EP3273237B1 - Method and measuring device for determining physical gas properties - Google Patents

Method and measuring device for determining physical gas properties Download PDF

Info

Publication number
EP3273237B1
EP3273237B1 EP17000682.9A EP17000682A EP3273237B1 EP 3273237 B1 EP3273237 B1 EP 3273237B1 EP 17000682 A EP17000682 A EP 17000682A EP 3273237 B1 EP3273237 B1 EP 3273237B1
Authority
EP
European Patent Office
Prior art keywords
gas
pressure
reservoir
combustion
gas reservoir
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17000682.9A
Other languages
German (de)
French (fr)
Other versions
EP3273237A1 (en
Inventor
Philippe Prêtre
Andreas Kempe
Tobias Suter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MEMS AG
Original Assignee
MEMS AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MEMS AG filed Critical MEMS AG
Publication of EP3273237A1 publication Critical patent/EP3273237A1/en
Application granted granted Critical
Publication of EP3273237B1 publication Critical patent/EP3273237B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0062General constructional details of gas analysers, e.g. portable test equipment concerning the measuring method, e.g. intermittent, or the display, e.g. digital
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N7/00Analysing materials by measuring the pressure or volume of a gas or vapour
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/20Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity
    • G01N25/22Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity on combustion or catalytic oxidation, e.g. of components of gas mixtures
    • G01N25/28Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity on combustion or catalytic oxidation, e.g. of components of gas mixtures the rise in temperature of the gases resulting from combustion being measured directly
    • G01N25/34Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity on combustion or catalytic oxidation, e.g. of components of gas mixtures the rise in temperature of the gases resulting from combustion being measured directly using mechanical temperature-responsive elements, e.g. bimetallic
    • G01N25/36Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity on combustion or catalytic oxidation, e.g. of components of gas mixtures the rise in temperature of the gases resulting from combustion being measured directly using mechanical temperature-responsive elements, e.g. bimetallic for investigating the composition of gas mixtures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/22Fuels, explosives
    • G01N33/225Gaseous fuels, e.g. natural gas
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/005Investigating or analyzing materials by the use of thermal means by investigating specific heat
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/18Investigating or analyzing materials by the use of thermal means by investigating thermal conductivity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49316Impeller making
    • Y10T29/4932Turbomachine making
    • Y10T29/49321Assembling individual fluid flow interacting members, e.g., blades, vanes, buckets, on rotary support member

Definitions

  • the invention relates to a method and a measuring device for determining physical properties and combustion-relevant variables of gases and gas mixtures.
  • Physical gas properties are understood to mean, in particular, the density, thermal conductivity, heat capacity and viscosity and the combustion-relevant variables that can be correlated therefrom, such as the energy content, calorific value, Wobbe index, the methane number and/or the air requirement of the gas or gas mixture.
  • the corresponding index to indicate the interchangeability of gases is the Wobbe index, formed from the calorific value and the square root of the density ratio between air and this gas. With the same Wobbe index, the same heat load on a burner results.
  • the correct mixing ratio between fuel gas and air is important, the so-called air requirement. If there is not enough air, soot (exhaust gases) usually forms, which can lead to the destruction of fuel cells, especially. Too much air during combustion results in lower power output. The optimal value depends on the respective application, but changes again as the gas quality changes.
  • CMOS hot wire anemometers enable both microthermal thermal conductivity measurement and Mass flow measurement. This technology is discussed D. Matter, B. Kramer, T. Kleiner, B. Sabbattini, T. Suter, "Microelectronic household gas meter with new technology", Technisches Messen 71, 3 (2004), pp. 137-146 pointed out. It differs in particular from conventional thermal mass flow meters in that it measures directly in the gas stream and not from outside on a metal capillary surrounding the gas stream.
  • WO 99/02964 A1 A method for determining the density of a gas is described, in which the gas flows from a container through a critical nozzle and the time ⁇ t for a specific pressure drop is measured.
  • EP 0 591 639 A2 A method and a device for determining the gas density are described, whereby the gas density is first measured under given conditions and then the gas density under flow conditions is determined using a volume correction ratio.
  • a thermal flow sensor for determining a variable relevant to combustion technology, based on a thermal conductivity measurement with a quasi-known mass flow.
  • a critical nozzle is used to keep the mass flow constant and an attempt is made to correct the gas type dependence of the critical nozzle using thermal conductivity.
  • the information on the correlation of variables relevant to combustion technology is limited to two quasi-independent measured values, so that no validation of the measurement data is possible.
  • a sensor for determining variables relevant to combustion technology, in which the mass flow is kept constant and a quantity proportional to the heat capacity is determined by means of a thermal measurement. Since it is not a microthermal sensor, the thermal conductivity cannot be determined, which means that the determination of the heat capacity and the combustion-relevant variables derived from it is only possible up to a proportionality factor, which makes additional calibration with known gas compositions necessary. In addition, information about thermal conductivity and thus the possibility of this are no longer available Correlation of the thermal conductivity ⁇ with one of the combustion-relevant quantities. Furthermore, the accuracy of this method is limited by the changes that occur in the inaccessible thermal conductivity ⁇ .
  • the invention is therefore based on the object of specifying a method and a measuring device for determining physical properties of gases and gas mixtures, with which a higher level of accuracy can be achieved than with the sensors from the patent documents described above, whereby it is possible to use the measuring device deeper Costs to produce than commercially available devices that are approved for calibration-required calorific value measurements.
  • the object is achieved by a method according to claim 1 and by a measuring device according to claim 6.
  • ⁇ with the unit Watt/m 3 describes the source term of the heating element.
  • the source term comes from the microthermal method from the heating wire of a miniaturized, integrated hot-wire anemometer, which feeds thermal energy into the system.
  • thermal conductivity ⁇ also has a separate effect on the solution of equation (8) because of the swelling term ⁇ .
  • the standard volume flow or the pressure signal can be corrected until equation (14) is fulfilled.
  • a corrected time constant ⁇ follows in equation (6) or a corrected proportionality constant in equation (6') and thus a correction of the gas property factor ⁇ * in equation (7) or (7'). In this way, ⁇ and ⁇ * have been determined consistently because the mass flow through the nozzle is the same as the mass flow applied to the microthermal sensor.
  • the first gas property factor ⁇ * is derived from the time constant of the pressure drop, the first gas property factor being formed, for example, by additionally measuring the temperature T and omitting all non-gas-dependent variables.
  • the pressure in the gas reservoir at the beginning of the pressure drop measurement is typically greater than the critical pressure p crit of the critical nozzle and the external pressure after the critical nozzle is less than half of the critical pressure, or the pressure in the gas reservoir at the beginning of the pressure increase measurement is typically less than half the critical pressure p crit of the critical nozzle and the pressure in front of the critical nozzle is greater than the critical pressure.
  • the gas reservoir is typically separated from the gas supply during the measurement.
  • the volume of the gas reservoir is advantageously chosen so that the pressure in the gas reservoir decreases or increases significantly by the end of the measurement, for example by at least a tenth or fifth of the original pressure.
  • the invention also includes the use of a gas reservoir and a critical nozzle for determining physical properties and/or combustion-relevant variables of a gas or gas mixture, wherein the gas or gas mixture flows under pressure from the gas reservoir through the critical nozzle, with the pressure drop in the gas reservoir as Function of time is measured, from the measured values of the pressure drop a gas property factor ⁇ * which is dependent on physical properties of the gas or gas mixture is determined, which is derived from a time constant of the pressure drop, and from the gas property factor ⁇ * by means of correlation a desired physical property or one relevant to combustion technology is determined Size is determined.
  • a negative pressure is generated in the gas reservoir, and the gas or gas mixture flows under pressure through the critical nozzle into the gas reservoir, the pressure increase in the gas reservoir being measured as a function of time and from the measured values of the pressure increase based on physical properties of the gas or gas mixture-dependent gas property factor F* is determined, from which a desired physical property or combustion-relevant variable is determined by means of correlation.
  • a gas reservoir and a critical nozzle for determining physical properties and/or combustion-relevant variables of a gas or gas mixture or the corresponding method in which a gas reservoir and a critical nozzle for determining physical properties and/or combustion-relevant variables of a gas or Gas mixtures are used can also be viewed as an independent invention, which can additionally include a measuring device with an evaluation unit, gas reservoir and critical nozzle, the evaluation unit for the use of the gas reservoir and the critical nozzle to determine physical properties and / or combustion-relevant quantities of a gas or gas mixture or is set up to carry out the corresponding process.
  • Fig. 1a shows an exemplary embodiment of the schematic structure of a measuring device according to the present invention in the case in which the gas main line 1 has a pressure that is higher than the critical pressure for the critical nozzle 6 of the measuring device (high-pressure variant).
  • the measuring device comprises, in addition to the critical nozzle 6, an evaluation unit 11, which is set up to carry out a method according to the present invention, a gas reservoir 4, which is provided with a pressure sensor 8, and a microthermal sensor 7 for measuring the flow and thermal conductivity, wherein the gas reservoir 4 is connected to the critical nozzle 6 and the microthermal sensor 7 for the measurement.
  • the measuring device can additionally contain one or more of the following components: a measuring line 2, which leads to the gas reservoir 4, and which can be connected to a main gas line 1 during operation, an inlet valve 3, which can be arranged in the measuring line 2, in order to to control the gas supply to the gas reservoir, an outlet valve 5, which is arranged on the outlet side of the gas reservoir, in order to control the gas flow from the gas reservoir, an outlet 10, in order to remove the gas flowing out of the measuring device, an additional pressure sensor 8 ', which is at the outlet 10 can be arranged, a temperature sensor 9, which is arranged in the gas reservoir, and a compressor 12 ', which can be arranged on the inlet side of the gas reservoir 4 in order to increase the pressure in the gas reservoir.
  • a measuring line 2 which leads to the gas reservoir 4, and which can be connected to a main gas line 1 during operation
  • an inlet valve 3 which can be arranged in the measuring line 2 in order to to control the gas supply to the gas reservoir
  • an outlet valve 5 which is arranged on the outlet side of the
  • the gas or gas mixture flows from the gas reservoir 4 through the critical nozzle 6 and over the microthermal sensor 7, with the critical nozzle and the microthermal sensor being subjected to the same mass flow.
  • the pressure drop in the gas reservoir 4 is measured as a function of time and a first gas property factor ⁇ *, which is dependent on a first group of physical properties of the gas or gas mixture, is determined from the measured values of the pressure drop, the first gas property factor being derived, for example, from a time constant of the pressure drop .
  • a second gas property factor ⁇ which is dependent on a second group of physical properties of the gas or gas mixture, is determined, the second gas property factor containing, for example, the heat capacity c p of the gas or gas mixture or being dependent on the same. Furthermore, with the help of the microthermal sensor 7, the thermal conductivity ⁇ of the gas or gas mixture is determined and a desired physical property or combustion-relevant quantity is determined from the first and/or second gas property factor ⁇ *, ⁇ and the thermal conductivity ⁇ by means of correlation.
  • the inlet valve 3 and outlet valve 5 are first opened in order to allow the gas or gas mixture to be measured to flow from the main gas line 1 via the measuring line 2 through the measuring device, which can ensure that there is no longer any foreign gas from the last measurement in the measuring device .
  • the inlet valve and outlet valve can be opened via a control unit.
  • the evaluation unit 11 can also be used, as in Fig. 1a shown, take over control of the inlet valve and exhaust valve. Then it will be the outlet valve 5 is closed and the gas reservoir 4, whose volume V is known, fills until the inlet valve 3 is closed.
  • Pressure p and temperature T in the gas reservoir can be measured with the pressure sensor 8 or temperature sensor 9, so that the standard volume V norm of the gas or gas mixture located in the gas reservoir 4 can be determined at any time.
  • v standard p 1013.25 mbar ⁇ 273.15 K T ⁇ v .
  • the outlet valve 5 can be opened again.
  • the pressure p in the gas reservoir is several bar higher than p crit , so that the pressure drop measurement can be carried out over this range of pressure increase without the nozzle 6 no longer being operated critically.
  • the outlet valve 5 is closed again, which ends the pressure drop measurement.
  • the pressure sensor 8 is preferably designed as a differential pressure sensor relative to the outlet 10 of the measuring device. However, it is also possible to provide an additional pressure sensor 8' at the outlet.
  • the time-dependent pressure p(t) and the time-dependent temperature T(t) in the pressure reservoir 4 were measured and recorded by the evaluation unit 11.
  • the time constant ⁇ in equation (6) or the gas property factor ⁇ * in equation (7) is determined in the evaluation unit.
  • flow data was measured with the microthermal sensor 7, which in turn was recorded by the evaluation unit in order to determine the factor S in equation (9) or the gas property factor ⁇ in equation (11). Since the inlet and outlet valves are closed after the pressure drop measurement, gas no longer flows through the microthermal sensor 7.
  • the thermal conductivity measurement ⁇ can now be measured. Again recorded by the evaluation unit, the thermal conductivity ⁇ is determined using the solution to equation (12).
  • a compressor 12 ' may be provided, which is arranged, for example, on the inlet side of the gas reservoir 4 in order to increase the pressure in the gas reservoir.
  • Fig. 2 shows a second exemplary embodiment of the schematic structure of a measuring device, which is not part of the invention, in which a negative pressure is used in the gas reservoir.
  • the measuring device comprises, in addition to the gas reservoir 4, a pressure sensor 8 with which the gas reservoir is provided, an evaluation unit 11 which is set up to carry out a method according to the present invention, a critical nozzle 6, and a microthermal sensor 7 for measuring the flow and the thermal conductivity, the gas reservoir 4 being connected to the critical nozzle 6 and the microthermal sensor 7 for the measurement.
  • the measuring device can additionally contain one or more of the following components: a vacuum pump 12, which is connected to the gas reservoir 4 in order to generate a negative pressure in the gas reservoir, a measuring line 2, which leads to the gas reservoir 4, and which, in operation, with a Main gas line 1 can be connected, an inlet valve 3, which can be arranged in the measuring line 2 in order to control the gas supply to the gas reservoir, an outlet valve 5, which is arranged on the outlet side of the gas reservoir in order to control the gas flow from the gas reservoir, an outlet 10 to remove the gas flowing out of the measuring device, an additional pressure sensor 8 ', which can be arranged in the measuring line 2 or gas main line, and a temperature sensor 9, which is arranged in the gas reservoir 4.
  • a vacuum pump 12 which is connected to the gas reservoir 4 in order to generate a negative pressure in the gas reservoir
  • a measuring line 2 which leads to the gas reservoir 4 and which, in operation, with a Main gas line 1 can be connected
  • an inlet valve 3 which can be arranged in the measuring line 2 in order to control
  • a gas and Gas mixture flows under pressure through the critical nozzle 6 and via the microthermal sensor 7 into the gas reservoir 4, with the critical nozzle and the microthermal sensor being subjected to the same mass flow.
  • the pressure increase in the gas reservoir 4 is measured as a function of time and a first gas property factor ⁇ *, which is dependent on a first group of physical properties of the gas or gas mixture, is determined from the measured values of the pressure increase, the first gas property factor being derived, for example, from a proportionality constant of the pressure increase .
  • a second gas property factor ⁇ which is dependent on a second group of physical properties of the gas or gas mixture, is determined, the second gas property factor containing, for example, the heat capacity c p of the gas or gas mixture or being dependent on the same. Furthermore, with the help of the microthermal sensor 7, the thermal conductivity ⁇ of the gas or gas mixture is determined and a desired physical property or combustion-relevant quantity is determined from the first and/or second gas property factor ⁇ *, ⁇ and the thermal conductivity ⁇ by means of correlation.
  • the pressure in the gas reservoir 4 is previously reduced to such an extent, for example with a vacuum pump 12, that the critical nozzle 6 can be operated critically, ie the pressure in the gas reservoir is less than half of the pressure in front of the critical nozzle.
  • No high vacuum is required: As long as the pressure p and the temperature T in the gas reservoir 4 are measured, it can always be calculated which standard volume of gas has flowed into the gas reservoir. However, it is advantageous if the pressure is a factor lower than would be necessary for critical conditions, as the measurement can then be carried out for a correspondingly longer time, which enables a more precise determination of the proportionality constant.
  • Fig. 3 shows an exemplary embodiment of a microthermal sensor for use in a measuring device, which is not part of the invention.
  • the microthermal sensor 7 can, for example, as in Fig. 3 shown, be an integrated, microthermal CMOS hot wire anemometer, which can be arranged in a section 2 'of the measuring line and acted upon with a gas or gas mixture stream 2a.
  • the CMOS microthermal hot wire anemometer includes a substrate 13, which typically contains a membrane 14 a few micrometers thick.
  • the CMOS hot-wire anemometer further comprises two thermocouples 15.1, 15.2 and a heating element 16, which can be arranged between the two thermocouples in the flow direction.
  • the two thermocouples 15.1, 15.2 can be used to record the temperature that arises due to the heat exchange 15.1a, 15.2a with the gas or gas mixture stream 2a.
  • Fig. 4 shows a representation of the directly measured density ratio ⁇ / ⁇ ref (y-axis) as a function of the correlated density ratio ⁇ corr / ⁇ ref (x-axis) for different gas groups at standard conditions (0 ° C, 1013.25 mbar), whereby the correlated density ratio with was determined using a method or a measuring device according to the present invention.
  • a typical H natural gas was used as the reference gas.
  • the measuring device described above for determining physical properties and/or combustion-relevant variables of a gas and gas mixture is to be assigned to a new category, namely "measuring the pressure drop or increase in pressure in a gas reservoir, where the gas flows through a critical nozzle, as well as thermal conductivity and flow measurement using a microthermal sensor, and data validation by summing the flow values".
  • the components used are inexpensive, which allows new markets to be opened up in which gas quality sensors are not used today due to cost reasons In terms of accuracy, little loss is to be expected compared to more expensive, commercially available devices, since at least three independent measured values are used for the correlation.
  • the invention includes the use of a gas reservoir and a critical nozzle for determining physical properties and/or combustion-relevant variables of a gas or gas mixture, or a method in which a gas reservoir and a critical nozzle are used to determine physical properties and/or Combustion-relevant variables of a gas or gas mixture are used, the gas or gas mixture flowing under pressure from the gas reservoir through the critical nozzle, the pressure drop in the gas reservoir being measured as a function of time, from the measured values of the pressure drop one of physical properties of the gas or Gas mixture-dependent gas property factor ⁇ * is determined, which is derived, for example, from a time constant of the pressure drop, and from the gas property factor ⁇ * a desired physical property or combustion-relevant quantity is determined by means of correlation.
  • Fig. 5a shows an exemplary embodiment of the schematic structure of a measuring device according to the second embodiment of the invention in the case in which the gas main line 1 has a pressure that is higher than the critical pressure for the critical nozzle 6 of the measuring device (high-pressure variant).
  • the measuring device comprises, in addition to the critical nozzle 6, an evaluation unit 11 which is used to carry out a method according to the second embodiment of the invention is set up, and a gas reservoir 4, which is provided with a pressure sensor 8, the gas reservoir 4 being connected to the critical nozzle 6 for measurement.
  • the measuring device can additionally contain one or more of the following components: a measuring line 2, which leads to the gas reservoir 4, and which can be connected to a main gas line 1 during operation, an inlet valve 3, which can be arranged in the measuring line 2, in order to to control the gas supply to the gas reservoir, an outlet valve 5, which is arranged on the outlet side of the gas reservoir, in order to control the gas flow from the gas reservoir, an outlet 10, in order to remove the gas flowing out of the measuring device, an additional pressure sensor 8 ', which is at the outlet 10 can be arranged, a temperature sensor 9, which is arranged in the gas reservoir, and a compressor 12 ', which can be arranged on the inlet side of the gas reservoir 4 in order to increase the pressure in the gas reservoir.
  • a measuring line 2 which leads to the gas reservoir 4, and which can be connected to a main gas line 1 during operation
  • an inlet valve 3 which can be arranged in the measuring line 2 in order to to control the gas supply to the gas reservoir
  • an outlet valve 5 which is arranged on the outlet side of the
  • the gas or gas mixture flows from the gas reservoir 4 through the critical nozzle 6.
  • the pressure drop in the gas reservoir 4 is measured as a function of time and the measured values of the pressure drop are used to calculate a gas property factor F* that is dependent on a group of physical properties of the gas or gas mixture. determined, whereby the gas property factor is derived, for example, from a time constant of the pressure drop.
  • a desired physical property or combustion-relevant quantity is determined from the gas property factor ⁇ * by means of correlation.
  • binary gas mixtures are analyzed for their proportion of the two components forming the gas mixture, since the gas property factor ⁇ * is intrinsically a continuous function of the gas proportions x% or (1-x%).
  • the proportion x% or (1-x%) physical properties can then be calculated from tables or using appropriate calculation programs and/or combustion-relevant size of the binary gas mixture can be determined.
  • the direct correlation of these physical properties and/or combustion-relevant size of the binary gas mixture with the gas property factor ⁇ * is also possible.
  • the percentage share of one component in a binary gas mixture is thus determined, with the quantity to be correlated either corresponding to the composition share of the one component (x%) and/or any other physical property of the binary gas mixture.
  • the inlet valve 3 and outlet valve 5 are first opened in order to allow the gas or gas mixture to be measured to flow from the main gas line 1 via the measuring line 2 through the measuring device, which can ensure that there is no longer any foreign gas from the last measurement in the measuring device .
  • the inlet valve and outlet valve can be opened via a control unit.
  • the evaluation unit 11 can also be used, as in Fig. 5a shown, take over control of the inlet valve and exhaust valve. Then the outlet valve 5 is closed and the gas reservoir 4, whose volume V is known, fills until the inlet valve 3 is closed.
  • Pressure p and temperature T in the gas reservoir can be measured with the pressure sensor 8 or temperature sensor 9, so that the standard volume V norm of the gas or gas mixture located in the gas reservoir 4 can be determined at any time.
  • v standard p 1013.25 mbar ⁇ 273.15 K T ⁇ v .
  • the outlet valve 5 can be opened again.
  • the pressure p in the gas reservoir is several bar higher than p crit , so that the pressure drop measurement can be carried out over this range of pressure increase without the nozzle 6 no longer being operated critically.
  • the outlet valve 5 is closed again, which ends the pressure drop measurement.
  • the pressure sensor 8 is preferably designed as a differential pressure sensor relative to the outlet 10 of the measuring device. However, it is also possible to provide an additional pressure sensor 8' at the outlet.
  • a compressor 12 ' may be provided, which is arranged, for example, on the inlet side of the gas reservoir 4 in order to increase the pressure in the gas reservoir.
  • Fig. 6 shows a second exemplary embodiment of the schematic structure of a measuring device according to the second embodiment of the invention, in which a negative pressure is used in the gas reservoir.
  • the measuring device comprises, in addition to the gas reservoir 4, a pressure sensor 8, with which the gas reservoir is provided, an evaluation unit 11, which is set up to carry out a method according to the second embodiment of the invention, and a critical nozzle 6, the gas reservoir 4 for the measurement is connected to the critical nozzle 6.
  • the measuring device can additionally contain one or more of the following components: a vacuum pump 12, which is connected to the gas reservoir 4 in order to generate a negative pressure in the gas reservoir, a measuring line 2, which leads to the gas reservoir 4, and which, in operation, with a Main gas line 1 can be connected, an inlet valve 3, which can be arranged in the measuring line 2 in order to control the gas supply to the gas reservoir, an outlet valve 5, which is arranged on the outlet side of the gas reservoir in order to control the gas flow from the gas reservoir, an outlet 10 to remove the gas flowing out of the measuring device, an additional pressure sensor 8 ', which can be arranged in the measuring line 2 or gas main line, and a temperature sensor 9, which is arranged in the gas reservoir 4.
  • a vacuum pump 12 which is connected to the gas reservoir 4 in order to generate a negative pressure in the gas reservoir
  • a measuring line 2 which leads to the gas reservoir 4 and which, in operation, with a Main gas line 1 can be connected
  • an inlet valve 3 which can be arranged in the measuring line 2 in order to control
  • a further exemplary embodiment of the method for determining physical properties and/or combustion-relevant variables of a gas and gas mixture according to the second embodiment of the invention is described below with reference to Fig. 6 described.
  • the gas or gas mixture flows under pressure through the critical nozzle 6 into the gas reservoir 4.
  • the pressure increase in the gas reservoir 4 is measured as a function of time and the measured values of the pressure increase are used to create a gas property factor that is dependent on a group of physical properties of the gas or gas mixture ⁇ * is determined, whereby the gas property factor is derived, for example, from a proportionality constant of the pressure increase. From the gas property factor ⁇ *, a desired physical property or variable relevant to combustion is determined by means of correlation.
  • the pressure in the gas reservoir 4 is previously reduced to such an extent, for example with a vacuum pump 12, that the critical nozzle 6 can be operated critically, ie the pressure in the gas reservoir is less than half of the pressure in front of the critical nozzle. It's not high vacuum Required: As long as the pressure p and the temperature T in the gas reservoir 4 are measured, it can always be calculated which standard volume of gas has flowed into the gas reservoir. However, it is advantageous if the pressure is a factor lower than would be necessary for critical conditions, as the measurement can then be carried out for a correspondingly longer time, which enables a more precise determination of the proportionality constant.
  • Fig. 7 shows a representation of the directly measured methane content n CH4 (y-axis) as a function of the correlated methane content n CH4 corr (x-axis) for a binary raw biogas consisting of methane and carbon dioxide under standard conditions (0 ° C, 1013.25 mbar), wherein the correlated methane content was determined using a method or a measuring device according to the second embodiment of the invention.
  • a typical H natural gas was used as the reference gas.
  • the measuring device described above for determining physical properties and/or combustion-relevant variables of a gas and gas mixture is to be assigned to a new category, namely "measuring the pressure drop or increase in pressure in a gas reservoir, with the gas flowing through a critical nozzle.
  • the components used are cost-effective, which makes it possible to open up new markets in which gas quality sensors are not used today due to cost reasons. In terms of accuracy, certain losses are to be expected compared to more expensive, commercially available devices, since only one independent measured value is used for the correlation instead of three.
  • Fig. 8a shows an exemplary embodiment of the schematic structure of a measuring device according to the third embodiment, which is not part of the invention, in the case in which the gas main line 1 is under pressure (high-pressure variant).
  • the measuring device comprises an evaluation unit 11, which is set up to carry out a method according to the third embodiment of the invention, a gas reservoir 4, which is provided with a pressure sensor 8, and a microthermal sensor 7 for measuring the flow and thermal conductivity, whereby the Gas reservoir 4 is connected to the microthermal sensor 7 for the measurement.
  • the measuring device can additionally contain one or more of the following components: a measuring line 2, which leads to the gas reservoir 4 leads, and which can be connected during operation to a main gas line 1, an inlet valve 3, which can be arranged in the measuring line 2 to control the gas supply to the gas reservoir, an outlet valve 5, which is arranged on the outlet side of the gas reservoir to control the gas flow from the gas reservoir, an outlet 10 for discharging the gas flowing out of the measuring device, an additional pressure sensor 8 ', which can be arranged at the outlet 10, a temperature sensor 9, which is arranged in the gas reservoir, and a compressor 12', which can be arranged on the inlet side of the gas reservoir 4 in order to increase the pressure in the gas reservoir.
  • a measuring line 2 which leads to the gas reservoir 4 leads, and which can be connected during operation to a main gas line 1
  • an inlet valve 3 which can be arranged in the measuring line 2 to control the gas supply to the gas reservoir
  • an outlet valve 5 which is arranged on the outlet side of the gas reservoir to control the gas flow from the
  • the gas or gas mixture flows under pressure from the gas reservoir 4 via the microthermal sensor 7 calibrated for a specific calibration gas or gas mixture, the volume flow v x A being summed up and compared with the gas volume flowing out of the gas reservoir, from the comparison of the two volumes is a gas property factor that depends on the physical properties of the gas or gas mixture
  • the thermal conductivity ⁇ of the gas or gas mixture is additionally determined with the aid of the microthermal sensor 7.
  • the class affiliation of a natural gas mixture to the H or L gas group can be determined, for example, by using the gas property factor ( S / v x ′ ) is identified with the reciprocal of the heat diffusivity c p ⁇ / ⁇ , and in that, for a given thermal conductivity, the allocation is made based on a limit value for the heat diffusivity, above which a gas mixture is classified as L gas and below which as H gas.
  • the inlet valve 3 and outlet valve 5 are first opened in order to allow the gas or gas mixture to be measured to flow from the main gas line 1 via the measuring line 2 through the measuring device, which can ensure that there is no longer any foreign gas from the last measurement in the measuring device .
  • the inlet valve and outlet valve can be opened via a control unit.
  • the evaluation unit 11 can also be used, as in Fig. 8a shown, take over control of the inlet valve and exhaust valve. Then the outlet valve 5 is closed and the gas reservoir 4, whose volume V is known, fills until the inlet valve 3 is closed.
  • the outlet valve 5 can be opened again.
  • the pressure p in the gas reservoir 4 is so much higher than the pressure downstream of the gas reservoir that the time period in which the gas flows from the gas reservoir 4 via the microthermal sensor 7 is long enough to measure the volume flow v x A with sufficient accuracy to be able to add up.
  • the outlet valve 5 is closed again, which ends the flow measurement.
  • the pressure sensor 8 is preferably designed as a differential pressure sensor relative to the outlet 10 of the measuring device. However, it is also possible to provide an additional pressure sensor 8' at the outlet.
  • the volume flow is added up to the volume V sum in the evaluation unit 11 and compared with the gas volume V diff flowing out of the gas reservoir.
  • a gas property factor that depends on the physical properties of the gas or gas mixture can now be derived S / v x ′ is determined in which v x ′ denotes the flow velocity determined from the gas volume that has flowed out.
  • a compressor 12 ' may be provided, which is arranged, for example, on the inlet side of the gas reservoir 4 in order to increase the pressure in the gas reservoir.
  • Fig. 9 shows a second exemplary embodiment of the schematic structure of a measuring device according to the third embodiment, which is not part of the invention, in which a negative pressure is used in the gas reservoir.
  • the measuring device comprises, in addition to the gas reservoir 4, a pressure sensor 8 with which the gas reservoir is provided, an evaluation unit 11 which is set up to carry out a method according to the third embodiment, which is not part of the invention, and a microthermal sensor 7 for Measurement of the flow and thermal conductivity, the gas reservoir 4 being connected to the microthermal sensor 7 for the measurement.
  • the measuring device can additionally contain one or more of the following components: a vacuum pump 12, which is connected to the gas reservoir 4 in order to generate a negative pressure in the gas reservoir, a measuring line 2, which leads to the gas reservoir 4, and which, in operation, with a Main gas line 1 can be connected, an inlet valve 3, which can be arranged in the measuring line 2 in order to control the gas supply to the gas reservoir, an outlet valve 5, which is arranged on the outlet side of the gas reservoir in order to control the gas flow from the gas reservoir control, an outlet 10 to remove the gas flowing out of the measuring device, an additional pressure sensor 8 ', which can be arranged in the measuring line 2 or gas main line, and a temperature sensor 9, which is arranged in the gas reservoir 4.
  • a vacuum pump 12 which is connected to the gas reservoir 4 in order to generate a negative pressure in the gas reservoir
  • a measuring line 2 which leads to the gas reservoir 4 and which, in operation, with a Main gas line 1 can be connected
  • an inlet valve 3 which can be arranged in the measuring line 2 in order to
  • the gas or gas mixture flows under a pressure that is typically so much higher than the pressure after the gas reservoir that the period of time in which the gas flows from the gas reservoir 4 over the microthermal sensor 7 is long enough to maintain the volume flow v x ⁇ A to be able to sum up with sufficient precision.
  • Fig. 10 shows a representation of how a distinction can be made between H and L gas based on known thermal conductivities ⁇ (x-axis) and thermal diffusivities ⁇ /(c p ⁇ ), also called thermal conductivities, (y-axis).
  • L gases above the H/L gas separation line typically have higher heat diffusivities than H gases with the same thermal conductivity below the separation line (double arrow at x ⁇ 1.024).
  • the gas property factor S / v x ′ c p ⁇ ⁇ / ⁇ is essentially the reciprocal of the heat diffusivity of the gas mixture, the distinction between H and L gas can be made with additionally measured thermal conductivity ⁇ . All values are shown under standard conditions (0°C, 1013.25 mbar). A typical H natural gas was used as the reference gas (dashed line at the coordinate (1.00,1.00).
  • the measuring device described above for determining physical properties and/or combustion-relevant variables of a gas and gas mixture is to be assigned to a new category, namely "thermal conductivity and flow measurement using a microthermal sensor, adding up the flow values and comparing them with a volume outflow from a reference volume.
  • a new category namely "thermal conductivity and flow measurement using a microthermal sensor, adding up the flow values and comparing them with a volume outflow from a reference volume.

