EP3296100A1 - Composite stretching/contracting member, wearable article, and method for producing wearable article - Google Patents
Composite stretching/contracting member, wearable article, and method for producing wearable article Download PDFInfo
- Publication number
- EP3296100A1 EP3296100A1 EP16814284.2A EP16814284A EP3296100A1 EP 3296100 A1 EP3296100 A1 EP 3296100A1 EP 16814284 A EP16814284 A EP 16814284A EP 3296100 A1 EP3296100 A1 EP 3296100A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- sheets
- bonding
- bonding sections
- sections
- elastic elements
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 110
- 238000004519 manufacturing process Methods 0.000 title description 17
- 230000002093 peripheral effect Effects 0.000 claims description 24
- 238000000034 method Methods 0.000 claims description 18
- 238000005520 cutting process Methods 0.000 claims description 16
- 238000003466 welding Methods 0.000 claims description 11
- 238000007789 sealing Methods 0.000 claims description 5
- 210000001624 hip Anatomy 0.000 description 43
- 229920001971 elastomer Polymers 0.000 description 21
- 238000010586 diagram Methods 0.000 description 11
- 238000003825 pressing Methods 0.000 description 7
- 230000003187 abdominal effect Effects 0.000 description 6
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 6
- 238000002844 melting Methods 0.000 description 6
- 230000008018 melting Effects 0.000 description 6
- 235000019359 magnesium stearate Nutrition 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910003460 diamond Inorganic materials 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- 229920002545 silicone oil Polymers 0.000 description 2
- 239000004831 Hot glue Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F13/15—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
- A61F13/15577—Apparatus or processes for manufacturing
- A61F13/15804—Plant, e.g. involving several steps
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F13/15—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
- A61F13/15577—Apparatus or processes for manufacturing
- A61F13/15585—Apparatus or processes for manufacturing of babies' napkins, e.g. diapers
- A61F13/15593—Apparatus or processes for manufacturing of babies' napkins, e.g. diapers having elastic ribbons fixed thereto; Devices for applying the ribbons
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F13/15—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
- A61F13/15577—Apparatus or processes for manufacturing
- A61F13/15699—Forming webs by bringing together several webs, e.g. by laminating or folding several webs, with or without additional treatment of the webs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F13/15—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
- A61F13/15577—Apparatus or processes for manufacturing
- A61F13/15707—Mechanical treatment, e.g. notching, twisting, compressing, shaping
- A61F13/15739—Sealing, e.g. involving cutting
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F13/15—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
- A61F13/15577—Apparatus or processes for manufacturing
- A61F13/15707—Mechanical treatment, e.g. notching, twisting, compressing, shaping
- A61F13/15747—Folding; Pleating; Coiling; Stacking; Packaging
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F13/15—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
- A61F13/45—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the shape
- A61F13/49—Absorbent articles specially adapted to be worn around the waist, e.g. diapers
- A61F13/49007—Form-fitting, self-adjusting disposable diapers
- A61F13/49009—Form-fitting, self-adjusting disposable diapers with elastic means
- A61F13/49011—Form-fitting, self-adjusting disposable diapers with elastic means the elastic means is located at the waist region
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F13/15—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
- A61F13/45—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the shape
- A61F13/49—Absorbent articles specially adapted to be worn around the waist, e.g. diapers
- A61F13/49007—Form-fitting, self-adjusting disposable diapers
- A61F13/49009—Form-fitting, self-adjusting disposable diapers with elastic means
- A61F13/4902—Form-fitting, self-adjusting disposable diapers with elastic means characterised by the elastic material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/02—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
- B29C65/08—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using ultrasonic vibrations
- B29C65/083—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using ultrasonic vibrations using a rotary sonotrode or a rotary anvil
- B29C65/086—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using ultrasonic vibrations using a rotary sonotrode or a rotary anvil using a rotary anvil
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/01—General aspects dealing with the joint area or with the area to be joined
- B29C66/05—Particular design of joint configurations
- B29C66/10—Particular design of joint configurations particular design of the joint cross-sections
- B29C66/11—Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
- B29C66/112—Single lapped joints
- B29C66/1122—Single lap to lap joints, i.e. overlap joints
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/01—General aspects dealing with the joint area or with the area to be joined
- B29C66/344—Stretching or tensioning the joint area during joining
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/40—General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
- B29C66/41—Joining substantially flat articles ; Making flat seams in tubular or hollow articles
- B29C66/43—Joining a relatively small portion of the surface of said articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/40—General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
- B29C66/41—Joining substantially flat articles ; Making flat seams in tubular or hollow articles
- B29C66/43—Joining a relatively small portion of the surface of said articles
- B29C66/433—Casing-in, i.e. enclosing an element between two sheets by an outlined seam
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/70—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
- B29C66/72—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
- B29C66/729—Textile or other fibrous material made from plastics
- B29C66/7294—Non woven mats, e.g. felt
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/80—General aspects of machine operations or constructions and parts thereof
- B29C66/81—General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
- B29C66/814—General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps
- B29C66/8141—General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined
- B29C66/81433—General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined being toothed, i.e. comprising several teeth or pins, or being patterned
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/80—General aspects of machine operations or constructions and parts thereof
- B29C66/81—General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
- B29C66/814—General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps
- B29C66/8141—General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined
- B29C66/81433—General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined being toothed, i.e. comprising several teeth or pins, or being patterned
- B29C66/81435—General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined being toothed, i.e. comprising several teeth or pins, or being patterned comprising several parallel ridges, e.g. for crimping
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/80—General aspects of machine operations or constructions and parts thereof
- B29C66/83—General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
- B29C66/834—General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools moving with the parts to be joined
- B29C66/8341—Roller, cylinder or drum types; Band or belt types; Ball types
- B29C66/83411—Roller, cylinder or drum types
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/80—General aspects of machine operations or constructions and parts thereof
- B29C66/83—General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
- B29C66/834—General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools moving with the parts to be joined
- B29C66/8341—Roller, cylinder or drum types; Band or belt types; Ball types
- B29C66/83411—Roller, cylinder or drum types
- B29C66/83415—Roller, cylinder or drum types the contact angle between said rollers, cylinders or drums and said parts to be joined being a non-zero angle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D99/00—Subject matter not provided for in other groups of this subclass
- B29D99/0064—Producing wearing apparel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/02—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
- B32B5/08—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer the fibres or filaments of a layer being of different substances, e.g. conjugate fibres, mixture of different fibres
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F13/15—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
- A61F13/45—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the shape
- A61F13/49—Absorbent articles specially adapted to be worn around the waist, e.g. diapers
- A61F13/49007—Form-fitting, self-adjusting disposable diapers
- A61F13/49009—Form-fitting, self-adjusting disposable diapers with elastic means
- A61F13/4902—Form-fitting, self-adjusting disposable diapers with elastic means characterised by the elastic material
- A61F2013/49025—Form-fitting, self-adjusting disposable diapers with elastic means characterised by the elastic material having multiple elastic strands
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/01—General aspects dealing with the joint area or with the area to be joined
- B29C66/05—Particular design of joint configurations
- B29C66/20—Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines
- B29C66/22—Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being in the form of recurring patterns
- B29C66/221—Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being in the form of recurring patterns being in the form of a sinusoidal wave
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/01—General aspects dealing with the joint area or with the area to be joined
- B29C66/05—Particular design of joint configurations
- B29C66/20—Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines
- B29C66/23—Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being multiple and parallel or being in the form of tessellations
- B29C66/234—Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being multiple and parallel or being in the form of tessellations said joint lines being in the form of tessellations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/40—General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
- B29C66/41—Joining substantially flat articles ; Making flat seams in tubular or hollow articles
- B29C66/43—Joining a relatively small portion of the surface of said articles
- B29C66/431—Joining the articles to themselves
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/70—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
- B29C66/71—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2995/00—Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
- B29K2995/0037—Other properties
- B29K2995/0046—Elastic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2031/00—Other particular articles
- B29L2031/48—Wearing apparel
- B29L2031/4871—Underwear
- B29L2031/4878—Diapers, napkins
Definitions
- the present invention relates to a composite stretchable member, a wearable article, and a production method for a wearable article.
- the waist portion of the wearable article is composed of a composite stretchable member capable of being stretched and restored, in some cases.
- the member described in the Patent Literature 1 comprises two sheets and a plurality of elastic elements, wherein, by bonding these sheets together, the elastic elements are fixed between the sheets.
- the two sheets, or associated ones of the sheets and the elastic elements are intermittently bonded together, in a longitudinal direction of the sheet and a direction orthogonal to the longitudinal direction.
- the two sheets are bonded together just intermittently.
- This can cause difficulty in ensuring enough bonding force between the two sheets, leading to a problem such as debonding between the two sheets.
- this member is used as a waist portion of a wearable article in a state in which the stretchable direction of the member is coincident with a waist circumferential direction.
- Patent Literature 1 JP 4322140 B
- the present invention provides a composite stretchable member which is stretchable in a specific direction.
- the composite stretchable member comprises two sheets which are opposed to each other, and a plurality of elastic elements each disposed between the sheets to extend along the specific direction in such a manner as to be stretchable in the specific direction, wherein: the sheets are bonded together in a plurality of bonding sections, wherein each of the bonding sections is configured to continuously extend along a line intersecting the specific direction and to intersect the plurality of elastic elements; and each of the elastic elements is bonded to the sheets at intersection points with the bonding sections.
- the present invention also provides a wearable article comprising a waist portion to be disposed around a waist region of a wearer, wherein at least part of the waist portion is formed of the composite stretchable member configured as above.
- the present invention further provides a method of producing a wearable article, wherein the wearable article comprises a waist portion to be disposed around a waist region of a wearer and a crotch portion to be disposed in a crotch region of the wearer.
- the method comprises: a bonded body forming step of, after providing a continuous body of the composite stretchable member configured as above, conveying the continuous body in a longitudinal direction thereof so as to form the waist portion, and bonding the crotch portion to the continuous body, such that a longitudinal direction of the crotch portion is oriented orthogonal to the longitudinal direction of the continuous body to thereby form a bonded body; a double-folding step of double-folding the bonded body along a folding line defined by a center line of the bonded body in a width direction orthogonal to the longitudinal direction of the continuous body; a side sealing step of mutually bonding superimposed portions of the continuous body at an intermediate position between adjacent ones of a series of the crotch portions in the longitudinal direction of the continuous body, along a direction orthogonal to the longitudinal direction of the continuous body, to thereby form a side seal; and a cutting step of cutting the continuous body along a cutting line in the side seal.
- the present invention makes it possible to further increase a bonding force between associated ones of the elastic elements and the sheets.
- FIG. 1 is a plan view of a composite stretchable member according to one embodiment of the present invention.
- FIG. 2 is part of a sectional view taken along the line II-II in FIG. 1 .
- the composite stretchable member 1 comprises two long sheets 2a, 2b which are opposed to each other, and a plurality of long elastic elements 10 which are stretchable in a longitudinal direction thereof.
- Each of the elastic elements 10 is disposed between the two sheets 2a, 2b to extend along the longitudinal direction of the sheets 2a, 2b (a specific direction, a rightward-leftward direction in FIG. 1 ), in such a manner as to be stretchable in the longitudinal direction, i.e., so as to be stretched and restored in the longitudinal direction.
- these elastic elements 10 are arranged at equal intervals (equally spaced-apart relation to each other) in a width direction of the sheets 2a, 2b (a direction orthogonal to the longitudinal direction of the sheets 2a, 2b), to extend parallel to the longitudinal direction of the sheets 2a, 2b.
- non-woven fabric is used as a material for the sheets 2a, 2b.
- each of the elastic elements 10 is formed using a multi-strand element in which a plurality of rubber strings (fibrous elastic bodies) 10a are assembled in the form of a bundle, wherein each of at least part of the rubber strings 10a has an outer periphery covered by a covering layer 10b. More specifically, among the plurality of rubber strings 10a, each of some rubber strings 10a disposed particularly in an outer periphery thereof is covered by the covering layer 10b. Alternatively, it is to be understood that each of the plurality of rubber strings 10a may be covered by the covering layer 10b.
- Examples of a material for the rubber strings 10a include polyurethane.
- Examples of a material for the covering layer 10b include lubricant such as silicone oil, or magnesium stearate.
- the two sheets 2a, 2b are bonded together, and further the elastic elements 10 is bonded to the sheets 2a, 2b, in lattice-patterned bonding sections 4, as depicted in FIG. 1 .
- FIG. 4 is a view corresponding to FIG. 1 and schematically depicting the bonding sections.
- the bonding sections 4 comprise a plurality of first bonding sections 4a, and a plurality of second bonding sections 4b.
- the first bonding sections 4a are arranged at equal intervals in the longitudinal direction of the sheets 2a, 2b, to extend parallel to each other along the width direction of the sheets 2a, 2b.
- the second bonding sections 4b are arranged at equal intervals in the longitudinal direction of the sheets 2a, 2b, to extend parallel to each other along the width direction of the sheets 2a, 2b.
- the second bonding sections 4b extend to intersect the first bonding sections 4a to thereby form the lattice-patterned bonding sections 4.
- each of the first bonding sections 4a and the second bonding sections 4b is inclined with respect to the width direction of the sheets 2a, 2b. Further, an angle of this inclination is set to be less than 45 degrees. For example, this inclination angle is set to 30 degrees.
- Each of the first bonding sections 4a and the second bonding sections 4b has a symmetrical shape with respect to each of two straight lines extending in the longitudinal and width directions of the sheets 2a, 2b.
- the first bonding sections 4a and the second bonding sections 4b are arranged such that a spaced-apart distance between adjacent ones of the first bonding sections 4a is coincident with a spaced-apart distance between adjacent ones of the second bonding sections 4b. Accordingly, each of the bonding section 4 defines diamond shape whose two diagonal lines extend in the longitudinal and width directions of the sheets 2a, 2b.
- each of the first bonding sections 4a and the second bonding sections 4b is inclined at an inclination angle of less than 45 degrees with respect to the width direction of the sheets 2a, 2b, and therefore each of the diamond shapes is defined to extend in the width direction.
- Intersection points 4c of the first bonding sections 4a with the second bonding sections 4b lie side-by-side at equal intervals on a straight line extending in the longitudinal direction of the sheets 2a, 2b, and also lie side-by-side at equal intervals on a straight line extending in the width direction of the sheets 2a, 2b.
- Each of the bonding sections 4 (4a, 4b) intersects all of the elastic elements 10, and extends along a line intersecting a stretchable direction of the elastic elements 10. Specifically, each of the bonding sections 4 extends over between widthwise opposite regions of the sheets 2a, 2b outside a region in which the elastic elements 10 are arranged.
- Each of the elastic elements 10 intersects the bonding sections 4, at positions other than the bonding section-side intersection points 4c, i.e., at positions spaced apart from the bonding section-side intersection points 4c, wherein the elastic element 10 is bonded to the sheets 2a, 2b at these positions.
- FIG. 5 enlargedly depicting part of FIG. 1 .
- Each of the elastic elements 10 is disposed to pass, respectively, through positions between adjacent ones of the bonding section-side intersection points 4c on each of the first bonding sections 4a (e.g., pass, respectively, between the bonding section-side intersection point 4c_1 and the bonding section-side intersection point 4c_2, and between the bonding section-side intersection point 4c_2 and the bonding section-side intersection point 4c_3, depicted in FIG. 5 ).
- a first elastic element-side intersection point 4d which is an intersection point of each of the elastic elements 10 with each of the first bonding sections 4a lies between adjacent ones of the bonding section-side intersection points 4c on the first bonding section 4a, and the elastic element 10 and the sheets 2a, 2b are bonded together at the position of this intersection point 4d.
- each of the elastic elements 10 is disposed to pass, respectively, through positions between adjacent ones of the bonding section-side intersection points 4c on the second bonding sections 4b (e.g., pass, respectively, between the bonding section-side intersection point 4c_4 and the bonding section-side intersection point 4c_2, and between the bonding section-side intersection point 4c_2 and the bonding section-side intersection point 4c_5, depicted in FIG. 5 ).
- a second elastic element-side intersection point 4e which is an intersection point of each of the elastic elements 10 with each of the second bonding sections 4b lies between adjacent ones of the bonding section-side intersection points 4c on the second bonding sections 4b, and the elastic element 10 and the sheets 2a, 2b are bonded together at the position of this intersection point 4e.
- each of the elastic elements 10 is disposed to pass through a center between adjacent ones of the bonding section-side intersection points 4c on each of the first bonding sections 4a, and a center between adjacent ones of the bonding section-side intersection points 4c on each of the second bonding sections 4b, i.e., to intersect the first bonding section 4a and the second bonding section 4b at these centers, and bonded to the sheets 2a, 2b at these centers.
- first elastic element-side intersection point 4d and the second elastic element-side intersection point 4e alternately lie in a straight line extending in the width direction of the sheets 2a, 2b.
