EP3289120A1 - Verfahren zur herstellung eines artikels aus polyolefin - Google Patents
Verfahren zur herstellung eines artikels aus polyolefinInfo
- Publication number
- EP3289120A1 EP3289120A1 EP16718570.1A EP16718570A EP3289120A1 EP 3289120 A1 EP3289120 A1 EP 3289120A1 EP 16718570 A EP16718570 A EP 16718570A EP 3289120 A1 EP3289120 A1 EP 3289120A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- fabricated article
- mass
- article
- fibers
- boron
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000000034 method Methods 0.000 title claims abstract description 40
- 229920000098 polyolefin Polymers 0.000 title claims abstract description 24
- 230000008569 process Effects 0.000 title description 14
- 230000003647 oxidation Effects 0.000 claims abstract description 82
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 82
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims abstract description 29
- 229910052796 boron Inorganic materials 0.000 claims abstract description 29
- 239000007788 liquid Substances 0.000 claims abstract description 15
- 230000000087 stabilizing effect Effects 0.000 claims abstract description 7
- 238000010000 carbonizing Methods 0.000 claims abstract description 6
- 239000000835 fiber Substances 0.000 claims description 108
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 claims description 42
- 239000004327 boric acid Substances 0.000 claims description 41
- 239000000243 solution Substances 0.000 claims description 40
- 229920005672 polyolefin resin Polymers 0.000 claims description 28
- UORVGPXVDQYIDP-UHFFFAOYSA-N borane Chemical compound B UORVGPXVDQYIDP-UHFFFAOYSA-N 0.000 claims description 16
- 238000004132 cross linking Methods 0.000 claims description 16
- 238000010438 heat treatment Methods 0.000 claims description 9
- 229910000085 borane Inorganic materials 0.000 claims description 8
- 150000002148 esters Chemical class 0.000 claims description 7
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 claims description 4
- 238000005266 casting Methods 0.000 claims description 4
- 238000001125 extrusion Methods 0.000 claims description 4
- TVJORGWKNPGCDW-UHFFFAOYSA-N aminoboron Chemical compound N[B] TVJORGWKNPGCDW-UHFFFAOYSA-N 0.000 claims description 3
- BGECDVWSWDRFSP-UHFFFAOYSA-N borazine Chemical compound B1NBNBN1 BGECDVWSWDRFSP-UHFFFAOYSA-N 0.000 claims description 3
- UYANAUSDHIFLFQ-UHFFFAOYSA-N borinic acid Chemical compound OB UYANAUSDHIFLFQ-UHFFFAOYSA-N 0.000 claims description 3
- ZADPBFCGQRWHPN-UHFFFAOYSA-N boronic acid Chemical compound OBO ZADPBFCGQRWHPN-UHFFFAOYSA-N 0.000 claims description 3
- BRTALTYTFFNPAC-UHFFFAOYSA-N boroxin Chemical compound B1OBOBO1 BRTALTYTFFNPAC-UHFFFAOYSA-N 0.000 claims description 3
- 238000000748 compression moulding Methods 0.000 claims description 3
- 238000009987 spinning Methods 0.000 claims description 3
- 238000001746 injection moulding Methods 0.000 claims description 2
- 238000000151 deposition Methods 0.000 claims 2
- 238000003763 carbonization Methods 0.000 description 50
- 239000010408 film Substances 0.000 description 50
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 42
- 238000011282 treatment Methods 0.000 description 39
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 38
- 239000002243 precursor Substances 0.000 description 34
- 229920001577 copolymer Polymers 0.000 description 28
- 229920005989 resin Polymers 0.000 description 28
- 239000011347 resin Substances 0.000 description 28
- NKSJNEHGWDZZQF-UHFFFAOYSA-N ethenyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)C=C NKSJNEHGWDZZQF-UHFFFAOYSA-N 0.000 description 25
- 125000000524 functional group Chemical group 0.000 description 23
- 230000000717 retained effect Effects 0.000 description 22
- 238000002411 thermogravimetry Methods 0.000 description 22
- -1 isopropanol Chemical compound 0.000 description 21
- 229910052757 nitrogen Inorganic materials 0.000 description 19
- 230000008859 change Effects 0.000 description 18
- 239000004698 Polyethylene Substances 0.000 description 17
- 238000000944 Soxhlet extraction Methods 0.000 description 17
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 13
- 238000010306 acid treatment Methods 0.000 description 13
- 229910000077 silane Inorganic materials 0.000 description 13
- 230000014759 maintenance of location Effects 0.000 description 12
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 9
- 230000006641 stabilisation Effects 0.000 description 9
- 238000011105 stabilization Methods 0.000 description 9
- 229910052799 carbon Inorganic materials 0.000 description 8
- 239000013043 chemical agent Substances 0.000 description 8
- 239000000725 suspension Substances 0.000 description 8
- BIKXLKXABVUSMH-UHFFFAOYSA-N trizinc;diborate Chemical compound [Zn+2].[Zn+2].[Zn+2].[O-]B([O-])[O-].[O-]B([O-])[O-] BIKXLKXABVUSMH-UHFFFAOYSA-N 0.000 description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 7
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 description 7
- 239000000178 monomer Substances 0.000 description 7
- 239000001301 oxygen Substances 0.000 description 7
- 229910052760 oxygen Inorganic materials 0.000 description 7
- LGQXXHMEBUOXRP-UHFFFAOYSA-N tributyl borate Chemical compound CCCCOB(OCCCC)OCCCC LGQXXHMEBUOXRP-UHFFFAOYSA-N 0.000 description 7
- 229910011255 B2O3 Inorganic materials 0.000 description 6
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 238000007669 thermal treatment Methods 0.000 description 6
- 229920000049 Carbon (fiber) Polymers 0.000 description 5
- 239000004917 carbon fiber Substances 0.000 description 5
- 230000006835 compression Effects 0.000 description 5
- 238000007906 compression Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000012298 atmosphere Substances 0.000 description 4
- 238000010923 batch production Methods 0.000 description 4
- 238000010924 continuous production Methods 0.000 description 4
- 238000007598 dipping method Methods 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 229920000573 polyethylene Polymers 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 238000005507 spraying Methods 0.000 description 4
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 4
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 239000002585 base Substances 0.000 description 3
- 238000010382 chemical cross-linking Methods 0.000 description 3
- 239000003999 initiator Substances 0.000 description 3
- 238000013008 moisture curing Methods 0.000 description 3
- 230000000269 nucleophilic effect Effects 0.000 description 3
- 229920002554 vinyl polymer Polymers 0.000 description 3
- 239000004711 α-olefin Substances 0.000 description 3
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 2
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 2
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 2
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 2
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- VVJKKWFAADXIJK-UHFFFAOYSA-N Allylamine Chemical compound NCC=C VVJKKWFAADXIJK-UHFFFAOYSA-N 0.000 description 2
- 239000007848 Bronsted acid Substances 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- 239000002841 Lewis acid Substances 0.000 description 2
- 239000005062 Polybutadiene Substances 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 2
- 239000003377 acid catalyst Substances 0.000 description 2
