EP3276258A1 - Led-beleuchtungssystem - Google Patents

Led-beleuchtungssystem Download PDF

Info

Publication number
EP3276258A1
EP3276258A1 EP17179699.8A EP17179699A EP3276258A1 EP 3276258 A1 EP3276258 A1 EP 3276258A1 EP 17179699 A EP17179699 A EP 17179699A EP 3276258 A1 EP3276258 A1 EP 3276258A1
Authority
EP
European Patent Office
Prior art keywords
cooling
channel
leds
inflow
led lighting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP17179699.8A
Other languages
English (en)
French (fr)
Inventor
Markus Alraun
Peter Nadstazik
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
M3d AG
Original Assignee
M3d AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by M3d AG filed Critical M3d AG
Publication of EP3276258A1 publication Critical patent/EP3276258A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/83Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks the elements having apertures, ducts or channels, e.g. heat radiation holes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/56Cooling arrangements using liquid coolants
    • F21V29/59Cooling arrangements using liquid coolants with forced flow of the coolant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/19Attachment of light sources or lamp holders
    • F21S41/192Details of lamp holders, terminals or connectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S45/00Arrangements within vehicle lighting devices specially adapted for vehicle exteriors, for purposes other than emission or distribution of light
    • F21S45/40Cooling of lighting devices
    • F21S45/42Forced cooling
    • F21S45/46Forced cooling using liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/151Light emitting diodes [LED] arranged in one or more lines
    • F21S41/153Light emitting diodes [LED] arranged in one or more lines arranged in a matrix
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2105/00Planar light sources
    • F21Y2105/10Planar light sources comprising a two-dimensional array of point-like light-generating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2105/00Planar light sources
    • F21Y2105/10Planar light sources comprising a two-dimensional array of point-like light-generating elements
    • F21Y2105/14Planar light sources comprising a two-dimensional array of point-like light-generating elements characterised by the overall shape of the two-dimensional array
    • F21Y2105/16Planar light sources comprising a two-dimensional array of point-like light-generating elements characterised by the overall shape of the two-dimensional array square or rectangular, e.g. for light panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the invention relates to an LED lighting system, in particular an LED array for high-power lighting.
  • LED arrays are used commercially for high power lighting, such as in automotive headlamp applications.
  • the temperature of the LED arrays is often kept below a predetermined maximum value by means of a cooling fluid in a cooling circuit, such as in FIG DE 20 2006 019 381 and DE 10 2009 028525 disclosed.
  • the LEDs are sequentially cooled by a cooling circuit using water or ethylene glycol.
  • An LED lighting system comprises a plurality of LEDs arranged in a two-dimensional array on a circuit board, the circuit board being connected to a cooling system.
  • the cooling system has a plurality of cooling channels for a cooling fluid, which extend over the back of the board, which faces away from the LEDs.
  • the cooling channels are designed according to the arrangement of the LEDs, so that the cooling channels are located directly under the LEDs and as close as possible to the LEDs.
  • the cooling channels are connected to an inflow channel and a drainage channel.
  • the plurality of cooling channels branch off from the inflow channel, run parallel to each other across the back of the board and lead to the drainage channel.
  • the inflow and outflow channels are connected to a radiator and a pump.
  • both the inflow and the outflow channel in the region of the connections with the cooling channels have a cross section which varies over their length.
  • the inflow channel In the region in which the multiplicity of parallel cooling channels branch off from it, the inflow channel has an increasing cross-section over its length in the direction of flow of the cooling fluid. In the region in which the multiplicity of parallel cooling channels lead into the latter, the outflow channel has a cross-section which decreases over its length in the direction of flow of the cooling fluid.
  • the invention is characterized on the one hand by an arrangement of the cooling channels, which corresponds to the arrangement of the LEDs in rows of a two-dimensional array.
  • the cooling channels run along the rows of LEDs and just below the LEDs, minimizing the distance between the rows of LEDs and the cooling channels.
  • the parallel cooling channels allow simultaneous cooling of a large number of LEDs with a minimum of cooling channel length, resulting in efficient and space saving cooling.
  • the invention is characterized in particular by the fact that the cross section of the inflow channel, from which the cooling channels branch off, increases along its length and the cross section of the outflow channel, to which the cooling channels lead, decreases over its length.
  • the inflow and outflow channel of the cooling system of the LED array in the region of the branches and feeds of the cooling channels is designed conically.
  • the cooling system of the LED array has a temperature sensor which is connected to a control of the cooling fluid pump. This allows the control of the pump power according to the temperature of the cooling fluid and thus the achievable temperature of the LED array.
  • the cooling system is filled with a cooling fluid mixed with water mixed with glycol.
  • a cooling fluid is not abrasive and serves as such at the same time as a lubricant for the pump.
  • the cooling system of the LED array has an expansion vessel.
  • FIG. 1 an example of the inventive LED lighting system L is shown.
  • a plurality of LEDs 2 are arranged in a two-dimensional array, which are connected to a closed cooling circulation system 3.
  • a system of cooling channels is arranged, which are connected to an inflow channel 4 and a discharge channel 5.
  • a cooling fluid is cooled by a cooler 6 and circulated by a pump 7 in the direction indicated by arrows, the cooling fluid cooling the LEDs to a predetermined temperature as it flows through the system of cooling channels.
  • a line 8 which leads the cooling fluid from the pump 7 to the inflow channel 4, an expansion vessel 9 is also arranged to compensate for any overpressure.
  • a temperature sensor 10 is also disposed in the cooling fluid conduit to monitor the temperature of the cooling fluid.
  • a signal line 11 and a control unit 12 serve to control the cooling capacity of the radiator 6 and to adjust the cooling fluid temperature.
  • the control unit makes it possible for the temperature of the cooling fluid to be adjusted in accordance with the cooling fluid temperature measured by the temperature sensor 10 can be adjusted to ensure that a predetermined maximum temperature of the LED array is not exceeded.
  • FIG. 2 shows the LED board 1 from the side with an upper side 1a with the LEDs arranged LEDs and in particular the arrangement of the inflow channel 4, the outflow channel 5 and cooling channels 13 on the lower, the LEDs facing away from the board.
  • FIG. 3 shows the arrangement of the cooling channels 13 on the back of the board 1. These lead from the inflow channel 4 to the outflow channel 5 and are arranged parallel to each other so that their arrangement corresponds to the arrangement of the rows of the two-dimensional array of LEDs and the cooling channels 13 thereby under The LEDs are located as close as possible to the LEDs to cool them as efficiently as possible.
  • the cooling channels 13 each have the same size cross sections in the embodiment shown.
  • FIGS. 4a and 4b show the inflow channel 4 and outflow channel 5 in longitudinal cross-section.
  • the inflow and outflow channels are conical in the example shown.
  • the cross-section of the inflow channel 4 increases in the direction of flow of the cooling fluid indicated by an arrow and over the region 4a in which the parallel cooling channels 13 branch off from the inflow channel ( Fig. 4a ).
  • the cross-section 4 'of the inflow channel in the influence on the board is smaller than the cross-section 4 "at the end of the channel 4a.
  • the cross-section of the discharge channel 5 decreases in the direction of flow of the cooling fluid in the region 5a, in which the parallel cooling channels 13 lead into this ( Fig. 4b ).
  • the cross section 5 "at the discharge from the board is larger than the cross section 5 'at the other end of the channel 5a.
  • the changing cross sections of the channels 4a and 5a cause the cooling fluid pressure in all parallel cooling channels 13 to remain the same and the cooling capacity This means that the performance and operating time of all elements of the LED array remain the same.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