Description

Die Erfindung bezieht sich auf ein Verfahren und auf eine Messvorrichtung zur Bestimmung physikalischer Eigenschaften und brenntechnisch relevanter Grössen von Gasen und Gasgemischen. Unter physikalischen Gaseigenschaften werden insbesondere die Dichte, Wärmeleitfähigkeit, Wärmekapazität und Viskosität und die daraus korrelierbaren, brenntechnisch relevanten Grössen wie der Energieinhalt, Brennwert, Wobbe-Index, die Methanzahl und/oder der Luftbedarf des Gases oder Gasgemisches verstanden.The invention relates to a method and a measuring device for determining physical properties and combustion-relevant variables of gases and gas mixtures. Physical gas properties are understood to mean, in particular, the density, thermal conductivity, heat capacity and viscosity and the combustion-relevant variables that can be correlated therefrom, such as the energy content, calorific value, Wobbe index, the methane number and/or the air requirement of the gas or gas mixture.

Bei Gasfeuerungsregelungen ist es wichtig, bei wechselnder Brenngasqualität die Brennerbelastung konstant zu halten. Der entsprechende Index zur Anzeige der Austauschbarkeit von Gasen ist der Wobbe-Index, gebildet aus dem Brennwert und der Wurzel aus dem Dichteverhältnis zwischen Luft und diesem Gas. Bei gleichem Wobbe-Index ergibt sich dann die gleiche Wärmebelastung eines Brenners.With gas combustion controls, it is important to keep the burner load constant when the quality of the fuel gas changes. The corresponding index to indicate the interchangeability of gases is the Wobbe index, formed from the calorific value and the square root of the density ratio between air and this gas. With the same Wobbe index, the same heat load on a burner results.

Bei der Regelung von (Erd-)Gasmotoren ist zur Leistungs- bzw. Effizienzsteigerung die Kenntnis des Brennwerts bei wechselnden (Erd-)Gasqualitäten wichtig, zur Beurteilung des Zündverhaltens (Klopfen bzw. Zündaussetzer) wird hingegen bei Gas die zur Oktanzahl bei Benzin analoge Methanzahl herangezogen.When controlling (natural) gas engines, knowledge of the calorific value of changing (natural) gas qualities is important in order to increase performance and efficiency; however, the methane number, which is analogous to the octane number for gasoline, is used to assess ignition behavior (knocking or misfiring) for gas used.