- 150000001642 boronic acid derivatives Chemical class 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 150000001993 dienes Chemical class 0.000 description 2
- VOZRXNHHFUQHIL-UHFFFAOYSA-N glycidyl methacrylate Chemical compound CC(=C)C(=O)OCC1CO1 VOZRXNHHFUQHIL-UHFFFAOYSA-N 0.000 description 2
- VKYKSIONXSXAKP-UHFFFAOYSA-N hexamethylenetetramine Chemical compound C1N(C2)CN3CN1CN2C3 VKYKSIONXSXAKP-UHFFFAOYSA-N 0.000 description 2
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- VGTPKLINSHNZRD-UHFFFAOYSA-N oxoborinic acid Chemical compound OB=O VGTPKLINSHNZRD-UHFFFAOYSA-N 0.000 description 2
- 150000002978 peroxides Chemical class 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920002239 polyacrylonitrile Polymers 0.000 description 2
- 229920002857 polybutadiene Polymers 0.000 description 2
- 150000003254 radicals Chemical class 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 230000007723 transport mechanism Effects 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- 150000003738 xylenes Chemical class 0.000 description 2
- XMNIXWIUMCBBBL-UHFFFAOYSA-N 2-(2-phenylpropan-2-ylperoxy)propan-2-ylbenzene Chemical compound C=1C=CC=CC=1C(C)(C)OOC(C)(C)C1=CC=CC=C1 XMNIXWIUMCBBBL-UHFFFAOYSA-N 0.000 description 1
- JKNCOURZONDCGV-UHFFFAOYSA-N 2-(dimethylamino)ethyl 2-methylprop-2-enoate Chemical compound CN(C)CCOC(=O)C(C)=C JKNCOURZONDCGV-UHFFFAOYSA-N 0.000 description 1
- HQNSWBRZIOYGAW-UHFFFAOYSA-N 2-chloro-n,n-dimethylpyridin-4-amine Chemical compound CN(C)C1=CC=NC(Cl)=C1 HQNSWBRZIOYGAW-UHFFFAOYSA-N 0.000 description 1
- XDLMVUHYZWKMMD-UHFFFAOYSA-N 3-trimethoxysilylpropyl 2-methylprop-2-enoate Chemical compound CO[Si](OC)(OC)CCCOC(=O)C(C)=C XDLMVUHYZWKMMD-UHFFFAOYSA-N 0.000 description 1
- LBSXSAXOLABXMF-UHFFFAOYSA-N 4-Vinylaniline Chemical compound NC1=CC=C(C=C)C=C1 LBSXSAXOLABXMF-UHFFFAOYSA-N 0.000 description 1
- OCKGFTQIICXDQW-ZEQRLZLVSA-N 5-[(1r)-1-hydroxy-2-[4-[(2r)-2-hydroxy-2-(4-methyl-1-oxo-3h-2-benzofuran-5-yl)ethyl]piperazin-1-yl]ethyl]-4-methyl-3h-2-benzofuran-1-one Chemical compound C1=C2C(=O)OCC2=C(C)C([C@@H](O)CN2CCN(CC2)C[C@H](O)C2=CC=C3C(=O)OCC3=C2C)=C1 OCKGFTQIICXDQW-ZEQRLZLVSA-N 0.000 description 1
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 1
- 239000012965 benzophenone Substances 0.000 description 1
- 235000019400 benzoyl peroxide Nutrition 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052810 boron oxide Inorganic materials 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- CDQSJQSWAWPGKG-UHFFFAOYSA-N butane-1,1-diol Chemical compound CCCC(O)O CDQSJQSWAWPGKG-UHFFFAOYSA-N 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006356 dehydrogenation reaction Methods 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- 150000002009 diols Chemical class 0.000 description 1
- 150000004662 dithiols Chemical class 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000005755 formation reaction Methods 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 239000004312 hexamethylene tetramine Substances 0.000 description 1
- 235000010299 hexamethylene tetramine Nutrition 0.000 description 1
- ALPIESLRVWNLAX-UHFFFAOYSA-N hexane-1,1-dithiol Chemical compound CCCCCC(S)S ALPIESLRVWNLAX-UHFFFAOYSA-N 0.000 description 1
- 150000002430 hydrocarbons Chemical group 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 238000010128 melt processing Methods 0.000 description 1
- 125000005395 methacrylic acid group Chemical group 0.000 description 1
- 229960004011 methenamine Drugs 0.000 description 1
- PZRHRDRVRGEVNW-UHFFFAOYSA-N milrinone Chemical compound N1C(=O)C(C#N)=CC(C=2C=CN=CC=2)=C1C PZRHRDRVRGEVNW-UHFFFAOYSA-N 0.000 description 1
- 229960003574 milrinone Drugs 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N n-Octanol Natural products CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 239000012038 nucleophile Substances 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920013639 polyalphaolefin Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 238000007363 ring formation reaction Methods 0.000 description 1
- 239000012047 saturated solution Substances 0.000 description 1
- 238000010129 solution processing Methods 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 238000007655 standard test method Methods 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 125000005369 trialkoxysilyl group Chemical group 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F6/00—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
- D01F6/02—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
- D01F6/04—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyolefins
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F11/00—Chemical after-treatment of artificial filaments or the like during manufacture
- D01F11/10—Chemical after-treatment of artificial filaments or the like during manufacture of carbon
- D01F11/12—Chemical after-treatment of artificial filaments or the like during manufacture of carbon with inorganic substances ; Intercalation
- D01F11/124—Boron, borides, boron nitrides
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F9/00—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
- D01F9/08—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
- D01F9/12—Carbon filaments; Apparatus specially adapted for the manufacture thereof
- D01F9/14—Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
- D01F9/20—Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
- D01F9/21—Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M11/00—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
- D06M11/80—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with boron or compounds thereof, e.g. borides
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M11/00—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
- D06M11/80—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with boron or compounds thereof, e.g. borides
- D06M11/82—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with boron or compounds thereof, e.g. borides with boron oxides; with boric, meta- or perboric acids or their salts, e.g. with borax
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M13/00—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
- D06M13/50—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with organometallic compounds; with organic compounds containing boron, silicon, selenium or tellurium atoms
- D06M13/51—Compounds with at least one carbon-metal or carbon-boron, carbon-silicon, carbon-selenium, or carbon-tellurium bond
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F10/00—Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F6/00—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
- D01F6/28—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
- D01F6/30—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds comprising olefins as the major constituent
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F6/00—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
- D01F6/44—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds
- D01F6/46—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds of polyolefins
Definitions
- carbonaceous articles such as carbon fibers
- PAN polyacrylonitrile
- cellulose precursors a fabricated article, such as a fiber or a film
- Precursors may be formed into fabricated articles using standard techniques for forming or molding polymers.
