EP3274144A1 - Procédé de production de matières lignocellulosiques monocouches ou multicouches à l'aide de trialkylphosphate - Google Patents
Procédé de production de matières lignocellulosiques monocouches ou multicouches à l'aide de trialkylphosphateInfo
- Publication number
- EP3274144A1 EP3274144A1 EP16714267.8A EP16714267A EP3274144A1 EP 3274144 A1 EP3274144 A1 EP 3274144A1 EP 16714267 A EP16714267 A EP 16714267A EP 3274144 A1 EP3274144 A1 EP 3274144A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- component
- weight
- layer
- lignocellulose
- lcp
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000000463 material Substances 0.000 title claims abstract description 54
- 229910019142 PO4 Inorganic materials 0.000 title claims abstract description 21
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 17
- 239000010452 phosphate Substances 0.000 title claims abstract description 15
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 title claims abstract description 15
- 239000000203 mixture Substances 0.000 claims abstract description 107
- 239000002245 particle Substances 0.000 claims abstract description 99
- 239000010410 layer Substances 0.000 claims abstract description 88
- 238000000034 method Methods 0.000 claims abstract description 67
- 239000011230 binding agent Substances 0.000 claims abstract description 60
- 229920000642 polymer Polymers 0.000 claims abstract description 58
- 102100035182 Plastin-2 Human genes 0.000 claims abstract description 55
- 101710081231 Plastin-2 Proteins 0.000 claims abstract description 55
- 229920005989 resin Polymers 0.000 claims abstract description 41
- 239000011347 resin Substances 0.000 claims abstract description 41
- 229920003180 amino resin Polymers 0.000 claims abstract description 35
- 239000012948 isocyanate Substances 0.000 claims abstract description 32
- 150000002513 isocyanates Chemical class 0.000 claims abstract description 32
- 229920003023 plastic Polymers 0.000 claims abstract description 31
- 239000004033 plastic Substances 0.000 claims abstract description 31
- 239000002356 single layer Substances 0.000 claims abstract description 27
- 229920001568 phenolic resin Polymers 0.000 claims abstract description 26
- 238000002156 mixing Methods 0.000 claims abstract description 17
- 239000000654 additive Substances 0.000 claims abstract description 16
- 239000004848 polyfunctional curative Substances 0.000 claims abstract description 16
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 claims abstract description 13
- 102000004169 proteins and genes Human genes 0.000 claims abstract description 9
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 9
- -1 triproplyphosphate Chemical compound 0.000 claims description 48
- 239000012978 lignocellulosic material Substances 0.000 claims description 34
- 230000008569 process Effects 0.000 claims description 31
- 238000010276 construction Methods 0.000 claims description 10
- DQWPFSLDHJDLRL-UHFFFAOYSA-N triethyl phosphate Chemical compound CCOP(=O)(OCC)OCC DQWPFSLDHJDLRL-UHFFFAOYSA-N 0.000 claims description 9
- 238000005056 compaction Methods 0.000 claims description 6
- 238000007731 hot pressing Methods 0.000 claims description 6
- 238000010924 continuous production Methods 0.000 claims description 4
- WVLBCYQITXONBZ-UHFFFAOYSA-N trimethyl phosphate Chemical compound COP(=O)(OC)OC WVLBCYQITXONBZ-UHFFFAOYSA-N 0.000 claims description 3
- 239000012876 carrier material Substances 0.000 claims description 2
- 239000005022 packaging material Substances 0.000 claims description 2
- 238000005192 partition Methods 0.000 claims description 2
- STCOOQWBFONSKY-UHFFFAOYSA-N tributyl phosphate Chemical compound CCCCOP(=O)(OCCCC)OCCCC STCOOQWBFONSKY-UHFFFAOYSA-N 0.000 claims description 2
- SFENPMLASUEABX-UHFFFAOYSA-N trihexyl phosphate Chemical compound CCCCCCOP(=O)(OCCCCCC)OCCCCCC SFENPMLASUEABX-UHFFFAOYSA-N 0.000 claims description 2
- QJAVUVZBMMXBRO-UHFFFAOYSA-N tripentyl phosphate Chemical compound CCCCCOP(=O)(OCCCCC)OCCCCC QJAVUVZBMMXBRO-UHFFFAOYSA-N 0.000 claims description 2
- 238000009415 formwork Methods 0.000 claims 1
- 238000003825 pressing Methods 0.000 abstract description 14
- 239000000178 monomer Substances 0.000 description 84
- 239000002023 wood Substances 0.000 description 47
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 42
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 27
- 238000006116 polymerization reaction Methods 0.000 description 19
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 18
- 229920001577 copolymer Polymers 0.000 description 18
- 101100379142 Mus musculus Anxa1 gene Proteins 0.000 description 17
- 239000002253 acid Substances 0.000 description 16
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 15
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 15
- 235000021317 phosphate Nutrition 0.000 description 14
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 14
- 239000003995 emulsifying agent Substances 0.000 description 13
- 239000000835 fiber Substances 0.000 description 13
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 12
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 12
- 150000002148 esters Chemical class 0.000 description 12
- 239000003292 glue Substances 0.000 description 12
- 238000010438 heat treatment Methods 0.000 description 12
- 239000011241 protective layer Substances 0.000 description 12
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 11
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 10
- 239000004793 Polystyrene Substances 0.000 description 10
- 150000001298 alcohols Chemical class 0.000 description 10
- 239000011093 chipboard Substances 0.000 description 10
- 150000001875 compounds Chemical class 0.000 description 10
- 239000006185 dispersion Substances 0.000 description 10
- 230000005684 electric field Effects 0.000 description 10
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 10
- 239000011976 maleic acid Substances 0.000 description 10
- 239000005011 phenolic resin Substances 0.000 description 10
- 229920002223 polystyrene Polymers 0.000 description 10
- 238000002360 preparation method Methods 0.000 description 10
- 239000004094 surface-active agent Substances 0.000 description 10
- 125000004432 carbon atom Chemical group C* 0.000 description 9
- 235000014113 dietary fatty acids Nutrition 0.000 description 9
- 239000000839 emulsion Substances 0.000 description 9
- 229930195729 fatty acid Natural products 0.000 description 9
- 239000000194 fatty acid Substances 0.000 description 9
- 239000011094 fiberboard Substances 0.000 description 9
- 239000004604 Blowing Agent Substances 0.000 description 8
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 8
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical group NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 8
- 150000007513 acids Chemical class 0.000 description 8
- 239000003990 capacitor Substances 0.000 description 8
- 150000003839 salts Chemical class 0.000 description 8
- 239000007787 solid Substances 0.000 description 8
- PAWQVTBBRAZDMG-UHFFFAOYSA-N 2-(3-bromo-2-fluorophenyl)acetic acid Chemical compound OC(=O)CC1=CC=CC(Br)=C1F PAWQVTBBRAZDMG-UHFFFAOYSA-N 0.000 description 7
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical group OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 7
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 7
- 150000003863 ammonium salts Chemical class 0.000 description 7
- 150000004665 fatty acids Chemical class 0.000 description 7
- 150000002763 monocarboxylic acids Chemical class 0.000 description 7
- 229920005862 polyol Polymers 0.000 description 7
- 150000003077 polyols Chemical class 0.000 description 7
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 6
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 6
- 235000010469 Glycine max Nutrition 0.000 description 6
- 229920000877 Melamine resin Polymers 0.000 description 6
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 6
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 6
- 229920001807 Urea-formaldehyde Polymers 0.000 description 6
- 150000001299 aldehydes Chemical class 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 6
- 239000000084 colloidal system Substances 0.000 description 6
- 230000006835 compression Effects 0.000 description 6
- 238000007906 compression Methods 0.000 description 6
- 150000001991 dicarboxylic acids Chemical class 0.000 description 6
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 6
- 238000007720 emulsion polymerization reaction Methods 0.000 description 6
- 229920001519 homopolymer Polymers 0.000 description 6
- QWTDNUCVQCZILF-UHFFFAOYSA-N isopentane Chemical compound CCC(C)C QWTDNUCVQCZILF-UHFFFAOYSA-N 0.000 description 6
- 239000002609 medium Substances 0.000 description 6
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 6
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 6
- 229920002635 polyurethane Polymers 0.000 description 6
- 239000004814 polyurethane Substances 0.000 description 6
- 230000001681 protective effect Effects 0.000 description 6
- 235000018102 proteins Nutrition 0.000 description 6
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 6
- 229920002522 Wood fibre Polymers 0.000 description 5
- 125000000129 anionic group Chemical group 0.000 description 5
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 239000004849 latent hardener Substances 0.000 description 5
- 150000007524 organic acids Chemical class 0.000 description 5
- 235000005985 organic acids Nutrition 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 239000003380 propellant Substances 0.000 description 5
- 238000005507 spraying Methods 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 150000003871 sulfonates Chemical class 0.000 description 5
- 229920002554 vinyl polymer Polymers 0.000 description 5
- 239000002025 wood fiber Substances 0.000 description 5
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 4
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 4
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 4
- SJIXRGNQPBQWMK-UHFFFAOYSA-N 2-(diethylamino)ethyl 2-methylprop-2-enoate Chemical compound CCN(CC)CCOC(=O)C(C)=C SJIXRGNQPBQWMK-UHFFFAOYSA-N 0.000 description 4
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 4
- YIWUKEYIRIRTPP-UHFFFAOYSA-N 2-ethylhexan-1-ol Chemical compound CCCCC(CC)CO YIWUKEYIRIRTPP-UHFFFAOYSA-N 0.000 description 4
- KUDUQBURMYMBIJ-UHFFFAOYSA-N 2-prop-2-enoyloxyethyl prop-2-enoate Chemical compound C=CC(=O)OCCOC(=O)C=C KUDUQBURMYMBIJ-UHFFFAOYSA-N 0.000 description 4
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 description 4
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 4
- 239000004593 Epoxy Substances 0.000 description 4
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical compound OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 4
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 4
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 4
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 4
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 4
- 150000001412 amines Chemical class 0.000 description 4
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 4
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 4
- 235000011130 ammonium sulphate Nutrition 0.000 description 4
- 150000008064 anhydrides Chemical class 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 125000002091 cationic group Chemical group 0.000 description 4
- 238000004132 cross linking Methods 0.000 description 4
- 150000002170 ethers Chemical class 0.000 description 4
- 238000010528 free radical solution polymerization reaction Methods 0.000 description 4
- 239000001530 fumaric acid Substances 0.000 description 4
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 4
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 4
- FQPSGWSUVKBHSU-UHFFFAOYSA-N methacrylamide Chemical compound CC(=C)C(N)=O FQPSGWSUVKBHSU-UHFFFAOYSA-N 0.000 description 4
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 4
- 150000007522 mineralic acids Chemical class 0.000 description 4
- 150000002989 phenols Chemical class 0.000 description 4
- 238000006068 polycondensation reaction Methods 0.000 description 4
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical compound OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 235000000346 sugar Nutrition 0.000 description 4
- OMIGHNLMNHATMP-UHFFFAOYSA-N 2-hydroxyethyl prop-2-enoate Chemical compound OCCOC(=O)C=C OMIGHNLMNHATMP-UHFFFAOYSA-N 0.000 description 3
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 3
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 3
- JHWGFJBTMHEZME-UHFFFAOYSA-N 4-prop-2-enoyloxybutyl prop-2-enoate Chemical compound C=CC(=O)OCCCCOC(=O)C=C JHWGFJBTMHEZME-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical class C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 3
- 239000004971 Cross linker Substances 0.000 description 3
- 241000196324 Embryophyta Species 0.000 description 3
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 3
- 239000005977 Ethylene Substances 0.000 description 3
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 3
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 description 3
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 3
- 241000218657 Picea Species 0.000 description 3
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 3
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 3
- 238000004026 adhesive bonding Methods 0.000 description 3
- 125000001931 aliphatic group Chemical group 0.000 description 3
- 229910052783 alkali metal Inorganic materials 0.000 description 3
- 125000000217 alkyl group Chemical group 0.000 description 3
- 150000001408 amides Chemical class 0.000 description 3
- 239000012736 aqueous medium Substances 0.000 description 3
- 150000001735 carboxylic acids Chemical class 0.000 description 3
- 235000013339 cereals Nutrition 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 238000009833 condensation Methods 0.000 description 3
- 230000005494 condensation Effects 0.000 description 3
- AFABGHUZZDYHJO-UHFFFAOYSA-N dimethyl butane Natural products CCCC(C)C AFABGHUZZDYHJO-UHFFFAOYSA-N 0.000 description 3
- 150000002009 diols Chemical class 0.000 description 3
- 239000002270 dispersing agent Substances 0.000 description 3
- 229920006248 expandable polystyrene Polymers 0.000 description 3
- 150000002191 fatty alcohols Chemical class 0.000 description 3
- 235000019253 formic acid Nutrition 0.000 description 3
- VOZRXNHHFUQHIL-UHFFFAOYSA-N glycidyl methacrylate Chemical compound CC(=C)C(=O)OCC1CO1 VOZRXNHHFUQHIL-UHFFFAOYSA-N 0.000 description 3
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 3
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 3
- 239000003999 initiator Substances 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- RPQRDASANLAFCM-UHFFFAOYSA-N oxiran-2-ylmethyl prop-2-enoate Chemical compound C=CC(=O)OCC1CO1 RPQRDASANLAFCM-UHFFFAOYSA-N 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 229920000768 polyamine Polymers 0.000 description 3
- 229920001451 polypropylene glycol Polymers 0.000 description 3
- 150000003141 primary amines Chemical class 0.000 description 3
- 150000003254 radicals Chemical class 0.000 description 3
- 229920001169 thermoplastic Polymers 0.000 description 3
- 150000004072 triols Chemical class 0.000 description 3
- 238000005303 weighing Methods 0.000 description 3
- VDYWHVQKENANGY-UHFFFAOYSA-N 1,3-Butyleneglycol dimethacrylate Chemical compound CC(=C)C(=O)OC(C)CCOC(=O)C(C)=C VDYWHVQKENANGY-UHFFFAOYSA-N 0.000 description 2
- AFFLGGQVNFXPEV-UHFFFAOYSA-N 1-decene Chemical compound CCCCCCCCC=C AFFLGGQVNFXPEV-UHFFFAOYSA-N 0.000 description 2
- BJELTSYBAHKXRW-UHFFFAOYSA-N 2,4,6-triallyloxy-1,3,5-triazine Chemical compound C=CCOC1=NC(OCC=C)=NC(OCC=C)=N1 BJELTSYBAHKXRW-UHFFFAOYSA-N 0.000 description 2
