EP3298370A1 - Arrangement and method for measuring a force or a moment, with at least two magnetic sensors at a distance from one another - Google Patents

Arrangement and method for measuring a force or a moment, with at least two magnetic sensors at a distance from one another

Info

Publication number
EP3298370A1
EP3298370A1 EP16739401.4A EP16739401A EP3298370A1 EP 3298370 A1 EP3298370 A1 EP 3298370A1 EP 16739401 A EP16739401 A EP 16739401A EP 3298370 A1 EP3298370 A1 EP 3298370A1
Authority
EP
European Patent Office
Prior art keywords
magnetic field
field sensors
magnetization
force
arrangement according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP16739401.4A
Other languages
German (de)
French (fr)
Inventor
Stephan Neuschaefer-Rube
Jan Matysik
Christian Mock
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schaeffler Technologies AG and Co KG
Original Assignee
Schaeffler Technologies AG and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schaeffler Technologies AG and Co KG filed Critical Schaeffler Technologies AG and Co KG
Publication of EP3298370A1 publication Critical patent/EP3298370A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/12Measuring force or stress, in general by measuring variations in the magnetic properties of materials resulting from the application of stress
    • G01L1/125Measuring force or stress, in general by measuring variations in the magnetic properties of materials resulting from the application of stress by using magnetostrictive means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • G01L3/101Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means
    • G01L3/102Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means involving magnetostrictive means

Definitions

  • the present invention initially relates to an arrangement for measuring a force and / or torque using the inverse magnetostrictive effect.
  • the arrangement comprises at least two spaced-apart magnetic field sensors as secondary sensors.
  • the invention relates to a method for measuring the force and / or torque based on the inverse magnetostrictive effect.
  • EP 2 365 927 B1 shows a bottom bracket with two cranks and with a chain blade carrier, which is connected to a shaft of the bottom bracket.
  • the chainring carrier is rotatably connected to a chainring shaft, which in turn is rotatably connected to the shaft.
  • the sprocket shaft has a section on a magnetization.
  • a sensor is provided which detects a change in the magnetization at a torque present in the region of the magnetization.
  • No. 6,490,934 B2 teaches a magnetoelastic torque sensor for measuring a torque which acts on an element with a ferromagnetic, magnetostrictive and magnetoelastically active region. This area is formed in a transducer, which sits as a cylindrical sleeve, for example on a shaft. The torque sensor faces the transducer.
  • a torque sensor which comprises a magnetoelastic transducer.
  • the transducer sits as a cylindrical sleeve on a shaft.
  • US 8,893,562 B2 shows a method for detecting a magnetic noise in a magnetoelastic torque sensor.
  • the torque sensor comprises a torque converter with oppositely polarized magnetizations and a plurality of magnetic field sensors, between which can be switched.
  • US 8,578,794 B2 teaches a magnetoelastic torque sensor having a longitudinally extending member and a plurality of magnetoelastically active regions as well as primary and secondary magnetic field sensors which are axially spaced apart.
  • US 2014/0360285 A1 discloses a magnetoelastic torque sensor which comprises a hollow, longitudinally extending element with a plurality of magnetoelastically active regions.
  • the hollow element contains primary and secondary magnetic field sensors.
  • US 2002/0162403 A1 shows a magnetoelastic torque sensor with a shaft in which a coil is seated on a magnetoelastic region.
  • a magnetoelastic torque sensor which comprises a longitudinally extending element with a plurality of magnetoelastically active regions.
  • the torque sensor includes primary and secondary magnetic field sensors connected as a Wheatstone bridge.
  • EP 2 799 827 A1 shows a magnetoelastic torque sensor having a hollow longitudinally extending element comprising a plurality of magnetoelastically active regions.
  • the hollow element contains primary and secondary magnetic field sensors connected as a Wheatstone bridge.
  • the object of the present invention is to be able to carry out the measurement of forces and / or moments on the basis of the inverse-magnetostrictive effect even less susceptible to disturbances.
  • the arrangement according to the invention is used to measure at least one force and / or one moment on a machine element.
  • the at least one force or the at least one moment acts on the machine element, which leads to mechanical stresses and the machine element usually deforms slightly.
  • the machine element is used to transmit the forces and moments mentioned.
  • the machine element has at least one magnetization region for a magnetization formed in the machine element.
  • the one magnetization area or the plurality of magnetization areas each form a primary sensor for determining the force or the moment.
  • a plurality of the magnetization regions are formed, they preferably have the same spatial extension and are spaced apart.
  • the magnetization region can extend over the entire machine element.
  • the arrangement according to the invention further comprises at least two spaced-apart magnetic field sensors, which each form a secondary sensor for determining the force or the moment.
  • the primary sensor, d. H. the at least one magnetization area serves to convert the force to be measured or the moment to be measured into a corresponding magnetic field, while the secondary sensors enable the conversion of this magnetic field into electrical signals.
  • the at least two magnetic field sensors are each designed to measure a magnetic field or magnetic field change caused by the magnetization as well as by the force and / or by the moment.
  • the named magnetic field occurs due to the inverse magnetostrictive effect.
  • the measurement possible with the arrangement according to the invention is based on the inverse-magnetostrictive effect.
  • the arrangement according to the invention furthermore comprises a measuring signal processing unit, which is designed for signal processing of the measuring signals of the individual magnetic field sensors.
  • the measurement signals of the at least two magnetic field sensors can be processed separately.
  • At least one measuring signal can be output by each of the at least two magnetic field sensors and can be processed individually by the measuring signal processing unit.
  • the magnetic field sensors are preferably individually electrically connected to the measurement signal processing unit.
  • the magnetic field sensors are not interconnected, as is the case, for example, with a parallel shifter. tung. in a series connection or in a Wheatstone bridge is the case.
  • an absolute measurement of the said magnetic field is possible with each of the magnetic field sensors.
  • a particular advantage of the arrangement according to the invention is that the signals of the at least two magnetic field sensors can be processed variably in order to be able to measure and eliminate, for example, certain interfering influences in the measurement based on the inverse-magnetostrictive effect.
  • an indirect improvement in the signal-to-noise ratio and a reduction in the failure rate are made possible.
  • each of the at least two magnetic field sensors has an electrical or logical connection, which is guided individually to the measurement signal processing unit. Consequently, the signals of the at least two magnetic field sensors can be processed individually.
  • the electrical connection is preferably formed by a connecting line.
  • the logical connection is preferably formed within a bus.
  • the connection can be designed for analogue or digital signal transmission.
  • the magnetic field sensors may be redundant, d. H. in that a plurality of the magnetic field sensors are designed to measure the same component or the same property of the magnetic field caused by the magnetization and by the force and / or by the moment.
  • the machine element preferably extends in one axis.
  • the axis preferably forms an axis of rotation of the machine element.
  • the machine element is preferably rotatable about the axis. The following directions, namely the axial direction, the radial direction and the tangential direction are related to the aforementioned axis.
  • the arrangement according to the invention preferably comprises at least four, more preferably at least six, and even more preferably at least eight of the magnetic field. field sensors. The higher the number of magnetic field sensors, the better the interference can be eliminated.
  • the magnetic field sensors are arranged equidistantly, for which purpose at least three of the magnetic field sensors must be present.
  • the at least two magnetic field sensors are arranged equiangularly with respect to the axis, i. H. that the angular distances between each two adjacent ones of the magnetic field sensors are the same. If more than three of the magnetic field sensors are present, then at least the magnetic field sensors of subsets of the plurality of magnetic field sensors are preferably arranged equidistantly, so that the magnetic field sensors are arranged equidistantly in groups. If more than two of the magnetic field sensors are present, then at least the magnetic field sensors of subsets of the plurality of magnetic field sensors are preferably arranged in an equiangular fashion, so that the magnetic field sensors are arranged in groups
  • the magnetic field sensors are at the same distance from the axis. If more than two of the magnetic field sensors are present, then preferably at least the magnetic field sensors of subsets of the plurality of magnetic field sensors have an equal distance from the axis.
  • some of the magnetic field sensors are arranged in the axis.
  • the magnetic field sensors are preferably arranged in the form of a matrix, wherein the matrix can be formed in Cartesian coordinates or also in polar coordinates.
  • the magnetic field sensors are preferably arranged in one plane. Insofar as more than three of the magnetic field sensors are present, then at least the magnetic field sensors are preferably of subsets of a plurality of magnetic field sensors arranged in a plane, so that the magnetic field sensors are arranged in groups in each case one plane.
  • the at least two magnetic field sensors are preferably arranged in a plane which is aligned parallel or perpendicular to the axis. Insofar as more than two of the magnetic field sensors are present, at least the magnetic field sensors of subsets of the plurality of magnetic field sensors are preferably arranged in a plane which is aligned parallel or perpendicular to the axis.
  • the at least two magnetic field sensors are preferably arranged in rows and / or columns. The rows and / or the columns are preferably arranged perpendicular or parallel to the axis.
  • the at least two magnetic field sensors are preferably arranged on equiangularly arranged radii with respect to the axis. On each of the radii is preferably a subset of the magnetic field sensors, which are arranged equally spaced on the respective radius.
  • the at least two magnetic field sensors are each designed for the individual measurement of exactly one direction component of the magnetic field caused by the magnetization and by the force and / or by the moment.
  • This directional component is preferably the axial, the radial or the tangential direction component.
  • the at least two magnetic field sensors are each designed for individual measurement of several directional components of the magnetic field caused by the magnetization and by the force and / or by the moment. These directional components are preferably the axial, the radial and / or the tangential direction component. In particularly preferred embodiments of the arrangement according to the invention, the at least two magnetic field sensors are each designed for the individual measurement of three directional components of the magnetic field caused by the magnetization and by the force and / or by the moment. These three directional components are preferably the axial, the radial and the tangential direction components. At least preferably, a plurality of the magnetic field sensors are each designed for the individual measurement of three directional components of the magnetic field caused by the magnetization as well as by the force and / or by the moment.
  • At least one of the magnetic field sensors is furthermore designed for measuring a fault magnetic field and / or a magnetic field of the magnetization of the machine element.
  • inventions comprise further magnetic field sensors for measuring the interference magnetic field and / or the magnetic field of the magnetization of the machine element.
  • the machine element has a cavity, so that the machine element is hollow.
  • the cavity preferably extends at least partially in the axis
  • the cavity is formed in particular in the region of the axis.
  • the hollow space over the entire axial length of the machine element.
  • the cavity is preferably open at one axial end. It preferably has the shape of a cylinder.
  • the at least two magnetic field sensors are preferably arranged in the cavity of the machine element. There, the magnetic field sensors are largely protected against external influences. However, the at least two magnetic field sensors can also be arranged outside the machine element.
  • the one magnetization region or the plurality of magnetization regions can be permanently or temporarily magnetized.
  • one magnetization region or the several magnetization regions is permanently magnetized, so that the magnetization is formed by a permanent magnetization.
  • the latter furthermore has at least one magnet for magnetizing the at least one magnetization region, so that the magnetization of the at least one magnetization region is basically temporary.
  • the at least one magnet can be formed by a permanent magnet or preferably by an electromagnet.
  • the one permanently or temporarily magnetized magnetization region or the plurality of permanently or temporarily magnetized magnetization regions are preferably magnetically neutral in a state of the machine element that is unloaded by a force or momentum outside the respective magnetization region, so that no technically relevant magnetic field is outside of the respective magnetization region can be measured.
  • the one magnetization region or the plurality of magnetization regions each represent a part of the volume of the machine element.
  • the one magnetization region or the plurality of magnetization regions are preferably each of annular design, wherein the axis of the machine element also forms a central axis of the respective ring shape.
  • the one magnetization region or the several magnetization regions respectively have the shape of a hollow cylinder which is coaxial with the axis of the machine element.
  • the at least one magnetization region preferably extends circumferentially about the axis and can therefore also be understood as a magnetization track. This therefore involves at least one magnetization area revolving around the axis, wherein the axis itself preferably does not form part of the magnetization area.
  • the one or more magnetization regions preferably have a tangential orientation with respect to a surface of the machine element that extends around the axis.
  • the one magnetization region or the plurality of magnetization regions preferably has exclusively a tangential orientation with respect to a surface of the machine element extending around the axis.
  • the one magnetization region or the plurality of magnetization regions preferably extend in each case along a closed path around the axis, wherein the magnetization region or the magnetization regions may have short gaps. Insofar as several of the magnetization regions are formed, they preferably have the same spatial extent and are axially spaced apart. Insofar as several of the magnetization regions are formed, they preferably have opposite polarities. Particularly preferably, at least two of the circumferentially extending magnetization regions are embodied in the form of traces of magnetization.
  • the machine element consists of a magnetostrictive or magnetoelastic material.
  • the machine element consists entirely of the magnetostrictive or magnetoelastic material.
  • the machine element consists of a steel.
  • the machine element preferably has the outer shape of a prism or a cylinder, wherein the prism or the cylinder is preferably arranged coaxially to the axis.
  • the prism or the cylinder is preferably straight.
  • the machine element has the outer shape of a straight circular cylinder, wherein the circular cylinder is preferably arranged coaxially to the axis.
  • the prism or the cylinder is conical.
  • the machine element particularly preferably has the shape of a hollow cylinder.
  • the machine element is preferably formed by a shaft, by a partially hollow shaft, by a hollow shaft, by a flange or by a hollow flange.
  • the shaft, the partially hollow shaft, the hollow shaft, the flange or the hollow flange can be designed for loads due to different forces and moments and, for example, be a component of a sensor bottom bracket, a roll stabilizer or a fertilizer spreader.
  • the machine element can also be formed by completely different types of machine element, such. For example, a shift fork.
  • the at least two magnetic field sensors are preferably each formed by a semiconductor sensor.
  • the at least two magnetic field sensors are preferably each formed by an MR sensor, by a Hall sensor, by a field plate, by a SQUID, by a coil element, by a Förster probe or by a fluxgate magnetometer.
  • other sensor types can also be used insofar as they are suitable for measuring the magnetic field produced by the inverse-magnetostrictive effect or one or more directional components of this magnetic field.
  • the magnetic field sensors are formed by different sensor types, whereby an optimal adaptation to the machine element and the magnetization region can be ensured.
  • the measurement signal processing unit is preferably formed by a microcontroller. In a broader sense, the measurement signal processing unit is preferably formed by a computing unit.
  • the measurement signal processing unit is preferably also designed for evaluating the measurement signals of the individual magnetic field sensors. Consequently, not only a preprocessing of the measurement signals of the individual magnetic field sensors is made possible, but the measurement signal processing unit also makes it possible to output evaluated measurement results, for example from the measurement signal processing unit.
  • B the output of a vectorial indication of a magnetic flux density by the magnetization and by the force and / or by the moment caused magnetic field in which an interference field was eliminated.
  • the measuring signal processing unit also preferably allows the output of the values of the force or the torque to be measured.
  • the measurement signal processing unit preferably comprises a memory for sensor data. These sensor data form an information database for interpreting the measurement signals of the magnetic field sensors.
  • the measurement signal processing unit is designed to evaluate the measurement signals of groups of the magnetic field sensors, wherein the grouping of the magnetic field sensors is variable.
  • the magnetic field sensors can thus be grouped differently in order, for example, to be able to measure different components of the magnetic field caused by the magnetization and by the force and / or by the moment or else of disturbance magnetic fields.
