EP3274558B1 - Procédé de profilage d'une aube de turbine et aube correspondante - Google Patents

Procédé de profilage d'une aube de turbine et aube correspondante Download PDF

Info

Publication number
EP3274558B1
EP3274558B1 EP16716884.8A EP16716884A EP3274558B1 EP 3274558 B1 EP3274558 B1 EP 3274558B1 EP 16716884 A EP16716884 A EP 16716884A EP 3274558 B1 EP3274558 B1 EP 3274558B1
Authority
EP
European Patent Office
Prior art keywords
blade
mean camber
length
edge
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16716884.8A
Other languages
German (de)
English (en)
Other versions
EP3274558A1 (fr
Inventor
Christian PEEREN
Stefan Schmitt
Ulrich Waltke
Heinrich STÜER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Energy Global GmbH and Co KG
Original Assignee
Siemens Energy Global GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Energy Global GmbH and Co KG filed Critical Siemens Energy Global GmbH and Co KG
Publication of EP3274558A1 publication Critical patent/EP3274558A1/fr
Application granted granted Critical
Publication of EP3274558B1 publication Critical patent/EP3274558B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/141Shape, i.e. outer, aerodynamic form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/16Form or construction for counteracting blade vibration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/321Rotors specially for elastic fluids for axial flow pumps for axial flow compressors
    • F04D29/324Blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/301Cross-sectional characteristics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/70Shape