- VOZKAJLKRJDJLL-UHFFFAOYSA-N 2,4-diaminotoluene Chemical compound CC1=CC=C(N)C=C1N VOZKAJLKRJDJLL-UHFFFAOYSA-N 0.000 description 2
- JJBFVQSGPLGDNX-UHFFFAOYSA-N 2-(2-methylprop-2-enoyloxy)propyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC(C)COC(=O)C(C)=C JJBFVQSGPLGDNX-UHFFFAOYSA-N 0.000 description 2
- OEPOKWHJYJXUGD-UHFFFAOYSA-N 2-(3-phenylmethoxyphenyl)-1,3-thiazole-4-carbaldehyde Chemical compound O=CC1=CSC(C=2C=C(OCC=3C=CC=CC=3)C=CC=2)=N1 OEPOKWHJYJXUGD-UHFFFAOYSA-N 0.000 description 2
- JKNCOURZONDCGV-UHFFFAOYSA-N 2-(dimethylamino)ethyl 2-methylprop-2-enoate Chemical compound CN(C)CCOC(=O)C(C)=C JKNCOURZONDCGV-UHFFFAOYSA-N 0.000 description 2
- DPBJAVGHACCNRL-UHFFFAOYSA-N 2-(dimethylamino)ethyl prop-2-enoate Chemical compound CN(C)CCOC(=O)C=C DPBJAVGHACCNRL-UHFFFAOYSA-N 0.000 description 2
- 229920000536 2-Acrylamido-2-methylpropane sulfonic acid Polymers 0.000 description 2
- XHZPRMZZQOIPDS-UHFFFAOYSA-N 2-Methyl-2-[(1-oxo-2-propenyl)amino]-1-propanesulfonic acid Chemical compound OS(=O)(=O)CC(C)(C)NC(=O)C=C XHZPRMZZQOIPDS-UHFFFAOYSA-N 0.000 description 2
- ISRGONDNXBCDBM-UHFFFAOYSA-N 2-chlorostyrene Chemical compound ClC1=CC=CC=C1C=C ISRGONDNXBCDBM-UHFFFAOYSA-N 0.000 description 2
- MLMGJTAJUDSUKA-UHFFFAOYSA-N 2-ethenyl-1h-imidazole Chemical compound C=CC1=NC=CN1 MLMGJTAJUDSUKA-UHFFFAOYSA-N 0.000 description 2
- AGBXYHCHUYARJY-UHFFFAOYSA-N 2-phenylethenesulfonic acid Chemical compound OS(=O)(=O)C=CC1=CC=CC=C1 AGBXYHCHUYARJY-UHFFFAOYSA-N 0.000 description 2
- YHSYGCXKWUUKIK-UHFFFAOYSA-N 2-prop-2-enoyloxyethyl 3-oxobutanoate Chemical compound CC(=O)CC(=O)OCCOC(=O)C=C YHSYGCXKWUUKIK-UHFFFAOYSA-N 0.000 description 2
- VFZKVQVQOMDJEG-UHFFFAOYSA-N 2-prop-2-enoyloxypropyl prop-2-enoate Chemical compound C=CC(=O)OC(C)COC(=O)C=C VFZKVQVQOMDJEG-UHFFFAOYSA-N 0.000 description 2
- KGIGUEBEKRSTEW-UHFFFAOYSA-N 2-vinylpyridine Chemical compound C=CC1=CC=CC=N1 KGIGUEBEKRSTEW-UHFFFAOYSA-N 0.000 description 2
- HTWRFCRQSLVESJ-UHFFFAOYSA-N 3-(2-methylprop-2-enoyloxy)propyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCCOC(=O)C(C)=C HTWRFCRQSLVESJ-UHFFFAOYSA-N 0.000 description 2
- XHTOIFCGKIBYRK-UHFFFAOYSA-N 3-(carbamoylamino)-2-methylprop-2-enoic acid Chemical compound OC(=O)C(C)=CNC(N)=O XHTOIFCGKIBYRK-UHFFFAOYSA-N 0.000 description 2
- FQMIAEWUVYWVNB-UHFFFAOYSA-N 3-prop-2-enoyloxybutyl prop-2-enoate Chemical compound C=CC(=O)OC(C)CCOC(=O)C=C FQMIAEWUVYWVNB-UHFFFAOYSA-N 0.000 description 2
- GFLJTEHFZZNCTR-UHFFFAOYSA-N 3-prop-2-enoyloxypropyl prop-2-enoate Chemical compound C=CC(=O)OCCCOC(=O)C=C GFLJTEHFZZNCTR-UHFFFAOYSA-N 0.000 description 2
- XOJWAAUYNWGQAU-UHFFFAOYSA-N 4-(2-methylprop-2-enoyloxy)butyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCCCOC(=O)C(C)=C XOJWAAUYNWGQAU-UHFFFAOYSA-N 0.000 description 2
- DBCAQXHNJOFNGC-UHFFFAOYSA-N 4-bromo-1,1,1-trifluorobutane Chemical compound FC(F)(F)CCCBr DBCAQXHNJOFNGC-UHFFFAOYSA-N 0.000 description 2
- KFDVPJUYSDEJTH-UHFFFAOYSA-N 4-ethenylpyridine Chemical compound C=CC1=CC=NC=C1 KFDVPJUYSDEJTH-UHFFFAOYSA-N 0.000 description 2
- HGINCPLSRVDWNT-UHFFFAOYSA-N Acrolein Chemical compound C=CC=O HGINCPLSRVDWNT-UHFFFAOYSA-N 0.000 description 2
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 2
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 235000017166 Bambusa arundinacea Nutrition 0.000 description 2
- 235000017491 Bambusa tulda Nutrition 0.000 description 2
- FIWRUIQDDCPCOQ-UHFFFAOYSA-N C=CC(=O)OC1C=CC=C1 Chemical compound C=CC(=O)OC1C=CC=C1 FIWRUIQDDCPCOQ-UHFFFAOYSA-N 0.000 description 2
- 244000025254 Cannabis sativa Species 0.000 description 2
- 235000012766 Cannabis sativa ssp. sativa var. sativa Nutrition 0.000 description 2
- 235000012765 Cannabis sativa ssp. sativa var. spontanea Nutrition 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- RGSFGYAAUTVSQA-UHFFFAOYSA-N Cyclopentane Chemical compound C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 2
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 2
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 2
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 2
- 240000000731 Fagus sylvatica Species 0.000 description 2
- 235000010099 Fagus sylvatica Nutrition 0.000 description 2
- 239000013032 Hydrocarbon resin Substances 0.000 description 2
- 235000004431 Linum usitatissimum Nutrition 0.000 description 2
- 240000006240 Linum usitatissimum Species 0.000 description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 2
- GYCMBHHDWRMZGG-UHFFFAOYSA-N Methylacrylonitrile Chemical compound CC(=C)C#N GYCMBHHDWRMZGG-UHFFFAOYSA-N 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- 229930040373 Paraformaldehyde Natural products 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Natural products OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 244000082204 Phyllostachys viridis Species 0.000 description 2
- 235000015334 Phyllostachys viridis Nutrition 0.000 description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 2
- 239000004721 Polyphenylene oxide Substances 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- QQONPFPTGQHPMA-UHFFFAOYSA-N Propene Chemical compound CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 2
- 229920002125 Sokalan® Polymers 0.000 description 2
- 108010073771 Soybean Proteins Proteins 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 2
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical compound C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 description 2
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 2
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 2
- 125000003368 amide group Chemical group 0.000 description 2
- 150000001414 amino alcohols Chemical class 0.000 description 2
- 235000019270 ammonium chloride Nutrition 0.000 description 2
- 239000002280 amphoteric surfactant Substances 0.000 description 2
- 239000003945 anionic surfactant Substances 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 2
- 239000008346 aqueous phase Substances 0.000 description 2
- 239000007900 aqueous suspension Substances 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 239000011425 bamboo Substances 0.000 description 2
- HUMNYLRZRPPJDN-UHFFFAOYSA-N benzaldehyde Chemical compound O=CC1=CC=CC=C1 HUMNYLRZRPPJDN-UHFFFAOYSA-N 0.000 description 2
- ZPOLOEWJWXZUSP-AATRIKPKSA-N bis(prop-2-enyl) (e)-but-2-enedioate Chemical compound C=CCOC(=O)\C=C\C(=O)OCC=C ZPOLOEWJWXZUSP-AATRIKPKSA-N 0.000 description 2
- ZPOLOEWJWXZUSP-WAYWQWQTSA-N bis(prop-2-enyl) (z)-but-2-enedioate Chemical compound C=CCOC(=O)\C=C/C(=O)OCC=C ZPOLOEWJWXZUSP-WAYWQWQTSA-N 0.000 description 2
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 description 2
- CDQSJQSWAWPGKG-UHFFFAOYSA-N butane-1,1-diol Chemical compound CCCC(O)O CDQSJQSWAWPGKG-UHFFFAOYSA-N 0.000 description 2
- 235000009120 camo Nutrition 0.000 description 2
- 239000004202 carbamide Substances 0.000 description 2
- 235000013877 carbamide Nutrition 0.000 description 2
- 125000001951 carbamoylamino group Chemical group C(N)(=O)N* 0.000 description 2
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 239000003093 cationic surfactant Substances 0.000 description 2
- 235000005607 chanvre indien Nutrition 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- YMHQVDAATAEZLO-UHFFFAOYSA-N cyclohexane-1,1-diamine Chemical compound NC1(N)CCCCC1 YMHQVDAATAEZLO-UHFFFAOYSA-N 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 150000001993 dienes Chemical class 0.000 description 2
- 150000005690 diesters Chemical class 0.000 description 2
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 2
- 238000011496 digital image analysis Methods 0.000 description 2
- LDCRTTXIJACKKU-ONEGZZNKSA-N dimethyl fumarate Chemical compound COC(=O)\C=C\C(=O)OC LDCRTTXIJACKKU-ONEGZZNKSA-N 0.000 description 2
- LDCRTTXIJACKKU-ARJAWSKDSA-N dimethyl maleate Chemical class COC(=O)\C=C/C(=O)OC LDCRTTXIJACKKU-ARJAWSKDSA-N 0.000 description 2
- WOZVHXUHUFLZGK-UHFFFAOYSA-N dimethyl terephthalate Chemical compound COC(=O)C1=CC=C(C(=O)OC)C=C1 WOZVHXUHUFLZGK-UHFFFAOYSA-N 0.000 description 2
- ZZTCPWRAHWXWCH-UHFFFAOYSA-N diphenylmethanediamine Chemical compound C=1C=CC=CC=1C(N)(N)C1=CC=CC=C1 ZZTCPWRAHWXWCH-UHFFFAOYSA-N 0.000 description 2
- SZXQTJUDPRGNJN-UHFFFAOYSA-N dipropylene glycol Chemical compound OCCCOCCCO SZXQTJUDPRGNJN-UHFFFAOYSA-N 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- FFYWKOUKJFCBAM-UHFFFAOYSA-N ethenyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC=C FFYWKOUKJFCBAM-UHFFFAOYSA-N 0.000 description 2
- MEGHWIAOTJPCHQ-UHFFFAOYSA-N ethenyl butanoate Chemical compound CCCC(=O)OC=C MEGHWIAOTJPCHQ-UHFFFAOYSA-N 0.000 description 2
- GLVVKKSPKXTQRB-UHFFFAOYSA-N ethenyl dodecanoate Chemical compound CCCCCCCCCCCC(=O)OC=C GLVVKKSPKXTQRB-UHFFFAOYSA-N 0.000 description 2
- AFSIMBWBBOJPJG-UHFFFAOYSA-N ethenyl octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC=C AFSIMBWBBOJPJG-UHFFFAOYSA-N 0.000 description 2
- BLCTWBJQROOONQ-UHFFFAOYSA-N ethenyl prop-2-enoate Chemical compound C=COC(=O)C=C BLCTWBJQROOONQ-UHFFFAOYSA-N 0.000 description 2
- UIWXSTHGICQLQT-UHFFFAOYSA-N ethenyl propanoate Chemical compound CCC(=O)OC=C UIWXSTHGICQLQT-UHFFFAOYSA-N 0.000 description 2
- SUPCQIBBMFXVTL-UHFFFAOYSA-N ethyl 2-methylprop-2-enoate Chemical compound CCOC(=O)C(C)=C SUPCQIBBMFXVTL-UHFFFAOYSA-N 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- STVZJERGLQHEKB-UHFFFAOYSA-N ethylene glycol dimethacrylate Substances CC(=C)C(=O)OCCOC(=O)C(C)=C STVZJERGLQHEKB-UHFFFAOYSA-N 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000004794 expanded polystyrene Substances 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 239000010685 fatty oil Substances 0.000 description 2
- 239000003063 flame retardant Substances 0.000 description 2
- 235000013312 flour Nutrition 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- HYBBIBNJHNGZAN-UHFFFAOYSA-N furfural Chemical compound O=CC1=CC=CO1 HYBBIBNJHNGZAN-UHFFFAOYSA-N 0.000 description 2
- 239000011487 hemp Substances 0.000 description 2
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 229920006270 hydrocarbon resin Polymers 0.000 description 2
- NNPPMTNAJDCUHE-UHFFFAOYSA-N isobutane Chemical compound CC(C)C NNPPMTNAJDCUHE-UHFFFAOYSA-N 0.000 description 2
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 2
- 150000002576 ketones Chemical class 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229920002521 macromolecule Polymers 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 150000002734 metacrylic acid derivatives Chemical class 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 125000005397 methacrylic acid ester group Chemical group 0.000 description 2
- ZIUHHBKFKCYYJD-UHFFFAOYSA-N n,n'-methylenebisacrylamide Chemical compound C=CC(=O)NCNC(=O)C=C ZIUHHBKFKCYYJD-UHFFFAOYSA-N 0.000 description 2
- OMNKZBIFPJNNIO-UHFFFAOYSA-N n-(2-methyl-4-oxopentan-2-yl)prop-2-enamide Chemical compound CC(=O)CC(C)(C)NC(=O)C=C OMNKZBIFPJNNIO-UHFFFAOYSA-N 0.000 description 2
- TVMXDCGIABBOFY-UHFFFAOYSA-N n-Octanol Natural products CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 2
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- CRSOQBOWXPBRES-UHFFFAOYSA-N neopentane Chemical compound CC(C)(C)C CRSOQBOWXPBRES-UHFFFAOYSA-N 0.000 description 2
- 239000002736 nonionic surfactant Substances 0.000 description 2
- 125000001400 nonyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 235000019198 oils Nutrition 0.000 description 2
- 239000012188 paraffin wax Substances 0.000 description 2
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 2
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 2
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 2
- 229920000570 polyether Polymers 0.000 description 2
- 229920000151 polyglycol Polymers 0.000 description 2
- 239000010695 polyglycol Substances 0.000 description 2
- 229920001955 polyphenylene ether Polymers 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 2
- FBCQUCJYYPMKRO-UHFFFAOYSA-N prop-2-enyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCC=C FBCQUCJYYPMKRO-UHFFFAOYSA-N 0.000 description 2
- QTECDUFMBMSHKR-UHFFFAOYSA-N prop-2-enyl prop-2-enoate Chemical compound C=CCOC(=O)C=C QTECDUFMBMSHKR-UHFFFAOYSA-N 0.000 description 2
- HJWLCRVIBGQPNF-UHFFFAOYSA-N prop-2-enylbenzene Chemical class C=CCC1=CC=CC=C1 HJWLCRVIBGQPNF-UHFFFAOYSA-N 0.000 description 2
- 229960004063 propylene glycol Drugs 0.000 description 2
- 239000005871 repellent Substances 0.000 description 2
- 230000002940 repellent Effects 0.000 description 2
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 2
- 150000003335 secondary amines Chemical class 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000000600 sorbitol Substances 0.000 description 2
- 229940001941 soy protein Drugs 0.000 description 2
- 238000003892 spreading Methods 0.000 description 2
- 230000007480 spreading Effects 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 238000010557 suspension polymerization reaction Methods 0.000 description 2
- 230000008961 swelling Effects 0.000 description 2
- 229920003002 synthetic resin Polymers 0.000 description 2
- 239000000057 synthetic resin Substances 0.000 description 2
- 150000003512 tertiary amines Chemical class 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- NLVXSWCKKBEXTG-UHFFFAOYSA-N vinylsulfonic acid Chemical compound OS(=O)(=O)C=C NLVXSWCKKBEXTG-UHFFFAOYSA-N 0.000 description 2
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 1
- JNYAEWCLZODPBN-JGWLITMVSA-N (2r,3r,4s)-2-[(1r)-1,2-dihydroxyethyl]oxolane-3,4-diol Chemical compound OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O JNYAEWCLZODPBN-JGWLITMVSA-N 0.000 description 1
- GGAUUQHSCNMCAU-ZXZARUISSA-N (2s,3r)-butane-1,2,3,4-tetracarboxylic acid Chemical compound OC(=O)C[C@H](C(O)=O)[C@H](C(O)=O)CC(O)=O GGAUUQHSCNMCAU-ZXZARUISSA-N 0.000 description 1
- KYPOHTVBFVELTG-OWOJBTEDSA-N (e)-but-2-enedinitrile Chemical compound N#C\C=C\C#N KYPOHTVBFVELTG-OWOJBTEDSA-N 0.000 description 1
- KYPOHTVBFVELTG-UPHRSURJSA-N (z)-but-2-enedinitrile Chemical compound N#C\C=C/C#N KYPOHTVBFVELTG-UPHRSURJSA-N 0.000 description 1
- ZWVMLYRJXORSEP-UHFFFAOYSA-N 1,2,6-Hexanetriol Chemical compound OCCCCC(O)CO ZWVMLYRJXORSEP-UHFFFAOYSA-N 0.000 description 1
- KOMNUTZXSVSERR-UHFFFAOYSA-N 1,3,5-tris(prop-2-enyl)-1,3,5-triazinane-2,4,6-trione Chemical compound C=CCN1C(=O)N(CC=C)C(=O)N(CC=C)C1=O KOMNUTZXSVSERR-UHFFFAOYSA-N 0.000 description 1
- NVZWEEGUWXZOKI-UHFFFAOYSA-N 1-ethenyl-2-methylbenzene Chemical compound CC1=CC=CC=C1C=C NVZWEEGUWXZOKI-UHFFFAOYSA-N 0.000 description 1
- JIABEENURMZTTI-UHFFFAOYSA-N 1-isocyanato-2-[(2-isocyanatophenyl)methyl]benzene Chemical compound O=C=NC1=CC=CC=C1CC1=CC=CC=C1N=C=O JIABEENURMZTTI-UHFFFAOYSA-N 0.000 description 1
- RTBFRGCFXZNCOE-UHFFFAOYSA-N 1-methylsulfonylpiperidin-4-one Chemical compound CS(=O)(=O)N1CCC(=O)CC1 RTBFRGCFXZNCOE-UHFFFAOYSA-N 0.000 description 1
- PISLZQACAJMAIO-UHFFFAOYSA-N 2,4-diethyl-6-methylbenzene-1,3-diamine Chemical compound CCC1=CC(C)=C(N)C(CC)=C1N PISLZQACAJMAIO-UHFFFAOYSA-N 0.000 description 1
- XZXYQEHISUMZAT-UHFFFAOYSA-N 2-[(2-hydroxy-5-methylphenyl)methyl]-4-methylphenol Chemical compound CC1=CC=C(O)C(CC=2C(=CC=C(C)C=2)O)=C1 XZXYQEHISUMZAT-UHFFFAOYSA-N 0.000 description 1
- WWILHZQYNPQALT-UHFFFAOYSA-N 2-methyl-2-morpholin-4-ylpropanal Chemical compound O=CC(C)(C)N1CCOCC1 WWILHZQYNPQALT-UHFFFAOYSA-N 0.000 description 1
- GNSFRPWPOGYVLO-UHFFFAOYSA-N 3-hydroxypropyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCCO GNSFRPWPOGYVLO-UHFFFAOYSA-N 0.000 description 1
- QZPSOSOOLFHYRR-UHFFFAOYSA-N 3-hydroxypropyl prop-2-enoate Chemical compound OCCCOC(=O)C=C QZPSOSOOLFHYRR-UHFFFAOYSA-N 0.000 description 1
- YKXAYLPDMSGWEV-UHFFFAOYSA-N 4-hydroxybutyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCCCO YKXAYLPDMSGWEV-UHFFFAOYSA-N 0.000 description 1
- NDWUBGAGUCISDV-UHFFFAOYSA-N 4-hydroxybutyl prop-2-enoate Chemical compound OCCCCOC(=O)C=C NDWUBGAGUCISDV-UHFFFAOYSA-N 0.000 description 1