- the fabricated article is subsequently stabilized to allow the fabricated article to substantially retain shape during the subsequent heat-processing steps; without being limited by theory, such stabilization typically involves a combination of oxidation and heat and generally results in dehydrogenation, ring formation, oxidation and crosslinking of the precursor which defines the fabricated article.
- the stabilized fabricated article is then converted into a carbonaceous article by heating the stabilized fabricated article in an inert atmosphere. While the general steps for producing a carbonaceous article are the same for the variety of precursors, the details of those steps vary widely depending on the chemical makeup of the selected precursor.
- the present disclosure describes a method for preparing a carbonaceous article comprising: providing a crosslinked polyolefin fabricated article; stabilizing the crosslinked polyolefin fabricated article by air oxidation to provide a stabilized fabricated article; treating with a boron-containing liquid (BCL) during or intermediate to at least one of the preceding steps; and carbonizing the stabilized fabricated article.
- BCL boron-containing liquid
- the present disclosure describes a method for preparing a stabilized article.
- numeric ranges for instance "from 2 to 10,” are inclusive of the numbers defining the range (e.g., 2 and 10).
- the crosslinkable functional group content for a polyolefin resin is characterized by the mol% crosslinkable functional groups, which is calculated as the number of mols of crosslinkable functional groups divided by the total number of mols of monomer units contained in the polyolefin.
- the present disclosure describes a process for producing a carbonaceous fabricated article from a polyolefin resin.
- the carbonaceous fabricated article is prepared by the following method: (a) providing an olefin resin; (b) forming a fabricated article from the olefin resin; (c) crosslinking the fabricated article to provide a crosslinked fabricated article;
- Suitable BCLs include liquids which include a boron-containing species.
- suitable boron-containing species include borane, borate, borinic acid, boronic acid, boric acid, borinic ester, boronic ester, boroxine, aminoborane, borazine, borohydrides and derivatives and combinations thereof.
- Elemental boron is also a suitable boron-containing species.
- derivatives of boric acid include metaboric acid, and boron oxide.
- borate derivatives include inorganic borates such as zinc borate and organoborates such as tributyl borate. In one instance the BCL is prepared with only the boron-containing species.
- the BCL also includes another component with the boron-containing species, and is chosen such that the other component is miscible, forms a suspension with, or otherwise is carried with the boron-containing species and is compatible with the overall process.
- the other component is a polar or non- polar liquid.
- an alcohol such as isopropanol, is a suitable constituent of the BCL.
- at least a portion of the boron-containing species is carried as a suspension in the BCL.
- Polyolefins are a class of polymers produced from one or more olefin monomer.
- the polymers described herein may be formed from one or more types of monomers.
- Polyethylene is the preferred polyolefin resin, but other polyolefin resins may be substituted.
- the polyolefins described herein are typically provided in resin form, subdivided into pellets or granules of a convenient size for further melt or solution processing. In one instance, the polyolefin resins are treated with a BCL prior to being formed as a fabricated article.
- the polyolefin resins may be treated with the BCL by any mechanism known in the art, such as spraying, dipping, or imbibing.
- the BCL may be introduced in a suitable liquid form, for example neat, or as part of a solution, or as a suspension in a liquid.
- the BCL may be introduced as part of a continuous process or as part of a batch process.
- the polyolefin resins described herein are subjected to a crosslinking step. Any suitable method for crosslinking polyolefins is sufficient.
- the polyolefins are crosslinked by irradiation, such as by electron beam processing.
- Other crosslinking methods are suitable, for example, ultraviolet irradiation and gamma irradiation.
- an initiator such as benzophenone, may be used in conjunction with the irradiation to initiate crosslinking.
- the polyolefin resins have been modified to include crosslinkable functional groups which are suitable for reacting to crosslink the polyolefin resin.
- crosslinking may be initiated by known methods, including use of a chemical crosslinking agent, by heat, by steam, or other suitable method.
- copolymers are suitable to provide a polyolefin resin having crosslinkable functional groups where one or more alpha-olefins have been copolymerized with another monomer containing a group suitable for serving as a crosslinkable functional group, for example, dienes, carbon monoxide, glycidyl methacrylate, acrylic acid, vinyl acetate, maleic anhydride, or vinyl trimethoxy silane (VTMS) are among the monomers suitable for being copolymerized with the alpha- olefin.