- intersection points of the elastic elements 10 with the bonding sections 4, i.e., bonded points 4d, 4e of each of the elastic elements 10 to the sheets 2a, 2b are arranged at equal intervals in the longitudinal direction of the sheets 2a, 2b.
- the two sheets 2a, 2b are bonded together, and further each of the elastic elements 10 is bonded to the sheets 2a, 2b, by means of welding. In this embodiment, they are bonded together by means of ultrasonic welding.
- the sheets 2a, 2b are partially melted, and welded to each other, so that they are bonded together.
- the part of the sheets 2a, 2b is partially melted, and the covering layers 10b in each of the elastic elements 10 are melted, so that each of the elastic elements 10 is welded to the sheets 2a, 2b.
- the rubber strings 10a and the covering layers 10b are formed using rubber strings having a melting point of about 200°C and magnesium stearate having a melting point of less than about 200°C (of about 120°C), respectively.
- the covering layers 10b are melted without causing melting of the rubber strings 10a, and welded to the sheets 2a, 2b.
- FIG. 6 is a schematic diagram of the production apparatus 100.
- the production apparatus 100 comprises: a bonding device 200 for bonding each of the elastic elements 10 to the sheets 2a, 2b and further bonding the sheets 2a, 2b together, by means of ultrasonic welding, in a state in which the elastic elements 10 are sandwiched between the sheets 2a, 2b; a first guide roller (guide device) 102 for guiding the sheet 2a to the bonding unit 200; second guide rollers (guide devices) 104a, 104b for guiding the sheet 2b to the bonding unit 200; an elastic element guide unit (guide device) 110 for supplying the elastic elements 10 to the bonding device 200; and a third guide roller 106 for guiding the bonded sheets and others, i.e., the composite stretchable member 1.
- a bonding device 200 for bonding each of the elastic elements 10 to the sheets 2a, 2b and further bonding the sheets 2a, 2b together, by means of ultrasonic welding, in a state in which the elastic elements 10 are sandwiched between the sheets 2a, 2b
- the bonding device 200 comprises an anvil roller (conveyance roller) 210, and a horn (clamping and pressing device) 220.
- the anvil roller 210 is a rotary member rotatable about an axis extending in a direction perpendicular to a drawing sheet surface of FIG. 6 . This direction orthogonal to the drawing sheet surface of FIG 6 will hereinafter be referred to as "forward-rearward direction".
- the anvil roller 210 is operable, when rotated, to convey, on an outer peripheral surface thereof, the sheets 2a, 2b guided by the rollers 102, 104a, 104b and the elastic elements 10 guided by the elastic element guide unit 110 and sandwiched between the sheets 2a, 2b.
- the anvil roller 210 is configured to be rotated in a clockwise direction in FIG. 6 .
- the sheets 2a, 2b sandwiching the elastic elements 10 will hereinafter be referred to occasionally as "pre-bonding sheets".
- the outer peripheral surface of the anvil roller 210 is formed with a plurality of convex sections 212 (see FIG. 11 ) each protruding radially outwardly.
- the derailed structure of the convex sections 212 will be described later.
- the horn 220 is a device for giving ultrasonic vibration to the pre-bonding sheets being conveyed by the anvil roller 210, while clamping and pressing the pre-bonding sheets in cooperation with the outer peripheral surface of the anvil roller 210.
- the horn 220 is disposed to be opposed to the outer peripheral surface of the anvil roller 210. In the example depicted in FIG. 6 , it is disposed to be opposed to a left side of the outer peripheral surface of the anvil roller 210.
- the horn 220 has an output portion 221 provided at a distal end thereof and configured to give ultrasonic vibration toward the outer peripheral surface of the anvil roller 210.
- the horn 220 is operable to give ultrasonic vibration to the pre-bonding sheets, while pressing the output portion 221 against the pre-bonding sheets to clamp and press the pre-bonding sheets between the output portion 221 and the anvil roller 210. As a result, the sheets 2a, 2b are melted, and welded together. Further, each of the elastic elements 10 is also melted, so that the melted elastic elements 10 and the melted sheets 2a, 2b are welded together.
- the output portion 221 is capable of clamping and pressing the pre-bonding sheets in cooperation with the aforementioned convex sections 212 to bond the sheets 2a, 2b together and further bond each of the elastic elements to the sheets 2a, 2b, in a region of the pre-bonding sheets disposed on the convex sections 212.
- the output portion 221 has a planar end face (see FIGS. 13 and 14 ).
- the covering layers 10b are formed using magnesium stearate having a lower melting point than that of the rubber strings 10a, as mentioned above.
- the covering layers 10b are melted without causing melting of the rubber strings 10a, and welded to the sheets 2a, 2b.
- the distal end 221 of the horn 220 extends in the forward-rearward direction so as to enable the horn 220 to give ultrasonic vibration to the outer peripheral surface of the anvil roller 210 in the entire range in a direction of the rotational axis of the anvil roller 210.
- the horn 220 is operable to constantly give ultrasonic vibration during a period in which the pre-bonding sheets are conveyed by the anvil roller 210. Thus, along with conveyance of the pre-bonding sheets by the anvil roller 210, the pre-bonding sheets are continuously bonded together.
- the sheet 2a is introduced, via the first guide roller 102, onto the outer peripheral surface of the anvil roller 210 at a position P1 on a side opposite to the horn 220. Then, along with rotation of the anvil roller 210, the sheet 2a is conveyed toward the horn 220 along the outer peripheral surface of the anvil roller 210.
- the sheet 2b is introduced onto the outer peripheral surface of the anvil roller 210 at a position P2 adjacent to the horn 220 and upstream of the horn 220 in a conveyance direction of the anvil roller 210, and conveyed to a position opposed to the horn 220.
- the elastic elements 10 are introduced, via the elastic element guide unit 110, onto the outer peripheral surface of the anvil roller 210 at a position P3 between the position P1 at which the sheet 2a is introduced onto the anvil roller 210 and the position P2 at which the sheet 2b is introduced onto the anvil roller 210. In this way, the elastic elements 10 are conveyed to the position opposed to the horn 220 while being arranged between the sheets 2a, 2b.
- the position P2 may be any position between the position P3 and the position opposed to the horn 220. However, it is set preferably to a position on the side of the position opposed to the horn 220, more preferably to a position adjacent to the position opposed to the horn 220. In this case, it becomes possible to prevent occurrence of displacement of the elastic elements 10 introduced onto the outer peripheral surface of the anvil roller 210 caused by the elastic elements 10 being promptly covered by the sheet 2b.
- the elastic elements 10 are introduced onto the outer peripheral surface of the anvil roller 210 while lying side-by-side in the forward-rearward direction and in parallel relation to each other, and placed on the sheet 2a being previously conveyed on the outer peripheral surface of the anvil roller 210, while lying side-by-side in the width direction of the sheet 2a and in parallel relation to each other. Further, the elastic elements 10 are introduced onto the anvil roller 210 while being stretched in a circumferential direction of the anvil roller 210. In this embodiment, each of the elastic elements 10 is introduced onto the anvil roller 210 while being stretched by 300% with respect to a natural length thereof (on the assumption that the natural length is 100%).
- the elastic element guide unit 110 comprises a plurality of elastic element guide rollers 111a, 111b, 111c, and a guide member 112.
- the elastic element guide rollers 111a, 111b, 111c are rotary members each rotatable about an axis extending in the forward-rearward direction, and are configured to guide the elastic elements 10 toward the anvil roller 210 in a state in which each of the elastic elements 10 is stretched by 300% with respect to the natural length.
- the guide member 112 is configured to introduce the elastic elements 10 onto the outer peripheral surface of the anvil roller 210, in a state where the plurality of elastic elements 10 are spaced apart from each other in the forward-rearward direction.
- FIG. 7 is a plan view of the guide member 112.
- FIG. 8 is a side view of the guide member 112.
- the guide member 112 is a flat plate-shaped member.
- the guide member 112 has a distal edge opposed to the position P3 on the outer peripheral surface of the anvil roller 210, and a base edge disposed farther away from the anvil roller than the distal edge, wherein it is disposed to extend in a direction approaching and separating from the anvil roller 210 and extend in the forward-rearward direction.
- a thickness (in FIG. 8 , a dimension in an upward-downward direction) of the guide member 112 is set to a small value, so that the guide member 112 has a thin-plate shape.
- a distal edge region (region on the side of the anvil roller 210) of the guide member 112 is formed as an inclined portion 114 inclined to gradually come close to a bottom surface of the guide member 112 in a direction toward the distal edge, i.e., the guide member 112 is formed in a shape tapered toward the distal edge.
- a distal edge 114a of the inclined portion 114 i.e., the distal edge of the guide member 112 has a plurality of notches 114b formed side-by-side in the forward-rearward direction. These notches 114b lie side-by-side at equal intervals in the forward-rearward direction. As depicted in FIG. 9 which enlargedly depicts part of the notches 114b in FIG. 7 , each of the notches 114b has a V shape which is concaved from the distal edge 114a of the inclined portion 114 toward the base edge to have an opening angle of 90 degrees.
- These notches 114b are configured to reliably position and hold the elastic elements 10 so as to guide the elastic elements 10 onto the outer peripheral surface of the anvil roller 210, in a state where the plurality of elastic elements 10 are spaced apart from each other in the forward-rearward direction. Further, the notches 114b are provided in opposed relation to and at the same intervals as those of aftermentioned grooves 214 formed in the anvil roller 210, so as to introduce the elastic elements 10, respectively, into the aftermentioned grooves 214.
- the guide member 112 is disposed such that an angle ⁇ 1 between a surface of the inclined portion 114 and a line tangent to the anvil roller 210 at the position P3 is 90 degrees or less, in side view. This is intended to suppress disengagement of the elastic elements from the notches 114b.
- a resultant force F10 of a force F1 caused by contraction force and applied to each of the elastic elements 10 on the inclined portion 114 (a pulling force acting in a direction separating from the anvil roller 210) and a force F2 applied from the anvil roller 210 to the elastic element 10 at the position P3 (a force F2 along the line tangent to the anvil roller at the position P3) can be set such that it is oriented in a direction approximately opposite to a conveyance direction of the elastic elements 10 on the inclined portion 114 (oriented in a direction toward the base edge of the guide member 112), as depicted in FIG.
- the resultant force F10 is applied to each of the elastic elements 10, in a direction causing the elastic element 10 to be pressed into a corresponding one of the notches 114b, so that it becomes possible to suppress disengagement of the elastic elements 10 from the notches 114b in the inclined portion 114.
- an angle ⁇ 1 between the surface of the inclined portion 114 and a line L1 which is part of the tangent line to the anvil roller 210 passing through the position P3, and located downstream of the position P3 in the conveyance direction of the anvil roller 210, is set to become approximately 90 degrees, and the guide member 112 is set at a position free from interference with the sheets 2a, 2b, as mentioned above.
- the position P3 is set at a position rotated downstream in the conveyance direction by about 10 degrees with respect to a line passing through a center of the anvil roller 210 and extending horizontally, and an angle ⁇ 2 (see FIG. 8 ) of the inclined portion 114 with respect to the bottom surface of the guide member 112 is set to 10 degrees.
- the outer peripheral surface of the anvil roller 210 is formed with the convex sections 212 each protruding radially outwardly, as depicted in FIG. 11 .
- the convex sections 212 are provided on the outer peripheral surface of the anvil roller 210 over the entire circumferential direction thereof.
- the convex sections 212 have a shape corresponding to that of the bonding sections 4.
- the bonding sections 4 have a diamond-lattice pattern as mentioned above, and correspondingly the convex sections 212 have a diamond-lattice pattern.
- the convex sections 212 comprise a first convex section 212a for forming the first bonding section 4a, and a second convex section 212b for forming the second bonding section 4b.
- the first convex section 212a extends along a direction (first direction) intersecting the circumferential direction of the anvil roller 210 (conveyance direction of the anvil roller 210), i.e., along a line intersecting the circumferential direction, and a plurality of the first convex sections 212a are arranged in parallel relation to each other and at equal intervals in the circumferential direction.
- the second convex section 212b extends along a direction (second direction) intersecting the circumferential direction of the anvil roller 210 and the first direction, i.e., along a line intersecting the circumferential direction, and a plurality of the second convex sections 212b are arranged in parallel relation to each other and at equal intervals in the circumferential direction of the anvil roller 210.
- Each of the first convex sections 212a and the second convex sections 212b is inclined at an angle of less than 45 degrees with respect to the forward-rearward direction, and the intersecting convex sections are inclined in symmetrical relation to each other with respect to the forward-rearward direction. Further, a spaced-apart distance between adjacent ones of the first convex sections 212a is coincident with a spaced-apart distance between adjacent ones of the second convex sections 212b, and intersection points 212c of the first convex sections 212a with the second convex sections 212b lie side-by-side at equal intervals on each of two line extending, respectively, in the forward-rearward direction and the circumferential direction of the anvil roller 210.
- each of the first convex sections 212a and the second convex sections 212b is formed with a plurality of grooves 214 (214a, 214b) each concaved inwardly in a radial direction of the anvil roller 210.
- each of the first convex sections 212a and the second convex sections 212b is formed with a plurality of grooves 214 at positions spaced apart from each other in a longitudinal direction thereof.
- a plurality of regions of the sheet 2a (sheet disposed on the side of the anvil roller 210) on each of which a respective one of the elastic elements 10 will lie are inserted, respectively, in a plurality of groups of the grooves 214. Therefore, the arrangement of the elastic elements 10 with respect to the bonding sections 4 is identical to the arrangement of the groups of grooves with respect to the convex sections 212.
- a groove (first groove) 214a extending in the circumferential direction of the anvil roller 210 is formed in each of the first convex sections 212a, at a position between adjacent ones of the intersection points 212c with the second convex sections 212b, more specifically, at a central position between the adjacent intersection points 212c.
- a groove (second groove) 214b is formed in each of the second convex sections 212b, at a position between adjacent ones of the intersection points 212c with the first convex sections 212a, more specifically, at a central position between the adjacent intersection points 212c.
- a plurality of the grooves 214 are provided on a line extending along the circumferential direction of the anvil roller 210 at equal intervals, and provided on a line extending along the forward-rearward direction at equal intervals.
- the sheet 2a is conveyed by the anvil roller 210, in a state in which the regions of the sheet 2a on each of which a respective one of the elastic elements 10 lies are inserted, respectively, in grooves 214.
- each of the elastic elements 10 is introduced into a respective one of the grooves 214 by the guide member 112 having the notches 114 provided at respective positions corresponding to the grooves 214, so that the elastic elements 10 are stably disposed, respectively, at appropriate positions on the sheet 2a.
- the sheet 2a is conveyed by the anvil roller 210, in a state in which each of the elastic elements 10 is partially inserted in a respective one of the grooves 214, together with part of the sheet 2a. It should be noted that the sheet 2a may be conveyed in a state in which only the part of the sheet 2a is inserted.
- the grooves 214 are formed, respectively, in the regions of the convex sections 212 on each of which a respective one of the elastic elements 10 will lie.
- each of the grooves 214 has an excessively large cross-sectional area, it could become difficult to appropriately bond each of the elastic elements 10 to the sheets 2a, 2b.
- each of the elastic elements 10 having a natural length is disposed in a corresponding one of the grooves 214, in such a manner that part of the elastic element 10 protrudes outside the grooves 214, and the remaining part of the elastic element 10 is received in the grooves 214.
- a cross-sectional shape of the groove 214 cut along a plane orthogonal to the circumferential direction (conveyance direction) of the anvil roller 210 is set such that, in the state in which the elastic element 10 having a natural length is disposed in the groove 214, part of the elastic element 10 protrudes outwardly in the radial direction of the anvil roller 210, with respect to a linear imaginary line (one-dot chain line) L10 connecting opening edges (Q1, Q2) of the groove 214.
- the above cross-sectional shape of the groove 214 is set such that, when the elastic element 10 being stretched by 300% is disposed in the groove 214, part of the elastic element 10 protrudes outwardly in the radial direction of the anvil roller 210, with respect to the linear imaginary line L10 connecting the opening edges (Q1, Q2) of the groove 214.
- Such a cross-sectional shape of the groove 214 is preferably an approximately V shape, as depicted in FIG. 14 .
- a cross-sectional area S1 of the groove 214 is preferably set to be less than a cross-sectional area of the elastic element 10 to be disposed therein.
- a method of producing the composite stretchable member 1 using the production apparatus 100 configured as described above comprises a guide step and a bonding step.
- the guide step includes: guiding the sheet 2a to the bonding device 200 by the first guide roller 102; guiding the sheet 2b to the bonding device 200 by the second guide rollers 104a, 104b; and guiding the elastic elements 10 to the bonding device 200 by the elastic element guide unit 110. Further, in the guide step, the sheets 2a, 2b and the elastic elements 10 are conveyed to the bonding device 200, in a state in which the elastic elements 10 are sandwiched between the sheets 2a, 2b while being arranged to extend in the longitudinal direction of the sheets 2a, 2b in parallel relation to each other.