- ISAVYTVYFVQUDY-UHFFFAOYSA-N 4-tert-Octylphenol Chemical compound CC(C)(C)CC(C)(C)C1=CC=C(O)C=C1 ISAVYTVYFVQUDY-UHFFFAOYSA-N 0.000 description 1
- QHPQWRBYOIRBIT-UHFFFAOYSA-N 4-tert-butylphenol Chemical compound CC(C)(C)C1=CC=C(O)C=C1 QHPQWRBYOIRBIT-UHFFFAOYSA-N 0.000 description 1
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Natural products C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- USFZMSVCRYTOJT-UHFFFAOYSA-N Ammonium acetate Chemical compound N.CC(O)=O USFZMSVCRYTOJT-UHFFFAOYSA-N 0.000 description 1
- 239000005695 Ammonium acetate Substances 0.000 description 1
- 239000004254 Ammonium phosphate Substances 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- XVAAJBDFAOHAHU-UHFFFAOYSA-N CC(C)(C)C.C1CCCC1 Chemical compound CC(C)(C)C.C1CCCC1 XVAAJBDFAOHAHU-UHFFFAOYSA-N 0.000 description 1
- 241001070941 Castanea Species 0.000 description 1
- 235000014036 Castanea Nutrition 0.000 description 1
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 description 1
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- PQUCIEFHOVEZAU-UHFFFAOYSA-N Diammonium sulfite Chemical compound [NH4+].[NH4+].[O-]S([O-])=O PQUCIEFHOVEZAU-UHFFFAOYSA-N 0.000 description 1
- UDSFAEKRVUSQDD-UHFFFAOYSA-N Dimethyl adipate Chemical compound COC(=O)CCCCC(=O)OC UDSFAEKRVUSQDD-UHFFFAOYSA-N 0.000 description 1
- MUXOBHXGJLMRAB-UHFFFAOYSA-N Dimethyl succinate Chemical compound COC(=O)CCC(=O)OC MUXOBHXGJLMRAB-UHFFFAOYSA-N 0.000 description 1
- SNRUBQQJIBEYMU-UHFFFAOYSA-N Dodecane Natural products CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 1
- 244000004281 Eucalyptus maculata Species 0.000 description 1
- BDAGIHXWWSANSR-UHFFFAOYSA-M Formate Chemical compound [O-]C=O BDAGIHXWWSANSR-UHFFFAOYSA-M 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 1
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 1
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 1
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 1
- 241000218652 Larix Species 0.000 description 1
- 235000005590 Larix decidua Nutrition 0.000 description 1
- 229920001732 Lignosulfonate Polymers 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- LGRFSURHDFAFJT-UHFFFAOYSA-N Phthalic anhydride Natural products C1=CC=C2C(=O)OC(=O)C2=C1 LGRFSURHDFAFJT-UHFFFAOYSA-N 0.000 description 1
- 235000008331 Pinus X rigitaeda Nutrition 0.000 description 1
- 241000018646 Pinus brutia Species 0.000 description 1
- 235000011613 Pinus brutia Nutrition 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 241000219000 Populus Species 0.000 description 1
- 235000019484 Rapeseed oil Nutrition 0.000 description 1
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Natural products O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- ULUAUXLGCMPNKK-UHFFFAOYSA-N Sulfobutanedioic acid Chemical class OC(=O)CC(C(O)=O)S(O)(=O)=O ULUAUXLGCMPNKK-UHFFFAOYSA-N 0.000 description 1
- 235000019486 Sunflower oil Nutrition 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- 240000007313 Tilia cordata Species 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- 239000012963 UV stabilizer Substances 0.000 description 1
- 229920004482 WACKER® Polymers 0.000 description 1
- RJRZRMYKFWYPNX-UHFFFAOYSA-N [NH4+].[NH4+].CCO.[O-]S([O-])(=O)=O Chemical compound [NH4+].[NH4+].CCO.[O-]S([O-])(=O)=O RJRZRMYKFWYPNX-UHFFFAOYSA-N 0.000 description 1
- HJWNFGSMRGAEKM-UHFFFAOYSA-N [O-]S([O-])=O.C1COCC[NH2+]1.C1COCC[NH2+]1 Chemical compound [O-]S([O-])=O.C1COCC[NH2+]1.C1COCC[NH2+]1 HJWNFGSMRGAEKM-UHFFFAOYSA-N 0.000 description 1
- IKHGUXGNUITLKF-XPULMUKRSA-N acetaldehyde Chemical compound [14CH]([14CH3])=O IKHGUXGNUITLKF-XPULMUKRSA-N 0.000 description 1
- 150000003926 acrylamides Chemical class 0.000 description 1
- 125000005396 acrylic acid ester group Chemical group 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 238000007259 addition reaction Methods 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 150000008055 alkyl aryl sulfonates Chemical class 0.000 description 1
- 150000004996 alkyl benzenes Chemical class 0.000 description 1
- 150000008051 alkyl sulfates Chemical class 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 235000019257 ammonium acetate Nutrition 0.000 description 1
- 229940043376 ammonium acetate Drugs 0.000 description 1
- SWLVFNYSXGMGBS-UHFFFAOYSA-N ammonium bromide Chemical compound [NH4+].[Br-] SWLVFNYSXGMGBS-UHFFFAOYSA-N 0.000 description 1
- VZTDIZULWFCMLS-UHFFFAOYSA-N ammonium formate Chemical compound [NH4+].[O-]C=O VZTDIZULWFCMLS-UHFFFAOYSA-N 0.000 description 1
- 229940107816 ammonium iodide Drugs 0.000 description 1
- 229910000148 ammonium phosphate Inorganic materials 0.000 description 1
- 235000019289 ammonium phosphates Nutrition 0.000 description 1
- JFCQEDHGNNZCLN-UHFFFAOYSA-N anhydrous glutaric acid Natural products OC(=O)CCCC(O)=O JFCQEDHGNNZCLN-UHFFFAOYSA-N 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- GDCXBZMWKSBSJG-UHFFFAOYSA-N azane;4-methylbenzenesulfonic acid Chemical compound [NH4+].CC1=CC=C(S([O-])(=O)=O)C=C1 GDCXBZMWKSBSJG-UHFFFAOYSA-N 0.000 description 1
- QHYIGPGWXQQZSA-UHFFFAOYSA-N azane;methanesulfonic acid Chemical compound [NH4+].CS([O-])(=O)=O QHYIGPGWXQQZSA-UHFFFAOYSA-N 0.000 description 1
- UQMAGTDNXKWWME-UHFFFAOYSA-N azanium ethanol 4-methylbenzenesulfonate Chemical compound S(=O)(=O)([O-])C1=CC=C(C)C=C1.[NH4+].C(C)O UQMAGTDNXKWWME-UHFFFAOYSA-N 0.000 description 1
- SQTGBVURPMTXBT-UHFFFAOYSA-N azanium;1,1,2,2,3,3,4,4,4-nonafluorobutane-1-sulfonate Chemical compound [NH4+].[O-]S(=O)(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F SQTGBVURPMTXBT-UHFFFAOYSA-N 0.000 description 1
- WOPHKSKOUDHSIM-UHFFFAOYSA-N azanium;ethanol;chloride Chemical compound [NH4+].[Cl-].CCO WOPHKSKOUDHSIM-UHFFFAOYSA-N 0.000 description 1
- BMWDUGHMODRTLU-UHFFFAOYSA-N azanium;trifluoromethanesulfonate Chemical compound [NH4+].[O-]S(=O)(=O)C(F)(F)F BMWDUGHMODRTLU-UHFFFAOYSA-N 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- OGBUMNBNEWYMNJ-UHFFFAOYSA-N batilol Chemical class CCCCCCCCCCCCCCCCCCOCC(O)CO OGBUMNBNEWYMNJ-UHFFFAOYSA-N 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- LLEMOWNGBBNAJR-UHFFFAOYSA-N biphenyl-2-ol Chemical compound OC1=CC=CC=C1C1=CC=CC=C1 LLEMOWNGBBNAJR-UHFFFAOYSA-N 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 239000006085 branching agent Substances 0.000 description 1
- 239000013590 bulk material Substances 0.000 description 1
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical compound C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 description 1
- BZDKYAZTCWRUDZ-UHFFFAOYSA-N buta-1,3-diene;methyl 2-methylprop-2-enoate;prop-2-enenitrile;styrene Chemical compound C=CC=C.C=CC#N.COC(=O)C(C)=C.C=CC1=CC=CC=C1 BZDKYAZTCWRUDZ-UHFFFAOYSA-N 0.000 description 1
- NOQOJJUSNAWKBQ-UHFFFAOYSA-N buta-1,3-diene;methyl prop-2-enoate;styrene Chemical compound C=CC=C.COC(=O)C=C.C=CC1=CC=CC=C1 NOQOJJUSNAWKBQ-UHFFFAOYSA-N 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- JHIWVOJDXOSYLW-UHFFFAOYSA-N butyl 2,2-difluorocyclopropane-1-carboxylate Chemical compound CCCCOC(=O)C1CC1(F)F JHIWVOJDXOSYLW-UHFFFAOYSA-N 0.000 description 1
- 150000001718 carbodiimides Chemical class 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 125000005392 carboxamide group Chemical group NC(=O)* 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 239000005018 casein Substances 0.000 description 1
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 1
- 235000021240 caseins Nutrition 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 235000019438 castor oil Nutrition 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- HNEGQIOMVPPMNR-IHWYPQMZSA-N citraconic acid Chemical compound OC(=O)C(/C)=C\C(O)=O HNEGQIOMVPPMNR-IHWYPQMZSA-N 0.000 description 1
- 229940018557 citraconic acid Drugs 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 239000008199 coating composition Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000012792 core layer Substances 0.000 description 1
- 150000001896 cresols Chemical class 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- IFDVQVHZEKPUSC-UHFFFAOYSA-N cyclohex-3-ene-1,2-dicarboxylic acid Chemical compound OC(=O)C1CCC=CC1C(O)=O IFDVQVHZEKPUSC-UHFFFAOYSA-N 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 description 1
- 150000001990 dicarboxylic acid derivatives Chemical class 0.000 description 1
- GYZLOYUZLJXAJU-UHFFFAOYSA-N diglycidyl ether Chemical class C1OC1COCC1CO1 GYZLOYUZLJXAJU-UHFFFAOYSA-N 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- XTDYIOOONNVFMA-UHFFFAOYSA-N dimethyl pentanedioate Chemical compound COC(=O)CCCC(=O)OC XTDYIOOONNVFMA-UHFFFAOYSA-N 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 230000001804 emulsifying effect Effects 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 235000019387 fatty acid methyl ester Nutrition 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 238000005227 gel permeation chromatography Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- SYUXAJSOZXEFPP-UHFFFAOYSA-N glutin Natural products COc1c(O)cc2OC(=CC(=O)c2c1O)c3ccccc3OC4OC(CO)C(O)C(O)C4O SYUXAJSOZXEFPP-UHFFFAOYSA-N 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- 150000002314 glycerols Chemical class 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 229930182470 glycoside Natural products 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- JEGUKCSWCFPDGT-UHFFFAOYSA-N h2o hydrate Chemical compound O.O JEGUKCSWCFPDGT-UHFFFAOYSA-N 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- DMEGYFMYUHOHGS-UHFFFAOYSA-N heptamethylene Natural products C1CCCCCC1 DMEGYFMYUHOHGS-UHFFFAOYSA-N 0.000 description 1
- 229920005669 high impact polystyrene Polymers 0.000 description 1
- 239000004797 high-impact polystyrene Substances 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- JXYZHMPRERWTPM-UHFFFAOYSA-N hydron;morpholine;chloride Chemical compound Cl.C1COCCN1 JXYZHMPRERWTPM-UHFFFAOYSA-N 0.000 description 1
- 125000001165 hydrophobic group Chemical group 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 125000004356 hydroxy functional group Chemical group O* 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 150000002462 imidazolines Chemical class 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000001282 iso-butane Substances 0.000 description 1
- 239000004922 lacquer Substances 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 229920012128 methyl methacrylate acrylonitrile butadiene styrene Polymers 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 150000002762 monocarboxylic acid derivatives Chemical class 0.000 description 1
- BVJOXYJFOYNQRB-UHFFFAOYSA-N morpholine;hydrobromide Chemical compound Br.C1COCCN1 BVJOXYJFOYNQRB-UHFFFAOYSA-N 0.000 description 1
- VAWHFUNJDMQUSB-UHFFFAOYSA-N morpholine;hydroiodide Chemical compound [I-].C1COCC[NH2+]1 VAWHFUNJDMQUSB-UHFFFAOYSA-N 0.000 description 1
- BGEHHDVYQRNMJB-UHFFFAOYSA-N morpholine;sulfuric acid Chemical compound OS([O-])(=O)=O.C1COCC[NH2+]1 BGEHHDVYQRNMJB-UHFFFAOYSA-N 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- KKFHAJHLJHVUDM-UHFFFAOYSA-N n-vinylcarbazole Chemical compound C1=CC=C2N(C=C)C3=CC=CC=C3C2=C1 KKFHAJHLJHVUDM-UHFFFAOYSA-N 0.000 description 1
- PSZYNBSKGUBXEH-UHFFFAOYSA-M naphthalene-1-sulfonate Chemical compound C1=CC=C2C(S(=O)(=O)[O-])=CC=CC2=C1 PSZYNBSKGUBXEH-UHFFFAOYSA-M 0.000 description 1
- 150000004780 naphthols Chemical class 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000002667 nucleating agent Substances 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 238000011022 operating instruction Methods 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 150000002924 oxiranes Chemical class 0.000 description 1
- QNGNSVIICDLXHT-UHFFFAOYSA-N para-ethylbenzaldehyde Natural products CCC1=CC=C(C=O)C=C1 QNGNSVIICDLXHT-UHFFFAOYSA-N 0.000 description 1
- 229920002866 paraformaldehyde Polymers 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920000233 poly(alkylene oxides) Polymers 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920005906 polyester polyol Polymers 0.000 description 1
- 239000005056 polyisocyanate Substances 0.000 description 1
- 229920001228 polyisocyanate Polymers 0.000 description 1
- 229920000582 polyisocyanurate Polymers 0.000 description 1
- 229920001470 polyketone Polymers 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920000193 polymethacrylate Polymers 0.000 description 1
- ODGAOXROABLFNM-UHFFFAOYSA-N polynoxylin Chemical compound O=C.NC(N)=O ODGAOXROABLFNM-UHFFFAOYSA-N 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 159000000001 potassium salts Chemical class 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 150000003856 quaternary ammonium compounds Chemical class 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000007870 radical polymerization initiator Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000011973 solid acid Substances 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000011145 styrene acrylonitrile resin Substances 0.000 description 1
- 229920001909 styrene-acrylic polymer Polymers 0.000 description 1
- 150000003440 styrenes Chemical class 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 125000000542 sulfonic acid group Chemical group 0.000 description 1
- 239000002600 sunflower oil Substances 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- UFDHBDMSHIXOKF-UHFFFAOYSA-N tetrahydrophthalic acid Natural products OC(=O)C1=C(C(O)=O)CCCC1 UFDHBDMSHIXOKF-UHFFFAOYSA-N 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- KRTNITDCKAVIFI-UHFFFAOYSA-N tridecyl benzenesulfonate Chemical class CCCCCCCCCCCCCOS(=O)(=O)C1=CC=CC=C1 KRTNITDCKAVIFI-UHFFFAOYSA-N 0.000 description 1
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 1
- RXPQRKFMDQNODS-UHFFFAOYSA-N tripropyl phosphate Chemical compound CCCOP(=O)(OCCC)OCCC RXPQRKFMDQNODS-UHFFFAOYSA-N 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 229920001567 vinyl ester resin Polymers 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 239000002916 wood waste Substances 0.000 description 1
- 150000003739 xylenols Chemical class 0.000 description 1
- 239000004711 α-olefin Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B27—WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
- B27N—MANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
- B27N3/00—Manufacture of substantially flat articles, e.g. boards, from particles or fibres
- B27N3/002—Manufacture of substantially flat articles, e.g. boards, from particles or fibres characterised by the type of binder
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B27—WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
- B27N—MANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
- B27N3/00—Manufacture of substantially flat articles, e.g. boards, from particles or fibres
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/49—Phosphorus-containing compounds
- C08K5/51—Phosphorus bound to oxygen
- C08K5/52—Phosphorus bound to oxygen only
- C08K5/521—Esters of phosphoric acids, e.g. of H3PO4
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L61/00—Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
- C08L61/20—Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
- C08L61/22—Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with acyclic or carbocyclic compounds
- C08L61/24—Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with acyclic or carbocyclic compounds with urea or thiourea
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L75/00—Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
- C08L75/04—Polyurethanes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L97/00—Compositions of lignin-containing materials
- C08L97/02—Lignocellulosic material, e.g. wood, straw or bagasse
Definitions
- the present invention relates to a process for the preparation of single or multi-layered lignocellulosic materials using trialkyl phosphate.