Für einen optimalen Verbrennungsprozess ist das richtige Mischverhältnis zwischen Brenngas und Luft wichtig, der sogenannte Luftbedarf. Bei zuwenig Luft bildet sich normalerweise Russ (Abgase), was vor allem bei Brennstoffzellen zu deren Zerstörung führen kann. Zuviel Luft bei der Verbrennung resultiert in einer kleineren Leistungsausbeute. Dabei hängt der optimale Wert von der jeweiligen Anwendung ab, ändert sich aber wieder bei wechselnder Gasqualität.For an optimal combustion process, the correct mixing ratio between fuel gas and air is important, the so-called air requirement. If there is not enough air, soot (exhaust gases) usually forms, which can lead to the destruction of fuel cells, especially. Too much air during combustion results in lower power output. The optimal value depends on the respective application, but changes again as the gas quality changes.

Aus der Literatur sind Korrelationsmethoden zur Berechnung brenntechnisch relevanter Größen bekannt, siehe zum Beispiel U. Wernekinck, "Gasmessung und Gasabrechung", Vulkan Verlag, 2009, ISBN 978-3-8027-5620-7 . Dabei werden folgende Kombinationen von Messgrössen verwendet:

  1. A. Dielektrizitätskonstante, Schallgeschwindigkeit, CO2-Gehalt
  2. B. Schallgeschwindigkeit bei 2 Drücken, CO2-Gehalt
  3. C. Wärmeleitfähigkeit bei 2 Temperaturen, Schallgeschwindigkeit
  4. D. Wärmeleitfähigkeit, Wärmekapazität, dynamische Viskosität
  5. E. Wärmeleitfähigkeit, Infrarot Absorption (nicht dispersiv)
  6. F. Infrarot Absorption (dispersiv)
Correlation methods for calculating variables relevant to combustion technology are known from the literature, see for example U. Wernekinck, “Gas measurement and gas billing”, Vulkan Verlag, 2009, ISBN 978-3-8027-5620-7 . The following combinations of measurement variables are used:
  1. A. Dielectric constant, speed of sound, CO 2 content
  2. B. Speed of sound at 2 pressures, CO 2 content
  3. C. Thermal conductivity at 2 temperatures, speed of sound
  4. D. Thermal conductivity, heat capacity, dynamic viscosity
  5. E. Thermal conductivity, infrared absorption (non-dispersive)
  6. F. Infrared absorption (dispersive)

Kommerziell erhältliche Geräte, die für eichpflichtige Brennwertmessungen zugelassen sind, gibt es zurzeit nur wenige, z.B. das Gerät EMC500 von RMG-Honeywell (Typus D plus CO2-Gehalt), oder das Gerät Gas-lab Q1 von Elster-Instromet (Typus E plus CO2-Gehalt). Wegen des hohen Einstandspreises ist jedoch keines dieser Geräte für den Massenmarkt geeignet.There are currently only a few commercially available devices that are approved for calorific value measurements, e.g. the EMC500 device from RMG-Honeywell (type D plus CO 2 content), or the Gas-lab Q1 device from Elster-Instromet (type E plus CO2 concentration). However, due to the high purchase price, none of these devices are suitable for the mass market.

Integrierte CMOS-Hitzdrahtanemometer ermöglichen sowohl eine mikrothermische Wärmeleitfähigkeitsmessung als auch eine Massenflussmessung. Zu dieser Technologie wird auf D. Matter, B. Kramer, T. Kleiner, B. Sabbattini, T. Suter, "Mikroelektronischer Haushaltsgaszähler mit neuer Technologie", Technisches Messen 71, 3 (2004), S. 137-146 hingewiesen. Sie unterscheidet sich insbesondere von herkömmlichen, thermischen Massenflussmessern durch eine Messung direkt im Gasstrom und nicht von aussen an einer den Gasstrom umfassenden Metallkapillare.Integrated CMOS hot wire anemometers enable both microthermal thermal conductivity measurement and Mass flow measurement. This technology is discussed D. Matter, B. Kramer, T. Kleiner, B. Sabbattini, T. Suter, "Microelectronic household gas meter with new technology", Technisches Messen 71, 3 (2004), pp. 137-146 pointed out. It differs in particular from conventional thermal mass flow meters in that it measures directly in the gas stream and not from outside on a metal capillary surrounding the gas stream.

In WO 99/02964 A1 wird ein Verfahren zur Bestimmung der Dichte eines Gases beschrieben, in welchem das Gas aus einem Behälter durch einen kritische Düse fliesst und die Zeit Δt für einen bestimmten Druckabfall gemessen wird.In WO 99/02964 A1 A method for determining the density of a gas is described, in which the gas flows from a container through a critical nozzle and the time Δt for a specific pressure drop is measured.

In EP 0 591 639 A2 wird ein Verfahren und eine Vorrichtung zur Bestimmung der Gasdichte beschrieben, wobei zuerst die Gasdichte bei vorgegebenen Bedingungen gemessen wird, um dann mittels eines Volumenkorrekturverhältnisses die Gasdichte bei Flussbedingungen zu ermitteln.In EP 0 591 639 A2 A method and a device for determining the gas density are described, whereby the gas density is first measured under given conditions and then the gas density under flow conditions is determined using a volume correction ratio.

Aus EP 2 015 056 A1 ist ein thermischer Durchflusssensor zur Bestimmung einer brenntechnisch relevanten Grösse bekannt, basierend auf einer Wärmeleitfähigkeitsmessung bei quasi bekanntem Massenfluss. Dazu wird eine kritische Düse benutzt, um den Massenfluss konstant zu halten, und es wird versucht, die Gasartenabhängigkeit der kritischen Düse mittels der Wärmeleitfähigkeit zu korrigieren. Die Information zur Korrelation brenntechnisch relevanter Grössen ist jedoch auf zwei quasi unabhängige Messwerte beschränkt, sodass keine Validierung der Messdaten möglich ist.Out of EP 2 015 056 A1 a thermal flow sensor is known for determining a variable relevant to combustion technology, based on a thermal conductivity measurement with a quasi-known mass flow. For this purpose, a critical nozzle is used to keep the mass flow constant and an attempt is made to correct the gas type dependence of the critical nozzle using thermal conductivity. However, the information on the correlation of variables relevant to combustion technology is limited to two quasi-independent measured values, so that no validation of the measurement data is possible.

Aus WO 2004/036209 A1 ist ein Sensor zur Bestimmung brenntechnisch relevanter Grössen bekannt, bei dem der Massenfluss konstant gehalten wird und mittels einer thermischen Messung eine zur Wärmekapazität proportionale Grösse ermittelt wird. Da es sich nicht um einen mikrothermischen Sensor handelt, kann nicht auf die Wärmeleitfähigkeit geschlossen werden, womit die Bestimmung der Wärmekapazität und der daraus abgeleiteten, brenntechnisch relevanten Grössen nur bis auf einen Proportionalitätsfaktor möglich ist, was eine zusätzliche Kalibrierung mit bekannten Gaszusammensetzungen notwendig macht. Zudem entfällt die Information über die Wärmeleitfähigkeit und damit die Möglichkeit der Korrelation der Wärmeleitfähigkeit λ mit einer der brenntechnisch relevanten Grössen. Im Weiteren ist die Genauigkeit dieser Methode limitiert durch die auftretenden Änderungen der nicht zugänglichen Wärmeleitfähigkeit λ.Out of WO 2004/036209 A1 a sensor is known for determining variables relevant to combustion technology, in which the mass flow is kept constant and a quantity proportional to the heat capacity is determined by means of a thermal measurement. Since it is not a microthermal sensor, the thermal conductivity cannot be determined, which means that the determination of the heat capacity and the combustion-relevant variables derived from it is only possible up to a proportionality factor, which makes additional calibration with known gas compositions necessary. In addition, information about thermal conductivity and thus the possibility of this are no longer available Correlation of the thermal conductivity λ with one of the combustion-relevant quantities. Furthermore, the accuracy of this method is limited by the changes that occur in the inaccessible thermal conductivity λ.

Der Erfindung liegt daher die Aufgabe zu Grunde, ein Verfahren und eine Messvorrichtung zur Bestimmung physikalischer Eigenschaften von Gasen und Gasgemischen anzugeben, mit denen eine höhere Genauigkeit erzielt werden kann als mit den Sensoren aus den oben beschriebenen Patentdokumenten, wobei es möglich ist, die Messvorrichtung zu tieferen Kosten herzustellen als kommerziell erhältliche Geräte, die für eichpflichtige Brennwertmessungen zugelassen sind.The invention is therefore based on the object of specifying a method and a measuring device for determining physical properties of gases and gas mixtures, with which a higher level of accuracy can be achieved than with the sensors from the patent documents described above, whereby it is possible to use the measuring device deeper Costs to produce than commercially available devices that are approved for calibration-required calorific value measurements.

Die Aufgabe wird durch ein Verfahren nach Anspruch 1 und durch eine Messvorrichtung nach Anspruch 6 gelöst.The object is achieved by a method according to claim 1 and by a measuring device according to claim 6.

Druckabfallmessung eines vorgegebenen Volumens an Gas durch eine kritische Düse:Pressure drop measurement of a given volume of gas through a critical nozzle:

Der Massenfluss durch eine kritische Düse ist gegeben durch m ˙ = C d p A * ψ max M T R m ,

Figure imgb0001
worin Cd den "Discharge Coefficient", d.h. den Verlustfaktor einer realen gegenüber einer idealen kritischen Düse, p den Vordruck, A* den Düsenquerschnitt, T die Vortemperatur, Rm die universelle Gaskonstante, M das Molekulargewicht des Gases und ψmax den Maximalwert der Ausflussfunktion bezeichnet. Letztere ist eine Funktion des isentropen Koeffizienten γ = cp /cV (Verhältnis von isobarer zu isochorer Wärmekapazität), ψ = γ γ + 1 2 γ + 1 2 1 γ .
Figure imgb0002
The mass flow through a critical nozzle is given by m ˙ = C d p A * ψ Max M T R m ,
Figure imgb0001
where C d is the "Discharge Coefficient", ie the loss factor of a real versus an ideal critical nozzle, p the pre-pressure, A * the nozzle cross-section, T the pre-temperature, R m the universal gas constant, M the molecular weight of the gas and ψ max the maximum value of the called outflow function. The latter is a function of the isentropic coefficient γ = c p / c V (ratio of isobaric to isochoric heat capacity), ψ = γ γ + 1 2 γ + 1 2 1 γ .
Figure imgb0002

Lässt man aus einem bekanntem Volumen V das Gas von einem hohen Druck über die kritische Düse entspannen (z.B. von 9 auf 4 bar), ist der Druck in dem Volumen aufgrund des idealen Gasgesetzes wie folgt von der Zeit t abhängig: p t = m t R m T M V .

Figure imgb0003
If the gas from a known volume V is allowed to expand from a high pressure via the critical nozzle (e.g. from 9 to 4 bar), the pressure in the volume depends on the time t as follows due to the ideal gas law: p t = m t R m T M v .
Figure imgb0003

Die Änderungsrate des Druckes ergibt sich somit zu dp t dt = dm t dt R m T M V = m ˙ t R m T M V

Figure imgb0004
und zusammen mit Gleichung (1) zu dp t dt = C d p A * ψ max M T R m R m T M V = C d A * ψ max V R m T M p t
Figure imgb0005
The rate of change of the pressure is therefore: dp t German = dm t German R m T M v = m ˙ t R m T M v
Figure imgb0004
and together with equation (1) to dp t German = C d p A * ψ Max M T R m R m T M v = C d A * ψ Max v R m T M p t
Figure imgb0005

Misst man also den Verlauf des Druckes in Abhängigkeit der Zeit, kann man so die Zeitkonstante τ der durch Integration erhaltenen, zugehörigen Exponentialfunktion bestimmen: 1 / τ = C d A * ψ max V R m T M .

Figure imgb0006
If you measure the course of the pressure as a function of time, you can determine the time constant τ of the associated exponential function obtained through integration: 1 / τ = C d A * ψ Max v R m T M .
Figure imgb0006

Kennt man durch Messen zusätzlich die Temperatur T, kann man durch Weglassen aller nicht gasabhängigen Grössen einen Gaseigenschaftsfaktor Γ * : = C d ψ max 1 M

Figure imgb0007
definieren.If you also know the temperature T by measuring, you can create a gas property factor by omitting all non-gas-dependent variables Γ * : = C d ψ Max 1 M
Figure imgb0007
define.

Lässt man umgekehrt das Gas von einem höheren Druck über die kritische Düse in ein bekanntes Volumen V entspannen (z.B. von Umgebungsdruck nach Vakuum), lautet Gleichung (5') für die Druckzuname im Volumen \/wie folgt: dp t dt = C d p Nozzle A * ψ max M T R m R m T M V = C d A * ψ max V R m T M p Nozzle ,

Figure imgb0008
wobei in diesem Fall der Druck vor der Düse, pNozzle, konstant ist, was zu einem mit der Zeit linearen Druckanstieg im Volumen V führt mit C d A * ψ max V R m T M p Nozzle
Figure imgb0009
als Proportionalitätskonstante. Kennt man durch Messen zusätzlich die Temperatur T und den Düsenvordruck pNozzle, kann man durch Weglassen aller nicht gasabhängigen Grössen wiederum den Gaseigenschaftsfaktor Γ * : = C d ψ max 1 M
Figure imgb0010
definieren.Conversely, if the gas is allowed to expand from a higher pressure via the critical nozzle into a known volume V (e.g. from ambient pressure to vacuum), equation (5') for the pressure increase in the volume is as follows: dp t German = C d p Nozzle A * ψ Max M T R m R m T M v = C d A * ψ Max v R m T M p Nozzle ,
Figure imgb0008
where in this case the pressure in front of the nozzle, p Nozzle , is constant, which leads to a linear increase in pressure in the volume V over time C d A * ψ Max v R m T M p Nozzle
Figure imgb0009
as a proportionality constant. If you also know the temperature T and the nozzle pre-pressure p Nozzle by measuring, you can get the gas property factor again by omitting all non-gas-dependent variables Γ * : = C d ψ Max 1 M
Figure imgb0010
define.

Massenflussmessung mittels mikrothermischen Sensors:Mass flow measurement using microthermal sensors:

Zur Beschreibung der mikrothermischen Massenflussmessung wird von der das mikrothermische System beschreibenden, eindimensionalen Wärmeleitungsgleichung ausgegangen ( Kerson Huang: Statistical Mechanics, 2. Auflage, John Wiley & Sons, New York 1987, ISBN 0-471-85913-3 ): c p λ ρ v x d dx T = 2 T + 1 λ Θ ,

Figure imgb0011
wobei
vx   die Komponente der mittleren Fliessgeschwindigkeit (Geschwindigkeitsvektor) v in x-Richtung, d. h. entlang des Gasstromes,
T  die Temperatur,
d dx T
Figure imgb0012
  der Temperaturgradient,
cp   die Wärmekapazität des Gases bei konstantem Druck,
ρ  die Dichte,
λ  die Wärmeleitfähigkeit des Gases,
2 T  der Laplace-Operator, angewandt auf die Temperatur T, wobei 2 = d d x 2 + d dy 2 + d dz 2 ,
Figure imgb0013
bedeuten. Da das Gas (Gasstrom) nur in x-Richtung fliesst, werden die Komponenten vy bzw. vz in y-Richtung bzw. in z-Richtung der mittleren Fliessgeschwindigkeit v zu Null angenommen. Θ mit der Einheit Watt/m3 beschreibt den Quellterm des Heizelements. Der Quellterm rührt bei der mikrothermischen Methode vom Heizdraht eines miniaturisierten, integrierten Hitzdrahtanemometers her, der Wärmeenergie in das System speist. Die Lösung der Gleichung (8), die die Temperaturverteilung im mikrothermischen System beschreibt, erlaubt es, durch das Messen dieser Temperaturverteilung den Faktor S, S : = c p λ ρ v x = c p λ m ˙ A ,
Figure imgb0014
zu bestimmen, wobei A den Querschnitt des Flusskanals über dem mikrothermischen Sensor bezeichnet. In Kombination mit der kritischen Düse, d.h. durch Anordnen des mikrothermischen Sensors nach der kritischen Düse, ist der Massenfluss aber durch Gleichung (1) gegeben, weswegen c p λ ρ ν x = c p λ C d p A * A ψ max M T R m .
Figure imgb0015
To describe the microthermal mass flow measurement, the one-dimensional heat conduction equation describing the microthermal system is assumed ( Kerson Huang: Statistical Mechanics, 2nd edition, John Wiley & Sons, New York 1987, ISBN 0-471-85913-3 ): c p λ ρ v x d dx T = 2 T + 1 λ Θ ,
Figure imgb0011
where
v x the component of the mean flow velocity (velocity vector) v in the x direction, ie along the gas flow,
T is the temperature,
d dx T
Figure imgb0012
the temperature gradient,
c p is the heat capacity of the gas at constant pressure,
ρ the density,
λ is the thermal conductivity of the gas,
2 T the Laplace operator applied to the temperature T , where 2 = d d x 2 + d dy 2 + d currently 2 ,
Figure imgb0013
mean. Since the gas (gas stream) only flows in the x direction, the components v y and v z in the y direction and in the z direction, respectively, become the average flow velocity v assumed to be zero. Θ with the unit Watt/m 3 describes the source term of the heating element. The source term comes from the microthermal method from the heating wire of a miniaturized, integrated hot-wire anemometer, which feeds thermal energy into the system. The solution to equation (8), which describes the temperature distribution in the microthermal system, allows the factor S, by measuring this temperature distribution, S : = c p λ ρ v x = c p λ m ˙ A ,
Figure imgb0014
to determine, where A denotes the cross section of the flow channel above the microthermal sensor. In combination with the critical nozzle, ie by arranging the microthermal sensor after the critical nozzle, the mass flow is given by equation (1), which is why c p λ ρ ν x = c p λ C d p A * A ψ Max M T R m .
Figure imgb0015

Mit dem Messen von Druck p und Temperatur T und wiederum durch Weglassen aller gasunabhängigen Grössen erhält man einen zweiten Gaseigenschaftsfaktor Γ = c p λ C d ψ max M .