- VTMS vinyl trimethoxy silane
- polyolefin resin having crosslinkable functional groups may also be produced from a poly(alpha-olefin) which has been modified by grafting a functional group moiety onto the base polyolefin, wherein the functional group is selected based on its ability to subsequently enable crosslinking of the given polyolefin.
- grafting of this type may be carried out by use of free radical initiators (such as peroxides) and vinyl monomers (such as VTMS, dienes, vinyl acetate, acrylic acid, methacrylic acid, acrylic and methacrylic esters such as glycidyl methacrylate and methacryloxypropyl trimethoxysilane, allyl amine, p-aminostyrene, dimethylaminoethyl methacrylate) or via azido-functionalized molecules (such as 4-[2-(trimethoxysilyl)ethyl)]benzenesulfonyl azide).
- free radical initiators such as peroxides
- vinyl monomers such as VTMS, dienes, vinyl acetate, acrylic acid, methacrylic acid, acrylic and methacrylic esters such as glycidyl methacrylate and methacryloxypropyl trimethoxysilane, allyl amine, p-aminostyrene, di
- Polyolefin resins having crosslinkable functional groups may be produced from a polyolefin resin, or may be purchased commercially.
- Examples of commercially available polyolefin resins having crosslinkable functional groups include SI-LINK sold by The Dow Chemical Company, PRIMACOR sold by The Dow Chemical Company, EVAL resins sold by Kuraray, and LOTADER AX8840 sold by Arkema.
- the polyolefin resin is processed to form a fabricated article.
- a fabricated article is an article which has been fabricated from the polyolefin resin.
- the fabricated article is formed using known polyolefin fabrication techniques, for example, melt or solution spinning to form fibers, film extrusion or film casting or a blown film process to form films, die extrusion or injection molding or compression molding to form more complex shapes, or solution casting.
- the fabrication technique is selected according to the desired geometry of the target carbonaceous article, and the desired physical properties of the same. For example, where the desired carbonaceous article is a carbon fiber, fiber spinning is a suitable fabrication technique. As another example, where the desired carbonaceous article is a carbon film, compression molding is a suitable fabrication technique.
- the fabricated article is treated with a BCL.
- the fabricated article is treated with the BCL prior to crosslinking the polyolefin resin.
- the fabricated article may be treated with the BCL by any mechanism known in the art, such as spraying, dipping, or imbibing.
- the BCL may be introduced in a suitable liquid form, for example neat, or as part of a solution, or as a suspension in a liquid.
- the BCL may be introduced as part of a continuous process or as part of a batch process.
- the polyolefin resin is crosslinked to yield a crosslinked fabricated article.
- crosslinking is carried out via chemical crosslinking.
- the crosslinked fabricated article is a fabricated article which has been treated with one or more chemical agents to crosslink the crosslinkable functional groups of the polyolefin resin.
- Such chemical agent functions to initiate the formation of intramolecular chemical bonds between the crosslinkable functional groups or reacts with the crosslinkable functional groups to form intramolecular chemical bonds, as is known in the art.
- Chemical crosslinking causes the crosslinkable functional groups to react to form new bonds, forming linkages between the various polymer chains which define the polyolefin resin having crosslinkable functional groups.
- the chemical agent which effectuates the crosslinking is selected based on the type of crosslinkable functional group(s) included in the polyolefin resin; a diverse array of reactions are known which crosslink crosslinkable functional groups via intermolecular and intramolecular chemical bonds.
- a suitable chemical agent is selected which is known to crosslink the crosslinkable functional groups present in the fabricated article to produce the crosslinked fabricated article.
- suitable chemical agents include free radical initiators such as peroxides or azo-bis nitriles, for example, dicumyl peroxide, dibenzoyl peroxide, t-butyl peroctoate, azobisisobutyronitrile, and the like.
- a suitable chemical agent can be a compound containing at least two nucleophilic groups, including dinucleophiles such as diamines, diols, dithiols, for example ethylenediamine, hexamethylenediamine, butane diol, or hexanedithiol.
- dinucleophiles such as diamines, diols, dithiols, for example ethylenediamine, hexamethylenediamine, butane diol, or hexanedithiol.
- Compounds containing more than two nucleophilic groups for example glycerol, sorbitol, or hexamethylene tetramine can also be used.
- Lewis or Bronsted acid or base catalysts include aryl sulfonic acids, sulfuric acid, hydroxides, zirconium alkoxides or tin reagents.
- Crosslinking the fabricated article is generally preferred to ensure that the fabricated article retains its shape at the elevated temperatures required for the subsequent processing steps. Without crosslinking, polyolefin resins typically soften, melt or otherwise deform or breakdown at elevated temperatures. Crosslinking adds thermal stability to the fabricated article.
- the fabricated article is treated with a BCL following crosslinking and prior to stabilization.
- the crosslinked fabricated article may be treated with the BCL by any mechanism known in the art, such as spraying, dipping, or imbibing.
- the BCL may be introduced in a suitable liquid form, for example neat, or as part of a solution, or as a suspension in a liquid.
- the BCL may be introduced as part of a continuous process or as part of a batch process.
- the crosslinked fabricated article is heated in an oxidizing environment to yield a stabilized fabricated article.
- the temperature for stabilizing the crosslinked fabricated article is at least 120 °C, preferably at least 190 °C. In some embodiments, the temperature for stabilizing the crosslinked fabricated article is no more than 400 °C, preferably no more than 300 °C.
- the crosslinked fabricated article is introduced to a heating chamber which is already at the desired temperature. In another instance, the fabricated article is introduced to a heating chamber at or near ambient temperature, which chamber is subsequently heated to the desired temperature.
- the heating rate is at least 1 °C/minute. In other embodiments the heating rate is no more than 15 °C/minute.
- the chamber is heated step wise, for instance, the chamber is heated to a first temperature for a time, such as, 120 °C for one hour, then is raised to a second temperature for a time, such as 180 °C for one hour, and third is raised to a holding temperature, such as 250 °C for 10 hours.
- the stabilization process involves holding the crosslinked fabricated article at the given temperature for periods up to 100 hours depending on the dimensions of the fabricated article.
- the fabricated article is treated with a BCL during the stabilization process.