- the sheets 2a, 2b and the elastic elements 10 are guided to the outer peripheral surface of the anvil roller 210, as mentioned above.
- the regions of the sheet 2a on each of which a respective one of the elastic elements 10 lies, and parts of the elastic elements 10, are introduced, respectively, into the grooves 214 formed in the convex sections 212.
- the bonding step includes: clampingly pressing the pre-bonding sheets, i.e., the sheets 2a, 2b between which the elastic elements 10 are sandwiched, by the horn 220 and the convex sections 212; and, in this state, giving ultrasonic vibration from the horn 220 toward the convex sections 212 to bond each of the elastic elements 10 to the sheets 2a, 2b and further bond the sheets 2a, 2b together, by means of ultrasonic welding.
- associated ones of the regions of the anvil roller-side sheet 2a on each of which a respective one of the elastic elements 10 lies, and parts of the elastic elements 10, are partially welded together, in the state in which they are inserted in a corresponding one of the grooves 214.
- FIG. 15 is a schematic diagram depicting a disposable diaper (wearable article) 20 using the composite stretchable member 1 configured as described above, as a usage example of the composite stretchable member 1.
- the disposable diaper 20 comprises: a waist portion 21 having a front abdominal portion 21 a to be disposed on a front side of an abdominal region of a wearer, and a rear dorsal portion 21b to be disposed on the side of a hip region of the wearer; and a crotch portion 22 to be disposed along a crotch region of the wearer.
- the composite stretchable member 1 according to this embodiment is used in the front abdominal portion 21a and the rear dorsal portion 21b.
- the composite stretchable member 1 is applied to the front abdominal portion 21 a and the rear dorsal portion 21b in such a manner that a stretchable direction of the composite stretchable member 1 is coincident with a waist circumferential direction during wearing (a rightward-leftward direction in FIG. 15 ).
- FIG. 16 is a diagram illustrating a production method for the disposable diaper 20.
- This production method comprises stages 1 to 3.
- one pair of continuous bodies 101 of the composite stretchable member 1 extending in a conveyance direction are prepared. That is, a continuous body 101 for forming the front abdominal portion 21 a and a continuous body 101 for forming the rear dorsal portion 21b are prepared.
- the pair of continuous bodies 101 are conveyed in a longitudinal direction of each of the continuous bodies 101 while being arranged parallel to each other, and the crotch portion 22 is placed to straddle the pair of continuous bodies 101, in such a manner that a longitudinal direction of the crotch portion 22 is oriented orthogonal to the longitudinal direction of the continuous body 101.
- a plurality of the crotch portions 22 are placed in spaced-apart relation in the conveyance direction. Then, the crotch portions 22 and the continuous bodies 101 are bonded together to form a bonded body 102 (bonded body forming step).
- a hole serving as a leg opening is formed between adjacent ones of the crotch portions 22.
- the bonded body 102 is double-folded along a folding line defined by a center line of the bonded body 102 in a width direction (a direction orthogonal to the longitudinal direction of the continuous body 101), in such a manner that each of the crotch portions 22 is located inward of the continuous bodies 101 (double-folding step).
- the disposable diaper 20 is produced in which the waist portion 21 (the front abdominal portion 21a and the rear dorsal portion 21b) is formed of the composite stretchable members 1 so as to be stretchable in the waist circumferential direction.
- the sub-step of providing a hole serving as a leg opening may be performed before bonding the crotch portions 22 to the continuous bodies 101, or needs not necessarily be performed.
- each of the elastic elements 10 of the composite stretchable member 1 may be bonded to the two sheets 2a, 2b by a hot-melt adhesive, in a vicinity of a region corresponding to the cutting line K. This makes it possible to prevent drop-off of the elastic elements 10 due to cutting along the cutting line K.
- the composite stretchable member 1 comprises two sheets 2a, 2b which are bonded together in a plurality of bonding sections 4 each configured to extend along a line intersecting a stretchable direction of the composite stretchable member 1 and a plurality of elastic elements 10, wherein each of the plurality of elastic elements 10 is sandwiched between the sheets 2a, 2b to extend along the stretchable direction of the composite stretchable member 1 and intersect the bonding sections 4, and bonded to the sheets 2a, 2b at intersection points 4d, 4e.
- the sheets 2a, 2b are continuously bonded together in a plurality of bonding sections 4, along a line intersecting the stretchable direction of the composite stretchable member 1, i.e., a longitudinal direction of the sheets 2a, 2b, and each of the elastic elements 10 is bonded to the sheets 2a, 2a, in the plurality of bonding sections 4.
- the composite stretchable member 1 is used to a portion (waist portion 21) of a wearable article such as a disposable diaper, for covering a waist region of a wearer, in such a manner that the stretchable direction of the composite stretchable member 1 is coincident with the waist circumferential direction, as mentioned above, it becomes possible to suppress a situation where the sheets 2a, 2b or associated ones of the sheets 2a, 2b and the elastic elements 10 are debonded from each other when the waist portion is pulled up and down during attaching and removing of the wearable article.
- the composite stretchable member may be configured such that only part of the elastic elements 10 intersect the bonding sections 4.
- the composite stretchable member 1 is used in the waist portion 22 of the disposable diaper 22.
- stretchability of the waist portion 22 to provide good wearing comfort, while suppressing breakage of the waist portion 22 during attaching and removing of the disposable diaper 22.
- the composite stretchable member 1 may be used in only part of the waist portion 22.
- the bonding sections 4 comprise a plurality of first bonding sections 4a extending parallel to each other along a direction intersecting the longitudinal direction of the sheets 2a, 2b (the stretchable direction of the composite stretchable member 1), and a plurality of second bonding sections 4b extending parallel to each other along a direction intersecting the longitudinal direction of the sheets 2a, 2b and each intersecting the first bonding sections 4a.
- the sheets 2a, 2b are bonded together in the two types of bonding sections 4a, 4b extending in different directions.
- the first bonding sections 4a and the second bonding sections 4b intersect each other, so that it is possible to increase a bonding force of the composite stretchable member 1 at each of the intersection points 4c, and thus a bonding force between the sheets 2a, 2b at a position adjacent to each of the intersection points 4c.
- each of a longitudinal direction (first direction) of each of the first bonding sections 4a and a longitudinal direction (second direction) of each of the second bonding sections 4b is set to intersect a direction orthogonal to the longitudinal direction of the sheets 2a, 2b (the stretchable direction of the composite stretchable member 1).
- each of the first bonding sections 4a and the second bonding sections 4b is inclined at an angle of less than 45 degrees, with respect to the width direction of the sheets 2a, 2b (a direction orthogonal to the stretchable direction of the composite stretchable member 1).
- intersection points 4c of the first bonding sections 4a with the second bonding sections 4b lie in a straight line extending in the longitudinal direction of the sheets 2a, 2b (the stretchable direction of the composite stretchable member 1), and lie side-by-side on a straight line extending in the width direction of the sheets 2a, 2b (the direction orthogonal to the stretchable direction of the composite stretchable member 1).
- intersection points 4c between the first and second bonding sections 4a, 4b can be arranged in an orderly manner, so that it is possible to form gathers between adjacent ones of the intersection points 4c in a regular pattern so as to provide good appearance, and to increase a bonding force between the sheets 2a, 2b in the longitudinal direction of the sheets 2a, 2b (the stretchable direction of the composite stretchable member 1) and in the width direction of the sheets 2a, 2b.
- each of the elastic elements 10 may be disposed to intersect the first bonding sections 4a and the second boding sections 4b at the intersection points 4c of the first bonding sections 4a with the second bonding sections 4b, it is preferable to disposed each of the elastic elements 10 such that it intersects the first bonding sections 4a and the second boding sections 4b at points other than the intersection points 4c.
- each of the elastic elements 10 is bonded to the sheets in the first bonding sections 4a and the second boding sections 4b, individually.
- each of the elastic elements 10 is disposed to intersect the bonding sections 4a, 4b at the intersection points 4c therebetween, it is possible to increase the number of bonded points of each of the elastic elements 10 to the sheets 2a, 2b. This makes it possible to increase a bonding force between associated ones of the elastic elements 10 and the sheets 2a, 2b.
- first elastic element-side intersection points 4d which are intersection points of the elastic elements 10 with the first bonding sections 4a
- second elastic element-side intersection points 4e which are intersection points of the elastic elements 10 with the second bonding sections 4b, lie in a straight line extending in the width direction of the sheets 2a, 2b (the direction orthogonal to the stretchable direction of the composite stretchable member 1).
- intersection points of each of the elastic elements 10 with the bonding sections 4, i.e., bonded points of each of the elastic elements 10 to the sheets 2a, 2b are arranged at equal intervals in the longitudinal direction of the sheets 2a, 2b (the stretchable direction of the composite stretchable member 1). That is, each of the elastic elements 10 intersects the bonding sections 4 at equal intervals in the longitudinal direction of the sheets 2a, 2b.
- sizes of gathers formed between adjacent ones of the bonded points 4d, 4e of each of the elastic elements 10 to the sheets 2a, 2b can be uniformed in the longitudinal direction of the sheets 2a, 2b (the stretchable direction of the composite stretchable member 1). This makes it possible to provide good appearance and good feel.
- each of the elastic elements 10 comprises a plurality of elastic bodies 10a, and a plurality of covering layers 10b each covering a respective one of the elastic bodies 10a, wherein each of the elastic elements 10 is bonded to the sheets 2a, 2b in such a manner that the covering layers 10b are welded to the sheets 2a, 2b.
- One of the group of first bonding sections 4a and the group of second bonding sections 4b may be omitted.
- the bonding sections 4 may be formed to extend in a direction orthogonal to the longitudinal direction of the sheets 2a, 2b.
- a plurality of bonding sections 504 may be formed to extend along the width direction of the sheets 2a, 2b (a direction orthogonal to a stretchable direction of a composite stretchable member 501).
- the bonding sections 504 it is necessary to arrange a plurality of convex sections in the conveyance direction of the anvil roller 210 in parallel relation to each other. In this case, the output portion 221 of the horn 211 will intermittently come into contact with the convex sections. This is likely to cause large vibration and noise.
- each of the bonding sections 504 is provided to extend along the width direction of the sheets 2a, 2b, it is preferable to provide an auxiliary seal 509 in an edge region located in the width direction of the sheets 2a, 2b, as depicted in FIG. 18 .
- an auxiliary convex section 509 for details, a convex section corresponding to the auxiliary seal 509 for bonding only the sheets 2a, 2b together is provided in an edge region of the outer peripheral surface of the anvil roller 210 in a width direction of the anvil roller 210 (in a direction parallel to the rotational axis of the anvil roller 210). Further, the auxiliary convex section 509 is provided between adjacent ones of the convex sections 504 in the conveyance direction of the anvil roller 210.
- a plurality of (in the example depicted in FIG. 18 , five) auxiliary convex sections 509 are provided in spaced-apart relation to each other in the width direction of the anvil roller 210 to form a line, and three lines of the plurality of auxiliary convex sections 509 are provided between adjacent ones of the convex sections 504 in the conveyance direction of the anvil roller 210.
- the auxiliary convex section 509 may be formed continuously along the conveyance direction of the anvil roller 210. In this case, it is possible to more reliably enable the output portion 221 of the horn 220 to continuously come into contact with the convex sections. However, the auxiliary convex section 509 has a relatively small dimension in the width direction of the anvil roller 210. Thus, during contact between the auxiliary convex section 509 and the output portion 221 of the horn 220, a relatively large force is applied to a region of the sheets 2a, 2b clamped therebetween, so that the sheets 2a, 2b are likely to undergo breakage.
- the sheets 2a, 2b are likely to be broken along the auxiliary convex section 509, and divided into a portion in contact with the auxiliary convex section 509 and the remaining portion. Therefore, when there is a risk of breakage of the sheets 2a, 2b, it is preferable to intermittently provide a plurality of auxiliary convex sections 509, as depicted in FIG. 20 .
- the region of the sheets 2a, 2b formed with the auxiliary convex sections 509 may be cut off, or may be used as part of the composite stretchable member 501.
- each of the sheets 2a, 2b may be formed to have an intersecting pattern region A1 with a plurality of bonding sections comprising the first bonding sections 4a and the second bonding sections 4b, and a straight pattern region A2 comprising a plurality of bonding sections (third bonding sections) 504 each extending along the width direction of the sheets 2a, 2b, as depicted in FIG. 17 , wherein each of the bonding sections 504 extends from a respective one of part of intersection points of the first bonding sections 4a with the second bonding sections 4b, in the width direction.
- These sheets 2a, 2b may be applied to a waist portion of a wearable article such as the aforementioned disposable diaper 20, wherein the straight pattern region A2 may be disposed in an edge region of the waist portion in such a manner that each of the bonding sections 504 extends to an edge of the waist portion from a inwardly portion.
- gathers formed in the intersecting pattern region A1 can provide good appearance and good feel
- gathers formed in the straight pattern region A2 can form open spaces opened outwardly from the edge of the waist portion to provide good breathability. That is, in the straight pattern region A2, passages providing fluid communication between an inside and an outside of the waist portion are formed between adjacent ones of the bonding sections 504, so that it is possible to provide good breathability.
- the stretchable member may be configured as a stretchable member 701 depicted in FIG. 20 .
- a plurality of bonding sections 704 each extending along a zigzag line intersecting the longitudinal direction of the sheets 2a, 2b, i.e., a line extending in the width direction of the sheets 2a, 2b, while bending toward one side and the other side of the longitudinal direction of the sheets 2a, 2b plural times, are provided in a region B1 other than the straight pattern region A2, in place of the intersecting pattern region A1 in FIG. 19 .
- the bonding sections 704 comprise: a plurality of first unit-bonding sections 704 lying side-by-side in the longitudinal direction of the sheets 2a, 2b in parallel relation to each other, and a plurality of second unit-bonding sections 705 located between adjacent ones of the first unit-bonding sections 704 and lying side-by-side in the longitudinal direction of the sheets 2a, 2b in parallel relation to each other.
- Each of the first unit-bonding sections 704 has a segment 704a extending rightwardly and obliquely downwardly, in FIG.
- each of the second unit-bonding sections 705 is formed in a shape symmetrical to the first zigzag bonding section 704, with respect to a line extending in the upward-downward direction, in FIG.
- Each of the elastic elements 10 extends in the longitudinal direction of the sheets 2a, 2b while passing through respective central areas of the segments 704a, 705a (704b, 705b) in the width direction of the sheets 2a, 2b.
- each of the bonding sections 504 forming the straight pattern linearly extends from the joined position along in the width direction of the sheets 2a, 2b.
- the bonding sections 705 When the bonding sections 705 is formed in the above manner, it becomes possible to keep down a ratio per unit area of the bonding sections to the region B, as compared to the stretchable member depicted in FIG. 19 .
- the first bonding sections 4a and the second bonding sections 4b intersect each other, so that an area percentage per unit area of the bonding sections 4 (4c) in a vicinity of the intersection point becomes larger. Accordingly, in the vicinity of the intersection point, the composite stretchable member 601 becomes harder.
- FIG. 19 the first bonding sections 4a and the second bonding sections 4b intersect each other, so that an area percentage per unit area of the bonding sections 4 (4c) in a vicinity of the intersection point becomes larger. Accordingly, in the vicinity of the intersection point, the composite stretchable member 601 becomes harder.
- FIG. 19 Differently, in the example depicted in FIG.
- the unit-bonding sections 704, 705 do not intersect each other, except the boundary area between the region B1 and the straight pattern region A2), so that it becomes possible to suppress an increase in area of bonding sections to be formed (area percentage per unit area of the bonding sections) so as to suppress hardening of the composite stretchable member 601 and provide good feel.
- the elastic elements 10 may be arranged to have different spaced-apart distances between adjacent one thereof.
- the elastic elements 10 may be arranged in non-parallel relation to extend in directions causing them to intersect each other, or may be arranged to extend in a certain direction while periodically or non-periodically meandering.
- one of the group of first bonding sections 4a and the group of second bonding sections 4b may be arranged to extend in the width direction of the sheets 2a, 2b.
- one or each of the group of first bonding sections 4a and the group of second bonding sections 4b may be arranged to incline at an angle of 45 degree or more, with respect to the width direction of the sheets 2a, 2b (the direction orthogonal to the stretchable direction of the composite stretchable member 1).
- intersection points 4c of the first bonding sections 4a with the second bonding sections 4b need not necessarily be arranged to lie side-by-side on a straight line extending in the width direction of the sheets 2a, 2b.
- the intersection points 4c may be offset from each other in the longitudinal direction of the sheets 2a, 2b.
