(3-(6-ethoxy-5-morpholinopyridazin-3-yl)-4-methylphenyl)benzamide;2-(difluoromethyl)-N-(3-(6-ethoxy-5-morpholinopyridazin-3-yl)-4-methylphenyl)isonicotinamide;2-cyclopropyl-N-(3-(6-ethoxy-5-morpholinopyridazin-3-yl)-4-methylphenyl)isonicotinamide;N-(3-(6-ethoxy-5-morpholinopyridazin-3-yl)-4-methylphenyl)-2-(2-fluoropropan-2-yl)isonicotinamide;N-(3-(6-ethoxy-5-morpholinopyridazin-3-yl)-4-methylphenyl)-2-(trifluoromethyl)isonicotinamide;6-(2-cyanopropan-2-yl)-N-(3-(6-ethoxy-5-morpholinopyridazin-3-yl)-4-methylphenyl)pyridazine-4-carboxamide;2-(1-cyanocyclopropyl)-N-(3-(6-ethoxy-5-morpholinopyridazin-3-yl)-4-methylphenyl)isonicotinamide;N-(3-(6-ethoxy-5-morpholinopyridazin-3-yl)-4-methylphenyl)-2-(2-hydroxypropan-2-yl)isonicotinamide;N-(3-(6-ethoxy-5-morpholinopyridazin-3-yl)-4-methylphenyl)-6-(trifluoromethyl)pyridazine-4-carboxamide;(S)-N-(5-(6-ethoxy-5-(3-methylmorpholino)pyridazin-3-yl)-6-methylpyridin-3-yl)-3-(trifluoromethyl)benzamide;(S)-2-(2-cyanopropan-2-yl)-N-(3-(6-ethoxy-5-(3-methylmorpholino)pyridazin-3-yl)-4-methylphenyl)isonicotinamide;2-(2-cyanopropan-2-yl)-N-(3-(6-ethoxy-5-morpholinopyridazin-3-yl)-4-methylphenyl)isonicotinamide;N-(3-(6-ethoxy-5-morpholinopyridazin-3-yl)-4-methylphenyl)-4-((methylamino)methyl)-3-(trifluoromethyl)benzamide;N-(3-(6-ethoxy-5-morpholinopyridazin-3-yl)-4-methylphenyl)-4-((ethylamino)methyl)-3-(trifluoromethyl)benzamide;4-((dimethylamino)methyl)-N-(3-(6-ethoxy-5-morpholinopyridazin-3-yl)-4-methylphenyl)-3-(trifluoromethyl)benzamide;N-(4-methyl-3-(5-morpholino-6-((tetrahydro-2H-pyran-4-yl)oxy)pyridazin-3-yl)phenyl)-6-(trifluoromethyl)pyridazine-4-carboxamide;2-(2-fluoropropan-2-yl)-N-(4-methyl-3-(5-morpholino-6-((tetrahydro-2H-pyran-4-yl)oxy)pyridazin-3-yl)phenyl)isonicotinamide;2-(1,1-difluoroethyl)-N-(4-methyl-3-(5-morpholino-6-((tetrahydro-2H-pyran-4-yl)oxy)pyridazin-3-yl)phenyl)isonicotinamide;N-(4-methyl-3-(5-morpholino-6-((tetrahydro-2H-pyran-4-yl)oxy)pyridazin-3-yl)phenyl)-4-(trifluoromethyl)picolinamide;2-(2-hydroxypropan-2-yl)-N-(4-methyl-3-(5-morpholino-6-((tetrahydro-2H-pyran-4-yl)oxy)pyridazin-3-yl)phenyl)isonicotinamide;N-(4-methyl-3-(5-morpholino-6-((tetrahydro-2H-pyran-4-yl)oxy)pyridazin-3-yl)phenyl)-2-(methylsulfonyl)isonicotinamide;6-(2-cyanopropan-2-yl)-N-(4-methyl-3-(5-morpholino-6-((tetrahydro-2H-pyran-4-yl)oxy)pyridazin-3-yl)phenyl)pyridazine-4-carboxamide;2-(2-cyanopropan-2-yl)-N-(4-methyl-3-(5-morpholino-6-((tetrahydro-2H-pyran-4-yl)oxy)pyridazin-3-yl)phenyl)isonicotinamide;N-(3-(6-(2-hydroxyethoxy)-5-morpholinopyridazin-3-yl)-4-methylphenyl)-2-(trifluoromethyl)isonicotinamide;N-(3-(6-(2-hydroxyethoxy)-5-morpholinopyridazin-3-yl)-4-methylphenyl)-4-(trifluoromethyl)picolinamide;2-(1,1-difluoroethyl)-N-(3-(6-(2-hydroxyethoxy)-5-morpholinopyridazin-3-yl)-4-methylphenyl)isonicotinamide;2-(2-fluoropropan-2-yl)-N-(3-(6-(2-hydroxyethoxy)-5-morpholinopyridazin-3-yl)-4-methylphenyl)isonicotinamide;2-(1,1-difluoropropyl)-N-(3-(6-(2-hydroxyethoxy)-5-morpholinopyridazin-3-yl)-4-methylphenyl)isonicotinamide;N-(3-(6-(2-hydroxyethoxy)-5-morpholinopyridazin-3-yl)-4-methylphenyl)-3-(trifluoromethyl)benzamide;2-(2-cyanopropan-2-yl)-N-(3-(6-(2-hydroxyethoxy)-5-morpholinopyridazin-3-yl)-4-methylphenyl)isonicotinamide;2-(1,1-difluoroethyl)-N-(3-(6-isopropoxy-5-morpholinopyridazin-3-yl)-4-methylphenyl)isonicotinamide;2-(difluoromethyl)-N-(3-(6-isopropoxy-5-morpholinopyridazin-3-yl)-4-methylphenyl)isonicotinamide;N-(3-(6-isopropoxy-5-morpholinopyridazin-3-yl)-4-methylphenyl)-4-(trifluoromethyl)picolinamide;2-(2-fluoropropan-2-yl)-N-(3-(6-isopropoxy-5-morpholinopyridazin-3-yl)-4-methylphenyl)isonicotinamide;2-(2-cyanopropan-2-yl)-N-(3-(6-isopropoxy-5-morpholinopyridazin-3-yl)-4-methylphenyl)isonicotinamide;2-(1,1-difluoroethyl)-N-(3-(6-(2-methoxyethoxy)-5-morpholinopyridazin-3-yl)-4-methylphenyl)isonicotinamide;2-(difluoromethyl)-N-(3-(6-(2-methoxyethoxy)-5-morpholinopyridazin-3-yl)-4-methylphenyl)isonicotinamide;N-(3-(6-(2-methoxyethoxy)-5-morpholinopyridazin-3-yl)-4-methylphenyl)-4-(trifluoromethyl)picolinamide;2-(2-fluoropropan-2-yl)-N-(3-(6-(2-methoxyethoxy)-5-morpholinopyridazin-3-yl)-4-methylphenyl)isonicotinamide;2-(2-cyanopropan-2-yl)-N-(3-(6-(2-methoxyethoxy)-5-morpholinopyridazin-3-yl)-4-methylphenyl)isonicotinamide;N-(4-methyl-3-(6-(methylsulfonyl)-5-morpholinopyridazin-3-yl)phenyl)-3-(trifluoromethyl)benzamide;2-(1,1-difluoroethyl)-N-(5-(6-methoxy-5-morpholinopyridazin-3-yl)-6-methylpyridin-3-yl)isonicotinamide;3-(difluoromethyl)-N-(5-(6-methoxy-5-morpholinopyridazin-3-yl)-6-methylpyridin-3-yl)benzamide;N-(5-(6-methoxy-5-morpholinopyridazin-3-yl)-6-methylpyridin-3-yl)-2-(trifluoromethyl)isonicotinamide;2-cyclopropyl-N-(5-(6-methoxy-5-morpholinopyridazin-3-yl)-6-methylpyridin-3-yl)isonicotinamide;2-(1,1-difluoropropyl)-N-(5-(6-methoxy-5-morpholinopyridazin-3-yl)-6-methylpyridin-3-yl)isonicotinamide;2-(2-fluoropropan-2-yl)-N-(5-(6-methoxy-5-morpholinopyridazin-3-yl)-6-methylpyridin-3-yl)isonicotinamide;N-(5-(6-ethoxy-5-morpholinopyridazin-3-yl)-6-methylpyridin-3-yl)-3-(trifluoromethyl)benzamide;N-(5-(6-ethoxy-5-morpholinopyridazin-3-yl)-6-methylpyridin-3-yl)-2-(2-fluoropropan-2-yl)isonicotinamide;N-(5-(6-ethoxy-5-morpholinopyridazin-3-yl)-6-methylpyridin-3-yl)-4-(trifluoromethyl)picolinamide;2-cyclopropyl-N-(5-(6-ethoxy-5-morpholinopyridazin-3-yl)-6-methylpyridin-3-yl)isonicotinamide;2-(2-cyanopropan-2-yl)-N-(5-(6-ethoxy-5-morpholinopyridazin-3-yl)-6-methylpyridin-3-yl)isonicotinamide;N-(5-(6-ethoxy-5-morpholinopyridazin-3-yl)-6-methylpyridin-3-yl)-6-(trifluoromethyl)pyridazine-4-carboxamide;N-(5-(6-ethoxy-5-morpholinopyridazin-3-yl)-6-methylpyridin-3-yl)-2-(methylsulfonyl)isonicotinamide;N-(5-(6-ethoxy-5-morpholinopyridazin-3-yl)-6-methylpyridin-3-yl)-2-(trifluoromethyl)isonicotinamide;2-(1,1-difluoropropyl)-N-(5-(6-ethoxy-5-morpholinopyridazin-3-yl)-6-methylpyridin-3-yl)isonicotinamide;N-(5-(6-ethoxy-5-morpholinopyridazin-3-yl)-6-methylpyridin-3-yl)-3-(methylsulfonyl)benzamide;3-(difluoromethyl)-N-(5-(6-ethoxy-5-morpholinopyridazin-3-yl)-6-methylpyridin-3-yl)benzamide;2-(1,1-difluoroethyl)-N-(5-(6-ethoxy-5-morpholinopyridazin-3-yl)-6-methylpyridin-3-yl)isonicotinamide;N-(5-(6-ethoxy-5-morpholinopyridazin-3-yl)-6-methylpyridin-3-yl)-2-isopropylisonicotinamide;(R)-N-(5-(6-ethoxy-5-(3-methylmorpholino)pyridazin-3-yl)-6-methylpyridin-3-yl)-3-(trifluoromethyl)benzamide;(R)-2-(2-cyanopropan-2-yl)-N-(5-(6-ethoxy-5-(3-methylmorpholino)pyridazin-3-yl)-6-methylpyridin-3-yl)isonicotinamide;(R)-2-(2-cyanopropan-2-yl)-N-(3-(6-ethoxy-5-(3-methylmorpholino)pyridazin-3-yl)-4-methylphenyl)isonicotinamide;N-(5-(5-(2-(1H-imidazol-2-yl)morpholino)-6-ethoxypyridazin-3-yl)-6-methylpyridin-3-yl)-3-(trifluoromethyl)benzamide;N-(5-(6-ethoxy-5-morpholinopyridazin-3-yl)-6-methylpyridin-3-yl)-4-((methylamino)methyl)-3-(trifluoromethyl)benzamide;N-(5-(6-ethoxy-5-morpholinopyridazin-3-yl)-6-methylpyridin-3-yl)-4-(hydroxymethyl)-3-(trifluoromethyl)benzamide;2-(1,1-difluoroethyl)-N-(6-methyl-5-(5-morpholino-6-((tetrahydro-2H-pyran-4-yl)oxy)pyridazin-3-yl)pyridin-3-yl)isonicotinamide;N-(6-methyl-5-(5-morpholino-6-((tetrahydro-2H-pyran-4-yl)oxy)pyridazin-3-yl)pyridin-3-yl)-4-(trifluoromethyl)picolinamide;2-(2-fluoropropan-2-yl)-N-(6-methyl-5-(5-morpholino-6-((tetrahydro-2H-pyran-4-yl)oxy)pyridazin-3-yl)pyridin-3-yl)isonicotinamide;N-(6-methyl-5-(5-morpholino-6-((tetrahydro-2H-pyran-4-yl)oxy)pyridazin-3-yl)pyridin-3-yl)-6-(trifluoromethyl)pyridazine-4-carboxamide;N-(6-methyl-5-(5-morpholino-6-((tetrahydro-2H-pyran-4-yl)oxy)pyridazin-3-yl)pyridin-3-yl)-2-(methylsulfonyl)isonicotinamide;2-(2-cyanopropan-2-yl)-N-(6-methyl-5-(5-morpholino-6-((tetrahydro-2H-pyran-4-yl)oxy)pyridazin-3-yl)pyridin-3-yl)isonicotinamide;2-(2-hydroxypropan-2-yl)-N-(6-methyl-5-(5-morpholino-6-((tetrahydro-2H-pyran-4-yl)oxy)pyridazin-3-yl)pyridin-3-yl)isonicotinamide;6-(2-cyanopropan-2-yl)-N-(6-methyl-5-(5-morpholino-6-((tetrahydro-2H-pyran-4-yl)oxy)pyridazin-3-yl)pyridin-3-yl)pyridazine-4-carboxamide;N-(6-methyl-5-(5-morpholino-6-((tetrahydro-2H-pyran-4-yl)oxy)pyridazin-3-yl)pyridin-3-yl)-3-(trifluoromethyl)benzamide;N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridazin-3-yl)phenyl)-3-(2-(methylsulfonyl)propan-2-yl)benzamide;2-(2-hydroxypropan-2-yl)-N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridazin-3-yl)phenyl)isonicotinamide;N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridazin-3-yl)phenyl)-3-(1,3,4-oxadiazol-2-yl)benzamide;2-(2-cyanopropan-2-yl)-N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridazin-3-yl)phenyl)isonicotinamide;1-ethyl-N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridazin-3-yl)phenyl)-6-oxo-5-(trifluoromethyl)-1,6-dihydropyridine-3-carboxamide;2-ethyl-N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridazin-3-yl)phenyl)isonicotinamide;2-(1,1-difluoropropyl)-N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridazin-3-yl)phenyl)isonicotinamide;6-cyclopropyl-N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridazin-3-yl)phenyl)pyridazine-4-carboxamide;2-(2-cyanopropan-2-yl)-N-(6-methyl-5-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridazin-3-yl)pyridin-3-yl)isonicotinamide;6-(2-cyanopropan-2-yl)-N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridazin-3-yl)phenyl)pyridazine-4-carboxamide;N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridazin-3-yl)phenyl)-6-(trifluoromethyl)pyridazine-4-carboxamide;N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridazin-3-yl)phenyl)-2-(oxetan-3-yl)isonicotinamide;3-(4-ethylpiperazin-1-yl)-N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridazin-3-yl)phenyl)-5-(trifluoromethyl)benzamide;2-(difluoromethyl)-N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridazin-3-yl)phenyl)isonicotinamide;N-(6-methyl-5-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridazin-3-yl)pyridin-3-yl)-3-(trifluoromethyl)benzamide;3-(cyanomethyl)-N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridazin-3-yl)phenyl)benzamide;4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridazin-3-yl)-N-(3-(trifluoromethyl)phenyl)benzamide;2-(2-fluoropropan-2-yl)-N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridazin-3-yl)phenyl)isonicotinamide;3-(difluoromethyl)-N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridazin-3-yl)phenyl)benzamide;2-cyclopropyl-N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridazin-3-yl)phenyl)isonicotinamide;2-(1,1-difluoroethyl)-N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridazin-3-yl)phenyl)isonicotinamide;N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridazin-3-yl)phenyl)-2-(trifluoromethyl)isonicotinamide;2-(1-cyanocyclopropyl)-N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridazin-3-yl)phenyl)isonicotinamide;2-isopropyl-N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridazin-3-yl)phenyl)isonicotinamide;3-((dimethylamino)methyl)-N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridazin-3-yl)phenyl)-5-(trifluoromethyl)benzamide;(S)-2-(2-fluoropropan-2-yl)-N-(4-methyl-3-(1-methyl-5-(3-methylmorpholino)-6-oxo-1,6-dihydropyridazin-3-yl)phenyl)isonicotinamide;(S)-2-(2-cyanopropan-2-yl)-N-(4-methyl-3-(1-methyl-5-(3-methylmorpholino)-6-oxo-1,6-dihydropyridazin-3-yl)phenyl)isonicotinamide;(S)-2-(1,1-difluoroethyl)-N-(4-methyl-3-(1-methyl-5-(3-methylmorpholino)-6-oxo-1,6-dihydropyridazin-3-yl)phenyl)isonicotinamide;N-(3-(5-(2,2-dimethylmorpholino)-1-methyl-6-oxo-1,6-dihydropyridazin-3-yl)-4-methylphenyl)-2-(2-fluoropropan-2-yl)isonicotinamide;2-(2-cyanopropan-2-yl)-N-(3-(5-(2,2-dimethylmorpholino)-1-methyl-6-oxo-1,6-dihydropyridazin-3-yl)-4-methylphenyl)isonicotinamide;2-(1,1-difluoroethyl)-N-(3-(5-(2,2-dimethylmorpholino)-1-methyl-6-oxo-1,6-dihydropyridazin-3-yl)-4-methylphenyl)isonicotinamide;N-(3-(5-(3-oxa-8-azabicyclo[3.2.1]octan-8-yl)-1-methyl-6-oxo-1,6-dihydropyridazin-3-yl)-4-methylphenyl)-2-(2-fluoropropan-2-yl)isonicotinamide;N-(3-(5-(3-oxa-8-azabicyclo[3.2.1]octan-8-yl)-1-methyl-6-oxo-1,6-dihydropyridazin-3-yl)-4-methylphenyl)-2-(2-cyanopropan-2-yl)isonicotinamide;N-(3-(5-(3-oxa-8-azabicyclo[3.2.1]octan-8-yl)-1-methyl-6-oxo-1,6-dihydropyridazin-3-yl)-4-methylphenyl)-2-(1,1-difluoroethyl)isonicotinamide;2-(2-cyanopropan-2-yl)-N-(3-(5-(3,3-dimethylmorpholino)-1-methyl-6-oxo-1,6-dihydropyridazin-3-yl)-4-methylphenyl)isonicotinamide;(R)-2-(2-cyanopropan-2-yl)-N-(4-methyl-3-(1-methyl-5-(3-methylmorpholino)-6-oxo-1,6-dihydropyridazin-3-yl)phenyl)isonicotinamide;(R)-2-(2-fluoropropan-2-yl)-N-(4-methyl-3-(1-methyl-5-(3-methylmorpholino)-6-oxo-1,6-dihydropyridazin-3-yl)phenyl)isonicotinamide;(R)-2-(1,1-difluoroethyl)-N-(4-methyl-3-(1-methyl-5-(3-methylmorpholino)-6-oxo-1,6-dihydropyridazin-3-yl)phenyl)isonicotinamide;2-(2-cyanopropan-2-yl)-N-(4-methyl-3-(1-methyl-6-oxo-5-(tetrahydro-2H-pyran-4-yl)-1,6-dihydropyridazin-3-yl)phenyl)isonicotinamide;2-(2-fluoropropan-2-yl)-N-(4-methyl-3-(1-methyl-6-oxo-5-(tetrahydro-2H-pyran-4-yl)-1,6-dihydropyridazin-3-yl)phenyl)isonicotinamide;2-(2-fluoropropan-2-yl)-N-(6-methyl-5-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridazin-3-yl)pyridin-3-yl)isonicotinamide;2-(1,1-difluoroethyl)-N-(6-methyl-5-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridazin-3-yl)pyridin-3-yl)isonicotinamide;2-(1,1-difluoropropyl)-N-(6-methyl-5-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridazin-3-yl)pyridin-3-yl)isonicotinamide;2-(difluoromethyl)-N-(6-methyl-5-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridazin-3-yl)pyridin-3-yl)isonicotinamide;3-(difluoromethyl)-N-(6-methyl-5-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridazin-3-yl)pyridin-3-yl)benzamide;2-cyclopropyl-N-(6-methyl-5-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridazin-3-yl)pyridin-3-yl)isonicotinamide;2-(1-cyanocyclopropyl)-N-(6-methyl-5-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridazin-3-yl)pyridin-3-yl)isonicotinamide;N-(5-(4-cyano-3-morpholinophenyl)-6-methylpyridin-3-yl)-3-(trifluoromethyl)benzamide;N-(5-(4-cyano-3-morpholinophenyl)-6-methylpyridin-3-yl)-3-((dimethylamino)methyl)-5-(trifluoromethyl)benzamide;N-(5-(4-cyano-3-morpholinophenyl)-6-methylpyridin-3-yl)-2-isopropylisonicotinamide;N-(6-methyl-5-(4-(methylsulfonyl)-3-morpholinophenyl)pyridin-3-yl)-3-(trifluoromethyl)benzamide;N-(3-(4-(3-oxa-8-azabicyclo[3.2.1]octan-8-yl)-1-methyl-6-oxo-1,6-dihydropyridin-2-yl)-4-methylphenyl)-2-(1,1-difluoroethyl)isonicotinamide;N-(3-(2-(ethylamino)-6-morpholinopyrimidin-4-yl)-4-methylphenyl)-2-(trifluoromethyl)isonicotinamide;N-(3-(2-(ethylamino)-6-morpholinopyrimidin-4-yl)-4-methylphenyl)benzamide;2-(tert-butyl)-N-(3-(2-(ethylamino)-6-morpholinopyrimidin-4-yl)-4-methylphenyl)isonicotinamide;2-(1,1-difluoroethyl)-N-(3-(2-(ethylamino)-6-morpholinopyrimidin-4-yl)-4-methylphenyl)isonicotinamide;3-(difluoromethyl)-N-(3-(2-(ethylamino)-6-morpholinopyrimidin-4-yl)-4-methylphenyl)benzamide;N-(3-(2-(ethylamino)-6-morpholinopyrimidin-4-yl)-4-methylphenyl)-3-(1,3,4-oxadiazol-2-yl)benzamide;N-(3-(2-(ethylamino)-6-morpholinopyrimidin-4-yl)-4-methylphenyl)-2-isopropylisonicotinamide;3-(1,1-difluoroethyl)-N-(3-(2-(ethylamino)-6-morpholinopyrimidin-4-yl)-4-methylphenyl)benzamide;N-(3-(2-(ethylamino)-6-morpholinopyrimidin-4-yl)-4-methylphenyl)-2-(methylsulfonyl)isonicotinamide;1-ethyl-N-(3-(2-(ethylamino)-6-morpholinopyrimidin-4-yl)-4-methylphenyl)-6-oxo-5-(trifluoromethyl)-1,6-dihydropyridine-3-carboxamide;N-(3-(2-(ethylamino)-6-morpholinopyrimidin-4-yl)-4-methylphenyl)-3-(methylsulfonyl)benzamide;N-(3-(2-(ethylamino)-6-morpholinopyrimidin-4-yl)-4-methylphenyl)-2-(2-hydroxypropan-2-yl)isonicotinamide;2-(1, 1-difluoropropyl)-N-(3-(2-(ethylamino)-6-morpholinopyrimidin-4-yl)-4-methylphenyl) isonicotinamide;N-(3-(2-(ethylamino)-6-morpholinopyrimidin-4-yl)-4-methylphenyl)-2-(oxetan-3-yl)isonicotinamide;2-(1-cyanocyclopropyl)-N-(3-(2-(ethylamino)-6-morpholinopyrimidin-4-yl)-4-methylphenyl)isonicotinamide;6-(2-cyanopropan-2-yl)-N-(3-(2-(ethylamino)-6-morpholinopyrimidin-4-yl)-4-methylphenyl)pyridazine-4-carboxamide;3-(2-(ethylamino)-6-morpholinopyrimidin-4-yl)-4-methyl-N-(3-(trifluoromethyl) phenyl) benzamide;(R)-2-(2-cyanopropan-2-yl)-N-(3-(2-(ethylamino)-6-(3-methylmorpholino) pyrimidin-4-yl)-4-methylphenyl) isonicotinamide;(R)-N-(3-(2-(ethylamino)-6-(3-methylmorpholino) pyrimidin-4-yl)-4-methylphenyl)-2-(2-hydroxypropan-2-yl) isonicotinamide;(S)-N-(3-(2-(ethylamino)-6-(3-methylmorpholino) pyrimidin-4-yl)-4-methylphenyl)-2-(2-hydroxypropan-2-yl) isonicotinamide;(S)-2-(2-cyanopropan-2-yl)-N-(3-(2-(ethylamino)-6-(3-methylmorpholino) pyrimidin-4-yl)-4-methylphenyl) isonicotinamide;N-(5-(2-(ethylamino)-6-morpholinopyrimidin-4-yl)-6-methylpyridin-3-yl)-3-(trifluoromethyl) benzamide;2-(2-cyanopropan-2-yl)-N-(3-(2-(ethylamino)-6-morpholinopyrimidin-4-yl)-4-methylphenyl) isonicotinamide;2-(2-cyanopropan-2-yl)-N-(5-(2-(ethylamino)-6-morpholinopyrimidin-4-yl)-6-methylpyridin-3-yl) isonicotinamide;N-(3-(2-(ethylamino)-6-morpholinopyrimidin-4-yl)-4-methylphenyl)-2-(trifluoromethyl) isonicotinamide;1-ethyl-N-(5-(2-(ethylamino)-6-morpholinopyrimidin-4-yl)-6-methylpyridin-3-yl)-6-oxo-5-(trifluoromethyl)-1,6-dihydropyridine-3-carboxamide;2-(difluoromethyl)-N-(5-(2-(ethylamino)-6-morpholinopyrimidin-4-yl)-6-methylpyridin-3-yl) isonicotinamide;3-(difluoromethyl)-N-(5-(2-(ethylamino)-6-morpholinopyrimidin-4-yl)-6-methylpyridin-3-yl) benzamide;N-(5-(2-(ethylamino)-6-morpholinopyrimidin-4-yl)-6-methylpyridin-3-yl)-2-(2-hydroxypropan-2-yl) isonicotinamide;2-(tert-butyl)-N-(5-(2-(ethylamino)-6-morpholinopyrimidin-4-yl)-6-methylpyridin-3-yl) isonicotinamide;2-(1, 1-difluoroethyl)-N-(5-(2-(ethylamino)-6-morpholinopyrimidin-4-yl)-6-methylpyridin-3-yl) isonicotinamide;3-(2-cyanopropan-2-yl)-N-(5-(2-(ethylamino)-6-morpholinopyrimidin-4-yl)-6-methylpyridin-3-yl) benzamide;6-cyclopropyl-N-(5-(2-(ethylamino)-6-morpholinopyrimidin-4-yl)-6-methylpyridin-3-yl) pyridazine-4-carboxamide;2-(1-cyanocyclopropyl)-N-(5-(2-(ethylamino)-6-morpholinopyrimidin-4-yl)-6-methylpyridin-3-yl) isonicotinamide;N-(5-(2-(ethylamino)-6-morpholinopyrimidin-4-yl)-6-methylpyridin-3-yl)-2-(oxetan-3-yl) isonicotinamide;6-(2-cyanopropan-2-yl)-N-(5-(2-(ethylamino)-6-morpholinopyrimidin-4-yl)-6-methylpyridin-3-yl) pyridazine-4-carboxamide;3-(2-(ethylamino)-6-morpholinopyrimidin-4-yl)-4-methyl-N-phenylbenzamide;N-(3-(2-cyanopropan-2-yl) phenyl)-3-(2-(ethylamino)-6-morpholinopyrimidin-4-yl)-4-methylbenzamide;N-(3-(difluoromethyl) phenyl)-3-(2-(ethylamino)-6-morpholinopyrimidin-4-yl)-4-methylbenzamide;2-(2-cyanopropan-2-yl)-N-(3-(2-((2-hydroxyethyl) amino)-6-morpholinopyrimidin-4-yl)-4-methylphenyl) isonicotinamide;N-(5-(2-((2-hydroxyethyl) amino)-6-morpholinopyrimidin-4-yl)-6-methylpyridin-3-yl)-3-(trifluoromethyl) benzamide;2-(2-cyanopropan-2-yl)-N-(5-(2-((2-hydroxyethyl) amino)-6-morpholinopyrimidin-4-yl)-6-methylpyridin-3-yl) isonicotinamide;6-(2-cyanopropan-2-yl)-N-(3-(2-((2-hydroxyethyl) amino)-6-morpholinopyrimidin-4-yl)-4-methylphenyl) pyridazine-4-carboxamide;(S)-2-(2-cyanopropan-2-yl)-N-(5-(2-((2-hydroxypropyl) amino)-6-morpholinopyrimidin-4-yl)-6-methylpyridin-3-yl) isonicotinamide;(S)-2-(2-cyanopropan-2-yl)-N-(3-(2-((2-hydroxypropyl) amino)-6-morpholinopyrimidin-4-yl)-4-methylphenyl) isonicotinamide;(S)-N-(5-(2-((2-hydroxypropyl) amino)-6-morpholinopyrimidin-4-yl)-6-methylpyridin-3-yl)-3-(trifluoromethyl) benzamide;(R)-2-(2-cyanopropan-2-yl)-N-(3-(2-((2-hydroxypropyl) amino)-6-morpholinopyrimidin-4-yl)-4-methylphenyl) isonicotinamide;(R)-2-(2-cyanopropan-2-yl)-N-(5-(2-((2-hydroxypropyl) amino)-6-morpholinopyrimidin-4-yl)-6-methylpyridin-3-yl)isonicotinamide;(R)-N-(5-(2-((2-hydroxypropyl) amino)-6-morpholinopyrimidin-4-yl)-6-methylpyridin-3-yl)-3-(trifluoromethyl) benzamide;(S)-2-(2-cyanopropan-2-yl)-N-(5-(2-((1-hydroxypropan-2-yl) amino)-6-morpholinopyrimidin-4-yl)-6-methylpyridin-3-yl) isonicotinamide;(S)-N-(5-(2-((1-hydroxypropan-2-yl) amino)-6-morpholinopyrimidin-4-yl)-6-methylpyridin-3-yl)-3-(trifluoromethyl) benzamide;(S)-2-(2-cyanopropan-2-yl)-N-(3-(2-((1-hydroxypropan-2-yl) amino)-6-morpholinopyrimidin-4-yl)-4-methylphenyl) isonicotinamide;(R)-2-(2-cyanopropan-2-yl)-N-(5-(2-((1-hydroxypropan-2-yl) amino)-6-morpholinopyrimidin-4-yl)-6-methylpyridin-3-yl) isonicotinamide;(R)-N-(5-(2-((1-hydroxypropan-2-yl) amino)-6-morpholinopyrimidin-4-yl)-6-methylpyridin-3-yl)-3-(trifluoromethyl) benzamide;(R)-2-(2-cyanopropan-2-yl)-N-(3-(2-((1-hydroxypropan-2-yl) amino)-6-morpholinopyrimidin-4-yl)-4-methylphenyl) isonicotinamide;2-(2-cyanopropan-2-yl)-N-(5-(2-((1-hydroxy-2-methylpropan-2-yl) amino)-6-morpholinopyrimidin-4-yl)-6-methylpyridin-3-yl) isonicotinamide;2-(2-cyanopropan-2-yl)-N-(3-(2-((1-hydroxy-2-methylpropan-2-yl) amino)-6-morpholinopyrimidin-4-yl)-4-methylphenyl) isonicotinamide;N-(5-(2-((1-hydroxy-2-methylpropan-2-yl)amino)-6-morpholinopyrimidin-4-yl)-6-methylpyridin-3-yl)-3-(trifluoromethyl)benzamide;2-(2-cyanopropan-2-yl)-N-(5-(2-((4-(hydroxymethyl) tetrahydro-2H-pyran-4-yl) amino)-6-morpholinopyrimidin-4-yl)-6-methylpyridin-3-yl) isonicotinamide;2-(2-cyanopropan-2-yl)-N-(3-(2-((4-(hydroxymethyl) tetrahydro-2H-pyran-4-yl) amino)-6-morpholinopyrimidin-4-yl)-4-methylphenyl) isonicotinamide;2-(2-cyanopropan-2-yl)-N-(3-(2-(dimethylamino)-6-morpholinopyrimidin-4-yl)-4-methylphenyl)isonicotinamide;2-(1,1-difluoroethyl)-N-(3-(2-(dimethylamino)-6-morpholinopyrimidin-4-yl)-4-methylphenyl)isonicotinamide;N-(3-(2-(dimethylamino)-6-morpholinopyrimidin-4-yl)-4-methylphenyl)-2-isopropylisonicotinamideN-(3-(2-(dimethylamino)-6-morpholinopyrimidin-4-yl)-4-methylphenyl)-2-(trifluoromethyl)isonicotinamide;N-(3-(2-(dimethylamino)-6-morpholinopyrimidin-4-yl)-4-methylphenyl)-2-(methylsulfonyl)isonicotinamide;N-(5-(2-(dimethylamino)-6-morpholinopyrimidin-4-yl)-6-methylpyridin-3-yl)-3-(trifluoromethyl)benzamide;2-(1, 1-difluoroethyl)-N-(3-(2-ethoxy-6-morpholinopyrimidin-4-yl)-4-methylphenyl) isonicotinamide;N-(3-(2-ethoxy-6-morpholinopyrimidin-4-yl)-4-methylphenyl)-2-(trifluoromethyl) isonicotinamide;N-(3-(2-ethoxy-6-morpholinopyrimidin-4-yl)-4-methylphenyl)-2-isopropylisonicotinamide;2-(2-cyanopropan-2-yl)-N-(3-(2-ethoxy-6-morpholinopyrimidin-4-yl)-4-methylphenyl) isonicotinamide;N-(3-(2-(3-hydroxyazetidin-1-yl)-6-morpholinopyrimidin-4-yl)-4-methylphenyl)-3-(trifluoromethyl) benzamide;3-(2-(3-hydroxyazetidin-1-yl)-6-morpholinopyrimidin-4-yl)-4-methyl-N-(3-(trifluoromethyl) phenyl) benzamide;2-(2-cyanopropan-2-yl)-N-(5-(2-(3-hydroxyazetidin-1-yl)-6-morpholinopyrimidin-4-yl)-6-methylpyridin-3-yl) isonicotinamide;N-(5-(2-(3-hydroxyazetidin-1-yl)-6-morpholinopyrimidin-4-yl)-6-methylpyridin-3-yl)-3-(trifluoromethyl)benzamide;N-(5-(2-(3-hydroxyazetidin-1-yl)-6-morpholinopyrimidin-4-yl)-6-methylpyridin-3-yl)-3-(trifluoromethyl) benzamide;3-(difluoromethyl)-N-(5-(2-(3-hydroxyazetidin-1-yl)-6-morpholinopyrimidin-4-yl)-6-methylpyridin-3-yl) benzamide;N-(3-(2-(3-hydroxyazetidin-1-yl)-6-morpholinopyrimidin-4-yl)-4-methylphenyl)-2-isopropylisonicotinamide;2-(1, 1-difluoroethyl)-N-(3-(2-(3-hydroxyazetidin-1-yl)-6-morpholinopyrimidin-4-yl)-4-methylphenyl) isonicotinamide;N-(3-(2-(3-hydroxyazetidin-1-yl)-6-morpholinopyrimidin-4-yl)-4-methylphenyl)-2-(trifluoromethyl) isonicotinamide;N-(5-(2-(4-ethylpiperazin-1-yl)-6-morpholinopyrimidin-4-yl)-6-methylpyridin-3-yl)-3-(trifluoromethyl) benzamide;N-(6-methyl-5-(6-morpholino-2-(piperazin-1-yl) pyrimidin-4-yl) pyridin-3-yl)-3-(trifluoromethyl) benzamide;N-(5-(2-(azetidin-3-yloxy)-6-morpholinopyrimidin-4-yl)-6-methylpyridin-3-yl)-3-(trifluoromethyl) benzamide;N-(3-(2-(azetidin-3-yloxy)-6-morpholinopyrimidin-4-yl)-4-methylphenyl)-2-(2-cyanopropan-2-yl) isonicotinamide;N-(3-(2-(azetidin-3-yloxy)-6-morpholinopyrimidin-4-yl)-4-methylphenyl)-2-isopropylisonicotinamide;N-(3-(2-(azetidin-3-yloxy)-6-morpholinopyrimidin-4-yl)-4-methylphenyl)-2-(1,1-difluoroethyl)isonicotinamide;N-(3-(2-(azetidin-3-yloxy)-6-morpholinopyrimidin-4-yl)-4-methylphenyl)-2-(trifluoromethyl) isonicotinamide;(S)-N-(6-methyl-5-(2-(4-methyl-2-oxooxazolidin-3-yl)-6-morpholinopyrimidin-4-yl) pyridin-3-yl)-3-(trifluoromethyl) benzamide;(S)-2-(2-cyanopropan-2-yl)-N-(4-methyl-3-(2-(4-methyl-2-oxooxazolidin-3-yl)-6-morpholinopyrimidin-4-yl) phenyl) isonicotinamide;(S)-N-(4-methyl-3-(2-(4-methyl-2-oxooxazolidin-3-yl)-6-morpholinopyrimidin-4-yl) phenyl)-3-(trifluoromethyl) benzamide;(S)-2-(2-cyanopropan-2-yl)-N-(6-methyl-5-(2-(4-methyl-2-oxooxazolidin-3-yl)-6-morpholinopyrimidin-4-yl) pyridin-3-yl) isonicotinamide;(S)-2-(difluoromethyl)-N-(4-methyl-3-(2-(4-methyl-2-oxooxazolidin-3-yl)-6-morpholinopyrimidin-4-yl)phenyl)isonicotinamide;N-(3-(2-(azetidin-3-ylamino)-6-morpholinopyrimidin-4-yl)-4-methylphenyl)-2-(2-cyanopropan-2-yl) isonicotinamide;N-(5-(2-(azetidin-3-ylamino)-6-morpholinopyrimidin-4-yl)-6-methylpyridin-3-yl)-3-(trifluoromethyl) benzamide;N-(5-(2-(2-hydroxypropan-2-yl)-6-morpholinopyrimidin-4-yl)-6-methylpyridin-3-yl)-3-(trifluoromethyl)benzamide;2-(2-cyanopropan-2-yl)-N-(3-(2-(2-hydroxypropan-2-yl)-6-morpholinopyrimidin-4-yl)-4-methylphenyl)isonicotinamide;2-(2-fluoropropan-2-yl)-N-(6-methyl-5-(7-morpholinopyrazolo[1,5-a]pyrimidin-5-yl)pyridin-3-yl)isonicotinamide;2-(2-cyanopropan-2-yl)-N-(6-methyl-5-(7-morpholinopyrazolo [1,5-a]pyrimidin-5-yl)pyridin-3-yl)isonicotinamide;2-(2-cyanopropan-2-yl)-N-(4-methyl-3-(7-morpholinopyrazolo[1,5-a]pyrimidin-5-yl)phenyl)isonicotinamide;N-(6-methyl-5-(7-morpholinopyrazolo[1,5-a]pyrimidin-5-yl)pyridin-3-yl)-3-(trifluoromethyl)benzamide;2-(2-hydroxypropan-2-yl)-N-(4-methyl-3-(7-morpholinopyrazolo[1,5-a]pyrimidin-5-yl)phenyl)isonicotinamide;6-(2-cyanopropan-2-yl)-N-(4-methyl-3-(7-morpholinopyrazolo[1,5-a]pyrimidin-5-yl)phenyl)pyridazine-4-carboxamide;2-(1-cyanocyclopropyl)-N-(4-methyl-3-(7-morpholinopyrazolo[1,5-a]pyrimidin-5-yl)phenyl)isonicotinamide;2-(2-hydroxypropan-2-yl)-N-(6-methyl-5-(7-morpholinopyrazolo[1,5-a]pyrimidin-5-yl)pyridin-3-yl)isonicotinamide;N-(6-methyl-5-(7-morpholinopyrazolo[1,5-a]pyrimidin-5-yl)pyridin-3-yl)-2-(trifluoromethyl)isonicotinamide;2-(1,1-difluoroethyl)-N-(6-methyl-5-(7-morpholinopyrazolo[1,5-a]pyrimidin-5-yl)pyridin-3-yl)isonicotinamide;2-(1,1-difluoropropyl)-N-(6-methyl-5-(7-morpholinopyrazolo[1,5-a]pyrimidin-5-yl)pyridin-3-yl)isonicotinamide;N-(6-methyl-5-(7-morpholinopyrazolo[1,5-a]pyrimidin-5-yl)pyridin-3-yl)-6-(trifluoromethyl)pyridazine-4-carboxamide;2-(1-cyanocyclopropyl)-N-(6-methyl-5-(7-morpholinopyrazolo[1,5-a]pyrimidin-5-yl)pyridin-3-yl)isonicotinamide;2-(difluoromethyl)-N-(6-methyl-5-(7-morpholinopyrazolo[1,5-a]pyrimidin-5-yl)pyridin-3-yl)isonicotinamide;3-(difluoromethyl)-N-(6-methyl-5-(7-morpholinopyrazolo[1,5-a]pyrimidin-5-yl)pyridin-3-yl)benzamide;2-(difluoromethyl)-N-(4-methyl-3-(7-morpholinopyrazolo[1,5-a]pyrimidin-5-yl)phenyl)isonicotinamide;N-(4-methyl-3-(7-morpholinopyrazolo[1,5-a]pyrimidin-5-yl)phenyl)-2-(methylsulfonyl)isonicotinamide;N-(6-methyl-5-(7-morpholinopyrazolo[1,5-a]pyrimidin-5-yl)pyridin-3-yl)-2-(methylsulfonyl)isonicotinamide;6-(2-cyanopropan-2-yl)-N-(6-methyl-5-(7-morpholinopyrazolo[1,5-a]pyrimidin-5-yl)pyridin-3-yl)pyridazine-4-carboxamide;N-(6-methyl-5-(7-morpholinopyrazolo[1,5-a]pyrimidin-5-yl)pyridin-3-yl)-4-(trifluoromethyl)picolinamide;(R)-N-(4-methyl-3-(4-(3-methylmorpholino)-1H-imidazo[4,5-c]pyridin-6-yl)phenyl)-3-(trifluoromethyl)benzamide;N-(4-methyl-3-(4-morpholino-1 