Figure imgb0016
By measuring pressure p and temperature T and again by omitting all gas-independent variables, a second gas property factor is obtained Γ = c p λ C d ψ Max M .
Figure imgb0016

Das Weglassen aller gasunabhängigen Grössen in Gleichung (7) und (11) geschieht implizit, wenn man Γ und Γ* ins Verhältnis zu Γ und Γ* eines bekannten (Kalibrier-)Gases setzt. Siehe auch Fig. 4.The omission of all gas-independent quantities in equations (7) and (11) occurs implicitly when one sets Γ and Γ* in relation to Γ and Γ* of a known (calibration) gas. See also Fig. 4 .

Messung der Wärmeleitfähigkeit mittels mikrothermischen Sensors:Measurement of thermal conductivity using a microthermal sensor:

Man beachte, dass die Wärmeleitfähigkeit λ wegen des Quellterms Θ zusätzlich separat auf die Lösung der Gleichung (8) einwirkt. Umgekehrt kann die Wärmeleitfähigkeit bestimmt werden, wenn der mikrothermische Sensor ohne beaufschlagten Massenfluss (vx =0 bzw. = 0) gemessen wird. Die zugehörige Differentialgleichung für die Temperaturverteilung lautet dann einfach 2 T = 1 λ Θ .

Figure imgb0017
Note that the thermal conductivity λ also has a separate effect on the solution of equation (8) because of the swelling term Θ. Conversely, thermal conductivity can be determined using the microthermal sensor is measured without applied mass flow ( v x =0 or = 0). The associated differential equation for the temperature distribution is then simple 2 T = 1 λ Θ .
Figure imgb0017

Validierung der Gaseigenschaftsfaktoren Γ bzw. Γ*:Validation of the gas property factors Γ or Γ*:

Das Verhältnis der beiden Gaseigenschaftsfaktoren Γ und Γ* ergibt Γ Γ * = c p λ M c p λ ρ norm ,

Figure imgb0018
da das Molekulargewicht wegen des für die meisten Gase praktisch identischen Molvolumens proportional zur Normdichte (Dichte bei Normbedingungen 1013.25 mbar und 273.15 K) ist. Damit kann aus dem mittels mikrothermischen Sensors gemessenen Faktor S in Gleichung (9) die Fliessgeschwindigkeit vx und zusammen mit dem Flusskanalquerschnitt A der Normvolumenfluss φnorm = vx · A extrahiert werden. Integration dieses Volumenflusses über die Zeit, d.h. im Zeitintervall t2 -t1 , sollte dann mit dem aus den entsprechenden Druck- und Temperaturwerten berechneten, abgeflossenen Gasvolumen übereinstimmen: t 1 t 2 ϕ norm t dt = ! p t 2 p t 1 1013.25 mbar 273.15 K T V .
Figure imgb0019
The ratio of the two gas property factors Γ and Γ* gives Γ Γ * = c p λ M c p λ ρ standard ,
Figure imgb0018
because the molecular weight is proportional to the standard density (density under standard conditions 1013.25 mbar and 273.15 K) because of the practically identical molar volume for most gases. This means that the flow velocity v Integration of this volume flow over time, ie in the time interval t 2 - t 1 , should then correspond to the gas volume flown calculated from the corresponding pressure and temperature values: t 1 t 2 ϕ standard t German = ! p t 2 p t 1 1013.25 mbar 273.15 K T v .
Figure imgb0019

Stimmen die zwei Werte nicht überein, kann je nachdem, welche Grösse weniger genau gemessen werden kann, der Normvolumenfluss oder das Drucksignal soweit korrigiert werden, bis Gleichung (14) erfüllt ist. Im Fall einer Normvolumenflusskorrektur für νx = φnorm / A erfährt die rechte Seite von Gleichung (13) über den gemessenem Faktor S in Gleichung (9) ebenfalls eine Korrektur und damit auch der Gaseigenschaftsfaktor Γ wiederum über Gleichung (13). Im Fall einer Drucksignalkorrektur folgt eine korrigierte Zeitkonstante τ in Gleichung (6) bzw. eine korrigierte Proportionalitätskonstante in Gleichung (6') und damit eine Korrektur des Gaseigenschaftsfaktor Γ* in Gleichung (7) bzw. (7'). Auf diese Weise sind Γ und Γ* konsistent bestimmt worden, denn der Massenfluss durch die Düse ist derselbe wie der Massenfluss, mit dem der mikrothermische Sensor beaufschlagt wird.If the two values do not match, depending on which quantity can be measured less precisely, the standard volume flow or the pressure signal can be corrected until equation (14) is fulfilled. In the case of a standard volume flow correction for ν x = φ norm / A , the right-hand side of equation (13) learns about the measured factor S in equation (9) also a correction and thus also the gas property factor Γ again via equation (13). In the case of a pressure signal correction, a corrected time constant τ follows in equation (6) or a corrected proportionality constant in equation (6') and thus a correction of the gas property factor Γ* in equation (7) or (7'). In this way, Γ and Γ* have been determined consistently because the mass flow through the nozzle is the same as the mass flow applied to the microthermal sensor.

Korrelation brenntechnisch relevanter Grössen:Correlation of variables relevant to combustion technology:

Mit der Messungen der Gaseigenschaftsfaktoren Γ und Γ* sowie der Wärmeleitfähigkeit λ stehen drei unabhängige Messgrössen zur Verfügung, mit denen nun brenntechnisch relevante Grössen Q mittels einer Funktion fcorr korreliert werden können: Q corr = ƒ corr Γ Γ * λ .

Figure imgb0020
With the measurements of the gas property factors Γ and Γ* as well as the thermal conductivity λ, three independent measurement variables are available with which quantities Q relevant to combustion can now be correlated using a function f corr : Q corr = ƒ corr Γ Γ * λ .
Figure imgb0020

Beispielsweise ergibt sich für die Korrelation des in Fig. 4 gezeigten Dichteverhältnisses ρcorr / ρref bei 0°C und 1013.25 mbar folgende Korrelationsfunktion: ρ corr ρ ref = ƒ corr Γ Γ * λ = Γ r Γ * s λ t

Figure imgb0021
mit Exponenten r = -0.2, s = -1.8 und t = -0.2 und einem typischen H-Erdgas als Referenz.For example, the correlation of the in Fig. 4 shown density ratio ρ corr / ρ ref at 0°C and 1013.25 mbar the following correlation function: ρ corr ρ ref = ƒ corr Γ Γ * λ = Γ r Γ * s λ t
Figure imgb0021
with exponents r = -0.2, s = -1.8 and t = -0.2 and a typical H natural gas as a reference.

Verfahren und Messvorrichtung gemäss vorliegender ErfindungMethod and measuring device according to the present invention

In dem Verfahren zur Bestimmung physikalischer Eigenschaften und/oder brenntechnisch relevanter Grössen eines Gases und Gasgemisches gemäss vorliegender Erfindung:

  • fliesst das Gas oder Gasgemisch aus einem Gasreservoir durch eine kritische Düse und über einen mikrothermischen Sensor, wobei die kritische Düse und der mikrothermischen Sensor mit demselben Massenfluss beaufschlagt werden;
  • wobei der Druckabfall im Gasreservoir als Funktion der Zeit gemessen wird;
  • aus den Messwerten des Druckabfalls ein erster, von einer ersten Gruppe von physikalischen Eigenschaften des Gases oder Gasgemisches abhängiger Gaseigenschaftsfaktor F* bestimmt wird, wobei der erste Gaseigenschaftsfaktor aus einer Zeitkonstante des Druckabfalls abgeleitet und von einem exponentiellen Abfall des gemessenen Druckes ausgegangen wird;
  • aus dem Durchflusssignal des mikrothermischen Sensors ein zweiter, von einer zweiten Gruppe von physikalischen Eigenschaften des Gases oder Gasgemisches abhängiger Gaseigenschaftsfaktor Γ bestimmt wird, wobei der zweite Gaseigenschaftsfaktor zum Beispiel die Wärmekapazität cp des Gases oder Gasgemisches enthält oder von derselben abhängig ist;
  • mit Hilfe des mikrothermischen Sensors die Wärmeleitfähigkeit λ des Gases oder Gasgemisches bestimmt wird; und
  • aus dem ersten und/oder zweiten Gaseigenschaftsfaktor F*, Γ und der Wärmeleitfähigkeit λ mittels Korrelation eine gesuchte physikalische Eigenschaft oder brenntechnisch relevante Grösse ermittelt wird.
In the method for determining physical properties and/or combustion-relevant variables of a gas and gas mixture according to the present invention:
  • the gas or gas mixture flows from a gas reservoir through a critical nozzle and over a microthermal sensor, the critical nozzle and the microthermal sensor being subjected to the same mass flow;
  • wherein the pressure drop in the gas reservoir is measured as a function of time;
  • a first gas property factor F*, which is dependent on a first group of physical properties of the gas or gas mixture, is determined from the measured values of the pressure drop, the first gas property factor being derived from a time constant of the pressure drop and an exponential drop in the measured pressure being assumed;
  • a second gas property factor Γ, which is dependent on a second group of physical properties of the gas or gas mixture, is determined from the flow signal of the microthermal sensor, the second gas property factor containing, for example, the heat capacity c p of the gas or gas mixture or being dependent on the same;
  • the thermal conductivity λ of the gas or gas mixture is determined with the help of the microthermal sensor; and
  • A desired physical property or combustion-relevant quantity is determined from the first and/or second gas property factor F*, Γ and the thermal conductivity λ by means of correlation.

Dabei wird von einem exponentiellen Abfall des gemessenen Druckes ausgegangen und der erste Gaseigenschaftsfaktor Γ* aus der Zeitkonstante des Druckabfalls abgeleitet, wobei der erste Gaseigenschaftsfaktor gebildet wird, indem zum Beispiel zusätzlich die Temperatur T gemessen und alle nicht gasabhängigen Grössen weggelassen werden.An exponential drop in the measured pressure is assumed and the first gas property factor Γ* is derived from the time constant of the pressure drop, the first gas property factor being formed, for example, by additionally measuring the temperature T and omitting all non-gas-dependent variables.

Der Druck im Gasreservoir zu Beginn der Druckabfallmessung ist typisch grösser als der kritische Druck pkrit der kritischen Düse und der Aussendruck nach der kritischen Düse kleiner als die Hälfte des kritischen Druckes, oder der Druck im Gasreservoir zu Beginn der Druckzunahmemessung ist typisch kleiner als die Hälfte des kritischen Druckes pkrit der kritischen Düse und der Druck vor der kritischen Düse grösser ist als der kritische Druck. Unabhängig von der Ausführungsform und -variante ist das Gasreservoir während der Messung typisch abgetrennt von der Gasversorgung. Das Volumen des Gasreservoirs wird vorteilhafterweise so gewählt, dass der Druck im Gasreservoir bis zum Ende der Messung deutlich ab- oder zunimmt, beispielsweise um mindestens einen Zehntel oder Fünftel des ursprünglichen Druckes.The pressure in the gas reservoir at the beginning of the pressure drop measurement is typically greater than the critical pressure p crit of the critical nozzle and the external pressure after the critical nozzle is less than half of the critical pressure, or the pressure in the gas reservoir at the beginning of the pressure increase measurement is typically less than half the critical pressure p crit of the critical nozzle and the pressure in front of the critical nozzle is greater than the critical pressure. Regardless of the embodiment and variant, the gas reservoir is typically separated from the gas supply during the measurement. The volume of the gas reservoir is advantageously chosen so that the pressure in the gas reservoir decreases or increases significantly by the end of the measurement, for example by at least a tenth or fifth of the original pressure.

Weiter umfasst die Erfindung auch die Verwendung eines Gasreservoirs und einer kritischen Düse zur Bestimmung physikalischer Eigenschaften und/oder brenntechnisch relevanter Grössen eines Gases oder Gasgemisches, wobei das Gas oder Gasgemisch unter Druck aus dem Gasreservoir durch die kritische Düse fliesst, wobei der Druckabfall im Gasreservoir als Funktion der Zeit gemessen wird, aus den Messwerten des Druckabfalls ein von physikalischen Eigenschaften des Gases oder Gasgemisches abhängiger Gaseigenschaftsfaktor Γ* bestimmt wird, der aus einer Zeitkonstante des Druckabfalls abgeleitet wird, und aus dem Gaseigenschaftsfaktor Γ* mittels Korrelation eine gesuchte physikalische Eigenschaft oder brenntechnisch relevante Grösse ermittelt wird.Furthermore, the invention also includes the use of a gas reservoir and a critical nozzle for determining physical properties and/or combustion-relevant variables of a gas or gas mixture, wherein the gas or gas mixture flows under pressure from the gas reservoir through the critical nozzle, with the pressure drop in the gas reservoir as Function of time is measured, from the measured values of the pressure drop a gas property factor Γ* which is dependent on physical properties of the gas or gas mixture is determined, which is derived from a time constant of the pressure drop, and from the gas property factor Γ* by means of correlation a desired physical property or one relevant to combustion technology is determined Size is determined.

In einer anderen vorteilhaften Ausführungsform wird ein Unterdruck im Gasreservoir erzeugt, und das Gas oder Gasgemisch fliesst unter Druck durch die kritische Düse in das Gasreservoir, wobei die Druckzunahme im Gasreservoir als Funktion der Zeit gemessen und aus den Messwerten der Druckzunahme ein von physikalischen Eigenschaften des Gases oder Gasgemisches abhängiger Gaseigenschaftsfaktor F* bestimmt wird, aus dem mittels Korrelation eine gesuchte physikalische Eigenschaft oder brenntechnisch relevante Grösse ermittelt wird.In another advantageous embodiment, a negative pressure is generated in the gas reservoir, and the gas or gas mixture flows under pressure through the critical nozzle into the gas reservoir, the pressure increase in the gas reservoir being measured as a function of time and from the measured values of the pressure increase based on physical properties of the gas or gas mixture-dependent gas property factor F* is determined, from which a desired physical property or combustion-relevant variable is determined by means of correlation.

Die oben beschriebene Verwendung eines Gasreservoirs und einer kritischen Düse zur Bestimmung physikalischer Eigenschaften und/oder brenntechnisch relevanter Grössen eines Gases oder Gasgemisches beziehungsweise das entsprechende Verfahren, in dem ein Gasreservoir und eine kritischen Düse zur Bestimmung physikalischer Eigenschaften und/oder brenntechnisch relevanter Grössen eines Gases oder Gasgemisches verwendet werden, kann auch als eigenständige Erfindung betrachtet werden, die zusätzlich eine Messvorrichtung mit Auswerteeinheit, Gasreservoir und kritischer Düse umfassen kann, wobei die Auswerteeinheit für die Verwendung des Gasreservoirs und der kritischen Düse zur Bestimmung physikalischer Eigenschaften und/oder brenntechnisch relevanter Grössen eines Gases oder Gasgemisches beziehungsweise zur Ausführung des entsprechenden Verfahrens eingerichtet ist.The above-described use of a gas reservoir and a critical nozzle for determining physical properties and/or combustion-relevant variables of a gas or gas mixture or the corresponding method in which a gas reservoir and a critical nozzle for determining physical properties and/or combustion-relevant variables of a gas or Gas mixtures are used can also be viewed as an independent invention, which can additionally include a measuring device with an evaluation unit, gas reservoir and critical nozzle, the evaluation unit for the use of the gas reservoir and the critical nozzle to determine physical properties and / or combustion-relevant quantities of a gas or gas mixture or is set up to carry out the corresponding process.

Weitere Vorteile sind aus der nachstehenden Beschreibung ersichtlich.Further advantages can be seen from the description below.