- first intersection points 4d and the second intersection points 4e need not necessarily be arranged to lie in a straight line extending in the longitudinal direction of the sheets 2a, 2b.
- the intersection points 4d, 4e may be offset from each other in the width direction of the sheets 2a, 2b.
- each of the elastic elements 10 may be disposed to pass through the intersection points of the first bonding sections 4a with the second bonding sections 4b (the bonding section-side intersection points 4c), and bonded to the sheets 2a, 2b at the points.
- intersection points 4d of the elastic elements 10 with the first bonding sections 4a, and the intersection points 4e of the elastic elements 10 with the second bonding sections 4b need not necessarily be arranged to lie in a straight line extending in the width direction of the sheets 2a, 2b.
- the intersection points 4d, 4e may be offset from each other in the longitudinal direction of the sheets 2a, 2b.
- intersection points 4d, 4e of the elastic elements 10 with the bonding sections 4 may be arranged at unequal intervals in the longitudinal direction of the sheets 2a, 2b.
- each of the elastic elements 10 may comprise a plurality of rubber strings 10a assembled as a bundle, wherein the sheets 2a, 2b may be welded to at least one of the rubber strings 10a located in an outer periphery of the elastic element 10. Even in this case, the sheets 2a, 2b are welded to the rubber strings 10a located in the outer periphery of the elastic element 10, so that it is possible to suppress damage to the remaining, non-bonded rubber strings 10a.
- each of the elastic elements 10 may be formed using silicone oil having a relatively low boiling point or the like, as the covering layer 10b.
- part of the rubber strings 10a may be directly bonded to the sheets 2a, 2b.
- the part of the rubber strings 10a and the sheets 2a, 2b may be bonded together, after melting at least one of them.
- rubber strings 10a rubber strings having an adhesive force (cohesion) may be employed.
- the rubber strings 10a may be bonded to the sheets 2a, 2b by means of the adhesive force.
- the production method for the disposable diaper 20 using the composite stretchable member 1 is not limited to the above.
- the disposable diaper 20 may be produced in a process as depicted in FIG. 21 .
- one continuous body 201 of the composite stretchable member 1 extending in a conveyance direction is prepared, and conveyed in a longitudinal direction thereof. Further, a plurality of crotch portions 22 are arranged in a widthwise central region of the continuous body 201, in such a manner that a longitudinal direction of each of the crotch portions 22 is oriented orthogonal to the longitudinal direction of the continuous body 201. Then, the crotch portions 22 and the continuous body 201 are bonded together to form a bonded body 202 (bonded body forming step).
- a plurality of pairs of holes X each serving as leg openings for allowing legs of a wearer to be inserted therethrough are preliminarily formed in the continuous body 201, and then the crotch portions 22 are bonded to the continuous body 201.
- the formation of the holes X may be performed after bonding the crotch portions 22 to the continuous body 201.
- the bonded body 102 is double-folded along a folding line defined by a center line of the bonded body 102 in a width direction (a direction orthogonal to the longitudinal direction of the continuous body), in such a manner that each of the crotch portions 22 is located inward of the continuous body (double-folding step).
- a stage 3 is the same as that in the above embodiment. That is, in the stage 3, superimposed portions of the continuous body 201 at an intermediate position between adjacent ones of the crotch portions 22 are bonded together along a direction orthogonal to the longitudinal direction of the continuous body 201, to thereby form a side seal (side sealing step), and the continuous body 201 is cut along a cutting line K in the side seal (cutting step).
- this method makes it possible to produce a disposable diaper 20 capable of increasing a bonding force in a waist portion 20 thereof to suppressing breakage such as drop-off of the elastic elements 10.
- a composite stretchable member which is stretchable in a specific direction.
- the composite stretchable member comprises: two sheets which are opposed to each other; and a plurality of elastic elements each disposed between the sheets to extend along the specific direction in such a manner as to be stretchable in the specific direction, wherein: the sheets are bonded together in a plurality of bonding sections, wherein each of the bonding sections is configured to continuously extend along a line intersecting the specific direction and to intersect the plurality of elastic elements; and each of the elastic elements is bonded to the sheets at intersection points with the bonding sections.
- the sheets are continuously bonded together in the bonding sections, along a line intersecting the specific direction (a stretchable direction of the composite stretchable member), so that it becomes possible to increase a bonding force between the sheets.
- This makes it possible to prevent debonding between the sheets during use or the like.
- each of the bonding sections continuously intersects the plurality of elastic elements, and each of the elastic elements is bonded to the sheets at these intersection points.
- the bonding sections are intermittently provided, and arranged to intersect only part of the elastic elements, it becomes possible to ensure a larger number of bonded points of each of the elastic elements to the sheets so as to increase a bonding force between associated ones of the elastic elements and the sheets.
- the bonding sections comprise: a plurality of first bonding sections extending parallel to each other along a first direction intersecting the specific direction; and a plurality of second bonding sections extending parallel to each other along a second direction intersecting the specific direction and the first direction, and each intersecting at least one of the first bonding sections.
- the sheets are bonded together in the first and second bonding sections extending in different directions.
- first bonding sections and the second bonding sections intersect each other, so that it is possible to increase a bonding force between the sheets in the vicinity of each of the intersection points between the first and second bonding sections, and thus a bonding force in the entire composite stretchable member.
- each of the first direction and the second direction is a direction intersecting a direction orthogonal to the specific direction.
- each of the first direction and the second direction is inclined at an angle of less than 45 degrees, with respect to the direction orthogonal to the specific direction.
- intersection points of the first bonding sections with the second bonding sections lie in a straight line extending in the specific direction, and lie in a straight line extending in the direction orthogonal to the specific direction.
- intersection points between the first and second bonding sections can be arranged in an orderly manner, so that it is possible to form gathers between adjacent ones of the intersection points in a regular pattern so as to provide good appearance, and to increase a bonding force between the sheets in the specific direction and in a direction orthogonal to the specific direction.
- each of the elastic elements intersects the first bonding sections and the second boding sections at points other than the intersection points of the first bonding sections with the second bonding sections.
- each of the elastic elements is bonded to the sheets in the first bonding sections and the second boding sections, individually, so as to increase the number of bonded points of each of the elastic elements 10 to the sheets. This makes it possible to increase a bonding force between associated ones of the elastic elements and the sheets.
- first elastic element-side intersection points which are intersection points of the elastic elements with the first bonding sections
- second elastic element-side intersection points which are intersection points of the elastic elements with the second bonding sections
- each of the elastic elements intersects the first bonding sections and the second boding sections at points other than the intersection points of the first bonding sections with the second bonding sections, and intersect the first and second bonding sections at equal intervals in the specific direction.
- each of the sheets includes: an intersecting pattern region in which the bonding sections comprise the plurality of first bonding sections and the plurality of second bonding sections; and a straight pattern region which is located next to the intersecting pattern region and in which the bonding sections comprise a plurality of third bonding sections each extending from a respective one of part of intersection points of the first bonding sections with the second bonding sections, in a direction orthogonal to the specific direction.
- this feature it becomes possible to further increase a bonding force between the sheets in the specific direction in the straight pattern region, while increasing a bonding force between the sheets in a direction intersecting the specific direction in the intersecting pattern region. Further, when this composite stretchable member is applied to a waist portion of a wearable article, gathers formed in the intersecting pattern region can provide good appearance and good feel, and gathers formed in the straight pattern region can form open spaces opened outwardly from the edge of the waist portion to provide good breathability.
- each of the bonding sections may be disposed to extend in a direction orthogonal to the specific direction.
- each of the elastic elements comprises a plurality of fiber-shaped elastic bodies assembled as a bundle, wherein a peripheral surface of each of at least part of the plurality of fiber-shaped elastic bodies is covered by a covering layer, and the elastic element and each of the sheets are bonded together by means of welding of the covering layer to the sheet.
- each of the elastic elements may comprise a plurality of fiber-shaped elastic bodies assembled as a bundle, wherein the elastic element and each of the sheets are bonded together by means of welding of the sheet to at least one of the fiber-shaped elastic bodies located in a periphery of the elastic element.
- a wearable article comprising a waist portion to be disposed around a waist region of a wearer, wherein at least part of the waist portion is formed of the above composite stretchable member.
- the composite stretchable member according to the first aspect of the present invention is capable of increase respective bonding forces between the sheets and between associated ones of the elastic elements and the sheets, as mentioned above.
- this composite stretchable member in at least part of the waist portion of the wearable article, it becomes possible to ensure stretchability to provide wearing comfort, while suppressing breakage such as drop-off of the elastic elements in the waist portion during attaching and removing of the wearable article.
- a method of producing a wearable article wherein the wearable article comprises a waist portion to be disposed around a waist region of a wearer, and a crotch portion to be disposed in a crotch region of the wearer.
- the method comprises: a bonded body forming step of, after providing a continuous body of the above composite stretchable member, conveying the continuous body in a longitudinal direction thereof so as to form the waist portion, and bonding the crotch portion to the continuous body, such that a longitudinal direction of the crotch portion is oriented orthogonal to the longitudinal direction of the continuous body to thereby form a bonded body; a double-folding step of double-folding the bonded body along a folding line defined by a center line of the bonded body in a width direction orthogonal to the longitudinal direction of the continuous body; a side sealing step of mutually bonding superimposed portions of the continuous body at an intermediate position between adjacent ones of a series of the crotch portions in the longitudinal direction of the continuous body, along a direction orthogonal to the longitudinal direction of the continuous body, to thereby form a side seal; and a cutting step of cutting the continuous body along a cutting line in the side seal.
- the waist portion can be formed using the composite stretchable member having a high bonding force as mentioned above.
- the bonded body formed by bonding the crotch portions and the continuous body of the composite stretchable member together is double-folded, and, after forming the side seal in the bonded body, the resulting bonded body is cut to produce the wearable article.
- the method according to the third aspect of the present invention makes it possible to produce a wearable article comprising a waist portion having a high bonding force and capable of suppressing breakage such as drop-off of the elastic elements during attaching and removing of the wearable article.
- the bonded body forming step includes, after providing a pair of the continuous bodies of the composite stretchable member, conveying the pair of continuous bodies parallel to each other; and bonding the crotch portion so as to straddle the pair of continuous bodies, to thereby form the bonded body.
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Mechanical Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Epidemiology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Manufacturing & Machinery (AREA)
- Textile Engineering (AREA)
- Botany (AREA)
- Absorbent Articles And Supports Therefor (AREA)
- Laminated Bodies (AREA)
Abstract
Description
- The present invention relates to a composite stretchable member, a wearable article, and a production method for a wearable article.
- Heretofore, there has been known a wearable article such as a disposable diaper having a waist portion and a crotch portion. In this type of wearable article, with a view to providing good wearing comfort or the like, the waist portion of the wearable article is composed of a composite stretchable member capable of being stretched and restored, in some cases.
- As the composite stretchable member, there has been known a composite stretchable member described, for example, in the following
Patent Literature 1. - The member described in the
Patent Literature 1 comprises two sheets and a plurality of elastic elements, wherein, by bonding these sheets together, the elastic elements are fixed between the sheets. In this member, the two sheets, or associated ones of the sheets and the elastic elements, are intermittently bonded together, in a longitudinal direction of the sheet and a direction orthogonal to the longitudinal direction. - In the member described in the
Patent Literature 1, particularly in a direction intersecting the longitudinal direction of the sheet, i.e., in a direction intersecting a stretchable direction of the member, the two sheets are bonded together just intermittently. This can cause difficulty in ensuring enough bonding force between the two sheets, leading to a problem such as debonding between the two sheets. For example, assume that this member is used as a waist portion of a wearable article in a state in which the stretchable direction of the member is coincident with a waist circumferential direction. In this case, there is a possibility of occurrence of a problem that the two sheets are debonded from each other when the waist region is pulled up and down during attaching and removing of the wearable article. - Patent Literature 1:
JP 4322140 B - It is an object of the present invention to provide a composite stretchable member capable of further increasing a bonding force between two sheets thereof, a wearable article using the composite stretchable member, and a production method for the wearable article.
- In order to solve the above problem, the present invention provides a composite stretchable member which is stretchable in a specific direction. The composite stretchable member comprises two sheets which are opposed to each other, and a plurality of elastic elements each disposed between the sheets to extend along the specific direction in such a manner as to be stretchable in the specific direction, wherein: the sheets are bonded together in a plurality of bonding sections, wherein each of the bonding sections is configured to continuously extend along a line intersecting the specific direction and to intersect the plurality of elastic elements; and each of the elastic elements is bonded to the sheets at intersection points with the bonding sections.
- The present invention also provides a wearable article comprising a waist portion to be disposed around a waist region of a wearer, wherein at least part of the waist portion is formed of the composite stretchable member configured as above.
- The present invention further provides a method of producing a wearable article, wherein the wearable article comprises a waist portion to be disposed around a waist region of a wearer and a crotch portion to be disposed in a crotch region of the wearer. The method comprises: a bonded body forming step of, after providing a continuous body of the composite stretchable member configured as above, conveying the continuous body in a longitudinal direction thereof so as to form the waist portion, and bonding the crotch portion to the continuous body, such that a longitudinal direction of the crotch portion is oriented orthogonal to the longitudinal direction of the continuous body to thereby form a bonded body; a double-folding step of double-folding the bonded body along a folding line defined by a center line of the bonded body in a width direction orthogonal to the longitudinal direction of the continuous body; a side sealing step of mutually bonding superimposed portions of the continuous body at an intermediate position between adjacent ones of a series of the crotch portions in the longitudinal direction of the continuous body, along a direction orthogonal to the longitudinal direction of the continuous body, to thereby form a side seal; and a cutting step of cutting the continuous body along a cutting line in the side seal.
- The present invention makes it possible to further increase a bonding force between associated ones of the elastic elements and the sheets.
-
-
FIG. 1 is a plan view of a composite stretchable member according to one embodiment of the present invention. -
FIG. 2 is part of a sectional view taken along the line II-II inFIG. 1 . -
FIG. 3 is a schematic sectional view depicting a cross-section of an elastic element. -
FIG. 4 is a view corresponding toFIG. 1 and schematically depicting bonding sections. -
FIG. 5 is a view enlargedly depicting part ofFIG. 1 . -
FIG. 6 is a schematic diagram of a production apparatus for the composite stretchable member. -
FIG. 7 is a plan view of a guide member. -
FIG. 8 is a side view of the guide member. -
FIG. 9 is an enlarged diagram of a notch of the guide member. -
FIG. 10 is an enlarged diagram of part ofFIG. 6 . -
FIG. 11 is a diagram depicting an outer peripheral surface of an anvil roller. -
FIG. 12 is a diagram enlargedly depicting part ofFIG. 11 . -
FIG. 13 is a sectional view taken along the line XIII-XIII inFIG. 12 . -
FIG. 14 is a sectional view taken along the line XIV-XIV inFIG. 12 . -
FIG. 15 is a developed diagram of a disposable diaper using the composite stretchable member. -
FIG. 16 is a diagram for explaining a production method for the disposable diaper depicted inFIG. 15 . -
FIG. 17 is a plan view of a composite stretchable member according to another embodiment of the present invention. -
FIG. 18 is a plan view of a composite stretchable member according to yet another embodiment of the present invention. -
FIG. 19 is a plan view of a composite stretchable member according to still another embodiment of the present invention. -
FIG. 20 is a plan view of a composite stretchable member according to yet still another embodiment of the present invention. -
FIG. 21 is a diagram for explaining another example of the production method for the disposable diaper depicted inFIG. 15 . - With reference to the accompanying drawings, the present invention will now be described based on embodiments thereof. It should be noted that the following embodiments will be shown and described as specific example of the present invention, but are not meant to limit the technical scope of the present invention set forth in the appended claims.