Ein LED-Beleuchtungssystem (L) weist einen zwei-dimensionalen Array von LEDs (2) mit einem Kühlsystem (3) auf. Das Kühlsystem besteht aus einem System von Kühlkanälen, die auf der Rückseite der LED-Platine (2) angeordnet sind, einem Zuflusskanal (4), einem Abflusskanal (5), einem Kühler (6) und einer Pumpe (7). Ein System von mehreren parallel verlaufenden Kühlkanälen führen vom Zuflusskanal (4) zum Abflusskanal (5), wobei die Kühlkanäle (13) entsprechend der Anordnung der LEDs (2) im Array angeordnet sind. Der Zuflusskanal (4) hat einen Querschnitt, der sich in Fliessrichtung vergrössert, während der Querschnitt des Abflusskanals (5) sich in Fliessrichtung verkleinert. Die sich verändernden Querschnitte bewirken einen gleichbleibenden Kühlfluiddruck durch die parallel verlaufenden Kühlkanäle. Die sich verändernden Querschnitte des Zufluss- und Abflusskanals (4, 5) bewirken einen gleichbleibenden Druck über alle Kühlkanäle (13). Als Kühlfluid wird Wasser gemischt mit Glykol verwendet, das nicht abrasiv ist und als Schmiermittel in der Pumpe (7) dient.