Definitions

  • the invention relates to a method for profiling a turbine rotor blade for an axial flow machine.
  • the trend in the design of blades for an axial flow machine is to increase the aspect ratio of the blades and make the blades thinner.
  • the blades designed in this way tend to flutter when the axial flow machine is in operation.
  • Flutter is a self-excited oscillation at the natural frequency of the blade. This oscillation can be a longitudinal oscillation of the blade with a vibration node at the base of the blade.
  • energy is transferred from the fluid flowing in the axial flow machine to the blade.
  • the fluttering can lead to material fatigue of the blade in the event of a repeated load change in the axial flow machine (English: high cycle fatigue).
  • the material fatigue can lead to the formation of a crack and require an expensive replacement of the blade.
  • the object of the invention is to create a method for profiling a blade for an axial flow machine in which the blade has little tendency to flutter.
  • the method according to the invention for profiling a turbine rotor blade for an axial flow machine has the following steps: providing a geometric model of a blade profile which has a skeleton line of a profile section of the turbine rotor blade; Establishing boundary conditions for a flow flowing around the turbine rotor blade; Changing the skeleton line in such a way that the flow established on the basis of the boundary conditions causes the maximum of the difference in the isentropic Mach number between the pressure side and the suction side of the turbine blade in a blade section which, starting from the blade trailing edge, extends in the direction of the blade leading edge and is 65% of the length S the shovel chord is long.
  • the skeleton line is that line of the profile section whose points are the same distance from the pressure side as from the suction side.
  • the blade chord denotes the distance in the profile section from the blade leading edge to the blade trailing edge.
  • the skeleton line is formed by a first polynomial of the fourth degree, which describes the skeleton line from the blade leading edge to an extreme point, and a second polynomial of the fourth degree, which describes the skeleton line from the extreme point to the blade trailing edge, the extreme point being the point on the skeleton line who the maximum distance from the blade chord.
  • the distance denotes the length of a section extending at right angles from the blade chord to the skeleton line.
  • the first polynomial is formed using a leading edge skeleton angle, which is the angle between the leading edge tangent of the skeleton line and the blade chord, the length x S1 from the blade leading edge to the point on the blade chord which is the maximum distance from the skeleton line, and the length S 1 , which is the distance from the extreme point to the blade chord
  • the second polynomial being formed using a trailing edge skeleton angle, which is the angle between the trailing edge tangent of the skeleton line and the blade chord, the length Sx S1 from the blade trailing edge to to the point on the vane chord that is the maximum distance from the skeleton line
  • the length S 2 which is the distance from the skeleton line to the point on the vane chord which is the distance x S1 + 0.5 * (Sx S1 ) from of the blade trailing edge, where S is the length of the blade chord. If a slope of zero is assumed for the extreme point, the first polynomial and the second polynom
  • the skeleton line is changed such that S 1 is from 10.3% to 11.3% of the length S, x S1 is from 35.1% to 38.4% of the length S of the blade chord, S 2 is from 64.8% to 67.9% of the length S 1 , the trailing edge skeleton angle is from 15.192 ° to 19.020 °, and the leading edge skeleton angle is from 37.663 ° to 39.256 °.
  • the skeleton line is preferably changed such that S 1 is 10.8% of the length S, x S1 is 36.8% of the length S, S 2 is 66.3% of the length S 1 , the leading edge skeleton angle is 17.106 ° and the trailing edge skeleton angle is 38.460 ° is.
  • S 1 is 10.8% of the length S
  • x S1 is 36.8% of the length S
  • S 2 is 66.3% of the length S 1
  • the leading edge skeleton angle is 17.106 °
  • the trailing edge skeleton angle is 38.460 ° is.
  • the turbine blade has a transonic section and the camber line in the transonic section is changed in such a way that S 1 is from 7.6874% to 7.9% of the length S, x S1 from 35.4311% to 36, 2% of the length S, S 2 is from 63% to 65% of the length S 1 , the trailing edge skeleton angle is from 11.0 ° to 12.3 °, and the leading edge skeleton angle is from 29.0 ° to 31.0 °.
  • S 1 is from 7.6874% to 7.9% of the length S
  • x S1 from 35.4311% to 36
  • S 2 is from 63% to 65% of the length S 1
  • the trailing edge skeleton angle is from 11.0 ° to 12.3 °
  • the leading edge skeleton angle is from 29.0 ° to 31.0 °.
  • the turbine blade be free standing. This means that no damping elements are provided, such as a shroud, for example.
  • the geometric model has a thickness which varies along the skeleton line and which is left the same while the skeleton line is changed.
  • the skeleton line is advantageously changed in order to reduce the tendency of the blade to flutter, which advantageously represents a simple method with only a few parameters to be changed.
  • the boundary conditions of the flow result from the nominal operating condition of the axial flow machine. It is also preferred that the flow is stationary.
  • the isentropic Mach numbers are preferably determined experimentally and / or determined by calculation. It is preferred that the method be repeated for different profile sections of the turbine blade. As a result, the turbine rotor blade is designed along its height.
  • the profile section is preferably on a cylindrical surface or a conical surface, the axes of which coincide with the axis of the axial flow machine, on an S 1 flow surface or in a tangential plane of the axial flow machine.
  • the axial flow machine is preferably a gas turbine or a steam turbine.