-
FIG. 1 is a plan view of a composite stretchable member according to one embodiment of the present invention.FIG. 2 is part of a sectional view taken along the line II-II inFIG. 1 . - The composite
stretchable member 1 comprises twolong sheets elastic elements 10 which are stretchable in a longitudinal direction thereof. Each of theelastic elements 10 is disposed between the twosheets sheets FIG. 1 ), in such a manner as to be stretchable in the longitudinal direction, i.e., so as to be stretched and restored in the longitudinal direction. In this embodiment, theseelastic elements 10 are arranged at equal intervals (equally spaced-apart relation to each other) in a width direction of thesheets sheets sheets - In this embodiment, non-woven fabric is used as a material for the
sheets - In this embodiment, as depicted in
FIG. 3 , each of theelastic elements 10 is formed using a multi-strand element in which a plurality of rubber strings (fibrous elastic bodies) 10a are assembled in the form of a bundle, wherein each of at least part of therubber strings 10a has an outer periphery covered by a coveringlayer 10b. More specifically, among the plurality ofrubber strings 10a, each of somerubber strings 10a disposed particularly in an outer periphery thereof is covered by the coveringlayer 10b. Alternatively, it is to be understood that each of the plurality ofrubber strings 10a may be covered by the coveringlayer 10b. - Examples of a material for the
rubber strings 10a include polyurethane. Examples of a material for the coveringlayer 10b include lubricant such as silicone oil, or magnesium stearate. - The two
sheets elastic elements 10 is bonded to thesheets bonding sections 4, as depicted inFIG. 1 . -
FIG. 4 is a view corresponding toFIG. 1 and schematically depicting the bonding sections. As depicted inFIGS. 1 and4 , thebonding sections 4 comprise a plurality offirst bonding sections 4a, and a plurality ofsecond bonding sections 4b. - The
first bonding sections 4a are arranged at equal intervals in the longitudinal direction of thesheets sheets - The
second bonding sections 4b are arranged at equal intervals in the longitudinal direction of thesheets sheets second bonding sections 4b extend to intersect thefirst bonding sections 4a to thereby form the lattice-patternedbonding sections 4. - In this embodiment, each of the
first bonding sections 4a and thesecond bonding sections 4b is inclined with respect to the width direction of thesheets - Each of the
first bonding sections 4a and thesecond bonding sections 4b has a symmetrical shape with respect to each of two straight lines extending in the longitudinal and width directions of thesheets first bonding sections 4a and thesecond bonding sections 4b are arranged such that a spaced-apart distance between adjacent ones of thefirst bonding sections 4a is coincident with a spaced-apart distance between adjacent ones of thesecond bonding sections 4b. Accordingly, each of thebonding section 4 defines diamond shape whose two diagonal lines extend in the longitudinal and width directions of thesheets first bonding sections 4a and thesecond bonding sections 4b is inclined at an inclination angle of less than 45 degrees with respect to the width direction of thesheets first bonding sections 4a with thesecond bonding sections 4b (hereinafter referred to occasionally as "bonding section-side intersection points") lie side-by-side at equal intervals on a straight line extending in the longitudinal direction of thesheets sheets - Each of the bonding sections 4 (4a, 4b) intersects all of the
elastic elements 10, and extends along a line intersecting a stretchable direction of theelastic elements 10. Specifically, each of thebonding sections 4 extends over between widthwise opposite regions of thesheets elastic elements 10 are arranged. - Each of the
elastic elements 10 intersects thebonding sections 4, at positions other than the bonding section-side intersection points 4c, i.e., at positions spaced apart from the bonding section-side intersection points 4c, wherein theelastic element 10 is bonded to thesheets - This will be more specifically described with reference to
FIG. 5 enlargedly depicting part ofFIG. 1 . - Each of the
elastic elements 10 is disposed to pass, respectively, through positions between adjacent ones of the bonding section-side intersection points 4c on each of thefirst bonding sections 4a (e.g., pass, respectively, between the bonding section-side intersection point 4c_1 and the bonding section-side intersection point 4c_2, and between the bonding section-side intersection point 4c_2 and the bonding section-side intersection point 4c_3, depicted inFIG. 5 ). That is, a first elastic element-side intersection point 4d which is an intersection point of each of theelastic elements 10 with each of thefirst bonding sections 4a lies between adjacent ones of the bonding section-side intersection points 4c on thefirst bonding section 4a, and theelastic element 10 and thesheets intersection point 4d. - Similarly, each of the
elastic elements 10 is disposed to pass, respectively, through positions between adjacent ones of the bonding section-side intersection points 4c on thesecond bonding sections 4b (e.g., pass, respectively, between the bonding section-side intersection point 4c_4 and the bonding section-side intersection point 4c_2, and between the bonding section-side intersection point 4c_2 and the bonding section-side intersection point 4c_5, depicted inFIG. 5 ). That is, a second elastic element-side intersection point 4e which is an intersection point of each of theelastic elements 10 with each of thesecond bonding sections 4b lies between adjacent ones of the bonding section-side intersection points 4c on thesecond bonding sections 4b, and theelastic element 10 and thesheets intersection point 4e. - In this embodiment, each of the
elastic elements 10 is disposed to pass through a center between adjacent ones of the bonding section-side intersection points 4c on each of thefirst bonding sections 4a, and a center between adjacent ones of the bonding section-side intersection points 4c on each of thesecond bonding sections 4b, i.e., to intersect thefirst bonding section 4a and thesecond bonding section 4b at these centers, and bonded to thesheets - Accordingly, the first elastic element-
side intersection point 4d and the second elastic element-side intersection point 4e alternately lie in a straight line extending in the width direction of thesheets elastic elements 10 with thebonding sections 4, i.e., bondedpoints elastic elements 10 to thesheets sheets - In the
bonding sections 4, the twosheets elastic elements 10 is bonded to thesheets - The
sheets elastic elements 10 and thesheets sheets elastic elements 10 are melted, so that each of theelastic elements 10 is welded to thesheets - Specifically, in this embodiment, the rubber strings 10a and the covering layers 10b are formed using rubber strings having a melting point of about 200°C and magnesium stearate having a melting point of less than about 200°C (of about 120°C), respectively. Thus, during welding of each of the
elastic elements 10 to thesheets rubber strings 10a, and welded to thesheets - Next, a production apparatus for producing the above composite
stretchable member 1 will be described. -
FIG. 6 is a schematic diagram of theproduction apparatus 100. - The
production apparatus 100 comprises: abonding device 200 for bonding each of theelastic elements 10 to thesheets sheets elastic elements 10 are sandwiched between thesheets sheet 2a to thebonding unit 200; second guide rollers (guide devices) 104a, 104b for guiding thesheet 2b to thebonding unit 200; an elastic element guide unit (guide device) 110 for supplying theelastic elements 10 to thebonding device 200; and athird guide roller 106 for guiding the bonded sheets and others, i.e., the compositestretchable member 1. - The
bonding device 200 comprises an anvil roller (conveyance roller) 210, and a horn (clamping and pressing device) 220. - The
anvil roller 210 is a rotary member rotatable about an axis extending in a direction perpendicular to a drawing sheet surface ofFIG. 6 . This direction orthogonal to the drawing sheet surface ofFIG 6 will hereinafter be referred to as "forward-rearward direction". Theanvil roller 210 is operable, when rotated, to convey, on an outer peripheral surface thereof, thesheets rollers elastic elements 10 guided by the elasticelement guide unit 110 and sandwiched between thesheets FIG. 6 , theanvil roller 210 is configured to be rotated in a clockwise direction inFIG. 6 . Thesheets elastic elements 10 will hereinafter be referred to occasionally as "pre-bonding sheets". The outer peripheral surface of theanvil roller 210 is formed with a plurality of convex sections 212 (seeFIG. 11 ) each protruding radially outwardly. The derailed structure of theconvex sections 212 will be described later. - The
horn 220 is a device for giving ultrasonic vibration to the pre-bonding sheets being conveyed by theanvil roller 210, while clamping and pressing the pre-bonding sheets in cooperation with the outer peripheral surface of theanvil roller 210. Thehorn 220 is disposed to be opposed to the outer peripheral surface of theanvil roller 210. In the example depicted inFIG. 6 , it is disposed to be opposed to a left side of the outer peripheral surface of theanvil roller 210. Thehorn 220 has anoutput portion 221 provided at a distal end thereof and configured to give ultrasonic vibration toward the outer peripheral surface of theanvil roller 210. - The
horn 220 is operable to give ultrasonic vibration to the pre-bonding sheets, while pressing theoutput portion 221 against the pre-bonding sheets to clamp and press the pre-bonding sheets between theoutput portion 221 and theanvil roller 210. As a result, thesheets elastic elements 10 is also melted, so that the meltedelastic elements 10 and the meltedsheets output portion 221 is capable of clamping and pressing the pre-bonding sheets in cooperation with the aforementionedconvex sections 212 to bond thesheets sheets convex sections 212. Theoutput portion 221 has a planar end face (seeFIGS. 13 and14 ). - In this embodiment, the covering layers 10b are formed using magnesium stearate having a lower melting point than that of the
rubber strings 10a, as mentioned above. Thus, during welding of each of theelastic elements 10 to thesheets rubber strings 10a, and welded to thesheets - The
distal end 221 of thehorn 220 extends in the forward-rearward direction so as to enable thehorn 220 to give ultrasonic vibration to the outer peripheral surface of theanvil roller 210 in the entire range in a direction of the rotational axis of theanvil roller 210. Thehorn 220 is operable to constantly give ultrasonic vibration during a period in which the pre-bonding sheets are conveyed by theanvil roller 210. Thus, along with conveyance of the pre-bonding sheets by theanvil roller 210, the pre-bonding sheets are continuously bonded together. - As depicted in
FIG. 6 , in this embodiment, thesheet 2a is introduced, via thefirst guide roller 102, onto the outer peripheral surface of theanvil roller 210 at a position P1 on a side opposite to thehorn 220. Then, along with rotation of theanvil roller 210, thesheet 2a is conveyed toward thehorn 220 along the outer peripheral surface of theanvil roller 210. - On the other hand, by means of the
second guide rollers sheet 2b is introduced onto the outer peripheral surface of theanvil roller 210 at a position P2 adjacent to thehorn 220 and upstream of thehorn 220 in a conveyance direction of theanvil roller 210, and conveyed to a position opposed to thehorn 220. - The
elastic elements 10 are introduced, via the elasticelement guide unit 110, onto the outer peripheral surface of theanvil roller 210 at a position P3 between the position P1 at which thesheet 2a is introduced onto theanvil roller 210 and the position P2 at which thesheet 2b is introduced onto theanvil roller 210. In this way, theelastic elements 10 are conveyed to the position opposed to thehorn 220 while being arranged between thesheets - The position P2 may be any position between the position P3 and the position opposed to the
horn 220. However, it is set preferably to a position on the side of the position opposed to thehorn 220, more preferably to a position adjacent to the position opposed to thehorn 220. In this case, it becomes possible to prevent occurrence of displacement of theelastic elements 10 introduced onto the outer peripheral surface of theanvil roller 210 caused by theelastic elements 10 being promptly covered by thesheet 2b. - The
elastic elements 10 are introduced onto the outer peripheral surface of theanvil roller 210 while lying side-by-side in the forward-rearward direction and in parallel relation to each other, and placed on thesheet 2a being previously conveyed on the outer peripheral surface of theanvil roller 210, while lying side-by-side in the width direction of thesheet 2a and in parallel relation to each other. Further, theelastic elements 10 are introduced onto theanvil roller 210 while being stretched in a circumferential direction of theanvil roller 210. In this embodiment, each of theelastic elements 10 is introduced onto theanvil roller 210 while being stretched by 300% with respect to a natural length thereof (on the assumption that the natural length is 100%). - The elastic
element guide unit 110 comprises a plurality of elasticelement guide rollers guide member 112. - The elastic
element guide rollers elastic elements 10 toward theanvil roller 210 in a state in which each of theelastic elements 10 is stretched by 300% with respect to the natural length. - The
guide member 112 is configured to introduce theelastic elements 10 onto the outer peripheral surface of theanvil roller 210, in a state where the plurality ofelastic elements 10 are spaced apart from each other in the forward-rearward direction. -
FIG. 7 is a plan view of theguide member 112.FIG. 8 is a side view of theguide member 112. - As depicted in
FIGS. 7 and8 andFIG. 6 , theguide member 112 is a flat plate-shaped member. Theguide member 112 has a distal edge opposed to the position P3 on the outer peripheral surface of theanvil roller 210, and a base edge disposed farther away from the anvil roller than the distal edge, wherein it is disposed to extend in a direction approaching and separating from theanvil roller 210 and extend in the forward-rearward direction. In this embodiment, in order to prevent interference between theguide member 112 and each of thesheets FIG. 8 , a dimension in an upward-downward direction) of theguide member 112 is set to a small value, so that theguide member 112 has a thin-plate shape. - A distal edge region (region on the side of the anvil roller 210) of the
guide member 112 is formed as aninclined portion 114 inclined to gradually come close to a bottom surface of theguide member 112 in a direction toward the distal edge, i.e., theguide member 112 is formed in a shape tapered toward the distal edge. - A
distal edge 114a of theinclined portion 114, i.e., the distal edge of theguide member 112, has a plurality ofnotches 114b formed side-by-side in the forward-rearward direction. Thesenotches 114b lie side-by-side at equal intervals in the forward-rearward direction. As depicted inFIG. 9 which enlargedly depicts part of thenotches 114b inFIG. 7 , each of thenotches 114b has a V shape which is concaved from thedistal edge 114a of theinclined portion 114 toward the base edge to have an opening angle of 90 degrees. Thesenotches 114b are configured to reliably position and hold theelastic elements 10 so as to guide theelastic elements 10 onto the outer peripheral surface of theanvil roller 210, in a state where the plurality ofelastic elements 10 are spaced apart from each other in the forward-rearward direction. Further, thenotches 114b are provided in opposed relation to and at the same intervals as those ofaftermentioned grooves 214 formed in theanvil roller 210, so as to introduce theelastic elements 10, respectively, into theaftermentioned grooves 214. - As depicted in
FIGS. 6 and10 , theguide member 112 is disposed such that an angle θ1 between a surface of theinclined portion 114 and a line tangent to theanvil roller 210 at the position P3 is 90 degrees or less, in side view. This is intended to suppress disengagement of the elastic elements from thenotches 114b. - Specifically, when the angle between the surface of the
inclined portion 114 and the line tangent to theanvil roller 210 at the position P3 is set to 90 degrees or less, a resultant force F10 of a force F1 caused by contraction force and applied to each of theelastic elements 10 on the inclined portion 114 (a pulling force acting in a direction separating from the anvil roller 210) and a force F2 applied from theanvil roller 210 to theelastic element 10 at the position P3 (a force F2 along the line tangent to the anvil roller at the position P3) can be set such that it is oriented in a direction approximately opposite to a conveyance direction of theelastic elements 10 on the inclined portion 114 (oriented in a direction toward the base edge of the guide member 112), as depicted inFIG. 10 . That is, the resultant force F10 is applied to each of theelastic elements 10, in a direction causing theelastic element 10 to be pressed into a corresponding one of thenotches 114b, so that it becomes possible to suppress disengagement of theelastic elements 10 from thenotches 114b in theinclined portion 114. - In this embodiment, an angle θ1 between the surface of the
inclined portion 114 and a line L1 which is part of the tangent line to theanvil roller 210 passing through the position P3, and located downstream of the position P3 in the conveyance direction of theanvil roller 210, is set to become approximately 90 degrees, and theguide member 112 is set at a position free from interference with thesheets anvil roller 210 and extending horizontally, and an angle θ2 (seeFIG. 8 ) of theinclined portion 114 with respect to the bottom surface of theguide member 112 is set to 10 degrees. - The outer peripheral surface of the
anvil roller 210 is formed with theconvex sections 212 each protruding radially outwardly, as depicted inFIG. 11 . Theconvex sections 212 are provided on the outer peripheral surface of theanvil roller 210 over the entire circumferential direction thereof. Theconvex sections 212 have a shape corresponding to that of thebonding sections 4. In this embodiment, thebonding sections 4 have a diamond-lattice pattern as mentioned above, and correspondingly theconvex sections 212 have a diamond-lattice pattern. - Specifically, the