H-imidazo[4,5-c]pyridin-6-yl)phenyl)-3-(trifluoromethyl)benzamide;N-(4-methyl-3-(4-morpholino-1 H-imidazo[4,5-c]pyridin-6-yl)phenyl)-3-(methylsulfonyl)benzamide;1-ethyl-3-methyl-N-(4-methyl-3-(4-morpholino-1H-imidazo[4,5-c]pyridin-6-yl)phenyl)-1H-pyrazole-4-carboxamide;1,3-dimethyl-N-(4-methyl-3-(4-morpholino-1H-imidazo[4,5-c]pyridin-6-yl)phenyl)-1H-pyrazole-4-carboxamide;1-isopropyl-3-methyl-N-(4-methyl-3-(4-morpholino-1H-imidazo[4,5-c]pyridin-6-yl)phenyl)-1H-pyrazole-4-carboxamide;1,3-dimethyl-N-(4-methyl-3-(4-morpholino-1H-imidazo[4,5-c]pyridin-6-yl)phenyl)-1H-pyrazole-5-carboxamide;3-cyclopropyl-1-methyl-N-(4-methyl-3-(4-morpholino-1H-imidazo[4,5-c]pyridin-6-yl)phenyl)-1H-pyrazole-5-carboxamide;5-cyclopropyl-N-(4-methyl-3-(4-morpholino-1H-imidazo[4,5-c]pyridin-6-yl)phenyl)isoxazole-3-carboxamide;N-(4-methyl-3-(4-morpholino-1H-imidazo[4,5-c]pyridin-6-yl)phenyl)-2-(methylsulfonyl)isonicotinamide;N-(4-methyl-3-(4-morpholino-1H-imidazo[4,5-c]pyridin-6-yl)phenyl)-3-(1,3,4-oxadiazol-2-yl)benzamide;2-(2-hydroxypropan-2-yl)-N-(4-methyl-3-(4-morpholino-1 H-imidazo[4,5-c]pyridin-6-yl)phenyl)isonicotinamide;N-(4-methyl-3-(8-morpholinoimidazo[1,2-a]pyrazin-6-yl)phenyl)-3-(trifluoromethyl)benzamide;(R)-N-(4-methyl-3-(8-(3-methylmorpholino)imidazo[1,2-a]pyrazin-6-yl)phenyl)-3-(trifluoromethyl)benzamide;N-(4-methyl-3-(5-morpholino-2-oxo-2,3-dihydrobenzo[d]oxazol-7-yl)phenyl)-3-(trifluoromethyl)benzamide;N-(4-methyl-3-(7-morpholino-2-oxo-2,3-dihydrobenzo[d]oxazol-5-yl)phenyl)-3-(trifluoromethyl)benzamide;N-(4-methyl-3-(5-morpholinoimidazo[1,2-c]pyrimidin-7-yl)phenyl)-3-(trifluoromethyl)benzamid;N-(4-methyl-3-(4-morpholinothieno[3,2-d]pyrimidin-2-yl)phenyl)-3-(trifluoromethyl)benzamide;N-(4-methyl-3-(4-morpholino-5H-pyrrolo[3,2-d]pyrimidin-2-yl)phenyl)-3-(trifluoromethyl)benzamide;N-(4-methyl-3-(8-morpholinoimidazo[1,2-b]pyridazin-6-yl)phenyl)-3-(trifluoromethyl)benzamide;N-(5-(8-(2-(1H-imidazol-2-yl)morpholino)imidazo[1,2-b]pyridazin-6-yl)-6-methylpyridin-3-yl)-3-(trifluoromethyl)benzamide;N-(4-methyl-3-(4-morpholinopyrido[2,3-d]pyrimidin-2-yl)phenyl)-3-(trifluoromethyl)benzamide;N-(4-methyl-3-(4-morpholino-5,6,7,8-tetrahydropyrido[3,4-d]pyrimidin-2-yl)phenyl)-3-(trifluoromethyl)benzamide;N-(4-methyl-3-(4-morpholino-5,6,7,8-tetrahydropyrido[4,3-d]pyrimidin-2-yl)phenyl)-3-(trifluoromethyl)benzamide;N-(4-methyl-3-(4-morpholino-6,7-dihydro-5H-pyrrolo[3,4-d]pyrimidin-2-yl)phenyl)-3-(trifluoromethyl)benzamide;N-(4-methyl-3-(1-methyl-7-morpholino-1H-pyrazolo[4,3-d]pyrimidin-5-yl)phenyl)-3-(trifluoromethyl)benzamide;N-(4-methyl-3-(4-morpholinofuro[3,2-d]pyrimidin-2-yl)phenyl)-3-(trifluoromethyl)benzamide;N-(4-methyl-3-(7-morpholinothiazolo[5,4-d]pyrimidin-5-yl)phenyl)-3-(trifluoromethyl)benzamide;N-(4-methyl-3-(1-methyl-4-morpholino-1H-pyrazolo[3,4-d]pyrimidin-6-yl)phenyl)-3-(trifluoromethyl)benzamide;2-(2-hydroxypropan-2-yl)-N-(4-methyl-3-(8 morpholinoimidazo[1,2-b]pyridazin-6-yl)phenyl)isonicotinamide;2-isopropyl-N-(4-methyl-3-(8-morpholinoimidazo[1,2-b]pyridazin-6-yl)phenyl)isonicotinamide;2-(1,1-difluoroethyl)-N-(4-methyl-3-(8-morpholinoimidazo[1,2-b]pyridazin-6-yl)phenyl)isonicotinamide;2-(2-cyanopropan-2-yl)-N-(4-methyl-3-(8-morpholinoimidazo[1,2-b]pyridazin-6-yl)phenyl)isonicotinamide;2-(tert-butyl)-N-(4-methyl-3-(8-morpholinoimidazo[1,2-b]pyridazin-6-yl)phenyl)isonicotinamide;3-(2-cyanopropan-2-yl)-N-(4-methyl-3-(8-morpholinoimidazo[1,2-b]pyridazin-6-yl)phenyl)benzamide;3-(difluoromethyl)-N-(4-methyl-3-(8-morpholinoimidazo[1,2-b]pyridazin-6-yl)phenyl)benzamide;N-(6-methyl-5-(8-morpholinoimidazo[1,2-a]pyridin-6-yl)pyridin-3-yl)-3-(trifluoromethyl)benzamide;N-(4-methyl-3-(8-morpholinoimidazo[1,2-a]pyridin-6-yl)phenyl)-2-(trifluoromethyl)isonicotinamide;2-(difluoromethyl)-N-(4-methyl-3-(8-morpholinoimidazo[1,2-a]pyridin-6-yl)phenyl)isonicotinamide;N-(4-methyl-3-(8-morpholinoimidazo[1,2-a]pyridin-6-yl)phenyl)-2-(methylsulfonyl)isonicotinamide;N-(4-methyl-3-(8-morpholinoimidazo[1,2-a]pyridin-6-yl)phenyl)-6-(trifluoromethyl)pyridazine-4-carboxamide;N-(4-methyl-3-(8-morpholinoimidazo[1,2-a]pyridin-6-yl)phenyl)-4-((methylamino)methyl)-3-(trifluoromethyl)benzamide;3-(difluoromethyl)-N-(4-methyl-3-(4-morpholino-5,5-dioxido-6,7-dihydrothieno[3,2-d]pyrimidin-2-yl)phenyl)benzamide;2-(2-cyanopropan-2-yl)-N-(4-methyl-3-(4-morpholino-5,5-dioxido-6,7-dihydrothieno[3,2-d]pyrimidin-2-yl)phenyl)isonicotinamide;2-(difluoromethyl)-N-(4-methyl-3-(4-morpholino-5,5-dioxido-6,7-dihydrothieno[3,2-d]pyrimidin-2-yl)phenyl)isonicotinamide;N-(4-methyl-3-(4-morpholino-5,5-dioxido-6,7-dihydrothieno[3,2-d]pyrimidin-2-yl)phenyl)-3-(trifluoromethyl)benzamide;(R)-2-(2-cyanopropan-2-yl)-N-(4-methyl-3-(4-(3 methylmorpholino)-1H-imidazo[4,5-c]pyridin-6-yl)phenyl)isonicotinamide;2-(2-cyanopropan-2-yl)-N-(4-methyl-3-(8-morpholinoimidazo[1,2-a]pyridin-6-yl)phenyl)isonicotinamide;2-(2-cyanopropan-2-yl)-N-(4-methyl-3-(8-morpholinoimidazo[1,2-a]pyrazin-6-yl)phenyl)isonicotinamide;2-(2-cyanopropan-2-yl)-N-(4-methyl-3-(1-methyl-7-morpholino-1 H-pyrazolo[4,3-d]pyrimidin-5-yl)phenyl)isonicotinamide;2-(2-cyanopropan-2-yl)-N-(4-methyl-3-(4-morpholinothieno[3,2-d]pyrimidin-2-yl)phenyl)isonicotinamide;2-(2-cyanopropan-2-yl)-N-(4-methyl-3-(4-morpholino-5H-pyrrolo[3,2-d]pyrimidin-2-yl)phenyl)isonicotinamide;tert-butyl 2-(5-(2-(2-cyanopropan-2-yl)isonicotinamido)-2-methylphenyl)-4-morpholino-7,8-dihydropyrido[4,3-d]pyrimidine-6(5H)-carboxylate;2-(2-cyanopropan-2-yl)-N-(4-methyl-3-(4-morpholino-5,6,7,8-tetrahydropyrido[3,4-d]pyrimidin-2-yl)phenyl)isonicotinamide;2-(2-cyanopropan-2-yl)-N-(4-methyl-3-(4-morpholino-6,7-dihydro-5H-pyrrolo[3,4-d]pyrimidin-2-yl)phenyl)isonicotinamide;N-(6-methyl-5-(8-morpholinoimidazo[1,2-b]pyridazin-6-yl)pyridin-3-yl)-3-(trifluoromethyl)benzamide;N-(6-methyl-5-(8-morpholinoimidazo[1,2-b]pyridazin-6-yl)pyridin-3-yl)-4-(trifluoromethyl)picolinamide;2-isopropyl-N-(6-methyl-5-(8-morpholinoimidazo[1,2-b]pyridazin-6-yl)pyridin-3-yl)isonicotinamide;2-(2-hydroxypropan-2-yl)-N-(6-methyl-5-(8-morpholinoimidazo[1,2-b]pyridazin-6-yl)pyridin-3-yl)isonicotinamide;2-(1,1-difluoroethyl)-N-(6-methyl-5-(8-morpholinoimidazo[1,2-b]pyridazin-6-yl)pyridin-3-yl)isonicotinamide;3-(difluoromethyl)-N-(6-methyl-5-(8-morpholinoimidazo[1,2-b]pyridazin-6-yl)pyridin-3-yl)benzamide;4-(1,2-dihydroxyethyl)-N-(6-methyl-5-(8-morpholinoimidazo[1,2-b]pyridazin-6-yl)pyridin-3-yl)-3-(trifluoromethyl)benzamide;3-(difluoromethyl)-N-(4-methyl-3-(8-morpholinoimidazo[1,2-b]pyridazin-6-yl)phenyl)benzamide;N-(6-methyl-5-(8-morpholinoimidazo[1,2-a]pyridin-6-yl)pyridin-3-yl)-4-((methylamino)methyl)-3-(trifluoromethyl)benzamide;N-(6-methyl-5-(8-morpholinoimidazo[1,2-a]pyridin-6-yl)pyridin-3-yl)-4-(trifluoromethyl)picolinamide;4-cyano-N-(6-methyl-5-(8-morpholinoimidazo[1,2-a]pyridin-6-yl)pyridin-3-yl)-3-(trifluoromethyl)benzamide;2-(2-hydroxypropan-2-yl)-N-(6-methyl-5-(8-morpholinoimidazo[1,2-a]pyridin-6-yl)pyridin-3-yl)isonicotinamide;2-(1,1-difluoroethyl)-N-(6-methyl-5-(8-morpholinoimidazo[1,2-a]pyridin-6-yl)pyridin-3-yl)isonicotinamide;3-(difluoromethyl)-N-(6-methyl-5-(8-morpholinoimidazo[1,2-a]pyridin-6-yl)pyridin-3-yl)benzamide;2-(2-cyanopropan-2-yl)-N-(6-methyl-5-(8-morpholinoimidazo[1,2-a]pyridin-6-yl)pyridin-3-yl)isonicotinamide;2-isopropyl-N-(6-methyl-5-(8-morpholinoimidazo[1,2-a]pyridin-6-yl)pyridin-3-yl)isonicotinamide;N-(6-methyl-5-(8-morpholinoimidazo[1,2-a]pyridin-6-yl)pyridin-3-yl)-3-(trifluoromethyl)benzamide;N-(6-methyl-5-(8-morpholinoimidazo[1,2-a]pyridin-6-yl)pyridin-3-yl)-3-(trifluoromethyl)benzamide;N-(6-methyl-5-(8-morpholinoimidazo[1,2-a]pyridin-6-yl)pyridin-3-yl)-4-((methylamino)methyl)-3-(trifluoromethyl)benzamide;N-(6-methyl-5-(4-morpholino-6,6-dioxido-5,7-dihydrothieno[3,4-d]pyrimidin-2-yl)pyridin-3-yl)-3-(trifluoromethyl)benzamide;2-methyl-3-(4-morpholino-6,6-dioxido-5,7-dihydrothieno[3,4-d]pyrimidin-2-yl)-5-(3-(trifluoromethyl)benzamido)pyridine 1-oxide;4-methyl-3-(8-morpholinoimidazo[1,2-b]pyridazin-6-yl)-N-(3-(trifluoromethyl)phenyl)benzamide;4-methyl-3-(4-morpholino-6,7-dihydro-5H-pyrrolo[3,4-d]pyrimidin-2-yl)-N-(3-(trifluoromethyl)phenyl)benzamide;6-(1-cyanocyclopropyl)-N-(4-methyl-3-(1-methyl-6-morpholino-2-oxo-1,2-dihydropyridin-4-yl)phenyl)pyridazine-4-carboxamide;4-(2-cyanopropan-2-yl)-N-(4-methyl-3-(1-methyl-6-morpholino-2-oxo-1,2-dihydropyridin-4-yl)phenyl)picolinamide;N-(4-methyl-3-(1-methyl-6-morpholino-2-oxo-1,2-dihydropyridin-4-yl)phenyl)-5-(trifluoromethyl)nicotinamide;6-(1-cyanocyclopropyl)-N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)pyridazine-4-carboxamide;4-(2-cyanopropan-2-yl)-N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)picolinamide;N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)-5-(trifluoromethyl)nicotinamide;4-(1,1-difluoroethyl)-N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)picolinamide;4-(2-hydroxypropan-2-yl)-N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)picolinamide;4-(2-fluoropropan-2-yl)-N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)picolinamide;3-(2-aminopropan-2-yl)-N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridin-3-yl)phenyl)-5-(trifluoromethyl)benzamide;N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridazin-3-yl)phenyl)-5-(trifluoromethyl)nicotinamide;4-(2-cyanopropan-2-yl)-N-(4-methyl-3-(1-methyl-5-morpholino-6-oxo-1,6-dihydropyridazin-3-yl)phenyl)picolinamide;2-(2-fluoropropan-2-yl)-N-(5-(6-isopropoxy-5-morpholinopyridazin-3-yl)-6-methylpyridin-3-yl)isonicotinamide;2-(1,1-difluoroethyl)-N-(5-(6-isopropoxy-5-morpholinopyridazin-3-yl)-6-methylpyridin-3-yl)isonicotinamide;2-(difluoromethyl)-N-(5-(6-isopropoxy-5-morpholinopyridazin-3-yl)-6-methylpyridin-3-yl)isonicotinamide;N-(5-(6-(2,2-difluoroethoxy)-5-morpholinopyridazin-3-yl)-6-methylpyridin-3-yl)-2-(1,1-difluoropropyl)isonicotinamide;N-(5-(6-(2,2-difluoroethoxy)-5-morpholinopyridazin-3-yl)-6-methylpyridin-3-yl)-2-(1,1-difluoroethyl)isonicotinamide;N-(5-(6-(2,2-difluoroethoxy)-5-morpholinopyridazin-3-yl)-6-methylpyridin-3-yl)-4-(trifluoromethyl)picolinamide;N-(5-(6-(2,2-difluoroethoxy)-5-morpholinopyridazin-3-yl)-6-methylpyridin-3-yl)-5-(trifluoromethyl)nicotinamide;N-(5-(6-(2,2-difluoroethoxy)-5-morpholinopyridazin-3-yl)-6-methylpyridin-3-yl)-3-(trifluoromethyl)benzamide;N-(6-methyl-5-(6-(methylsulfonyl)-5-morpholinopyridazin-3-yl)pyridin-3-yl)-3-(trifluoromethyl)benzamide;2-(1,1-difluoroethyl)-N-(6-methyl-5-(6-(methylsulfonyl)-5-morpholinopyridazin-3-yl)pyridin-3-yl)isonicotinamide;N-(6-methyl-5-(6-(methylsulfonyl)-5-morpholinopyridazin-3-yl)pyridin-3-yl)-2-(trifluoromethyl)isonicotinamide;N-(6-methyl-5-(6-(methylsulfonyl)-5-morpholinopyridazin-3-yl)pyridin-3-yl)-4-(trifluoromethyl)picolinamide;2-(2-cyanopropan-2-yl)-N-(6-methyl-5-(6-(methylsulfonyl)-5-morpholinopyridazin-3-yl)pyridin-3-yl)isonicotinamide;2-(1,1-difluoropropyl)-N-(6-methyl-5-(6-(methylsulfonyl)-5-morpholinopyridazin-3-yl)pyridin-3-yl)isonicotinamide;2-(1,1-difluoropropyl)-N-(4-methyl-3-(6-(methylsulfonyl)-5-morpholinopyridazin-3-yl)phenyl)isonicotinamide;2-(2-fluoropropan-2-yl)-N-(6-methyl-5-(6-(methylsulfonyl)-5-morpholinopyridazin-3-yl)pyridin-3-yl)isonicotinamide;2-(2-fluoropropan-2-yl)-N-(4-methyl-3-(6-(methylsulfonyl)-5-morpholinopyridazin-3-yl)phenyl)isonicotinamide;2-(1,1-difluoroethyl)-N-(4-methyl-3-(6-(methylsulfonyl)-5-morpholinopyridazin-3-yl)phenyl)isonicotinamide;N-(4-methyl-3-(6-(methylsulfonyl)-5-morpholinopyridazin-3-yl)phenyl)-2-(trifluoromethyl)isonicotinamide;2-(2-cyanopropan-2-yl)-N-(4-methyl-3-(6-(methylsulfonyl)-5-morpholinopyridazin-3-yl)phenyl)isonicotinamide;2-(2-hydroxypropan-2-yl)-N-(4-methyl-3-(6-(methylsulfonyl)-5-morpholinopyridazin-3-yl)phenyl)isonicotinamide;N-(4-methyl-3-(6-(methylsulfonyl)-5-morpholinopyridazin-3-yl)phenyl)-4-(trifluoromethyl)picolinamide;N-(5-(6-methoxy-5-morpholinopyridin-3-yl)-6-methylpyridazin-3-yl)-3-(trifluoromethyl)benzamide;N-(6'-(2,2-difluoroethoxy)-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-5-(trifluoromethyl)nicotinamide;6-(1-cyanocyclopropyl)-N-(6'-(2,2-difluoroethoxy)-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)pyridazine