- the crosslinked fabricated article may be treated with the BCL during stabilization by any mechanism known in the art, such as spraying, dipping, or imbibing.
- the BCL may be introduced in a suitable liquid form, for example neat, or as part of a solution, or as a suspension in a liquid.
- the BCL may be introduced as part of a continuous process or as part of a batch process.
- the stabilization process yields a boron-treated stabilized fabricated article which is a precursor for a carbonaceous article. Without being limited by theory, the stabilization process oxidizes the crosslinked fabricated article and causes changes to the hydrocarbon structure that increases the crosslink density while decreasing the
- the stabilization process in the presence of boron modifies the oxidation chemistry and increases the crosslink density.
- the present disclosure describes a boron- treated stabilized fabricated article which is formed from a polyolefin precursor (resin).
- the boron-treated stabilized fabricated article is formed according to the process described herein.
- a carbonaceous article and a process for making the same are provided.
- Carbonaceous articles are articles which are rich in carbon; carbon fibers, carbon sheets and carbon films are examples of carbonaceous articles.
- Carbonaceous articles have many applications, for example, carbon fibers are commonly used to reinforce composite materials, such as in carbon fiber reinforced epoxy composites, while carbon discs or pads are used for high performance braking systems.
- the carbonaceous articles described herein are prepared by carbonizing the stabilized fabricated article by heat-treating the boron-treated stabilized fabricated articles in an inert environment.
- the inert environment is an environment surrounding the boron- treated stabilized fabricated article that shows little reactivity with carbon at elevated temperatures, preferably a high vacuum or an oxygen-depleted atmosphere, more preferably a nitrogen atmosphere or an argon atmosphere. It is understood that trace amounts of oxygen may be present in the inert atmosphere.
- the temperature of the inert environment is at or above 600 °C.
- the temperature of the inert environment is at or above 800 °C.
- the temperature of the inert environment is no more than 3000 °C. In one instance, the temperature is from 1400-2400 °C. Temperatures at or near the upper end of that range will produce a graphite article, while temperatures at or near the lower end of the range will produce a carbon article.
- the boron-treated stabilized fabricated article is introduced to a heating chamber containing an inert environment at or near ambient temperature, which chamber is subsequently heated over a period of time to achieve the desired final temperature.
- the heating schedule can also include one or more hold steps for a prescribed period at the final temperature or an intermediate temperature or a programmed cooling rate before the article is removed from the chamber.
- the chamber containing the inert environment is subdivided into multiple zones, each maintained at a desired temperature by an appropriate control device, and the boron-treated stabilized fabricated article is heated in a stepwise fashion by passage from one zone to the next via an appropriate transport mechanism, such as a motorized belt.
- this transport mechanism can be the application of a traction force to the fiber at the exit of the carbonization process while the tension in the stabilized fiber is controlled at the inlet.
- m PE is the initial mass of polyethylene
- mox is the mass remaining after oxidation
- mc F is the mass remaining after carbonization
- M PE is the mass % of polyethylene in the original formed article.
- Soxhlet extraction is a method for determining the gel content and swell ratio of crosslinked ethylene plastics.
- Soxhlet extraction is conducted according to ASTM Standard D2765-11 "Standard Test Methods for Determination of Gel Content and Swell Ratio of Crosslinked Ethylene Plastics.”
- ASTM Standard D2765-11 Standard Test Methods for Determination of Gel Content and Swell Ratio of Crosslinked Ethylene Plastics.
- a crosslinked fabricated article between 0.050 - 0.500 g is weighed and placed into a cellulose-based thimble which is then placed into a Soxhlet extraction apparatus with sufficient quantity of xylenes. Soxhlet extraction is then performed with refluxing xylenes for at least 12 hours.
- VTMS vinyl trimethoxysilane
- the prepared fibers are continuously treated in a vessel containing an isopropanol solution with 5 wt% of an aryl sulfonic acid, Nacure B201, supplied by King Industries, for 30 min.
- the treated fibers are allowed to dry cure for 3 days.
- the fibers are subsequently moisture cured at 80 °C (100% relative humidity) for 5 days.
- the gel fraction is determined to be 61.4-61.9% by Soxhlet extraction.
- the crosslinked fibers are oxidized and carbonized using a Thermogravimetric Analysis (TGA) instrument using the conditions outlined in Table 1 with temperature ramp rates of 10 °C/min. Table 2 reports the mass retained during air oxidation and final mass yield after both oxidation and carbonization treatments.
- TGA Thermogravimetric Analysis
- VTMS vinyl trimethoxysilane
- MI 19 g/10 min, 190°C/2.16 kg; 1.4 wt% grafted silane content determined by 13 C NMR
- the VTMS-grafted precursor resin is melt spun to form fibers with the following properties: 1573 filaments, 1978.2 total denier, 2.31 gf/den, 12.94% elongation-to-break.
- the prepared fibers are continuously treated in a vessel containing an isopropanol solution with 5 wt% of an aryl sulfonic acid, Nacure B201, for 30 min.
- the treated fibers are allowed to dry cure for 3 days.
- the fibers are subsequently moisture cured at 80 °C (100% relative humidity) for 5 days.
- the gel fraction is determined to be 61.4-61.9% by Soxhlet extraction.
- the crosslinked fibers are subsequently treated with a 5 wt% solution of boric acid in isopropanol for the times reported in Table 3. After the boric acid solution treatment, the fibers are dried overnight in air at ambient conditions.
- the mass of the fibers prior to/and after boric acid treatment and relative change in mass are reported in Table 4.
- treatment (g) treatment (g)
- the boric acid treated crosslinked fibers are oxidized and carbonized using a Thermogravimetric Analysis (TGA) instrument using the conditions outlined in Table 5 with temperature ramp rates of 10 °C/min.
- Table 6 reports the mass retained during air oxidation and final mass yield after both oxidation and carbonization treatments.
- VTMS vinyl trimethoxysilane
- MI 19 g/10 min, 190°C/2.16 kg; 1.4 wt% grafted silane content determined by 13 C NMR
- the VTMS-grafted precursor resin is melt spun to form fibers with the following properties: 1573 filaments, 1978.2 total denier, 2.31 gf/den, 12.94% elongation-to-break.