convex sections 212 comprise a firstconvex section 212a for forming thefirst bonding section 4a, and a secondconvex section 212b for forming thesecond bonding section 4b. - The first
convex section 212a extends along a direction (first direction) intersecting the circumferential direction of the anvil roller 210 (conveyance direction of the anvil roller 210), i.e., along a line intersecting the circumferential direction, and a plurality of the firstconvex sections 212a are arranged in parallel relation to each other and at equal intervals in the circumferential direction. The secondconvex section 212b extends along a direction (second direction) intersecting the circumferential direction of theanvil roller 210 and the first direction, i.e., along a line intersecting the circumferential direction, and a plurality of the secondconvex sections 212b are arranged in parallel relation to each other and at equal intervals in the circumferential direction of theanvil roller 210. - Each of the first
convex sections 212a and the secondconvex sections 212b is inclined at an angle of less than 45 degrees with respect to the forward-rearward direction, and the intersecting convex sections are inclined in symmetrical relation to each other with respect to the forward-rearward direction. Further, a spaced-apart distance between adjacent ones of the firstconvex sections 212a is coincident with a spaced-apart distance between adjacent ones of the secondconvex sections 212b, and intersection points 212c of the firstconvex sections 212a with the secondconvex sections 212b lie side-by-side at equal intervals on each of two line extending, respectively, in the forward-rearward direction and the circumferential direction of theanvil roller 210. - As depicted in
FIG. 12 which is an enlarged view of part ofFIG. 11 ,FIG. 13 which is a sectional view taken along the line XIII-XIII inFIG. 12 , andFIG. 14 which is a sectional view taken along the line XIV-XIV inFIG. 12 , each of the firstconvex sections 212a and the secondconvex sections 212b is formed with a plurality of grooves 214 (214a, 214b) each concaved inwardly in a radial direction of theanvil roller 210. As depicted, for example, inFIG. 13 , each of the firstconvex sections 212a and the secondconvex sections 212b is formed with a plurality ofgrooves 214 at positions spaced apart from each other in a longitudinal direction thereof. - A plurality of regions of the
sheet 2a (sheet disposed on the side of the anvil roller 210) on each of which a respective one of theelastic elements 10 will lie are inserted, respectively, in a plurality of groups of thegrooves 214. Therefore, the arrangement of theelastic elements 10 with respect to thebonding sections 4 is identical to the arrangement of the groups of grooves with respect to theconvex sections 212. - Specifically, in this embodiment, as depicted in
FIG. 12 , a groove (first groove) 214a extending in the circumferential direction of theanvil roller 210 is formed in each of the firstconvex sections 212a, at a position between adjacent ones of the intersection points 212c with the secondconvex sections 212b, more specifically, at a central position between the adjacent intersection points 212c. Similarly, a groove (second groove) 214b is formed in each of the secondconvex sections 212b, at a position between adjacent ones of the intersection points 212c with the firstconvex sections 212a, more specifically, at a central position between the adjacent intersection points 212c. Further, a plurality of thegrooves 214 are provided on a line extending along the circumferential direction of theanvil roller 210 at equal intervals, and provided on a line extending along the forward-rearward direction at equal intervals. - The
sheet 2a is conveyed by theanvil roller 210, in a state in which the regions of thesheet 2a on each of which a respective one of theelastic elements 10 lies are inserted, respectively, ingrooves 214. As mentioned above, in this embodiment, each of theelastic elements 10 is introduced into a respective one of thegrooves 214 by theguide member 112 having thenotches 114 provided at respective positions corresponding to thegrooves 214, so that theelastic elements 10 are stably disposed, respectively, at appropriate positions on thesheet 2a. - In this embodiment, the
sheet 2a is conveyed by theanvil roller 210, in a state in which each of theelastic elements 10 is partially inserted in a respective one of thegrooves 214, together with part of thesheet 2a. It should be noted that thesheet 2a may be conveyed in a state in which only the part of thesheet 2a is inserted. - As above, the
grooves 214 are formed, respectively, in the regions of theconvex sections 212 on each of which a respective one of theelastic elements 10 will lie. Thus, when the pre-bonding sheets are clamped and pressed during bonding, at least part of each of theelastic elements 10 arranged between the pre-bonding sheets is moved into a corresponding one of the grooves in an escaping manner. This makes it possible to avoid breakage of theelastic elements 10 during clamping and pressing. - However, if each of the
grooves 214 has an excessively large cross-sectional area, it could become difficult to appropriately bond each of theelastic elements 10 to thesheets FIG. 14 , each of theelastic elements 10 having a natural length is disposed in a corresponding one of thegrooves 214, in such a manner that part of theelastic element 10 protrudes outside thegrooves 214, and the remaining part of theelastic element 10 is received in thegrooves 214. More specifically, a cross-sectional shape of thegroove 214 cut along a plane orthogonal to the circumferential direction (conveyance direction) of theanvil roller 210 is set such that, in the state in which theelastic element 10 having a natural length is disposed in thegroove 214, part of theelastic element 10 protrudes outwardly in the radial direction of theanvil roller 210, with respect to a linear imaginary line (one-dot chain line) L10 connecting opening edges (Q1, Q2) of thegroove 214. Further, the above cross-sectional shape of thegroove 214 is set such that, when theelastic element 10 being stretched by 300% is disposed in thegroove 214, part of theelastic element 10 protrudes outwardly in the radial direction of theanvil roller 210, with respect to the linear imaginary line L10 connecting the opening edges (Q1, Q2) of thegroove 214. Such a cross-sectional shape of thegroove 214 is preferably an approximately V shape, as depicted inFIG. 14 . Further, a cross-sectional area S1 of thegroove 214 is preferably set to be less than a cross-sectional area of theelastic element 10 to be disposed therein. - A method of producing the composite
stretchable member 1 using theproduction apparatus 100 configured as described above comprises a guide step and a bonding step. - The guide step includes: guiding the
sheet 2a to thebonding device 200 by thefirst guide roller 102; guiding thesheet 2b to thebonding device 200 by thesecond guide rollers elastic elements 10 to thebonding device 200 by the elasticelement guide unit 110. Further, in the guide step, thesheets elastic elements 10 are conveyed to thebonding device 200, in a state in which theelastic elements 10 are sandwiched between thesheets sheets - In this embodiment, the
sheets elastic elements 10 are guided to the outer peripheral surface of theanvil roller 210, as mentioned above. - Further, by the
guide member 112, the regions of thesheet 2a on each of which a respective one of theelastic elements 10 lies, and parts of theelastic elements 10, are introduced, respectively, into thegrooves 214 formed in theconvex sections 212. - The bonding step includes: clampingly pressing the pre-bonding sheets, i.e., the
sheets elastic elements 10 are sandwiched, by thehorn 220 and theconvex sections 212; and, in this state, giving ultrasonic vibration from thehorn 220 toward theconvex sections 212 to bond each of theelastic elements 10 to thesheets sheets side sheet 2a on each of which a respective one of theelastic elements 10 lies, and parts of theelastic elements 10, are partially welded together, in the state in which they are inserted in a corresponding one of thegrooves 214. -
FIG. 15 is a schematic diagram depicting a disposable diaper (wearable article) 20 using the compositestretchable member 1 configured as described above, as a usage example of the compositestretchable member 1. - The
disposable diaper 20 comprises: awaist portion 21 having a frontabdominal portion 21 a to be disposed on a front side of an abdominal region of a wearer, and a reardorsal portion 21b to be disposed on the side of a hip region of the wearer; and acrotch portion 22 to be disposed along a crotch region of the wearer. The compositestretchable member 1 according to this embodiment is used in the frontabdominal portion 21a and the reardorsal portion 21b. For example, the compositestretchable member 1 is applied to the frontabdominal portion 21 a and the reardorsal portion 21b in such a manner that a stretchable direction of the compositestretchable member 1 is coincident with a waist circumferential direction during wearing (a rightward-leftward direction inFIG. 15 ). -
FIG. 16 is a diagram illustrating a production method for thedisposable diaper 20. This production method comprisesstages 1 to 3. In thestage 1, one pair ofcontinuous bodies 101 of the compositestretchable member 1 extending in a conveyance direction are prepared. That is, acontinuous body 101 for forming the frontabdominal portion 21 a and acontinuous body 101 for forming the reardorsal portion 21b are prepared. Then, the pair ofcontinuous bodies 101 are conveyed in a longitudinal direction of each of thecontinuous bodies 101 while being arranged parallel to each other, and thecrotch portion 22 is placed to straddle the pair ofcontinuous bodies 101, in such a manner that a longitudinal direction of thecrotch portion 22 is oriented orthogonal to the longitudinal direction of thecontinuous body 101. For example, a plurality of thecrotch portions 22 are placed in spaced-apart relation in the conveyance direction. Then, thecrotch portions 22 and thecontinuous bodies 101 are bonded together to form a bonded body 102 (bonded body forming step). - Subsequently, in the
stage 2, a hole serving as a leg opening is formed between adjacent ones of thecrotch portions 22. Then, the bondedbody 102 is double-folded along a folding line defined by a center line of the bondedbody 102 in a width direction (a direction orthogonal to the longitudinal direction of the continuous body 101), in such a manner that each of thecrotch portions 22 is located inward of the continuous bodies 101 (double-folding step). - Subsequently, in the
stage 3, superimposed portions of thecontinuous bodies 101 at an intermediate position between adjacent ones of thecrotch portions 22 are bonded together along a direction orthogonal to the longitudinal direction of thecontinuous body 101, to thereby form a side seal (side sealing step), and thecontinuous bodies 101 are cut along a cutting line K in the side seal (cutting step). - In this way, the
disposable diaper 20 is produced in which the waist portion 21 (the frontabdominal portion 21a and the reardorsal portion 21b) is formed of the compositestretchable members 1 so as to be stretchable in the waist circumferential direction. - In this embodiment, the sub-step of providing a hole serving as a leg opening may be performed before bonding the
crotch portions 22 to thecontinuous bodies 101, or needs not necessarily be performed. Further, each of theelastic elements 10 of the compositestretchable member 1 may be bonded to the twosheets elastic elements 10 due to cutting along the cutting line K. - As described above, the composite
stretchable member 1 according to this embodiment comprises twosheets bonding sections 4 each configured to extend along a line intersecting a stretchable direction of the compositestretchable member 1 and a plurality ofelastic elements 10, wherein each of the plurality ofelastic elements 10 is sandwiched between thesheets stretchable member 1 and intersect thebonding sections 4, and bonded to thesheets intersection points - That is, the
sheets bonding sections 4, along a line intersecting the stretchable direction of the compositestretchable member 1, i.e., a longitudinal direction of thesheets elastic elements 10 is bonded to thesheets bonding sections 4. - Thus, it becomes possible to increase respective bonding forces between the
sheets elastic elements 10 and thesheets sheets sheets elastic elements 10, during use or the like. In particular, it is possible to highly ensure a bonding force in a direction intersecting the stretchable direction of the compositestretchable member 1. Thus, in the case where the compositestretchable member 1 is used to a portion (waist portion 21) of a wearable article such as a disposable diaper, for covering a waist region of a wearer, in such a manner that the stretchable direction of the compositestretchable member 1 is coincident with the waist circumferential direction, as mentioned above, it becomes possible to suppress a situation where thesheets sheets elastic elements 10 are debonded from each other when the waist portion is pulled up and down during attaching and removing of the wearable article. - Although the above embodiment has been described based on an example where all of the plurality of
elastic elements 10 intersect thebonding sections 4, the composite stretchable member may be configured such that only part of theelastic elements 10 intersect thebonding sections 4. - The composite
stretchable member 1 is used in thewaist portion 22 of thedisposable diaper 22. Thus, it is possible to ensure stretchability of thewaist portion 22 to provide good wearing comfort, while suppressing breakage of thewaist portion 22 during attaching and removing of thedisposable diaper 22. - Although the above embodiment has been described based on an example where the
waist portion 22 is entirely composed of the compositestretchable member 1, the compositestretchable member 1 may be used in only part of thewaist portion 22. - Further, the above embodiment can bring out the following advantageous effects.
- In the above embodiment, the
bonding sections 4 comprise a plurality offirst bonding sections 4a extending parallel to each other along a direction intersecting the longitudinal direction of thesheets second bonding sections 4b extending parallel to each other along a direction intersecting the longitudinal direction of thesheets first bonding sections 4a. - That is, the
sheets bonding sections stretchable member 1 from various directions, it is possible to more reliably suppress debonding between thesheets sheets elastic elements 10. In the above embodiment, thefirst bonding sections 4a and thesecond bonding sections 4b intersect each other, so that it is possible to increase a bonding force of the compositestretchable member 1 at each of the intersection points 4c, and thus a bonding force between thesheets - In the above embodiment, each of a longitudinal direction (first direction) of each of the
first bonding sections 4a and a longitudinal direction (second direction) of each of thesecond bonding sections 4b is set to intersect a direction orthogonal to the longitudinal direction of thesheets - Thus, when an external force is applied in the longitudinal direction of the
sheets bonding sections bonding sections sheets bonding sections - In the above embodiment, each of the
first bonding sections 4a and thesecond bonding sections 4b is inclined at an angle of less than 45 degrees, with respect to the width direction of thesheets - Thus, it is possible to reduce a distance between the
intersection points elastic elements 10 with thebonding sections points elastic elements 10 to thesheets points sheets points sheets stretchable member 1. Therefore, it is possible to provide a better feel. - In the above embodiment, the intersection points 4c of the
first bonding sections 4a with thesecond bonding sections 4b lie in a straight line extending in the longitudinal direction of thesheets sheets - Thus, the intersection points 4c between the first and
second bonding sections sheets sheets sheets - Although each of the
elastic elements 10 may be disposed to intersect thefirst bonding sections 4a and thesecond boding sections 4b at the intersection points 4c of thefirst bonding sections 4a with thesecond bonding sections 4b, it is preferable to disposed each of theelastic elements 10 such that it intersects thefirst bonding sections 4a and thesecond boding sections 4b at points other than the intersection points 4c. - That is, each of the
elastic elements 10 is bonded to the sheets in thefirst bonding sections 4a and thesecond boding sections 4b, individually. In this case, as compared to the case where each of theelastic elements 10 is disposed to intersect thebonding sections elastic elements 10 to thesheets elastic elements 10 and thesheets - In the above embodiment, first elastic element-
side intersection points 4d which are intersection points of theelastic elements 10 with thefirst bonding sections 4a, and second elastic element-side intersection points 4e which are intersection points of theelastic elements 10 with thesecond bonding sections 4b, lie in a straight line extending in the width direction of thesheets - Thus, it is possible to form gathers between adjacent ones of the bonded points of each of the
elastic elements 10 to thesheets side intersection points sheets - In the above embodiment, intersection points of each of the
elastic elements 10 with thebonding sections 4, i.e., bonded points of each of theelastic elements 10 to thesheets sheets elastic elements 10 intersects thebonding sections 4 at equal intervals in the longitudinal direction of thesheets - Thus, sizes of gathers formed between adjacent ones of the bonded
points elastic elements 10 to thesheets sheets sheets - In the above embodiment, each of the
elastic elements 10 comprises a plurality ofelastic bodies 10a, and a plurality of coveringlayers 10b each covering a respective one of theelastic bodies 10a, wherein each of theelastic elements 10 is bonded to thesheets sheets - This makes it possible to suppress breakage of the
elastic elements 10 due to clamping and pressing during bonding. - It should be noted that the present invention is not limited to the above embodiment. For example, the following embodiments may be employed.