- DE-A-33 28 662 discloses binder systems based on polyisocyanates and binder combinations with conventional binders, such as aminoplast resins, for producing press materials, e.g. Particle boards, which contain latent catalysts which are formed by reaction of primary, secondary and / or tertiary amines with esters of acids of phosphorus.
- binders such as aminoplast resins
- latent catalysts which are formed by reaction of primary, secondary and / or tertiary amines with esters of acids of phosphorus.
- latent catalysts which are formed by reaction of primary, secondary and / or tertiary amines with esters of acids of phosphorus.
- TEP triethyl phosphate
- This method has procedural disadvantages.
- the present invention was therefore based on the object to remedy the aforementioned disadvantages.
- a new and improved process for the discontinuous or continuous, preferably continuous production of single- or multi-layered lignocellulose materials comprising the process steps i) mixing of the components of the individual layers,
- binder selected from the group of organic isocyanates having at least two isocyanate groups (component B),
- binder selected from the group of amino resins (component C),
- TEP trialkyl phosphate
- binder selected from the group of aminoplast resins, phenolic resins, organic isocyanates having at least two isocyanate groups, protein-based binders and other polymer-based binders (component G), h) 0 to 5% by weight Hardener (component H),
- TAP trialkyl phosphate
- the details of the wt .-% of components A) to F) and G) to J) are the weights of the respective component based on the dry weight of the lignocellulose.
- the dry weight of the lignocellulosic particles is the weight of the lignocellulosic particles without the water contained therein. It is also called dry weight (absolutely dry). If components A) to F) and G) to J) are used in aqueous form, that is to say for example in the form of aqueous solutions or emulsions, then the water is not taken into account in the weight data.
- all layers contain water, which is not included in the weight specifications.
- the water can be obtained from the residual moisture contained in the lignocellulose-containing particles LCP-1) or LCP-2), from the binders B), C) or G), for example if the isocyanate-containing binder is present as an aqueous emulsion or if aqueous aminoplast resins, from additionally added water, for example, for diluting the binder or to moisten the outer layers, from the additives E) or I), for example aqueous paraffin emulsions, from the curing agents D) or H), for example, aqueous ammonium salt solutions , or from the expanded plastic particles A), if they are foamed, for example, with steam.
- the water content of the individual layers can be up to 20 wt .-%, that is 0 to 20 wt .-%, preferably 2 to 15 wt .-%, particularly preferably 4 bis 13 wt .-% based on 100 wt .-% total dry weight.
- the water content in the outer layers DS-A and DS-C is greater than in the core-B.
- the water content in the cover layers DS-A and DS-C is 9 to 13 wt .-% and in the core B 4 to 8 wt .-% based on 100 wt .-% total dry weight.
- the structure of the multilayered lignocellulosic materials follows the following pattern:
- topcoat (DS-A), the topcoat
- cover layers DS-A and DS-C can each be composed of one or more, ie 1 to 5, preferably 1 to 3, particularly preferably 1 to 2 layers of different compositions and the compositions cover layers DS-A and DS-C are the same or different, preferably the same.
- the structure of the multilayered lignocellulosic materials consists of a core and an upper and a lower cover layer.
- the single-layered lignocellulosic materials consist of only one layer corresponding to the core (core B) and have no top layer DS-A and DS-C.
- the multi-layered lignocellulose material may contain further outer "protective layers", preferably two further outer layers, ie an upper protective layer which adheres to the cover layer DS-A (in one layer) or to the uppermost of the upper cover layers DS-A.
- an upper protective layer which adheres to the cover layer DS-A (in one layer) or to the uppermost of the upper cover layers DS-A.
- A in the case of several layers
- a lower protective layer which adjoins the covering layer DS-C (in one layer) or the lowest of the lower covering layers DS-C (in the case of several layers) and which have an arbitrary composition.
- the single-layer wood material may contain, in addition to the layer core B, outer protective layers, preferably two further outer layers, ie an upper protective layer and a lower protective layer adjoining the core-B layer and having an arbitrary composition. These protective layers are significantly thinner than the core-B layer.
- the mass ratio between protective layers and core B is less than 5:95, preferably less than 2:98. Most preferably, no protective layers are present.
- Process step i) - mixing of the components of the individual layers
- the components LCP-1), A), B), C), D), E) and F) can be mixed in any order.
- the components LCP-1), A), B), C), D), E) and F) can be mixed in any order.
- the components LCP-1), A), B), C), D), E) and F can be mixed in any order.
- the components LCP-1), A), B), C), D), E) and F can be mixed in any order.
- the components LCP-1), A), B), C), D), E) and F) can be mixed in any order.
- the lignocellulose particles [component LCP-1) in single and multilayer wood-based materials or the component LCP-2) are presented in multilayer wood-based materials and components A), B), C), D) in single and multi-layer wood materials.
- C), D), E) and F) can be divided into portions and these portions at different times individually or in admixture with another component the lignocellulose particles LCP-1) are added. If the component, which is divided into portions, consists of several different substances, the individual portions may have different compositions. These possibilities are analogous to multilayer wood materials for the components G), H), I) and J) in the outer layers.
- only one mixture for the cover layers is prepared and this mixture is divided for the two cover layers according to their weight ratio.
- the components LCP-1) or LCP-2) are composed of mixtures of different types of wood and / or particle sizes.
- the mean particle sizes of component LCP-1) are greater than those of component LCP-2) in multilayer wood materials.
- two or more components of the respective composition for example C) and D), or C) and a partial portion of D) or C), D) and E), or C), D), E) and F) are mixed separately before being added.
- component LCP-1 optionally with component A) mix, and then followed by a mixture of the components B), C), D), E) and F) or a mixture of C) and D) from one of mixture B), E) and F) or a mixture of C) and D) followed by a mixture of B) and F) and followed by the component E).
- the component LCP-1) is first added the component A) and then the components B), C), D), E) and F) in any order , It is also possible to mix two or more components beforehand, preferably component D) with component C) and / or component F) with component C) and / or B).
- component B) is mixed with additive E) in a separate step before mixing with LCP-1) or a mixture of LCP-1) with other components is brought into contact.
- component B) is mixed with component F) in a separate step before mixing with LCP-1) or a mixture of LCP-1) with other components is brought into contact.
- component C) is mixed with additive E) in a separate step before mixing with LCP-1) or a mixture of LCP-1) with other components is brought into contact.
- the component C) with the component F) or with the component D) and the components F) or with the component D), the component E) or a Partial portion of component E) and components F) are mixed in a separate step before being contacted with LCP-1) or a mixture of LCP-1) with other components.
- component C) is mixed with hardener D) in a separate step it is contacted with LCP-1) or a mixture of LCP-1) with other components.
- component C) is mixed with component D) and component E) in a separate step before being contacted with LCP-1) or a mixture of LCP-1) with other components.
- the component B which was optionally mixed in a separate step with one or more components selected from the groups of components D), E) and F), and the component C), optionally in a separate step with one or more components selected from the groups of components D), E) and F), either simultaneously or sequentially, preferably simultaneously to the lignocellulosic particles LCP-1) or to the mixture of lignocellulose particles LCP-1) with other components ,
- the simultaneous addition may be effected, for example, by having component B) or the mixture containing component B and containing component C or the mixture containing component C, from separate application devices, e.g.
- Nozzles at the same time to the lignocellulose particles LCP-1) or to the mixture of lignocellulose particles LCP-1) is added with other components, or in that the component B or the mixture containing component B and the component C or the mixture containing component C from separate containers a mixing unit, eg Mixing container or static mixer, is added and the mixture thus obtained after at most 60 minutes, preferably after more than 5 minutes, more preferably after more than 60 seconds, most preferably after more than 10 seconds, in particular after more than 2 seconds to the lignocellulose particles LCP-1 ) or to the mixture of lignocellulose particles LCP-1) with other components is added.
- a mixing unit eg Mixing container or static mixer
- components A) to F) with the component LCP-1) or G) to J) with the component LCP-2) can be carried out according to the methods known in the wood-based material industry, as described, for example, in M. Dunky, P. None, wood materials and glues, page 1 18 to 1 19 and page 145, Springer Verlag Heidelberg, 2002 are described.
- the mixing can be carried out by spraying the components or mixtures of the components on the lignocellulosic particles in devices such as high-speed ring mixers with glue addition via a hollow shaft (internal gluing) or fast-running ring blenders with glue addition from outside via nozzles (external gluing).
- devices such as high-speed ring mixers with glue addition via a hollow shaft (internal gluing) or fast-running ring blenders with glue addition from outside via nozzles (external gluing).
- the spraying can also take place in the blowline after the refiner. If lignocellulose strips (strands) are used as component LCP-1) or LCP-2), the spraying is generally carried out in large-volume, slow-running mixers. The mixing can also be effected by spraying in a chute, as described for example in DE 10247412 A1 or DE 10104047 A1, or by spraying a curtain of lignocellulose particles, as realized in the Evojet technology of Dieffenbacher GmbH.
- Process step ii) - spreading the mixture (s) prepared in process step i) into a mat
- the resulting blend LCP-1), A), B), C), D), E) and F) is spread to a mat.
- the resulting mixtures of the components LCP-1), A), B), C), D), E) and F) and the mixtures of the components LCP-2), G), H), I) and J) are stacked on top of each other to form a mat to give the inventive construction of the multilayered lignocellulosic materials [of the pattern (1), (2), (3)].
- the lower cover layers, starting with the outermost cover layer up to the lower cover layer closest to the core, then the core layer and then the upper cover layers, starting with the upper cover layer closest to the core, are scattered to the outermost cover layer.
- the mixtures are sprinkled directly onto a base, e.g. on a form band.
- the scattering can be carried out by methods known per se, such as throwing view scattering, or wind vision scattering, or e.g. with roller systems (see, for example, M. Dunky, P. Niemz, wood materials and glues, page 1 19 to 121, Springer Verlag Heidelberg, 2002) discontinuously or continuously, preferably continuously, be performed.
- roller systems see, for example, M. Dunky, P. Niemz, wood materials and glues, page 1 19 to 121, Springer Verlag Heidelberg, 2002
- precompression can take place.
- pre-compaction can generally take place after the scattering of each individual layer; preferably, the precompression is carried out one after the other after scattering of all layers.
- the pre-compression can be carried out by methods known to those skilled in the art, as described for example in M. Dunky, P. Niemz, wood materials and glues, Springer Verlag Heidelberg, 2002, page 819 or in H.-J. Deppe, K. Ernst, MDF - medium density fiberboard, DRW-Verlag, 1996, pages 44, 45 and 93 or in A. Wagendies, F. Scholz, Taschenbuch der Holztechnik, subuchverlag Leipzig, 2012, page 219, are described.
- energy may be introduced into the mat in one preheating step with one or more arbitrary energy sources.
- Suitable energy sources are hot air, water vapor, steam / air mixtures or electrical energy (high-frequency high-voltage field or microwaves).
- the mat is heated in the core at 40 to 130 ° C, preferably at 50 to 100 ° C, particularly preferably at 55 to 75 ° C.
- the preheating can be carried out with water vapor and steam / air mixtures in multi-layered lignocellulosic materials can also be carried out so that only the outer layers are heated, the core but not.
- the core is preferably also heated in the case of multilayered lignocellulose materials.
- the mat can be prevented from springing up during heating by carrying out the heating in a space bounded above and below.
- the boundary surfaces are designed so that the energy input is possible.
- perforated plastic belts or steel nets can be used, which allow the passage of hot air, water vapor or water vapor-air mixtures.
- the boundary surfaces are designed to exert a pressure on the mat which is so great as to prevent springing during heating.
- Pre-heating is particularly preferably not carried out after precompression, that is to say that the scattered mat after method step iii) has a lower temperature than or the same temperature as before method step iii).
- the compression can be done in one, two or more steps.
- the pre-compression is usually carried out at a pressure of 1 to 30 bar, preferably 2 to 25 bar, more preferably 3 to 20 bar.
- the thickness of the mat is further reduced by applying a pressing pressure.
- the temperature of the mat is increased by the input of energy.
- a constant pressure is applied and simultaneously heated by an energy source of constant power. Both the energy input and the compression by pressing pressure can also be done at different times and in several stages.
- the energy input in method step iv) is generally carried out a) by applying a high-frequency electric field and / or
- step iv) energy input by applying a high-frequency electric field
- the mat is heated so that after switching off the high-frequency electric field in step iv) the layer of the core has a temperature of more than 90 ° C and this temperature in less than 40 seconds, preferably less than 20 seconds, particularly preferably less than 12.5 seconds, in particular less than 7.5 seconds per mm plate thickness d is achieved from the application of the high-frequency electric field, where d is the thickness of the plate after step iv).
- the temperature in the core is at least 90 ° C, ie 90 to 170 ° C, preferably at least 100 ° C, ie 100 to
- 170 ° C more preferably at least 1 10 ° C, that is 1 10 to 170 ° C, especially at least 120 ° C, ie 120 to 170 ° C.