-4-carboxamide;N-(2-methyl-5'-morpholino-6'-((tetrahydro-2H-pyran-4-yl)oxy)-[3,3'-bipyridin]-5-yl)-3-(methylsulfonyl)benzamide;2-(1,1-difluoroethyl)-N-(2-methyl-5'-morpholino-6'-((tetrahydro-2H-pyran-4-yl)oxy)-[3,3'-bipyridin]-5-yl)isonicotinamide;2-(2-hydroxypropan-2-yl)-N-(2-methyl-5'-morpholino-6'-((tetrahydro-2H-pyran-4-yl)oxy)-[3,3'-bipyridin]-5-yl)isonicotinamide;2-(1-cyanocyclopropyl)-N-(2-methyl-5'-morpholino-6'-((tetrahydro-2H-pyran-4-yl)oxy)-[3,3'-bipyridin]-5-yl)isonicotinamide;2-cyclopropyl-N-(2-methyl-5'-morpholino-6'-((tetrahydro-2H-pyran-4-yl)oxy)-[3,3'-bipyridin]-5-yl)isonicotinamide;N-(2-methyl-5'-morpholino-6'-((tetrahydro-2H-pyran-4-yl)oxy)-[3,3'-bipyridin]-5-yl)-4-(trifluoromethyl)picolinamide;4-(2-cyanopropan-2-yl)-N-(2-methyl-5'-morpholino-6'-((tetrahydro-2H-pyran-4-yl)oxy)-[3,3'-bipyridin]-5-yl)picolinamide;6-(1-cyanocyclopropyl)-N-(2-methyl-5'-morpholino-6'-((tetrahydro-2H-pyran-4-yl)oxy)-[3,3'-bipyridin]-5-yl)pyridazine-4-carboxamide;2-(1,1-difluoroethyl)-N-(3-(6-isopropoxy-5-morpholinopyridin-3-yl)-4-methylphenyl)isonicotinamide;2-(2-fluoropropan-2-yl)-N-(3-(6-isopropoxy-5-morpholinopyridin-3-yl)-4-methylphenyl)isonicotinamide;2-(2-hydroxypropan-2-yl)-N-(3-(6-isopropoxy-5-morpholinopyridin-3-yl)-4-methylphenyl)isonicotinamide;4-(2-cyanopropan-2-yl)-N-(3-(6-isopropoxy-5-morpholinopyridin-3-yl)-4-methylphenyl)picolinamide;4-(2-hydroxypropan-2-yl)-N-(3-(6-isopropoxy-5-morpholinopyridin-3-yl)-4-methylphenyl)picolinamide;N-(3-(6-isopropoxy-5-morpholinopyridin-3-yl)-4-methylphenyl)-2-(methylsulfonyl)isonicotinamide;N-(3-(6-isopropoxy-5-morpholinopyridin-3-yl)-4-methylphenyl)-5-(trifluoromethyl)nicotinamide;2-(1,1-difluoroethyl)-N-(6'-isopropoxy-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)isonicotinamide;2-(2-fluoropropan-2-yl)-N-(6'-isopropoxy-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)isonicotinamide;2-(2-cyanopropan-2-yl)-N-(6'-isopropoxy-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)isonicotinamide;2-(2-hydroxypropan-2-yl)-N-(6'-isopropoxy-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)isonicotinamide;4-(1,1-difluoroethyl)-N-(6'-isopropoxy-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)picolinamide;4-(2-fluoropropan-2-yl)-N-(6'-isopropoxy-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)picolinamide;4-(2-cyanopropan-2-yl)-N-(6'-isopropoxy-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)picolinamide;4-(2-hydroxypropan-2-yl)-N-(6'-isopropoxy-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)picolinamide;N-(6'-isopropoxy-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-5-(trifluoromethyl)nicotinamide;3-(6-ethoxy-5-morpholinopyridin-3-yl)-N-(5-fluoro-2-(trifluoromethyl)pyridin-4-yl)-4-methylbenzamide;6-(2-cyanopropan-2-yl)-N-(6'-(2,2-difluoroethoxy)-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)pyridazine-4-carboxamide;N-(6'-(2-oxaspiro[3.3]heptan-6-yloxy)-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-2-(2-fluoropropan-2-yl)isonicotinamide;N-(6'-(2-oxaspiro[3.3]heptan-6-yloxy)-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-2-(2-hydroxypropan-2-yl)isonicotinamide;N-(6'-(2-oxaspiro[3.3]heptan-6-yloxy)-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-2-(difluoromethyl)isonicotinamide;N-(6'-(2-oxaspiro[3.3]heptan-6-yloxy)-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-2-cyclopropylisonicotinamide;N-(6'-(2-oxaspiro[3.3]heptan-6-yloxy)-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-2-(2-cyanopropan-2-yl)isonicotinamide;N-(6'-(2-oxaspiro[3.3]heptan-6-yloxy)-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-4-(2-fluoropropan-2-yl)picolinamide;N-(6'-(2-oxaspiro[3.3]heptan-6-yloxy)-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-4-(2-hydroxypropan-2-yl)picolinamide;N-(6'-(2-oxaspiro[3.3]heptan-6-yloxy)-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-4-(2-cyanopropan-2-yl)picolinamide;4-(2-fluoropropan-2-yl)-N-(6'-(2-hydroxyethoxy)-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)picolinamide;N-(6'-(2-hydroxyethoxy)-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-4-(2-hydroxypropan-2-yl)picolinamide;4-(2-cyanopropan-2-yl)-N-(6'-(2-hydroxyethoxy)-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)picolinamide;4-(1,1-difluoroethyl)-N-(6'-(2-hydroxyethoxy)-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)picolinamide;N-(3-(6-ethoxy-5-morpholinopyridin-3-yl)-4-methylphenyl)-3-(S-methylsulfonimidoyl)benzamide;N-(6'-ethoxy-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-3-(S-methylsulfonimidoyl)benzamide;N-(2-methyl-5'-morpholino-6'-((tetrahydro-2H-pyran-4-yl)oxy)-[3,3'-bipyridin]-5-yl)-3-(2,2,2-trifluoro-1-hydroxyethyl)benzamide;N-(6'-(difluoromethoxy)-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-2-(trifluoromethyl)isonicotinamide;N-(6'-(difluoromethoxy)-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-2-(2-hydroxypropan-2-yl)isonicotinamide;2-(1,1-difluoroethyl)-N-(6'-(difluoromethoxy)-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)isonicotinamide;4-(2-cyanopropan-2-yl)-N-(6'-(difluoromethoxy)-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)picolinamide;N-(6'-(difluoromethoxy)-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-2-(difluoromethyl)isonicotinamide;N-(6'-(difluoromethoxy)-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-2-(1,1-difluoropropyl)isonicotinamide;(R)-N-(6'-(2-hydroxypropoxy)-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide;(S)-N-(6'-((1-hydroxypropan-2-yl)oxy)-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide;N-(6'-((2-hydroxyethyl)(methyl)amino)-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide;5-(5-(2-(1,1-difluoroethyl)isonicotinamido)-2-methylphenyl)-N-methyl-3-morpholinopicolinamide;N-(2-methyl-5'-morpholino-6'-oxo-1',6'-dihydro-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide;(S)-N-(3-(6-(2-hydroxypropoxy)-5-morpholinopyridin-3-yl)-4-methylphenyl)-2-(methylsulfonyl)isonicotinamide;(S)-2-(2-fluoropropan-2-yl)-N-(6'-(2-hydroxypropoxy)-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)isonicotinamide;(R)-N-(3-(2-((2-hydroxypropyl)amino)-6-morpholinopyridin-4-yl)-4-methylphenyl)-2-(trifluoromethyl)isonicotinamide;N-(6'-((1,4-dioxan-2-yl)methoxy)-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide;N-(6'-((4-hydroxytetrahydro-2H-pyran-4-yl)methyl)-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide;N-(6'-((dihydro-2H-pyran-4(3H)-ylidene)methyl)-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide;2-(2-fluoropropan-2-yl)-N-(3-(6-(2-hydroxyethoxy)-5-morpholinopyridin-3-yl)-4-methylphenyl)isonicotinamide;2-(2-cyanopropan-2-yl)-N-(3-(6-(2-hydroxyethoxy)-5-morpholinopyridin-3-yl)-4-methylphenyl)isonicotinamide;2-cyclopropyl-N-(3-(6-(2-hydroxyethoxy)-5-morpholinopyridin-3-yl)-4-methylphenyl)isonicotinamide;2-(1,1-difluoroethyl)-N-(3-(6-(2-hydroxyethoxy)-5-morpholinopyridin-3-yl)-4-methylphenyl)isonicotinamide;N-(3-(6-(2-hydroxyethoxy)-5-morpholinopyridin-3-yl)-4-methylphenyl)-5-(trifluoromethyl)nicotinamide;N-(3-(6-(2-hydroxyethoxy)-5-morpholinopyridin-3-yl)-4-methylphenyl)-2-(trifluoromethyl)isonicotinamide;(R)-methyl (2-((2'-methyl-5-morpholino-5'-(3-(trifluoromethyl)benzamido)-[3,3'-bipyridin]-6-yl)oxy)propyl)carbamate;N-(3'-fluoro-6'-((2-hydroxyethyl)amino)-2-methyl-2'-morpholino-[3,4'-bipyridin]-5-yl)-6-(trifluoromethyl)pyridazine-4-carboxamide;N-(3-(3-fluoro-2-((2-hydroxyethyl)amino)-6-morpholinopyridin-4-yl)-4-methylphenyl)-2-(trifluoromethyl)isonicotinamide;N-(3-(3-fluoro-2-((2-hydroxyethyl)amino)-6-morpholinopyridin-4-yl)-4-methylphenyl)-6-(trifluoromethyl)pyridazine-4-carboxamide;N-(3-(3-fluoro-6-((2-hydroxyethyl)amino)-2-morpholinopyridin-4-yl)-4-methylphenyl)-2-(trifluoromethyl)isonicotinamide;2-(difluoromethyl)-N-(3-(3-fluoro-6-((2-hydroxyethyl)amino)-2-morpholinopyridin-4-yl)-4-methylphenyl)isonicotinamide;N-(3-(3-fluoro-6-((2-hydroxyethyl)amino)-2-morpholinopyridin-4-yl)-4-methylphenyl)-2-(2-hydroxypropan-2-yl)isonicotinamide;2-(1-cyanocyclopropyl)-N-(3-(3-fluoro-6-((2-hydroxyethyl)amino)-2-morpholinopyridin-4-yl)-4-methylphenyl)isonicotinamide;6-(2-cyanopropan-2-yl)-N-(3-(3-fluoro-6-((2-hydroxyethyl)amino)-2-morpholinopyridin-4-yl)-4-methylphenyl)pyridazine-4-carboxamide;N-(3-(3-fluoro-6-((2-hydroxyethyl)amino)-2-morpholinopyridin-4-yl)-4-methylphenyl)-6-(trifluoromethyl)pyridazine-4-carboxamide;N-(3-(3,5-difluoro-2-((2-hydroxyethyl)amino)-6-morpholinopyridin-4-yl)-4-methylphenyl)-2-(trifluoromethyl)isonicotinamide;N-(3-(3,5-difluoro-2-((2-hydroxyethyl)amino)-6-morpholinopyridin-4-yl)-4-methylphenyl)-6-(trifluoromethyl)pyridazine-4-carboxamide;2-(difluoromethyl)-N-(3-(3-fluoro-2-((2-hydroxyethyl)amino)-6-morpholinopyridin-4-yl)-4-methylphenyl)isonicotinamide;3-(6-methoxy-5-morpholinopyridazin-3-yl)-4-methyl-N-(2-(trifluoromethyl)pyridin-4-yl)benzamide;N-(2-(1,1-difluoroethyl)pyridin-4-yl)-3-(6-methoxy-5-morpholinopyridazin-3-yl)-4-methylbenzamide;N-(2-(1,1-difluoroethyl)pyridin-4-yl)-3-(6-ethoxy-5-morpholinopyridazin-3-yl)-4-methylbenzamide;(R)-N-(6'-((1-hydroxypropan-2-yl)oxy)-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide;(S)-N-(6'-(2-hydroxypropoxy)-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide;(R)-N-(3-(6-((2-hydroxypropyl)amino)-2-morpholinopyrimidin-4-yl)-4-methylphenyl)-2-(trifluoromethyl)isonicotinamide;(R)-2-(1,1-difluoroethyl)-N-(3-(6-((2-hydroxypropyl)amino)-2-morpholinopyrimidin-4-yl)-4-methylphenyl)isonicotinamide;(R)-2-(2-fluoropropan-2-yl)-N-(3-(6-((2-hydroxypropyl)amino)-2-morpholinopyrimidin-4-yl)-4-methylphenyl)isonicotinamide;(R)-2-(2-cyanopropan-2-yl)-N-(3-(6-((2-hydroxypropyl)amino)-2-morpholinopyrimidin-4-yl)-4-methylphenyl)isonicotinamide;N-(5-ethoxy-2'-methyl-6-morpholino-[2,3'-bipyridin]-5'-yl)-2-(2-fluoropropan-2-yl)isonicotinamide;2-(1,1-difluoroethyl)-N-(5-ethoxy-2'-methyl-6-morpholino-[2,3'-bipyridin]-5'-yl)isonicotinamide;N-(6'-(((3R,4S)-3-fluorotetrahydro-2H-pyran-4-yl)oxy)-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide;N-(6'-(((3S,4R)-3-fluorotetrahydro-2H-pyran-4-yl)oxy)-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide;N-(6'-((4-deuterio-3-fluorotetrahydro-2H-pyran-4-yl)oxy)-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide;N-(2-methyl-5'-morpholino-6'-(trideuteriomethoxy)-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide;N-(6'-(2-(2-hydroxyethoxy)ethoxy)-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide;N-(6'-((1,1-dioxidotetrahydro-2H-thiopyran-4-yl)oxy)-2-methyl-5'-morpholino-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide;N-(2-methyl-5'-morpholino-6'-((4-deuteriotetrahydro-2H-pyran-4-yl)oxy)-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide;3-(difluoromethyl)-N-(3-(2-((2-hydroxyethyl)amino)-6-morpholinopyridin-4-yl)-4-methylphenyl)benzamide;2-(1,1-difluoroethyl)-N-(3-(2-((2-hydroxyethyl)amino)-6-morpholinopyridin-4-yl)-4-methylphenyl)isonicotinamide;3-(difluoromethyl)-N-(2'-((2-hydroxyethyl)amino)-2-methyl-6'-morpholino-[3,4'-bipyridin]-5-yl)benzamide;2-(difluoromethyl)-N-(2'-((2-hydroxyethyl)amino)-2-methyl-6'-morpholino-[3,4'-bipyridin]-5-yl)isonicotinamide;N-(2'-((2-hydroxyethyl)amino)-2-methyl-6'-morpholino-[3,4'-bipyridin]-5-yl)-2-(trifluoromethyl)isonicotinamide;2-(1,1-difluoroethyl)-N-(2'-((2-hydroxyethyl)amino)-2-methyl-6'-morpholino-[3,4'-bipyridin]-5-yl)isonicotinamide;2-(2-cyanopropan-2-yl)-N-(2'-((2-hydroxyethyl)amino)-2-methyl-6'-morpholino-[3,4'-bipyridin]-5-yl)isonicotinamide;N-(2'-((2-hydroxyethyl)amino)-2-methyl-6'-morpholino-[3,4'-bipyridin]-5-yl)-2-(methylsulfonyl)isonicotinamide;1-ethyl-N-(2'-((2-hydroxyethyl)amino)-2-methyl-6'-morpholino-[3,4'-bipyridin]-5-yl)-6-oxo-5-(trifluoromethyl)-1,6-dihydropyridine-3-carboxamide;3-(4-ethylpiperazin-1-yl)-N-(2'-((2-hydroxyethyl)amino)-2-methyl-6'-morpholino-[3,4'-bipyridin]-5-yl)-5-(trifluoromethyl)benzamide;N-(2'-((2-hydroxyethyl)amino)-2-methyl-6'-morpholino-[3,4'-bipyridin]-5-yl)-2-(2-hydroxypropan-2-yl)isonicotinamide;N-(3-(2-((2-hydroxyethyl)amino)-6-morpholinopyridin-4-yl)-4-methylphenyl)-6-(trifluoromethyl)pyridazine-4-carboxamide;6-cyclopropyl-N-(3-(2-((2-hydroxyethyl)amino)-6-morpholinopyridin-4-yl)-4-methylphenyl)pyridazine-4-carboxamide;6-(2-cyanopropan-2-yl)-N-(3-(2-((2-hydroxyethyl)amino)-6-morpholinopyridin-4-yl)-4-methylphenyl)pyridazine-4-carboxamide;2-(1-cyanocyclopropyl)-N-(3-(2-((2-hydroxyethyl)amino)-6-morpholinopyridin-4-yl)-4-methylphenyl)isonicotinamide;N-(2'-((2-hydroxyethyl)amino)-2-methyl-6'-morpholino-[3,4'-bipyridin]-5-yl)-6-(trifluoromethyl)pyridazine-4-carboxamide;6-cyclopropyl-N-(2'-((2-hydroxyethyl)amino)-2-methyl-6'-morpholino-[3,4'-bipyridin]-5-yl)pyridazine-4-carboxamide;2-(difluoromethyl)-N-(3-(2-((2-hydroxyethyl)amino)-6-morpholinopyridin-4-yl)-4-methylphenyl)isonicotinamide;N-(4-methyl-3-(2-morpholino-6-((tetrahydrofuran-3-yl)amino)pyridin-4-yl)phenyl)-2-(trifluoromethyl)isonicotinamide;N-(4-methyl-3-(2-morpholino-6-(((tetrahydrofuran-3-yl)methyl)amino)pyridin-4-yl)phenyl)-2-(trifluoromethyl)isonicotinamide;2-(2-fluoropropan-2-yl)-N-(2'-((2-hydroxyethyl)amino)-2-methyl-6'-morpholino-[3,4'-bipyridin]-5-yl)isonicotinamide