Description

    Technisches Gebiet
  • Die Erfindung betrifft ein LED-Beleuchtungssystem, insbesondere ein LED-Array für eine Hochleistungsbeleuchtung.
  • Stand der Technik
  • LED-Arrays werden kommerziell für Hochleistungsbeleuchtung eingesetzt, wie zum Beispiel in der Anwendung bei Scheinwerfern für Fahrzeuge. Um die Leistung der LEDs aufrecht zu erhalten, wird die Temperatur der LED-arrays häufig mittels einem Kühlfluid in einem Kühlkreislauf unter einem vorbestimmten Maximalwert gehalten, wie zum Beispiel in DE 20 2006 019 381 und DE 10 2009 028525 offenbart. Dort werden die LEDs durch einen Kühlkreislauf sequentiell mittels Wasser oder Ethylenglycol gekühlt.
  • Beschreibung der Erfindung
  • Es ist der vorliegenden Erfindung die Aufgabe gestellt, ein LED-Beleuchtungssystem mit einem zwei-dimensionalen LED-Array mit einer Kühlvorrichtung zu schaffen, die im Vergleich zum Stand der Technik effizienter und platzsparender realisiert werden kann.
  • Diese Aufgabe ist durch ein LED-Array gemäss Anspruch 1 gelöst.
  • Ein LED-Beleuchtungssystem weist eine Vielzahl von LEDs auf, die in einem zwei-dimensionalen Array auf einer Platine angeordnet sind, wobei die Platine mit einem Kühlsystem verbunden ist.
  • Erfindungsgemäss weist das Kühlsystem eine Vielzahl von Kühlkanälen für eine Kühlfluid auf, die sich über die Rückseite der Platine erstrecken, die den LEDs abgewandt ist. Die Kühlkanäle sind dabei entsprechend der Anordnung der LEDs ausgelegt, sodass die Kühlkanäle unmittelbar unter den LEDs und so nah wie möglich der LEDs angeordnet sind. Die Kühlkanäle sind mit einem Zuflusskanal und einen Abflusskanal verbunden. Die Vielzahl von Kühlkanälen zweigen vom Zuflusskanal ab, verlaufen parallel zueinander über die Rückseite der Platine und führen zum Abflusskanal. Der Zufluss- und Abflusskanal sind mit einem Kühler und einer Pumpe verbunden. Insbesondere, weisen sowohl der Zufluss- als auch der Abflusskanal im Bereich der Verbindungen mit den Kühlkanälen einen über ihre Länge sich verändernden Querschnitt auf. Der Zuflusskanal weist in dem Bereich, in dem die Vielzahl von parallelen Kühlkanälen von diesem abzweigen, über seine Länge in Flussrichtung des Kühlfluids einen sich vergrössernden Querschnitt auf. Der Abflusskanal weist in dem Bereich, in dem die Vielzahl von parallel verlaufenden Kühlkanälen in diesen hineinführen, einen über seine Länge in Flussrichtung des Kühlfluids sich verkleinernden Querschnitt auf.
  • Die Erfindung zeichnet sich einerseits durch eine Anordnung der Kühlkanäle aus, die der Anordnung der LEDs in Reihen eines zwei-dimensionalen Arrays entspricht. Dabei verlaufen die Kühlkanäle entlang der Reihen der LEDS und unmittelbar unter den LEDs, sodass die Distanz zwischen den Reihen der LEDs und den Kühlkanälen minimiert ist. Die parallel angeordneten Kühlkanäle ermöglichen eine gleichzeitige Kühlung einer grossen Anzahl von LEDs mit einem Minimum von Kühlkanallänge, wodurch eine effiziente und platzsparende Kühlung erreicht wird.