Die Erfindung wird im Folgenden anhand der Zeichnungen näher erläutert. Es zeigen:

Fig. 1a
ein Ausführungsbeispiel des schematischen Aufbaus einer Messvorrichtung gemäss eines Beispiels, welches nicht Teil der Erfindung ist, (Hochdruckvariante),
Fig. 1b
eine Ausführungsvariante zu dem in Fig. 1a gezeigten Beispiels, welches nicht Teil der Erfindung ist,
Fig. 2
ein zweites Ausführungsbeispiele des schematischen Aufbaus einer Messvorrichtung gemäss eines Beispiels, welches nicht Teil der Erfindung ist, (Niederdruckvariante),
Fig. 3
ein Ausführungsbeispiel eines mikrothermischen Sensors zur Verwendung in einer Messvorrichtung gemäss eines Beispiels, welches nicht Teil der Erfindung ist, und
Fig. 4
eine grafische Darstellung des direkt gemessenen Dichteverhältnisses (y-Achse) in Abhängigkeit des korrelierten Dichteverhältnisses (x-Achse) für verschieden Gasgruppen bei Normbedingungen (0°C, 1013.25 mbar).
Fig. 5a
ein Ausführungsbeispiel des schematischen Aufbaus einer Messvorrichtung gemäss einer zweiten Ausführungsform der Erfindung (Hochdruckvariante),
Fig. 5b
eine Ausführungsvariante zu dem in Fig. 5a gezeigten Ausführungsbeispiel,
Fig. 6
ein zweites Ausführungsbeispiele des schematischen Aufbaus einer Messvorrichtung gemäss der zweiten Ausführungsform der Erfindung (Niederdruckvariante),
Fig. 7
eine grafische Darstellung des direkt gemessenen Methananteils (y-Achse) in Abhängigkeit des korrelierten Methananteils (x-Achse) für ein binäres Rohbiogas (Methan und Kohlendioxid).
Fig. 8a
ein Ausführungsbeispiel des schematischen Aufbaus einer Messvorrichtung gemäss eines Beispiels, welches nicht Teil der Erfindung ist, mit Gasreservoir und mikrothermischem Sensor (Hochdruckvariante),
Fig. 8b
eine Ausführungsvariante zu dem in Fig. 8a gezeigten Ausführungsbeispiel,
Fig. 9
ein zweites Ausführungsbeispiele des schematischen Aufbaus einer Messvorrichtung gemäss eines Beispiels, welches nicht Teil der Erfindung ist, mit Gasreservoir und mikrothermischem Sensor (Niederdruckvariante),
Fig. 10
eine grafische Darstellung der Klasseneinteilung von Erdgasgemischen anhand der Wärmediffusivität (y-Achse) bei gleichzeitiger Kenntnis der Wärmeleitfähigkeit λ (x-Achse).
The invention is explained in more detail below with reference to the drawings. Show it:
Fig. 1a
an exemplary embodiment of the schematic structure of a measuring device according to an example which is not part of the invention (high-pressure variant),
Fig. 1b
an embodiment variant to the one in Fig. 1a example shown, which is not part of the invention,
Fig. 2
a second exemplary embodiment of the schematic structure of a measuring device according to an example which is not part of the invention (low-pressure variant),
Fig. 3
an embodiment of a microthermal sensor for use in a measuring device according to an example which is not part of the invention, and
Fig. 4
a graphical representation of the directly measured density ratio (y-axis) as a function of the correlated density ratio (x-axis) for different gas groups at standard conditions (0°C, 1013.25 mbar).
Fig. 5a
an exemplary embodiment of the schematic structure of a measuring device according to a second embodiment of the invention (high-pressure variant),
Fig. 5b
an embodiment variant to the one in Fig. 5a shown embodiment,
Fig. 6
a second exemplary embodiment of the schematic structure of a measuring device according to the second embodiment of the invention (low-pressure variant),
Fig. 7
a graphical representation of the directly measured methane content (y-axis) as a function of the correlated methane content (x-axis) for a binary raw biogas (methane and carbon dioxide).
Fig. 8a
an embodiment of the schematic structure of a measuring device according to an example, which is not part of the invention, with gas reservoir and microthermal sensor (high-pressure variant),
Fig. 8b
an embodiment variant to the one in Fig. 8a shown embodiment,
Fig. 9
a second exemplary embodiment of the schematic structure of a measuring device according to an example, which is not part of the invention, with a gas reservoir and microthermal sensor (low-pressure variant),
Fig. 10
a graphical representation of the classification of natural gas mixtures based on the thermal diffusivity (y-axis) with simultaneous knowledge of the thermal conductivity λ (x-axis).

Fig. 1a zeigt ein Ausführungsbeispiel des schematischen Aufbaus einer Messvorrichtung gemäss vorliegender Erfindung im Fall, in dem die Gashauptleitung 1 einen Druck aufweist, der höher als der kritische Druck für die kritische Düse 6 der Messvorrichtung ist (Hochdruckvariante). Im Ausführungsbeispiel umfasst die Messvorrichtung zusätzlich zur kritischen Düse 6 eine Auswerteeinheit 11, die zur Ausführung eines Verfahrens gemäss vorliegender Erfindung eingerichtet ist, ein Gasreservoir 4, das mit einem Drucksensor 8 versehen ist, und einen mikrothermischen Sensor 7 zur Messung des Durchflusses und der Wärmeleitfähigkeit, wobei das Gasreservoir 4 für die Messung mit der kritischen Düse 6 und dem mikrothermischen Sensor 7 verbunden ist. Fig. 1a shows an exemplary embodiment of the schematic structure of a measuring device according to the present invention in the case in which the gas main line 1 has a pressure that is higher than the critical pressure for the critical nozzle 6 of the measuring device (high-pressure variant). In the exemplary embodiment, the measuring device comprises, in addition to the critical nozzle 6, an evaluation unit 11, which is set up to carry out a method according to the present invention, a gas reservoir 4, which is provided with a pressure sensor 8, and a microthermal sensor 7 for measuring the flow and thermal conductivity, wherein the gas reservoir 4 is connected to the critical nozzle 6 and the microthermal sensor 7 for the measurement.

Bei Bedarf kann die Messvorrichtung zusätzlich eine oder mehrere der folgenden Komponenten enthalten: eine Messleitung 2, die zum Gasreservoir 4 führt, und die im Betrieb mit einer Hauptgasleitung 1 verbunden sein kann, ein Einlassventil 3, das in der Messleitung 2 angeordnet sein kann, um die Gaszufuhr zum Gasreservoir zu steuern, ein Auslassventil 5, das ausgangsseitig des Gasreservoirs angeordnet ist, um den Gasfluss aus dem Gasreservoir zu steuern, einen Auslass 10, um das aus der Messvorrichtung ausfliessende Gas abzuführen, einen zusätzlichen Drucksensor 8', der am Auslass 10 angeordnet sein kann, einen Temperatursensor 9, der im Gasreservoir angeordnet ist, und einen Verdichter 12', der einlassseitig des Gasreservoirs 4 angeordnet sein kann, um den Druck im Gasreservoir zu erhöhen.If necessary, the measuring device can additionally contain one or more of the following components: a measuring line 2, which leads to the gas reservoir 4, and which can be connected to a main gas line 1 during operation, an inlet valve 3, which can be arranged in the measuring line 2, in order to to control the gas supply to the gas reservoir, an outlet valve 5, which is arranged on the outlet side of the gas reservoir, in order to control the gas flow from the gas reservoir, an outlet 10, in order to remove the gas flowing out of the measuring device, an additional pressure sensor 8 ', which is at the outlet 10 can be arranged, a temperature sensor 9, which is arranged in the gas reservoir, and a compressor 12 ', which can be arranged on the inlet side of the gas reservoir 4 in order to increase the pressure in the gas reservoir.

Ein Ausführungsbeispiel, welches nicht Teil der Erfindung ist, wird im Folgenden anhand von Fig. 1a beschrieben. In dem Verfahren fliesst das Gas oder Gasgemisch aus dem Gasreservoir 4 durch die kritische Düse 6 und über den mikrothermischen Sensor 7, wobei die kritische Düse und der mikrothermischen Sensor mit demselben Massenfluss beaufschlagt werden. Der Druckabfall im Gasreservoir 4 wird als Funktion der Zeit gemessen und aus den Messwerten des Druckabfalls ein erster, von einer ersten Gruppe von physikalischen Eigenschaften des Gases oder Gasgemisches abhängiger Gaseigenschaftsfaktor Γ* bestimmt, wobei der erste Gaseigenschaftsfaktor zum Beispiel aus einer Zeitkonstante des Druckabfalls abgeleitet wird. Aus dem Durchflusssignal des mikrothermischen Sensors 7 wird ein zweiter, von einer zweiten Gruppe von physikalischen Eigenschaften des Gases oder Gasgemisches abhängiger Gaseigenschaftsfaktor Γ bestimmt, wobei der zweite Gaseigenschaftsfaktor zum Beispiel die Wärmekapazität cp des Gases oder Gasgemisches enthält oder von derselben abhängig ist. Weiter wird mit Hilfe des mikrothermischen Sensors 7 die Wärmeleitfähigkeit λ des Gases oder Gasgemisches bestimmt und aus dem ersten und/oder zweiten Gaseigenschaftsfaktor Γ*, Γ und der Wärmeleitfähigkeit λ mittels Korrelation eine gesuchte physikalische Eigenschaft oder brenntechnisch relevante Grösse ermittelt.An exemplary embodiment, which is not part of the invention, is described below with reference to Fig. 1a described. In the method, the gas or gas mixture flows from the gas reservoir 4 through the critical nozzle 6 and over the microthermal sensor 7, with the critical nozzle and the microthermal sensor being subjected to the same mass flow. The pressure drop in the gas reservoir 4 is measured as a function of time and a first gas property factor Γ*, which is dependent on a first group of physical properties of the gas or gas mixture, is determined from the measured values of the pressure drop, the first gas property factor being derived, for example, from a time constant of the pressure drop . From the flow signal of the microthermal sensor 7, a second gas property factor Γ, which is dependent on a second group of physical properties of the gas or gas mixture, is determined, the second gas property factor containing, for example, the heat capacity c p of the gas or gas mixture or being dependent on the same. Furthermore, with the help of the microthermal sensor 7, the thermal conductivity λ of the gas or gas mixture is determined and a desired physical property or combustion-relevant quantity is determined from the first and/or second gas property factor Γ*, Γ and the thermal conductivity λ by means of correlation.

Weitere vorteilhafte Ausführungsformen und -varianten des Verfahrens finden sich in vorangehenden Abschnitten der Beschreibung. Die nachstehende Beschreibung enthält zusätzliche Einzelheiten zum Verfahren, die bei Bedarf verwendet werden können.Further advantageous embodiments and variants of the method can be found in previous sections of the description. The description below provides additional details about the procedure that can be used if necessary.

Vorteilhafterweise werden zuerst das Einlassventil 3 und Auslassventil 5 geöffnet, um das zu messende Gas oder Gasgemisch aus der Gashauptleitung 1 über die Messleitung 2 durch die Messvorrichtung fliessen zu lassen, womit sichergegangen werden kann, dass sich in der Messvorrichtung kein Fremdgas der letzten Messung mehr befindet. Das Einlassventil und Auslassventil können über eine Steuereinheit geöffnet werden. Fallweise kann auch die Auswerteeinheit 11, wie in Fig. 1a gezeigt, die Steuerung des Einlassventils und Auslassventils übernehmen. Dann wird das Auslassventil 5 geschlossen und das Gasreservoir 4, dessen Volumeninhalt V bekannt ist, füllt sich, bis das Einlassventil 3 geschlossen wird. Druck p und Temperatur T im Gasreservoir können mit dem Drucksensor 8 bzw. Temperatursensor 9 gemessen werden, sodass jederzeit auf das Normvolumen Vnorm des sich im Gasreservoir 4 befindlichen Gases oder Gasgemisches geschlossen werden kann. V norm = p 1013.25 mbar 273.15 K T V .

Figure imgb0022
Advantageously, the inlet valve 3 and outlet valve 5 are first opened in order to allow the gas or gas mixture to be measured to flow from the main gas line 1 via the measuring line 2 through the measuring device, which can ensure that there is no longer any foreign gas from the last measurement in the measuring device . The inlet valve and outlet valve can be opened via a control unit. In some cases, the evaluation unit 11 can also be used, as in Fig. 1a shown, take over control of the inlet valve and exhaust valve. Then it will be the outlet valve 5 is closed and the gas reservoir 4, whose volume V is known, fills until the inlet valve 3 is closed. Pressure p and temperature T in the gas reservoir can be measured with the pressure sensor 8 or temperature sensor 9, so that the standard volume V norm of the gas or gas mixture located in the gas reservoir 4 can be determined at any time. v standard = p 1013.25 mbar 273.15 K T v .
Figure imgb0022

Ist der Druck p im Gasreservoir 4 grösser als der Druck pkrit, der benötigt wird, damit die Düse 6 kritisch betrieben werden kann, kann das Auslassventil 5 wieder geöffnet werden. Vorzugsweise ist der Druck p im Gasreservoir um mehrere bar höher als pkrit, sodass die Druckabfallmessung über diesen Bereich der Drucküberhöhung vollzogen werden kann, ohne dass die Düse 6 nicht mehr kritisch betrieben ist. Jetzt wird das Auslassventil 5 wieder geschlossen, womit die Druckabfallmessung beendet ist. Der Drucksensor 8 ist vorzugsweise als Differenzdrucksensor gegenüber dem Auslass 10 der Messvorrichtung ausgelegt. Es ist jedoch auch möglich, einen zusätzlichen Drucksensor 8' am Auslass vorzusehen.If the pressure p in the gas reservoir 4 is greater than the pressure p crit , which is required so that the nozzle 6 can be operated critically, the outlet valve 5 can be opened again. Preferably, the pressure p in the gas reservoir is several bar higher than p crit , so that the pressure drop measurement can be carried out over this range of pressure increase without the nozzle 6 no longer being operated critically. Now the outlet valve 5 is closed again, which ends the pressure drop measurement. The pressure sensor 8 is preferably designed as a differential pressure sensor relative to the outlet 10 of the measuring device. However, it is also possible to provide an additional pressure sensor 8' at the outlet.

Während der Druckabfallmessung ist der zeitabhängige Druck p(t) und die zeitabhängige Temperatur T(t) im Druckreservoir 4 gemessen und von der Auswerteeinheit 11 aufgezeichnet worden. Mit diesen Daten wird in der Auswerteeinheit die Zeitkonstante τ in Gleichung (6) bzw. der Gaseigenschaftsfaktor Γ* in Gleichung (7) bestimmt. Gleichzeitig sind mit dem mikrothermischen Sensor 7 Durchflussdaten gemessen worden, die wiederum die Auswerteeinheit aufgezeichnet hat, um den Faktor S in Gleichung (9) bzw. den Gaseigenschaftsfaktor Γ in Gleichung (11) zu bestimmen. Da Ein- und Auslassventil nach der Druckabfallmessung geschlossen sind, fliesst kein Gas mehr über den mikrothermischen Sensor 7. Jetzt kann die Messung der Wärmeleitfähigkeitsmessung λ erfolgen. Wiederum von der Auswerteeinheit aufgezeichnet, wird die Wärmeleitfähigkeit λ mit Hilfe der Lösung von Gleichung (12) bestimmt.During the pressure drop measurement, the time-dependent pressure p(t) and the time-dependent temperature T(t) in the pressure reservoir 4 were measured and recorded by the evaluation unit 11. With this data, the time constant τ in equation (6) or the gas property factor Γ* in equation (7) is determined in the evaluation unit. At the same time, flow data was measured with the microthermal sensor 7, which in turn was recorded by the evaluation unit in order to determine the factor S in equation (9) or the gas property factor Γ in equation (11). Since the inlet and outlet valves are closed after the pressure drop measurement, gas no longer flows through the microthermal sensor 7. The thermal conductivity measurement λ can now be measured. Again recorded by the evaluation unit, the thermal conductivity λ is determined using the solution to equation (12).

In der Auswerteeinheit 11 erfolgt nun die (fakultative) Validierung des Gaseigenschaftsfaktors Γ bzw. Γ* und danach, je nach gewünschter, brenntechnisch relevanter Grösse Q, deren Berechnung anhand der Gleichung (15) mit zuvor ermittelter Korrelationsfunktion Qcorr = fcorr (Γ, Γ*, λ).The (optional) validation of the gas property factor Γ or Γ* now takes place in the evaluation unit 11 and then, depending on the desired combustion-relevant quantity Q, its calculation using equation (15) with the previously determined correlation function Q corr = f corr (Γ, Γ*, λ ).

Bei Bedarf kann zudem, wie in Fig. 1b gezeigt, ein Verdichter 12' vorgesehen sein, der beispielsweise einlassseitig des Gasreservoirs 4 angeordnet ist, um den Druck im Gasreservoir zu erhöhen.If necessary, you can also, as in Fig. 1b shown, a compressor 12 'may be provided, which is arranged, for example, on the inlet side of the gas reservoir 4 in order to increase the pressure in the gas reservoir.

Fig. 2 zeigt ein zweites Ausführungsbeispiel des schematischen Aufbaus einer Messvorrichtung, welche nicht Teil der Erfindung ist, in dem mit einem Unterdruck im Gasreservoir gearbeitet wird. Diese sogenannte Niederdruckvariante ist zum Beispiel vorteilhaft bei der Gasversorgung an Endkunden. Im zweiten Ausführungsbeispiel umfasst die Messvorrichtung zusätzlich zum Gasreservoir 4 einen Drucksensor 8, mit dem das Gasreservoir versehen ist, eine Auswerteeinheit 11, die zur Ausführung eines Verfahrens gemäss vorliegender Erfindung eingerichtet ist, eine kritische Düse 6, und einen mikrothermischen Sensor 7 zur Messung des Durchflusses und der Wärmeleitfähigkeit, wobei das Gasreservoir 4 für die Messung mit der kritischen Düse 6 und dem mikrothermischen Sensor 7 verbunden ist. Fig. 2 shows a second exemplary embodiment of the schematic structure of a measuring device, which is not part of the invention, in which a negative pressure is used in the gas reservoir. This so-called low-pressure variant is advantageous, for example, when supplying gas to end customers. In the second exemplary embodiment, the measuring device comprises, in addition to the gas reservoir 4, a pressure sensor 8 with which the gas reservoir is provided, an evaluation unit 11 which is set up to carry out a method according to the present invention, a critical nozzle 6, and a microthermal sensor 7 for measuring the flow and the thermal conductivity, the gas reservoir 4 being connected to the critical nozzle 6 and the microthermal sensor 7 for the measurement.

Bei Bedarf kann die Messvorrichtung zusätzlich eine oder mehrere der folgenden Komponenten enthalten: eine Vakuumpumpe 12, die mit dem Gasreservoir 4 verbunden ist, um einen Unterdruck im Gasreservoir zu erzeugen, eine Messleitung 2, die zum Gasreservoir 4 führt, und die im Betrieb mit einer Hauptgasleitung 1 verbunden sein kann, ein Einlassventil 3, das in der Messleitung 2 angeordnet sein kann, um die Gaszufuhr zum Gasreservoir zu steuern, ein Auslassventil 5, das ausgangsseitig des Gasreservoirs angeordnet ist, um den Gasfluss aus dem Gasreservoir zu steuern, einen Auslass 10, um das aus der Messvorrichtung ausfliessende Gas abzuführen, einen zusätzlichen Drucksensor 8', der in der Messleitung 2 oder Gashauptleitung angeordnet sein kann, und einen Temperatursensor 9, der im Gasreservoir 4 angeordnet ist.If necessary, the measuring device can additionally contain one or more of the following components: a vacuum pump 12, which is connected to the gas reservoir 4 in order to generate a negative pressure in the gas reservoir, a measuring line 2, which leads to the gas reservoir 4, and which, in operation, with a Main gas line 1 can be connected, an inlet valve 3, which can be arranged in the measuring line 2 in order to control the gas supply to the gas reservoir, an outlet valve 5, which is arranged on the outlet side of the gas reservoir in order to control the gas flow from the gas reservoir, an outlet 10 to remove the gas flowing out of the measuring device, an additional pressure sensor 8 ', which can be arranged in the measuring line 2 or gas main line, and a temperature sensor 9, which is arranged in the gas reservoir 4.