;2-cyclopropyl-N-(2'-((2-hydroxyethyl)amino)-2-methyl-6'-morpholino-[3,4'-bipyridin]-5-yl)isonicotinamide;2-(1,1-difluoropropyl)-N-(2'-((2-hydroxyethyl)amino)-2-methyl-6'-morpholino-[3,4'-bipyridin]-5-yl)isonicotinamide;2-(2-cyanopropan-2-yl)-N-(3-(2-(3-hydroxyazetidin-1-yl)-6-morpholinopyridin-4-yl)-4-methylphenyl)isonicotinamide;N-(3-(2-(3-hydroxyazetidin-1-yl)-6-morpholinopyridin-4-yl)-4-methylphenyl)-2-(trifluoromethyl)isonicotinamide;1-ethyl-N-(3-(2-(3-hydroxyazetidin-1-yl)-6-morpholinopyridin-4-yl)-4-methylphenyl)-6-oxo-5-(trifluoromethyl)-1,6-dihydropyridine-3-carboxamide;N-(3-(2-((2-hydroxy-2-methylpropyl)amino)-6-morpholinopyridin-4-yl)-4-methylphenyl)-3-(trifluoromethyl)benzamide;N-(4-methyl-3-(2-morpholino-6-((3,3,3-trifluoro-2-hydroxypropyl)amino)pyridin-4-yl)phenyl)-3-(trifluoromethyl)benzamide;(R)-N-(3-(2-(4-hydroxy-2-oxopyrrolidin-1-yl)-6-morpholinopyridin-4-yl)-4-methylphenyl)-3-(trifluoromethyl)benzamide;(R)-N-(3-(2-(3-hydroxy-2-oxopyrrolidin-1-yl)-6-morpholinopyridin-4-yl)-4-methylphenyl)-3-(trifluoromethyl)benzamide;N-(3-(2-(2-hydroxypropanamido)-6-morpholinopyridin-4-yl)-4-methylphenyl)-3-(trifluoromethyl)benzamide;2-(difluoromethyl)-N-(3-(2-(3-hydroxyazetidin-1-yl)-6-morpholinopyridin-4-yl)-4-methylphenyl)isonicotinamide;2-cyclopropyl-N-(3-(2-(3-hydroxyazetidin-1-yl)-6-morpholinopyridin-4-yl)-4-methylphenyl)isonicotinamide;N-(3-(2-(3-hydroxyazetidin-1-yl)-6-morpholinopyridin-4-yl)-4-methylphenyl)-2-isopropylisonicotinamide;N-(3-(2-(3-hydroxyazetidin-1-yl)-6-morpholinopyridin-4-yl)-4-methylphenyl)-6-(trifluoromethyl)pyridazine-4-carboxamide;2-(1-cyanocyclopropyl)-N-(3-(2-(3-hydroxyazetidin-1-yl)-6-morpholinopyridin-4-yl)-4-methylphenyl)isonicotinamide;2-(difluoromethyl)-N-(3-(2-(3-hydroxy-3-methylazetidin-1-yl)-6-morpholinopyridin-4-yl)-4-methylphenyl)isonicotinamide;N-(3-(2-(3-hydroxy-3-methylazetidin-1-yl)-6-morpholinopyridin-4-yl)-4-methylphenyl)-6-(trifluoromethyl)pyridazine-4-carboxamide;N-(3-(2-(3-hydroxy-3-methylazetidin-1-yl)-6-morpholinopyridin-4-yl)-4-methylphenyl)-3-(methylsulfonyl)benzamide;5-(difluoromethyl)-N-(3-(2-(3-hydroxyazetidin-1-yl)-6-morpholinopyridin-4-yl)-4-methylphenyl)pyridazine-4-carboxamide;6-cyclopropyl-N-(3-(2-(3-hydroxy-3-methylazetidin-1-yl)-6-morpholinopyridin-4-yl)-4-methylphenyl)pyridazine-4-carboxamide;3-(difluoromethyl)-N-(3-(2-(3-hydroxyazetidin-1-yl)-6-morpholinopyridin-4-yl)-4-methylphenyl)benzamide;2-(1,1-difluoroethyl)-N-(3-(2-(3-hydroxyazetidin-1-yl)-6-morpholinopyridin-4-yl)-4-methylphenyl)isonicotinamide;3-(difluoromethyl)-N-(2'-(3-hydroxyazetidin-1-yl)-2-methyl-6'-morpholino-[3,4'-bipyridin]-5-yl)benzamide;2-(1,1-difluoroethyl)-N-(2'-(3-hydroxyazetidin-1-yl)-2-methyl-6'-morpholino-[3,4'-bipyridin]-5-yl)isonicotinamide;N-(2'-(3-hydroxyazetidin-1-yl)-2-methyl-6'-morpholino-[3,4'-bipyridin]-5-yl)-2-isopropylisonicotinamide;N-(2'-(3-hydroxyazetidin-1-yl)-2-methyl-6'-morpholino-[3,4'-bipyridin]-5-yl)-2-(2-hydroxypropan-2-yl)isonicotinamide;2-(2-cyanopropan-2-yl)-N-(2'-(3-hydroxyazetidin-1-yl)-2-methyl-6'-morpholino-[3,4'-bipyridin]-5-yl)isonicotinamide;N-(2'-(3-hydroxyazetidin-1-yl)-2-methyl-6'-morpholino-[3,4'-bipyridin]-5-yl)-3-(methylsulfonyl)benzamide;3-((dimethylamino)methyl)-N-(2'-(3-hydroxyazetidin-1-yl)-2-methyl-6'-morpholino-[3,4'-bipyridin]-5-yl)-5-(trifluoromethyl)benzamide;1-ethyl-N-(2'-(3-hydroxyazetidin-1-yl)-2-methyl-6'-morpholino-[3,4'-bipyridin]-5-yl)-6-oxo-5-(trifluoromethyl)-1,6-dihydropyridine-3-carboxamide;3-(4-ethylpiperazin-1-yl)-N-(2'-(3-hydroxyazetidin-1-yl)-2-methyl-6'-morpholino-[3,4'-bipyridin]-5-yl)-5-(trifluoromethyl)benzamide;N-(2'-(3-hydroxyazetidin-1-yl)-2-methyl-6'-morpholino-[3,4'-bipyridin]-5-yl2-(tert-butyl)-N-(2'-(3-hydroxyazetidin-1-yl)-2-methyl-6'-morpholino-[3,4'-bipyridin]-5-yl)isonicotinamide;N-(2'-(3-hydroxyazetidin-1-yl)-2-methyl-6'-morpholino-[3,4'-bipyridin]-5-yl)-2-(methylsulfonyl)isonicotinamide;N-(2'-(3-hydroxyazetidin-1-yl)-2-methyl-6'-morpholino-[3,4'-bipyridin]-5-yl)-3-(2-(methylsulfonyl)propan-2-yl)benzamide;N-(2'-(3-hydroxyazetidin-1-yl)-2-methyl-6'-morpholino-[3,4'-bipyridin]-5-yl)-3-(1,3,4-oxadiazol-2-yl)benzamide;5-cyclopropyl-N-(2'-(3-hydroxyazetidin-1-yl)-2-methyl-6'-morpholino-[3,4'-bipyridin]-5-yl)isoxazole-3-carboxamide;N-(2'-(3-hydroxyazetidin-1-yl)-2-methyl-6'-morpholino-[3,4'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide;5-cyclopropyl-N-(3-(2-(3-hydroxyazetidin-1-yl)-6-morpholinopyridin-4-yl)-4-methylphenyl)isoxazole-3-carboxamide;N-(3-(2-(3-hydroxyazetidin-1-yl)-6-morpholinopyridin-4-yl)-4-methylphenyl)-3-(methylsulfonyl)benzamide;N-(3-(2-(3-hydroxyazetidin-1-yl)-6-morpholinopyridin-4-yl)-4-methylphenyl)-2-(methylsulfonyl)isonicotinamide;N-(3-(2-(3-hydroxyazetidin-1-yl)-6-morpholinopyridin-4-yl)-4-methylphenyl)-2-(2-hydroxypropan-2-yl)isonicotinamide;N-(3-(2-(3-hydroxyazetidin-1-yl)-6-morpholinopyridin-4-yl)-4-methylphenyl)-3-(2-(methylsulfonyl)propan-2-yl)benzamide;N-(3-(2-(3-hydroxyazetidin-1-yl)-6-morpholinopyridin-4-yl)-4-methylphenyl)-3-(1,3,4-oxadiazol-2-yl)benzamide;6-cyclopropyl-N-(2'-(3-hydroxy-3-methylazetidin-1-yl)-2-methyl-6'-morpholino-[3,4'-bipyridin]-5-yl)pyridazine-4-carboxamide;2-cyclopropyl-N-(2'-(3-hydroxy-3-methylazetidin-1-yl)-2-methyl-6'-morpholino-[3,4'-bipyridin]-5-yl)isonicotinamide;2-(difluoromethyl)-N-(2'-(3-hydroxy-3-methylazetidin-1-yl)-2-methyl-6'-morpholino-[3,4'-bipyridin]-5-yl)isonicotinamide;N-(2'-(3-hydroxy-3-methylazetidin-1-yl)-2-methyl-6'-morpholino-[3,4'-bipyridin]-5-yl)-2-(trifluoromethyl)isonicotinamide;2-(2-fluoropropan-2-yl)-N-(2'-(3-hydroxy-3-methylazetidin-1-yl)-2-methyl-6'-morpholino-[3,4'-bipyridin]-5-yl)isonicotinamide;N-(2'-(3-hydroxy-3-methylazetidin-1-yl)-2-methyl-6'-morpholino-[3,4'-bipyridin]-5-yl)-6-(trifluoromethyl)pyridazine-4-carboxamide;2-(2-cyanopropan-2-yl)-N-(2'-(3-hydroxy-3-methylazetidin-1-yl)-2-methyl-6'-morpholino-[3,4'-bipyridin]-5-yl)isonicotinamide;2-(1-cyanocyclopropyl)-N-(2'-(3-hydroxy-3-methylazetidin-1-yl)-2-methyl-6'-morpholino-[3,4'-bipyridin]-5-yl)isonicotinamide;2-(2-cyanopropan-2-yl)-N-(3-(2-(3-hydroxy-3-methylazetidin-1-yl)-6-morpholinopyridin-4-yl)-4-methylphenyl)isonicotinamide;2-(1-cyanocyclopropyl)-N-(3-(2-(3-hydroxy-3-methylazetidin-1-yl)-6-morpholinopyridin-4-yl)-4-methylphenyl)isonicotinamide;N-(3-(2,6-dimorpholinopyridin-4-yl)-4-methylphenyl)-2-(trifluoromethyl)isonicotinamide;2-(2-cyanopropan-2-yl)-N-(3-(2,6-dimorpholinopyridin-4-yl)-4-methylphenyl)isonicotinamide;N-(3-(2,6-dimorpholinopyridin-4-yl)-4-methylphenyl)-1-ethyl-6-oxo-5-(trifluoromethyl)-1,6-dihydropyridine-3-carboxamide;2-(difluoromethyl)-N-(3-(2,6-dimorpholinopyridin-4-yl)-4-methylphenyl)isonicotinamide;3-(difluoromethyl)-N-(3-(2,6-dimorpholinopyridin-4-yl)-4-methylphenyl)benzamide;N-(3-(2,6-dimorpholinopyridin-4-yl)-4-methylphenyl)-2-isopropylisonicotinamide;N-(3-(2,6-dimorpholinopyridin-4-yl)-4-methylphenyl)-2-(methylsulfonyl)isonicotinamide;2-isopropyl-N-(2-methyl-2',6'-dimorpholino-[3,4'-bipyridin]-5-yl)isonicotinamide;N-(2-methyl-2',6'-dimorpholino-[3,4'-bipyridin]-5-yl)-2-(trifluoromethyl)isonicotinamide;3-(difluoromethyl)-N-(2-methyl-2',6'-dimorpholino-[3,4'-bipyridin]-5-yl)benzamide;2-(difluoromethyl)-N-(2-methyl-2',6'-dimorpholino-[3,4'-bipyridin]-5-yl)isonicotinamide;2-(2-cyanopropan-2-yl)-N-(2-methyl-2',6'-dimorpholino-[3,4'-bipyridin]-5-yl)isonicotinamide;N-(2-methyl-2',6'-dimorpholino-[3,4'-bipyridin]-5-yl)-2-(methylsulfonyl)isonicotinamide;1-ethyl-N-(2-methyl-2',6'-dimorpholino-[3,4'-bipyridin]-5-yl)-6-oxo-5-(trifluoromethyl)-1,6-dihydropyridine-3-carboxamide;N-(4-methyl-3-(2-(1-methyl-1H-pyrazol-4-yl)-6-morpholinopyridin-4-yl)phenyl)-2-(trifluoromethyl)isonicotinamide;N-(3-(2-(3,5-dimethyl-1 H-pyrazol-4-yl)-6-morpholinopyridin-4-yl)-4-methylphenyl)-2-(trifluoromethyl)isonicotinamide;N-(4-methyl-3-(2-morpholino-6-(piperazin-1-yl)pyridin-4-yl)phenyl)-2-(trifluoromethyl)isonicotinamide;N-(2-methyl-2'-morpholino-6'-(piperazin-1-yl)-[3,4'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide;N-(3-(2-(3-hydroxypyrrolidin-1-yl)-6-morpholinopyridin-4-yl)-4-methylphenyl)-2-(trifluoromethyl)isonicotinamide;N-(2'-(3-hydroxypyrrolidin-1-yl)-2-methyl-6'-morpholino-[3,4'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide;N-(3-(2-(1,4-dioxan-2-yl)-6-morpholinopyridin-4-yl)-4-methylphenyl)-2-(trifluoromethyl)piperidine-4-carboxamide;N-(3-(2-ethoxy-6-morpholinopyridin-4-yl)-4-methylphenyl)-2-(trifluoromethyl)isonicotinamide;N-(4-methyl-3-(2-(3-oxomorpholino)pyridin-4-yl)phenyl)-3-(trifluoromethyl)benzamide;N-(2-methyl-2'-(3-oxomorpholino)-[3,4'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide;2-isopropyl-N-(2-methyl-2'-morpholino-[3,4'-bipyridin]-5-yl)isonicotinamide;2-(1,1-difluoroethyl)-N-(4-methyl-3-(2-morpholinopyridin-4-yl)phenyl)isonicotinamide;(R)-2-(2-fluoropropan-2-yl)-N-(2'-((2-hydroxyethyl)amino)-2-methyl-6'-(3-methylmorpholino)-[3,4'-bipyridin]-5-yl)isonicotinamide;(R)-2-(1,1-difluoroethyl)-N-(2'-((2-hydroxyethyl)amino)-2-methyl-6'-(3-methylmorpholino)-[3,4'-bipyridin]-5-yl)isonicotinamide;(R)-N-(2'-((2-hydroxyethyl)amino)-2-methyl-6'-(3-methylmorpholino)-[3,4'-bipyridin]-5-yl)-2-(trifluoromethyl)isonicotinamide;(R)-2-(difluoromethyl)-N-(2'-((2-hydroxyethyl)amino)-2-methyl-6'-(3-methylmorpholino)-[3,4'-bipyridin]-5-yl)isonicotinamide;N-(2'-ethoxy-2-methyl-6'-morpholino-[3,4'-bipyridin]-5-yl)-2-(2-fluoropropan-2-yl)isonicotinamide;2-(1,1-difluoroethyl)-N-(2'-ethoxy-2-methyl-6'-morpholino-[3,4'-bipyridin]-5-yl)isonicotinamide;N-(3-(2-(1,4-dioxan-2-yl)-6-morpholinopyridin-4-yl)-4-methylphenyl)-2-(2-fluoropropan-2-yl)isonicotinamide;N-(3-(2-(1,4-dioxan-2-yl)-6-morpholinopyridin-4-yl)-4-methylphenyl)-2-(1,1-difluoroethyl)isonicotinamide;2-(difluoromethyl)-N-(2'-ethoxy-2-methyl-6'-morpholino-[3,4'-bipyridin]-5-yl)isonicotinamide;2-(2-cyanopropan-2-yl)-N-(2'-ethoxy-2-methyl-6'-morpholino-[3,4'-bipyridin]-5-yl)isonicotinamide;N-(2'-ethoxy-2-methyl-6'-morpholino-[3,4'-bipyridin]-5-yl)-2-(2-hydroxypropan-2-yl)isonicotinamide;2-cyclopropyl-N-(2'-ethoxy-2-methyl-6'-morpholino-[3,4'-bipyridin]-5-yl)isonicotinamide2-(2-hydroxypropan-2-yl)-N-(4-methyl-3-(2-morpholino-6-((tetrahydro-2H-pyran-4-yl)oxy)pyridin-4-yl)phenyl)isonicotinamide;2-(difluoromethyl)-N-(4-methyl-3-(2-morpholino-6-((tetrahydro-2H-pyran-4-yl)oxy)pyridin-4-yl)phenyl)isonicotinamide;2-(2-cyanopropan-2-yl)-N-(4-methyl-3-(2-morpholino-6-((tetrahydro-2H-pyran-4-yl)oxy)pyridin-4-yl)phenyl)isonicotinamide;6-(2-cyanopropan-2-yl)-N-(4-methyl-3-(2-morpholino-6-((tetrahydro-2H-pyran-4-yl)oxy)pyridin-4-yl)phenyl)pyridazine-4-carboxamide;6-cyclopropyl-N-(4-methyl-3-(2-morpholino-6-((tetrahydro-2H-pyran-4-yl)oxy)pyridin-4-yl)phenyl)pyridazine-4-carboxamide;N-(4-methyl-3-(2-morpholino-6-((tetrahydro-2H-pyran-4-yl)oxy)pyridin-4-yl)phenyl)-6-(trifluoromethyl)pyridazine-4-carboxamide;2-cyclopropyl-N-(3-(2-(2-hydroxyethoxy)-6-morpholinopyridin-4-yl)-4-methylphenyl)isonicotinamide;2-(2-fluoropropan-2-yl)-N-(3-(2-(2-hydroxyethoxy)-6-morpholinopyridin-4-yl)-4-methylphenyl)isonicotinamide;2-(1,1-difluoroethyl)-N-(3-(2-(2-hydroxyethoxy)-6-morpholinopyridin-4-yl)-2-(difluoromethyl)-N-(3-(2-(2-hydroxyethoxy)-6-morpholinopyridin-4-yl)-4-methylphenyl)isonicotinamide;2-(2-cyanopropan-2-yl)-N-(3-(2-(2-hydroxyethoxy)-6-morpholinopyridin-4-6-cyclopropyl-N-(3-(2-(2-hydroxyethoxy)-6-morpholinopyridin-4-yl)-4-methylphenyl)pyridazine-4-carboxamide;N-(3-(2-(2-hydroxyethoxy)-6-morpholinopyridin-4-yl)-4-methylphenyl)-4-(trifluoromethyl)picol inamide;N-(3-(2-(2-hydroxyethoxy)-6-morpholinopyridin-4-yl)-4-methylphenyl)-6-(trifluoromethyl)pyridazine-4-carboxamide;N-(2'-(1,4-dioxan-2-yl)-2-methyl-6'-morpholino-[3,4'-bipyridin]-5-yl)-2-(trifluoromethyl)isonicotinamide;N-(2'-(1,4-dioxan-2-yl)-2-methyl-6'-morpholino-[3,4'-bipyridin]-5-yl)-2-(1,1-difluoroethyl)isonicotinamide;N-(2'-(1,4-dioxan-2-yl)-2-methyl-6'-morpholino-[3,4'-bipyridin]-5-yl)-2-(2-fluoropropan-2-yl)isonicotinamide;N-(2'-(1,4-dioxan-2-yl)-2-methyl-6'-morpholino-[3,4'-bipyridin]-5-yl)-2-(1,1-difluoropropyl)isonicotinamide;N-(2'-(1,4-dioxan-2-yl)-2-methyl-6'-morpholino-[3,4'-bipyridin]-5-yl)-2-cyclopropylisonicotinamide;2-(2-cyanopropan-2-yl)-N-(2-methoxy-2'-morpholino-[3,4'-bipyridin]-5-yl)isonicotinamide;2-(1,1-difluoroethyl)-N-(2'-morpholino-2-oxo-1,2-dihydro-[3,4'-bipyridin]-5-yl)isonicotinamide;N-(2'-morpholino-2-oxo-1,2-dihydro-[3,4'-bipyridin]-5-yl)-2-(trifluoromethyl)isonicotinamide;2-(2-cyanopropan-2-yl)-N-(2'-morpholino-2-oxo-1,2-dihydro-[3,4'-bipyridin]-5-yl)isonicotinamide;or a pharmaceutically acceptable salt thereof.
- A pharmaceutical composition comprising a compound of any of claims 1 to 8 or a pharmaceutically acceptable salt thereof and one or more pharmaceutically acceptable carriers.
- A combination comprising a compound according to any one of claims 1 to 8 or a pharmaceutically acceptable salt thereof and one or more therapeutically active co-agents.
- A combination according to claim 10 wherein the one or more therapeutically active co-agents is selected from paclitaxel, docetaxel, temozolomide, platins, doxorubicins, vinblastins, cyclophosphamide, topotecan, gemcitabine, ifosfamide, etoposide and irinotecan.