- the prepared fibers are continuously treated in a vessel containing an isopropanol solution with 5 wt% of an aryl sulfonic acid, Nacure B201 for 30 min.
- the treated fibers are allowed to dry cure for 3 days.
- the fibers are subsequently moisture cured at 80 °C (100% relative humidity) for 5 days.
- the gel fraction is determined to be 61.4-61.9% by Soxhlet extraction.
- the crosslinked fibers are subsequently treated with a 5 wt% solution of boric acid in isopropanol for the times reported in Table 7.
- the fibers are dried overnight in air at ambient conditions.
- the dried, boric acid treated fibers undergo thermal treatment (80 °C) overnight in a vacuum oven.
- the mass of the fibers prior to/and after boric acid treatment and relative change in mass are reported in Table 8.
- treatment (g) treatment (g)
- the thermally treated, boric acid treated crosslinked fibers are oxidized and carbonized using a Thermogravimetric Analysis (TGA) instrument using the conditions outlined in Table 9 with temperature ramp rates of 10 °C/min for oxidation and carbonization regimes.
- TGA Thermogravimetric Analysis
- VTMS vinyl trimethoxysilane
- MI 19 g/10 min, 190°C/2.16 kg; 1.4 wt% grafted silane content determined by 13 C NMR
- the VTMS-grafted precursor resin is melt spun to form fibers with the following properties: 1573 filaments, 1945.8 total denier, 2.25 gf/den, 12.17% elongation-to-break.
- the prepared fibers are continuously treated in a vessel containing an isopropanol solution with 5 wt% of an aryl sulfonic acid, Nacure B201 for 5 seconds.
- the treated fibers are allowed to dry cure for 3 days.
- the fibers are subsequently moisture cured at 80°C (100% relative humidity) for 5 days.
- the gel fraction is determined to be 58.2-58.9% by Soxhlet extraction.
- the crosslinked fibers are oxidized and carbonized using a Thermogravimetric Analysis (TGA) instrument using the conditions outlined in Table 11 with temperature ramp rates of 10°C/min.
- Table 12 reports the mass retained during air oxidation and final mass yield after both oxidation and carbonization treatments.
- VTMS vinyl trimethoxysilane
- MI 19 g/10 min, 190°C/2.16 kg; 1.4 wt% grafted silane content determined by 13 C NMR
- the VTMS-grafted precursor resin is melt spun to form fibers with the following properties: 1573 filaments, 1945.8 total denier, 2.25 gf/den, 12.17% elongation-to-break.
- the prepared fibers are continuously treated in a vessel containing an isopropanol solution with 5 wt% of an aryl sulfonic acid, Nacure B201 for 5 seconds.
- the treated fibers are allowed to dry cure for 3 days.
- the fibers are subsequently moisture cured at 80 °C (100% relative humidity) for 5 days.
- the gel fraction is determined to be 58.2-58.9% by Soxhlet extraction.
- the crosslinked fibers are subsequently treated with a 5 wt% solution of boric acid in isopropanol for the times reported in Table 13.
- the fibers are dried overnight in air at ambient conditions.
- the dried, boric acid treated fibers undergo thermal treatment (80 °C) overnight in a vacuum oven.
- the mass of fibers prior to/and after boric acid treatment and relative change in mass are reported in Table 14
- the thermally treated, boric acid treated crosslinked fibers are oxidized and carbonized using a Thermogravimetric Analysis (TGA) instrument using the conditions outlined in Table 15 with temperature ramp rates of 10°C/min Table 16 reports the mass retained during air oxidation and final mass yield after both oxidation and carbonization treatments.
- TGA Thermogravimetric Analysis
- VTMS vinyl trimethoxysilane
- MI 19 g/10 min, 190°C/2.16 kg; 1.4 wt% grafted silane content determined by 13 C NMR
- the VTMS-grafted precursor resin is melt spun to form fibers with the following properties: 1573 filaments, 1945.8 total denier, 2.25 gf/den, 12.17% elongation-to-break.
- the prepared fibers are continuously treated in a vessel containing an isopropanol solution with 5 wt% of an aryl sulfonic acid, Nacure B201 for 5 seconds.
- the treated fibers are allowed to dry cure for 3 days.
- the fibers are subsequently moisture cured at 80 °C (100% relative humidity) for 5 days.
- the gel fraction is determined to be 58.2-58.9% by Soxhlet extraction.
- the crosslinked fibers are subsequently treated with a 5 wt% solution of boric acid in isopropanol for the times reported in Table 17.
- the fibers are dried overnight in air at ambient conditions.
- the dried, boric acid treated fibers undergo thermal treatment (80 °C) overnight in a vacuum oven.
- the mass of the fibers prior to/and after boric acid treatment and relative change in mass are reported in Table 18.
- treatment (g) treatment (g)
- Thermally treated, boric acid treated crosslinked fibers were oxidized and carbonized using a Thermogravimetric Analysis (TGA) instrument using the conditions outlined in Table 19 with temperature ramp rates of 10 °C/min.
- Table 20 reports the mass retained during air oxidation and final mass yield after both oxidation and carbonization treatments.
- VTMS vinyl trimethoxysilane
- MI 19 g/10 min, 190°C/2.16 kg; 1.4 wt% grafted silane content determined by 13 C NMR
- the VTMS-grafted precursor resin is melt spun to form fibers with the following properties: 1573 filaments, 1978.2 total denier, 2.31 gf/den, 12.94% elongation-to-break.
- the prepared fibers are continuously treated in vessel containing an isopropanol solution with 5 wt% of an aryl sulfonic acid, Nacure B201 for 30 min.
- the treated fibers are allowed to dry cure for 3 days.
- the fibers are subsequently moisture cured at 60°C (100% relative humidity) for 5 days.
- the gel fraction is determined to be 55.59-56.30% by Soxhlet extraction.
- the crosslinked fibers are oxidized and carbonized using a Thermogravimetric Analysis (TGA) instrument using the conditions outlined in Table 21 with temperature ramp rates of 10 °C/min.