  • the method is preferably carried out for profile cuts that lie in the radially outer half of the turbine rotor blade; in particular, the method is only carried out for profile cuts that lie in the radially outer half of the turbine rotor blade.
  • the turbine rotor blade according to the invention for an axial flow machine has a blade profile which has a skeleton line of a profile section of the turbine rotor blade, the skeleton line being shaped in such a way that, based on boundary conditions for a flow flowing around the turbine rotor blade, the resulting flow is the maximum of the difference in the isentropic Mach number between the Caused pressure side and the suction side of the turbine blade in a blade section, which extends from the blade trailing edge in the direction of the blade leading edge and is 65% of the length S of the blade chord.
  • the skeleton line is formed by a first polynomial of the fourth degree, which describes the skeleton line from the blade leading edge to an extreme point, and a second polynomial of the fourth degree which describes the skeleton line from the extreme point to the blade trailing edge, the extreme point being that point on the skeleton line which has the maximum distance from the blade chord, the first polynomial being formed using a leading edge skeleton angle which is the The angle between the leading edge tangent of the skeleton line and the blade chord is the length x S1 from the blade leading edge to the point on the blade chord that is the maximum distance from the skeleton line, and the length S 1 , which is the distance from the extreme point to the blade chord , wherein the second polynomial is formed using a trailing edge skeleton angle, which is the angle between the trailing edge tangent of the skeleton line and the blade chord, the length Sx S1 from the blade trailing edge to the point on the blade chord that has the maximum distance from the skeleton line
  • the skeleton line is such that S 1 is from 10.3% to 11.3% of the length S, x S1 is from 35.1% to 38.4% of the length S, S 2 is from 64.8% to 67.9% of the length S 1 is, the trailing edge skeleton angle is from 15.192 ° to 19.020 ° and the leading edge skeleton angle is from 37.663 ° to 39.256 °.
  • the turbine rotor blade has a transonic section and the camber line in the transonic section is such that S 1 is from 7.6874% to 7.9% of the length S, x S1 from 35.4311% to 36, 2% of the length S, S 2 is from 63% to 65% of the length S 1 , the trailing edge skeleton angle is from 11.0 ° to 12.3 °, and the leading edge skeleton angle is from 29.0 ° to 31.0 °.
  • the axial flow machine according to the invention has a turbine rotor blade according to the invention, the Turbine rotor blade is free-standing and the axial flow machine is in particular a gas turbine or a steam turbine WO 2013/178914 A1 discloses turning points in the skeleton line of a compressor blade.
  • Figure 1 shows a geometric model of a profile section of a turbine rotor blade for an axial flow machine, which is for example a gas turbine or a steam turbine.
  • the profile section lies, for example, on a cylinder surface or a conical surface, the axes of which coincide with the axis of the axial flow machine, on an S 1 flow surface or in a tangential plane of the axial flow machine.
  • the geometric model has a curved skeleton line 3, which is that line of the profile section whose points are at the same distance from the pressure side as from the suction side of the turbine rotor blade. It is still over Figure 1 It can be seen that the turbine blade has a blade leading edge 4 and a blade trailing edge 5. The blade leading edge 4 and the blade trailing edge 5 delimit the skeleton line 3. The distance between the blade leading edge 4 and the blade trailing edge 5 is the blade chord 13.
  • the geometric model is in FIG Figure 1 drawn in a plot, the abscissa 1 of which coincides with the blade chord 13 and the distance of the skeleton line 3 from the blade chord 13 is plotted over the ordinate.
  • the distance denotes the length of a section extending at right angles from the blade chord 13 to the skeleton line.
  • the coordinate system in Figure 1 is chosen such that the blade leading edge 4 coincides with the origin of the coordinate system.
  • the blade trailing edge 5 lies at point (S, 0), where S is the length of the blade chord 13.
  • the skeleton line 3 is formed by a first polynomial 11 of the fourth degree and a second polynomial 12 of the fourth degree.
  • the first polynomial 11 describes the skeleton line 3 from the blade leading edge 4 up to an extreme point 30.
  • the extreme point 30 is that point on the skeleton line 3 which has the maximum distance from the blade chord 13.
  • the second polynomial 12 describes the skeleton line 3 from the extreme point 30 to the blade trailing edge 5. It is also shown in FIG Figure 1 a leading edge tangent 7, which is the tangent of the skeleton line 3 at the blade leading edge 4.
  • the leading edge tangent 7 encloses a leading edge skeleton angle LESA with the blade chord 13.
  • a trailing edge tangent 8 is drawn in, which is the tangent of the skeleton line 3 at the blade trailing edge 5.
  • the trailing edge tangent 8 encloses a trailing edge skeleton angle TESA with the blade chord 13.
  • the first polynomial 11 is formed by choosing the leading edge skeleton angle LESA, the length x S1 from the blade leading edge 4 to the point (x S1 , 0) on the blade chord 13 which has the maximum distance from the skeleton line 13, and the length S 1 which is the distance from the point (x S1 , 0) to the extreme point 30. Because the slope of the extreme point 30 is zero and the blade leading edge 4 is at the origin of the coordinate system, the first polynomial 11 is sufficiently determined.
  • the second polynomial 12 is formed by choosing the trailing edge skeleton angle TESA, the length Sx S1 from the blade trailing edge 5 to the point (x S1 , 0) on the blade chord 13, and the length S 2 which is the distance from the point (x S1 + 0.5 * (Sx S1 ), 0) up to skeleton line 3. Because the slope of the extreme point 30 is zero and the blade trailing edge 5 lies in the point (S, 0), the second polynomial 12 is sufficiently determined.