Ein Ausführungsbeispiel des Verfahrens zur Bestimmung physikalischer Eigenschaften und/oder brenntechnisch relevanter Grössen eines Gases und Gasgemisches, welches nicht Teil der Erfindung ist, wird im Folgenden anhand von Fig. 2 beschrieben. In dem Verfahren fliesst das Gas oder Gasgemisch unter Druck durch die kritische Düse 6 und über den mikrothermischen Sensor 7 in das Gasreservoir 4, wobei die kritische Düse und der mikrothermischen Sensor mit demselben Massenfluss beaufschlagt werden. Die Druckzunahme im Gasreservoir 4 wird als Funktion der Zeit gemessen und aus den Messwerten der Druckzunahme ein erster, von einer ersten Gruppe von physikalischen Eigenschaften des Gases oder Gasgemisches abhängiger Gaseigenschaftsfaktor Γ* bestimmt, wobei der erste Gaseigenschaftsfaktor zum Beispiel aus einer Proportionalitätskonstante der Druckzunahme abgeleitet wird. Aus dem Durchflusssignal des mikrothermischen Sensors 7 wird ein zweiter, von einer zweiten Gruppe von physikalischen Eigenschaften des Gases oder Gasgemisches abhängiger Gaseigenschaftsfaktor Γ bestimmt, wobei der zweite Gaseigenschaftsfaktor zum Beispiel die Wärmekapazität cp des Gases oder Gasgemisches enthält oder von derselben abhängig ist. Weiter wird mit Hilfe des mikrothermischen Sensors 7 die Wärmeleitfähigkeit λ des Gases oder Gasgemisches bestimmt und aus dem ersten und/oder zweiten Gaseigenschaftsfaktor Γ*, Γ und der Wärmeleitfähigkeit λ mittels Korrelation eine gesuchte physikalische Eigenschaft oder brenntechnisch relevante Grösse ermittelt.An exemplary embodiment of the method for determining physical properties and/or combustion-relevant variables of a gas and Gas mixture, which is not part of the invention, is described below using Fig. 2 described. In the method, the gas or gas mixture flows under pressure through the critical nozzle 6 and via the microthermal sensor 7 into the gas reservoir 4, with the critical nozzle and the microthermal sensor being subjected to the same mass flow. The pressure increase in the gas reservoir 4 is measured as a function of time and a first gas property factor Γ*, which is dependent on a first group of physical properties of the gas or gas mixture, is determined from the measured values of the pressure increase, the first gas property factor being derived, for example, from a proportionality constant of the pressure increase . From the flow signal of the microthermal sensor 7, a second gas property factor Γ, which is dependent on a second group of physical properties of the gas or gas mixture, is determined, the second gas property factor containing, for example, the heat capacity c p of the gas or gas mixture or being dependent on the same. Furthermore, with the help of the microthermal sensor 7, the thermal conductivity λ of the gas or gas mixture is determined and a desired physical property or combustion-relevant quantity is determined from the first and/or second gas property factor Γ*, Γ and the thermal conductivity λ by means of correlation.

Weitere vorteilhafte Ausführungsformen und -varianten des Verfahrens finden sich in vorangehenden Abschnitten der Beschreibung. Die nachstehende Beschreibung enthält zusätzliche Einzelheiten zum Verfahren, die bei Bedarf verwendet werden können.Further advantageous embodiments and variants of the method can be found in previous sections of the description. The description below provides additional details about the procedure that can be used if necessary.

Vorteilhafterweise wird der Druck im Gasreservoir 4 vorgängig soweit erniedrigt, zum Beispiel mit einer Vakuumpumpe 12, dass die kritische Düse 6 kritisch betrieben werden kann, d.h. der Druck im Gasreservoir weniger als die Hälfte des Drucks vor der kritischen Düse beträgt. Es ist kein Hochvakuum erforderlich: Solang der Druck p und die Temperatur T im Gasreservoir 4 gemessen werden, kann immer berechnet werden, welches Normvolumen an Gas in das Gasreservoir geflossen ist. Es ist jedoch von Vorteil, wenn der Druck um einen Faktor niedriger ist als es für kritische Verhältnisse nötig wäre, da dann entsprechend länger gemessen werden kann, was eine genauere Bestimmung der Proportionalitätskonstante ermöglicht.Advantageously, the pressure in the gas reservoir 4 is previously reduced to such an extent, for example with a vacuum pump 12, that the critical nozzle 6 can be operated critically, ie the pressure in the gas reservoir is less than half of the pressure in front of the critical nozzle. No high vacuum is required: As long as the pressure p and the temperature T in the gas reservoir 4 are measured, it can always be calculated which standard volume of gas has flowed into the gas reservoir. However, it is advantageous if the pressure is a factor lower than would be necessary for critical conditions, as the measurement can then be carried out for a correspondingly longer time, which enables a more precise determination of the proportionality constant.

Für weitere Einzelheiten zum Verfahren, die bei Bedarf verwendet werden können, wird auf die Beschreibung des ersten Ausführungsbeispiels verwiesen, wobei gegebenenfalls der Begriff "Druckabfall" durch "Druckzunahme" ersetzt werden muss.For further details of the method that can be used if necessary, reference is made to the description of the first exemplary embodiment, whereby the term "pressure drop" must be replaced by "pressure increase" if necessary.

Fig. 3 zeigt ein Ausführungsbeispiel eines mikrothermischen Sensors zur Verwendung in einer Messvorrichtung, welche nicht Teil der Erfindung ist. Der mikrothermische Sensor 7 kann beispielsweise, wie in Fig. 3 gezeigt, ein integriertes, mikrothermisches CMOS-Hitzdrahtanemometer sein, das im Einsatz in einem Abschnitt 2' der Messleitung angeordnet und mit einem Gas- oder Gasgemischstrom 2a beaufschlag werden kann. Das mikrothermische CMOS-Hitzdrahtanemometer umfasst ein Substrat 13, das typisch eine Membran 14 von wenigen Mikrometer Dicke enthält. Weiter umfasst das CMOS-Hitzdrahtanemometer zwei Thermoelemente 15.1, 15.2 und ein Heizelement 16, das in Flussrichtung zwischen den beiden Thermoelementen angeordnet sein kann. Mit den beiden Thermoelementen 15.1, 15.2 kann die Temperatur erfasst werden, die sich auf Grund des Wärmeaustausches 15.1a, 15.2a mit dem Gas- oder Gasgemischstrom 2a einstellt. Fig. 3 shows an exemplary embodiment of a microthermal sensor for use in a measuring device, which is not part of the invention. The microthermal sensor 7 can, for example, as in Fig. 3 shown, be an integrated, microthermal CMOS hot wire anemometer, which can be arranged in a section 2 'of the measuring line and acted upon with a gas or gas mixture stream 2a. The CMOS microthermal hot wire anemometer includes a substrate 13, which typically contains a membrane 14 a few micrometers thick. The CMOS hot-wire anemometer further comprises two thermocouples 15.1, 15.2 and a heating element 16, which can be arranged between the two thermocouples in the flow direction. The two thermocouples 15.1, 15.2 can be used to record the temperature that arises due to the heat exchange 15.1a, 15.2a with the gas or gas mixture stream 2a.

Für weitere Einzelheiten zur Funktionsweise des integrierten, mikrothermischen CMOS-Hitzdrahtanemometers wird auf D. Matter, B. Kramer, T. Kleiner, B. Sabbattini, T. Suter, "Mikroelektronischer Haushaltsgaszähler mit neuer Technologie", Technisches Messen 71, 3 (2004), S. 137-146 verwiesen.For more details on how the integrated CMOS microthermal hot wire anemometer works, see D. Matter, B. Kramer, T. Kleiner, B. Sabbattini, T. Suter, "Microelectronic household gas meter with new technology", Technisches Messen 71, 3 (2004), pp. 137-146 referred.

Fig. 4 zeigt eine Darstellung des direkt gemessenen Dichteverhältnisses ρ / ρref (y-Achse) in Abhängigkeit des korrelierten Dichteverhältnisses ρcorr / ρref (x-Achse) für verschieden Gasgruppen bei Normbedingungen (0°C, 1013.25 mbar), wobei das korrelierte Dichteverhältnisse mit einem Verfahren beziehungsweise mit einer Messvorrichtung gemäss vorliegender Erfindung ermittelt wurde. Als Referenzgas wurde ein typisches H-Erdgas verwendet. Fig. 4 shows a representation of the directly measured density ratio ρ / ρ ref (y-axis) as a function of the correlated density ratio ρ corr / ρ ref (x-axis) for different gas groups at standard conditions (0 ° C, 1013.25 mbar), whereby the correlated density ratio with was determined using a method or a measuring device according to the present invention. A typical H natural gas was used as the reference gas.

Die oben stehend beschriebene Messvorrichtung zur Bestimmung physikalischer Eigenschaften und/oder brenntechnisch relevanter Grössen eines Gases und Gasgemisches ist einer neuen Kategorie zuzuteilen, nämlich "Messung des Druckabfalls oder der Druckzunahme in einem Gasreservoir, wobei das Gas durch eine kritische Düse fliesst, sowie Wärmeleitfähigkeits- und Durchflussmessung mit Hilfe eines mikrothermischen Sensors, und Datenvalidierung durch Aufsummieren der Durchflusswerte". Die verwendeten Komponenten sind kostengünstig, wodurch neue Märkte erschlossen werden können, in denen heute aus Kostengründen keine Gasqualitätssensoren eingesetzt werden. Von der Genauigkeit her sind nur wenig Einbussen gegenüber teureren, kommerziell erhältlichen Geräten zu erwarten, da hier ebenfalls mindestens drei voneinander unabhängige Messwerte für die Korrelation verwendet werden.The measuring device described above for determining physical properties and/or combustion-relevant variables of a gas and gas mixture is to be assigned to a new category, namely "measuring the pressure drop or increase in pressure in a gas reservoir, where the gas flows through a critical nozzle, as well as thermal conductivity and flow measurement using a microthermal sensor, and data validation by summing the flow values". The components used are inexpensive, which allows new markets to be opened up in which gas quality sensors are not used today due to cost reasons In terms of accuracy, little loss is to be expected compared to more expensive, commercially available devices, since at least three independent measured values are used for the correlation.

Die Erfindung umfasst in einer zweiten Ausführungsform die Verwendung eines Gasreservoirs und einer kritischen Düse zur Bestimmung physikalischer Eigenschaften und/oder brenntechnisch relevanter Grössen eines Gases oder Gasgemisches, bzw. ein Verfahren, in dem ein Gasreservoir und eine kritische Düse zur Bestimmung physikalischer Eigenschaften und/oder brenntechnisch relevanter Grössen eines Gases oder Gasgemisches verwendet werden, wobei das Gas oder Gasgemisch unter Druck aus dem Gasreservoir durch die kritische Düse fliesst, wobei der Druckabfall im Gasreservoir als Funktion der Zeit gemessen wird, aus den Messwerten des Druckabfalls ein von physikalischen Eigenschaften des Gases oder Gasgemisches abhängiger Gaseigenschaftsfaktor Γ* bestimmt wird, der zum Beispiel aus einer Zeitkonstante des Druckabfalls abgeleitet wird, und aus dem Gaseigenschaftsfaktor Γ* mittels Korrelation eine gesuchte physikalische Eigenschaft oder brenntechnisch relevante Grösse ermittelt wird.In a second embodiment, the invention includes the use of a gas reservoir and a critical nozzle for determining physical properties and/or combustion-relevant variables of a gas or gas mixture, or a method in which a gas reservoir and a critical nozzle are used to determine physical properties and/or Combustion-relevant variables of a gas or gas mixture are used, the gas or gas mixture flowing under pressure from the gas reservoir through the critical nozzle, the pressure drop in the gas reservoir being measured as a function of time, from the measured values of the pressure drop one of physical properties of the gas or Gas mixture-dependent gas property factor Γ* is determined, which is derived, for example, from a time constant of the pressure drop, and from the gas property factor Γ* a desired physical property or combustion-relevant quantity is determined by means of correlation.

Fig. 5a zeigt ein Ausführungsbeispiel des schematischen Aufbaus einer Messvorrichtung gemäss der zweiten Ausführungsform der Erfindung im Fall, in dem die Gashauptleitung 1 einen Druck aufweist, der höher als der kritische Druck für die kritische Düse 6 der Messvorrichtung ist (Hochdruckvariante). Im Ausführungsbeispiel umfasst die Messvorrichtung zusätzlich zur kritischen Düse 6 eine Auswerteeinheit 11, die zur Ausführung eines Verfahrens gemäss der zweiten Ausführungsform der Erfindung eingerichtet ist, und ein Gasreservoir 4, das mit einem Drucksensor 8 versehen ist, wobei das Gasreservoir 4 für die Messung mit der kritischen Düse 6 verbunden ist. Fig. 5a shows an exemplary embodiment of the schematic structure of a measuring device according to the second embodiment of the invention in the case in which the gas main line 1 has a pressure that is higher than the critical pressure for the critical nozzle 6 of the measuring device (high-pressure variant). In the exemplary embodiment, the measuring device comprises, in addition to the critical nozzle 6, an evaluation unit 11 which is used to carry out a method according to the second embodiment of the invention is set up, and a gas reservoir 4, which is provided with a pressure sensor 8, the gas reservoir 4 being connected to the critical nozzle 6 for measurement.

Bei Bedarf kann die Messvorrichtung zusätzlich eine oder mehrere der folgenden Komponenten enthalten: eine Messleitung 2, die zum Gasreservoir 4 führt, und die im Betrieb mit einer Hauptgasleitung 1 verbunden sein kann, ein Einlassventil 3, das in der Messleitung 2 angeordnet sein kann, um die Gaszufuhr zum Gasreservoir zu steuern, ein Auslassventil 5, das ausgangsseitig des Gasreservoirs angeordnet ist, um den Gasfluss aus dem Gasreservoir zu steuern, einen Auslass 10, um das aus der Messvorrichtung ausfliessende Gas abzuführen, einen zusätzlichen Drucksensor 8', der am Auslass 10 angeordnet sein kann, einen Temperatursensor 9, der im Gasreservoir angeordnet ist, und einen Verdichter 12', der einlassseitig des Gasreservoirs 4 angeordnet sein kann, um den Druck im Gasreservoir zu erhöhen.If necessary, the measuring device can additionally contain one or more of the following components: a measuring line 2, which leads to the gas reservoir 4, and which can be connected to a main gas line 1 during operation, an inlet valve 3, which can be arranged in the measuring line 2, in order to to control the gas supply to the gas reservoir, an outlet valve 5, which is arranged on the outlet side of the gas reservoir, in order to control the gas flow from the gas reservoir, an outlet 10, in order to remove the gas flowing out of the measuring device, an additional pressure sensor 8 ', which is at the outlet 10 can be arranged, a temperature sensor 9, which is arranged in the gas reservoir, and a compressor 12 ', which can be arranged on the inlet side of the gas reservoir 4 in order to increase the pressure in the gas reservoir.

Ein Ausführungsbeispiel des Verfahrens zur Bestimmung physikalischer Eigenschaften und/oder brenntechnisch relevanter Grössen eines Gases oder Gasgemisches gemäss der zweiten Ausführungsform der Erfindung wird im Folgenden anhand von Fig. 5a beschrieben. In diesem Ausführungsbeispiel fliesst das Gas oder Gasgemisch aus dem Gasreservoir 4 durch die kritische Düse 6. Der Druckabfall im Gasreservoir 4 wird als Funktion der Zeit gemessen und aus den Messwerten des Druckabfalls ein von einer Gruppe von physikalischen Eigenschaften des Gases oder Gasgemisches abhängiger Gaseigenschaftsfaktor F* bestimmt, wobei der Gaseigenschaftsfaktor zum Beispiel aus einer Zeitkonstante des Druckabfalls abgeleitet wird. Weiter wird aus dem Gaseigenschaftsfaktor Γ* mittels Korrelation eine gesuchte physikalische Eigenschaft oder brenntechnisch relevante Grösse ermittelt.An exemplary embodiment of the method for determining physical properties and/or combustion-relevant variables of a gas or gas mixture according to the second embodiment of the invention is described below with reference to Fig. 5a described. In this exemplary embodiment, the gas or gas mixture flows from the gas reservoir 4 through the critical nozzle 6. The pressure drop in the gas reservoir 4 is measured as a function of time and the measured values of the pressure drop are used to calculate a gas property factor F* that is dependent on a group of physical properties of the gas or gas mixture. determined, whereby the gas property factor is derived, for example, from a time constant of the pressure drop. Furthermore, a desired physical property or combustion-relevant quantity is determined from the gas property factor Γ* by means of correlation.

Vorteilhafterweise werden mit der zweiten Ausführungsform der Erfindung binäre Gasgemische auf ihren Anteil der beiden das Gasgemisch bildenden Komponenten analysiert, da der Gaseigenschaftsfaktor Γ* intrinsisch eine stetige Funktion der Gasanteile x% bzw. (1-x%) ist. Mit Kenntnis des Anteil x% bzw. (1-x%) können anschliessend aus Tabellenwerken oder mittels entsprechenden Berechnungsprogrammen physikalische Eigenschaften und/oder brenntechnisch relevanter Grösse des binären Gasgemisches bestimmt werden. Natürlich ist auch die direkte Korrelation dieser physikalische Eigenschaften und/oder brenntechnisch relevanten Grösse des binären Gasgemisches mit dem Gaseigenschaftsfaktor Γ* möglich.Advantageously, with the second embodiment of the invention, binary gas mixtures are analyzed for their proportion of the two components forming the gas mixture, since the gas property factor Γ* is intrinsically a continuous function of the gas proportions x% or (1-x%). With knowledge of the proportion x% or (1-x%), physical properties can then be calculated from tables or using appropriate calculation programs and/or combustion-relevant size of the binary gas mixture can be determined. Of course, the direct correlation of these physical properties and/or combustion-relevant size of the binary gas mixture with the gas property factor Γ* is also possible.