  • Die Erfindung zeichnet sich insbesondere dadurch aus, dass der Querschnitt des Zuflusskanals, von dem die Kühlkanäle abzweigen, sich über dessen Länge sich vergrössert und der Querschnitt des Abflusskanals, zu dem die Kühlkanäle führen, sich über dessen Länge verkleinert. Dies bewirkt einen Druckausgleich über die gesamte zwei-dimensionale Kühlvorrichtung und führt zu einer gleichmässigen Kühlwirkung über den gesamten zwei-dimensionalen LED-Array. Dadurch können sämtliche LEDs des gesamten Arrays bei der gleichen, vorbestimmten Temperatur gehalten werden und ein Temperaturgradient über dem Array kann vermieden werden.
  • In einer Ausführung der Erfindung ist der Zufluss- sowie Abflusskanal des Kühlsystems des LED-Arrays im Bereich der Abzweigungen und Zuführungen der Kühlkanäle jeweils konisch ausgeführt.
  • In einer Ausführung der Erfindung weist das Kühlsystem des LED-Arrays einen Temperatursensor auf, der mit einer Steuerung der Kühlfluidpumpe verbunden ist. Dies ermöglicht die Steuerung der Pumpenleistung gemäss der Temperatur des Kühlfluids und somit der erreichbaren Temperatur des LED-Arrays.
  • In einer Ausführung der Erfindung ist das Kühlsystem mit einem Kühlfluid mit Wasser gemischt mit Glykol gefüllt. Ein solches Kühlfluid ist nicht abrasiv und dient als solches zugleich als Schmiermittel für die Pumpe.
  • In einer weiteren Ausführung der Erfindung weist das Kühlsystem des LED-Arrays ein Expansionsgefäss auf.
  • Weitere Vorteile und Merkmale der Erfindung folgen aus der nachfolgenden Beschreibung, in welcher die Erfindung anhand eines in den schematischen Zeichnungen dargestellten Ausführungsbeispieles näher erläutert wird.
  • Kurze Beschreibung der Figuren
    • Fig. 1 zeigt eine Draufsicht eines erfindungsgemässen zwei-dimensionalen LED-Arrays mit einer schematischen Darstellung des Kühlsystems.
    • Fig. 2 zeigt eine seitliche Querschnittsansicht des LED-Arrays mit Kühlsystem gemäss II-II in Figur 1.
    • Fig. 3 eine Ansicht des Kühlsystems des LED-Arrays gemäss Schnitt III-III in Figur 2, insbesondere der zwei-dimensional angeordneten Kühlkanäle.
    • Fig. 4a, b zeigen einen Querschnitt des Zufluss- bzw. des Abflusskanals gemäss IVa-IVa bzw. IVb-IVb in Figur 3.
  • In den Figuren sind für dieselben Elemente jeweils dieselben Bezugszeichen verwendet worden und erstmalige Erklärungen betreffen alle Figuren, wenn nicht ausdrücklich anders erwähnt.
  • Ausführungsbeispiele der Erfindung
  • In der Figur 1 ist ein Beispiel des erfindungsgemässen LED-Beleuchtungssystems L gezeigt. Auf der Oberseite 1a einer Platine 1 sind in einem zwei-dimensionalem Array eine Vielzahl von LEDs 2 angeordnet, die mit einem geschlossenen Kühlkreislaufsystem 3 verbunden sind. Auf der Rückseite der Platine 1, die der Oberseite 1a mit den LEDs 2 abgewandt ist, ist ein System von Kühlkanälen angeordnet, die mit einem Zuflusskanal 4 und einem Abflusskanal 5 verbunden sind. Ein Kühlfluid wird mittels eines Kühlers 6 gekühlt und mittels einer Pumpe 7 in der mit Pfeilen angezeigten Richtung in Umlauf gebracht, wobei das Kühlfluid beim Durchfliessen des Systems von Kühlkanälen die LEDs auf eine vorbestimmte Temperatur kühlt. In einer Leitung 8, die das Kühlfluid von der Pumpe 7 zum Zuflusskanal 4 führt, ist zudem ein Expansionsgefäss 9 