  • z. B. the measurement of Störmagnetfeldern almost simultaneously.
  • the method according to the invention is used to measure a force and / or a moment on a machine element using the inverse-magnetostrictive effect.
  • the machine element has at least one magnetization region for a magnetization.
  • at least two spaced-apart magnetic field sensors are used for measuring a magnetic field caused by the magnetization as well as by the force and / or by the moment.
  • the measurement signals of the at least two magnetic field sensors are processed individually.
  • the method according to the invention preferably also has the steps and features which are described in connection with the arrangement according to the invention.
  • a plausibility check of the measurement signals of the individual magnetic field sensors takes place. This is possible in particular when the number of magnetic field sensors is significantly greater than two, so that the magnetic field is measured multiply redundantly.
  • detection of a foreign magnetic field and compensation of the influence of this external magnetic field are carried out on the measurement of the acting force or the acting moment.
  • the external magnetic field can be formed by a near field or by a far field.
  • the near field is an inhomogeneous magnetic field on the arrangement of the magnetic field sensors.
  • the field distribution of a near field within the arrangement of the magnetic field sensors is recognizable, since each of the magnetic field sensors preferably also provides the direction of the individual vector and the magnitudes of the measured magnetic field direction components.
  • a direction, a distribution and an intensity of the external magnetic field can be seen.
  • it is also a kind of external magnetic field, d. H. a permanent magnetization or a temporal change of the interference, such.
  • As a weakening or migration of the source of interference recognizable.
  • an electric field can be seen which transitions into a magnetic field.
  • the near field is preferably measured and compensated in the measurement of the force or the moment.
  • the far field generates an offset of the magnetic field in a vector direction across the entire array of magnetic field sensors. You can see an amount and a direction of this offset.
  • the far field and the linear near field are measured and compensated simultaneously for the measurement of the force or the moment.
  • a non-linear portion of the near field is preferably detected to compensate for it.
  • a bending of the machine element is also preferably determined.
  • This bend is preferably a torsion about two axes perpendicular to the axis of the machine element.
  • a direction and an amount of the bend are preferably determined.
  • a transverse force is preferably determined. The lateral force is perpendicular to the axis of the machine aligned. A direction and an amount of the transverse force are preferably determined. Preferably, further moments and / or forces are determined.
  • Another preferred magnetic field to be determined is caused by a temperature gradient on the machine element.
  • This temperature gradient can occur, for example, when the machine element is 120 ° C hot and meets surge or ice water at a temperature of about 0 ° C to the machine element. If the cold water hits the hot machine element, it cools down at the contact point. The cooling continues around the impingement area of the water. At the same time, the remaining machine element, in particular the opposite region of the machine element, is still hot. The temperature difference between the temperature extremes at the circumference of the machine element is then for example 120 K. These temperature differences cause inhomogeneous thermal expansions of the machine element as a function of the temperature distribution.
  • the inhomogeneous expansions cause material stresses in the machine element, for which the inverse-magnetostrictive effect is sensitive, so that a disturbing magnetic field results.
  • This interference magnetic field is preferably detected and compensated by the individual processing of the measurement signals of the magnetic field sensors.
  • the temperatures at the magnetic field sensors are preferably measured in order to compensate for a temperature variation of the magnetic field sensors, so that the magnetic field can be measured with high accuracy even at temperatures other than room temperature.
  • this temperature information is preferably used as an indicator of temperature gradients in the machine element. If the temperature distribution in the machine element is known, its influence can be compensated.
  • the temperature measurement is preferably carried out with a same measurement frequency as the measurement of the magnetic field.
  • the measuring signal processing unit of the arrangement according to the invention is preferably configured for carrying out the described method steps.
  • Fig. 1 shows a first preferred embodiment of an inventive
  • Fig. 2 shows a second preferred embodiment of the invention
  • Fig. 3 shows a third preferred embodiment of the invention
  • Fig. 4 shows a fourth preferred embodiment of the invention
  • FIG. 5 shows a fifth preferred embodiment of the invention
  • Fig. 6 shows a sixth preferred embodiment of the invention
  • Fig. 7 shows a seventh preferred embodiment of the invention
  • Fig. 8 shows an eighth preferred embodiment of the invention
  • FIG. 1 shows an eleventh preferred embodiment of the arrangement according to the invention in a longitudinal sectional view
  • Fig. 12 shows a twelfth preferred embodiment of the invention
  • FIG. 1 shows a first preferred embodiment of an arrangement according to the invention in a cross-sectional view and in a longitudinal sectional view.
  • the arrangement comprises a machine element made of a steel in the form of a hollow flange 01, which is fastened to a basic body 02 and extends in an axis 03.
  • On the hollow flange 01 acts a torsional moment M t , which can be measured with the inventive arrangement.
  • the hollow flange 01 has two magnetization regions 04 in the form of circumferential tracks.
  • the two magnetization regions 04 are permanently magnetized and oppositely poled.
  • the two magnetization regions 04 form a primary sensor for the measurement of the torsional moment M t using the inverse magnetostrictive effect.
  • the arrangement furthermore comprises twenty magnetic field sensors 06, which are located inside the hollow flange 01.
  • the twenty magnetic field sensors 06 are at the same distance from the axis 03.
  • the twenty magnetic field sensors 06 are arranged in the form of five groups.
  • Each of the five groups comprises four of the magnetic field sensors 06, which are arranged at an angular distance of 90 c with respect to the axis 03 and together in a plane arranged perpendicular to the axis 03.
  • the five groups are arranged equidistantly with respect to the axis 03. Only two of the five groups of the magnetic field sensors 06 are each arranged at an axial position, on which one of the two magnetization regions 04 is also arranged.
  • the arrangement of the twenty magnetic field sensors 06 can alternatively also be described by being arranged in the form of four groups. Each of the four groups includes five of the magnetic field sensors 06, which lie together on a straight line parallel to the axis 03 and are arranged equidistantly.
  • the arrangement of the twenty magnetic field sensors 06 can alternatively also be described by being arranged in the form of two groups. Each of the two groups includes ten of the magnetic field sensors 06, which are arranged in a matrix-like manner in a plane including the axis 03, wherein the two planes have an angle of 90 3 to each other.
  • the described arrangement of the twenty magnetic field sensors 06 leads, inter alia, to a group 07 of the magnetic field sensors 06 aligned in the axial direction, to a group 08 of the magnetic field sensors 06 aligned in the diagonal direction and to a group 09 of the magnetic field sensors 06 aligned in the tangential direction.
  • the twenty magnetic field sensors 06 are represented symbolically by a circle in each case.
  • the twenty magnetic field sensors 06 each allow a measurement of one or more of the directional components of a magnetic field 1 1 occurring due to the inverse-magnetostrictive effect as well as possible interference magnetic fields.
  • Each of the twenty magnetic field sensors 06 is individually electrically connected to a microcontroller (not shown) functioning as a measurement signal processing unit, so that the microcontroller can process and evaluate the measurement signals of the twenty magnetic field sensors individually or in variable groups.
  • the microcontroller controls the interrogation of the twenty magnetic field sensors 06 and compares their measured values with a database stored in the microcontroller, which compares the measured values relatively or absolutely and compares them with one another.
  • the space vector which can be represented by the magnetic flux density with the three direction components B x , B y and B z , is formed from the measured values of the magnetic field sensors 06.
  • the magnetic field 1 1 generated due to the inverse magnetostrictive effect is dependent on the torsional moment M t .
  • these magnetic field sensors 06 can be selected and grouped by the microcontroller With changing pure torsional loading of the hollow flange 01 and with a disappearing interference field, the vector of the magnetic flux density changes exclusively in magnitude at each of the positions of the magnetic field sensors 06, ie each of the magnetic field sensors 06 undergoes a change in the vector amount, but not in the vector direction. Thus, the magnitude of the magnetic flux density of each vector component B x , B y and B 2 increases , so that the vector direction remains unchanged.
  • the magnetic flux density of the load-dependent magnetic field 1 1 is B * for each of the three vector components.
  • B y and B 2 linearly dependent on the torsional moment M t , wherein the linear slope is negative or positive depending on the position of the respective magnetic field sensor 06 in the axial direction. Also conceivable is a slope of zero for one or two of the three vector components.
  • the load-dependent magnetic field 1 which is measured on the basis of the vector of the magnetic flux density B x , B y and B z , differs at the positions of the individual magnetic field sensors 06 with a constant torsional load. Assuming a negligibly small interference magnetic field, the direction and the magnitude of the vector at those magnetic field sensors 06 having a same axial position are the same. Accordingly, the direction and magnitude of the vector between the positions of the magnetic field sensors 06 differ within the axial direction. This connection offers the possibility of combining measurement signals of individual ones of the magnetic field sensors 06 into groupings and correspondingly evaluating them.
  • FIG. 2 shows a second preferred embodiment of the arrangement according to the invention in a cross-sectional view.
  • This embodiment is initially similar to the embodiment shown in FIG.
  • the magnetic field sensors 06 are arranged together in a plane encompassing the axis 03.
  • the magnetic field sensors 06 are arranged in two groups. Each of the two groups comprises a plurality of the magnetic field sensors 06, which lie together on a straight line arranged parallel to the axis 03 and are arranged equidistantly.
  • the magnetic field sensors 06 are at the same distance from the axis 03.
  • 3 shows a third preferred embodiment of the arrangement according to the invention in a cross-sectional view. This embodiment is initially similar to the embodiment shown in FIG. In contrast to the embodiment shown in FIG.
  • the magnetic field sensors 06 are arranged in different positions around the axis 03 and also in the axis 03.
  • the magnetic field sensors 06 are arranged in four groups. Each of the four groups comprises a plurality of the magnetic field sensors 06, which lie together on a straight line arranged parallel to the axis 03 or in the axis 03 and are arranged equidistantly.
  • the magnetic field sensors 06 not arranged in the axis 03 are at the same distance from the axis 03.
  • FIG. 4 shows a fourth preferred embodiment of the arrangement according to the invention in a cross-sectional view.
  • This embodiment is initially similar to the embodiment shown in FIG.
  • the magnetic field sensors 06 are arranged in two planes comprising the axis 03. These two planes are at an angle of 45 ° to each other.
  • FIG. 5 shows a fifth preferred embodiment of the arrangement according to the invention in a cross-sectional view.
  • This embodiment initially resembles the embodiment shown in FIG.
  • the magnetic field sensors 06 are arranged in seven groups.
  • Each of the seven groups comprises a plurality of the magnetic field sensors 06, which lie together on a straight line parallel to the axis 03 or in the axis 03 and are arranged equidistantly.
  • FIG. 6 shows a sixth preferred embodiment of the arrangement according to the invention in a cross-sectional view.
  • This embodiment is initially similar to the embodiment shown in FIG.
  • the magnetic field sensors 06 are arranged in eight groups.
  • Each of the eight groups comprises a plurality of the magnetic field sensors 06, which lie together on a line arranged parallel to the axis 03 and are arranged equidistantly.
  • the straight lines of four of the eight groups each have an angular distance of 90 ° based on the axis 03 on.
  • the magnetic field sensors 06 of four of the eight groups each have an equal distance from the axis 03.
  • FIG. 7 shows a seventh preferred embodiment of the arrangement according to the invention in a cross-sectional view.
  • This embodiment is initially similar to the embodiment shown in FIG.
  • the magnetic field sensors 06 are arranged in twelve groups. Eight of the twelve groups of the magnetic field sensors 06 are arranged on eight straight lines which have an angular distance of 45 ° relative to the axis 03 and an equal distance from the axis 03. The remaining four of the twelve groups of magnetic field sensors 06 are arranged on four straight lines which have an angular spacing of 90 ° with respect to the axis 03 and an equal distance from the axis 03.
  • FIG. 8 shows an eighth preferred embodiment of the arrangement according to the invention in a longitudinal sectional view.
  • This embodiment is initially similar to the embodiment shown in FIG.
  • four of the magnetic field sensors 06 are missing, namely in two of the four groups of magnetic field sensors 06 arranged on straight lines.
  • those of the magnetic field sensors 06 which have the same axial position as the magnetization sensors 06 are missing. have areas 04.
  • FIG. 9 shows a ninth preferred embodiment of the arrangement according to the invention in a longitudinal sectional view.
  • This embodiment is initially similar to the embodiment shown in FIG.
  • another twelve of the magnetic field sensors 06 are missing, namely those which do not have the same axial position as the magnetization regions 04.
  • FIG. 10 shows a tenth preferred embodiment of the arrangement according to the invention in a longitudinal sectional view.
  • This embodiment is initially similar to the embodiment shown in FIG.
  • in two of the four groups of magnetic field sensors 06 arranged on straight lines in each case those magnetic field sensors 06 which do not have the same axial position as the magnetization regions 04 are missing. Instead, are on four further of the magnetic field sensors 06 are arranged at a smaller distance from the axis 03 to the axial positions of the magnetization regions 04.
  • FIG. 1 shows an eleventh preferred embodiment of the arrangement according to the invention in a longitudinal sectional view.
  • This embodiment is initially similar to the embodiment shown in FIG.
  • those magnetic field sensors 06 which have an identical axial position as the magnetization regions 04 are missing.
  • the arrangements of the magnetic field sensors 06 of the embodiments shown in FIGS. 2 to 11 can be combined in the axial direction.
  • the arrangement shown in Fig. 2 can be combined with the arrangement shown in Fig. 9.
  • the arrangements of the magnetic field sensors 06 shown in FIGS. 2 to 1 enable both a detection of the load-dependent magnetic field 11 and a detection of a possible interference magnetic field.
  • special types of calculation of the measuring signals of the magnetic field sensors 06 and a correspondingly stored database in the microcontroller an interpretation of the measurement and thus the detection of different incidents and events is possible.
  • FIG. 12 shows a twelfth preferred embodiment of the arrangement according to the invention in a cross-sectional view and in a longitudinal sectional view.
  • This embodiment initially resembles the embodiment shown in FIG.
  • all of the magnetic field sensors 06 are arranged in a plane encompassing the axis 03.
  • the magnetic field sensors 06 are arranged in the form of a matrix in directions x and y, the axis 03 being in the x-direction.
  • the matrix comprises lines 1, 2, 3, 4, 5 and columns a, b, c, d, e.
  • Lines 1 and 5 are arranged next to the inner wall of the hollow flange 01.
  • the distance between lines 1 and 5 is D.
  • the y-coordinate of the line is 1 D / 2.
  • the y-coordinate of line 5 is -D / 2.
  • the y-coordinate of line 2 is D / 6.
  • the y-coordinate of line 4 is -D / 6.
  • the y-coordinate of row 3 is zero.
  • the magnetic field sensors 06 in lines 1 and 5 are mainly used to measure M t
  • the magnetic field sensors 06 in lines 2 to 4 are mainly used to measure the interference magnetic field.
  • the load-dependent magnetic field 1 1 is proportional to the torsional moment M t . It lets you calculate redundantly as follows:
  • X and Y each stand for the magnetic field component measured in the x or y direction with the magnetic field sensor 06 denoted by the index.
  • the constants K 1 to K 5 are determined by calibration. It is to be expected that the connections will be established.
  • a plausibility check By comparing a plausibility check is carried out. If the values If the tolerance is the same, then the plausibility check is successful and the measured value can be further processed as a value for M t .
  • the sizes can to move within the permissible tolerance range. The permissible size of the tolerance range is defined in advance and stored in the algorithm.
  • a compensation of a near-field which varies linearly in the plane spanned by the magnetic field sensors 06 takes place in the measured field direction.
  • the linear component of the near field is compensated.
  • these terms include a compensation of possible lateral forces in the y-direction or in a z-direction.
  • these terms include a compensation of possible lateral forces, which are caused by possible bending moments in the z-direction or in the y-direction.
  • the compensations are quasi-simultaneous to the measurement.
  • the non-linear portion of a near field can be treated using a mathematical approach.
  • the non-linear component of the near field is determined on the basis of the available measured values including directional components of the individual magnetic field sensors 06. Furthermore, a conclusion based on the non-linear component of the near field is made on the measurement error caused thereby on the magnetic field sensors 06 including direction components or on the measurement error of the groups of the magnetic field sensors 06. On the basis of this, the measured values of the groups of the magnetic field sensors 06 are corrected and thus an increase in the accuracy of the feasible with the inventive arrangement measurement.