In einer Ausführungsvariante des Verfahrens wird somit der prozentuale Anteil der einen Komponente in einem binären Gasgemisch bestimmt, wobei die zu korrelierende Grösse entweder dem Zusammensetzungsanteil der einen Komponente (x%) und/oder einer beliebig anderen physikalische Eigenschaft des binären Gasgemisches entspricht.In one embodiment variant of the method, the percentage share of one component in a binary gas mixture is thus determined, with the quantity to be correlated either corresponding to the composition share of the one component (x%) and/or any other physical property of the binary gas mixture.

Weitere vorteilhafte Ausführungsformen und -varianten des Verfahrens finden sich in vorangehenden Abschnitten der Beschreibung. Die nachstehende Beschreibung enthält zusätzliche Einzelheiten zum Verfahren, die bei Bedarf verwendet werden können.Further advantageous embodiments and variants of the method can be found in previous sections of the description. The description below provides additional details about the procedure that can be used if necessary.

Vorteilhafterweise werden zuerst das Einlassventil 3 und Auslassventil 5 geöffnet, um das zu messende Gas oder Gasgemisch aus der Gashauptleitung 1 über die Messleitung 2 durch die Messvorrichtung fliessen zu lassen, womit sichergegangen werden kann, dass sich in der Messvorrichtung kein Fremdgas der letzten Messung mehr befindet. Das Einlassventil und Auslassventil können über eine Steuereinheit geöffnet werden. Fallweise kann auch die Auswerteeinheit 11, wie in Fig. 5a gezeigt, die Steuerung des Einlassventils und Auslassventils übernehmen. Dann wird das Auslassventil 5 geschlossen und das Gasreservoir 4, dessen Volumeninhalt V bekannt ist, füllt sich, bis das Einlassventil 3 geschlossen wird. Druck p und Temperatur T im Gasreservoir können mit dem Drucksensor 8 bzw. Temperatursensor 9 gemessen werden, sodass jederzeit auf das Normvolumen Vnorm des sich im Gasreservoir 4 befindlichen Gases oder Gasgemisches geschlossen werden kann. V norm = p 1013.25 mbar 273.15 K T V .

Figure imgb0023
Advantageously, the inlet valve 3 and outlet valve 5 are first opened in order to allow the gas or gas mixture to be measured to flow from the main gas line 1 via the measuring line 2 through the measuring device, which can ensure that there is no longer any foreign gas from the last measurement in the measuring device . The inlet valve and outlet valve can be opened via a control unit. In some cases, the evaluation unit 11 can also be used, as in Fig. 5a shown, take over control of the inlet valve and exhaust valve. Then the outlet valve 5 is closed and the gas reservoir 4, whose volume V is known, fills until the inlet valve 3 is closed. Pressure p and temperature T in the gas reservoir can be measured with the pressure sensor 8 or temperature sensor 9, so that the standard volume V norm of the gas or gas mixture located in the gas reservoir 4 can be determined at any time. v standard = p 1013.25 mbar 273.15 K T v .
Figure imgb0023

Ist der Druck p im Gasreservoir 4 grösser als der Druck pkrit, der benötigt wird, damit die Düse 6 kritisch betrieben werden kann, kann das Auslassventil 5 wieder geöffnet werden. Vorzugsweise ist der Druck p im Gasreservoir um mehrere bar höher als pkrit, sodass die Druckabfallmessung über diesen Bereich der Drucküberhöhung vollzogen werden kann, ohne dass die Düse 6 nicht mehr kritisch betrieben ist. Jetzt wird das Auslassventil 5 wieder geschlossen, womit die Druckabfallmessung beendet ist. Der Drucksensor 8 ist vorzugsweise als Differenzdrucksensor gegenüber dem Auslass 10 der Messvorrichtung ausgelegt. Es ist jedoch auch möglich, einen zusätzlichen Drucksensor 8' am Auslass vorzusehen.If the pressure p in the gas reservoir 4 is greater than the pressure p crit , which is required so that the nozzle 6 can be operated critically, the outlet valve 5 can be opened again. Preferably, the pressure p in the gas reservoir is several bar higher than p crit , so that the pressure drop measurement can be carried out over this range of pressure increase without the nozzle 6 no longer being operated critically. Now the outlet valve 5 is closed again, which ends the pressure drop measurement. The pressure sensor 8 is preferably designed as a differential pressure sensor relative to the outlet 10 of the measuring device. However, it is also possible to provide an additional pressure sensor 8' at the outlet.

Während der Druckabfallmessung ist der zeitabhängige Druck p(t) und die zeitabhängige Temperatur T(t) im Druckreservoir 4 gemessen und von der Auswerteeinheit 11 aufgezeichnet worden. Mit diesen Daten werden in der Auswerteeinheit die Zeitkonstante τ in Gleichung (6) bzw. die Proportionalitätskonstante in Gleichung (6') und der Gaseigenschaftsfaktor Γ* in Gleichung (7) bzw. (7')bestimmt.During the pressure drop measurement, the time-dependent pressure p(t) and the time-dependent temperature T(t) in the pressure reservoir 4 were measured and recorded by the evaluation unit 11. With this data, the time constant τ in equation (6) or the proportionality constant in equation (6') and the gas property factor Γ* in equation (7) or (7') are determined in the evaluation unit.

In der Auswerteeinheit 11 erfolgt nun, je nach gewünschter, brenntechnisch relevanter Grösse Q, deren Berechnung anhand der Gleichung (15) mit zuvor ermittelter Korrelationsfunktion Qcorr = fcorr (Γ*).In the evaluation unit 11, depending on the desired, combustion-relevant quantity Q, the calculation is now carried out using equation (15) with the previously determined correlation function Q corr = f corr (Γ*).

Bei Bedarf kann zudem, wie in Fig. 5b gezeigt, ein Verdichter 12' vorgesehen sein, der beispielsweise einlassseitig des Gasreservoirs 4 angeordnet ist, um den Druck im Gasreservoir zu erhöhen.If necessary, you can also, as in Fig. 5b shown, a compressor 12 'may be provided, which is arranged, for example, on the inlet side of the gas reservoir 4 in order to increase the pressure in the gas reservoir.

Fig. 6 zeigt ein zweites Ausführungsbeispiel des schematischen Aufbaus einer Messvorrichtung gemäss der zweiten Ausführungsform der Erfindung, in dem mit einem Unterdruck im Gasreservoir gearbeitet wird. Diese sogenannte Niederdruckvariante ist zum Beispiel vorteilhaft bei der Gasversorgung an Endkunden. Im zweiten Ausführungsbeispiel umfasst die Messvorrichtung zusätzlich zum Gasreservoir 4 einen Drucksensor 8, mit dem das Gasreservoir versehen ist, eine Auswerteeinheit 11, die zur Ausführung eines Verfahrens gemäss der zweiten Ausführungsform der Erfindung eingerichtet ist, und eine kritische Düse 6, wobei das Gasreservoir 4 für die Messung mit der kritischen Düse 6 verbunden ist. Fig. 6 shows a second exemplary embodiment of the schematic structure of a measuring device according to the second embodiment of the invention, in which a negative pressure is used in the gas reservoir. This so-called low-pressure variant is advantageous, for example, when supplying gas to end customers. In the second exemplary embodiment, the measuring device comprises, in addition to the gas reservoir 4, a pressure sensor 8, with which the gas reservoir is provided, an evaluation unit 11, which is set up to carry out a method according to the second embodiment of the invention, and a critical nozzle 6, the gas reservoir 4 for the measurement is connected to the critical nozzle 6.

Bei Bedarf kann die Messvorrichtung zusätzlich eine oder mehrere der folgenden Komponenten enthalten: eine Vakuumpumpe 12, die mit dem Gasreservoir 4 verbunden ist, um einen Unterdruck im Gasreservoir zu erzeugen, eine Messleitung 2, die zum Gasreservoir 4 führt, und die im Betrieb mit einer Hauptgasleitung 1 verbunden sein kann, ein Einlassventil 3, das in der Messleitung 2 angeordnet sein kann, um die Gaszufuhr zum Gasreservoir zu steuern, ein Auslassventil 5, das ausgangsseitig des Gasreservoirs angeordnet ist, um den Gasfluss aus dem Gasreservoir zu steuern, einen Auslass 10, um das aus der Messvorrichtung ausfliessende Gas abzuführen, einen zusätzlichen Drucksensor 8', der in der Messleitung 2 oder Gashauptleitung angeordnet sein kann, und einen Temperatursensor 9, der im Gasreservoir 4 angeordnet ist.If necessary, the measuring device can additionally contain one or more of the following components: a vacuum pump 12, which is connected to the gas reservoir 4 in order to generate a negative pressure in the gas reservoir, a measuring line 2, which leads to the gas reservoir 4, and which, in operation, with a Main gas line 1 can be connected, an inlet valve 3, which can be arranged in the measuring line 2 in order to control the gas supply to the gas reservoir, an outlet valve 5, which is arranged on the outlet side of the gas reservoir in order to control the gas flow from the gas reservoir, an outlet 10 to remove the gas flowing out of the measuring device, an additional pressure sensor 8 ', which can be arranged in the measuring line 2 or gas main line, and a temperature sensor 9, which is arranged in the gas reservoir 4.

Ein weiteres Ausführungsbeispiel des Verfahrens zur Bestimmung physikalischer Eigenschaften und/oder brenntechnisch relevanter Grössen eines Gases und Gasgemisches gemäss der zweiten Ausführungsform der Erfindung wird im Folgenden anhand von Fig. 6 beschrieben. In diesem Ausführungsbeispiel fliesst das Gas oder Gasgemisch unter Druck durch die kritische Düse 6 in das Gasreservoir 4. Die Druckzunahme im Gasreservoir 4 wird als Funktion der Zeit gemessen und aus den Messwerten der Druckzunahme ein von einer Gruppe von physikalischen Eigenschaften des Gases oder Gasgemisches abhängiger Gaseigenschaftsfaktor Γ* bestimmt, wobei der Gaseigenschaftsfaktor zum Beispiel aus einer Proportionalitätskonstante der Druckzunahme abgeleitet wird. Aus dem Gaseigenschaftsfaktor Γ* wird mittels Korrelation eine gesuchte physikalische Eigenschaft oder brenntechnisch relevante Grösse ermittelt.A further exemplary embodiment of the method for determining physical properties and/or combustion-relevant variables of a gas and gas mixture according to the second embodiment of the invention is described below with reference to Fig. 6 described. In this exemplary embodiment, the gas or gas mixture flows under pressure through the critical nozzle 6 into the gas reservoir 4. The pressure increase in the gas reservoir 4 is measured as a function of time and the measured values of the pressure increase are used to create a gas property factor that is dependent on a group of physical properties of the gas or gas mixture Γ* is determined, whereby the gas property factor is derived, for example, from a proportionality constant of the pressure increase. From the gas property factor Γ*, a desired physical property or variable relevant to combustion is determined by means of correlation.

Weitere vorteilhafte Ausführungsformen und -varianten des Verfahrens finden sich in vorangehenden Abschnitten der Beschreibung. Die nachstehende Beschreibung enthält zusätzliche Einzelheiten zum Verfahren, die bei Bedarf verwendet werden können.Further advantageous embodiments and variants of the method can be found in previous sections of the description. The description below provides additional details about the procedure that can be used if necessary.

Vorteilhafterweise wird der Druck im Gasreservoir 4 vorgängig soweit erniedrigt, zum Beispiel mit einer Vakuumpumpe 12, dass die kritische Düse 6 kritisch betrieben werden kann, d.h. der Druck im Gasreservoir weniger als die Hälfte des Drucks vor der kritischen Düse beträgt. Es ist kein Hochvakuum erforderlich: Solang der Druck p und die Temperatur T im Gasreservoir 4 gemessen werden, kann immer berechnet werden, welches Normvolumen an Gas in das Gasreservoir geflossen ist. Es ist jedoch von Vorteil, wenn der Druck um einen Faktor niedriger ist als es für kritische Verhältnisse nötig wäre, da dann entsprechend länger gemessen werden kann, was eine genauere Bestimmung der Proportionalitätskonstante ermöglicht.Advantageously, the pressure in the gas reservoir 4 is previously reduced to such an extent, for example with a vacuum pump 12, that the critical nozzle 6 can be operated critically, ie the pressure in the gas reservoir is less than half of the pressure in front of the critical nozzle. It's not high vacuum Required: As long as the pressure p and the temperature T in the gas reservoir 4 are measured, it can always be calculated which standard volume of gas has flowed into the gas reservoir. However, it is advantageous if the pressure is a factor lower than would be necessary for critical conditions, as the measurement can then be carried out for a correspondingly longer time, which enables a more precise determination of the proportionality constant.

Für weitere Einzelheiten zum Verfahren, die bei Bedarf verwendet werden können, wird auf die Beschreibung des ersten Ausführungsbeispiels verwiesen, wobei gegebenenfalls der Begriff "Druckabfall" durch "Druckzunahme" ersetzt werden muss.For further details of the method that can be used if necessary, reference is made to the description of the first exemplary embodiment, whereby the term "pressure drop" must be replaced by "pressure increase" if necessary.

Fig. 7 zeigt eine Darstellung des direkt gemessenen Methananteils nCH4 (y-Achse) in Abhängigkeit des korrelierten Methananteils nCH4 corr (x-Achse) für ein aus Methan und Kohlendioxid bestehendes, binäres Roh-Biogas bei Normbedingungen (0°C, 1013.25 mbar), wobei der korrelierte Methananteil mit einem Verfahren beziehungsweise mit einer Messvorrichtung gemäss der zweiten Ausführungsform der Erfindung ermittelt wurde. Als Referenzgas wurde ein typisches H-Erdgas verwendet. Die gesuchte Grösse Q (hier der Methananteil nCH4 corr in x%) wird vorteilhafterweise mittels der Korrelationsfunktion Qcorr = a + b · Γ* + c · Γ*2 + d · Γ*3 ermittelt, wobei in dem in der Darstellung gezeigten Bespiel numerisch a = -7.82, b = 22.7, c = -20.4 und d = 6.45. Fig. 7 shows a representation of the directly measured methane content n CH4 (y-axis) as a function of the correlated methane content n CH4 corr (x-axis) for a binary raw biogas consisting of methane and carbon dioxide under standard conditions (0 ° C, 1013.25 mbar), wherein the correlated methane content was determined using a method or a measuring device according to the second embodiment of the invention. A typical H natural gas was used as the reference gas. The desired quantity Q (here the methane content n CH4 corr in x%) is advantageously determined using the correlation function Q corr = a + b · Γ* + c · Γ* 2 + d · Γ* 3 , whereby in the figure shown Example numerically a = -7.82, b = 22.7, c = -20.4 and d = 6.45.

Die oben stehend beschriebene Messvorrichtung zur Bestimmung physikalischer Eigenschaften und/oder brenntechnisch relevanter Grössen eines Gases und Gasgemisches ist einer neuen Kategorie zuzuteilen, nämlich "Messung des Druckabfalls oder der Druckzunahme in einem Gasreservoir, wobei das Gas durch eine kritische Düse fliesst. Die verwendeten Komponenten sind kostengünstig, wodurch neue Märkte erschlossen werden können, in denen heute aus Kostengründen keine Gasqualitätssensoren eingesetzt werden. Von der Genauigkeit her sind gewisse Einbussen gegenüber teureren, kommerziell erhältlichen Geräten zu erwarten, da hier anstatt drei nur ein unabhängiger Messwert für die Korrelation verwendet wird.The measuring device described above for determining physical properties and/or combustion-relevant variables of a gas and gas mixture is to be assigned to a new category, namely "measuring the pressure drop or increase in pressure in a gas reservoir, with the gas flowing through a critical nozzle. The components used are cost-effective, which makes it possible to open up new markets in which gas quality sensors are not used today due to cost reasons. In terms of accuracy, certain losses are to be expected compared to more expensive, commercially available devices, since only one independent measured value is used for the correlation instead of three.