  • the geometric model of the blade profile is provided, as for Figure 1 described.
  • Boundary conditions are provided for a flow flowing around the blade.
  • the boundary conditions can result, for example, from the nominal operating condition of the axial flow machine.
  • the camber line 3 is changed in such a way that the flow established on the basis of the boundary conditions causes the maximum of the difference in the isentropic Mach number 22 to 25 between the pressure side and the suction side of the turbine blade 14, 15 in a blade section which, starting from the blade trailing edge 5, causes extends to the blade leading edge 4 and 65% of the length S of the blade chord is long.
  • FIG. 2 shows a turbine blade 14, which is conventionally designed, and a blade 15, which is designed according to the invention.
  • the conventionally designed blade 14 has a blade front edge 16 and a blade rear edge 18. After changing the skeleton line 3, the blade 15 designed according to the invention results.
  • the blade 15 designed according to the invention has a Blade leading edge 17 and a blade trailing edge 19. From Figure 2 it can be seen that the turbine rotor blade 15 designed according to the invention has a more strongly curved skeleton line 3 than the conventionally designed blade 14 after changing the skeleton line 3.
  • the parameters describing the first polynomial 11 and second polynomial 12 can assume the following values, for example: Average Lower limit Upper limit S 1 / S 0.108 0.113 0.103 X S1 / S 0.368 0.384 0.351 S 2 / S 1 0.663 0.679 0.648 TESA / ° 17.106 19.020 15.192 LESA / ° 38,460 39.256 37.663
  • FIG. 13 shows a plot with the length of the blade chord 13 over the abscissa 20 and the isentropic Mach number over the ordinate 21.
  • Figure 3 shows a Mach number curve 22 on the pressure side and a Mach number curve 24 on the suction side of the conventionally designed blade 14. Also shown is a Mach number curve 23 on the pressure side and a Mach number curve 25 on the suction side of the turbine blade 15 designed according to the invention.
  • the Mach number curves 22 to 25 were calculated . For this purpose, the Navier-Stokes equations for the steady state of the given problem were solved.
  • the Mach number curves 22 to 25 show that for the conventionally designed turbine rotor blade, the difference between the Mach number curves 25 and 23 in the front area of the blade 14 is greater than in the rear region of the turbine rotor blade 14.
  • the difference between the Mach number curves 24 and 22 for the blade profiled according to the invention 15 at the rear of the The turbine rotor blade 15 is larger than in the front region of the turbine rotor blade 15.
  • the maximum of the difference between the turbine rotor blade 15 designed according to the invention is essentially at a length of the blade chord 13 of 0.5 * S.
  • Figure 4 shows a plot in which the phase angle between two adjacent turbine rotor blades (interblade phase angle) is plotted over the abscissa 25. About the ordinate 26 of the Figure 4 an aerodynamic damping value is plotted. A zero line 27 is also drawn in, at which the aerodynamic damping value assumes the value zero. To determine whether the turbine blade is being damped or excited, the linearized Navier-Stokes equations are solved for each phase difference angle and the aerodynamic damping value is calculated.
  • Figure 4 shows a damping value curve 28 for the conventionally designed turbine rotor blade 14 and a damping value curve 29 for the turbine rotor blade 15 designed according to the invention.
  • the damping value curve 28 also assumes negative values, which means that the conventionally designed turbine rotor blade 14 has a self-excited flutter oscillation during operation of the axial flow machine.
  • the damping value curve 29, however, has a positive value for all phase difference angles, which means that the blade 15 designed according to the invention does not have any self-excited fluttering vibration when the axial flow machine is in operation.
  • the parameters describing the first polynomial 11 and second polynomial 12 can alternatively assume the following values in a transonic section of a turbine blade, for example: Average Lower limit Upper limit S 1 / S 0.07765 0.076874 0.079 X S1 / S 0.35789 0.354311 0.362 S 2 / S 1 0.64042 0.63 0.65 TESA / ° 11.9162 11.0 12.3 LESA / ° 29.9933 29.0 31.0
  • Figure 5 shows a thickness distribution of the alternative turbine blade.
  • the thickness distribution is in Figure 5 drawn in a plot, the abscissa 1 of which coincides with the blade chord 13 and the ordinate of which the thickness of the alternative turbine rotor blade is plotted.
  • the polynomial is formed by choosing the leading edge radius of curvature R LE , the length x D1 from the blade leading edge 4 to the point (x D1 , 0) on the blade chord 13 at which the maximum thickness D1 of the alternative turbine blade is present, the thickness d2, the is the thickness of the alternate turbine blade at point (x D1 + 0.5 * (Sx D1 ), 0) and the trailing edge wedge angle TEWA.
  • the blade also has a section which tapers to a point towards the rear edge 5 of the blade and which starts from a thickness d 3 and drops to zero.
  • the thickness d3 can range from 96% to 99.9% of S.
  • the aforementioned variables can have the following values: Average Lower limit Upper limit D1 / S 0.113590 0.10 0.12 X D1 / S 0.282520 0.27 0.29 d 2 / D 1 0.681520 0.66 0.70 d 3 / S 0.017010 0.016 0.018 TEWA / ° 3.440010 3.37 3.51 R LE 0.020430 0.019 0.021 FSE 0.5 0.501 0.499
  • Figure 6 shows a damping value curve 31 for a conventionally designed turbine rotor blade and a damping value curve 32 for the alternative turbine rotor blade designed according to the invention.
  • the damping value curve 32 assumes negative values to a lesser extent than the damping value curve 31, as a result of which the alternative turbine rotor blade tends to flutter less than the conventional turbine rotor blade.