Abstract

The invention first relates to an arrangement for measuring a force and/or a moment, using the inverse magnetostrictive effect. The invention also relates to a method for measuring a force and/or a moment, based on the inverse magnetostrictive effect. The force or the moment acts on a machine element (01) that has at least one magnetisation region (04) for magnetisation and thus forms a primary sensor for the inverse magnetostrictive effect-based measurement. The claimed arrangement comprises at least two magnetic sensors (08), for measuring a magnetic field (11) generated by the magnetisation and by the force or the moment, which are spaced apart from one another and each of which forms a secondary sensor for the inverse magnetostrictive effect-based measurement. According to the invention, the arrangement also comprises a measurement signal processing unit designed to process the measurement signals of the individual magnetic sensors (06).

Description

Anordnung und Verfahren zum Messen einer Kraft oder eines Momentes mit mindestens zwei beabstandeten Magnetfeldsensoren  Arrangement and method for measuring a force or a moment with at least two spaced magnetic field sensors
Die vorliegende Erfindung betrifft zunächst eine Anordnung zum Messen einer Kraft und/oder eines Momentes unter Nutzung des invers-magnetostriktiven Effektes. Die Anordnung umfasst mindestens zwei beabstandete Magnetfeldsensoren als Sekun- därsensoren. Im Weiteren betrifft die Erfindung ein Verfahren für eine auf dem in- vers-magnetostriktiven Effekt beruhende Messung einer Kraft und/oder eines Momen- tes . The present invention initially relates to an arrangement for measuring a force and / or torque using the inverse magnetostrictive effect. The arrangement comprises at least two spaced-apart magnetic field sensors as secondary sensors. Furthermore, the invention relates to a method for measuring the force and / or torque based on the inverse magnetostrictive effect.
Die EP 2 365 927 B1 zeigt ein Tretlager mit zwei Tretkurbeln und mit einem Ketten- blattträger, der mit einer Welle des Tretlagers verbunden ist. Der Kettenblattträger ist drehfest mit einer Kettenblattwelle verbunden, die wiederum drehfest mit der Welle verbunden ist. Die Kettenblattwelle weist abschnittsweise eine Magnetisierung auf. Es ist ein Sensor vorgesehen, der eine Änderung der Magnetisierung bei einem im Be- reich der Magnetisierung vorliegenden Drehmoment erfasst. EP 2 365 927 B1 shows a bottom bracket with two cranks and with a chain blade carrier, which is connected to a shaft of the bottom bracket. The chainring carrier is rotatably connected to a chainring shaft, which in turn is rotatably connected to the shaft. The sprocket shaft has a section on a magnetization. A sensor is provided which detects a change in the magnetization at a torque present in the region of the magnetization.
Die US 6,490,934 B2 lehrt einen magnetoelastischen Drehmomentsensor zur Mes- sung eines Drehmomentes, welches auf ein Element mit einem ferromagnetischen, magnetostriktiven und magnetoelastisch aktiven Bereich wirkt. Dieser Bereich ist in einem Messwandler ausgebildet, der als zylindrische Hülse beispielsweise auf einer Welle sitzt. Der Drehmomentsensor steht dem Messwandler gegenüber. No. 6,490,934 B2 teaches a magnetoelastic torque sensor for measuring a torque which acts on an element with a ferromagnetic, magnetostrictive and magnetoelastically active region. This area is formed in a transducer, which sits as a cylindrical sleeve, for example on a shaft. The torque sensor faces the transducer.
Aus der EP 0 803 053 B1 ist ein Drehmomentsensor bekannt, der einen magnetoelas- tischen Messwandler umfasst. Der Messwandler sitzt als zylindrische Hülse auf einer Welle. From EP 0 803 053 B1 a torque sensor is known which comprises a magnetoelastic transducer. The transducer sits as a cylindrical sleeve on a shaft.
Die US 8,893,562 B2 zeigt ein Verfahren zum Erkennen eines magnetischen Raus- chens bei einem magnetoelastischen Drehmomentsensor. Der Drehmomentsensor umfasst einen Drehmomentwandler mit gegensätzlich polarisierten Magnetisierungen und mehrere Magnetfeldsensoren, zwischen denen umgeschaltet werden kann. Die US 8,578,794 B2 lehrt einen magnetoelastischen Drehmomentsensor mit einem sich longitudinal erstreckenden Element und mit mehreren magnetoelastisch aktiven Regionen sowie mit primären und sekundären Magnetfeldsensoren, die axial beabstandet sind. US 8,893,562 B2 shows a method for detecting a magnetic noise in a magnetoelastic torque sensor. The torque sensor comprises a torque converter with oppositely polarized magnetizations and a plurality of magnetic field sensors, between which can be switched. US 8,578,794 B2 teaches a magnetoelastic torque sensor having a longitudinally extending member and a plurality of magnetoelastically active regions as well as primary and secondary magnetic field sensors which are axially spaced apart.
Aus der US 2014/0360285 A1 ist ein magnetoelastischer Drehmomentsensor be- kannt, der ein hohles sich longitudinal erstreckendes Element mit mehreren magne- toelastisch aktiven Regionen umfasst. Im hohlen Element befinden sich primäre und sekundäre Magnetfeldsensoren. US 2014/0360285 A1 discloses a magnetoelastic torque sensor which comprises a hollow, longitudinally extending element with a plurality of magnetoelastically active regions. The hollow element contains primary and secondary magnetic field sensors.
Die US 2002/0162403 A1 zeigt einen magnetoelastischen Drehmomentsensor mit ei- ner Welle, bei welcher eine Spule auf einem magnetoelastischen Bereich sitzt. US 2002/0162403 A1 shows a magnetoelastic torque sensor with a shaft in which a coil is seated on a magnetoelastic region.
Aus der US 8,087,304 B2 ist ein magnetoelastischer Drehmomentsensor bekannt, welcher ein sich longitudinal erstreckendes Element mit mehreren magnetoelastisch aktiven Regionen umfasst. Der Drehmomentsensor umfasst primäre und sekundäre Magnetfeldsensoren, die als Wheatstonesche Brücke geschaltet sind. From US 8,087,304 B2 a magnetoelastic torque sensor is known, which comprises a longitudinally extending element with a plurality of magnetoelastically active regions. The torque sensor includes primary and secondary magnetic field sensors connected as a Wheatstone bridge.
Die EP 2 799 827 A1 zeigt einen magnetoelastischen Drehmomentsensor mit einem hohlen sich longitudinal erstreckendes Element, welches mehrere magnetoelastisch aktive Regionen umfasst. Im hohlen Element befinden sich primäre und sekundäre Magnetfeldsensoren, die als Wheatstonesche Brücke geschaltet sind. EP 2 799 827 A1 shows a magnetoelastic torque sensor having a hollow longitudinally extending element comprising a plurality of magnetoelastically active regions. The hollow element contains primary and secondary magnetic field sensors connected as a Wheatstone bridge.
Die Aufgabe der vorliegenden Erfindung besteht ausgehend vom Stand der Technik darin, die Messung von Kräften und/oder Momenten auf der Basis des invers- magnetostriktiven Effektes noch unanfälliger gegen Störungen ausführen zu können. The object of the present invention, starting from the prior art, is to be able to carry out the measurement of forces and / or moments on the basis of the inverse-magnetostrictive effect even less susceptible to disturbances.
Die genannte Aufgabe wird gelöst durch eine Anordnung gemäß dem beigefügten An- spruch 1 sowie durch ein Verfahren gemäß dem beigefügten nebengeordneten An- spruch 10. The stated object is achieved by an arrangement according to the appended claim 1 and by a method according to the appended independent claim 10.
Die erfindungsgemäße Anordnung dient zum Messen mindestens einer Kraft und/oder eines Momentes an einem Maschinenelement. Die mindestens eine Kraft bzw. das mindestens eine Moment wirkt auf das Maschinenelement, wodurch es zu mechani- schen Spannungen kommt und sich das Maschinenelement zumeist geringfügig ver- formt. Das Maschinenelement dient zur Übertragung der genannten Kräfte und Mo- mente. The arrangement according to the invention is used to measure at least one force and / or one moment on a machine element. The at least one force or the at least one moment acts on the machine element, which leads to mechanical stresses and the machine element usually deforms slightly. The machine element is used to transmit the forces and moments mentioned.
Das Maschinenelement weist mindestens einen Magnetisierungsbereich für eine im Maschinenelement ausgebildete Magnetisierung auf. Der eine Magnetisierungsbe- reich bzw. die mehreren Magnetisierungsbereiche bilden jeweils einen Primärsensor zur Bestimmung der Kraft bzw. des Momentes. Insofern mehrere der Magnetisie- rungsbereiche ausgebildet sind, weisen diese bevorzugt eine gleiche räumliche Aus- dehnung auf und sind beabstandet. Alternativ bevorzugt kann sich der Magnetisie- rungsbereich über das gesamte Maschinenelement erstrecken. The machine element has at least one magnetization region for a magnetization formed in the machine element. The one magnetization area or the plurality of magnetization areas each form a primary sensor for determining the force or the moment. Insofar as a plurality of the magnetization regions are formed, they preferably have the same spatial extension and are spaced apart. Alternatively preferably, the magnetization region can extend over the entire machine element.
Die erfindungsgemäße Anordnung umfasst weiterhin mindestens zwei beabstandete Magnetfeldsensoren, welche jeweils einen Sekundärsensor zur Bestimmung der Kraft bzw. des Momentes bilden. Der Primärsensor, d. h. der mindestens eine Magnetisie- rungsbereich dient zur Wandlung der zu messenden Kraft bzw. des zu messenden Momentes in ein entsprechendes Magnetfeld, während die Sekundärsensoren die Wandlung dieses Magnetfeldes in elektrische Signale ermöglichen. Die mindestens zwei Magnetfeldsensoren sind jeweils zur Messung eines durch die Magnetisierung sowie durch die Kraft und/oder durch das Moment bewirkten Magnetfeldes bzw. Mag- netfeldänderung ausgebildet. Das genannte Magnetfeld tritt aufgrund des in- vers-magnetostriktiven Effektes auf. Somit beruht die mit der erfindungsgemäßen An- ordnung mögliche Messung auf dem invers-magnetostriktiven Effekt. The arrangement according to the invention further comprises at least two spaced-apart magnetic field sensors, which each form a secondary sensor for determining the force or the moment. The primary sensor, d. H. the at least one magnetization area serves to convert the force to be measured or the moment to be measured into a corresponding magnetic field, while the secondary sensors enable the conversion of this magnetic field into electrical signals. The at least two magnetic field sensors are each designed to measure a magnetic field or magnetic field change caused by the magnetization as well as by the force and / or by the moment. The named magnetic field occurs due to the inverse magnetostrictive effect. Thus, the measurement possible with the arrangement according to the invention is based on the inverse-magnetostrictive effect.
Die erfindungsgemäße Anordnung umfasst weiterhin eine Messsignalverarbeitungs- einheit, die zur Signalverarbeitung der Messsignale der einzelnen Magnetfeldsenso- ren ausgebildet ist. Somit sind die Messsignale der mindestens zwei Magnetfeldsen- soren separat verarbeitbar. Durch jeden der mindestens zwei Magnetfeldsensoren ist mindestens ein Messsignal ausgebbar, welches einzeln von der Messsignalverarbei- tungseinheit verarbeitbar ist. Die Magnetfeldsensoren sind bevorzugt einzeln elekt- risch mit der Messsignalverarbeitungseinheit verbunden. Somit sind die Magnetfeld- sensoren nicht zusammengeschaltet, wie es beispielsweise bei einer Parallelschal- tung. bei einer Reihenschaltung oder bei einer Wheatstoneschen Brücke der Fall ist. Innerhalb der erfindungsgemäßen Anordnung ist eine absolute Messung des genann- ten Magnetfeldes mit jedem der Magnetfeldsensoren ermöglicht. Ein besonderer Vorteil der erfindungsgemäßen Anordnung besteht darin, dass die Signale der mindestens zwei Magnetfeldsensoren variabel verarbeitbar sind, um bei- spielsweise bestimmte Störeinflüsse bei der auf dem invers-magnetostriktiven Effekt beruhenden Messung zu messen und eliminieren zu können. Zudem sind eine indirek- te Verbesserung des Signal-Rauschverhältnisses und eine Verringerung der Ausfallra- te ermöglicht. The arrangement according to the invention furthermore comprises a measuring signal processing unit, which is designed for signal processing of the measuring signals of the individual magnetic field sensors. Thus, the measurement signals of the at least two magnetic field sensors can be processed separately. At least one measuring signal can be output by each of the at least two magnetic field sensors and can be processed individually by the measuring signal processing unit. The magnetic field sensors are preferably individually electrically connected to the measurement signal processing unit. Thus, the magnetic field sensors are not interconnected, as is the case, for example, with a parallel shifter. tung. in a series connection or in a Wheatstone bridge is the case. Within the arrangement according to the invention, an absolute measurement of the said magnetic field is possible with each of the magnetic field sensors. A particular advantage of the arrangement according to the invention is that the signals of the at least two magnetic field sensors can be processed variably in order to be able to measure and eliminate, for example, certain interfering influences in the measurement based on the inverse-magnetostrictive effect. In addition, an indirect improvement in the signal-to-noise ratio and a reduction in the failure rate are made possible.
Bevorzugt weist jeder der mindestens zwei Magnetfeldsensoren eine elektrische oder logische Verbindung auf, die einzeln zur Messsignalverarbeitungseinheit geführt ist. Folglich können die Signale der mindestens zwei Magnetfeldsensoren einzeln verar- beitet werden. Die elektrische Verbindung ist bevorzugt durch eine Anschlussleitung gebildet. Die logische Verbindung ist bevorzugt innerhalb eines Busses ausgebildet. Die Verbindung kann für eine analoge oder für eine digitale Signalübertragung ausge- bildet sein. Die Magnetfeldsensoren können redundant vorhanden sein, d. h. dass mehrere der Magnetfeldsensoren zur Messung der gleichen Komponente bzw. der gleichen Eigen- schaft des durch die Magnetisierung sowie durch die Kraft und/oder durch das Mo- ment bewirkten Magnetfeldes ausgebildet sind. Das Maschinenelement erstreckt sich bevorzugt in einer Achse. Die Achse bildet be- vorzugt eine Rotationsachse des Maschinenelementes. Das Maschinenelement ist bevorzugt um die Achse rotierbar. Die nachfolgend angegebenen Richtungen, nämlich die axiale Richtung, die radiale Richtung und die tangentiale Richtung sind auf die ge- nannte Achse bezogen. Preferably, each of the at least two magnetic field sensors has an electrical or logical connection, which is guided individually to the measurement signal processing unit. Consequently, the signals of the at least two magnetic field sensors can be processed individually. The electrical connection is preferably formed by a connecting line. The logical connection is preferably formed within a bus. The connection can be designed for analogue or digital signal transmission. The magnetic field sensors may be redundant, d. H. in that a plurality of the magnetic field sensors are designed to measure the same component or the same property of the magnetic field caused by the magnetization and by the force and / or by the moment. The machine element preferably extends in one axis. The axis preferably forms an axis of rotation of the machine element. The machine element is preferably rotatable about the axis. The following directions, namely the axial direction, the radial direction and the tangential direction are related to the aforementioned axis.
Die erfindungsgemäße Anordnung umfasst bevorzugt mindestens vier, weiter bevor- zugt mindestens sechs und nochmals weiter bevorzugt mindestens acht der Magnet- feldSensoren. Je höher die Anzahl der Magnetfeldsensoren, desto besser können Störeinflüsse eliminiert werden. The arrangement according to the invention preferably comprises at least four, more preferably at least six, and even more preferably at least eight of the magnetic field. field sensors. The higher the number of magnetic field sensors, the better the interference can be eliminated.
Bei bevorzugten Ausführungsformen der erfindungsgemäßen Anordnung sind die Magnetfeldsensoren äquidistant angeordnet, wofür mindestens drei der Magnetfeld- sensoren vorhanden sein müssen. Bei weiteren bevorzugten Ausführungsformen der erfindungsgemäßen Anordnung sind die mindestens zwei Magnetfeldsensoren äquiangular bezogen auf die Achse angeordnet, d. h. dass die Winkelabstände zwi- schen jeweils zwei benachbarten der Magnetfeldsensoren gleich sind. Wenn mehr als drei der Magnetfeldsensoren vorhanden sind, so sind bevorzugt zumindest die Mag- netfeldsensoren von Untermengen der mehreren Magnetfeldsensoren äquidistant an- geordnet, sodass die Magnetfeldsensoren gruppenweise äquidistant angeordnet sind. Wenn mehr als zwei der Magnetfeldsensoren vorhanden sind, so sind bevorzugt zu- mindest die Magnetfeldsensoren von Untermengen der mehreren Magnetfeldsenso- ren äquiangular angeordnet, sodass die Magnetfeldsensoren gruppenweise In preferred embodiments of the arrangement according to the invention, the magnetic field sensors are arranged equidistantly, for which purpose at least three of the magnetic field sensors must be present. In further preferred embodiments of the arrangement according to the invention, the at least two magnetic field sensors are arranged equiangularly with respect to the axis, i. H. that the angular distances between each two adjacent ones of the magnetic field sensors are the same. If more than three of the magnetic field sensors are present, then at least the magnetic field sensors of subsets of the plurality of magnetic field sensors are preferably arranged equidistantly, so that the magnetic field sensors are arranged equidistantly in groups. If more than two of the magnetic field sensors are present, then at least the magnetic field sensors of subsets of the plurality of magnetic field sensors are preferably arranged in an equiangular fashion, so that the magnetic field sensors are arranged in groups