zwecks Ausgleichs eines etwaigen Überdrucks angeordnet. Ein Temperatursensor 10 ist zudem in der Kühlfluidleitung angeordnet, um die Temperatur des Kühlfluids zu überwachen. Eine Signalleitung 11 und ein Steuergerät 12 dienen dazu, die Kühlleistung des Kühlers 6 zu steuern und die Kühlfluidtemperatur einzustellen. Das Steuergerät ermöglicht es, dass die Temperatur des Kühlfluids gemäss der vom Temperatursensor 10 gemessenen Kühlfluidtemperatur entsprechend angepasst werden kann, um sicher zu stellen, dass eine vorgegebene Maximaltemperatur des LED-Arrays nicht überschritten wird.
  • Figur 2 zeigt die LED-Platine 1 von der Seite mit einer Oberseite 1a mit den LEDs angeordneten LEDs und insbesondere die Anordnung des Zuflusskanals 4, des Abflusskanals 5 sowie von Kühlkanälen 13 auf der unteren, den LEDs abgewandten Seite der Platine. Figur 3 zeigt die Anordnung der Kühlkanäle 13 auf der Rückseite der Platine 1. Diese führen vom Zuflusskanal 4 zum Abflusskanal 5 und sind parallel zueinander so angeordnet, dass ihre Anordnung der Anordnung der Reihen des zwei-dimensionalen Arrays von LEDs entspricht und die Kühlkanäle 13 dadurch unmittelbar unter den LEDs und sich damit so nah wie möglich den LEDs befinden, um diese möglichst effizient zu kühlen. Die Kühlkanäle 13 weisen in dem gezeigten Ausführungsbeispiel jeweils gleich grosse Querschnitte auf.
  • Figur 4a und 4b zeigen den Zuflusskanal 4 bzw. Abflusskanal 5 im Längsquerschnitt. Der Zufluss- sowie Abflusskanal sind in dem gezeigten Beispiel konisch ausgebildet. Der Querschnitt des Zuflusskanals 4 vergrössert sich in der mit einem Pfeil gekennzeichneten Fliessrichtung des Kühlfluids und über den Bereich 4a, in dem die parallel verlaufenden Kühlkanäle 13 vom Zuflusskanal abzweigen (Fig. 4a). Der Querschnitt 4' des Zuflusskanals beim Einfluss an der Platine ist kleiner als der Querschnitt 4" am Ende des Kanals 4a.
    Der Querschnitt des Abflusskanals 5 hingegen verkleinert sich in der Fliessrichtung des Kühlfluids im Bereich 5a, in dem die parallel verlaufenden Kühlkanäle 13 in diesen hineinführen (Fig. 4b). Der Querschnitt 5" am Ausfluss aus der Platine ist grösser als der Querschnitt 5' am anderen Ende des Kanals 5a. Die sich verändernden Querschnitte der Kanäle 4a und 5a bewirken, dass der Kühlfluiddruck in allen parallel zueinander verlaufenden Kühlkanälen 13 jeweils gleich bleibt und die Kühlleistung somit in allen Bereichen des LED-Arrays gleich ist. Damit wird erreicht, dass die Leistung und Betriebsdauer aller Elemente des LED-Arrays gleich bleibt.
  • Bezugszeichenliste
  • 1
    Platine
    2
    LEDs
    3
    Kühlsystem
    4
    Zuflusskanal
    4a
    Bereich des Zuflusskanals, von dem Kühlkanäle 13 abzweigen
    5
    Abflusskanal, zu dem Kühlkanäle 13 hineinführen
    5a
    Bereich des Abflusskanals
    4', 4"
    Querschnitt des Zuflusskanals 4 im Bereich 4a
    5', 5"
    Querschnitt des Abflusskanals 5 im Bereich 5a
    6
    Kühler
    7
    Pumpe
    8
    Kühlfluidleitung
    9
    Expansionsgefäss
    10
    Temperatursensor
    11
    Steuergerät
    12
    Signalleitung
    13
    Kühlkanäle
    L
    LED-Beleuchtung