Claims (14)

  1. Procédé de profilage d'une aube (14, 15) mobile de turbine d'une turbomachine axiale, comprenant les stades :
    - on se procure un modèle géométrique d'un profil d'aube qui a une ligne (3) de squelette d'une partie du profil de l'aube (14, 15) mobile de turbine;
    - on fixe des conditions aux limites d'un écoulement passant autour de l'aube (14, 15) mobile de turbine;
    - on modifie la ligne (3) de squelette de manière à ce que l'écoulement, s'établissant à l'aide des conditions aux limites provoque, dans une partie de l'aube qui s'étend à partir du bord (5) arrière de l'aube en direction au bord (4) avant de l'aube et qui a une longueur représentant 65 % de la longueur (S) de la corde de l'aube, le maximum de la différence du nombre (22 à 25) de Mach isentrope entre l'intrados et l'extrados de l'aube (14, 15) mobile de turbine; dans lequel on forme la ligne (3) de squelette par un premier polynôme (11) du quatrième degré, qui décrit la ligne (3) de squelette du bord (4) avant de l'aube à un point (30) extrême et par un deuxième polynôme (12) du quatrième degré, qui décrit la ligne (3) de squelette du point (3) extrême au bord (5) arrière de l'aube,
    dans lequel le point (30) extrême est le point de la ligne (3) de squelette, qui a la distance maximum à la corde (13) de l'aube.
  2. Procédé suivant la revendication 1,
    dans lequel on forme le premier polynôme (11), en tirant parti d'un angle (LESA) de squelette au bord avant, qui est l'angle entre la tangente (7) au bord avant de la ligne (3) de squelette et la corde (13) de l'aube, de la longueur XS1 du bord (4) avant de l'aube jusqu'au point de la corde (13) de l'aube qui a la distance maximum à la ligne (3) de squelette et de la longueur S1, qui est la distance du point (30) extrême à la corde de l'aube,
    dans lequel on forme le deuxième polynôme (12), en tirant parti d'un angle (LESA) de squelette au bord arrière, qui est l'angle entre la tangente (8) au bord arrière de la ligne (3) de squelette et la corde (13) de l'aube, de la longueur S-XS1 du bord (5) arrière de l'aube au point (1) de la corde (13) de l'aube qui a la distance maximum à la ligne (3) de squelette et de la longueur S2 qui est la distance de la ligne (3) du squelette au point de la corde (13) de l'aube, qui a la distance xS1+0,5* (S-xS1) du bord (5) arrière de l'aube, S étant la longueur de la corde de l'aube.
  3. Procédé suivant la revendication 2,
    dans lequel, on modifie la ligne de squelette de manière à ce que S1 représente de 10,3 % à 11,3 % de la longueur S, que xS1 représente de 35,1 % à 38,4 % de la longueur S, que S2 représente de 64,8 % à 67,9 % de la longueur S1, que l'angle de squelette au bord arrière aille de 15,192° à 19,020° et que l'angle de squelette au bord avant aille de 37,663° à 39,256°.
  4. Procédé suivant la revendication 2,
    dans lequel, l'aube (14, 15) mobile de turbine a une partie transsonique et on modifie la ligne de squelette dans la partie transsonique de manière à ce que S1 représente de 7,6874 % à 7,9 % de la longueur S, que xS1 représente de 35,4311 % à 36,2 % de la longueur S, que S2 représente de 63 % à 65 % de la longueur S1, que l'angle de squelette au bord arrière aille de 11,02° à 12,3° et que l'angle de squelette au bord avant aille de 29,0° à 31,0°.
  5. Procédé suivant l'une des revendications 1 à 3,
    dans lequel l'aube (14, 15) mobile de turbine est indépendante.
  6. Procédé suivant l'une des revendications 1 à 5,
    dans lequel le modèle géométrique a une épaisseur variant suivant la ligne (3) de squelette que l'on laisse subsister pendant la modification de la ligne (3) de squelette.
  7. Procédé suivant l'une des revendications 1 à 6,
    dans lequel des conditions aux limites de l'écoulement sont données à partir de la condition de fonctionnement nominal de la turbomachine axiale.
  8. Procédé suivant l'une des revendications 1 à 7,
    dans lequel on détermine expérimentalement et/ou on détermine par le calcul le nombre de Mach isentrope.
  9. Procédé suivant l'une des revendications 1 à8,
    dans lequel on répète le procédé pour diverses parties du profil de l'aube (14, 15) mobile de turbine.
  10. Procédé suivant l'une des revendications 1 à 9,