äquiangular angeordnet sind. are arranged equiangularly.
Bei bevorzugten Ausführungsformen der erfindungsgemäßen Anordnung weisen die Magnetfeldsensoren einen gleichen Abstand zur Achse auf. Wenn mehr als zwei der Magnetfeldsensoren vorhanden sind, so weisen bevorzugt zumindest die Magnetfeld- sensoren von Untermengen der mehreren Magnetfeldsensoren einen gleichen Ab- stand zur Achse auf. In preferred embodiments of the arrangement according to the invention, the magnetic field sensors are at the same distance from the axis. If more than two of the magnetic field sensors are present, then preferably at least the magnetic field sensors of subsets of the plurality of magnetic field sensors have an equal distance from the axis.
Bei bevorzugten Ausführungsformen der erfindungsgemäßen Anordnung sind einige der Magnetfeldsensoren in der Achse angeordnet. In preferred embodiments of the arrangement according to the invention, some of the magnetic field sensors are arranged in the axis.
Die Magnetfeldsensoren sind bevorzugt in Form einer Matrix angeordnet, wobei die Matrix in kartesischen Koordinaten oder auch in Polarkoordinaten ausgebildet sein kann. The magnetic field sensors are preferably arranged in the form of a matrix, wherein the matrix can be formed in Cartesian coordinates or also in polar coordinates.
Insofern mehr als zwei der Magnetfeldsensoren vorhanden sind, sind diese bevorzugt in einer Ebene angeordnet. Insofern mehr als drei der Magnetfeldsensoren vorhanden sind, so sind bevorzugt zumindest die Magnetfeldsensoren von Untermengen der mehreren Magnetfeldsensoren in einer Ebene angeordnet, sodass die Magnetfeld- sensoren gruppenweise in jeweils einer Ebene angeordnet sind. Insofar as more than two of the magnetic field sensors are present, they are preferably arranged in one plane. Insofar as more than three of the magnetic field sensors are present, then at least the magnetic field sensors are preferably of subsets of a plurality of magnetic field sensors arranged in a plane, so that the magnetic field sensors are arranged in groups in each case one plane.
Die mindestens zwei Magnetfeldsensoren sind bevorzugt in einer Ebene angeordnet, die parallel oder senkrecht zur Achse ausgerichtet ist. Insofern mehr als zwei der Magnetfeldsensoren vorhanden sind, so sind bevorzugt zumindest die Magnetfeld- sensoren von Untermengen der mehreren Magnetfeld sensoren in einer Ebene ange- ordnet, die parallel oder senkrecht zur Achse ausgerichtet ist. Die mindestens zwei Magnetfeldsensoren sind bevorzugt in Zeilen und/oder Spalten angeordnet. Die Zeilen und/oder die Spalten sind bevorzugt senkrecht oder parallel zur Achse angeordnet. The at least two magnetic field sensors are preferably arranged in a plane which is aligned parallel or perpendicular to the axis. Insofar as more than two of the magnetic field sensors are present, at least the magnetic field sensors of subsets of the plurality of magnetic field sensors are preferably arranged in a plane which is aligned parallel or perpendicular to the axis. The at least two magnetic field sensors are preferably arranged in rows and / or columns. The rows and / or the columns are preferably arranged perpendicular or parallel to the axis.
Die mindestens zwei Magnetfeldsensoren sind bevorzugt auf äquiangular angeordne- ten Radien in Bezug auf die Achse angeordnet. Auf jedem der Radien befindet sich dabei bevorzugt eine Untermenge der Magnetfeldsensoren, die gleich beabstandet auf dem jeweiligen Radius angeordnet sind. The at least two magnetic field sensors are preferably arranged on equiangularly arranged radii with respect to the axis. On each of the radii is preferably a subset of the magnetic field sensors, which are arranged equally spaced on the respective radius.
Bei bevorzugten Ausführungsformen der erfindungsgemäßen Anordnung sind die mindestens zwei Magnetfeldsensoren jeweils zur einzelnen Messung genau einer Richtungskomponente des durch die Magnetisierung sowie durch die Kraft und/oder durch das Moment bewirkten Magnetfeldes ausgebildet. Bei dieser Richtungskompo- nente handelt es sich bevorzugt um die axiale, um die radiale oder um die tangentiale Richtungskomponente. In preferred embodiments of the arrangement according to the invention, the at least two magnetic field sensors are each designed for the individual measurement of exactly one direction component of the magnetic field caused by the magnetization and by the force and / or by the moment. This directional component is preferably the axial, the radial or the tangential direction component.
Bei weiteren bevorzugten Ausführungsformen der erfindungsgemäßen Anordnung sind die mindestens zwei Magnetfeldsensoren jeweils zur einzelnen Messung mehre- rer Richtungskomponenten des durch die Magnetisierung sowie durch die Kraft und/oder durch das Moment bewirkten Magnetfeldes ausgebildet. Bei diesen Rich- tungskomponenten handelt es sich bevorzugt um die axiale, die radiale und/oder die tangentiale Richtungskomponente. Bei besonders bevorzugten Ausführungsformen der erfindungsgemäßen Anordnung sind die mindestens zwei Magnetfeldsensoren jeweils zur einzelnen Messung von drei Richtungskomponenten des durch die Magnetisierung sowie durch die Kraft und/oder durch das Moment bewirkten Magnetfeldes ausgebildet. Bei diesen drei Richtungs- komponenten handelt es sich bevorzugt um die axiale, die radiale und die tangentiale Richtungskomponente. Zumindest sind bevorzugt mehrere der Magnetfeldsensoren jeweils zur einzelnen Messung von drei Richtungskomponenten des durch die Magne- tisierung sowie durch die Kraft und/oder durch das Moment bewirkten Magnetfeldes ausgebildet. In further preferred embodiments of the arrangement according to the invention, the at least two magnetic field sensors are each designed for individual measurement of several directional components of the magnetic field caused by the magnetization and by the force and / or by the moment. These directional components are preferably the axial, the radial and / or the tangential direction component. In particularly preferred embodiments of the arrangement according to the invention, the at least two magnetic field sensors are each designed for the individual measurement of three directional components of the magnetic field caused by the magnetization and by the force and / or by the moment. These three directional components are preferably the axial, the radial and the tangential direction components. At least preferably, a plurality of the magnetic field sensors are each designed for the individual measurement of three directional components of the magnetic field caused by the magnetization as well as by the force and / or by the moment.
Bei weiteren bevorzugten Ausführungsformen der erfindungsgemäßen Anordnung ist mindestens einer der Magnetfeldsensoren weiterhin zur Messung eines Störmagnet- feldes und/oder eines Magnetfeldes der Magnetisierung des Maschinenelementes ausgebildet. Hierdurch kann der Einfluss des Störmagnetfeldes unmittelbar und zeit- lieh gemessen werden, sodass dieser bei der Messung des durch die Magnetisierung sowie durch die Kraft und/oder durch das Moment bewirkten Magnetfeldes eliminiert werden kann. In further preferred embodiments of the arrangement according to the invention, at least one of the magnetic field sensors is furthermore designed for measuring a fault magnetic field and / or a magnetic field of the magnetization of the machine element. As a result, the influence of the disturbance magnetic field can be measured directly and on time, so that it can be eliminated in the measurement of the magnetic field caused by the magnetization as well as by the force and / or by the moment.
Weitere bevorzugte Ausführungsformen der erfindungsgemäßen Anordnung umfas- sen weitere Magnetfeldsensoren zur Messung des Störmagnetfeldes und/oder des Magnetfeldes der Magnetisierung des Maschinenelementes. Further preferred embodiments of the arrangement according to the invention comprise further magnetic field sensors for measuring the interference magnetic field and / or the magnetic field of the magnetization of the machine element.
Weitere bevorzugte Ausführungsformen der erfindungsgemäßen Anordnung umfas- sen Temperatursensoren an den Magnetfeldsensoren zur Messung der jeweils dort gegebenen Temperatur. Die Temperatursensoren sind bevorzugt ebenfalls mit der Messsignalverarbeitungseinheit elektrisch verbunden. Die Messsignalverarbeitungs- einheit ist bevorzugt dazu konfiguriert, den Einfluss der Temperatur auf die Messsig- nale der Magnetfeldsensoren zu kompensieren. Bei bevorzugten Ausführungsformen der erfindungsgemäßen Anordnung weist das Maschinenelement einen Hohlraum auf, sodass das Maschinenelement hohl ist. Der Hohlraum erstreckt sich bevorzugt zumindest teilweise in der Achse Der Hohlraum ist insbesondere im Bereich der Achse ausgebildet. Bevorzugt erstreckt sich der Hohl- raum über die gesamte axiale Länge des Maschinenelementes. Der Hohlraum ist be- vorzugt an einem axialen Ende offen. Er weist bevorzugt die Form eines Zylinders auf. Further preferred embodiments of the arrangement according to the invention include temperature sensors on the magnetic field sensors for measuring the respective temperature given there. The temperature sensors are preferably also electrically connected to the measurement signal processing unit. The measurement signal processing unit is preferably configured to compensate for the influence of the temperature on the measurement signals of the magnetic field sensors. In preferred embodiments of the arrangement according to the invention, the machine element has a cavity, so that the machine element is hollow. The cavity preferably extends at least partially in the axis The cavity is formed in particular in the region of the axis. Preferably, the hollow space over the entire axial length of the machine element. The cavity is preferably open at one axial end. It preferably has the shape of a cylinder.
Die mindestens zwei Magnetfeldsensoren sind bevorzugt in dem Hohlraum des Ma- schinenelementes angeordnet. Dort sind die Magnetfeldsensoren weitestgehend vor äußeren Einflüssen geschützt. Die mindestens zwei Magnetfeldsensoren können aber auch außerhalb des Maschinenelementes angeordnet sein. The at least two magnetic field sensors are preferably arranged in the cavity of the machine element. There, the magnetic field sensors are largely protected against external influences. However, the at least two magnetic field sensors can also be arranged outside the machine element.
Der eine Magnetisierungsbereich bzw. die mehreren Magnetisierungsbereiche können permanent oder temporär magnetisiert sein. Bei bevorzugten Ausführungsformen der erfindungsgemäßen Anordnung ist der eine Magnetisierungsbereich bzw. sind die mehreren Magnetisierungsbereiche permanent magnetisiert, sodass die Magnetisie- rung durch eine Permanentmagnetisierung gebildet ist. Bei alternativ bevorzugten Ausführungsformen der erfindungsgemäßen Anordnung weist diese weiterhin mindes- tens einen Magneten zum Magnetisieren des mindestens einen Magnetisierungsbe- reiches auf, sodass die Magnetisierung des mindestens einen Magnetisierungsberei- ches grundsätzlich temporär ist. Der mindestens eine Magnet kann durch einen Per- manentmagneten oder bevorzugt durch einen Elektromagneten gebildet sein. The one magnetization region or the plurality of magnetization regions can be permanently or temporarily magnetized. In preferred embodiments of the arrangement according to the invention, one magnetization region or the several magnetization regions is permanently magnetized, so that the magnetization is formed by a permanent magnetization. In alternatively preferred embodiments of the arrangement according to the invention, the latter furthermore has at least one magnet for magnetizing the at least one magnetization region, so that the magnetization of the at least one magnetization region is basically temporary. The at least one magnet can be formed by a permanent magnet or preferably by an electromagnet.
Der eine permanent oder temporär magnetisierte Magnetisierungsbereich bzw. die mehreren permanent oder temporär magnetisierten Magnetisierungsbereiche sind in einem von einer Kraft bzw. von einem Moment unbelasteten Zustand des Maschinen- elementes nach außerhalb des jeweiligen Magnetisierungsbereiches bevorzugt mag- netisch neutral, sodass kein technisch relevantes Magnetfeld außerhalb des jeweili- gen Magnetisierungsbereiches messbar ist. The one permanently or temporarily magnetized magnetization region or the plurality of permanently or temporarily magnetized magnetization regions are preferably magnetically neutral in a state of the machine element that is unloaded by a force or momentum outside the respective magnetization region, so that no technically relevant magnetic field is outside of the respective magnetization region can be measured.
Der eine Magnetisierungsbereich bzw. die mehreren Magnetisierungsbereiche stellen jeweils einen Teil des Volumens des Maschinenelementes dar. Der eine Magnetisie- rungsbereich bzw. die mehreren Magnetisierungsbereiche sind bevorzugt jeweils ring- förmig ausgebildet, wobei die Achse des Maschinenelementes auch eine mittlere Achse der jeweiligen Ringform bildet. Besonders bevorzugt weist der eine Magnetisie- rungsbereich bzw. weisen die mehreren Magnetisierungsbereiche jeweils die Form ei- nes zur Achse des Maschinenelementes koaxialen Hohlzylinders auf. Der mindestens eine Magnetisierungsbereich erstreckt sich bevorzugt umfänglich um die Achse und kann daher auch als Magnetisierungsspur aufgefasst werden. Es han- delt sich somit um mindestens einen die Achse umlaufenden Magnetisierungsbereich, wobei die Achse selbst bevorzugt nicht einen Teil des Magnetisierungsbereiches bil- det. Der eine Magnetisierungsbereich bzw. die mehreren Magnetisierungsbereiche weisen bevorzugt eine tangentiale Ausrichtung in Bezug auf eine sich um die Achse herum erstreckende Oberfläche des Maschinenelementes auf. Der eine Magnetisie- rungsbereich bzw. die mehreren Magnetisierungsbereiche weisen bevorzugt aus- schließlich eine tangentiale Ausrichtung in Bezug auf eine sich um die Achse herum erstreckende Oberfläche des Maschinenelementes auf. Der eine Magnetisierungsbe- reich bzw. die mehreren Magnetisierungsbereiche erstrecken sich bevorzugt jeweils entlang eines geschlossenen Pfades um die Achse herum, wobei der Magnetisie- rungsbereich bzw. die Magnetisierungsbereiche kurze Lücken aufweisen dürfen. Inso- fern mehrere der Magnetisierungsbereiche ausgebildet sind, weisen diese bevorzugt eine gleiche räumliche Ausdehnung auf und sind axial beabstandet. Insofern mehrere der Magnetisierungsbereiche ausgebildet sind, weisen diese bevorzugt entgegensetz- te Polaritäten auf. Besonders bevorzugt sind mindestens zwei der sich umfänglich er- streckenden Magnetisierungsbereiche in Form von Magnetisierungsspuren ausgebil- det. The one magnetization region or the plurality of magnetization regions each represent a part of the volume of the machine element. The one magnetization region or the plurality of magnetization regions are preferably each of annular design, wherein the axis of the machine element also forms a central axis of the respective ring shape. Particularly preferably, the one magnetization region or the several magnetization regions respectively have the shape of a hollow cylinder which is coaxial with the axis of the machine element. The at least one magnetization region preferably extends circumferentially about the axis and can therefore also be understood as a magnetization track. This therefore involves at least one magnetization area revolving around the axis, wherein the axis itself preferably does not form part of the magnetization area. The one or more magnetization regions preferably have a tangential orientation with respect to a surface of the machine element that extends around the axis. The one magnetization region or the plurality of magnetization regions preferably has exclusively a tangential orientation with respect to a surface of the machine element extending around the axis. The one magnetization region or the plurality of magnetization regions preferably extend in each case along a closed path around the axis, wherein the magnetization region or the magnetization regions may have short gaps. Insofar as several of the magnetization regions are formed, they preferably have the same spatial extent and are axially spaced apart. Insofar as several of the magnetization regions are formed, they preferably have opposite polarities. Particularly preferably, at least two of the circumferentially extending magnetization regions are embodied in the form of traces of magnetization.
Das Maschinenelement besteht zumindest im Magnetisierungsbereich aus einem magnetostriktiven bzw. magnetoelastischen Material. Bevorzugt besteht das Maschi- nenelement vollständig aus dem magnetostriktiven bzw. magnetoelastischen Material. Bevorzugt besteht das Maschinenelement aus einem Stahl. At least in the magnetization region, the machine element consists of a magnetostrictive or magnetoelastic material. Preferably, the machine element consists entirely of the magnetostrictive or magnetoelastic material. Preferably, the machine element consists of a steel.