- One of the group of
first bonding sections 4a and the group ofsecond bonding sections 4b may be omitted. In this case, thebonding sections 4 may be formed to extend in a direction orthogonal to the longitudinal direction of thesheets - That is, as depicted in
FIG. 17 , a plurality ofbonding sections 504 may be formed to extend along the width direction of thesheets - This makes it possible to increase a bonding force between the
sheets sheets - More specifically, for enabling the
bonding sections 504 to have a pattern depicted inFIG. 17 , it is necessary to arrange a plurality of convex sections in the conveyance direction of theanvil roller 210 in parallel relation to each other. In this case, theoutput portion 221 of the horn 211 will intermittently come into contact with the convex sections. This is likely to cause large vibration and noise. - For this reason, in the case where each of the
bonding sections 504 is provided to extend along the width direction of thesheets auxiliary seal 509 in an edge region located in the width direction of thesheets FIG. 18 . - Specifically, in addition to the convex sections 504 (for details, a plurality of convex sections corresponding to the bonding sections 504) for bonding the
sheets elastic elements 10 therebetween, an auxiliary convex section 509 (for details, a convex section corresponding to the auxiliary seal 509) for bonding only thesheets anvil roller 210 in a width direction of the anvil roller 210 (in a direction parallel to the rotational axis of the anvil roller 210). Further, the auxiliaryconvex section 509 is provided between adjacent ones of theconvex sections 504 in the conveyance direction of theanvil roller 210. - In the example depicted in
FIG. 18 , a plurality of (in the example depicted inFIG. 18 , five) auxiliaryconvex sections 509 are provided in spaced-apart relation to each other in the width direction of theanvil roller 210 to form a line, and three lines of the plurality of auxiliaryconvex sections 509 are provided between adjacent ones of theconvex sections 504 in the conveyance direction of theanvil roller 210. - Thus, it becomes possible to enable the
output portion 221 of thehorn 220 to continuously come into contact with a plurality of convex sections comprising theconvex sections 504 and the auxiliaryconvex sections 509. This makes it possible to keep down noise and vibration which would otherwise occur when theoutput portion 221 of thehorn 220 starts to come into contact with each of the convex sections. - The auxiliary
convex section 509 may be formed continuously along the conveyance direction of theanvil roller 210. In this case, it is possible to more reliably enable theoutput portion 221 of thehorn 220 to continuously come into contact with the convex sections. However, the auxiliaryconvex section 509 has a relatively small dimension in the width direction of theanvil roller 210. Thus, during contact between the auxiliaryconvex section 509 and theoutput portion 221 of thehorn 220, a relatively large force is applied to a region of thesheets sheets convex section 509 is continuously provided along the conveyance direction of theanvil roller 210, as mentioned above, thesheets convex section 509, and divided into a portion in contact with the auxiliaryconvex section 509 and the remaining portion. Therefore, when there is a risk of breakage of thesheets convex sections 509, as depicted inFIG. 20 . - Further, after passing through the
anvil roller 210, the region of thesheets convex sections 509 may be cut off, or may be used as part of the compositestretchable member 501. - Further, as depicted in
FIG. 19 , each of thesheets first bonding sections 4a and thesecond bonding sections 4b, and a straight pattern region A2 comprising a plurality of bonding sections (third bonding sections) 504 each extending along the width direction of thesheets FIG. 17 , wherein each of thebonding sections 504 extends from a respective one of part of intersection points of thefirst bonding sections 4a with thesecond bonding sections 4b, in the width direction. This makes it possible to increase a bonding force between thesheets sheets - These
sheets disposable diaper 20, wherein the straight pattern region A2 may be disposed in an edge region of the waist portion in such a manner that each of thebonding sections 504 extends to an edge of the waist portion from a inwardly portion. In this case, gathers formed in the intersecting pattern region A1 can provide good appearance and good feel, and gathers formed in the straight pattern region A2 can form open spaces opened outwardly from the edge of the waist portion to provide good breathability. That is, in the straight pattern region A2, passages providing fluid communication between an inside and an outside of the waist portion are formed between adjacent ones of thebonding sections 504, so that it is possible to provide good breathability. - Further, the stretchable member may be configured as a
stretchable member 701 depicted inFIG. 20 . - In the example depicted in
FIG. 20 , a plurality ofbonding sections 704 each extending along a zigzag line intersecting the longitudinal direction of thesheets sheets sheets FIG. 19 . - More specifically, in the example depicted in
FIG. 20 , in the region B1, thebonding sections 704 comprise: a plurality of first unit-bondingsections 704 lying side-by-side in the longitudinal direction of thesheets sections 705 located between adjacent ones of the first unit-bondingsections 704 and lying side-by-side in the longitudinal direction of thesheets sections 704 has asegment 704a extending rightwardly and obliquely downwardly, inFIG. 20 , and asegment 704b extending from a lower end of thesegment 704a leftwardly and obliquely downwardly, inFIG. 20 , wherein thesegment 704a and thesegment 704b are arranged alternately and continuously in an upward-downward direction (the width direction of thesheets sections 705 is formed in a shape symmetrical to the firstzigzag bonding section 704, with respect to a line extending in the upward-downward direction, inFIG. 20 (a line extending in the width direction of thesheets segment 705a opposed to thesegment 704a of the first unit-bonding section 704 extending rightwardly and obliquely downwardly, and extending leftwardly and obliquely downwardly, inFIG. 20 , and asegment 705b extending continuously from a lower end of thesegment 705a rightwardly and obliquely downwardly, inFIG. 20 . - Each of the
elastic elements 10 extends in the longitudinal direction of thesheets segments sheets - In a boundary area between the region B1 and the straight pattern region A2, adjacent ones of the first unit-bonding
sections 704 and the second unit-bondingsections 705 are joined together, and each of thebonding sections 504 forming the straight pattern linearly extends from the joined position along in the width direction of thesheets - When the
bonding sections 705 is formed in the above manner, it becomes possible to keep down a ratio per unit area of the bonding sections to the region B, as compared to the stretchable member depicted inFIG. 19 . Specifically, in the example depicted inFIG. 19 , thefirst bonding sections 4a and thesecond bonding sections 4b intersect each other, so that an area percentage per unit area of the bonding sections 4 (4c) in a vicinity of the intersection point becomes larger. Accordingly, in the vicinity of the intersection point, the compositestretchable member 601 becomes harder. Differently, in the example depicted inFIG. 20 , the unit-bondingsections stretchable member 601 and provide good feel. - The
elastic elements 10 may be arranged to have different spaced-apart distances between adjacent one thereof. - Further, as long as each of the
elastic elements 10 extends along the longitudinal direction of thesheets elastic elements 10 may be arranged in non-parallel relation to extend in directions causing them to intersect each other, or may be arranged to extend in a certain direction while periodically or non-periodically meandering. - Further, one of the group of
first bonding sections 4a and the group ofsecond bonding sections 4b may be arranged to extend in the width direction of thesheets - Alternatively, one or each of the group of
first bonding sections 4a and the group ofsecond bonding sections 4b may be arranged to incline at an angle of 45 degree or more, with respect to the width direction of thesheets - Further, the intersection points 4c of the
first bonding sections 4a with thesecond bonding sections 4b need not necessarily be arranged to lie side-by-side on a straight line extending in the width direction of thesheets sheets - Further, the
first intersection points 4d and thesecond intersection points 4e need not necessarily be arranged to lie in a straight line extending in the longitudinal direction of thesheets intersection points sheets - Further, each of the
elastic elements 10 may be disposed to pass through the intersection points of thefirst bonding sections 4a with thesecond bonding sections 4b (the bonding section-side intersection points 4c), and bonded to thesheets - Further, the intersection points 4d of the
elastic elements 10 with thefirst bonding sections 4a, and the intersection points 4e of theelastic elements 10 with thesecond bonding sections 4b, need not necessarily be arranged to lie in a straight line extending in the width direction of thesheets intersection points sheets - Further, the
intersection points elastic elements 10 with thebonding sections 4 may be arranged at unequal intervals in the longitudinal direction of thesheets - The bonded structure of the
elastic elements 10 and thesheets rubber strings 10a in theelastic elements 10 may be bonded to thesheets elastic elements 10 may comprise a plurality ofrubber strings 10a assembled as a bundle, wherein thesheets rubber strings 10a located in an outer periphery of theelastic element 10. Even in this case, thesheets rubber strings 10a located in the outer periphery of theelastic element 10, so that it is possible to suppress damage to the remaining,non-bonded rubber strings 10a. - Further, each of the
elastic elements 10 may be formed using silicone oil having a relatively low boiling point or the like, as thecovering layer 10b. In this case, during welding of theelastic element 10 to thesheets covering layer 10b, part of therubber strings 10a may be directly bonded to thesheets sheets rubber strings 10a, rubber strings having an adhesive force (cohesion) may be employed. In this case, therubber strings 10a may be bonded to thesheets - Further, the production method for the
disposable diaper 20 using the compositestretchable member 1 is not limited to the above. - For example, the
disposable diaper 20 may be produced in a process as depicted inFIG. 21 . - Specifically, in this method, in a
stage 1, onecontinuous body 201 of the compositestretchable member 1 extending in a conveyance direction is prepared, and conveyed in a longitudinal direction thereof. Further, a plurality ofcrotch portions 22 are arranged in a widthwise central region of thecontinuous body 201, in such a manner that a longitudinal direction of each of thecrotch portions 22 is oriented orthogonal to the longitudinal direction of thecontinuous body 201. Then, thecrotch portions 22 and thecontinuous body 201 are bonded together to form a bonded body 202 (bonded body forming step). In this method, a plurality of pairs of holes X each serving as leg openings for allowing legs of a wearer to be inserted therethrough are preliminarily formed in thecontinuous body 201, and then thecrotch portions 22 are bonded to thecontinuous body 201. The formation of the holes X may be performed after bonding thecrotch portions 22 to thecontinuous body 201. - Subsequently, in a
stage 2, the bondedbody 102 is double-folded along a folding line defined by a center line of the bondedbody 102 in a width direction (a direction orthogonal to the longitudinal direction of the continuous body), in such a manner that each of thecrotch portions 22 is located inward of the continuous body (double-folding step). - A
stage 3 is the same as that in the above embodiment. That is, in thestage 3, superimposed portions of thecontinuous body 201 at an intermediate position between adjacent ones of thecrotch portions 22 are bonded together along a direction orthogonal to the longitudinal direction of thecontinuous body 201, to thereby form a side seal (side sealing step), and thecontinuous body 201 is cut along a cutting line K in the side seal (cutting step). - As with the method in the above embodiment, this method makes it possible to produce a
disposable diaper 20 capable of increasing a bonding force in awaist portion 20 thereof to suppressing breakage such as drop-off of theelastic elements 10. - In this method, there is no need to prepare and convey a plurality of continuous bodies of the composite
stretchable member 1, so that it is possible to simplify a production apparatus. On the other hand, in the case where thedisposable diaper 20 is produced using the pair of continuous bodies of the compositestretchable member 1 as in the above embodiment, it is possible to omit the formation of the holes serving as leg openings. - The aforementioned specific embodiments primarily include inventions having the following features.
- According to a first aspect of the present invention, there is provided a composite stretchable member which is stretchable in a specific direction. The composite stretchable member comprises: two sheets which are opposed to each other; and a plurality of elastic elements each disposed between the sheets to extend along the specific direction in such a manner as to be stretchable in the specific direction, wherein: the sheets are bonded together in a plurality of bonding sections, wherein each of the bonding sections is configured to continuously extend along a line intersecting the specific direction and to intersect the plurality of elastic elements; and each of the elastic elements is bonded to the sheets at intersection points with the bonding sections.
- In the composite stretchable member of the present invention, the sheets are continuously bonded together in the bonding sections, along a line intersecting the specific direction (a stretchable direction of the composite stretchable member), so that it becomes possible to increase a bonding force between the sheets. This makes it possible to prevent debonding between the sheets during use or the like. Further, each of the bonding sections continuously intersects the plurality of elastic elements, and each of the elastic elements is bonded to the sheets at these intersection points. Thus, as compared to the case where the bonding sections are intermittently provided, and arranged to intersect only part of the elastic elements, it becomes possible to ensure a larger number of bonded points of each of the elastic elements to the sheets so as to increase a bonding force between associated ones of the elastic elements and the sheets.
- Preferably, in the composite stretchable member of the present invention, the bonding sections comprise: a plurality of first bonding sections extending parallel to each other along a first direction intersecting the specific direction; and a plurality of second bonding sections extending parallel to each other along a second direction intersecting the specific direction and the first direction, and each intersecting at least one of the first bonding sections.
- According to this feature, the sheets are bonded together in the first and second bonding sections extending in different directions. Thus, even in a situation where an external force is applied to the composite stretchable member from different directions, it is possible to more reliably suppress debonding between the sheets or between associated ones of the sheets and the elastic elements. Further, the first bonding sections and the second bonding sections intersect each other, so that it is possible to increase a bonding force between the sheets in the vicinity of each of the intersection points between the first and second bonding sections, and thus a bonding force in the entire composite stretchable member.
- Preferably, in the above composite stretchable member, each of the first direction and the second direction is a direction intersecting a direction orthogonal to the specific direction.
- According to this feature, when an external force is applied to the specific direction, it is possible to reduce a normal component of the external force with respect to each of the bonding sections. This makes it possible to more reliably suppress debonding between the sheets in the bonding sections.
- Preferably, in the above composite stretchable member, each of the first direction and the second direction is inclined at an angle of less than 45 degrees, with respect to the direction orthogonal to the specific direction.
- According to this feature, it is possible to reduce a spaced-apart distance between the intersection points between the first bonding sections and the second bonding sections in the specific direction, i.e., the stretchable direction of the composite stretchable member. This makes it possible to more finely form gathers between the bonded points in the stretchable direction, in a non-stretched state of the composite stretchable member. Therefore, it is possible to provide a better feel.
- Preferably, in the above composite stretchable member, intersection points of the first bonding sections with the second bonding sections lie in a straight line extending in the specific direction, and lie in a straight line extending in the direction orthogonal to the specific direction.
- According to this feature, the intersection points between the first and second bonding sections can be arranged in an orderly manner, so that it is possible to form gathers between adjacent ones of the intersection points in a regular pattern so as to provide good appearance, and to increase a bonding force between the sheets in the specific direction and in a direction orthogonal to the specific direction.
- Preferably, in the above composite stretchable member, each of the elastic elements intersects the first bonding sections and the second boding sections at points other than the intersection points of the first bonding sections with the second bonding sections.
- According to this feature, each of the elastic elements is bonded to the sheets in the first bonding sections and the second boding sections, individually, so as to increase the number of bonded points of each of the
elastic elements 10 to the sheets. This makes it possible to increase a bonding force between associated ones of the elastic elements and the sheets. - Preferably, in the above composite stretchable member, first elastic element-side intersection points which are intersection points of the elastic elements with the first bonding sections, and second elastic element-side intersection points which are intersection points of the elastic elements with the second bonding sections, lie in a straight line orthogonal to the specific direction.
- According to this feature, it is possible to form gathers between adjacent ones of the bonded points of each of the elastic elements to the sheets, in such a manner as to lie side-by-side on a straight line extending in the direction orthogonal to the specific direction. This makes it possible to provide good appearance.
- Preferably, in the above composite stretchable member, wherein intersection points of the first bonding sections with the second bonding sections lie in a straight line extending in the specific direction, and lie in a straight line extending in the direction orthogonal to the specific direction, each of the elastic elements intersects the first bonding sections and the second boding sections at points other than the intersection points of the first bonding sections with the second bonding sections, and intersect the first and second bonding sections at equal intervals in the specific direction.
- According to this feature, it becomes possible to uniform, in the specific direction, sizes of gathers formed between adjacent ones of the bonded points of each of the elastic elements to the sheets (dimensions of the gathers protruding outwardly), while increasing a bonding force between the sheets and a bonding force between associated ones of the elastic elements and the sheets, thereby providing good appearance and good feel.
- Preferably, in the above composite stretchable member, each of the sheets includes: an intersecting pattern region in which the bonding sections comprise the plurality of first bonding sections and the plurality of second bonding sections; and a straight pattern region which is located next to the intersecting pattern region and in which the bonding sections comprise a plurality of third bonding sections each extending from a respective one of part of intersection points of the first bonding sections with the second bonding sections, in a direction orthogonal to the specific direction.
- According to this feature, it becomes possible to further increase a bonding force between the sheets in the specific direction in the straight pattern region, while increasing a bonding force between the sheets in a direction intersecting the specific direction in the intersecting pattern region. Further, when this composite stretchable member is applied to a waist portion of a wearable article, gathers formed in the intersecting pattern region can provide good appearance and good feel, and gathers formed in the straight pattern region can form open spaces opened outwardly from the edge of the waist portion to provide good breathability.
- Differently from the above arrangement, each of the bonding sections may be disposed to extend in a direction orthogonal to the specific direction.
- According to this feature, it becomes possible to increase a bonding force between the sheets in the direction orthogonal to the specific direction.
- Preferably, in the above composite stretchable member, each of the elastic elements comprises a plurality of fiber-shaped elastic bodies assembled as a bundle, wherein a peripheral surface of each of at least part of the plurality of fiber-shaped elastic bodies is covered by a covering layer, and the elastic element and each of the sheets are bonded together by means of welding of the covering layer to the sheet.
- According to this feature, it becomes possible to suppress breakage or the like of the fiber-shaped elastic elements which would otherwise occur when the elastic elements are clamped and pressed during bonding.
- Alternatively, each of the elastic elements may comprise a plurality of fiber-shaped elastic bodies assembled as a bundle, wherein the elastic element and each of the sheets are bonded together by means of welding of the sheet to at least one of the fiber-shaped elastic bodies located in a periphery of the elastic element.
- In this case, it also becomes possible to suppress breakage or the like of the fiber-shaped elastic elements which would otherwise occur when the elastic elements are clamped and pressed during bonding.
- According to a second aspect of the present invention, there is provided a wearable article comprising a waist portion to be disposed around a waist region of a wearer, wherein at least part of the waist portion is formed of the above composite stretchable member.
- The composite stretchable member according to the first aspect of the present invention is capable of increase respective bonding forces between the sheets and between associated ones of the elastic elements and the sheets, as mentioned above. Thus, by using this composite stretchable member in at least part of the waist portion of the wearable article, it becomes possible to ensure stretchability to provide wearing comfort, while suppressing breakage such as drop-off of the elastic elements in the waist portion during attaching and removing of the wearable article.
- According to a third aspect of the present invention, there is provided a method of producing a wearable article, wherein the wearable article comprises a waist portion to be disposed around a waist region of a wearer, and a crotch portion to be disposed in a crotch region of the wearer. The method comprises: a bonded body forming step of, after providing a continuous body of the above composite stretchable member, conveying the continuous body in a longitudinal direction thereof so as to form the waist portion, and bonding the crotch portion to the continuous body, such that a longitudinal direction of the crotch portion is oriented orthogonal to the longitudinal direction of the continuous body to thereby form a bonded body; a double-folding step of double-folding the bonded body along a folding line defined by a center line of the bonded body in a width direction orthogonal to the longitudinal direction of the continuous body; a side sealing step of mutually bonding superimposed portions of the continuous body at an intermediate position between adjacent ones of a series of the crotch portions in the longitudinal direction of the continuous body, along a direction orthogonal to the longitudinal direction of the continuous body, to thereby form a side seal; and a cutting step of cutting the continuous body along a cutting line in the side seal.
- In the method according to the third aspect of the present invention, the waist portion can be formed using the composite stretchable member having a high bonding force as mentioned above.
- Then, the bonded body formed by bonding the crotch portions and the continuous body of the composite stretchable member together is double-folded, and, after forming the side seal in the bonded body, the resulting bonded body is cut to produce the wearable article.