    dans lequel la partie du profil se trouve sur une surface cylindrique ou sur une surface conique, dont les axes coïncident avec l'axe de la turbomachine axiale, sur une surface d'écoulement S1 ou dans un plan tangentiel de la turbomachine axiale.
  11. Procédé suivant l'une des revendications 1 à 10,
    dans lequel la turbomachine axiale est une turbine à gaz ou une turbine à vapeur.
  12. Procédé suivant l'une des revendications 1 à 11,
    dans lequel on effectue le procédé pour des parties du profil qui se trouvent dans la moitié extérieure radialement des aubes mobiles de turbine.
  13. Aube mobile de turbine d'une turbomachine axiale, comprenant un profil d'aube qui a une ligne (3) de squelette d'une partie du profil de l'aube (14, 15) mobile de turbine, la ligne (3) de squelette étant telle que, à l'aide des conditions aux limites d'un écoulement passant autour de l'aube (14, 15) mobile de turbine, l'écoulement qui s'établit provoque le maximum de la différence du nombre (22 à 25) de Mach isentrope entre l'intrados et l'extrados de l'aube (14, 15) mobile de turbine dans une partie de l'aube, qui s'étend à partir du bord (5) arrière de l'aube en direction du bord (4) avant de l'aube et qui a une longueur représentant 65 % de la longueur S de la corde de l'aube,
    la ligne (3) de squelette étant formée par un premier polynôme (11) du quatrième degré, qui décrit la ligne (3) du squelette du bord (4) avant de l'aube à un point (30) extrême, et par un deuxième polynôme (12) du quatrième degré, qui décrit la ligne (3) de squelette du point (3) extrême au bord (5) arrière de l'aube,
    dans laquelle le point (30) extrême est le point de la ligne (3) de squelette, qui a la distance maximum à la corde (13) de l'aube,
    dans laquelle le premier polynôme (11) est formé, en tirant parti d'un angle (LESA) du squelette au bord avant, qui est l'angle entre la tangente (7) au bord avant de la ligne (3) de squelette et la corde (13) de l'aube, de la longueur xS1 du bord (4) avant de l'aube jusqu'au point de la corde (13) de l'aube, qui a la distance maximum à la ligne (3) de squelette et de la longueur S1, qui est la distance du point (30) extrême à la corde de l'aube,
    dans laquelle le deuxième polynôme (12) est formé, en tirant parti d'un angle (LESA) du squelette au bord arrière, qui est l'angle entre la tangente (8) au bord arrière de la ligne (3) de squelette et la corde (13) de l'aube, de la longueur S-xS1 du bord (5) arrière de l'aube au point (1) de la corde (13) de l'aube, qui a la distance maximum à la ligne (3) de squelette et de la longueur S2, qui est la distance de la ligne (3) de squelette au point de la corde (13) de l'aube, qui a la distance xS1+0,5* (S-xS1) du bord (5) arrière de l'aube, S étant la longueur de la corde de l'aube,
    dans laquelle la ligne de squelette est telle que S1 représente de 10,3 % à 11,3 % de la longueur S, que xS1 représente de 35,1 % à 38,4 % de la longueur S, que S2 représente de 64,8 % à 67,9 % de la longueur S1, que l'angle de squelette au bord arrière aille de 15,192° à 19,020° et que l'angle du squelette au bord avant aille de 37,663° à 39,256°,
    ou
    dans laquelle l'aube (14, 15) mobile de turbine a une partie transsonique et on modifie la ligne de squelette dans la partie transsonique de manière à ce que S1 représente de 7,6874 % à 7,9 % de la longueur S, que xS1 représente de 35,4311 % à 36,2 % de la longueur S, que S2 représente de 63 % à 65 % de la longueur S1, que l'angle du squelette au bord arrière aille de 11,02° à 12,3° et que l'angle du squelette au bord avant aille de 29,0° à 31,0°.
  14. Turbomachine axiale ayant une aube mobile de turbine suivant la revendication 13, dans laquelle l'aube (14, 15) mobile de turbine est indépendante et la turbomachine axiale est notamment une turbine à gaz ou une turbine à vapeur.
EP16716884.8A 2015-04-28 2016-04-18 Procédé de profilage d'une aube de turbine et aube correspondante Active EP3274558B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP15165330.0A EP3088663A1 (fr) 2015-04-28 2015-04-28 Procédé de profilage d'une aube
PCT/EP2016/058559 WO2016173875A1 (fr) 2015-04-28 2016-04-18 Procédé pour le profilage d'une aube de rotor de turbine, et aube de turbine correspondante