- A compound according to any one of claims 1 to 8, or a pharmaceutically acceptable salt thereof, for use in the treatment of cancer.
- A compound or a pharmaceutically acceptable salt thereof for use according to claim 12 wherein the cancer is selected from solid tumors, melanoma, breast cancer, lung cancer, liver cancer, sarcoma, GI tumors such as gastrointestinal stromal tumors, ovarian cancer, colorectal cancer, thyroid cancer, and pancreatic cancer.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201361783558P | 2013-03-14 | 2013-03-14 | |
PCT/US2014/026107 WO2014151616A1 (en) | 2013-03-14 | 2014-03-13 | Biaryl amide compounds as kinase inhibitors |
EP14714134.5A EP2970216B1 (en) | 2013-03-14 | 2014-03-13 | Biaryl amide compounds as kinase inhibitors |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP14714134.5A Division-Into EP2970216B1 (en) | 2013-03-14 | 2014-03-13 | Biaryl amide compounds as kinase inhibitors |
EP14714134.5A Division EP2970216B1 (en) | 2013-03-14 | 2014-03-13 | Biaryl amide compounds as kinase inhibitors |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3299367A1 EP3299367A1 (en) | 2018-03-28 |
EP3299367B1 true EP3299367B1 (en) | 2019-12-25 |
Family
ID=50391541
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17190132.5A Active EP3299367B1 (en) | 2013-03-14 | 2014-03-13 | Biaryl amide compounds as kinase inhibitors |
EP14714134.5A Active EP2970216B1 (en) | 2013-03-14 | 2014-03-13 | Biaryl amide compounds as kinase inhibitors |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP14714134.5A Active EP2970216B1 (en) | 2013-03-14 | 2014-03-13 | Biaryl amide compounds as kinase inhibitors |
Country Status (46)
Families Citing this family (112)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10173995B2 (en) * | 2013-01-12 | 2019-01-08 | Teligene Ltd. | Pyridine compounds used as PI3 kinase inhibitors |
JP6294953B2 (en) | 2013-03-14 | 2018-03-14 | ヤンセン ファーマシューティカ エヌ.ベー. | P2X7 modulator |
JO3509B1 (en) | 2013-03-14 | 2020-07-05 | Janssen Pharmaceutica Nv | P2x7 modulators |
AP2015008601A0 (en) | 2013-03-14 | 2015-07-31 | Boehringer Ingelheim Int | Substituted 2-aza-bicyclo[2.2.1] heptane-3-carboxylic acid (benzyl-cyano-methyl)-amides inhibitors of cathepsin C |
US10053463B2 (en) | 2013-03-14 | 2018-08-21 | Janssen Pharmaceutica Nv | Substituted [1,2,4]triazolo[4,3-a]pyrazines as P2X7 modulators |
TWI599567B (en) | 2013-03-14 | 2017-09-21 | 健生藥品公司 | P2x7 modulators |
US9242969B2 (en) | 2013-03-14 | 2016-01-26 | Novartis Ag | Biaryl amide compounds as kinase inhibitors |
FI3640241T3 (en) | 2013-10-18 | 2023-01-13 | Bromodomain inhibitors | |
KR20160122736A (en) * | 2014-01-14 | 2016-10-24 | 밀레니엄 파머슈티컬스 인코퍼레이티드 | Heteroaryls and uses thereof |
US10202373B2 (en) | 2014-01-14 | 2019-02-12 | Millennium Pharmaceuticals, Inc. | Heteroaryls and uses thereof |
JOP20200094A1 (en) | 2014-01-24 | 2017-06-16 | Dana Farber Cancer Inst Inc | Antibody molecules to pd-1 and uses thereof |
JOP20200096A1 (en) | 2014-01-31 | 2017-06-16 | Children’S Medical Center Corp | Antibody molecules to tim-3 and uses thereof |
CU24481B1 (en) | 2014-03-14 | 2020-03-04 | Immutep Sas | ANTIBODY MOLECULES THAT JOIN LAG-3 |
UY36294A (en) | 2014-09-12 | 2016-04-29 | Novartis Ag | COMPOUNDS AND COMPOSITIONS AS QUINASA INHIBITORS |
JP6636014B2 (en) * | 2014-09-12 | 2020-01-29 | ノバルティス アーゲー | Compounds and compositions as RAF kinase inhibitors |
UA118610C2 (en) | 2014-09-12 | 2019-02-11 | Бьорінгер Інгельхайм Інтернаціональ Гмбх | Spirocyclic inhibitors of cathepsin c |
JP6592510B2 (en) | 2014-09-12 | 2019-10-16 | ヤンセン ファーマシューティカ エヌ.ベー. | P2X7 regulator |
MA41044A (en) | 2014-10-08 | 2017-08-15 | Novartis Ag | COMPOSITIONS AND METHODS OF USE FOR INCREASED IMMUNE RESPONSE AND CANCER TREATMENT |
CR20170143A (en) | 2014-10-14 | 2017-06-19 | Dana Farber Cancer Inst Inc | ANTIBODY MOLECULES THAT JOIN PD-L1 AND USES OF THE SAME |
WO2016100882A1 (en) | 2014-12-19 | 2016-06-23 | Novartis Ag | Combination therapies |
TN2017000375A1 (en) | 2015-03-10 | 2019-01-16 | Aduro Biotech Inc | Compositions and methods for activating "stimulator of interferon gene" -dependent signalling |
WO2017004133A1 (en) * | 2015-06-29 | 2017-01-05 | Nimbus Iris, Inc. | Irak inhibitors and uses thereof |
WO2017019896A1 (en) | 2015-07-29 | 2017-02-02 | Novartis Ag | Combination therapies comprising antibody molecules to pd-1 |
US20180207273A1 (en) | 2015-07-29 | 2018-07-26 | Novartis Ag | Combination therapies comprising antibody molecules to tim-3 |
PT3317301T (en) | 2015-07-29 | 2021-07-09 | Novartis Ag | Combination therapies comprising antibody molecules to lag-3 |
CN105153190B (en) * | 2015-08-21 | 2017-07-21 | 江西科技师范大学 | Heterocycle miazines compound of the amide structure containing biaryl and its preparation method and application |
US10208024B2 (en) | 2015-10-23 | 2019-02-19 | Array Biopharma Inc. | 2-aryl- and 2-heteroaryl-substituted 2-pyridazin-3(2H)-one compounds as inhibitors of FGFR tyrosine kinases |
SG11201803520PA (en) | 2015-11-03 | 2018-05-30 | Janssen Biotech Inc | Antibodies specifically binding pd-1 and their uses |
AU2016369537B2 (en) | 2015-12-17 | 2024-03-14 | Novartis Ag | Antibody molecules to PD-1 and uses thereof |
CN107021963A (en) * | 2016-01-29 | 2017-08-08 | 北京诺诚健华医药科技有限公司 | Pyrazole fused ring analog derivative, its preparation method and its application in treating cancer, inflammation and immunity disease |
LT3416945T (en) * | 2016-02-19 | 2020-11-25 | Sprint Bioscience Ab | 6-aryl-4-(morpholin-4-yl)-1h-pyridin-2-one compounds useful for the treatment of cancer and diabetes |
ES2821400T3 (en) * | 2016-02-19 | 2021-04-26 | Sprint Bioscience Ab | 6-heterocyclyl-4-morpholin-4-ylpyridin-2-one compounds useful for the treatment of cancer and diabetes |
MX2018012471A (en) | 2016-04-15 | 2019-02-21 | Genentech Inc | Diagnostic and therapeutic methods for cancer. |
RU2018146886A (en) | 2016-06-10 | 2020-07-10 | Новартис Аг | WAYS OF THERAPEUTIC USE OF C-RAF INHIBITOR |
WO2018009466A1 (en) | 2016-07-05 | 2018-01-11 | Aduro Biotech, Inc. | Locked nucleic acid cyclic dinucleotide compounds and uses thereof |
CN106831812B (en) * | 2016-08-09 | 2019-09-20 | 江西科技师范大学 | Simultaneously pyrimidine or pyrazine compounds and its application of the heterocycle of the amide structure containing biaryl |
JP7076432B2 (en) | 2016-09-09 | 2022-05-27 | インサイト・コーポレイション | Pyrazolopyridine derivatives as HPK1 regulators and their use for the treatment of cancer |
AR109595A1 (en) | 2016-09-09 | 2018-12-26 | Incyte Corp | PIRAZOLOPIRIMIDINE COMPOUNDS AND USES OF THESE AS HPK1 INHIBITORS |
US20180072718A1 (en) | 2016-09-09 | 2018-03-15 | Incyte Corporation | Pyrazolopyridine compounds and uses thereof |
WO2018049191A1 (en) | 2016-09-09 | 2018-03-15 | Incyte Corporation | Pyrazolopyridone derivatives as hpk1 modulators and uses thereof for the treatment of cancer |
AU2017329090B9 (en) | 2016-09-19 | 2019-09-05 | Novartis Ag | Therapeutic combinations comprising a RAF inhibitor and a ERK inhibitor |
US10898487B2 (en) | 2016-12-22 | 2021-01-26 | Boehringer Ingelheim International Gmbh | Benzylamino substituted quinazolines and derivatives as SOS1 inhibitors |
WO2018152220A1 (en) | 2017-02-15 | 2018-08-23 | Incyte Corporation | Pyrazolopyridine compounds and uses thereof |
CN106866547B (en) * | 2017-03-15 | 2020-11-10 | 江苏省农用激素工程技术研究中心有限公司 | Synthesis method of 2-ethoxy-4, 6-dichloropyrimidine |
UY37695A (en) | 2017-04-28 | 2018-11-30 | Novartis Ag | BIS 2’-5’-RR- (3’F-A) (3’F-A) CYCLE DINUCLEOTIDE COMPOUND AND USES OF THE SAME |
EP3615083A4 (en) * | 2017-04-28 | 2021-05-19 | Zamboni Chem Solutions Inc. | Raf-degrading conjugate compounds |
JP7309614B2 (en) | 2017-05-02 | 2023-07-18 | ノバルティス アーゲー | combination therapy |
WO2018237173A1 (en) | 2017-06-22 | 2018-12-27 | Novartis Ag | Antibody molecules to cd73 and uses thereof |
MX2020001254A (en) | 2017-08-03 | 2020-03-20 | Novartis Ag | Therapeutic combination of a third-generation egfr tyrosine kinase inhibitor and a raf inhibitor. |
KR20200041387A (en) | 2017-09-08 | 2020-04-21 | 에프. 호프만-라 로슈 아게 | How to diagnose and treat cancer |
WO2019051199A1 (en) | 2017-09-08 | 2019-03-14 | Incyte Corporation | 6-cyano-indazole compounds as hematopoietic progenitor kinase 1 (hpk1) modulators |
SG11202005881YA (en) | 2017-12-21 | 2020-07-29 | Boehringer Ingelheim Int | Novel benzylamino substituted pyridopyrimidinones and derivatives as sos1 inhibitors |
WO2019158579A1 (en) | 2018-02-13 | 2019-08-22 | Vib Vzw | Targeting minimal residual disease in cancer with rxr antagonists |
US10745388B2 (en) | 2018-02-20 | 2020-08-18 | Incyte Corporation | Indazole compounds and uses thereof |
PE20210397A1 (en) | 2018-02-20 | 2021-03-02 | Incyte Corp | DERIVATIVES OF N- (PHENYL) -2- (PHENYL) PYRIMIDINE-4-CARBOXAMIDE AND RELATED COMPOUNDS AS HPKI INHIBITORS TO TREAT CANCER |
WO2019164847A1 (en) | 2018-02-20 | 2019-08-29 | Incyte Corporation | Indazole compounds and uses thereof |
US11299473B2 (en) | 2018-04-13 | 2022-04-12 | Incyte Corporation | Benzimidazole and indole compounds and uses thereof |
CA3101117A1 (en) * | 2018-05-22 | 2019-11-28 | Js Innomed Holdings Ltd. | Heterocyclic compounds as kinase inhibitors, compositions comprising the heterocyclic compound, and methods of use thereof |
AR126019A1 (en) | 2018-05-30 | 2023-09-06 | Novartis Ag | ANTIBODIES AGAINST ENTPD2, COMBINATION THERAPIES AND METHODS OF USE OF ANTIBODIES AND COMBINATION THERAPIES |
CN108863884B (en) * | 2018-07-26 | 2020-07-03 | 南京富润凯德生物医药有限公司 | Method for synthesizing conjugated nitroene substituted series derivatives by using DAST reagent as elimination reagent |
US10899755B2 (en) | 2018-08-08 | 2021-01-26 | Incyte Corporation | Benzothiazole compounds and uses thereof |
ES2973117T3 (en) | 2018-09-25 | 2024-06-18 | Incyte Corp | Pyrazolo[4,3-d]pyrimidine compounds as modulators of ALK2 and/or FGFR |
CN110950868B (en) * | 2018-09-27 | 2022-05-13 | 苏州锐明新药研发有限公司 | Pyrazolopyrimidine compound, preparation method thereof and application of pyrazolopyrimidine compound in preparation of anti-cancer drugs |
TW202035409A (en) | 2018-09-28 | 2020-10-01 | 比利時商健生藥品公司 | Monoacylglycerol lipase modulators |
MA53721A (en) | 2018-09-28 | 2021-09-15 | Janssen Pharmaceutica Nv | MONOACYLGLYCEROL LIPASE MODULATORS |
KR20210105388A (en) | 2018-12-20 | 2021-08-26 | 노파르티스 아게 | Combination therapy with RAF inhibitors and CDK4/6 inhibitors for use in cancer treatment |
JP2022525885A (en) * | 2019-03-22 | 2022-05-20 | キネート バイオファーマ インク. | RAF kinase inhibitor |
TW202106684A (en) | 2019-05-03 | 2021-02-16 | 美商奇奈特生物製藥公司 | Inhibitors of raf kinases |
CN113795490A (en) * | 2019-05-13 | 2021-12-14 | 诺华股份有限公司 | Novel crystalline forms of N- (3- (2- (2-hydroxyethoxy) -6-morpholinopyridin-4-yl) -4-methylphenyl) -2 (trifluoromethyl) isonicotinamide as Raf inhibitors for the treatment of cancer |
EP4010338A1 (en) | 2019-08-06 | 2022-06-15 | Incyte Corporation | Solid forms of an hpk1 inhibitor |
WO2021027943A1 (en) * | 2019-08-14 | 2021-02-18 | 正大天晴药业集团南京顺欣制药有限公司 | Pyrimidinopyridazinone derivative and medical use thereof |
US10702525B1 (en) | 2019-09-04 | 2020-07-07 | United Arab Emirates University | Pyrimidine derivatives as anti-diabetic agents |
EP4031578A1 (en) | 2019-09-18 | 2022-07-27 | Novartis AG | Entpd2 antibodies, combination therapies, and methods of using the antibodies and combination therapies |
CN114555596A (en) | 2019-09-30 | 2022-05-27 | 詹森药业有限公司 | Radiolabeled MGL PET ligands |
WO2021081375A1 (en) * | 2019-10-24 | 2021-04-29 | Kinnate Biopharma Inc. | Inhibitors of raf kinases |
JP7214925B2 (en) * | 2019-12-06 | 2023-01-30 | メッドシャイン ディスカバリー インコーポレイテッド | Biaryl compounds as Pan-RAF kinase inhibitors |
EP4106756A1 (en) | 2020-02-18 | 2022-12-28 | Novartis AG | Therapeutic combinations comprising a raf inhibitor for use in treating braf mutant nsclc |
AU2021225491A1 (en) | 2020-02-28 | 2022-10-20 | Novartis Ag | A triple pharmaceutical combination comprising dabrafenib, an Erk inhibitor and a RAF inhibitor |
BR112022019077A2 (en) | 2020-03-26 | 2022-12-27 | Janssen Pharmaceutica Nv | MONOACYLGLYCEROL LIPASE MODULATORS |
CN115551509A (en) | 2020-05-12 | 2022-12-30 | 诺华股份有限公司 | Therapeutic combinations comprising CRAF inhibitors |
EP4157836A1 (en) | 2020-06-02 | 2023-04-05 | Boehringer Ingelheim International GmbH | Annulated 2-amino-3-cyano thiophenes and derivatives for the treatment of cancer |
CN113912591B (en) * | 2020-07-08 | 2023-10-20 | 齐鲁制药有限公司 | Biaryl compounds |
CN111995623A (en) * | 2020-08-18 | 2020-11-27 | 上海毕得医药科技有限公司 | Synthesis method of 7-bromo-4-chloro-1-methyl-1H-imidazo [4,5-c ] pyridine |
EP4203963A1 (en) | 2020-08-31 | 2023-07-05 | Novartis AG | Combination therapy of a raf inhibitor and a mek inhibitor for the treatment of sarcoma |
US11407737B2 (en) | 2020-09-18 | 2022-08-09 | Kinnate Biopharma Inc. | Inhibitors of RAF kinases |
WO2022081469A1 (en) * | 2020-10-12 | 2022-04-21 | Kinnate Biopharma Inc. | Inhibitors of raf kinases |