- the applied high-frequency electric field can be microwave radiation or a high-frequency electric field that arises after application of a high-frequency alternating voltage field to a plate capacitor between the two capacitor plates.
- first a compression step and then the heating can be performed by applying a high-frequency high-voltage field.
- This process can be carried out either continuously or discontinuously, preferably continuously.
- the scattered and compacted mat can be carried out by means of a conveyor belt through a region between parallel-arranged plate capacitors.
- a device for a continuous process to realize the heating by applying a high-frequency electric field after the compression within the same machine is described, for example, in WO-A-97/28936.
- the heating immediately after the densification step may also be carried out in a discontinuous high-frequency press, e.g. in a high-frequency press, for example in the press HLOP 170 Hoefer Presstechnik GmbH. If heating occurs after compaction, the mat may spring open during the process
- the boundary surfaces are designed so that the energy input is possible.
- the boundary surfaces are designed to exert pressure on the mat that is sufficiently large to prevent springing during heating.
- these boundary surfaces are press belts which are driven by rollers. Behind these press belts, the plates of the capacitors are arranged. The mat is passed through a pair of capacitor plates, wherein between the mat and upper capacitor plate, the one press belt, between the mat and the lower capacitor plate is the other press belt.
- One of the two capacitor plates can be earthed, so that the high-frequency heating works on the principle of unbalanced feed.
- the temperature difference is between 0 and 50 ° C.
- the energy input by hot pressing is usually carried out by contact with heated pressing surfaces, the temperatures of 80 to 300 ° C, preferably 120 to 280 ° C, more preferably 150 to 250 ° C, wherein during the energy input at a pressure of 1 to 50 bar, preferably 3 to 40 bar, particularly preferably 5 to 30 bar is pressed.
- the pressing can be carried out by all methods known to the person skilled in the art (see examples in "Taschenbuch der Spanplattentechnik") H.-J. Deppe, K. Ernst, 4th ed., 2000, DRW - Verlag Weinbrenner, Leinfelden Echterdingen, pages 232 to 254 , and "MDF medium-density fiberboard" H.-J. Deppe, K.
- the pressing time is normally 2 to 15 seconds per mm plate thickness, preferably 2 to 10 seconds, more preferably 2 to 6 seconds, in particular 2 to 4 seconds, but can also be significantly different and also up to several minutes, e.g. take up to 5 minutes.
- step iv) If the input of energy in method step iv) is effected by a) applying a high-frequency electric field and by b) hot pressing, then preferably step a) and then step b) are carried out.
- the components of the core LPC-1), A), B), C), D), E), F) and the components of the cover layers LPC-2), G), H), I), J) have the following meanings.
- the raw material for the lignocellulose particles LPC-1 and LPC-2) is any kind of wood or mixtures thereof, for example spruce, beech, pine, larch, linden, poplar, eucalyptus, ash, chestnut , Fir wood or mixtures thereof, preferably spruce, beech wood or mixtures thereof, in particular spruce wood.
- the lignocellulose particles may also be derived from lignocellulosic plants such as bamboo, flax, hemp, cereals or other annual plants, preferably bamboo, flax or hemp. Wood chips are particularly preferably used, as used in the production of particleboard.
- Starting materials for the lignocellulose particles are usually roundwoods, reforestation wood, residual wood, forest wood waste, industrial wood, used wood, production waste from wood-based material production, used wood-based materials and lignocellulose-containing plants.
- the preparation of the desired lignocellulose-containing particles, for example wood particles such as wood chips or wood fibers, can be carried out by processes known per se (for example M. Dunky, P. Niemz, Holzwerkstoffe and Glues, pages 91 to 156, Springer Verlag Heidelberg, 2002).
- the size of the lignocellulose particles can be varied within wide limits and vary within wide limits.
- the volume-weighted mean fiber length of the LPC-2 component of the outer layers is preferably less than or equal to the volume-weighted mean fiber length of the LPC-1) component Core of the multilayered lignocellulosic materials.
- the ratio of the volume-weighted mean fiber lengths (xumble) of the component LPC-2) to the volume-weighted mean fiber lengths (xrange) of the component LPC-1) can be varied within wide limits and is generally from 0.1: 1 to 1: 1, preferably 0.5: 1 to 1: 1, more preferably 0.8: 1 to 1: 1.
- the volume-weighted average fiber length (x stretch) of the component LPC-1) is generally from 0.1 to 20 mm, preferably from 0.2 to 10 mm, particularly preferably from 0.3 to 8 mm, very particularly preferably from 0.4 to 6 mm .
- the measuring method and the evaluation are described in the Camsizer manual (Operating Instructions / Manual Grain Size Measuring System CAMSIZER®, Retsch Technology GmbH, Version 0445.506, Release 002, Revision 009 from 25.06.2010). If the lignocellulose particles LPC-1) and LPC-2) are lignocellulose strips (strands) or lignocellulosic chips, then the volume-weighted mean particle diameter of the component LPC-2) of the cover layers is preferably less than or equal to the volume-weighted mean particle diameter of the component LPC- 1) in the core of the multilayered lignocellulosic materials.
- the ratio of the volume-weighted mean particle diameter XFe max of the component LPC-2) to the volume-weighted mean particle diameter XFe max of the component LPC-1) can be varied within wide limits and is generally 0.01: 1 to 1: 1, preferably 0 , 1: 1 to 0.95: 1, more preferably 0.5: 1 to 0.9: 1.
- the volume-weighted mean particle diameter XFe max of component LPC-1) is generally 0.5 to 100 mm, preferably 1 to 50 mm, more preferably 2 to 30 mm, most preferably 3 to 20 mm.
- the volume-weighted mean particle diameter XFe max is determined by means of digital image analysis. For example, a device of the Camsizer® series from Retsch Technology can be used. Each individual lignocellulosity strip (beach) or each individual lignocellulosic chip of a representative sample XFe max is determined. XFe max is the largest Feret diameter of a particle (determined from different measuring directions). From the individual values, the volume-weighted mean value XFe max is formed.
- Mixtures of wood chips and wood fibers, or of wood chips and wood dust, the proportion of wood chips of the component LPC-1) or the component LPC-2) is usually at least 50 wt .-%, ie 50 to 100 wt .-% , preferably at least 75 wt .-%, that is 75 to 100 wt .-%, particularly preferably at least 90 wt .-%, ie 90 to 100 wt .-%.
- the average densities of the components LPC-1) and LPC-2) are independently of each other usually at 0.4 to 0.85 g / cm 3 , preferably at 0.4 to 0.75 g / cm 3 , in particular at 0 , 4 to 0.6 g / cm 3 . These data refer to the normal density after storage under normal conditions (20 ° C, 65% humidity).
- the components LPC-1) and LPC-2) can independently of each other, the usual small amounts of water from 0 to 10 wt .-%, preferably 0.5 to 8 wt .-%, particularly preferably 1 to 5 wt .-% (in a usual low fluctuation range of 0 to 0.5 wt .-%, preferably 0 to 0.4 wt .-%, particularly preferably 0 to 0.3 wt .-%).
- This quantity refers to 100% by weight of absolutely dry wood substance and describes the water content of the component LPC-1) or LPC-2) after drying (according to customary methods known to the person skilled in the art) immediately before mixing with other components.
- lignocellulose fibers are used as lignocellulose particles LPC-2) for the cover layers and lignocellulosic strips (strands) or lignocellulosic chips, more preferably lignocellulosic chips, in particular lignocellulose chips having a volume-weighted mean particle diameter XFe max of 2 to 30 mm Lignocellulose particles LPC-1).
- Expanded plastic particles preferably expanded thermoplastic plastic particles having a bulk density of 10 to 150 kg / m 3 , preferably 30 to 130 kg / m 3 , particularly preferably 35 to 1 10 kg / m 3, are suitable as expanded plastic particles of component A) , in particular 40 to 100 kg / m 3 (determined by weighing a volume filled with the bulk material).
- Expanded plastic particles of component A) are generally in the form of spheres or beads having an average diameter of 0.01 to 50 mm, preferably 0.25 to 10 mm, particularly preferably 0.4 to 8.5 mm, in particular 0, 4 to 7 mm used.
- the spheres have a small surface per volume, for example in the form of a spherical or elliptical particle, and are advantageously closed-cell.
- the open cell content according to DIN ISO 4590 is generally not more than 30%, ie 0 to 30%, preferably 1 to 25%, particularly preferably 5 to 15%.
- Suitable polymers which are the basis of the expandable or expanded plastic particles are generally all known polymers or mixtures thereof, preferably thermoplastic polymers or mixtures thereof which can be foamed.
- suitable polymers are polyketones, polysulfones, polyoxymethylene, PVC (hard and soft), polycarbonates, polyisocyanurates, polycarbodiimides, polyacrylimides and polymethacrylates, polyamides, polyurethanes, aminoplast resins and phenolic resins, styrene homopolymers (also referred to below as "polystyrene” or " Styrene polymer "), styrene copolymers, C 2 to C 10 olefin homopolymers, C 2 to do-olefin copolymers and polyesters.
- the 1-alkenes for example ethylene, propylene, 1-butene, 1-hexene, 1-octene, are preferably used for the preparation of the stated olefin polymers.
- the polymers preferably the thermoplastics which underlie the expandable or expanded plastic particles of component A), can contain conventional additives, for example UV stabilizers, antioxidants, coating compositions, water repellents, nucleating agents, plasticizers, flame retardants, soluble and insoluble inorganic and / or be added organic dyes.
- Component A can usually be obtained as follows: Suitable polymers can be expanded with an expansible medium (also called “propellant”) or containing an expansible medium by the action of microwave, heat energy, hot air, preferably steam, and / or pressure change (often also referred to as “foamed”) (Kunststoff Handbuch 1996 Volume 4 "polystyrene", Hanser 1996, pages 640 to 673 or US-A-5,112,875), which generally expands the propellant, the particles increase in size and cell structures are formed conventional frothing devices, often referred to as "pre-expanders" performed. Such prefoamers can be installed fixed or mobile. The expansion can be carried out in one or more stages.
- the expandable plastic particles are readily expanded to the desired final size.
- the expandable plastic particles are first expanded to an intermediate size and then expanded in one or more further stages over a corresponding number of intermediate sizes to the desired final size.
- the above-mentioned compact plastic particles also referred to herein as "expandable plastic particles” generally contain no cell structures, in contrast to the expanded plastic particles. %, preferably 0.5 to 4 wt .-%, particularly preferably 1 to 3 wt .-% based on the total mass of plastic and blowing agent.
- the thus obtained expanded plastic particles can be stored or without further intermediate steps for the preparation of the inventive component A. continue to be used.
- blowing agents for example aliphatic C 3 - to C 10 -hydrocarbons, such as propane, n-butane, isobutane, n-pentane, isopentane, neopentane-cyclo-pentane and / or hexane and its isomers, Alcohols, ketones, esters, ethers or halogenated hydrocarbons, preferably n-pentane, isopentane, neopentane and cyclopentane, particularly preferably a commercially available pentane isomer mixture of n-pentane and isopentane.
- aliphatic C 3 - to C 10 -hydrocarbons such as propane, n-butane, isobutane, n-pentane, isopentane, neopentane-cyclo-pentane and / or hexane and its isomers
- the content of blowing agent in the expandable plastic particles is generally in the range of 0.01 to 7 wt .-%, preferably 0.6 to 5 wt .-%, particularly preferably 1, 1 to 4 wt .-%, each based on the propellant-containing expandable plastic particles.
- styrene homopolymer also referred to herein simply as "polystyrene”
- styrene copolymer or mixtures thereof are used as the only plastic in component A).
- Such polystyrene and / or styrene copolymer can be prepared by all known in the art polymerization process, see, for. Ullmann's Encyclopedia, Sixth Edition, 2000 Electronic Release or Plastics Handbook 1996, Volume 4 "Polystyrene", pages 567 to 598.
- the production of the expandable polystyrene and / or styrene copolymer is generally carried out in a manner known per se by suspension polymerization or by extrusion processes.
- styrene may optionally be polymerized with the addition of further comonomers in aqueous suspension in the presence of a customary suspension stabilizer by means of free-radical-forming catalysts.
- the propellant and optionally further customary additives may be initially introduced into the polymerization, added to the batch in the course of the polymerization or after the end of the polymerization.
- the resulting peribular, impregnated with blowing agent, expandable styrene polymers can be separated after the polymerization from the aqueous phase, washed, dried and sieved.
- the blowing agent can be mixed, for example via an extruder in the polymer, conveyed through a nozzle plate and granulated under pressure to particles or strands.
- the preferred or particularly preferred expandable styrene polymers or expandable styrene copolymers described above have a relatively low content of blowing agent. Such polymers are also referred to as "low blowing agent”.
- low blowing agent A well-suited process for producing low-blowing expandable polystyrene or expandable styrene copolymer is described in US Pat. No. 5,112,875, which is incorporated herein by reference. As described, styrene copolymers can also be used.
- these styrene copolymers at least 50 wt .-%, ie 50 to 100 wt .-%, preferably at least 80 wt .-%, ie 80 to 100 wt .-%, copolymerized styrene based on the mass of the plastic (without propellant) on ,
- Comonomers are e.g. ⁇ -methylstyrene, core-halogenated styrenes, acrylonitrile, esters of acrylic or methacrylic acid of alcohols having 1 to 8 C atoms, N-vinylcarbazole, maleic acid (anhydride), (meth) acrylamides and / or vinyl acetate into consideration.
- the polystyrene and / or styrene copolymer may contain in copolymerized form a small amount of a chain brancher, ie a compound having more than one, preferably two double bonds, such as divinylbenzene, butadiene and / or butanediol diacrylate.
- the branching agent is generally used in amounts of from 0.0005 to 0.5 mol%, based on styrene. Mixtures of different styrene (co) polymers can also be used.
- styrene homopolymers or styrene copolymers are glass clear polystyrene (GPPS), impact polystyrene (HIPS), anionically polymerized polystyrene or impact polystyrene (A-IPS), styrene- ⁇ -methylstyrene copolymers, acrylonitrile-butadiene-styrene polymers (ABS), styrene-acrylonitrile (SAN ), Acrylonitrile-styrene-acrylic ester (ASA), methyl acrylate-butadiene-styrene (MBS), methyl methacrylate-acrylonitrile-butadiene-styrene (MABS) polymers or mixtures thereof or with polyphenylene ether (PPE).
- GPPS glass clear polystyrene
- HIPS impact polystyrene
- A-IPS anionically polymerized polystyrene or impact poly
- Plastic particles particularly preferably styrene polymers or styrene copolymers, in particular styrene homopolymers having a molecular weight in the range from 70,000 to 400,000 g / mol, more preferably 190,000 to 400,000 g / mol, very particularly preferably 210,000 to 400,000 g / mol, are preferably used.
- expanded polystyrene particles or expanded styrene copolymer particles may be further used without or with further blowing agent reduction measures to produce the lignocellulosic material.
- the expandable polystyrene or expandable Styrolcopolymensat or the expanded polystyrene or expanded Styrolcopolymensat an antistatic coating on.
- the polymer from which the expanded plastic particles (component A) are prepared may contain pigments and particles, such as carbon black, graphite or aluminum powder, as additives before or during foaming.
- the expanded plastic particles of component A) are usually after pressing to the lignocellulosic material, in unmelted state, which means that the plastic particles of component A) usually have not penetrated into the lignocellulosic particles or these have impregnated, but between the Lignocellulose particles are distributed.
- the plastic particles of component A) can be separated from the lignocellulose by physical processes, for example after comminution of the lignocellulose material.
- the total amount of the expanded plastic particles of component A), based on the total dry mass of the core, is generally in the range of 0 to 25 wt .-%, preferably 0 to 20 wt .-%, particularly preferably 0 to 10 wt .-%, in particular 0 wt .-%.
- the total amount (dry matter) of the binder of component B), based on the total dry weight of the lignocellulose particles LCP-1) is in the range of 0.05 to 1, 39 wt .-%, preferably 0.1 to 1% by weight, particularly preferably 0.15 to 0.8% by weight, very particularly preferably 0.2 to 0.6% by weight
- the total amount (dry weight) of the binder of component C), based on the total solids of the lignocellulose particles LCP-1) is in the range of 3 to 20 wt .-%.