Das Maschinenelement weist bevorzugt die äußere Form eines Prismas oder eines Zylinders auf, wobei das Prisma bzw. der Zylinder bevorzugt koaxial zu der Achse an- geordnet ist. Das Prisma bzw. der Zylinder ist bevorzugt gerade. Besonders bevorzugt weist das Maschinenelement die äußere Form eines geraden Kreiszylinders auf, wo- bei der Kreiszylinder bevorzugt koaxial zu der Achse angeordnet ist. Bei besonderen Ausführungsformen ist das Prisma bzw der Zylinder konisch ausgebildet. Das Maschinenelement weist besonders bevorzugt die Form eines Hohlzylinders auf. The machine element preferably has the outer shape of a prism or a cylinder, wherein the prism or the cylinder is preferably arranged coaxially to the axis. The prism or the cylinder is preferably straight. Particularly preferably, the machine element has the outer shape of a straight circular cylinder, wherein the circular cylinder is preferably arranged coaxially to the axis. In particular embodiments, the prism or the cylinder is conical. The machine element particularly preferably has the shape of a hollow cylinder.
Das Maschinenelement ist bevorzugt durch eine Welle, durch eine partiell hohle Wel- le, durch eine Hohlwelle, durch einen Flansch oder durch einen Hohlflansch gebildet. Die Welle, die partiell hohle Welle, die Hohlwelle, der Flansch bzw. der Hohlflansch kann für Belastungen durch unterschiedliche Kräfte und Momente ausgelegt sein und beispielsweise eine Komponente eines Sensortretlagers, eines Wankstabilisators oder eines Düngemittelstreuers sein. Grundsätzlich kann das Maschinenelement auch durch völlig andersartige Maschinenelementtypen gebildet sein, wie z. B. eine Schalt- gabel. The machine element is preferably formed by a shaft, by a partially hollow shaft, by a hollow shaft, by a flange or by a hollow flange. The shaft, the partially hollow shaft, the hollow shaft, the flange or the hollow flange can be designed for loads due to different forces and moments and, for example, be a component of a sensor bottom bracket, a roll stabilizer or a fertilizer spreader. In principle, the machine element can also be formed by completely different types of machine element, such. For example, a shift fork.
Die mindestens zwei Magnetfeldsensoren sind bevorzugt jeweils durch einen Halblei- tersensor gebildet. Die mindestens zwei Magnetfeldsensoren sind alternativ bevorzugt jeweils durch einen MR-Sensor, durch einen Hall-Sensor, durch eine Feldplatte, durch einen SQUID, durch ein Spulenelement, durch eine Förstersonde oder durch ein Fluxgate-Magnetometer gebildet. Grundsätzlich können auch andere Sensortypen verwendet werden, insofern sie zur Messung des durch den invers-magnetostriktiven Effekt hervorgerufenen magnetischen Feldes bzw. einer oder mehrerer Richtungs- komponenten dieses Magnetfeldes geeignet sind. Bevorzugt sind die Magnetfeldsen- soren durch unterschiedliche Sensortypen gebildet, wodurch eine optimale Anpas- sung an das Maschinenelement und den Magnetisierungsbereich gewährleistet wer- den kann. The at least two magnetic field sensors are preferably each formed by a semiconductor sensor. Alternatively, the at least two magnetic field sensors are preferably each formed by an MR sensor, by a Hall sensor, by a field plate, by a SQUID, by a coil element, by a Förster probe or by a fluxgate magnetometer. In principle, other sensor types can also be used insofar as they are suitable for measuring the magnetic field produced by the inverse-magnetostrictive effect or one or more directional components of this magnetic field. Preferably, the magnetic field sensors are formed by different sensor types, whereby an optimal adaptation to the machine element and the magnetization region can be ensured.
Die Messsignalverarbeitungseinheit ist bevorzugt durch einen Mikrokontroller gebildet. Im weiteren Sinne ist die Messsignalverarbeitungseinheit bevorzugt durch eine Re- cheneinheit gebildet. The measurement signal processing unit is preferably formed by a microcontroller. In a broader sense, the measurement signal processing unit is preferably formed by a computing unit.
Die Messsignalverarbeitungseinheit ist bevorzugt weiterhin zur Auswertung der Mess- signale der einzelnen Magnetfeldsensoren ausgebildet. Folglich ist nicht lediglich eine Vorverarbeitung der Messsignale der einzelnen Magnetfeldsensoren ermöglicht, son- dern die Messsignalverarbeitungseinheit ermöglicht auch die Ausgabe von ausgewer- teten Messergebnissen, z. B. die Ausgabe einer vektoriellen Angabe einer magneti- schen Flussdichte der durch die Magnetisierung sowie durch die Kraft und/oder durch das Moment bewirkten Magnetfeldes, bei welcher ein Störfeld eliminiert wurde. Auch ermöglicht die Messsignalverarbeitungseinheit bevorzugt die Ausgabe der Werte der zu messenden Kraft bzw. des zu messenden Momentes. The measurement signal processing unit is preferably also designed for evaluating the measurement signals of the individual magnetic field sensors. Consequently, not only a preprocessing of the measurement signals of the individual magnetic field sensors is made possible, but the measurement signal processing unit also makes it possible to output evaluated measurement results, for example from the measurement signal processing unit. B. the output of a vectorial indication of a magnetic flux density by the magnetization and by the force and / or by the moment caused magnetic field in which an interference field was eliminated. The measuring signal processing unit also preferably allows the output of the values of the force or the torque to be measured.
Die Messsignalverarbeitungseinheit umfasst bevorzugt einen Speicher für Sensorda- ten. Diese Sensordaten bilden eine Informationsdatenbasis zur Interpretation der Messsignale der Magnetfeldsensoren. The measurement signal processing unit preferably comprises a memory for sensor data. These sensor data form an information database for interpreting the measurement signals of the magnetic field sensors.
Bei bevorzugten Ausführungsformen der erfindungsgemäßen Anordnung ist die Messsignalverarbeitungseinheit dazu ausgebildet, die Messsignale von Gruppen der Magnetfeldsensoren auszuwerten, wobei die Gruppierung der Magnetfeldsensoren veränderbar ist. Die Magnetfeldsensoren können somit unterschiedlich gruppiert wer- den, um beispielsweise unterschiedliche Komponenten des durch die Magnetisierung sowie durch die Kraft und/oder durch das Moment bewirkten Magnetfeldes oder auch von Störmagnetfeldern messen zu können. Somit kann z. B. die Messung von Stör- magnetfeldern quasi zeitgleich erfolgen. In preferred embodiments of the arrangement according to the invention, the measurement signal processing unit is designed to evaluate the measurement signals of groups of the magnetic field sensors, wherein the grouping of the magnetic field sensors is variable. The magnetic field sensors can thus be grouped differently in order, for example, to be able to measure different components of the magnetic field caused by the magnetization and by the force and / or by the moment or else of disturbance magnetic fields. Thus, z. B. the measurement of Störmagnetfeldern almost simultaneously.
Das erfindungsgemäße Verfahren dient zum Messen einer Kraft und/oder eines Mo- mentes an einem Maschinenelement unter Nutzung des invers-magnetostriktiven Ef- fektes. Das Maschinenelement weist mindestens einen Magnetisierungsbereich für eine Magnetisierung auf. Verfahrensgemäß werden mindestens zwei beabstandete Magnetfeldsensoren zum Messen einer durch die Magnetisierung sowie durch die Kraft und/oder durch das Moment bewirkten Magnetfeldes genutzt. Erfindungsgemäß werden die Messsignale der mindestens zwei Magnetfeldsensoren einzeln verarbeitet. The method according to the invention is used to measure a force and / or a moment on a machine element using the inverse-magnetostrictive effect. The machine element has at least one magnetization region for a magnetization. According to the method, at least two spaced-apart magnetic field sensors are used for measuring a magnetic field caused by the magnetization as well as by the force and / or by the moment. According to the invention, the measurement signals of the at least two magnetic field sensors are processed individually.
Das erfindungsgemäße Verfahren weist bevorzugt auch die Schritte und Merkmale auf, die im Zusammenhang mit der erfindungsgemäßen Anordnung beschrieben sind. The method according to the invention preferably also has the steps and features which are described in connection with the arrangement according to the invention.
Bei bevorzugten Ausführungsformen des erfindungsgemäßen Verfahrens erfolgt eine Plausibilitätsprüfung der Messsignale der einzelnen Magnetfeldsensoren. Dies ist ins- besondere dann möglich, wenn die Anzahl der Magnetfeldsensoren deutlich größer als zwei ist, sodass das Magnetfeld mehrfach redundant gemessen wird. Bei bevorzugten Ausführungsformen des erfindungsgemäßen Verfahrens erfolgen ein Erkennen eines Fremdmagnetfeldes und ein Kompensieren des Einflusses dieses Fremdmagnetfeldes auf die Messung der wirkenden Kraft bzw. des wirkenden Mo- mentes. In preferred embodiments of the method according to the invention, a plausibility check of the measurement signals of the individual magnetic field sensors takes place. This is possible in particular when the number of magnetic field sensors is significantly greater than two, so that the magnetic field is measured multiply redundantly. In preferred embodiments of the method according to the invention, detection of a foreign magnetic field and compensation of the influence of this external magnetic field are carried out on the measurement of the acting force or the acting moment.
Das Fremdmagnetfeld kann durch ein Nahfeld oder durch ein Fernfeld gebildet sein. Das Nahfeld ist ein inhomogenes Magnetfeld an der Anordnung der Magnetfeldsenso- ren. Die Feldverteilung eines Nahfeldes innerhalb der Anordnung der Magnetfeldsen- soren ist erkennbar, da jeder der Magnetfeldsensoren bevorzugt auch die Richtung des individuellen Vektors und die Beträge der gemessenen Magnetfeldrichtungskom- ponenten bereitstellt. Somit sind eine Richtung, eine Verteilung und eine Intensität des Fremdmagnetfeldes erkennbar. Es ist aber auch eine Art des Fremdmagnetfeldes, d. h. eine bleibende Magnetisierung oder eine zeitliche Veränderung der Störeinwir- kung, wie z. B. eine Abschwächung oder eine Wanderung der Störquelle, erkennbar. Es ist aber auch eine Form der Störung, d. h. punktuell oder breitflächig, erkennbar. Ebenso ist ein elektrisches Feld erkennbar, welches in ein magnetisches Feld über- geht. Das Nahfeld wird bevorzugt gemessen und bei der Messung der Kraft bzw. des Momentes kompensiert. Das Fernfeld erzeugt einen Offset des Magnetfeldes in eine Vektorrichtung über die gesamte Anordnung der Magnetfeldsensoren hinweg. Es sind ein Betrag und eine Richtung dieses Offsets erkennbar. Bevorzugt werden das Fernfeld und das lineare Nahfeld zeitgleich zur Messung der Kraft bzw. des Momentes gemessen und kom- pensiert. Ein nicht linearer Anteil des Nahfeldes wird bevorzugt detektiert, um ihn zu kompensieren. The external magnetic field can be formed by a near field or by a far field. The near field is an inhomogeneous magnetic field on the arrangement of the magnetic field sensors. The field distribution of a near field within the arrangement of the magnetic field sensors is recognizable, since each of the magnetic field sensors preferably also provides the direction of the individual vector and the magnitudes of the measured magnetic field direction components. Thus, a direction, a distribution and an intensity of the external magnetic field can be seen. But it is also a kind of external magnetic field, d. H. a permanent magnetization or a temporal change of the interference, such. As a weakening or migration of the source of interference, recognizable. But it is also a form of the disorder, d. H. punctiform or broad, recognizable. Likewise, an electric field can be seen which transitions into a magnetic field. The near field is preferably measured and compensated in the measurement of the force or the moment. The far field generates an offset of the magnetic field in a vector direction across the entire array of magnetic field sensors. You can see an amount and a direction of this offset. Preferably, the far field and the linear near field are measured and compensated simultaneously for the measurement of the force or the moment. A non-linear portion of the near field is preferably detected to compensate for it.
Bevorzugt werden mit den Magnetfeldsensoren jeweils mehrere Richtungen des Mag- netfeldes gemessen. Ausgehend davon wird bevorzugt auch eine Biegung des Ma- schinenelementes bestimmt. Bei dieser Biegung handelt es sich bevorzugt um eine Torsion um zwei Achsen senkrecht zur Achse des Maschinenelementes. Es werden bevorzugt eine Richtung und ein Betrag der Biegung bestimmt. Weiterhin wird bevor- zugt eine Querkraft bestimmt. Die Querkraft ist senkrecht zur Achse des Maschinen- elementes ausgerichtet. Es werden bevorzugt eine Richtung und ein Betrag der Quer- kraft bestimmt. Bevorzugt werden weitere Momente und/oder Kräfte bestimmt. In each case, a plurality of directions of the magnetic field are respectively measured with the magnetic field sensors. On the basis of this, a bending of the machine element is also preferably determined. This bend is preferably a torsion about two axes perpendicular to the axis of the machine element. A direction and an amount of the bend are preferably determined. Furthermore, a transverse force is preferably determined. The lateral force is perpendicular to the axis of the machine aligned. A direction and an amount of the transverse force are preferably determined. Preferably, further moments and / or forces are determined.
Ein weiteres bevorzugt zu bestimmendes Störmagnetfeld ist durch einen Temperatur- gradienten am Maschinenelement bedingt. Dieser Temperaturgradient kann bei- spielsweise auftreten, wenn das Maschinenelement 120 °C heiß ist und Schwall- oder Eiswasser mit einer Temperatur von etwa 0 °C auf das Maschinenelement trifft. Trifft das kalte Wasser auf das heiße Maschinenelement auf, so kühlt es an der Kontakt- stelle ab. Die Abkühlung pflanzt sich um den Auftreffbereich des Wassers fort. Gleich- zeitig ist das übrige Maschinenelement, insbesondere der gegenüberliegende Bereich des Maschinenelementes, weiterhin heiß. Der Temperaturunterschied zwischen den Temperaturextremen am Umfang des Maschinenelementes beträgt dann beispielhaft 120 K. Diese Temperaturunterschiede bewirken inhomogene thermische Ausdehnun- gen des Maschinenelementes in Abhängigkeit von der Temperaturverteilung. Die in- homogenen Ausdehnungen bewirken Materialspannungen im Maschinenelement, für welche der invers-magnetostriktive Effekt sensitiv ist, sodass ein Störmagnetfeld re- sultiert. Dieses Störmagnetfeld wird durch die einzelne Verarbeitung der Messsignale der Magnetfeldsensoren bevorzugt erkannt und kompensiert. Bevorzugt werden er- gänzend die Temperaturen an den Magnetfeldsensoren gemessen, um einen Tempe- raturgang der Magnetfeldsensoren zu kompensieren, sodass auch bei anderen Tem- peraturen als Raumtemperatur das Magnetfeld mit hoher Genauigkeit gemessen wer- den kann. Weiterhin werden diese Temperaturinformationen bevorzugt als Indikator für Temperaturgradienten im Maschinenelement genutzt. Ist die Temperaturverteilung im Maschinenelement bekannt, kann deren Einfluss kompensiert werden. Die Tempe- raturmessung erfolgt bevorzugt mit einer gleichen Messfrequenz wie die Messung des Magnetfeldes. Another preferred magnetic field to be determined is caused by a temperature gradient on the machine element. This temperature gradient can occur, for example, when the machine element is 120 ° C hot and meets surge or ice water at a temperature of about 0 ° C to the machine element. If the cold water hits the hot machine element, it cools down at the contact point. The cooling continues around the impingement area of the water. At the same time, the remaining machine element, in particular the opposite region of the machine element, is still hot. The temperature difference between the temperature extremes at the circumference of the machine element is then for example 120 K. These temperature differences cause inhomogeneous thermal expansions of the machine element as a function of the temperature distribution. The inhomogeneous expansions cause material stresses in the machine element, for which the inverse-magnetostrictive effect is sensitive, so that a disturbing magnetic field results. This interference magnetic field is preferably detected and compensated by the individual processing of the measurement signals of the magnetic field sensors. In addition, the temperatures at the magnetic field sensors are preferably measured in order to compensate for a temperature variation of the magnetic field sensors, so that the magnetic field can be measured with high accuracy even at temperatures other than room temperature. Furthermore, this temperature information is preferably used as an indicator of temperature gradients in the machine element. If the temperature distribution in the machine element is known, its influence can be compensated. The temperature measurement is preferably carried out with a same measurement frequency as the measurement of the magnetic field.
Die Messsignalverarbeitungseinheit der erfindungsgemäßen Anordnung ist bevorzugt zur Ausführung der beschriebenen Verfahrensschritte konfiguriert. The measuring signal processing unit of the arrangement according to the invention is preferably configured for carrying out the described method steps.