- Table 22 reports the mass retained during air oxidation and final mass yield after both oxidation and carbonization treatments.
- VTMS vinyl trimethoxysilane
- MI 19 g/10 min, 190°C/2.16 kg; 1.4 wt% grafted silane content determined by 13 C NMR
- the VTMS-grafted precursor resin is melt spun to form fibers with the following properties: 1573 filaments, 1978.2 total denier, 2.31 gf/den, 12.94% elongation-to-break.
- the prepared fibers are continuously treated in a vessel containing an isopropanol solution with 5 wt% of an aryl sulfonic acid, Nacure B201 for 30 min.
- the treated fibers are allowed to dry cure for 3 days.
- the fibers are subsequently moisture cured at 60 °C (100% relative humidity) for 5 days.
- the gel fraction is determined to be 55.59-56.30% by Soxhlet extraction.
- the crosslinked fibers are subsequently treated with a saturated solution of boric oxide in isopropanol for the times reported in Table 23. After the boric oxide solution treatment, the fibers are dried overnight in air at ambient conditions. The mass of the fibers prior to/and after boric oxide treatment and relative change in mass are reported in Table 24.
- the boric oxide treated crosslinked fibers are oxidized and carbonized using a Thermogravimetric Analysis (TGA) instrument using the conditions outlined in
- Table 25 with temperature ramp rates of 10 °C/min Table 26 reports the mass retained during air oxidation and final mass yield after both oxidation and carbonization treatments.
- VTMS-grafted precursor resin is melt spun to form fibers with the following properties: 1573 filaments, 1978.2 total denier, 2.31 gf/den, 12.94% elongation-to-break.
- the prepared fibers are continuously treated in a vessel containing an isopropanol solution with 5 wt% of an aryl sulfonic acid, Nacure B201 for 30 min.
- the treated fibers are allowed to dry cure for 3 days.
- the fibers are subsequently moisture cured at 60 °C (100% relative humidity) for 5 days.
- the gel fraction is determined to be 55.59-56.30% by Soxhlet extraction.
- the crosslinked fibers are subsequently treated with a 5 wt% suspension of zinc borate, (Firebrake ZB - XF) in isopropanol for the times reported in
- Table 27 After the zinc borate suspension treatment, the fibers are dried overnight in air at ambient conditions. The dried, zinc borate treated fibers underto thermal treatment (80 °C) overnight in a vacuum oven. The mass of the fibers prior to/and after boric acid treatment and relative change in mass are reported in Table 28. Table 27
- Zinc borate treated crosslinked fibers are oxidized and carbonized using a
- TGA Thermogravimetric Analysis
- VTMS vinyl trimethoxysilane
- MI 19 g/10 min, 190°C/2.16 kg; 1.4 wt% grafted silane content determined by 13 C NMR
- the VTMS-grafted precursor resin is melt spun to form fibers with the following properties: 1573 filaments, 1978.2 total denier, 2.31 gf/den, 12.94% elongation-to-break.
- the prepared fibers are continuously treated in a vessel containing an isopropanol solution with 5 wt% of an aryl sulfonic acid, Nacure B201 for 30 min.
- the treated fibers are allowed to dry cure for 3 days.
- the fibers are subsequently moisture cured at 80 °C (100% relative humidity) for 5 days.
- the gel fraction is determined to be 61.4-61.9% by Soxhlet extraction.
- the crosslinked fibers are subsequently treated with a 5 wt% solution of boric acid in isopropanol for the times reported in Table 31.
- the fibers are dried overnight in air at ambient conditions.
- the dried, boric acid treated fibers undergo thermal treatment (80 °C) overnight in a vacuum oven.
- the mass of the fibers prior to/and after boric acid treatment and relative change in mass are reported in Table 32.
- the thermally treated, boric acid treated crosslinked fibers are oxidized and carbonized using a Thermogravimetric Analysis (TGA) instrument using the conditions outlined in Table 33 with temperature ramp rates of 10 °C/min.
- Table 34 reports the mass retained during air oxidation and final mass yield after both oxidation and carbonization treatments.
- VTMS vinyl trimethoxysilane
- MI 19 g/10 min, 190 °C/2.16 kg; 1.4 wt% grafted silane content determined by 13 C NMR
- the VTMS-grafted precursor resin is melt spun to form fibers with the following properties: 1573 filaments, 1945.8 total denier, 2.25 gf/den, 12.17% elongation-to-break.
- Fiber tows are continuously treated in a vessel containing an isopropanol solution with 5 wt% of boric acid. Fiber residence time in the solution is 5 seconds. The treated fibers are allowed to dry cure for 3 days. The fibers are subsequently moisture cured at 80 °C (100% relative humidity) for 1-5 days, as reported in Table 35. Gel fraction is determined by Soxhlet extraction. Complete results are reported in Table 36.
- the thermally treated, boric acid treated crosslinked fibers are oxidized and carbonized using a Thermogravimetric Analysis (TGA) instrument using the conditions outlined in Table 39. Temperature ramp rates are maintained at 10 °C/min for oxidation and carbonization regimes. Table 40 reports the mass retained during air oxidation and final mass yield after both oxidation and carbonization treatments.
- TGA Thermogravimetric Analysis
- Films are compression molded using a Carver press at 180 °C into thin films measuring 3 millimeters (76.2 microns) thick by micrometer. All films are crosslinked by treating the films with a commercial aryl sulfonic acid catalyst in isopropanol solution (Nacure B-201, King Industries) for 12 hours, followed by moisture curing at 60-80 °C for 72 hours. Gel fraction is determined to be 81.8% by Soxhlet extraction.
- Films are compression molded using a Carver press at 180 °C into thin films measuring 3 millimeters (76.2 microns) thick by micrometer. All films are crosslinked by treating the films with a commercial aryl sulfonic acid catalyst in isopropanol solution (Nacure B-201, King Industries) for 12 hours, followed by moisture curing at 60-80 °C for 72 hours. Gel fraction is determined to be 81.8% by Soxhlet extraction.
- a film is compression molded using a Carver press at 160 °C.