- the total amount (dry matter) of the binder component C) based on the total dry weight of the lignocellulose particles LCP-1) is preferably in the range of 7 to 15 wt .-%, particularly preferably 9 to 13 wt .-%. In all other cases (with a smaller proportion of lignocellulosic fibers and if no lignocellulosic fibers are used), the total amount (dry matter) of the binder of component C) based on the total dry weight of lignocellulose particles LCP-1) is preferably in the range from 5 to 13% by weight. , more preferably 7 to 1 1 wt .-%.
- the total amount (dry matter) of the binder of component G), based on the total solids of lignocellulose particles LCP-2), is in the range from 1 to 30% by weight, preferably 2 to 20% by weight, more preferably 3 to 15 wt .-%.
- Suitable binders of component B) are those selected from the group of organic isocyanates having at least two isocyanate groups or mixtures thereof.
- Suitable binders of component C) are those selected from the group of amino resins or mixtures thereof.
- Suitable binders of component G are those selected from the group of amino resins, phenolic resins, organic isocyanates having at least two isocyanate groups, protein-based binders and other polymer-based binders.
- the weight data relate to the solids content of the corresponding component (determined by evaporation of the water at 120 ° C., within 2 hours according to Günter Zeppenfeld, Dirk Grunwald, Klebstoffe in der Wood and furniture industry, 2nd edition, DRW Verlag, page 268) and with respect to the isocyanate, in particular the PMDI (polymer diphenylmethane diisocyanate), to the isocyanate component per se, that is, for example, without solvent or without water as the emulsifying medium.
- phenoplast polymer diphenylmethane diisocyanate
- Phenoplasts are synthetic resins that are obtained by condensation of phenols with aldehydes and can be modified if necessary.
- phenol and phenol derivatives can be used for the production of phenoplasts.
- These derivatives can be cresols, xylenols or other alkylphenols, for example p-tert-butylphenol, p-tert-octylphenol and p-tert-nonylphenol, arylphenols, for example phenylphenol and naphthols, or divalent phenols, for example resorcinol and bisphenol A.
- aldehyde The most important aldehyde for the production of phenoplasts is formaldehyde, which can be used in various forms, for example as an aqueous solution, or in solid form as paraformaldehyde, or as a formaldehyde-releasing substance.
- Other aldehydes for example, acetaldehyde, acrolein, benzaldehyde or furfural, and ketones can also be used.
- Phenoplasts can be produced by chemical reactions of the methylol groups or the phenolic hydro- xyl groups and / or modified by physical dispersion in a modifier
- Preferred phenolic resins are phenol-aldehyde resins, more preferably phenol-formaldehyde resins (also called "PF resins"), which are known, for example, from Kunststoff-Handbuch, 2nd edition, Hanser 1988, Volume 10 "Duroplastics", pages 12 to 40.
- PF resins phenol-formaldehyde resins
- aminoplast resin it is possible to use all the aminoplast resins known to those skilled in the art, preferably those known for the production of wood-based materials. Such resins and their preparation are described, for example, in Ullmann's Enzyklopadie der ischen Chemie, 4th, revised and expanded edition, Verlag Chemie, 1973, pages 403 to 424 "Aminoplasts” and Ullmann's Encyclopedia of Industrial Chemistry, Vol. A2, VCH Verlagsgesellschaft, 1985, Pages 1 15 to 141 "Amino Resins" as well as in M. Dunky, P.
- Preferred polycondensation are urea-formaldehyde resins (UF-resins), melamine-formaldehyde resins (MF-resins) or melamine-containing urea-formaldehyde resins (MUF-resins), more preferably urea-formaldehyde resins, for example Kaurit ® glue types from BASF SE.
- U-resins urea-formaldehyde resins
- MF-resins melamine-formaldehyde resins
- MMF-resins melamine-containing urea-formaldehyde resins
- more urea-formaldehyde resins for example Kaurit ® glue types from BASF SE.
- polycondensation products in which the molar ratio of aldehyde to the optionally partially substituted with organic radicals amino group or carbamide group in the range of 0.3: 1 to 1: 1, preferably 0.3: 1 to 0.6: 1, particularly preferably 0.3: 1 to 0.5: 1, very particularly preferably 0.3: 1 to 0.45: 1.
- the aminoplast resins mentioned are usually used in liquid form, usually as a 25 to 90% strength by weight, preferably as a 50 to 70% strength by weight solution or suspension, preferably in aqueous solution or suspension, but can also be used as a solid become.
- Organic isocyanates are usually used in liquid form, usually as a 25 to 90% strength by weight, preferably as a 50 to 70% strength by weight solution or suspension, preferably in aqueous solution or suspension, but can also be used as a solid become.
- Suitable organic isocyanates are organic isocyanates having at least two isocyanate groups or mixtures thereof, in particular all those skilled in the art, preferably the known for the production of wood materials or polyurethanes, organic isocyanates or mixtures thereof. Such organic isocyanates and their preparation and use are described, for example, in Becker / Braun, Kunststoff Handbuch, 3rd revised edition, Volume 7 "Polyurethane", Hanser 1993, pages 17 to 21, pages 76 to 88 and pages 665 to 671.
- Preferred organic isocyanates are oligomeric isocyanates having 2 to 10, preferably 2 to 8 monomer units and an average of at least one isocyanate group per monomer unit or mixtures thereof.
- the isocyanates may be either aliphatic, cycloaliphatic or aromatic. Particularly preferred is the organic isocyanate MDI (methylene diphenyl diisocyanate), the oligomeric organic isocyanate PMDI (polymeric methylene diphenylene diisocyanate), which are obtainable by condensation of formaldehyde with aniline and phosgenation of the isomers and oligomers formed in the condensation (see, for example, Becker / Braun, Kunststoff Handbuch , 3rd revised edition, Volume 7, "Polyurethane", Hanser 1993, pages 18, last paragraph to page 19, second paragraph and page 76, fifth paragraph), or mixtures of MDI and PMDI. most preferred are products of the type series LUPRANAT ® BASF SE, in particular LUPRANAT ® M 20 FB of BASF SE.
- the organic isocyanate may also be an isocyanate-terminated prepolymer containing the reaction product of an isocyanate, e.g. PMDI, with one or more polyols and / or polyamines.
- an isocyanate e.g. PMDI
- Polyols may be used which are selected from the group of ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, butanediol, glycerol, trimethylolpropane, triethanolamine, pentaerythritol, sorbitol and mixtures thereof.
- Other suitable polyols are
- Biopolyols such as polyols from soybean oil, rapeseed oil, castor oil and sunflower oil. Also suitable are polyether polyols which can be obtained by polymerization of cyclic oxides, such as ethylene oxide, propylene oxide, butylene oxide or tetrahydrofuran in the presence of polyfunctional initiators.
- Suitable initiators contain active hydrogen atoms and may include water, butanediol, ethylene glycol, propylene glycol, diethylene glycol, triethylene glycol, dipropylene glycol, ethanolamine, diethanolamine, triethanolamine, toluenediamine, diethyltoluenediamine, phenyldiamine, diphenylmethanediamine, ethylenediamine, cyclohexanediamine, cyclohexanediamine, resorcinol, bisphenol A, Glycerol, trimethylolpropane, 1, 2,6-hexanetriol, pentaerythritol, or mixtures thereof.
- polyether polyols include diols and triols, such as polyoxypropylene diols and triols, and poly (oxyethylene-oxypropylene) diols and triols prepared by simultaneous or sequential addition reactions of ethylene and propylene oxides with di- or trifunctional initiators.
- polyester polyols such as hydroxy-terminated reaction products of polyols, as described above, with polycarboxylic acids or polycarboxylic acid derivatives, for. B.
- dicarboxylic acids or dicarboxylic acid derivatives for example succinic acid, dimethyl succinate, glutaric acid, dimethyl glutarate, adipic acid, dimethyl adipate, sebacic acid, phthalic anhydride, tetrachlorophthalic or dimethyl terephthalate, or mixtures thereof.
- Polyamines selected from the group consisting of ethylenediamine, toluenediamine, diaminodiphenylmethane, polymethylenepolyphenylpolyamines, aminoalcohols and mixtures thereof can be used. Examples of amino alcohols are ethanolamine and diethanolamine.
- the organic isocyanate or isocyanate-terminated prepolymer may also be used in the form of an aqueous emulsion prepared, for example, by mixing with water in the presence of an emulsifier.
- the organic isocyanate or the isocyanate component of the prepolymer can also be modified isocyanates, such as carbodiimides, allophanates, isocyanurates and biurets.
- Suitable protein-based binders are, for example, casein, glutin and blood albumin.
- binders can be used in which alkaline hydrolyzed proteins are used as a binder component.
- alkaline hydrolyzed proteins are available from M. Dunky, P.
- soy protein-based binders are made from soya flour.
- the soy flour can be modified if necessary.
- the soy based binder may be present as a dispersion. It contains various functional groups, such as lysine, histidine, arginine, tyrosine, tryptophan, serine and / or cysteine.
- the soy protein is copolymerized, e.g. As with phenolic resin, urea resin or PMDI.
- the soy-based binder consists of a combination of a polyamidoepichlorohydrin resin (PAE) with a soy-based binder.
- a suitable binder is, for example, the commercially available binder system Hercules ® PTV D-41080 Resin (PAE resin) and PTV D-40999 (soy component).
- Other polymer-based binders are made from soya flour.
- the soy flour can be modified if necessary.
- Suitable polymer-based binders are aqueous binders which contain a polymer N which is composed of the following monomers: a) 70 to 100% by weight of at least one ethylenically unsaturated mono and / or dicarboxylic acid (monomer (s) Ni) and
- polymers N are familiar to the person skilled in the art and is carried out in particular by free-radically initiated solution polymerization, for example in water or in an organic solvent (see, for example, A. Echte, Handbuch der Technischen Polymerchemie, Chapter 6, VCH, Weinheim, 1993 or B. Vollmert, Grundriss Macromolecular Chemistry, Volume 1, E. Vollmert Verlag, Düsseldorf, 1988).
- Ni are in particular 3 to 6 carbon atoms having ⁇ , ⁇ -monoethylenically unsaturated mono- and dicarboxylic acids, their possible anhydrides and their water-soluble salts, in particular their alkali metal salts, such as acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid , Citraconic acid, tetrahydrophthalic acid, or their anhydrides, such as maleic anhydride, and the sodium or potassium salts of the aforementioned acids into consideration.
- Particularly preferred are acrylic acid, methacrylic acid and / or maleic anhydride, with acrylic acid and the two-membered combinations of acrylic acid and maleic anhydride or acrylic acid and maleic acid being particularly preferred.
- Suitable monomers (e) N 2 are, in a simple manner, monomer (s) which are Ni free-radically copolymerizable ethylenically unsaturated compounds, for example ethylene, C 3 - to C 24 -alpha-olefins, such as propene, 1-hexene, 1-octene, 1-decene; vinylaromatic monomers such as styrene, o methylstyrene, o-chlorostyrene or vinyltoluenes; Vinyl halides, such as vinyl chloride or vinylidene chloride; Esters of vinyl alcohol and 1 to 18 carbon atoms monocarboxylic acids, such as vinyl acetate, vinyl propionate, vinyl n-butyrate, vinyl laurate and vinyl stearate; Esters of preferably 3 to 6 carbon atoms having ⁇ , ⁇ -monoethylenically unsaturated mono- and dicarboxylic acids, in particular acrylic acid, methacrylic
- Atoms having alkanols such as especially acrylic and methacrylic acid, methyl, ethyl, n-butyl, iso-butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl and 2-ethylhexyl esters, fumaric and maleic acid dimethyl esters or di-n-butyl esters; Nitriles of ⁇ , ⁇ -monoethylenically unsaturated carboxylic acids, such as acrylonitrile, methacrylonitrile, fumaronitrile, maleic acid dinitrile and C 4 - to Ce-conjugated dienes, such as 1, 3-butadiene and isoprene.
- alkanols such as especially acrylic and methacrylic acid, methyl, ethyl, n-butyl, iso-butyl, pentyl, hexyl, heptyl, oct
- the monomers mentioned generally form the main monomers which, based on the total amount of monomers N 2 , account for> 50% by weight, preferably> 80% by weight and more preferably> 90% by weight or even the total amount of monomers N 2 .
- these monomers have only a moderate to low solubility in water under normal conditions (20 ° C, 1 atm (absolute)).
- monomers N2 which however have an increased water solubility under the abovementioned conditions, are those which either have at least one sulfonic acid group and / or their corresponding anion or at least one amino, amido, ureido or N-heterocyclic group and / or their contain on the nitrogen protonated or alkylated ammonium derivatives.
- Examples include acrylamide and methacrylamide; also vinylsulfonic acid, 2-acrylamido-2-methylpropane-sulfonic acid, styrenesulfonic acid and its water-soluble salts, and N-vinylpyrrolidone; 2-vinylpyridine, 4-vinylpyridine; 2-vinylimidazole; 2- (N, N-dimethylamino) ethyl acrylate, 2- (N, N-dimethylamino) ethyl methacrylate, 2- (N, N-diethylamino) ethyl acrylate, 2- (N, N-diethylamino) ethyl methacrylate, 2- (N-tert Butylamino) ethyl methacrylate, N- (3-N ', N'-dimethylaminopropyl) methacrylamide and 2- (1-imidazolin-2-onyl) ethyl methacrylate.
- the abovementioned water-soluble monomers N2 are usually present only as modifying monomers in amounts of ⁇ 10% by weight, preferably ⁇ 5% by weight and particularly preferably ⁇ 3% by weight, based on the total amount of monomers N 2 .
- Other monomers N2 which usually increase the internal strength of the films of a polymer matrix, usually have at least one epoxy, hydroxy, N-methylol or carbonyl group, or at least two non-conjugated ethylenically unsaturated double bonds. Examples include two vinyl radicals containing monomers, two vinylidene radicals having monomers and two alkenyl radicals having monomers.
- alkylene glycol diacrylates and dimethacrylates such as ethylene glycol diacrylate, 1,2-propylene glycol diacrylate, 1,3-propylene glycol diacrylate, 1,3-butylene glycol diacrylate, 1,4-butylene glycol diacrylate and ethylene glycol dimethacrylate, 1, 2-propylene glycol dimethacrylate, 1,3-propylene glycol di-methacrylate, 1,3-butylene glycol dimethacrylate, 1,4-butylene glycol dimethacrylate and divinylbenzene, vinyl methacrylate, vinyl acrylate, allyl methacrylate, allyl acrylate, diallyl maleate, diallyl maleate, diallyl maleate, diallyl maleate, diallyl maleate, diallyl maleate, diallyl maleate, diallyl maleate, diallyl maleate, diallyl maleate, diallyl maleate, diallyl maleate, diallyl maleate, diallyl maleate,
- methacrylates and compounds such as diacetoneacrylamide and acetylacetoxyethyl acrylate or methacrylate.
- the above-mentioned crosslinking monomers N 2 in amounts of ⁇ 10 to wt .-%, but preferably in amounts of ⁇ 5 wt .-%, each based on the total amount of monomers N 2 , are used. However, it is particularly preferred that no such crosslinking monomers N 2 be used to prepare the polymer N.
- Preferred polymers N are obtainable by free-radically initiated solution polymerization without any mention of monomers N1, particularly preferably from 65 to 100% by weight, very particularly preferably from 70 to 90% by weight of acrylic acid, with particular preference from 0 to 35% by weight, most preferably 10 to 30% by weight of maleic acid or maleic anhydride.
- polymer N has a weight-average molecular weight M w in the range from 1000 to 500,000 g / mol, preferably from 10,000 to 300,000 g / mol, particularly preferably from 30,000 to 120,000 g / mol.
- the adjustment of the weight-average molecular weight M w in the preparation of polymer N is familiar to the person skilled in the art and is advantageously carried out by free-radically initiated aqueous solution polymerization in the presence of radical chain-transferring compounds, the so-called free-radical chain regulators.
- the determination of the weight-average molecular weight M w is also familiar to the person skilled in the art and is carried out, for example, by means of gel permeation chromatography.
- Suitable commercial products for polymers N are, for example, the Sokalan from BASF SE ® products, which are based for example on acrylic acid and / or maleic acid.
- Other suitable polymers are described in WO-A-99/02591.
- Highly suitable crosslinkers are those having a (weight-average) molecular weight in the range from 30 to 10,000 g / mol.