Claims (5)

  1. Ein LED-Beleuchtungssystem (L) weist eine Vielzahl von LEDs (2) auf, die in einem zwei-dimensionalen Array auf einer Platine (1) angeordnet sind, wobei die Platine (1) mit einem Kühlsystem (3) verbunden ist,
    dadurch gekennzeichnet, dass
    das Kühlsystem (3) eine Vielzahl von Kühlkanälen (13) für ein Kühlfluid aufweist, die sich über die Rückseite der Platine (1) erstrecken, die den LEDs (2) abgewandt ist, wobei die Kühlkanäle (13) entsprechend der Anordnung der LEDs (2) und unmittelbar unter den LEDs (2) angeordnet sind, und die Kühlkanäle (13) mit einem Zuflusskanal (4) und einem Abflusskanal (5) verbunden sind und die Kühlkanäle (13) parallel zueinander vom Zuflusskanal (4) abzweigen und zum Abflusskanal (5) führen, und der Zufluss- und Abflusskanal (4, 5) mit einem Kühler (6) und einer Pumpe (7) verbunden sind, und
    wobei der Zuflusskanal (4) in einem Bereich (4a), in dem die Vielzahl von parallel verlaufenden Kühlkanäle (13) von diesem abzweigen, über seine Länge in Flussrichtung des Kühlfluids einen sich vergrössernden Querschnitt aufweist und der Abflusskanal (5) in einem Bereich (5a), in dem die Vielzahl von parallel verlaufenden Kühlkanäle (13) in diesen hineinführen, einen über seine Länge in Flussrichtung des Kühlfluids sich verkleinernden Querschnitt aufweist.
  2. LED-Beleuchtungssystem (L) nach Anspruch 1
    dadurch gekennzeichnet, dass
    der Zuflusskanal (4) und der Abflusskanal (5) des Kühlsystems (3) konisch ausgeführt sind.
  3. LED-Beleuchtungssystem (L) nach Anspruch 1 oder 2
    dadurch gekennzeichnet, dass
    das Kühlsystem (3) einen Temperatursensor (10) aufweist, der mit einem Steuergerät (11) für die Pumpe (7) verbunden ist.
  4. LED-Beleuchtungssystem (L) nach einem der Ansprüche Anspruch 1 bis 3 dadurch gekennzeichnet, dass
    das Kühlsystem (3) mit einem Kühlfluid mit Wasser gemischt mit Glykol gefüllt ist.
  5. LED-Beleuchtungssystem (L) nach einem der Ansprüche Anspruch 1 bis 4 dadurch gekennzeichnet, dass
    das Kühlsystem (3) ein Expansionsgefäss (9) aufweist.
EP17179699.8A 2016-07-27 2017-07-05 Led-beleuchtungssystem Withdrawn EP3276258A1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH9792016 2016-07-27

Publications (1)

Publication Number Publication Date
EP3276258A1 true EP3276258A1 (de) 2018-01-31

Family

ID=59296733

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17179699.8A Withdrawn EP3276258A1 (de) 2016-07-27 2017-07-05 Led-beleuchtungssystem

Country Status (2)

Country Link
EP (1) EP3276258A1 (de)
CH (1) CH712769A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201800009625A1 (it) * 2018-10-19 2020-04-19 C&E Group Srl Dispositivo di illuminazione

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070147045A1 (en) * 2005-12-28 2007-06-28 Semiconductor Energy Laboratory Co., Ltd. Display device
US20080175008A1 (en) * 2007-01-23 2008-07-24 Foxconn Technology Co., Ltd. Light-emitting diode assembly and method of fabrication
DE202014100528U1 (de) * 2014-02-06 2014-04-08 Sebastian Jansen Aquarienbeleuchtung