Weitere Einzelheiten, Vorteile und Weiterbildungen der Erfindung ergeben sich aus der nachfolgenden Beschreibung bevorzugter Ausführungsformen der Erfindung, un- ter Bezugnahme auf die Zeichnung. Es zeigen: Fig. 1 eine erste bevorzugte Ausführungsform einer erfindungsgemäßen Further details, advantages and developments of the invention will become apparent from the following description of preferred embodiments of the invention, with reference to the drawing. Show it: Fig. 1 shows a first preferred embodiment of an inventive
Anordnung in zwei Ansichten;  Arrangement in two views;
Fig. 2 eine zweite bevorzugte Ausführungsform der erfindungsgemäßen Fig. 2 shows a second preferred embodiment of the invention
Anordnung in einer Querschnittsansicht;  Arrangement in a cross-sectional view;
Fig. 3 eine dritte bevorzugte Ausführungsform der erfindungsgemäßen Fig. 3 shows a third preferred embodiment of the invention
Anordnung in einer Querschnittsansicht;  Arrangement in a cross-sectional view;
Fig. 4 eine vierte bevorzugte Ausführungsform der erfindungsgemäßen Fig. 4 shows a fourth preferred embodiment of the invention
Anordnung in einer Querschnittsansicht Fig. 5 eine fünfte bevorzugte Ausführungsform der erfindungsgemäßen  Arrangement in a cross-sectional view Fig. 5 shows a fifth preferred embodiment of the invention
Anordnung in einer Querschnittsansicht;  Arrangement in a cross-sectional view;
Fig. 6 eine sechste bevorzugte Ausführungsform der erfindungsgemäßen Fig. 6 shows a sixth preferred embodiment of the invention
Anordnung in einer Querschnittsansicht;  Arrangement in a cross-sectional view;
Fig. 7 eine siebente bevorzugte Ausführungsform der erfindungsgemäßen Fig. 7 shows a seventh preferred embodiment of the invention
Anordnung in einer Querschnittsansicht;  Arrangement in a cross-sectional view;
Fig. 8 eine achte bevorzugte Ausführungsform der erfindungsgemäßen Fig. 8 shows an eighth preferred embodiment of the invention
Anordnung in einer Längsschnittansicht;  Arrangement in a longitudinal sectional view;
Fig. 9 eine neunte bevorzugte Ausführungsform der erfindungsgemäßen 9 shows a ninth preferred embodiment of the invention
Anordnung in einer Längsschnittansicht; Fig. 10 eine zehnte bevorzugte Ausführungsform der erfindungsgemäßen  Arrangement in a longitudinal sectional view; 10 shows a tenth preferred embodiment of the invention
Anordnung in einer Längsschnittansicht;  Arrangement in a longitudinal sectional view;
Fig. 1 1 eine elfte bevorzugte Ausführungsform der erfindungsgemäßen Anordnung in einer Längsschnittansicht; und 1 shows an eleventh preferred embodiment of the arrangement according to the invention in a longitudinal sectional view; and
Fig. 12 eine zwölfte bevorzugte Ausführungsform der erfindungsgemäßen Fig. 12 shows a twelfth preferred embodiment of the invention
Anordnung in zwei Ansichten. Fig. 1 zeigt eine erste bevorzugte Ausführungsform einer erfindungsgemäßen Anord- nung in einer Querschnittsansicht und in einer Längsschnittansicht. Die Anordnung umfasst ein Maschinenelement aus einem Stahl in Form eines Hohlflansches 01 , wel- cher an einem Grundkörper 02 befestigt ist und sich in einer Achse 03 erstreckt. Auf den Hohlflansch 01 wirkt ein Torsionsmoment Mt, welches mit der erfindungsgemäßen Anordnung gemessen werden kann. Arrangement in two views. 1 shows a first preferred embodiment of an arrangement according to the invention in a cross-sectional view and in a longitudinal sectional view. The arrangement comprises a machine element made of a steel in the form of a hollow flange 01, which is fastened to a basic body 02 and extends in an axis 03. On the hollow flange 01 acts a torsional moment M t , which can be measured with the inventive arrangement.
Der Hohlflansch 01 weist zwei Magnetisierungsbereiche 04 in Form von umlaufenden Spuren auf. Die beiden Magnetisierungsbereiche 04 sind permanentmagnetisiert und entgegengesetzt gepolt. Die beiden Magnetisierungsbereiche 04 bilden einen Primär- sensor für die Messung des Torsionsmomentes Mt unter Nutzung des invers- magnetostriktiven Effektes. The hollow flange 01 has two magnetization regions 04 in the form of circumferential tracks. The two magnetization regions 04 are permanently magnetized and oppositely poled. The two magnetization regions 04 form a primary sensor for the measurement of the torsional moment M t using the inverse magnetostrictive effect.
Die Anordnung umfasst weiterhin zwanzig Magnetfeldsensoren 06, die sich im Inne- ren des Hohlflansches 01 befinden. Die zwanzig Magnetfeldsensoren 06 weisen einen gleichen Abstand zur Achse 03 auf. Die zwanzig Magnetfeldsensoren 06 sind in Form von fünf Gruppen angeordnet. Jede der fünf Gruppen umfasst vier der Magnetfeld- sensoren 06, die im Winkelabstand von 90c bezogen auf die Achse 03 und gemein- sam in einer senkrecht zur Achse 03 angeordneten Ebene angeordnet sind. Die fünf Gruppen sind bezogen auf die Achse 03 äquidistant angeordnet. Nur zwei der fünf Gruppen der Magnetfeldsensoren 06 sind jeweils an einer axialen Position angeord- net, an welcher auch einer der beiden Magnetisierungsbereiche 04 angeordnet ist. Die Anordnung der zwanzig Magnetfeldsensoren 06 kann alternativ auch dadurch be- schrieben werden, dass sie in Form von vier Gruppen angeordnet sind. Jede der vier Gruppen umfasst fünf der Magnetfeldsensoren 06, die gemeinsam auf einer parallel zur Achse 03 angeordneten Geraden liegen und äquidistant angeordnet sind. Die An- ordnung der zwanzig Magnetfeldsensoren 06 kann alternativ auch dadurch beschrie- ben werden, dass sie in Form von zwei Gruppen angeordnet sind. Jede der beiden Gruppen umfasst zehn der Magnetfeldsensoren 06, die gemeinsam in einer die Achse 03 umfassenden Ebene matrixartig angeordnet sind, wobei die beiden Ebenen einen Winkel von 903 zueinander aufweisen. Die beschriebene Anordnung der zwanzig Magnetfeldsensoren 06 führt u. a. zu einer in axialer Richtung ausgerichteten Gruppe 07 der Magnetfeldsensoren 06, zu einer in diagonaler Richtung ausgerichteten Gruppe 08 der Magnetfeldsensoren 06 und zu ei- ner in tangentialer Richtung ausgerichteten Gruppe 09 der Magnetfeldsensoren 06. The arrangement furthermore comprises twenty magnetic field sensors 06, which are located inside the hollow flange 01. The twenty magnetic field sensors 06 are at the same distance from the axis 03. The twenty magnetic field sensors 06 are arranged in the form of five groups. Each of the five groups comprises four of the magnetic field sensors 06, which are arranged at an angular distance of 90 c with respect to the axis 03 and together in a plane arranged perpendicular to the axis 03. The five groups are arranged equidistantly with respect to the axis 03. Only two of the five groups of the magnetic field sensors 06 are each arranged at an axial position, on which one of the two magnetization regions 04 is also arranged. The arrangement of the twenty magnetic field sensors 06 can alternatively also be described by being arranged in the form of four groups. Each of the four groups includes five of the magnetic field sensors 06, which lie together on a straight line parallel to the axis 03 and are arranged equidistantly. The arrangement of the twenty magnetic field sensors 06 can alternatively also be described by being arranged in the form of two groups. Each of the two groups includes ten of the magnetic field sensors 06, which are arranged in a matrix-like manner in a plane including the axis 03, wherein the two planes have an angle of 90 3 to each other. The described arrangement of the twenty magnetic field sensors 06 leads, inter alia, to a group 07 of the magnetic field sensors 06 aligned in the axial direction, to a group 08 of the magnetic field sensors 06 aligned in the diagonal direction and to a group 09 of the magnetic field sensors 06 aligned in the tangential direction.
Die zwanzig Magnetfeldsensoren 06 sind symbolisch durch jeweils einen Kreis darge- stellt. The twenty magnetic field sensors 06 are represented symbolically by a circle in each case.
Die zwanzig Magnetfeldsensoren 06 erlauben jeweils eine Messung einer oder meh- rerer der Richtungskomponenten eines wegen des invers-magnetostriktiven Effektes auftretenden Magnetfeldes 1 1 sowie möglicher Störmagnetfelder. The twenty magnetic field sensors 06 each allow a measurement of one or more of the directional components of a magnetic field 1 1 occurring due to the inverse-magnetostrictive effect as well as possible interference magnetic fields.
Jeder der zwanzig Magnetfeldsensoren 06 ist individuell mit einem als eine Messsig- nalverarbeitungseinheit fungierenden Mikrokontroller (nicht gezeigt) elektrisch verbun- den, sodass der Mikrokontroller die Messsignale der zwanzig Magnetfeldsensoren 06 einzeln oder in variierbaren Gruppen verarbeiten und auswerten kann. Each of the twenty magnetic field sensors 06 is individually electrically connected to a microcontroller (not shown) functioning as a measurement signal processing unit, so that the microcontroller can process and evaluate the measurement signals of the twenty magnetic field sensors individually or in variable groups.
Der Mikrokontroller steuert die Abfrage der zwanzig Magnetfeldsensoren 06 und ver- gleicht deren Messwerte mit einer im MikroController hinterlegten Datenbasis, welche die Messwerte relativ oder absolut verrechnet und untereinander vergleicht. The microcontroller controls the interrogation of the twenty magnetic field sensors 06 and compares their measured values with a database stored in the microcontroller, which compares the measured values relatively or absolutely and compares them with one another.
Insofern die zwanzig Magnetfeldsensoren 06 jeweils zur Messung aller drei Rich- tungskomponenten des wegen des invers-magnetostriktiven Effektes auftretenden Magnetfeldes 1 1 ausgebildet sind, so wird ein Raumvektor mit Betrag und Richtung des zu messenden, lastabhängigen Magnetfeldes 1 1 gemessen. Der Raumvektor, darstellbar durch die magnetische Flussdichte mit den drei Richtungskomponenten Bx, By und Bz wird aus den Messwerten der Magnetfeldsensoren 06 gebildet. Insofar as the twenty magnetic field sensors 06 are each designed to measure all three directional components of the magnetic field 1 1 occurring due to the inverse magnetostrictive effect, a space vector with magnitude and direction of the load-dependent magnetic field 1 1 to be measured is measured. The space vector, which can be represented by the magnetic flux density with the three direction components B x , B y and B z , is formed from the measured values of the magnetic field sensors 06.
Das wegen des invers-magnetostriktiven Effektes entstehende Magnetfeld 1 1 ist ab- hängig vom Torsionsmoment Mt. Zwar können ggf. nur einige der zwanzig Magnet- feldsensoren 06 dieses Magnetfeld 1 1 detektieren. jedoch können diese Magnetfeld- sensoren 06 vom Mikrokontroller ausgewählt und gruppiert werden Bei sich ändernder reiner Torsionsbelastung des Hohlflansches 01 und bei einem ver- schwindenden Störfeld ändert sich an jeder der Positionen der Magnetfeldsensoren 06 der Vektor der magnetischen Flussdichte ausschließlich im Betrag, d. h. jeder der Magnetfeldsensoren 06 erfährt eine Änderung des Vektorbetrages, nicht aber in der Vektorrichtung. Damit steigt der Betrag der magnetischen Flussdichte jeder Vektor- komponente Bx, By und B2 gleich, sodass die Vektorrichtung unverändert bleibt. The magnetic field 1 1 generated due to the inverse magnetostrictive effect is dependent on the torsional moment M t . Although only a few of the twenty magnetic field sensors 06 may possibly detect this magnetic field 1 1. however, these magnetic field sensors 06 can be selected and grouped by the microcontroller With changing pure torsional loading of the hollow flange 01 and with a disappearing interference field, the vector of the magnetic flux density changes exclusively in magnitude at each of the positions of the magnetic field sensors 06, ie each of the magnetic field sensors 06 undergoes a change in the vector amount, but not in the vector direction. Thus, the magnitude of the magnetic flux density of each vector component B x , B y and B 2 increases , so that the vector direction remains unchanged.
Die magnetische Flussdichte des lastabhängigen Magnetfeldes 1 1 ist für jede der drei Vektorkomponenten B*. By und B2 linear vom Torsionsmoment Mt abhängig, wobei die lineare Steigung negativ oder positiv ist in Abhängigkeit von der Position des jeweili- gen Magnetfeldsensors 06 in axialer Richtung. Denkbar ist ebenso eine Steigung von Null für eine oder zwei der drei Vektorkomponenten. The magnetic flux density of the load-dependent magnetic field 1 1 is B * for each of the three vector components. B y and B 2 linearly dependent on the torsional moment M t , wherein the linear slope is negative or positive depending on the position of the respective magnetic field sensor 06 in the axial direction. Also conceivable is a slope of zero for one or two of the three vector components.
Das lastabhängige Magnetfeld 1 1 , welches anhand des Vektors der magnetischen Flussdichte Bx, By und Bz gemessen wird, unterscheidet sich an den Positionen der einzelnen Magnetfeldsensoren 06 bei gleichbleibender Torsionsbelastung. Unter der Voraussetzung eines verschwindend kleinen Störmagnetfeldes sind die Richtung und der Betrag des Vektors an denjenigen Magnetfeldsensoren 06 mit einer gleichen axia- len Position gleich. Entsprechend unterscheiden sich die Richtung und der Betrag des Vektors zwischen den Positionen der Magnetfeldsensoren 06 innerhalb der axialen Richtung. Dieser Zusammenhang bietet die Möglichkeit, Messsignale einzelner der Magnetfeldsensoren 06 in Gruppierungen zusammenzufassen und entsprechend auszuwerten. The load-dependent magnetic field 1 1, which is measured on the basis of the vector of the magnetic flux density B x , B y and B z , differs at the positions of the individual magnetic field sensors 06 with a constant torsional load. Assuming a negligibly small interference magnetic field, the direction and the magnitude of the vector at those magnetic field sensors 06 having a same axial position are the same. Accordingly, the direction and magnitude of the vector between the positions of the magnetic field sensors 06 differ within the axial direction. This connection offers the possibility of combining measurement signals of individual ones of the magnetic field sensors 06 into groupings and correspondingly evaluating them.
Fig. 2 zeigt eine zweite bevorzugte Ausführungsform der erfindungsgemäßen Anord- nung in einer Querschnittsansicht. Diese Ausführungsform gleicht zunächst der in Fig. 1 gezeigten Ausführungsform. Im Unterschied zu der in Fig. 1 gezeigten Ausfüh- rungsform sind die Magnetfeldsensoren 06 gemeinsam in einer die Achse 03 umfas- senden Ebene angeordnet. Die Magnetfeldsensoren 06 sind in zwei Gruppen ange- ordnet. Jede der beiden Gruppen umfasst mehrere der Magnetfeldsensoren 06, die gemeinsam auf einer parallel zur Achse 03 angeordneten Geraden liegen und äquidis- tant angeordnet sind. Die Magnetfeldsensoren 06 weisen einen gleichen Abstand zur Achse 03 auf. Fig. 3 zeigt eine dritte bevorzugte Ausführungsform der erfindungsgemäßen Anord- nung in einer Querschnittsansicht. Diese Ausführungsform gleicht zunächst der in Fig. 2 gezeigten Ausführungsform. Im Unterschied zu der in Fig. 2 gezeigten Ausfüh- rungsform sind die Magnetfeldsensoren 06 in unterschiedlichen Positionen um die Achse 03 herum und auch in der Achse 03 angeordnet. Die Magnetfeldsensoren 06 sind in vier Gruppen angeordnet. Jede der vier Gruppen umfasst mehrere der Magnet- feldsensoren 06, die gemeinsam auf einer parallel zur Achse 03 bzw. in der Achse 03 angeordneten Geraden liegen und äquidistant angeordnet sind. Die nicht in der Achse 03 angeordneten Magnetfeldsensoren 06 weisen einen gleichen Abstand zur Achse 03 auf. 2 shows a second preferred embodiment of the arrangement according to the invention in a cross-sectional view. This embodiment is initially similar to the embodiment shown in FIG. In contrast to the embodiment shown in FIG. 1, the magnetic field sensors 06 are arranged together in a plane encompassing the axis 03. The magnetic field sensors 06 are arranged in two groups. Each of the two groups comprises a plurality of the magnetic field sensors 06, which lie together on a straight line arranged parallel to the axis 03 and are arranged equidistantly. The magnetic field sensors 06 are at the same distance from the axis 03. 3 shows a third preferred embodiment of the arrangement according to the invention in a cross-sectional view. This embodiment is initially similar to the embodiment shown in FIG. In contrast to the embodiment shown in FIG. 2, the magnetic field sensors 06 are arranged in different positions around the axis 03 and also in the axis 03. The magnetic field sensors 06 are arranged in four groups. Each of the four groups comprises a plurality of the magnetic field sensors 06, which lie together on a straight line arranged parallel to the axis 03 or in the axis 03 and are arranged equidistantly. The magnetic field sensors 06 not arranged in the axis 03 are at the same distance from the axis 03.
Fig. 4 zeigt eine vierte bevorzugte Ausführungsform der erfindungsgemäßen Anord- nung in einer Querschnittsansicht. Diese Ausführungsform gleicht zunächst der in Fig. 2 gezeigten Ausführungsform. Im Unterschied zu der in Fig. 2 gezeigten Ausfüh- rungsform sind die Magnetfeld Sensoren 06 in zwei die Achse 03 umfassenden Ebe- nen angeordnet. Diese beiden Ebenen weisen einen Winkel von 45° zueinander auf. 4 shows a fourth preferred embodiment of the arrangement according to the invention in a cross-sectional view. This embodiment is initially similar to the embodiment shown in FIG. In contrast to the embodiment shown in FIG. 2, the magnetic field sensors 06 are arranged in two planes comprising the axis 03. These two planes are at an angle of 45 ° to each other.