US12064421B2 (en) | 2020-11-02 | 2024-08-20 | Boehringer Ingelheim International Gmbh | Substituted 1H-pyrazolo[4,3-c]pyridines and derivatives as EGFR inhibitors |
TW202241885A (en) | 2020-12-22 | 2022-11-01 | 大陸商上海齊魯銳格醫藥研發有限公司 | Sos1 inhibitors and uses thereof |
CN114591324B (en) * | 2021-03-30 | 2023-05-05 | 深圳微芯生物科技股份有限公司 | Pyrazinone derivatives, preparation and application thereof |
AU2022261159A1 (en) * | 2021-04-23 | 2023-11-23 | Kinnate Biopharma Inc. | Solid state forms of (s)-n-(3-(2-(((r)-1-hydroxypropan-2-yl)amino)-6-morpholinopyridin-4-yl)-4-methylphenyl)-3-(2,2,2-trifluoroethyl)pyrrolidine-1-carboxamide and salts thereof |
IL307908A (en) | 2021-04-23 | 2023-12-01 | Kinnate Biopharma Inc | Treatment of cancer with a raf inhibitor |
US12065427B2 (en) | 2021-04-29 | 2024-08-20 | Boehringer Ingelheim International Gmbh | Heterocyclic compounds capable of activating STING |
WO2022253334A1 (en) * | 2021-06-04 | 2022-12-08 | 南京明德新药研发有限公司 | Crystal form of raf kinase inhibitor and preparation method therefor |
WO2023083330A1 (en) * | 2021-11-12 | 2023-05-19 | 百极优棠(广东)医药科技有限公司 | Drak2 inhibitor, and preparation method therefor and use thereof |
CA3240980A1 (en) | 2021-12-01 | 2023-06-08 | Boehringer Ingelheim International Gmbh | Annulated 2-amino-3-cyano thiophenes and derivatives for the treatment of cancer |
EP4441050A1 (en) | 2021-12-01 | 2024-10-09 | Boehringer Ingelheim International GmbH | Annulated 2-amino-3-cyano thiophenes and derivatives for the treatment of cancer |
CN118574835A (en) | 2021-12-01 | 2024-08-30 | 勃林格殷格翰国际有限公司 | Cyclic 2-amino-3-cyanothiophenes and derivatives for the treatment of cancer |
EP4441054A1 (en) | 2021-12-01 | 2024-10-09 | Boehringer Ingelheim International GmbH | Annulated 2-amino-3-cyano thiophenes and derivatives for the treatment of cancer |
CN118591540A (en) | 2021-12-01 | 2024-09-03 | 勃林格殷格翰国际有限公司 | KRAS degrading compounds comprising cyclic 2-amino-3-cyanothiophenes |
TW202337432A (en) | 2021-12-01 | 2023-10-01 | 德商百靈佳殷格翰國際股份有限公司 | Annulated 2-amino-3-cyano thiophenes and derivatives for the treatment of cancer |
KR20240133793A (en) * | 2021-12-09 | 2024-09-04 | 데시페라 파마슈티칼스, 엘엘씨. | RAF kinase inhibitors and methods of use thereof |
CN118434735A (en) | 2021-12-23 | 2024-08-02 | 勃林格殷格翰国际有限公司 | 8-Azaquinazoline as brain penetration SOS1 inhibitor |
AR128440A1 (en) * | 2022-02-03 | 2024-05-08 | Kinnate Biopharma Inc | RAF KINASE INHIBITORS |
CN115947691B (en) * | 2022-03-01 | 2024-08-16 | 四川大学 | Pyridazine sulfone derivative and application thereof |
TW202342766A (en) | 2022-03-02 | 2023-11-01 | 瑞士商諾華公司 | Precision therapy for the treatment of cancer |
WO2023230205A1 (en) | 2022-05-25 | 2023-11-30 | Ikena Oncology, Inc. | Mek inhibitors and uses thereof |
WO2024033703A1 (en) | 2022-08-10 | 2024-02-15 | Novartis Ag | Amorphous solid dispersions comprising naporafenib |
WO2024033381A1 (en) | 2022-08-10 | 2024-02-15 | Vib Vzw | Inhibition of tcf4/itf2 in the treatment of cancer |
WO2024088991A1 (en) | 2022-10-26 | 2024-05-02 | Boehringer Ingelheim International Gmbh | Heterocyclic compounds capable of activating sting |
US20240174642A1 (en) | 2022-10-26 | 2024-05-30 | Boehringer Ingelheim International Gmbh | Heterocyclic compounds capable of activating sting |
US20240174641A1 (en) | 2022-10-26 | 2024-05-30 | Boehringer Ingelheim International Gmbh | Heterocyclic compounds capable of activating sting |
WO2024166131A1 (en) | 2023-02-09 | 2024-08-15 | Satyarx Pharma Innovations Private Limited | Heteroaryl compounds as pkmyt1 inhibitors |
Family Cites Families (110)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3707475A (en) | 1970-11-16 | 1972-12-26 | Pfizer | Antiinflammatory imidazoles |
DE3029376A1 (en) | 1980-07-31 | 1982-03-18 | Nepera Chemical Co. Inc., Harriman, N.Y. | 2,4,5-Tris-pyridyl-imidazole derivs. prodn. - by catalytic hydrogenation of 2,4,6-tris-pyridyl-sym-triazine derivs. |
EP0149884B1 (en) | 1983-09-09 | 1992-12-16 | Takeda Chemical Industries, Ltd. | 5-pyridyl-1,3-thiazole derivatives, their production and use |
JP2722586B2 (en) | 1989-01-13 | 1998-03-04 | 大正製薬株式会社 | Indolyl imidazole derivatives |
JP2808460B2 (en) | 1989-11-16 | 1998-10-08 | 大正製薬株式会社 | Imidazole derivative |
US6358932B1 (en) | 1994-05-31 | 2002-03-19 | Isis Pharmaceticals, Inc. | Antisense oligonucleotide inhibition of raf gene expression |
US5717100A (en) | 1995-10-06 | 1998-02-10 | Merck & Co., Inc. | Substituted imidazoles having anti-cancer and cytokine inhibitory activity |
GB2306108A (en) | 1995-10-13 | 1997-04-30 | Merck & Co Inc | Treatment of Raf-mediated cancers with imidazole derivatives |
EP0923579A1 (en) | 1996-08-27 | 1999-06-23 | Novartis AG | Herbicidal s-substituted 1,2,4,6-thiatriazines |
CA2282439C (en) | 1997-03-05 | 2010-05-04 | Sugen, Inc. | Formulations for hydrophobic pharmaceutical agents |
AR012634A1 (en) | 1997-05-02 | 2000-11-08 | Sugen Inc | QUINAZOLINE BASED COMPOUND, FAMACEUTICAL COMPOSITION THAT UNDERSTANDS IT, METHOD TO SYNTHESIZE IT, ITS USE, METHODS OF MODULATION OF THE DESERINE / TREONIN PROTEIN-KINASE FUNCTION AND IN VITRO METHOD TO IDENTIFY COMPOUNDS THAT MODULATE |
GB9711650D0 (en) | 1997-06-05 | 1997-07-30 | Pfizer Ltd | Compounds useful in therapy |
GB9716557D0 (en) | 1997-08-06 | 1997-10-08 | Glaxo Group Ltd | Benzylidene-1,3-dihydro-indol-2-one derivatives having anti-cancer activity |
US6022884A (en) | 1997-11-07 | 2000-02-08 | Amgen Inc. | Substituted pyridine compounds and methods of use |
US6211177B1 (en) | 1998-11-24 | 2001-04-03 | Cell Pathways, Inc. | Method for treating neoplasia by exposure to substituted 2-aryl-benzimidazole derivatives |
EP1140840B1 (en) | 1999-01-13 | 2006-03-22 | Bayer Pharmaceuticals Corp. | -g(v)-carboxyaryl substituted diphenyl ureas as raf kinase inhibitors |
US6548529B1 (en) | 1999-04-05 | 2003-04-15 | Bristol-Myers Squibb Company | Heterocyclic containing biphenyl aP2 inhibitors and method |
WO2000061576A1 (en) | 1999-04-09 | 2000-10-19 | Smithkline Beecham Corporation | Triarylimidazoles |
PT1169038E (en) | 1999-04-15 | 2012-10-26 | Bristol Myers Squibb Co | Cyclic protein tyrosine kinase inhibitors |
JP2000302680A (en) | 1999-04-23 | 2000-10-31 | Takeda Chem Ind Ltd | Brain protective agent |
JP2003509501A (en) | 1999-09-23 | 2003-03-11 | アストラゼネカ・アクチエボラーグ | Therapeutic quinazoline compounds |
WO2001037835A1 (en) | 1999-11-22 | 2001-05-31 | Smithkline Beecham Plc. | Novel compounds |
AU782883B2 (en) | 2000-01-18 | 2005-09-08 | Vertex Pharmaceuticals Incorpoated | Gyrase inhibitors and uses thereof |
WO2001052846A1 (en) | 2000-01-18 | 2001-07-26 | Vertex Pharmaceuticals Incorporated | Gyrase inhibitors and uses thereof |
CO5271680A1 (en) | 2000-02-21 | 2003-04-30 | Smithkline Beecham Corp | COMPOUNDS |
DE60103136T2 (en) | 2000-03-06 | 2004-10-28 | Smithkline Beecham Plc, Brentford | Imidazole derivatives as Raf kinase inhibitors |
GB0005357D0 (en) | 2000-03-06 | 2000-04-26 | Smithkline Beecham Plc | Compounds |
GB0007405D0 (en) | 2000-03-27 | 2000-05-17 | Smithkline Beecham Corp | Compounds |
WO2001074811A2 (en) | 2000-03-30 | 2001-10-11 | Takeda Chemical Industries, Ltd. | Substituted 1,3-thiazole compounds, their production and use |
US6608053B2 (en) * | 2000-04-27 | 2003-08-19 | Yamanouchi Pharmaceutical Co., Ltd. | Fused heteroaryl derivatives |
EP1300396B1 (en) | 2000-06-12 | 2009-01-14 | Eisai R&D Management Co., Ltd. | 1,2-dihydropyridine compounds, process for preparation of the same and use thereof |
EP1332131A2 (en) | 2000-11-07 | 2003-08-06 | Bristol-Myers Squibb Company | Acid derivatives useful as serine protease inhibitors |
EP1343779B1 (en) | 2000-11-20 | 2007-06-27 | Smithkline Beecham Corporation | Novel compounds |
EP1341771A2 (en) | 2000-11-29 | 2003-09-10 | Glaxo Group Limited | Benzimidazole derivatives useful as tie-2 and/or vegfr-2 inhibitors |
US7279477B2 (en) | 2001-01-26 | 2007-10-09 | Chugai Seiyaku Kabushiki Kaisha | Malonyl-CoA decarboxylase inhibitors useful as metabolic modulators |
WO2002062792A1 (en) | 2001-02-02 | 2002-08-15 | Takeda Chemical Industries, Ltd. | Jnk inhibitor |
WO2002076960A1 (en) | 2001-03-22 | 2002-10-03 | Abbott Gmbh & Co. Kg | Transition metal mediated process |
JP2002338537A (en) | 2001-05-16 | 2002-11-27 | Mitsubishi Pharma Corp | Amide compound and its medicinal use |
GB0112348D0 (en) | 2001-05-19 | 2001-07-11 | Smithkline Beecham Plc | Compounds |
GB0129260D0 (en) | 2001-12-06 | 2002-01-23 | Eisai London Res Lab Ltd | Pharmaceutical compositions and their uses |
US8299108B2 (en) | 2002-03-29 | 2012-10-30 | Novartis Ag | Substituted benzazoles and methods of their use as inhibitors of raf kinase |
US7071216B2 (en) | 2002-03-29 | 2006-07-04 | Chiron Corporation | Substituted benz-azoles and methods of their use as inhibitors of Raf kinase |
AR039241A1 (en) | 2002-04-04 | 2005-02-16 | Biogen Inc | HETEROARILOS TRISUSTITUIDOS AND METHODS FOR ITS PRODUCTION AND USE OF THE SAME |
BR0314383A (en) | 2002-09-18 | 2005-07-19 | Pfizer Prod Inc | Oxazole and thiazole compounds as transforming growth factor (tgf) inhibitors |
EA200500378A1 (en) | 2002-09-18 | 2005-08-25 | Пфайзер Продактс Инк. | NEW IMIDAZOL COMPOUNDS AS A TRANSFORMING GROWTH FACTOR INHIBITORS (TGF) INHIBITORS |
JP2007524596A (en) | 2003-02-28 | 2007-08-30 | トランスフォーム・ファーマシューティカルズ・インコーポレイテッド | Co-crystal pharmaceutical composition |
US7531553B2 (en) | 2003-03-21 | 2009-05-12 | Amgen Inc. | Heterocyclic compounds and methods of use |
AR045944A1 (en) | 2003-09-24 | 2005-11-16 | Novartis Ag | ISOQUINOLINE DERIVATIVES 1.4-DISPOSED |
JP4758349B2 (en) | 2003-10-08 | 2011-08-24 | アイアールエム・リミテッド・ライアビリティ・カンパニー | Compounds and compositions as protein kinase inhibitors |
ATE435015T1 (en) | 2003-10-16 | 2009-07-15 | Novartis Vaccines & Diagnostic | SUBSTITUTED BENZAZOLES AND THEIR USE AS RAF-KINASE INHIBITORS |
US8969372B2 (en) | 2003-11-14 | 2015-03-03 | Aptose Boisciences Inc. | Aryl imidazoles and their use as anti-cancer agents |
JP4853284B2 (en) | 2004-03-05 | 2012-01-11 | 大正製薬株式会社 | Thiazole derivative |
KR100749566B1 (en) | 2004-04-21 | 2007-08-16 | 이화여자대학교 산학협력단 | 2-PYRIDYL SUBSTITUTED IMIDAZOLES AS ALK5 and/or ALK4 INHIBITORS |
US20060106020A1 (en) | 2004-04-28 | 2006-05-18 | Rodgers James D | Tetracyclic inhibitors of Janus kinases |
PE20060315A1 (en) | 2004-05-24 | 2006-05-15 | Irm Llc | THIAZOLE COMPOUNDS AS PPAR MODULATORS |
JP2008502666A (en) * | 2004-06-15 | 2008-01-31 | アストラゼネカ アクチボラグ | Substituted quinazolones as anticancer agents |
US7453002B2 (en) | 2004-06-15 | 2008-11-18 | Bristol-Myers Squibb Company | Five-membered heterocycles useful as serine protease inhibitors |
GB0415364D0 (en) | 2004-07-09 | 2004-08-11 | Astrazeneca Ab | Pyrimidine derivatives |
GB0415365D0 (en) | 2004-07-09 | 2004-08-11 | Astrazeneca Ab | Pyrimidine derivatives |
GB0415367D0 (en) | 2004-07-09 | 2004-08-11 | Astrazeneca Ab | Pyrimidine derivatives |
CA2578630A1 (en) | 2004-08-31 | 2006-03-09 | Wen-Cherng Lee | Pyrimidinylimidazoles as tgf-beta inhibitors |
WO2006038734A1 (en) | 2004-10-08 | 2006-04-13 | Astellas Pharma Inc. | Pyridazinone derivatives cytokines inhibitors |
CA2584248A1 (en) | 2004-10-15 | 2006-04-27 | Biogen Idec Ma Inc. | Methods of treating vascular injuries |
GB0524814D0 (en) * | 2005-12-05 | 2006-01-11 | Glaxo Group Ltd | Compounds |
JO2660B1 (en) | 2006-01-20 | 2012-06-17 | نوفارتيس ايه جي | PI-3 Kinase inhibitors and methods of their use |
JP2007246520A (en) | 2006-02-15 | 2007-09-27 | Takeda Yuichiro | Rage inhibitor |
CA2643968A1 (en) * | 2006-03-17 | 2007-09-27 | Wyeth | Pyrazolo[1,5-a]pyrimidine derivatives and methods of use thereof |
US8217037B2 (en) | 2006-04-07 | 2012-07-10 | Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College | Thiazole and thiophene analogues, and their use in treating autoimmune diseases and cancers |
PL2050749T3 (en) | 2006-08-08 | 2018-03-30 | Chugai Seiyaku Kabushiki Kaisha | Pyrimidine derivative as pi3k inhibitor and use thereof |
WO2008071605A2 (en) | 2006-12-15 | 2008-06-19 | F. Hoffmann-La Roche Ag | Methods of treating inflammatory diseases |
ES2525716T3 (en) | 2007-06-27 | 2014-12-29 | Astrazeneca Ab | Pyrazinone derivatives and their use in the treatment of lung diseases |
JP2010532381A (en) | 2007-06-29 | 2010-10-07 | サネシス ファーマシューティカルズ, インコーポレイテッド | Heterocyclic compounds useful as RAF kinase inhibitors |
CL2008001933A1 (en) | 2007-06-29 | 2009-09-25 | Millennium Pharm Inc | Pyrimidine derived compounds, raph kinase inhibitors; intermediate compounds; preparation procedure; pharmaceutical composition; and its use to treat proliferative, cardiac, neurodegenerative, inflammatory, bone, immunological, viral disease, among others. |
WO2009003998A2 (en) | 2007-07-02 | 2009-01-08 | Boehringer Ingelheim International Gmbh | Antiproliferative compounds based on 5-membered heterocycles |
JP2010533159A (en) * | 2007-07-09 | 2010-10-21 | アストラゼネカ アクチボラグ | Compound 947 |
US20100190777A1 (en) | 2007-07-17 | 2010-07-29 | Plexxikon Inc. | Compounds and methods for kinase modulation, and indications therefor |
BRPI0814441A2 (en) | 2007-07-19 | 2015-07-14 | Schering Corp | Heterocyclic Amide Compounds as Protein Kinase Inhibitors |