Publications (2)

Publication Number Publication Date
EP3274558A1 EP3274558A1 (fr) 2018-01-31
EP3274558B1 true EP3274558B1 (fr) 2021-03-17

Family

ID=53039740

Family Applications (2)

Application Number Title Priority Date Filing Date
EP15165330.0A Withdrawn EP3088663A1 (fr) 2015-04-28 2015-04-28 Procédé de profilage d'une aube
EP16716884.8A Active EP3274558B1 (fr) 2015-04-28 2016-04-18 Procédé de profilage d'une aube de turbine et aube correspondante

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP15165330.0A Withdrawn EP3088663A1 (fr) 2015-04-28 2015-04-28 Procédé de profilage d'une aube

Country Status (5)

Country Link
US (1) US10563511B2 (fr)
EP (2) EP3088663A1 (fr)
JP (1) JP6524258B2 (fr)
CN (1) CN107592896B (fr)
WO (1) WO2016173875A1 (fr)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3081751B1 (fr) 2015-04-14 2020-10-21 Ansaldo Energia Switzerland AG Profil aérodynamique refroidi et procédé de fabrication dudit profil aérodynamique
EP3205885A1 (fr) * 2016-02-10 2017-08-16 Siemens Aktiengesellschaft Aube de rotor de compresseur et procédé de profilage d'une telle aube
EP3239460A1 (fr) * 2016-04-27 2017-11-01 Siemens Aktiengesellschaft Procede de profilage d'aubes d'une turbomachine axiale
US10563512B2 (en) 2017-10-25 2020-02-18 United Technologies Corporation Gas turbine engine airfoil
GB201719539D0 (en) * 2017-11-24 2018-01-10 Rolls Royce Plc Gas Turbine Engine
FR3089553B1 (fr) 2018-12-11 2021-01-22 Safran Aircraft Engines Aube de turbomachine a loi de fleche a forte marge au flottement
CN110990994B (zh) * 2019-10-23 2023-10-31 东北大学 一种基于Matlab和UG的涡轮叶片参数化造型方法
US20210381385A1 (en) * 2020-06-03 2021-12-09 Honeywell International Inc. Characteristic distribution for rotor blade of booster rotor
DE102021123281A1 (de) 2021-09-08 2023-03-09 MTU Aero Engines AG Schaufelblatt für einen Verdichter einer Strömungsmaschine
JP2023114509A (ja) * 2022-02-07 2023-08-18 本田技研工業株式会社 ターボ機器及びターボ機器の設計方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4919593A (en) 1988-08-30 1990-04-24 Westinghouse Electric Corp. Retrofitted rotor blades for steam turbines and method of making the same
US5203676A (en) 1992-03-05 1993-04-20 Westinghouse Electric Corp. Ruggedized tapered twisted integral shroud blade
US6129528A (en) * 1998-07-20 2000-10-10 Nmb Usa Inc. Axial flow fan having a compact circuit board and impeller blade arrangement
DE102005025213B4 (de) * 2005-06-01 2014-05-15 Honda Motor Co., Ltd. Schaufel einer Axialströmungsmaschine
DE102006026968A1 (de) * 2006-06-09 2008-01-24 Rolls-Royce Deutschland Ltd & Co Kg Strömungsarbeitsmaschine mit Rotoren hoher spezifischer Energieabgabe
GB0821429D0 (en) * 2008-11-24 2008-12-31 Rolls Royce Plc A method for optimising the shape of an aerofoil
JP4923073B2 (ja) 2009-02-25 2012-04-25 株式会社日立製作所 遷音速翼
EP2299124A1 (fr) * 2009-09-04 2011-03-23 Siemens Aktiengesellschaft Aube de rotor pour un compresseur axial
GB201003084D0 (en) * 2010-02-24 2010-04-14 Rolls Royce Plc An aerofoil
WO2012019650A1 (fr) * 2010-08-12 2012-02-16 Nuovo Pignone S.P.A. Aube de diffuseur radiale destinée à des compresseurs centrifuges
US9309769B2 (en) * 2010-12-28 2016-04-12 Rolls-Royce Corporation Gas turbine engine airfoil shaped component
GB201103222D0 (en) * 2011-02-24 2011-04-13 Imp Innovations Ltd A turbine wheel,a turbine and a use thereof
FR2991373B1 (fr) * 2012-05-31 2014-06-20 Snecma Aube de soufflante pour turboreacteur d'avion a profil cambre en sections de pied
GB201309280D0 (en) * 2013-05-23 2013-07-10 Rolls Royce Plc Aerofoil Recambering
US10443390B2 (en) * 2014-08-27 2019-10-15 Pratt & Whitney Canada Corp. Rotary airfoil