Fig. 5 zeigt eine fünfte bevorzugte Ausführungsform der erfindungsgemäßen Anord- nung in einer Querschnittsansicht. Diese Ausführungsform gleicht zunächst der in Fig. 3 gezeigten Ausführungsform. Im Unterschied zu der in Fig. 3 gezeigten Ausfüh- rungsform sind die Magnetfeldsensoren 06 in sieben Gruppen angeordnet. Jede der sieben Gruppen umfasst mehrere der Magnetfeldsensoren 06, die gemeinsam auf ei- ner parallel zur Achse 03 bzw. in der Achse 03 angeordneten Geraden liegen und äquidistant angeordnet sind. 5 shows a fifth preferred embodiment of the arrangement according to the invention in a cross-sectional view. This embodiment initially resembles the embodiment shown in FIG. In contrast to the embodiment shown in FIG. 3, the magnetic field sensors 06 are arranged in seven groups. Each of the seven groups comprises a plurality of the magnetic field sensors 06, which lie together on a straight line parallel to the axis 03 or in the axis 03 and are arranged equidistantly.
Fig. 6 zeigt eine sechste bevorzugte Ausführungsform der erfindungsgemäßen An- ordnung in einer Querschnittsansicht. Diese Ausführungsform gleicht zunächst der in Fig. 2 gezeigten Ausführungsform. Im Unterschied zu der in Fig. 2 gezeigten Ausfüh- rungsform sind die Magnetfeldsensoren 06 in acht Gruppen angeordnet. Jede der acht Gruppen umfasst mehrere der Magnetfeldsensoren 06, die gemeinsam auf einer parallel zur Achse 03 angeordneten Geraden liegen und äquidistant angeordnet sind Die Geraden von jeweils vier der acht Gruppen weisen einen Winkelabstand von 90° bezogen auf die Achse 03 auf. Die Magnetfeldsensoren 06 von jeweils vier der acht Gruppen weisen einen gleichen Abstand zur Achse 03 auf. 6 shows a sixth preferred embodiment of the arrangement according to the invention in a cross-sectional view. This embodiment is initially similar to the embodiment shown in FIG. In contrast to the embodiment shown in FIG. 2, the magnetic field sensors 06 are arranged in eight groups. Each of the eight groups comprises a plurality of the magnetic field sensors 06, which lie together on a line arranged parallel to the axis 03 and are arranged equidistantly. The straight lines of four of the eight groups each have an angular distance of 90 ° based on the axis 03 on. The magnetic field sensors 06 of four of the eight groups each have an equal distance from the axis 03.
Fig. 7 zeigt eine siebente bevorzugte Ausführungsform der erfindungsgemäßen An- ordnung in einer Querschnittsansicht. Diese Ausführungsform gleicht zunächst der in Fig. 6 gezeigten Ausführungsform. Im Unterschied zu der in Fig. 6 gezeigten Ausfüh- rungsform sind die Magnetfeldsensoren 06 in zwölf Gruppen angeordnet. Acht der zwölf Gruppen der Magnetfeldsensoren 06 sind auf acht Geraden angeordnet, die ei- nen Winkelabstand von 45° bezogen auf die Achse 03 und einen gleichen Abstand zur Achse 03 aufweisen. Die übrigen vier der zwölf Gruppen der Magnetfeldsensoren 06 sind auf vier Geraden angeordnet, die einen Winkelabstand von 90° bezogen auf die Achse 03 und einen gleichen Abstand zur Achse 03 aufweisen. 7 shows a seventh preferred embodiment of the arrangement according to the invention in a cross-sectional view. This embodiment is initially similar to the embodiment shown in FIG. In contrast to the embodiment shown in FIG. 6, the magnetic field sensors 06 are arranged in twelve groups. Eight of the twelve groups of the magnetic field sensors 06 are arranged on eight straight lines which have an angular distance of 45 ° relative to the axis 03 and an equal distance from the axis 03. The remaining four of the twelve groups of magnetic field sensors 06 are arranged on four straight lines which have an angular spacing of 90 ° with respect to the axis 03 and an equal distance from the axis 03.
Fig. 8 zeigt eine achte bevorzugte Ausführungsform der erfindungsgemäßen Anord- nung in einer Längsschnittansicht. Diese Ausführungsform gleicht zunächst der in Fig. 1 gezeigten Ausführungsform. Im Unterschied zu der in Fig. 1 gezeigten Ausfüh- rungsform fehlen vier der Magnetfeldsensoren 06, nämlich in zwei der vier auf Gera- den angeordneten Gruppen der Magnetfeldsensoren 06. Es fehlen jeweils diejenigen der Magnetfeldsensoren 06, die eine gleiche axiale Position wie die Magnetisierungs- bereiche 04 aufweisen. 8 shows an eighth preferred embodiment of the arrangement according to the invention in a longitudinal sectional view. This embodiment is initially similar to the embodiment shown in FIG. In contrast to the embodiment shown in FIG. 1, four of the magnetic field sensors 06 are missing, namely in two of the four groups of magnetic field sensors 06 arranged on straight lines. In each case, those of the magnetic field sensors 06 which have the same axial position as the magnetization sensors 06 are missing. have areas 04.
Fig. 9 zeigt eine neunte bevorzugte Ausführungsform der erfindungsgemäßen Anord- nung in einer Längsschnittansicht. Diese Ausführungsform gleicht zunächst der in Fig. 8 gezeigten Ausführungsform. Im Unterschied zu der in Fig. 8 gezeigten Ausfüh- rungsform fehlen weitere zwölf der Magnetfeldsensoren 06, nämlich diejenigen, die nicht eine gleiche axiale Position wie die Magnetisierungsbereiche 04 aufweisen. 9 shows a ninth preferred embodiment of the arrangement according to the invention in a longitudinal sectional view. This embodiment is initially similar to the embodiment shown in FIG. In contrast to the embodiment shown in FIG. 8, another twelve of the magnetic field sensors 06 are missing, namely those which do not have the same axial position as the magnetization regions 04.
Fig. 10 zeigt eine zehnte bevorzugte Ausführungsform der erfindungsgemäßen An- ordnung in einer Längsschnittansicht. Diese Ausführungsform gleicht zunächst der in Fig. 8 gezeigten Ausführungsform. Im Unterschied zu der in Fig. 8 gezeigten Ausfüh- rungsform fehlen in zwei der vier auf Geraden angeordneten Gruppen der Magnet- feldsensoren 06 jeweils diejenigen Magnetfeldsensoren 06. die nicht eine gleiche axiale Position wie die Magnetisierungsbereiche 04 aufweisen. Stattdessen sind an den axialen Positionen der Magnetisierungsbereiche 04 jeweils vier weitere der Mag- netfeldsensoren 06 mit einem geringeren Abstand zur Achse 03 angeordnet. 10 shows a tenth preferred embodiment of the arrangement according to the invention in a longitudinal sectional view. This embodiment is initially similar to the embodiment shown in FIG. In contrast to the embodiment shown in FIG. 8, in two of the four groups of magnetic field sensors 06 arranged on straight lines, in each case those magnetic field sensors 06 which do not have the same axial position as the magnetization regions 04 are missing. Instead, are on four further of the magnetic field sensors 06 are arranged at a smaller distance from the axis 03 to the axial positions of the magnetization regions 04.
Fig. 1 1 zeigt eine elfte bevorzugte Ausführungsform der erfindungsgemäßen Anord- nung in einer Längsschnittansicht. Diese Ausführungsform gleicht zunächst der in Fig. 8 gezeigten Ausführungsform. Im Unterschied zu der in Fig. 8 gezeigten Ausfüh- rungsform fehlen diejenigen Magnetfeldsensoren 06, die eine gleiche axiale Position wie die Magnetisierungsbereiche 04 aufweisen. Die Anordnungen der Magnetfeldsensoren 06 der in den Fig. 2 bis 11 gezeigten Aus- führungsformen können in axialer Richtung kombiniert werden. Beispielsweise kann die in Fig. 2 gezeigte Anordnung mit der in Fig. 9 gezeigten Anordnung kombiniert werden. Die in den Fig. 2 bis 1 1 gezeigten Anordnungen der Magnetfeldsensoren 06 ermögli- chen sowohl eine Detektion des lastabhängigen Magnetfeldes 1 1 als auch eine Detek- tion eines möglichen Störmagnetfeldes. Es ist insbesondere auch möglich, die Intensi- tät und/oder die Richtung des Störmagnetfeldes zu bestimmen. Mit speziellen Ver- rechnungsarten der Messsignale der Magnetfeldsensoren 06 und einer entsprechend hinterlegten Datenbasis im Mikrokontroller ist eine Interpretation der Messung und damit die Erkennung von unterschiedlichen Störfällen und Ereignissen möglich. 1 shows an eleventh preferred embodiment of the arrangement according to the invention in a longitudinal sectional view. This embodiment is initially similar to the embodiment shown in FIG. In contrast to the embodiment shown in FIG. 8, those magnetic field sensors 06 which have an identical axial position as the magnetization regions 04 are missing. The arrangements of the magnetic field sensors 06 of the embodiments shown in FIGS. 2 to 11 can be combined in the axial direction. For example, the arrangement shown in Fig. 2 can be combined with the arrangement shown in Fig. 9. The arrangements of the magnetic field sensors 06 shown in FIGS. 2 to 1 enable both a detection of the load-dependent magnetic field 11 and a detection of a possible interference magnetic field. In particular, it is also possible to determine the intensity and / or the direction of the interference magnetic field. With special types of calculation of the measuring signals of the magnetic field sensors 06 and a correspondingly stored database in the microcontroller, an interpretation of the measurement and thus the detection of different incidents and events is possible.
Fig. 12 zeigt eine zwölfte bevorzugte Ausführungsform der erfindungsgemäßen An- ordnung in einer Querschnittsansicht und in einer Längsschnittansicht. Diese Ausfüh- rungsform gleicht zunächst der in Fig. 1 gezeigten Ausführungsform. Im Unterschied zu der in Fig. 1 gezeigten Ausführungsform sind sämtliche der Magnetfeldsensoren 06 in einer die Achse 03 umfassenden Ebene angeordnet. Die Magnetfeldsensoren 06 sind in Form einer Matrix in Richtungen x und y angeordnet, wobei die Achse 03 in der x-Richtung liegt. Die Matrix umfasst Zeilen 1 , 2, 3, 4, 5 und Spalten a, b, c, d, e. Sämt- liehe Matrixelemente (1 a) bis (5e) sind mit Ausnahme der Matrixelemente (2b), (2d), (3a), (3c), (3e), (4b) und (4d) jeweils mit einem der Magnetfeldsensoren 06 belegt. Die Zeilen 1 und 5 sind nächstliegend zur Innenwand des Hohlflansches 01 angeord- net. Der Abstand zwischen den Zeilen 1 und 5 betrage D. Folglich beträgt die y-Koordinate der Zeile 1 D/2. Die y-Koordinate der Zeile 5 beträgt -D/2. Die 12 shows a twelfth preferred embodiment of the arrangement according to the invention in a cross-sectional view and in a longitudinal sectional view. This embodiment initially resembles the embodiment shown in FIG. In contrast to the embodiment shown in FIG. 1, all of the magnetic field sensors 06 are arranged in a plane encompassing the axis 03. The magnetic field sensors 06 are arranged in the form of a matrix in directions x and y, the axis 03 being in the x-direction. The matrix comprises lines 1, 2, 3, 4, 5 and columns a, b, c, d, e. All the matrix elements (1 a) to (5 e), with the exception of the matrix elements (2 b), (2 d), (3 a), (3 c), (3 e), (4 b) and (4 d), each with one of the magnetic field sensors 06 busy. Lines 1 and 5 are arranged next to the inner wall of the hollow flange 01. The distance between lines 1 and 5 is D. Thus, the y-coordinate of the line is 1 D / 2. The y-coordinate of line 5 is -D / 2. The
y-Koordinate der Zeile 2 beträgt D/6. Die y-Koordinate der Zeile 4 beträgt -D/6. Die y-Koordinate der Zeile 3 beträgt Null. Die Magnetfeldsensoren 06 in den Zeilen 1 und 5 dienen hauptsächlich der Messung von Mt, während die Magnetfeldsensoren 06 in den Zeilen 2 bis 4 hauptsächlich der Messung des Störmagnetfeldes dienen. y-coordinate of line 2 is D / 6. The y-coordinate of line 4 is -D / 6. The y-coordinate of row 3 is zero. The magnetic field sensors 06 in lines 1 and 5 are mainly used to measure M t , while the magnetic field sensors 06 in lines 2 to 4 are mainly used to measure the interference magnetic field.
Das lastabhängige Magnetfeld 1 1 ist proportional zum Torsionsmoment Mt. Es lässt redundant als wie folgt berechnen:The load-dependent magnetic field 1 1 is proportional to the torsional moment M t . It lets you calculate redundantly as follows:
In diesen Formeln stehen X und Y jeweils für die mit dem jeweils im Index bezeichne- ten Magnetfeldsensor 06 in die x- bzw. in die y-Richtung gemessene Magnetfeldkom- ponente. Die Konstanten K1 bis K5 werden durch Kalibrierung bestimmt. Es ist zu er- warten, dass sich die Zusammenhänge einstellen.In these formulas, X and Y each stand for the magnetic field component measured in the x or y direction with the magnetic field sensor 06 denoted by the index. The constants K 1 to K 5 are determined by calibration. It is to be expected that the connections will be established.
Die Terme bis verrechnen das Magnetfeld 1 1 in den Spalten a bis e anhand The terms up to offset the magnetic field 1 1 in columns a to e based
unterschiedlicher Magnetfeldraumkomponenten. Abhängig von der axialen Position am Hohlflansch 01 ergeben sich zwei unterschiedliche Termstrukturen. Es wird zeit- gleich zur Messung der Torsion Mt eine weitestgehend vollständige Kompensation von Störungen anhand der Terme erreicht. different magnetic field space components. Depending on the axial position on the hollow flange 01, two different term structures result. At the same time as the measurement of the torsion M t, a largely complete compensation of disturbances is achieved by means of the terms.
Durch einen Vergleich von wird eine Plausibilitätskontrol- le durchgeführt. Wenn die Werte bei Berücksichtigung einer zulässigen Toleranz gleich sind, dann ist die Plausibilitätskontrolle erfolgreich und der Messwert kann als Wert für Mt weiterverarbeitet werden. Die Größen können sich im zulässigen Toleranzbereich bewegen. Die zulässige Größe des Toleranzbe- reiches wird im Vorfeld definiert und im Algorithmus hinterlegt. By comparing a plausibility check is carried out. If the values If the tolerance is the same, then the plausibility check is successful and the measured value can be further processed as a value for M t . The sizes can to move within the permissible tolerance range. The permissible size of the tolerance range is defined in advance and stored in the algorithm.
Die Terme beinhalten die Kompensation eines Fernfel- The terms include the compensation of a remote field
des. Ebenso erfolgt eine Kompensation eines in der durch die Magnetfeldsensoren 06 aufgespannten Ebene linear veränderlichen Nahfeldes in der gemessenen Feldrich- tung. Bei einem nicht linearen Nahfeld wird der lineare Anteil des Nahfeldes kompen- siert. Je größer der lineare Anteil ist, desto besser ist die Kompensation der Störung. Im Weiteren beinhalten diese Terme eine Kompensation von möglichen Querkräften in die y-Richtung oder in eine z-Richtung. Im Weiteren beinhalten diese Terme eine Kompensation von möglichen Querkräften, die durch mögliche Biegemomente in die z-Richtung oder in die y-Richtung verursacht werden. Die genannten Kompensationen erfolgen quasi-zeitgleich zur Messung. Der nicht lineare Anteil eines Nahfeldes kann anhand eines rechnerischen Ansatzes behandelt werden. Hierfür wird der nicht lineare Anteil des Nahfeldes anhand der ver- fügbaren Messwerte einschl. Richtungskomponenten der individuellen Magnetfeld- sensoren 06 bestimmt. Weiterhin erfolgt ein Rückschluss anhand des nicht linearen Anteiles des Nahfeldes auf den dadurch verursachten Messfehler an den Magnetfeld- sensoren 06 einschl. Richtungskomponenten bzw. auf den Messfehler der Gruppen der Magnetfeldsensoren 06. Ausgehend davon erfolgt eine Korrektur der Messwerte der Gruppen der Magnetfeldsensoren 06 und damit eine Erhöhung der Genauigkeit der mit der erfindungsgemäßen Anordnung durchführbaren Messung. Likewise, a compensation of a near-field which varies linearly in the plane spanned by the magnetic field sensors 06 takes place in the measured field direction. In a non-linear near field, the linear component of the near field is compensated. The larger the linear component, the better the compensation of the disturbance. Furthermore, these terms include a compensation of possible lateral forces in the y-direction or in a z-direction. Furthermore, these terms include a compensation of possible lateral forces, which are caused by possible bending moments in the z-direction or in the y-direction. The compensations are quasi-simultaneous to the measurement. The non-linear portion of a near field can be treated using a mathematical approach. For this purpose, the non-linear component of the near field is determined on the basis of the available measured values including directional components of the individual magnetic field sensors 06. Furthermore, a conclusion based on the non-linear component of the near field is made on the measurement error caused thereby on the magnetic field sensors 06 including direction components or on the measurement error of the groups of the magnetic field sensors 06. On the basis of this, the measured values of the groups of the magnetic field sensors 06 are corrected and thus an increase in the accuracy of the feasible with the inventive arrangement measurement.
Bezuqszeichenliste LIST OF REFERENCES
01 Maschinenelement in Form eines Hohlflansches01 machine element in the form of a hollow flange
02 Grundkörper 02 basic body
03 Achse  03 axis
04 Magnetisierungsbereich  04 magnetization range
05 05
06 Magnetfeldsensor  06 magnetic field sensor
07 Gruppe in axialer Richtung  07 Group in the axial direction
08 Gruppe in diagonaler Richtung  08 Group in diagonal direction
09 Gruppe in tangentialer Richtung  09 Group in tangential direction
10 10
1 1 Magnetfeld  1 1 magnetic field