- alkanolamines such as triethanolamine
- Carboxylic acids such as citric acid, tartaric acid, butanetetracarboxylic acid
- Alcohols such as glucose, sucrose or other sugars, glycerol, glycol, sorbitol, trimethylolpropane
- Epoxides such as bisphenol A or bisphenol F and resins based thereon and also polyalkylene oxide glycidyl ethers or trimethylolpropane triglycidyl ethers.
- the molecular weight of the low molecular weight crosslinker used is in the range from 30 to 4000 g / mol, more preferably in the range from 30 to 500 g / mol.
- Other suitable polymer-based binders are aqueous dispersions containing one or more polymer (s) composed of the following monomers: a.
- Polymer M is obtainable by free-radically initiated emulsion polymerization in an aqueous medium of the corresponding monomers Mi and / or M2.
- Polymer M can be single-phase or multiphase.
- Polymer M can have a core / shell construction.
- the free-radically initiated aqueous emulsion polymerization reactions are usually carried out by dispersing the ethylenically unsaturated monomers dispersively in the aqueous medium in the form of monomer droplets with the aid of dispersants and polymerizing them by means of a free-radical polymerization initiator.
- Particularly suitable monomers (e) Mi are glycidyl acrylate and / or glycidyl methacrylate and also hydroxyalkyl acrylates and methacrylates having C 2 to C 10 hydroxyalkyl groups, in particular C 2 to C 4 hydroxyalkyl groups and preferably C 2 to C 3 hydroxyalkyl groups, for example 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, 3-hydroxypropyl acrylate, 3-hydroxypropyl methacrylate, 4-hydroxybutyl acrylate and / or 4-hydroxybutyl methacrylate.
- one or more, preferably one or two, of the following monomers M1 are used: 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, glycidyl acrylate, glycidyl methacrylate.
- monomers M1 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, glycidyl acrylate, glycidyl methacrylate.
- the total amount or any residual amount of monomers Mi remaining may be metered into the polymerization vessel batchwise in one or more portions or continuously with constant or varying flow rates.
- Suitable monomers (e) M2 are, in particular, monomers which can be copolymerized in a simple manner with monomer (s), eg ethylenically unsaturated compounds, for example ethylene; vinylaromatic monomers such as styrene, ⁇ -methylstyrene, o-chlorostyrene or vinyltoluenes; Vinyl halides, such as vinyl chloride or vinylidene chloride; Esters of vinyl alcohol and 1 to 18 carbon atoms monocarboxylic acids, such as vinyl acetate, vinyl propionate, vinyl n-butyrate, vinyl laurate and vinyl stearate; Esters of preferably 3 to 6 carbon atoms having ⁇ , ⁇ -monoethylenically unsaturated mono- and dicarboxylic acids, in particular acrylic
- Alkanols such as especially acrylic and methacrylic acid methyl, ethyl, n-butyl, iso-butyl, pentyl, hexyl, heptyl, octyl, nonyl, -decyl and 2-ethylhexyl esters, fumaric and maleic acid dimethyl esters or di-n-butyl esters; Nitrilotriacetic le ⁇ , ⁇ -monoethylenically unsaturated carboxylic acids such as acrylonitrile, methacrylonitrile, fumaric redinitril, maleonitrile and C 4 - to Cs-conjugated dienes such as 1, 3-butadiene and isoprene.
- the monomers mentioned usually form the main monomers which, based on the total amount of monomers M 2 , account for> 50% by weight, preferably> 80% by weight and in particular> 90% by weight. As a rule, these monomers have only a moderate to low solubility in water under normal conditions (20 ° C, 1 atm (absolute)).
- Monomers M2 which have an increased water solubility under the abovementioned conditions are those which contain either at least one acid group and / or their corresponding anion or at least one amino, amido, ureido or N-heterocyclic group and / or their contain nitrogen-protonated or alkylated ammonium derivatives.
- examples may be mentioned by way of example 3 to 6 carbon atoms having ⁇ , ⁇ -monoethylenically unsaturated mono- and dicarboxylic acids and their amides, such as.
- Acrylic acid methacrylic acid, maleic acid, fumaric acid, itaconic acid, acrylamide and methacrylamide; furthermore vinylsulfonic acid, 2-acrylamido-2-methylpropanesulfonic acid, styrenesulfonic acid and its water-soluble salts, and also N-vinylpyrrolidone, 2-vinylpyridine, 4-vinylpyridine, 2-vinylimidazole, 2- (N, N-dimethylamino) ethyl acrylate, 2- (N, N-dimethylamino) ethyl methacrylate, 2- (N, N-diethylamino) ethyl acrylate, 2- (N, N-diethylamino) ethyl methacrylate, 2- (N-tert-butylamino) ethyl methacrylate, N- (3- N ', N'-dimethylamino-propyl) methacrylamide, 2- (1-
- the abovementioned water-soluble monomers M 2 are merely modifying monomers in amounts of ⁇ 10% by weight, preferably ⁇ 5% by weight and particularly preferably ⁇ 3% by weight, based on the total amount of monomers M 2 , contain.
- Monomers M 2 which usually increase the internal strength of the films of a polymer matrix, usually have at least one N-methylol or carbonyl group or at least two non-conjugated ethylenically unsaturated double bonds.
- Examples include two vinyl radicals containing monomers, two vinylidene radicals having monomers and two alkenyl radicals having monomers.
- Particularly advantageous are the diesters of dihydric alcohols with ⁇ , ⁇ -monoethylenically unsaturated monocarboxylic acids, among which acrylic and methacrylic acid are preferred.
- alkylene glycol diacrylates and dimethacrylates such as ethylene glycol diacrylate, 1,2-propylene glycol diacrylate, 1,3-propylene glycol diacrylate, 1,3-butylene glycol diacrylate, 1,4-butylene glycol diacrylate and ethylene glycol dimethacrylate, 1, 2-propylene glycol dimethacrylate, 1, 3-propylene glycol dimethacrylate, 1, 3-butylene glycol dimethacrylate, 1, 4-butylene glycol dimethacrylate and divinylbenzene, vinyl methacrylate, vinyl acrylate, allyl methacrylate, allyl acrylate, diallyl maleate, diallyl fumarate, methylenebisacrylamide, cyclopentadienyl acrylate, triallyl cyanurate or triallyl.
- alkylene glycol diacrylates and dimethacrylates such as ethylene glycol diacrylate, 1,2-propylene glycol diacrylate, 1,3-propylene
- crosslinking monomers M2 are used in amounts of ⁇ 10% by weight, preferably in amounts of ⁇ 5% by weight and more preferably in amounts of ⁇ 3% by weight, based in each case on the total amount of monomers M2. used. Often, however, no such crosslinking monomers M2 are used.
- the invention it is possible to optionally introduce a partial or total amount of monomers M 2 in the polymerization vessel. However, it is also possible to meter in the total amount or any remaining amount of monomers M 2 during the polymerization reaction.
- the total amount or any residual amount of monomers M2 remaining may be metered into the polymerization vessel batchwise in one or more portions or continuously with constant or varying flow rates. Particularly advantageously, the metering of the monomers M2 takes place continuously during the polymerization reaction with constant flow rates, in particular as part of an aqueous monomer emulsion.
- aqueous dispersing aids are often used which keep both the monomer droplets and the polymer particles obtained by the free-radically initiated polymerization dispersed in the aqueous phase and thus ensure the stability of the aqueous polymer composition produced.
- Suitable as such are both the protective colloids commonly used to carry out free-radical aqueous emulsion polymerizations and emulsifiers.
- Suitable protective colloids are polyvinyl alcohols, cellulose derivatives or vinylpyrrolidone- or acrylic acid-containing copolymers, for example those which are defined herein as component I (i).
- suitable protective colloids can be found in Houben-Weyl, Methods of Organic Chemistry, Volume XIV / 1, Macromolecular substances, pages 41 1 to 420, Georg-Thieme-Verlag, Stuttgart, 1961.
- mixtures of emulsifiers and / or protective colloids can be used.
- dispersing aids are exclusively emulsifiers whose relative molecular weights, in contrast to the protective colloids, are usually below 1000. They may be anionic, cationic or nonionic in nature.
- anionic emulsifiers are compatible with each other and with nonionic emulsifiers. The same applies to cationic emulsifiers, while anionic and cationic emulsifiers are usually incompatible with each other.
- emulsifiers are z. B. ethoxylated mono-, di- and tri-alkylphenols (EO degree: 3 to 50, alkyl radical: C 4 to C 12), ethoxylated fatty alcohols (EO degree: 3 to 50, alkyl radical: C 8 to C 3 e) and Alkali metal and ammonium salts of alkyl sulfates (alkyl radical: Ce to C12), of sulfuric monoesters of ethoxylated alkanols (EO degree: 3 to 30, alkyl radical: C12 to Cis) and ethoxylated alkylphenols (EO degree: 3 to 50, alkyl radical: C) 4 to C12), of alkylsulfonic acids (alkyl radical: C12 to Cis) and of alkylarylsulfonic acids (alkyl radical: C9 to Cis). Further suitable emulsifiers can be found in Houben-Weyl, Methods of Organic Chemistry, Volume XIV
- Nonionic and / or anionic emulsifiers are preferably used for the process according to the invention.
- the amount of dispersing agent used in particular emulsifiers, 0.1 to 5 wt .-%, preferably 1 to 3 wt .-%, each based on the total amount of the monomer mixture M.
- the amount used is much higher; usually 5 to 40 wt .-% dispersing aid, preferably 10 to 30 wt .-%, each based on the total amount of the monomer M.
- the total amount or any residual amount of dispersing agent remaining may be metered into the polymerization vessel batchwise in one or more portions or continuously with constant or varying flow rates.
- the metering of the dispersing aids during the polymerization reaction takes place continuously with constant flow rates, in particular as part of an aqueous monomer emulsion.
- Preferred polymers M comprise a) 0.01 to 50% by weight of at least one ethylenically unsaturated monomer which contains at least one epoxy and / or at least one hydroxyalkyl group (monomer (s) Mi) and b) 50 to 99.99 Wt .-% of at least one other ethylenically unsaturated monomer, which is different from the monomers Mi (monomer (s) M 2 ).
- Particularly preferred such polymers M are obtainable by free-radically initiated solution polymerization of from 10 to 30% by weight, preferably from 15 to 22% by weight, of acrylic and / or methacrylic acid esters with C 1 to C 8 alcohols, preferably methanol, n-butanol , 2-ethylhexanol - with 40 to 70% by weight, preferably 55 to 65% by weight of styrene and of 5 to 50% by weight, preferably 20 to 30% by weight of 2-hydroxyethyl acrylate and / or 2-hydroxyethyl methacrylate and / or glycidyl acrylate and / or glycidyl methacrylate, the sum of the components being 100% by weight.
- Further preferred polymers M contain no monomer (s) Mi and are obtainable by free-radically initiated Unespolymersiation of 80 to 99 wt .-%, preferably 85 to 95 wt .-% of acrylic acid esters and / or methacrylic acid esters with C 1 to Cs alcohols -
- polymers M are obtainable by using dispersing aids based on poly (acrylic acid) n, as described in EP-A-1240205 or DE-A-19991049592.
- Such polymers preferably have a core / shell structure (isotropic distribution of the phases, for example onion-shell-shaped) or a Janus structure (anisotropic distribution of the phases).
- aqueous polymer compositions whose polymers M have a glass transition temperature T g or a melting point in the range from (-60) to 270 ° C.
- aqueous dispersions are dispersions selected from the group of polyurethanes, the halogenated vinyl polymers, the vinyl alcohol and / or vinyl ester polymers, rubber, rosin resins and hydrocarbon resins.
- Such dispersions are commercially available, for example Vinnepas ® ethylene-vinyl acetate dispersions of Wacker, or Tacylon-rosin from Eastman Chemical Company.
- Aqueous dispersions of aliphatic and aromatic polyurethanes, polyvinyl acetate homopolymers and copolymers, rosins and hydrocarbon resins are preferred.
- the binder G) consists of several components G1), G2), etc., these components may be added individually or in (prior to addition to the lignocellulose particles LCP-2) or to the mixture of lignocellulose particles LCP-2) and other components. Part) mixtures (eg first three components G1) and then mixture of G2) and G3), or alternatively a mixture of G1), G2) and G3)) are given. Preferably, these combinations contain an aminoplast resin and / or phenoplast resin. Particularly preferably, the binder G) consists of one or more components, in particular a component selected from the group of the amionoplasts resins.
- a combination of aminoplast and isocyanate can be used as the binder of component G).
- the total dry mass of the aminoplast resin in the binder of component G) based on the total dry weight of the lignocellulose particles LCP-2) is in the range from 3 to 20% by weight, particularly preferably from 5 to 13% by weight, very particularly preferably 7 to 1 1 wt .-%.
- the total amount of the organic isocyanate, preferably of the oligomeric isocyanate having 2 to 10, preferably 2 to 8 monomer units and an average of at least one isocyanate group per monomer purity, more preferably PMDI is in this case based on the total dry weight of the core in the range of 0.05 to 5 wt .-%, preferably 0.1 to 3.5 wt .-%, particularly preferably 0.2 to 1 wt .-%, most preferably from 0.25 to 0.5 wt .-%.
- the components D) and H) may each independently or different, preferably the same, known in the art hardener or mixtures thereof. These hardeners of component B) or of component G) are preferably added, provided component (G) is binder selected from the groups of amino resins and phenolic resins.
- hardener for the aminoplast resin component or for the phenolic resin component are meant herein all chemical compounds of any molecular weight which cause or accelerate the polycondensation of aminoplast resin or phenoplast resin.
- a well-suited group of curing agents for aminoplast resin or phenolic resin are organic acids, inorganic acids, acid salts of organic acids and acid salts of inorganic acids, or acid-forming salts such as ammonium salts or acid salts of organic amines.
- ammonium sulfate or ammonium nitrate or inorganic or organic acids for example sulfuric acid, formic acid or acid regenerating substances, such as aluminum chloride, aluminum sulfate or mixtures thereof.
- a preferred group of curing agents for aminoplast resin or phenoplast resin are inorganic or organic acids such as nitric acid, sulfuric acid, formic acid, acetic acid and polymers with acid groups such as homo- or copolymers of acrylic acid or methacrylic acid or maleic acid.
- the mass of acid is based on the total dry weight of lignocellulose particles LCP-1) or LCP-2), preferably 0.001 to 1 wt .-%, preferably 0.01 to 0.5 wt .-%, particularly preferably 0.02 to 0.1 wt .-%.
- Particular preference is given to using hardeners which exhibit latent curing (M. Dunky, P. Niemz, Holzwerkstoffe und Leime, Springer 2002, pages 265 to 269), so-called latent hardeners.
- Latent here means that the curing reaction does not occur immediately after the mixing of the aminoplast resin and the hardener but only delayed, or after activation of the curing agent by eg temperature.
- the delayed cure increases the processing time of an aminoplast resin-hardener mixture.
- the use of latent hardener may also have an advantageous effect for the mixture of the lignocellulose particles with aminoplast resin, hardener and the other components, since it may lead to a lower precuring of the aminoplast resin before process step iv).
- Preferred latent hardeners are: ammonium chloride, ammonium bromide, ammonium iodide, ammonium sulfate, ammonium sulfite, ammonium hydrogen sulfate, ammonium methanesulfonate, ammonium p-toluenesulfonate, ammonium trifluoromethanesulfonate, ammonium nonafluorobutanesulfonate, ammonium phosphate, ammonium nitrate, ammonium formate, ammonium acetate, morpholinium chloride, morpholinium bromide, morpholinium iodide, morpholine sulfate, morpholinium sulfite , Morpholiniumhydrogensulfat, Morpholiniummethansulfonat, mor- pholinium-p-toluenesulfonate, Morpholiniumtrifluormethansulfonat, Morpholinium
- the mass used of these latent hardeners is based on the total dry weight of lignocellulose particles LCP-1) or LCP-2), preferably 0.001 to 5 wt.%, Particularly preferably 0.01 to 0.5 wt. %, most preferably 0.1 to 0.5 wt .-%.
- Phenoplastharze preferably phenol-formaldehyde resins
- Phenoplastharze can also be cured alkaline, wherein preferably carbonates or hydroxides such as potassium carbonate or sodium hydroxide are used.