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3088663A1 (fr) 2016-11-02
CN107592896B (zh) 2019-11-29
JP6524258B2 (ja) 2019-06-05
US10563511B2 (en) 2020-02-18
WO2016173875A1 (fr) 2016-11-03
EP3274558A1 (fr) 2018-01-31
US20180100399A1 (en) 2018-04-12
JP2018519452A (ja) 2018-07-19
CN107592896A (zh) 2018-01-16

Similar Documents

Publication Publication Date Title
EP3274558B1 (fr) Procédé de profilage d'une aube de turbine et aube correspondante
DE102005025213B4 (de) Schaufel einer Axialströmungsmaschine
EP2473743B1 (fr) Aube mobile de compresseur pour un compresseur axial
EP2623793B1 (fr) Turbomachine avec grille d'aubes
EP2696029B1 (fr) Grille d'aube avec définition de contour de la paroi latérale et turbomachine
EP3473431B1 (fr) Pale et rotor pour une turbomachine ainsi que turbomachine
DE102010038020A1 (de) Abgasdiffusor
DE102012104240B4 (de) Hybridströmungs-Schaufeldesigns
DE2636524B2 (de) Verfahren zur Erhöhung des Strömungsmitteldruckes eines Diffusors
EP2805017B1 (fr) Stator pour une turbomachine axiale et procédé de dimensionnement du stator
DE102004029109A1 (de) Francisturbine
DE102014226689A1 (de) Rotor-Schaufelblatt einer Axialströmungsmaschine
EP3426895B1 (fr) Procédé de profilage d'aubes d'une turbomachine axiale
DE102013219814B3 (de) Axialverdichter
AT525734B1 (de) Leitschaufel
EP2087149A2 (fr) Aube pour compresseur ou turbine d'un turboréacteur, turboréacteur présentant une telle aube, et procédé de recouvrement d'une aube de turboréacteur
DE102019008248B4 (de) Strömungsprofil und damit ausgestattete mechanische maschine
EP3163019B1 (fr) Aube
EP3183430B1 (fr) Aube mobile de turbine
DE102014200644A1 (de) Strangprofil zur Herstellung einer Schaufel eines Nachleitrads
EP3390833B1 (fr) Aube de rotor de compresseur et procede de profilage d'une telle aube
DE102012222953A1 (de) Flügelprofil für einen Axialströmungskompressor
DE102017216620A1 (de) Schaufel für eine Strömungsmaschine
EP3362648B1 (fr) Procede de fabrication d'un corps de base d'un aube de turbine
DE102021130681A1 (de) Dampturbinen-laufschaufel und herstellungsverfahren und aufarbeitungsverfahren einer dampfturbinen-laufschaufel

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20171005

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20201110

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016012599

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1372402

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210415

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG, CH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210618

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210617

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210617

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210717

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210719

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016012599

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210418

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210430

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

26N No opposition filed

Effective date: 20211220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210717

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1372402

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230421

Year of fee payment: 8

Ref country code: FR

Payment date: 20230421

Year of fee payment: 8

Ref country code: DE

Payment date: 20220617

Year of fee payment: 8

Ref country code: CH

Payment date: 20230502

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230418

Year of fee payment: 8

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20231222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317