Claims

Patentansprüche 1 . Anordnung zum Messen einer Kraft und/oder eines Momentes an einem Ma- schinenelement (01 ), welches mindestens einen Magnetisierungsbereich (04) fü eine Magnetisierung aufweist; wobei die Anordnung mindestens zwei Claims 1. Arrangement for measuring a force and / or torque on a machine element (01), which has at least one magnetization region (04) for magnetization; the arrangement being at least two
beabstandete Magnetfeldsensoren (06) zum Messen eines durch die Magneti- sierung sowie durch die Kraft und/oder durch das Moment bewirkten Magnetfel- des (11 ) umfasst; und wobei die Anordnung weiterhin eine Messsignalverarbei- tungseinheit umfasst, die zur Signalverarbeitung der Messsignale der einzelnen Magnetfeldsensoren (06) ausgebildet ist.  spaced magnetic field sensors (06) for measuring a caused by the magnetization and by the force and / or caused by the moment magnetic field (11); and wherein the arrangement further comprises a Messsignalverarbei- processing unit, which is designed for signal processing of the measurement signals of the individual magnetic field sensors (06).
2. Anordnung nach Anspruch 1 , dadurch gekennzeichnet dass jeder der Magnet feldsensoren (06) eine elektrische oder logische Verbindung aufweist, die ein- zeln zur Messsignalverarbeitungseinheit geführt ist. 2. Arrangement according to claim 1, characterized in that each of the magnetic field sensors (06) has an electrical or logical connection, which is individually led to the measurement signal processing unit.
3. Anordnung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Mag- netfeldsensoren (06) zumindest gruppenweise äquidistant oder äquiangular an- geordnet sind. 3. Arrangement according to claim 1 or 2, characterized in that the magnetic field sensors (06) are arranged at least in groups equidistantly or equiangularly.
4. Anordnung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Magnetfeldsensoren (06) matrixartig angeordnet sind. 4. Arrangement according to one of claims 1 to 3, characterized in that the magnetic field sensors (06) are arranged like a matrix.
5. Anordnung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Magnetfeldsensoren (06) zumindest gruppenweise in jeweils einer Ebene angeordnet sind. 5. Arrangement according to one of claims 1 to 4, characterized in that the magnetic field sensors (06) are arranged at least in groups in each case one plane.
6. Anordnung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Magnetfeldsensoren (06) auf äquiangularen Radien angeordnet sind. 6. Arrangement according to one of claims 1 to 5, characterized in that the magnetic field sensors (06) are arranged on äquiangularen radii.
7. Anordnung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Magnetfeldsensoren (06) jeweils zur einzelnen Messung von drei Richtungs- komponenten des durch die Magnetisierung sowie durch die Kraft und/oder durch das Moment bewirkten Magnetfeldes (1 1 ) ausgebildet sind. 7. Arrangement according to one of claims 1 to 6, characterized in that the magnetic field sensors (06) each for individual measurement of three directional components of the magnetization caused by the force and / or by the moment magnetic field (1 1) formed are.
8. Anordnung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass zumindest einer der Magnetfeldsensoren (1 1 ) weiterhin zur Messung eines Störmagnetfeldes ausgebildet ist. 8. Arrangement according to one of claims 1 to 7, characterized in that at least one of the magnetic field sensors (1 1) is further designed for measuring a disturbance magnetic field.
9. Anordnung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Messsignalverarbeitungseinheit dazu ausgebildet ist, die Messsignale von Gruppen der Magnetfeldsensoren (06) auszuwerten, wobei die Gruppierung der Magnetfeldsensoren (06) veränderbar ist. 9. Arrangement according to one of claims 1 to 8, characterized in that the measurement signal processing unit is adapted to evaluate the measurement signals of groups of magnetic field sensors (06), wherein the grouping of the magnetic field sensors (06) is variable.
10. Verfahren zum Messen einer Kraft und/oder eines Momentes an einem Maschi- nenelement (01), welches mindestens einen Magnetisierungsbereich (04) für ei- ne Magnetisierung aufweist; wobei mindestens zwei beabstandete Magnetfeld- sensoren (06) zum Messen eines durch die Magnetisierung sowie durch die Kraft und/oder durch das Moment bewirkten Magnetfeldes (1 1) genutzt werden, da- durch gekennzeichnet, dass die Messsignale der Magnetfeldsensoren (06) ein- zeln verarbeitet werden. 10. A method for measuring a force and / or a moment on a machine element (01), which has at least one magnetization region (04) for a magnetization; wherein at least two spaced-apart magnetic field sensors (06) are used for measuring a magnetic field (1 1) caused by the magnetization as well as by the force and / or by the moment, characterized in that the measuring signals of the magnetic field sensors (06) be processed.
EP16739401.4A 2015-05-21 2016-05-18 Arrangement and method for measuring a force or a moment, with at least two magnetic sensors at a distance from one another Withdrawn EP3298370A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015209286.0A DE102015209286A1 (en) 2015-05-21 2015-05-21 Arrangement and method for measuring a force or a moment with at least two spaced magnetic field sensors
PCT/DE2016/200235 WO2016184463A1 (en) 2015-05-21 2016-05-18 Arrangement and method for measuring a force or a moment, with at least two magnetic sensors at a distance from one another

Publications (1)

Publication Number Publication Date
EP3298370A1 true EP3298370A1 (en) 2018-03-28

Family

ID=56418334

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16739401.4A Withdrawn EP3298370A1 (en) 2015-05-21 2016-05-18 Arrangement and method for measuring a force or a moment, with at least two magnetic sensors at a distance from one another

Country Status (5)

Country Link
US (1) US10962425B2 (en)
EP (1) EP3298370A1 (en)
CN (1) CN107683404B (en)
DE (1) DE102015209286A1 (en)
WO (1) WO2016184463A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017114170B3 (en) * 2017-06-27 2018-03-22 Schaeffler Technologies AG & Co. KG Arrangement and method for measuring a bending moment on a machine element
DE102017117881A1 (en) * 2017-08-07 2019-02-07 Methode Electronics Malta Ltd. Magnetoelastic shear force sensor with interference field compensation and method
DE102018107570B4 (en) 2018-03-29 2019-10-31 Schaeffler Technologies AG & Co. KG Arrangement for measuring a force or a moment on a machine element and method for checking the arrangement
US10670386B2 (en) * 2018-04-19 2020-06-02 Infineon Technologies Ag Multi-turn counter sensor failure detection
DE102018211082A1 (en) * 2018-07-05 2020-01-09 Robert Bosch Gmbh Method for measuring a torque of a drive unit
DE102018118175A1 (en) 2018-07-27 2020-01-30 Schaeffler Technologies AG & Co. KG Method for measuring a torsional moment on a machine element extending in an axis
DE102018218598A1 (en) * 2018-08-24 2020-02-27 Zf Friedrichshafen Ag Roll stabilizer and sensor device for a roll stabilizer
DE102019106572B4 (en) * 2019-03-14 2022-08-04 Auma Riester Gmbh & Co. Kg Force measuring device, gear and actuator and use of a force measuring device
DE102019112155A1 (en) 2019-05-09 2020-11-12 Schaeffler Technologies AG & Co. KG Arrangement for measuring a torque acting on a steering shaft of a motor vehicle and method for checking the arrangement
DE102020109467A1 (en) 2020-04-03 2021-10-07 Bourns, Inc. Sensor for detecting a torque
DE102022209473B3 (en) 2022-09-12 2024-02-22 Zf Friedrichshafen Ag Method for calibrating a sensor device

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3513469A (en) * 1969-03-03 1970-05-19 Singer General Precision Variable reluctance shaft position-to-digital converter
US3772675A (en) * 1972-05-15 1973-11-13 Singer Co Magnetic analog-to-digital encoder
US4896544A (en) * 1986-12-05 1990-01-30 Mag Dev Inc. Magnetoelastic torque transducer
JPH02221830A (en) * 1989-02-22 1990-09-04 Kubota Ltd Magnetostriction type torque sensor
US5520059A (en) 1991-07-29 1996-05-28 Magnetoelastic Devices, Inc. Circularly magnetized non-contact torque sensor and method for measuring torque using same
US5351555A (en) 1991-07-29 1994-10-04 Magnetoelastic Devices, Inc. Circularly magnetized non-contact torque sensor and method for measuring torque using same
US5591925A (en) 1991-07-29 1997-01-07 Garshelis; Ivan J. Circularly magnetized non-contact power sensor and method for measuring torque and power using same
US5259252A (en) 1992-02-19 1993-11-09 Outdoor Electronics, Ltd. Apparatus for measuring forces on a fishing rod
EP0609463B1 (en) * 1992-08-24 1999-11-17 Kubota Corporation Method for manufacturing magnetostriction type torque sensor shaft, and the shaft
US5520049A (en) 1994-08-01 1996-05-28 Emhart Inc. Acceleration responsive device
US6047605A (en) 1997-10-21 2000-04-11 Magna-Lastic Devices, Inc. Collarless circularly magnetized torque transducer having two phase shaft and method for measuring torque using same
AUPP098497A0 (en) 1997-12-17 1998-01-15 Bishop Innovation Pty Limited Transmission path torque transducer
GB9808792D0 (en) * 1998-04-23 1998-06-24 Effective Torque Technologies Magnetising arrangements for torque/force sensor
JP2000241264A (en) * 1999-02-25 2000-09-08 Aisin Seiki Co Ltd Magnetostrictive element for torque sensor and its manufacture
US6341534B1 (en) 2000-03-03 2002-01-29 Ford Motor Company Integrated two-channel torque sensor
AU2002213899A1 (en) 2000-09-12 2002-03-26 Fast Technology Ag. Magnetic torque sensor system
US6698299B2 (en) 2001-05-05 2004-03-02 Methode Electronics, Inc. Magnetoelastic torque sensor
US7493831B2 (en) 2002-05-29 2009-02-24 The Timken Company In-bearing torque sensor assembly
CN101799340A (en) 2003-08-29 2010-08-11 洛德公司 Method and system for measuring torque
JP5151551B2 (en) 2008-02-27 2013-02-27 大同特殊鋼株式会社 Thin film magnetic sensor
EP2260278B1 (en) 2008-03-14 2019-12-04 Methode Electronics, Inc. Magnetoelastic torque sensor with ambient field rejection
FR2930994B1 (en) * 2008-05-07 2010-06-18 Commissariat Energie Atomique STRUCTURE AND METHOD FOR MANUFACTURING MAGNETIC FIELD GRADIENT SENSOR IN INTEGRATED TECHNOLOGY
DE102008050236A1 (en) 2008-10-02 2010-04-08 Schaeffler Kg bottom bracket
US8001849B2 (en) 2009-03-28 2011-08-23 Wensheng Weng Self-compensating magnetoelastic torque sensor system
WO2011064245A1 (en) * 2009-11-24 2011-06-03 Continental Teves Ag & Co. Ohg Torque sensor
JP5523894B2 (en) * 2010-03-31 2014-06-18 本田技研工業株式会社 Control device for electric power steering device
US8203334B2 (en) * 2010-10-28 2012-06-19 General Electric Company Magnetically spirally encoded shaft for measuring rotational angel, rotational speed and torque
US8893562B2 (en) 2011-11-21 2014-11-25 Methode Electronics, Inc. System and method for detecting magnetic noise by applying a switching function to magnetic field sensing coils
US9494556B2 (en) * 2012-01-13 2016-11-15 Polyresearch Ag Active mechanical force and axial load sensor
EP2793009B1 (en) 2013-04-15 2021-03-17 Methode Electronics Malta Ltd. Magneto-elastic sensor, load pin, ball-joint and tow coupling comprising this sensor, method of determining a direction of a load vector
EP2799827B1 (en) 2013-04-30 2017-12-06 Methode Electronics Malta Ltd. Magnetoelastic torque sensor and method
DE102013211000A1 (en) * 2013-06-13 2014-12-18 Schaeffler Technologies Gmbh & Co. Kg Arrangements and methods for measuring a force or moment on a machine element
DE102014008173B4 (en) * 2014-06-10 2022-08-11 Tdk-Micronas Gmbh magnetic field measuring device

Also Published As

Publication number Publication date
WO2016184463A1 (en) 2016-11-24
US10962425B2 (en) 2021-03-30
CN107683404B (en) 2021-03-23
DE102015209286A1 (en) 2016-11-24
CN107683404A (en) 2018-02-09
US20180156676A1 (en) 2018-06-07

Similar Documents

Publication Publication Date Title
WO2016184463A1 (en) Arrangement and method for measuring a force or a moment, with at least two magnetic sensors at a distance from one another
EP3256828B2 (en) Apparatus for the measurement of a force or a torque using at least three magnetic field sensors
DE102014219336B3 (en) Method and arrangement for measuring a force or a moment with a plurality of magnetic field sensors
DE102015122154B4 (en) Device for detecting external magnetic stray fields on a magnetic field sensor
EP3256829B1 (en) Device for measuring a force of a torque having at least four magnetic field sensors
EP2769192B1 (en) Magneto-elastic torsion or torque sensor and method for determining torsion or torque using such a sensor
DE102015206152B3 (en) 1 - 12An arrangement and method for non-contact measurement of a moment on a machine element
DE102015200268B3 (en) Arrangement for measuring a force or a moment with a magnetic field sensor and with a magnetic field guide element
DE102018107570B4 (en) Arrangement for measuring a force or a moment on a machine element and method for checking the arrangement
DE112016000720B4 (en) Sensor arrangement for position detection and method for assisting in determining the position of an object
WO2016165703A1 (en) Hollow machine element and assembly for measuring a force or a torque
DE102015102337A1 (en) Redundant torque sensor - multiple band arrangement
DE102019102454B3 (en) Arrangement and method for measuring a mechanical load on a test object while detecting changes in the magnetic field
DE102017103814A1 (en) Arrangement for measuring a force or a moment with at least one magnetic field sensor
DE102017109532A1 (en) Arrangement and method for measuring a torque on a machine element with two magnetic field sensors
DE102017109536B4 (en) Arrangement and method for measuring a force or a moment on a machine element with at least three magnetization areas
DE102017109534B4 (en) Arrangement and method for measuring a force or a moment on a machine element with at least two magnetic field sensors
WO2019185094A1 (en) Magnetic field sensor assembly and assembly for measuring a torque and method for producing the magnetic field sensor assembly
DE102017114170B3 (en) Arrangement and method for measuring a bending moment on a machine element
WO2020020406A1 (en) Method for measuring a torsional moment on a machine element which extends on an axis
DE102017109535B4 (en) Method for measuring a bending moment on a machine element
DE102016213591B3 (en) Bearing arrangement with measuring arrangement for measuring a force and / or a moment
WO2005054885A1 (en) Magnetic sensor array
DE102018118174A1 (en) Measuring arrangement for measuring a torsional moment and machine element arrangement with this
EP3809099B1 (en) Stroke and velocity measurement on hydraulic, pneumatic and electric cylinders for mobile and stationary applications

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20171221

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MATYSIK, JAN

Inventor name: NEUSCHAEFER-RUBE, STEPHAN

Inventor name: MOCK, CHRISTIAN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20180706

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230523