- curing agents for aminoplast resins are disclosed in M. Dunky, P. Niemz, Holzwerkstoffe und Leime, Springer 2002, pages 265 to 269 and further examples of curing agents for phenolic resins, preferably phenol-formaldehyde resins are from M. Dunky, P. Niemz, Holzwerkstoffe and Glues, Springer 2002, pages 341-352.
- Components E) and I) can be selected from the group of surfactants and / or the group of other additives known to the skilled person, e.g. Water repellents such as paraffin emulsions, antifungal agents, formaldehyde scavengers, for example urea or polyamines, flame retardants, solvents such as alcohols, glycols or glycerol, metals, carbon and alkali or alkaline earth salts from the group of sulfates, nitrates, phosphates, or Halides or mixtures thereof.
- Water repellents such as paraffin emulsions, antifungal agents, formaldehyde scavengers, for example urea or polyamines, flame retardants, solvents such as alcohols, glycols or glycerol, metals, carbon and alkali or alkaline earth salts from the group of sulfates, nitrates, phosphates, or Halides or mixtures thereof.
- additives may be used in amounts of from 0 to 5% by weight, preferably 0.5 to 4% by weight, particularly preferably 1 to 3% by weight, based on the total dry content of the lignocellulose particles LCP-1) or LCP-2) can be used.
- Suitable surfactants are anionic, cationic, nonionic, or amphoteric surfactants, and mixtures thereof.
- Suitable anionic surfactants are alkali metal, alkaline earth metal or ammonium salts of sulfonates, sulfates, phosphates, carboxylates or mixtures thereof.
- sulfonates are alkylarylsulfonates, diphenylsulfonates, ⁇ -olefinsulfonates, lignosulfonates, sulfonates of fatty acids and oils, sulfonates of ethoxylated alkylphenols, sulfonates of alkoxylated arylphenols, naphthalenesulfonate condensates, dodecyl and tridecylbenzenesulfonates, naphthalene and sikylnaphthalenesulfonates or sulfosuccinates.
- sulfates are sulfates of fatty acids and Oils, ethoxylated alkylphenol sulfates, alcohol sulfates, sulfates of ethoxylated alcohols or solid acid ester sulfates.
- Suitable nonionic surfactants are alkoxylates, N-substituted fatty acid amides, amine oxides, esters, sugar-based surfactants, polymeric surfactants, block polymers and mixtures thereof.
- alkoxylates are compounds such as alcohols, alkylphenols, amines, amides, arylphenols, fatty acids or fatty acid esters which have been alkoxylated with 1 to 50 equivalents of alkylene oxide.
- ethylene oxide and / or propylene oxide can be used, preferably ethylene oxide.
- N-substituted fatty acid amides are fatty acid glucamides or fatty acid alkanolamides.
- esters are fatty acid esters, glycerol esters or monoglycerides.
- sugar-based surfactants are sorbitan, ethoxylated sorbitans, sucrose and glycose esters or alkyl polyglucosides.
- polymeric surfactants are homo- or copolymers of vinylpyrrolidone, vinyl alcohol, or vinyl acetate.
- Suitable block polymers are block polymers of the type A-B or A-B-A, which contain blocks of polyethylene oxide and polypropylene oxide, or of the type A-B-C, which contain alkanol and blocks of polyethylene oxide and polypropylene oxide.
- Suitable cationic surfactants are quaternary surfactants, for example quaternary ammonium compounds having one or two hydrophobic groups or ammonium salts of long-chain primary amines.
- Suitable amphoteric surfactants are alkyl betaines and imidazolines.
- Particularly preferred surfactants are fatty alcohol polyglycol ethers, fatty alcohol sulfates, sulfonated fatty alcohol polyglycol ethers, fatty alcohol ether sulfates, sulfonated fatty acid methyl esters, sugar surfactants such as alkyl glycosides, alkyl benzene sulfonates, alkane sulfonates, methyl ester sulfonates, quaternary ammonium salts such as cetyltrimethylammonium bromide and soaps.
- the component F) and the component J) can be selected independently of one another from the group of trialkyl phosphates or mixtures thereof.
- 0.01 to 10% by weight, preferably 0.01 to 5% by weight, particularly preferably 0.01 to 2% by weight, of the mixture in process step i) is used.
- % Trialkylphosphat based on the total dry content of the lig- nocellulose particles LCP-1) used as component F).
- the mixture used in process step i) is from 0 to 10% by weight, preferably from 0 to 2% by weight, particularly preferably from 0 to 0.1% by weight, trialkyl phosphate as component J).
- Suitable trialkyl phosphates are compounds of the structure R3PO4, where each of the three (3) radicals R can independently of one another be an alkyl group having 1, 2, 3, 4, 5 or 6 carbon atoms.
- Each group R may have the same or a different, preferably the same, number of carbon atoms. The same number of carbon atoms may be either the same groups or isomeric groups, preferably identical groups.
- trimethyl phosphate, triethyl phosphate, triproply phosphate, tributyl phosphate, tripentyl phosphate, trihexyl phosphate or mixtures thereof preferably trimethyl phosphate, triethyl phosphate, tripropyl phosphate or mixtures thereof, particularly preferably triethyl phosphate, can be used.
- the trialkyl phosphates are usually used as a liquid or as a solution.
- the trialkyl phosphates are mixed before mixing with the lignocellulose particles with the components B), C) and / or G), preferably with the components B) and / or C), more preferably, with the component B) or component C), very particularly preferably with component B).
- Single-layer and multilayer chipboard and fiberboard and Oriented Strand Boards are particularly preferred.
- the total thickness of the multilayered lignocellulosic materials according to the invention varies with the field of application and is generally in the range of 0.5 to 100 mm, preferably in the range of 10 to 40 mm, in particular 15 to 20 mm.
- the mono- and multilayered lignocellulose materials according to the invention generally have an average total density of 100 to 1000 kg / m 3 , preferably 400 to 850 kg / m 3 .
- the multilayer chipboard according to the invention generally has a mean overall density of 400 to 750 kg / m 3 , more preferably 425 to 650 kg / m 3 , in particular 450 to 600 kg / m 3 .
- the density is determined 24 h hours after production according to EN 1058.
- the lignocellulosic materials produced by the process according to the invention are mainly used in construction, in interior work, in shop and exhibition construction, as material for furniture and as packaging material.
- the lignocellulosic materials produced by the process according to the invention are used as inner layers for sandwich panels.
- the outer layers of the sandwich panels may be made of different materials, such as metal such as aluminum or stainless steel, or of thin wood-based panels, such as chipboard or fiberboard, preferably high density fiberboard (HDF), or laminates such as high pressure laminates (HPL).
- the lignocellulosic materials produced by the process of the present invention are coated on one or more sides, e.g., with furniture sheets, melamine films, veneers, plastic edge or lacquer.
- the lignocellulosic materials produced according to the invention or the coated lignocellulosic materials produced therefrom or the sandwich panels produced therefrom are used, for example, as roof and wall planking, infills, cladding, floors, interior door siding, partitions or shelves.
- the lignocellulosic materials produced by the process according to the invention or the coated lignocellulosic materials produced therefrom or the sandwich panels made from these lignocellulosic materials for example, used as a carrier material for cabinet furniture, as a shelf, as a door material, as a countertop, as a kitchen front, as elements in tables, chairs and upholstered furniture ,
- 950 g glued chips were sprinkled immediately or after a waiting time of 15 min in a 30x30 cm form and cold precompressed. Subsequently, the resulting pre-compacted nematte pressed in a hot press to a thickness of 16 mm to a chipboard (pressing temperature 210 ° C, pressing time 100 s).
- the transverse tensile strength was determined according to EN 319.
- the thickness swelling after 24 h was determined in accordance with EN 317.
- the determination of the perforator value as a measure of the formaldehyde emission was carried out in accordance with EN 120.
- the results of the experiments are summarized in the table.
- the quantities always refer to 100 wt .-% dry weight of the wood chips.
- the density of the two plates was 550 kg / m 3 .
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Organic Chemistry (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacturing & Machinery (AREA)
- Forests & Forestry (AREA)
- Materials Engineering (AREA)
- Dry Formation Of Fiberboard And The Like (AREA)
- Laminated Bodies (AREA)
Abstract
La présente invention concerne un procédé de production discontinue ou continue, de préférence continue, de matières lignocellulosiques monocouches ou multicouches comprenant les étapes consistant à ix) mélanger des composants des couches individuelles, x) étaler le ou les mélanges, produits à l'étape i), pour former un mat, xi) pré-compacter le mat étalé et xii) presser le mat pré-compacté à une température élevée par mélange à l'étape i), pour le noyau de matières premières lignocellulosiques monocouches ou multicouches, des particules de lignocellulose (composant LCP-1) avec u) 0 à 25% en poids de particules de matière plastique expansée ayant une masse volumique apparente dans la gamme de 10 à 150 kg/m3 (composant A), v) 0,05 à 1,39% en poids de liant choisi dans le groupe des isocyanates organiques comportant au moins deux groupes isocyanates (composant B), w) 3 à 20% en poids de liant choisi dans le groupe des résines aminoplastes (composant C), x) 0 à 5% en poids de durcisseur (composant D), y) 0 à 5% en poids d'additifs (composant E), z) 0,01 à 10% en poids de trialkylphosphate (TAP) (composant F) et, pour les couches de revêtement de matières lignocellulosiques multicouches, des particules de lignocellulose (composant LCP-2) avec aa) 1 à 30% en poids de liant choisi dans le groupe des résines aminoplastes, résines phénoplastes, isocyanates organiques ayant au moins deux groupes isocyanates, des liants à base de protéines et d'autres liants à base de polymères (composant G), bb) 0 à 5% en poids de durcisseurs (composant H), cc) 0 à 5% en poids d'additifs (composant I) et dd) 0 à 10% en poids de trialkylphosphate (TAP) (composant J).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP15161456 | 2015-03-27 | ||
PCT/EP2016/055790 WO2016156053A1 (fr) | 2015-03-27 | 2016-03-17 | Procédé de production de matières lignocellulosiques monocouches ou multicouches à l'aide de trialkylphosphate |
Publications (1)
Publication Number | Publication Date |
---|---|
EP3274144A1 true EP3274144A1 (fr) | 2018-01-31 |
Family
ID=52737013
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16714267.8A Withdrawn EP3274144A1 (fr) | 2015-03-27 | 2016-03-17 | Procédé de production de matières lignocellulosiques monocouches ou multicouches à l'aide de trialkylphosphate |
Country Status (4)
Country | Link |
---|---|
US (1) | US20180071945A1 (fr) |
EP (1) | EP3274144A1 (fr) |
RU (1) | RU2017137508A (fr) |
WO (1) | WO2016156053A1 (fr) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2018320320B2 (en) * | 2017-08-23 | 2023-12-21 | Basf Se | Method for producing lignocellulose materials in the presence of caprolactam and oligomers of caprolactam |
CN115551913A (zh) * | 2020-05-11 | 2022-12-30 | 亨茨曼国际有限公司 | 粘合剂组合物 |
EP4015173B1 (fr) * | 2020-12-21 | 2023-09-06 | Georg-August-Universität Göttingen | Augmentation de la réactivité des adhésifs isocyanate à l'aide des composés d'ammonium |
CA3242127A1 (fr) | 2021-12-22 | 2023-06-29 | Stephan Weinkotz | Procede de production d'un composite lignocellulosique ou d'un produit associe par chauffage dielectrique |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3451968A (en) * | 1965-07-26 | 1969-06-24 | Diamond Shamrock Corp | Composition comprising urea-formaldehyde resin,triester of h3po4,and alkyl phosphite |
US4257996A (en) * | 1980-04-14 | 1981-03-24 | The Upjohn Company | Process for preparing particle board and polyisocyanate-phosphorus compound release agent composition therefor |
DE3328662A1 (de) | 1983-08-09 | 1985-02-21 | Bayer Ag, 5090 Leverkusen | Verfahren zur herstellung von presswerkstoffen mit polyisocyanat-bindemitteln unter mitverwendung von latenten, waermeaktivierbaren katalysatoren |
DE4003422A1 (de) | 1990-02-06 | 1991-08-08 | Basf Ag | Waessrige polyurethanzubereitungen |
US5112875A (en) | 1990-11-26 | 1992-05-12 | Basf Corporation | Polystyrene having high degree of expandability, and formulation having a highly-expandable polymer therein |
JP2699234B2 (ja) * | 1992-01-31 | 1998-01-19 | 株式会社 産業技術研究所 | 木型用母材とその製造方法 |
DE19604574A1 (de) | 1996-02-08 | 1997-09-18 | Juergen Dr Kramer | Verfahren und Vorrichtung zur kontinuierlichen Herstellung von Platten aus Lignocellulose-haltigen Teilchen |
DE19729161A1 (de) | 1997-07-08 | 1999-01-14 | Basf Ag | Thermisch härtbare, wässrige Zusammensetzungen |
DE19949592A1 (de) | 1999-10-14 | 2001-04-19 | Basf Ag | Thermisch härtbare Polymerdipersion |
DE10104047B4 (de) | 2001-01-31 | 2005-12-01 | Johann Leonhartsberger | Vorrichtung zur Trockenbeleimung von Teilchen in Form von Fasern und Spänen |
DE10247412C5 (de) | 2002-10-11 | 2010-07-01 | Siempelkamp Maschinen- Und Anlagenbau Gmbh & Co. Kg | Anlage zum Beleimen von Fasern für die Herstellung von Faserplatten, insbesondere MDF-Platten und dergleichen Holzwerkstoffplatten |
EA201590101A1 (ru) * | 2012-07-02 | 2015-04-30 | Басф Се | Многослойные легкие древесные материалы из содержащих лигноцеллюлозу материалов с одним ядром и двумя покровными слоями, которые содержат в ядре обработанную целлюлозу, обработанные природные волокна, синтетические волокна или их смеси |
US20150017425A1 (en) * | 2013-07-05 | 2015-01-15 | Basf Se | Lignocellulose materials with coated expanded plastics particles |
-
2016
- 2016-03-17 US US15/562,078 patent/US20180071945A1/en not_active Abandoned
- 2016-03-17 EP EP16714267.8A patent/EP3274144A1/fr not_active Withdrawn
- 2016-03-17 WO PCT/EP2016/055790 patent/WO2016156053A1/fr active Application Filing
- 2016-03-17 RU RU2017137508A patent/RU2017137508A/ru not_active Application Discontinuation
Also Published As
Publication number | Publication date |
---|---|
RU2017137508A (ru) | 2019-04-29 |
WO2016156053A1 (fr) | 2016-10-06 |
US20180071945A1 (en) | 2018-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3515990B1 (fr) | Procédé de fabrication de matériaux en lignocellulose | |
EP3274143B1 (fr) | Procédé destiné à la fabrication de matières dérivées du bois | |
WO2015104349A2 (fr) | Procédé servant à fabriquer des matériaux à base de lignocellulose | |
EP2346682B1 (fr) | Corps moulés multicouches contenant de la lignocellulose, à faible émission de formaldéhyde | |
EP3055453B1 (fr) | Matériaux à base de lignocellulose contenant de la cellulose défibrillée | |
EP2242797B1 (fr) | Liants exempts de formaldéhyde utilisés pour produire des matériaux ligneux | |
EP2614117B1 (fr) | Corps moulés multicouches contenant de la lignocellulose, à faible émission de formaldéhyde | |
EP2794210B1 (fr) | Matériaux lignocellulosiques comprenant des particules de matière plastique expansées réparties de façon non homogène dans le noyau | |
EP2651612B1 (fr) | Corps moulé multicouche contenant de la lignocellulose, avec une faible émission de formaldéhyde | |
EP3230027B1 (fr) | Procédé de fabrication de matières à base de lignocellulose multicouches ayant un coeur et au moins une couche de recouvrement inférieure et supérieure et propriétés spéciales du coeur | |
EP3274144A1 (fr) | Procédé de production de matières lignocellulosiques monocouches ou multicouches à l'aide de trialkylphosphate | |
EP3230028B1 (fr) | Procédé de fabrication d'un matériau en lignocellulose mono-couche ou multicouches par durcissement dans un champ électrique haute fréquence | |
WO2017140520A1 (fr) | Composite polymère/fibre thermoformable | |
WO2015176853A1 (fr) | Matériaux lignocellulosiques multicouches à l'intérieur desquels se situe une barrière contre l'humidité |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20171027 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20180519 |