US20110190280A1 (en) | 2007-08-29 | 2011-08-04 | George Adjabeng | Thiazole And Oxazole Kinase Inhibitors |
TW200916458A (en) | 2007-09-05 | 2009-04-16 | Astrazeneca Ab | Heterocyclic compounds and methods of use thereof |
WO2009047163A1 (en) | 2007-10-10 | 2009-04-16 | F. Hoffmann-La Roche Ag | Methods of treating inflammatory diseases |
TW200940537A (en) | 2008-02-26 | 2009-10-01 | Astrazeneca Ab | Heterocyclic urea derivatives and methods of use thereof |
KR101408517B1 (en) | 2008-03-21 | 2014-06-17 | 노파르티스 아게 | Novel heterocyclic compounds and uses therof |
US8865732B2 (en) | 2008-03-21 | 2014-10-21 | Novartis Ag | Heterocyclic compounds and uses thereof |
UA103319C2 (en) | 2008-05-06 | 2013-10-10 | Глаксосмитклайн Ллк | Thiazole- and oxazole-benzene sulfonamide compounds |
EA201001847A1 (en) | 2008-06-11 | 2011-08-30 | Айрм Ллк | COMPOUNDS AND COMPOSITIONS APPLICABLE FOR THE TREATMENT OF MALARIA |
US8338604B2 (en) * | 2008-06-20 | 2012-12-25 | Bristol-Myers Squibb Company | Imidazopyridine and imidazopyrazine compounds useful as kinase inhibitors |
EA019722B1 (en) | 2008-07-24 | 2014-05-30 | НЕРВИАНО МЕДИКАЛ САЙЕНСИЗ С.р.л. | 3,4-diarylpyrazoles as protein kinase inhibitors |
WO2010048149A2 (en) | 2008-10-20 | 2010-04-29 | Kalypsys, Inc. | Heterocyclic modulators of gpr119 for treatment of disease |
SG10201607592PA (en) | 2008-12-19 | 2016-11-29 | Vertex Pharma | Pyrazine derivatives useful as inhibitors of atr kinase |
US8242260B2 (en) * | 2009-08-28 | 2012-08-14 | Novartis Ag | Compounds and compositions as protein kinase inhibitors |
CA2771563A1 (en) | 2009-09-04 | 2011-03-10 | Novartis Ag | Bipyridines useful for the treatment of proliferative diseases |
WO2011059610A1 (en) | 2009-11-10 | 2011-05-19 | Glaxosmithkline Llc | Benzene sulfonamide thiazole and oxazole compounds |
AU2010339271B2 (en) | 2009-12-28 | 2015-09-03 | General Incorporated Association Pharma Valley Project Supporting Organization | 1,3,4-oxadiazole-2-carboxamide compound |
US9315491B2 (en) | 2009-12-28 | 2016-04-19 | Development Center For Biotechnology | Pyrimidine compounds as mTOR and PI3K inhibitors |
KR20110123657A (en) | 2010-05-07 | 2011-11-15 | 에스케이케미칼주식회사 | Picolinamide and pyrimidine-4-carboxamide compounds, process for preparing and pharmaceutical composition comprising the same |
KR20130048293A (en) | 2010-06-25 | 2013-05-09 | 노파르티스 아게 | Heteroaryl compounds and compositions as protein kinase inhibitors |
CN101993415B (en) | 2010-09-15 | 2013-08-14 | 北京韩美药品有限公司 | Compound as Hedgehog path inhibitor, medicine composition containing same and application thereof |
PT2672967T (en) | 2011-02-07 | 2018-12-07 | Plexxikon Inc | Compounds and methods for kinase modulation, and indications therefor |
WO2012125981A2 (en) * | 2011-03-17 | 2012-09-20 | Selexagen Therapeutics, Inc. | Raf kinase inhibitors |
EP2739143B1 (en) | 2011-08-05 | 2018-07-11 | Gary A. Flynn | Preparation and methods of use for ortho-aryl 5- membered heteroaryl-carboxamide containing multi-targeted kinase inhibitors |
BR112014004560A2 (en) | 2011-09-01 | 2017-04-04 | Irm Llc | compounds and compositions as c-kit kinase inhibitors |
CA2849189A1 (en) | 2011-09-21 | 2013-03-28 | Cellzome Limited | Morpholino substituted urea or carbamate derivatives as mtor inhibitors |
EP2844655A1 (en) | 2012-05-02 | 2015-03-11 | Lupin Limited | Substituted pyridine compounds as crac modulators |
MX2014013373A (en) | 2012-05-15 | 2015-08-14 | Novartis Ag | Benzamide derivatives for inhibiting the activity of abl1, abl2 and bcr-abl1. |
AR091654A1 (en) | 2012-07-02 | 2015-02-18 | Biogen Idec Inc | COMPOUNDS CONTAINING BIARILO AS INVESTED AGONISTS OF ROR-g RECEIVERS |
US9586948B2 (en) | 2012-10-08 | 2017-03-07 | Merck Sharp & Dohme Corp. | Inhibitors of IRAK4 activity |
US9242969B2 (en) * | 2013-03-14 | 2016-01-26 | Novartis Ag | Biaryl amide compounds as kinase inhibitors |
UY36294A (en) | 2014-09-12 | 2016-04-29 | Novartis Ag | COMPOUNDS AND COMPOSITIONS AS QUINASA INHIBITORS |
JP6636014B2 (en) | 2014-09-12 | 2020-01-29 | ノバルティス アーゲー | Compounds and compositions as RAF kinase inhibitors |
JP6646044B2 (en) | 2014-09-12 | 2020-02-14 | ノバルティス アーゲー | Compounds and compositions as kinase inhibitors |
-
2014
- 2014-03-11 US US14/204,823 patent/US9242969B2/en active Active
- 2014-03-12 UY UY0001035398A patent/UY35398A/en active IP Right Grant
- 2014-03-13 JP JP2016502052A patent/JP6360879B2/en active Active
- 2014-03-13 CN CN201810126023.5A patent/CN108467369B/en active Active
- 2014-03-13 PL PL14714134T patent/PL2970216T3/en unknown
- 2014-03-13 MA MA38398A patent/MA38398B1/en unknown
- 2014-03-13 EP EP17190132.5A patent/EP3299367B1/en active Active
- 2014-03-13 ES ES17190132T patent/ES2779673T3/en active Active
- 2014-03-13 EP EP14714134.5A patent/EP2970216B1/en active Active
- 2014-03-13 GE GEAP201413933A patent/GEP201706692B/en unknown
- 2014-03-13 PT PT147141345T patent/PT2970216T/en unknown
- 2014-03-13 UA UAA201507596A patent/UA116644C2/en unknown
- 2014-03-13 RS RS20180007A patent/RS56774B1/en unknown
- 2014-03-13 CU CUP2015000118A patent/CU24351B1/en unknown
- 2014-03-13 NZ NZ710835A patent/NZ710835A/en unknown
- 2014-03-13 SG SG11201506196SA patent/SG11201506196SA/en unknown
- 2014-03-13 MX MX2015012290A patent/MX2015012290A/en active IP Right Grant
- 2014-03-13 BR BR112015020008-7A patent/BR112015020008B1/en active IP Right Grant
- 2014-03-13 EA EA201591727A patent/EA028194B1/en not_active IP Right Cessation
- 2014-03-13 HU HUE14714134A patent/HUE035932T2/en unknown
- 2014-03-13 CA CA2899967A patent/CA2899967C/en active Active
- 2014-03-13 US US14/774,431 patent/US9694016B2/en active Active
- 2014-03-13 SI SI201430516T patent/SI2970216T1/en unknown
- 2014-03-13 ES ES14714134.5T patent/ES2657900T3/en active Active
- 2014-03-13 AU AU2014233657A patent/AU2014233657B2/en active Active
- 2014-03-13 LT LTEP14714134.5T patent/LT2970216T/en unknown
- 2014-03-13 KR KR1020157028099A patent/KR102059545B1/en active IP Right Grant
- 2014-03-13 CN CN201480011417.6A patent/CN105143209B/en active Active
- 2014-03-13 WO PCT/US2014/026107 patent/WO2014151616A1/en active Application Filing
- 2014-03-13 JO JOP/2014/0104A patent/JOP20140104B1/en active
- 2014-03-13 PE PE2016000717A patent/PE20160875A1/en unknown
- 2014-03-13 DK DK14714134.5T patent/DK2970216T3/en active
- 2014-03-13 AP AP2015008632A patent/AP2015008632A0/en unknown
- 2014-03-13 TW TW103109159A patent/TWI662025B/en active
- 2014-03-14 AR ARP140101014A patent/AR095312A1/en active IP Right Grant
- 2014-06-25 NO NO14802136A patent/NO3013169T3/no unknown
-
2015
- 2015-07-28 ZA ZA2015/05438A patent/ZA201505438B/en unknown
- 2015-07-31 CL CL2015002151A patent/CL2015002151A1/en unknown
- 2015-07-31 TN TN2015000332A patent/TN2015000332A1/en unknown
- 2015-09-03 IL IL241165A patent/IL241165B/en active IP Right Grant
- 2015-09-04 NI NI201500120A patent/NI201500120A/en unknown
- 2015-09-11 SV SV2015005066A patent/SV2015005066A/en unknown
- 2015-09-14 DO DO2015000241A patent/DOP2015000241A/en unknown
- 2015-09-14 PH PH12015502116A patent/PH12015502116B1/en unknown
- 2015-09-14 CR CR20150487A patent/CR20150487A/en unknown
- 2015-09-14 GT GT201500294A patent/GT201500294A/en unknown
- 2015-10-08 EC ECIEPI201542895A patent/ECSP15042895A/en unknown
-
2016
- 2016-01-20 HK HK16100601.3A patent/HK1212692A1/en unknown
-
2017
- 2017-05-22 US US15/601,423 patent/US10245267B2/en active Active
- 2017-12-22 CY CY20171101348T patent/CY1119707T1/en unknown
-
2018
- 2018-01-29 HR HRP20180158TT patent/HRP20180158T1/en unknown
- 2018-04-26 JP JP2018084828A patent/JP6738369B2/en active Active
-
2019
- 2019-02-12 US US16/274,165 patent/US10709712B2/en active Active
-
2020
- 2020-05-20 JP JP2020088052A patent/JP7088983B2/en active Active
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3299367B1 (en) | Biaryl amide compounds as kinase inhibitors | |
EP3191478B1 (en) | Compounds and compositions as raf kinase inhibitors | |
EP2651899B1 (en) | Substituted 6,6-fused nitrogenous heterocyclic compounds and uses thereof | |
JP2022024019A (en) | Spiroheptane salicylamides and related compounds as rock inhibitors | |
EP3191472B1 (en) | Compounds and compositions as raf kinase inhibitors | |
EP3191467B1 (en) | Compounds and compositions as kinase inhibitors | |
JP2024532597A (en) | Cyclin K Degrader | |
CN117069724A (en) | Fused ring compounds, pharmaceutical compositions and uses |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AC | Divisional application: reference to earlier application |
Ref document number: 2970216 Country of ref document: EP Kind code of ref document: P |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20180928 |
|
RAX | Requested extension states of the european patent have changed |
Extension state: ME Payment date: 20180928 Extension state: BA Payment date: 20180928 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C07D 401/04 20060101ALI20190117BHEP Ipc: C07D 233/88 20060101ALI20190117BHEP Ipc: C07D 403/12 20060101AFI20190117BHEP Ipc: A61P 35/00 20060101ALI20190117BHEP Ipc: C07D 498/08 20060101ALI20190117BHEP Ipc: C07D 405/12 20060101ALI20190117BHEP Ipc: C07D 487/04 20060101ALI20190117BHEP Ipc: C07D 491/107 20060101ALI20190117BHEP Ipc: C07D 239/42 20060101ALI20190117BHEP Ipc: C07D 405/14 20060101ALI20190117BHEP Ipc: C07D 263/58 20060101ALI20190117BHEP Ipc: A61K 31/444 20060101ALI20190117BHEP Ipc: C07D 513/04 20060101ALI20190117BHEP Ipc: C07D 493/04 20060101ALI20190117BHEP Ipc: C07D 401/12 20060101ALI20190117BHEP Ipc: C07D 403/04 20060101ALI20190117BHEP Ipc: C07D 471/04 20060101ALI20190117BHEP Ipc: C07D 401/14 20060101ALI20190117BHEP Ipc: C07D 413/14 20060101ALI20190117BHEP Ipc: C07D 495/04 20060101ALI20190117BHEP |
|
INTG | Intention to grant announced |
Effective date: 20190215 |
|
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTC | Intention to grant announced (deleted) | ||
INTG | Intention to grant announced |
Effective date: 20190718 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AC | Divisional application: reference to earlier application |
Ref document number: 2970216 Country of ref document: EP Kind code of ref document: P |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602014059152 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1216985 Country of ref document: AT Kind code of ref document: T Effective date: 20200115 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20191225 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191225 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191225 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191225 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191225 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200326 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191225 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191225 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191225 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191225 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200520 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191225 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191225 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191225 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2779673 Country of ref document: ES Kind code of ref document: T3 Effective date: 20200818 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200425 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191225 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191225 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602014059152 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191225 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191225 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1216985 Country of ref document: AT Kind code of ref document: T Effective date: 20191225 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191225 |
|
26N | No opposition filed |
Effective date: 20200928 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20200331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200313 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200313 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200331 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191225 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200331 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191225 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191225 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191225 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191225 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191225 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230514 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20231229 Year of fee payment: 11 Ref country code: GB Payment date: 20240108 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240212 Year of fee payment: 11 Ref country code: FR Payment date: 20240103 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240405 Year of fee payment: 11 |