- the film is oxidized in the convection oven at 250 °C for 10 hours under air (21% oxygen content).
- the film is weighed after air oxidation. Mass retention during air oxidation (oxidation mass yield) is reported in Table 45.
- the oxidized film is then carbonized under nitrogen from 25 °C to 800 °C using a ramp rate of 10 °C/min. Mass retention during carbonization
- a film is compression molded using a Carver press at 160 °C. The film is oxidized in the convection oven at 250 °C for 10 hours under air (21% oxygen content). The film is weighed after air oxidation. Mass retention during air oxidation (oxidation mass yield) is reported in Table 46.
- the oxidized film is then carbonized under nitrogen from 25 °C to 800 °C using a ramp rate of 10 °C/min. Mass retention during carbonization (carbonization mass yield) is reported in Table 46. Calculated overall mass yield is reported in Table 46. Table 46
- a film is compression molded using a Carver press at 160 °C.
- a 300 mL 6.66 mM BH 3 (borane) solution was prepared in a glovebox by dissolving 2.01 mL of 1M BH 3 solution in THF in 300 mL of THF.
- the film was immersed in 100 mL of the B3 ⁇ 4 solution overnight. After removal from the solution, the film was dried in the glovebox atmosphere. After 16 hr, the film is removed from the glovebox. The film is oxidized in the convection oven at 250 °C for 10 hours under air (21% oxygen content). The film is weighed after air oxidation. Mass retention during air oxidation (oxidation mass yield) is reported in Table 47. The oxidized film is then carbonized under nitrogen from 25 °C to 800 °C using a ramp rate of 10 °C/min. Mass retention during carbonization
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Organic Chemistry (AREA)
- Inorganic Fibers (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
- Carbon And Carbon Compounds (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201562153199P | 2015-04-27 | 2015-04-27 | |
PCT/US2016/026453 WO2016176021A1 (en) | 2015-04-27 | 2016-04-07 | Process for making a fabricated article from polyolefin |
Publications (1)
Publication Number | Publication Date |
---|---|
EP3289120A1 true EP3289120A1 (de) | 2018-03-07 |
Family
ID=55808873
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16718570.1A Withdrawn EP3289120A1 (de) | 2015-04-27 | 2016-04-07 | Verfahren zur herstellung eines artikels aus polyolefin |
Country Status (7)
Country | Link |
---|---|
US (1) | US20180038013A1 (de) |
EP (1) | EP3289120A1 (de) |
JP (1) | JP2018517850A (de) |
CN (1) | CN107532340A (de) |
AR (1) | AR104317A1 (de) |
TW (1) | TW201638004A (de) |
WO (1) | WO2016176021A1 (de) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3153191A1 (de) | 2015-10-09 | 2017-04-12 | ECP Entwicklungsgesellschaft mbH | Blutpumpe |
CN115125635B (zh) * | 2022-07-14 | 2023-07-25 | 大连理工大学 | 一种利用组合磺化试剂制备聚烯烃基碳材料的方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1267201A (en) * | 1918-01-24 | 1918-05-21 | Paul Joseph Fleming | Capsule-filler. |
GB1267201A (de) * | 1968-10-03 | 1972-03-15 | ||
JPS5221605B2 (de) * | 1974-03-29 | 1977-06-11 | ||
JP5015366B2 (ja) * | 2000-09-12 | 2012-08-29 | ポリマテック株式会社 | 熱伝導性成形体及びその製造方法 |
US20160222551A1 (en) * | 2013-09-19 | 2016-08-04 | Dow Global Technologies Llc | Polyolefin-derived carbon fibers containing boron |
-
2016
- 2016-04-07 US US15/551,962 patent/US20180038013A1/en not_active Abandoned
- 2016-04-07 JP JP2017554298A patent/JP2018517850A/ja active Pending
- 2016-04-07 EP EP16718570.1A patent/EP3289120A1/de not_active Withdrawn
- 2016-04-07 CN CN201680023492.3A patent/CN107532340A/zh active Pending
- 2016-04-07 WO PCT/US2016/026453 patent/WO2016176021A1/en active Application Filing
- 2016-04-19 AR ARP160101070A patent/AR104317A1/es unknown
- 2016-04-19 TW TW105112185A patent/TW201638004A/zh unknown
Also Published As
Publication number | Publication date |
---|---|
CN107532340A (zh) | 2018-01-02 |
WO2016176021A1 (en) | 2016-11-03 |
TW201638004A (zh) | 2016-11-01 |
JP2018517850A (ja) | 2018-07-05 |
US20180038013A1 (en) | 2018-02-08 |
AR104317A1 (es) | 2017-07-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3289120A1 (de) | Verfahren zur herstellung eines artikels aus polyolefin | |
EP3134467A1 (de) | Oberflächenbehandelter hergestellter artikel aus polyolefin | |
US20180037714A1 (en) | Boron-containing fabricated article prepared from polyolefin precursor | |
EP3134565B1 (de) | Verfahren zur herstellung eines stabilisierten hergestellten artikels aus polyolefin | |
EP3289122A1 (de) | Verfahren zur herstellung eines gefertigten artikels aus polyolefin | |
WO2017112388A1 (en) | Process for making an article from polyolefin and composition thereof | |
EP3289123A1 (de) | Verfahren zur herstellung eines artikels aus polyolefin | |
WO2016176023A1 (en) | Process for making a fabricated article from polyolefin | |
WO2017112389A1 (en) | Method for making an article from polyolefin | |
WO2018057157A1 (en) | Process for making a stabilized polyolefin article and composition thereof | |
WO2017112390A1 (en) | Process for making an article from polyolefin and composition thereof | |
WO2018057155A1 (en) | Process for making an article from polyolefin and composition thereof | |
WO2018057154A1 (en) | Process for making an article from polyolefin and composition thereof | |
Huang et al. | Preparation and characterization of poly (styrene‐co‐divinylbenzene)/fiberglass cation‐exchange composites | |
Novoselova et al. | The properties of products and the governing laws of the process of grafting acrylic acid to polypropylene fibre. Part 2 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20171120 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN |
|
18W | Application withdrawn |
Effective date: 20180521 |