- Thus, the method according to the third aspect of the present invention makes it possible to produce a wearable article comprising a waist portion having a high bonding force and capable of suppressing breakage such as drop-off of the elastic elements during attaching and removing of the wearable article.
- Preferably, in the method of the present invention, the bonded body forming step includes, after providing a pair of the continuous bodies of the composite stretchable member, conveying the pair of continuous bodies parallel to each other; and bonding the crotch portion so as to straddle the pair of continuous bodies, to thereby form the bonded body.
- According to this feature, there is no need to form holes serving as leg openings for allowing legs to be inserted therethrough, so that it is possible to more easily produce a wearable article which is less likely to undergo breakage.
Claims (15)
- A composite stretchable member which is stretchable in a specific direction, comprising:two sheets which are opposed to each other; anda plurality of elastic elements each disposed between the sheets to extend along the specific direction in such a manner as to be stretchable in the specific direction,wherein:the sheets are bonded together in a plurality of bonding sections, each of the bonding sections being configured to continuously extend along a line intersecting the specific direction and to intersect the plurality of elastic elements; andeach of the elastic elements is bonded to the sheets at intersection points with the bonding sections.
- The composite stretchable member according to claim 1, wherein the bonding sections comprise:a plurality of first bonding sections extending parallel to each other along a first direction intersecting the specific direction; anda plurality of second bonding sections extending parallel to each other along a second direction intersecting the specific direction and the first direction, and each intersecting at least one of the first bonding sections.
- The composite stretchable member according to claim 2, wherein each of the first direction and the second direction is a direction intersecting a direction orthogonal to the specific direction.
- The composite stretchable member according to claim 3, wherein each of the first direction and the second direction is inclined at an angle of less than 45 degrees, with respect to the direction orthogonal to the specific direction.
- The composite stretchable member according to claim 3 or 4, wherein intersection points of the first bonding sections with the second bonding sections lie in a straight line extending in the specific direction, and lie in a straight line extending in the direction orthogonal to the specific direction.
- The composite stretchable member according to any one of claims 2 to 5, wherein each of the elastic elements intersects the first bonding sections and the second boding sections at points other than the intersection points of the first bonding sections with the second bonding sections.
- The composite stretchable member according to any one of claims 2 to 6, wherein first elastic element-side intersection points which are intersection points of the elastic elements with the first bonding sections, and second elastic element-side intersection points which are intersection points of the elastic elements with the second bonding sections, lie in a straight line orthogonal to the specific direction.
- The composite stretchable member according to claim 5, wherein each of the elastic elements intersects the first bonding sections and the second boding sections at points other than the intersection points of the first bonding sections with the second bonding sections, and intersect the first and second bonding sections at equal intervals in the specific direction.
- The composite stretchable member according to any one of claims 2 to 8, wherein each of the sheets includes:an intersecting pattern region in which the bonding sections comprise the plurality of first bonding sections and the plurality of second bonding sections; anda straight pattern region which is located next to the intersecting pattern region and in which the bonding sections comprise a plurality of third bonding sections each extending from a respective one of part of intersection points of the first bonding sections with the second bonding sections, in a direction orthogonal to the specific direction.
- The composite stretchable member according to claim 1, wherein each of the bonding sections extends in a direction orthogonal to the specific direction.
- The composite stretchable member according to any one of claims 1 to 10, wherein each of the elastic elements comprises a plurality of fiber-shaped elastic bodies assembled as a bundle, and wherein a peripheral surface of each of at least part of the plurality of fiber-shaped elastic bodies is covered by a covering layer, and the elastic element and each of the sheets are bonded together by means of welding of the covering layer to the sheet.
- The composite stretchable member according to any one of claims 1 to 10, wherein each of the elastic elements comprises a plurality of fiber-shaped elastic bodies assembled as a bundle, and wherein the elastic element and each of the sheets are bonded together by means of welding of the sheet to at least one of the fiber-shaped elastic bodies located in a periphery of the elastic element.
- A wearable article comprising a waist portion to be disposed around a waist region of a wearer, wherein at least part of the waist portion is formed of the composite stretchable member according to any one of claims 1 to 12.
- A method of producing a wearable article, the wearable article comprising a waist portion to be disposed around a waist region of a wearer and a crotch portion to be disposed in a crotch region of the wearer, the method comprising:a bonded body forming step of, after providing a continuous body of the composite stretchable member according to any one of claims 1 to 12, conveying the continuous body in a longitudinal direction thereof so as to form the waist portion, and bonding the crotch portion to the continuous body, such that a longitudinal direction of the crotch portion is oriented orthogonal to the longitudinal direction of the continuous body to thereby form a bonded body;a double-folding step of double-folding the bonded body along a folding line defined by a center line of the bonded body in a width direction orthogonal to the longitudinal direction of the continuous body;a side sealing step of mutually bonding superimposed portions of the continuous body at an intermediate position between adjacent ones of a series of the crotch portions in the longitudinal direction of the continuous body, along a direction orthogonal to the longitudinal direction of the continuous body, to thereby form a side seal; anda cutting step of cutting the continuous body along a cutting line in the side seal.
- The method according to claim 14, wherein the bonded body forming step includes, after providing a pair of the continuous bodies of the composite stretchable member, conveying the pair of continuous bodies parallel to each other; and bonding the crotch portion so as to straddle the pair of continuous bodies, to thereby form the bonded body.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015124927 | 2015-06-22 | ||
PCT/JP2016/068158 WO2016208513A1 (en) | 2015-06-22 | 2016-06-17 | Composite stretching/contracting member, wearable article, and method for producing wearable article |
Publications (3)
Publication Number | Publication Date |
---|---|
EP3296100A4 EP3296100A4 (en) | 2018-03-21 |
EP3296100A1 true EP3296100A1 (en) | 2018-03-21 |
EP3296100B1 EP3296100B1 (en) | 2020-01-08 |
Family
ID=57585636
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16814284.2A Active EP3296100B1 (en) | 2015-06-22 | 2016-06-17 | Composite stretchable member, wearable article, and method for producing wearable article |
Country Status (5)
Country | Link |
---|---|
US (1) | US10596045B2 (en) |
EP (1) | EP3296100B1 (en) |
JP (1) | JP6625126B2 (en) |
CN (1) | CN107848244B (en) |
WO (1) | WO2016208513A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3812136A1 (en) * | 2019-09-05 | 2021-04-28 | Curt G. Joa, Inc. | Curved elastic with entrapment |
EP3960140A4 (en) * | 2019-05-13 | 2022-07-06 | Zuiko Corporation | Composite stretchable member manufacturing apparatus |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016033226A1 (en) | 2014-08-26 | 2016-03-03 | Curt G. Joa, Inc. | Apparatus and methods for securing elastic to a carrier web |
WO2018118414A1 (en) | 2016-12-20 | 2018-06-28 | The Procter & Gamble Company | Methods and apparatuses for making elastomeric laminates with elastic strands provided with a spin finish |
WO2018154685A1 (en) | 2017-02-23 | 2018-08-30 | ユニ・チャーム株式会社 | Method and device for producing absorbent article, and absorbent article |
US11191676B2 (en) * | 2017-06-29 | 2021-12-07 | Zuiko Corporation | Device and method for producing stretchable laminate for wearable article |
JP6965615B2 (en) * | 2017-07-21 | 2021-11-10 | 王子ホールディングス株式会社 | Composite telescopic member |
US11147718B2 (en) | 2017-09-01 | 2021-10-19 | The Procter & Gamble Company | Beamed elastomeric laminate structure, fit, and texture |
US11925537B2 (en) | 2017-09-01 | 2024-03-12 | The Procter & Gamble Company | Beamed elastomeric laminate structure, fit, and texture |
CN111050718B (en) | 2017-09-01 | 2021-12-14 | 宝洁公司 | Method and apparatus for making elastomeric laminates |
US11547613B2 (en) | 2017-12-05 | 2023-01-10 | The Procter & Gamble Company | Stretch laminate with beamed elastics and formed nonwoven layer |
ES2973142T3 (en) * | 2018-01-29 | 2024-06-18 | Joa Curt G Inc | Apparatus and manufacturing procedure of an elastic composite structure for an absorbent medical product |
EP3750704A4 (en) * | 2018-02-06 | 2021-11-17 | Zuiko Corporation | Stretchable sheet, disposable article using stretchable sheet, and method for manufacturing same |
JP7144177B2 (en) * | 2018-04-13 | 2022-09-29 | 花王株式会社 | Method for manufacturing sheet mask |
JP7104547B2 (en) * | 2018-04-13 | 2022-07-21 | 花王株式会社 | Manufacturing method of sheet mask |
WO2019246196A1 (en) | 2018-06-19 | 2019-12-26 | The Procter & Gamble Company | Absorbent article with function-formed topsheet, and method for manufacturing |
US11925538B2 (en) | 2019-01-07 | 2024-03-12 | Curt G. Joa, Inc. | Apparatus and method of manufacturing an elastic composite structure for an absorbent sanitary product |
JP7038078B2 (en) * | 2019-04-09 | 2022-03-17 | ユニ・チャーム株式会社 | Manufacturing method of absorbent articles |
US20220211553A1 (en) * | 2019-05-22 | 2022-07-07 | Zuiko Corporation | Composite stretchable member and wearable article using same |
EP3977970B1 (en) | 2019-05-31 | 2023-10-11 | Zuiko Corporation | Production method for wearable article |
US12053357B2 (en) | 2019-06-19 | 2024-08-06 | The Procter & Gamble Company | Absorbent article with function-formed topsheet, and method for manufacturing |
US11819393B2 (en) | 2019-06-19 | 2023-11-21 | The Procter & Gamble Company | Absorbent article with function-formed topsheet, and method for manufacturing |
JP7299322B2 (en) | 2019-07-26 | 2023-06-27 | 株式会社瑞光 | Method for manufacturing underpants-type wearing article |
US11672707B2 (en) | 2020-01-10 | 2023-06-13 | Zuiko Corporation | Method for manufacturing disposable worn article |
US20240300187A1 (en) * | 2021-07-13 | 2024-09-12 | Herrmann Ultraschalltechnik Gmbh & Co. Kg | Method for producing a gathered material, and gathered material |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3100300B2 (en) | 1994-01-18 | 2000-10-16 | 株式会社日本吸収体技術研究所 | Composite elastic body having multi-stage elongation characteristics and method for producing the same |
JP2002272783A (en) * | 2001-03-15 | 2002-09-24 | Daio Paper Corp | Underwear style disposable paper diaper |
JP3561477B2 (en) * | 2001-03-16 | 2004-09-02 | 大王製紙株式会社 | Method for manufacturing elastic sheet |
EP1374814B1 (en) | 2001-03-15 | 2014-11-12 | Daio Paper Corporation | Paper diaper and method for manufacturing extensible sheet used in the diaper |
JP4535771B2 (en) * | 2004-05-14 | 2010-09-01 | 花王株式会社 | Composite elastic member and manufacturing method thereof |
EP1666178B1 (en) * | 2003-09-08 | 2017-05-24 | Kao Corporation | Extensible composite member and method of making the same |
JP4322140B2 (en) | 2004-01-30 | 2009-08-26 | 花王株式会社 | Composite elastic member and manufacturing method thereof |
CN101410080A (en) | 2006-03-31 | 2009-04-15 | 大王制纸株式会社 | Unfolding type absorbent article and process for producing back sheet for absorbent article |
JP4994027B2 (en) * | 2006-12-28 | 2012-08-08 | 花王株式会社 | Pants-type article and manufacturing method thereof |
WO2008065953A2 (en) | 2006-11-27 | 2008-06-05 | Kao Corporation | Absorbent article |
JP4887218B2 (en) | 2007-05-30 | 2012-02-29 | 株式会社リブドゥコーポレーション | Stretch sheet manufacturing method, stretch sheet and absorbent article |
JP5529392B2 (en) * | 2007-06-26 | 2014-06-25 | 出光興産株式会社 | Elastic nonwoven fabric and fiber product using the same |
KR101547800B1 (en) | 2007-06-26 | 2015-08-26 | 이데미쓰 고산 가부시키가이샤 | Elastic nonwoven fabric, process for producing the same, and textile product comprising the elastic nonwoven fabric |
JP4750774B2 (en) * | 2007-10-31 | 2011-08-17 | 大王製紙株式会社 | Pants-type disposable diapers using elastic sheets |
US9642751B2 (en) | 2012-05-16 | 2017-05-09 | Kao Corporation | Method for manufacturing fused sheets |
JP6157110B2 (en) * | 2012-12-25 | 2017-07-05 | 花王株式会社 | Disposable diapers |
US10893985B2 (en) | 2013-03-29 | 2021-01-19 | Daio Paper Corporation | Elastic structure for absorbent article and method for manufacturing elastic structure for absorbent article |
CN105377532B (en) | 2013-06-14 | 2017-09-26 | 株式会社瑞光 | The manufacture method of the disposable diaper of ultrasonic wave welding device and the use ultrasonic wave welding device |
CN111494095B (en) * | 2015-01-30 | 2022-02-18 | 大王制纸株式会社 | Absorbent article and method for manufacturing same |
-
2016
- 2016-06-17 WO PCT/JP2016/068158 patent/WO2016208513A1/en active Application Filing
- 2016-06-17 US US15/736,103 patent/US10596045B2/en active Active
- 2016-06-17 CN CN201680035386.7A patent/CN107848244B/en active Active
- 2016-06-17 EP EP16814284.2A patent/EP3296100B1/en active Active
- 2016-06-17 JP JP2017524870A patent/JP6625126B2/en active Active
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3960140A4 (en) * | 2019-05-13 | 2022-07-06 | Zuiko Corporation | Composite stretchable member manufacturing apparatus |
US12115044B2 (en) | 2019-05-13 | 2024-10-15 | Zuiko Corporation | Composite stretchable member manufacturing apparatus |
EP3812136A1 (en) * | 2019-09-05 | 2021-04-28 | Curt G. Joa, Inc. | Curved elastic with entrapment |
US11173072B2 (en) | 2019-09-05 | 2021-11-16 | Curt G. Joa, Inc. | Curved elastic with entrapment |
Also Published As
Publication number | Publication date |
---|---|
CN107848244A (en) | 2018-03-27 |
EP3296100B1 (en) | 2020-01-08 |
JPWO2016208513A1 (en) | 2018-04-12 |
EP3296100A4 (en) | 2018-03-21 |
US20180140473A1 (en) | 2018-05-24 |
US10596045B2 (en) | 2020-03-24 |
WO2016208513A1 (en) | 2016-12-29 |
JP6625126B2 (en) | 2019-12-25 |
CN107848244B (en) | 2020-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10596045B2 (en) | Composite stretchable member, wearable article, and method for producing wearable article | |
EP3299167B1 (en) | Production device and production method for composite stretchable member | |
EP3572053B1 (en) | Absorbent article and method and device for manufacturing absorbent article | |
JP5292586B2 (en) | Method for producing disposable wearing article | |
CN113993489B (en) | Manufacturing device for composite telescopic member | |
JP5173003B2 (en) | Method for producing disposable wearing article | |
EP3960439A1 (en) | Composite stretchable member and wearable article using same | |
CN107205855B (en) | With the manufacturing method and manufacturing device of the relevant sheet component of absorbent commodity | |
WO2016063346A1 (en) | Method and device for manufacturing sheet-like member relating to absorbent article | |
WO2016056092A1 (en) | Method and device for producing sheet-like member of absorbent article | |
JP7383129B2 (en) | Mask and mask manufacturing method | |
EP2641574B1 (en) | Method and apparatus for manufacturing disposable worn article | |
CN109843238B (en) | Method and apparatus for manufacturing absorbent article | |
JP4839126B2 (en) | Method for manufacturing worn article | |
JP7350999B2 (en) | Method for manufacturing ear hook members for masks and device for manufacturing ear hook members for masks | |
US20230354930A1 (en) | Mask and method for producing same | |
JP2008000188A (en) | Method of manufacturing wearing article | |
JP2014104170A (en) | Method of manufacturing disposable trunks-type diaper |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20171214 |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 20180208 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ZUIKO CORPORATION |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20190103 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20191014 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602016028039 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1222177 Country of ref document: AT Kind code of ref document: T Effective date: 20200215 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20200108 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200108 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200108 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200108 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200108 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200408 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200108 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200508 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200409 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200108 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200408 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602016028039 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200108 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200108 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200108 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200108 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200108 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200108 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200108 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1222177 Country of ref document: AT Kind code of ref document: T Effective date: 20200108 |
|
26N | No opposition filed |
Effective date: 20201009 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200108 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200108 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200108 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200108 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200108 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200617 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20200630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200617 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200630 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200108 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200108 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200108 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200108 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230621 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240621 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240619 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240628 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20240607 Year of fee payment: 9 Ref country code: SE Payment date: 20240619 Year of fee payment: 9 |