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070147045A1 (en) * 2005-12-28 2007-06-28 Semiconductor Energy Laboratory Co., Ltd. Display device
US20080175008A1 (en) * 2007-01-23 2008-07-24 Foxconn Technology Co., Ltd. Light-emitting diode assembly and method of fabrication
DE202014100528U1 (de) * 2014-02-06 2014-04-08 Sebastian Jansen Aquarienbeleuchtung

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201800009625A1 (it) * 2018-10-19 2020-04-19 C&E Group Srl Dispositivo di illuminazione
EP3640535A1 (de) * 2018-10-19 2020-04-22 C&E Group Srl Beleuchtungsvorrichtung
US10718505B2 (en) 2018-10-19 2020-07-21 C&E Group S.R.L. Illumination device

Also Published As

Publication number Publication date
CH712769A2 (de) 2018-01-31

Similar Documents

Publication Publication Date Title
DE112005001302T5 (de) Vorrichtung und Verfahren zur wirksamen Zufuhr von Flüssigkeit zum Kühlen eines Wärme erzeugenden Geräts
DE102017116984A1 (de) Temperiervorrichtung für eine Temperierung eines Batteriesystems sowie Batteriesystem
DE2903685C2 (de)
DE202017101406U1 (de) Kühlaufbau für Schnittstellenkarten
DE602005003058T2 (de) Kühlkörper
DE102008006513A1 (de) Wärmetauscher
EP3182813A1 (de) Umrichterkühlsystem
DE102004050436B4 (de) Kühleinrichtung für eine Brennkraftmaschine mit mindestens drei Kühlern
EP2636958B1 (de) Heizkreisverteiler mit integrierter hydraulischer Weiche
EP3276258A1 (de) Led-beleuchtungssystem
DE102013216513A1 (de) Vorrichtung zur Konditionierung eines Batteriepacks
DE102004018144A1 (de) Kühler für elektrische oder elektronische Bauteile, insbesondere für CPUs oder Grafikkarten sowie Düsenplatte
DE1282362B (de) Halteplatte
EP3192476B1 (de) Medizinisches temperiergerät
DE102019119884A1 (de) Die Temperatur einer Mehrzahl unterschiedlicher Betriebsmodule regelndes Fluidkreislaufsystem
DE69814594T2 (de) Ein schmierkreislaufsystem
DE102013110515A1 (de) Tintendrucker mit flüssigkeitsgekühlten Druckköpfen
DE10150041B4 (de) Austrag-Kühleinrichtung für eine Druckmaschine
DE102014000901B4 (de) Solaranlage
DE102010049094A1 (de) Kühleinrichtung für einen Kraftwagen
WO2020239539A1 (de) Wärmeübertragervorrichtung mit mehreren wärmeübertragern mit jeweiligen verteil- und sammelabschnitten sowie kälteanlage und kraftfahrzeug mit kälteanlage
WO2013159898A1 (de) Kühlvorrichtung
DE20014519U1 (de) Heizkörper mit mittigem Anschluß
EP3106772B1 (de) Set zur belüftung eines raumes
DE202018100041U1 (de) Flüssigkeitskühlsystem

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

RIC1 Information provided on ipc code assigned before grant

Ipc: F21Y 105/16 20160101ALN20170915BHEP

Ipc: F21S 8/10 20181130ALI20170915BHEP

Ipc: F21Y 115/10 20160101ALN20170915BHEP

Ipc: F21V 29/58 20150101ALI20170915BHEP

Ipc: F21V 29/83 20150101AFI20170915BHEP

Ipc: F21Y 105/10 20160101ALN20170915BHEP

18D Application deemed to be withdrawn

Effective date: 20180801

RIC1 Information provided on ipc code assigned before grant

Ipc: F21V 29/58 20150101ALI20170915BHEP

Ipc: F21V 29/83 20150101AFI20170915BHEP

Ipc: F21S 8/10 20060101ALI20170915BHEP

Ipc: F21Y 115/10 20160101ALN20170915BHEP

Ipc: F21Y 105/16 20160101ALN20170915BHEP

Ipc: F21Y 105/10 20160101ALN20170915BHEP