Zusätzlich umfasst die Erfindung in einer dritten Ausführungsform die Verwendung eines Gasreservoirs und eines für ein bestimmtes Kalibriergas oder -Gasgemisch kalibrierten mikrothermischen Sensors zur Bestimmung physikalischer Eigenschaften und/oder brenntechnisch relevanter Grössen eines Gases oder Gasgemisches, bzw. ein Verfahren, in dem ein Gasreservoir und ein für ein bestimmtes Kalibriergas oder -Gasgemisch kalibrierter mikrothermischer Sensor zur Bestimmung physikalischer Eigenschaften und/oder brenntechnisch relevanter Grössen eines Gases oder Gasgemisches verwendet werden, wobei das Gas oder Gasgemisch unter Druck aus dem Gasreservoir über den mikrothermischen Sensor fliesst, wobei der mit dem für ein bestimmtes Kalibriergas oder -Gasgemisch kalibrierte mikrothermische Sensor bestimmte Volumenfluss vx·A aufsummiert und mit dem aus dem Gasreservoir ausgeflossenen Gasvolumen verglichen wird, aus dem Vergleich der beiden Volumina ein von physikalischen Eigenschaften des Gases oder Gasgemisches abhängiger Gaseigenschaftsfaktor S / v x

Figure imgb0024
bestimmt wird, in dem v x
Figure imgb0025
die aus dem ausgeflossenen Gasvolumen bestimmte Fliessgeschwindigkeit bezeichnet, und aus dem Gaseigenschaftsfaktor, der zum Beispiel durch S / v x = c p ρ / λ
Figure imgb0026
gegeben sein kann (siehe Gleichung (9)), mittels Korrelation eine gesuchte physikalische Eigenschaft oder brenntechnisch relevante Grösse ermittelt wird.In addition, in a third embodiment, the invention includes the use of a gas reservoir and a microthermal sensor calibrated for a specific calibration gas or gas mixture for determining physical properties and/or combustion-relevant variables of a gas or gas mixture, or a method in which a gas reservoir and a Microthermal sensor calibrated for a specific calibration gas or gas mixture can be used to determine physical properties and / or combustion-relevant variables of a gas or gas mixture, the gas or gas mixture flowing under pressure from the gas reservoir over the microthermal sensor, with the one for a specific Calibration gas or gas mixture calibrated microthermal sensor certain volume flow v S / v x
Figure imgb0024
is determined in which v x
Figure imgb0025
denotes the flow velocity determined from the gas volume that has flowed out, and from the gas property factor, which is determined, for example, by S / v x = c p ρ / λ
Figure imgb0026
can be given (see equation (9)), a desired physical property or combustion-relevant quantity is determined by means of correlation.

Die oben beschriebene dritte Ausführungsform der Erfindung kann auch als eigenständige Erfindung betrachtet werden.The third embodiment of the invention described above can also be viewed as an independent invention.

Fig. 8a zeigt ein Ausführungsbeispiel des schematischen Aufbaus einer Messvorrichtung gemäss der dritten Ausführungsform, welche nicht Teil der Erfindung ist, im Fall, in dem die Gashauptleitung 1 unter Druck steht (Hochdruckvariante). Im Ausführungsbeispiel umfasst die Messvorrichtung eine Auswerteeinheit 11, die zur Ausführung eines Verfahrens gemäss der dritten Ausführungsform der Erfindung eingerichtet ist, ein Gasreservoir 4, das mit einem Drucksensor 8 versehen ist, und einen mikrothermischen Sensor 7 zur Messung des Durchflusses und der Wärmeleitfähigkeit, wobei das Gasreservoir 4 für die Messung mit dem mikrothermischen Sensor 7 verbunden ist. Fig. 8a shows an exemplary embodiment of the schematic structure of a measuring device according to the third embodiment, which is not part of the invention, in the case in which the gas main line 1 is under pressure (high-pressure variant). In the exemplary embodiment, the measuring device comprises an evaluation unit 11, which is set up to carry out a method according to the third embodiment of the invention, a gas reservoir 4, which is provided with a pressure sensor 8, and a microthermal sensor 7 for measuring the flow and thermal conductivity, whereby the Gas reservoir 4 is connected to the microthermal sensor 7 for the measurement.

Bei Bedarf kann die Messvorrichtung zusätzlich eine oder mehrere der folgenden Komponenten enthalten: eine Messleitung 2, die zum Gasreservoir 4 führt, und die im Betrieb mit einer Hauptgasleitung 1 verbunden sein kann, ein Einlassventil 3, das in der Messleitung 2 angeordnet sein kann, um die Gaszufuhr zum Gasreservoir zu steuern, ein Auslassventil 5, das ausgangsseitig des Gasreservoirs angeordnet ist, um den Gasfluss aus dem Gasreservoir zu steuern, einen Auslass 10, um das aus der Messvorrichtung ausfliessende Gas abzuführen, einen zusätzlichen Drucksensor 8', der am Auslass 10 angeordnet sein kann, einen Temperatursensor 9, der im Gasreservoir angeordnet ist, und einen Verdichter 12', der einlassseitig des Gasreservoirs 4 angeordnet sein kann, um den Druck im Gasreservoir zu erhöhen.If necessary, the measuring device can additionally contain one or more of the following components: a measuring line 2, which leads to the gas reservoir 4 leads, and which can be connected during operation to a main gas line 1, an inlet valve 3, which can be arranged in the measuring line 2 to control the gas supply to the gas reservoir, an outlet valve 5, which is arranged on the outlet side of the gas reservoir to control the gas flow from the gas reservoir, an outlet 10 for discharging the gas flowing out of the measuring device, an additional pressure sensor 8 ', which can be arranged at the outlet 10, a temperature sensor 9, which is arranged in the gas reservoir, and a compressor 12', which can be arranged on the inlet side of the gas reservoir 4 in order to increase the pressure in the gas reservoir.

Ein Ausführungsbeispiel des Verfahrens zur Bestimmung physikalischer Eigenschaften und/oder brenntechnisch relevanter Grössen eines Gases und Gasgemisches gemäss der dritten Ausführungsform, welche nicht Teil der Erfindung ist, wird im Folgenden anhand von Fig. 8a beschrieben. In dem Verfahren fliesst das Gas oder Gasgemisch unter Druck aus dem Gasreservoir 4 über den für ein bestimmtes Kalibriergas oder -Gasgemisch kalibrierten mikrothermischen Sensor 7, wobei der Volumenfluss vx ·A aufsummiert und mit dem aus dem Gasreservoir ausgeflossenen Gasvolumen verglichen wird, aus dem Vergleich der beiden Volumina ein von physikalischen Eigenschaften des Gases oder Gasgemisches abhängiger Gaseigenschaftsfaktor S / v x

Figure imgb0027
bestimmt wird, in dem v x
Figure imgb0028
die aus dem ausgeflossenen Gasvolumen bestimmte Fliessgeschwindigkeit bezeichnet, und aus dem Gaseigenschaftsfaktor, der zum Beispiel durch S / v x = c p ρ / λ
Figure imgb0029
gegeben sein kann (siehe Gleichung (9)), mittels Korrelation eine gesuchte physikalische Eigenschaft oder brenntechnisch relevante Grösse ermittelt wird.An exemplary embodiment of the method for determining physical properties and/or combustion-relevant variables of a gas and gas mixture according to the third embodiment, which is not part of the invention, is described below with reference to Fig. 8a described. In the method, the gas or gas mixture flows under pressure from the gas reservoir 4 via the microthermal sensor 7 calibrated for a specific calibration gas or gas mixture, the volume flow v x A being summed up and compared with the gas volume flowing out of the gas reservoir, from the comparison of the two volumes is a gas property factor that depends on the physical properties of the gas or gas mixture S / v x
Figure imgb0027
is determined in which v x
Figure imgb0028
denotes the flow velocity determined from the gas volume that has flowed out, and from the gas property factor, which is determined, for example, by S / v x = c p ρ / λ
Figure imgb0029
can be given (see equation (9)), a desired physical property or combustion-relevant quantity is determined by means of correlation.

In einer vorteilhaften Ausführungsform des Verfahrens wird mit Hilfe des mikrothermischen Sensors 7 zusätzlich die Wärmeleitfähigkeit λ des Gases oder Gasgemisches bestimmt.In an advantageous embodiment of the method, the thermal conductivity λ of the gas or gas mixture is additionally determined with the aid of the microthermal sensor 7.

Vorteilhafterweise werden mit der dritten Ausführungsform, welche nicht Teil der Erfindung ist, Erdgasgemische auf ihre Zugehörigkeit zu den H-Gasen bzw. L-Gasen untersucht (Gase mit hohem (High) bzw. niedrigem (Low) Brennwert), da der Gaseigenschaftsfaktor, der zum Beispiel durch S / v x = c p ρ / λ

Figure imgb0030
gegeben sein kann (siehe Gleichung (9)), dem Kehrwert der Wärmediffusivität des Gasgemisches entspricht, anhand derer zusammen mit der Wärmeleitfähigkeit λ, die mit dem mikrothermischen Sensor separat gemessen werden kann, eine Unterscheidung der H- bzw. L-Gasgruppe möglich wird.Advantageously, with the third embodiment, which is not part of the invention, natural gas mixtures are examined to determine whether they belong to the H gases or L gases (gases with a high (high) or low (low) calorific value), since the gas property factor for example through S / v x = c p ρ / λ
Figure imgb0030
can be given (see equation (9)), the reciprocal of the heat diffusivity of Gas mixture corresponds, which, together with the thermal conductivity λ , which can be measured separately with the microthermal sensor, makes it possible to distinguish between the H and L gas groups.

Die Klassenzugehörigkeit eines Erdgasgemisches zur H- bzw. L-Gas Gruppe kann beispielsweise bestimmt werden, indem der Gaseigenschaftsfaktor ( S / v x

Figure imgb0031
) mit dem Kehrwert der Wärmediffusivität cp·ρ/λ identifiziert wird, und indem bei gegebener Wärmeleitfähigkeit die Zuteilung anhand eines Grenzwerts für die Wärmediffusivität erfolgt, oberhalb dessen ein Gasgemisch als L-Gas und unterhalb dessen als H-Gas klassifiziert wird.The class affiliation of a natural gas mixture to the H or L gas group can be determined, for example, by using the gas property factor ( S / v x
Figure imgb0031
) is identified with the reciprocal of the heat diffusivity c p ·ρ / λ , and in that, for a given thermal conductivity, the allocation is made based on a limit value for the heat diffusivity, above which a gas mixture is classified as L gas and below which as H gas.

In einer Ausführungsvariante des Verfahrens wird somit mit Hilfe des mikrothermischen Sensors 7 zusätzlich die Wärmeleitfähigkeit λ des Gases oder Gasgemisches bestimmt und zusammen mit dem Gaseigenschaftsfaktors S / v x = c p ρ / λ

Figure imgb0032
eine Einteilung des gemessenen Gases in H- beziehungsweise L-Gas vorgenommen.In one embodiment variant of the method, the thermal conductivity λ of the gas or gas mixture is additionally determined with the help of the microthermal sensor 7 and together with the gas property factor S / v x = c p ρ / λ
Figure imgb0032
the measured gas is divided into H or L gas.

Weitere vorteilhafte Ausführungsformen und -varianten des Verfahrens finden sich in vorangehenden Abschnitten der Beschreibung. Die nachstehende Beschreibung enthält zusätzliche Einzelheiten zum Verfahren, die bei Bedarf verwendet werden können.Further advantageous embodiments and variants of the method can be found in previous sections of the description. The description below provides additional details about the procedure that can be used if necessary.

Vorteilhafterweise werden zuerst das Einlassventil 3 und Auslassventil 5 geöffnet, um das zu messende Gas oder Gasgemisch aus der Gashauptleitung 1 über die Messleitung 2 durch die Messvorrichtung fliessen zu lassen, womit sichergegangen werden kann, dass sich in der Messvorrichtung kein Fremdgas der letzten Messung mehr befindet. Das Einlassventil und Auslassventil können über eine Steuereinheit geöffnet werden. Fallweise kann auch die Auswerteeinheit 11, wie in Fig. 8a gezeigt, die Steuerung des Einlassventils und Auslassventils übernehmen. Dann wird das Auslassventil 5 geschlossen und das Gasreservoir 4, dessen Volumeninhalt V bekannt ist, füllt sich, bis das Einlassventil 3 geschlossen wird. Druck p und Temperatur T im Gasreservoir können mit dem Drucksensor 8 bzw. Temperatursensor 9 gemessen werden, sodass jederzeit auf das Normvolumen Vnorm des sich im Gasreservoir 4 befindlichen Gases oder Gasgemisches geschlossen werden kann. V norm = p 1013.25 mbar 273.15 K T V .

Figure imgb0033
Advantageously, the inlet valve 3 and outlet valve 5 are first opened in order to allow the gas or gas mixture to be measured to flow from the main gas line 1 via the measuring line 2 through the measuring device, which can ensure that there is no longer any foreign gas from the last measurement in the measuring device . The inlet valve and outlet valve can be opened via a control unit. In some cases, the evaluation unit 11 can also be used, as in Fig. 8a shown, take over control of the inlet valve and exhaust valve. Then the outlet valve 5 is closed and the gas reservoir 4, whose volume V is known, fills until the inlet valve 3 is closed. Pressure p and temperature T in the gas reservoir can be measured with the pressure sensor 8 and temperature sensor 9, respectively, so that at any time the standard volume V norm of the gas or gas mixture located in the gas reservoir 4 can be concluded. v standard = p 1013.25 mbar 273.15 K T v .
Figure imgb0033

Nun kann das Auslassventil 5 wieder geöffnet werden. Vorzugsweise ist der Druck p im Gasreservoir 4 um soviel höher als der Druck nach dem Gasreservoir, dass die Zeitspanne, in der das Gas aus dem Gasreservoir 4 über den mikrothermischen Sensor 7 fliesst, lange genug ist, um den Volumenfluss vx·A genügend genau aufsummieren zu können. Jetzt wird das Auslassventil 5 wieder geschlossen, womit die Durchflussmessung beendet ist. Der Drucksensor 8 ist vorzugsweise als Differenzdrucksensor gegenüber dem Auslass 10 der Messvorrichtung ausgelegt. Es ist jedoch auch möglich, einen zusätzlichen Drucksensor 8' am Auslass vorzusehen.Now the outlet valve 5 can be opened again. Preferably, the pressure p in the gas reservoir 4 is so much higher than the pressure downstream of the gas reservoir that the time period in which the gas flows from the gas reservoir 4 via the microthermal sensor 7 is long enough to measure the volume flow v x A with sufficient accuracy to be able to add up. Now the outlet valve 5 is closed again, which ends the flow measurement. The pressure sensor 8 is preferably designed as a differential pressure sensor relative to the outlet 10 of the measuring device. However, it is also possible to provide an additional pressure sensor 8' at the outlet.

Während der Durchflussmessung sind mit dem mikrothermischen Sensor 7 Durchflussdaten gemessen und von der Auswerteeinheit 11 aufgezeichnet worden, um den Faktor S in Gleichung (9) zu bestimmen. Da Ein- und Auslassventil nach der Durchflussmessung geschlossen sind, fliesst kein Gas mehr über den mikrothermischen Sensor 7. Jetzt kann die Messung der Wärmeleitfähigkeitsmessung λ erfolgen. Wiederum von der Auswerteeinheit aufgezeichnet, wird die Wärmeleitfähigkeit λ mit Hilfe der Lösung von Gleichung (12) bestimmt.During the flow measurement, flow data was measured with the microthermal sensor 7 and recorded by the evaluation unit 11 in order to determine the factor S in equation (9). Since the inlet and outlet valves are closed after the flow measurement, gas no longer flows through the microthermal sensor 7. The thermal conductivity measurement λ can now be measured. Again recorded by the evaluation unit, the thermal conductivity λ is determined using the solution to equation (12).

Mit diesen Daten wird in der Auswerteeinheit 11 der Volumenfluss zum Volumen Vsum aufsummiert und mit dem aus dem Gasreservoir ausgeflossenen Gasvolumen Vdiff verglichen. Aus dem Vergleich der beiden Volumina kann nun ein von physikalischen Eigenschaften des Gases oder Gasgemisches abhängiger Gaseigenschaftsfaktor S / v x

Figure imgb0034
bestimmt wird, in dem v x
Figure imgb0035
die aus dem ausgeflossenen Gasvolumen bestimmte Fliessgeschwindigkeit bezeichnet. Zweckmässigerweise werden die Volumina für den Vergleich mittels Gleichung (17) auf Normbedingungen umgerechnet, so dass v x
Figure imgb0036
durch v x = v x V diff norm / V sum norm
Figure imgb0037
gegeben ist mit dem auf Normbedingungen umgerechneten, ausgeflossenen Gasvolumen V diff norm
Figure imgb0038
und dem auf Normbedingungen umgerechneten, aufsummierten Volumen V sum norm
Figure imgb0039
. Danach, je nach gewünschter, brenntechnisch relevanter Grösse Q, erfolgt nun in der Auswerteeinheit 11 deren Berechnung anhand der Gleichung (15) mit zuvor ermittelter Korrelationsfunktion Q corr = ƒ corr S / v x
Figure imgb0040
oder der Wert von S / v x
Figure imgb0041
wird dazu benutzt, um zusammen mit der Wärmeleitfähigkeit λ ein Erdgasgemisch der Kategorie H-bzw. L-Gas zuzuordnen.With this data, the volume flow is added up to the volume V sum in the evaluation unit 11 and compared with the gas volume V diff flowing out of the gas reservoir. By comparing the two volumes, a gas property factor that depends on the physical properties of the gas or gas mixture can now be derived S / v x
Figure imgb0034
is determined in which v x
Figure imgb0035
denotes the flow velocity determined from the gas volume that has flowed out. The volumes for the comparison are expediently converted to standard conditions using equation (17), so that v x
Figure imgb0036
through v x = v x v diff standard / v sum standard
Figure imgb0037
is given by the outflowed gas volume converted to standard conditions v diff standard
Figure imgb0038
and the summed volume converted to standard conditions v sum standard
Figure imgb0039
. Then, depending on the desired, combustion-relevant quantity Q, its calculation is carried out in the evaluation unit 11 using equation (15) with a previously determined correlation function Q corr = ƒ corr S / v x
Figure imgb0040
or the value of S / v x
Figure imgb0041
is used, together with the thermal conductivity λ, to create a natural gas mixture of the H or assigned to L-gas.

Bei Bedarf kann zudem, wie in Fig. 8b gezeigt, ein Verdichter 12' vorgesehen sein, der beispielsweise einlassseitig des Gasreservoirs 4 angeordnet ist, um den Druck im Gasreservoir zu erhöhen.If necessary, you can also, as in Fig. 8b shown, a compressor 12 'may be provided, which is arranged, for example, on the inlet side of the gas reservoir 4 in order to increase the pressure in the gas reservoir.

Fig. 9 zeigt ein zweites Ausführungsbeispiel des schematischen Aufbaus einer Messvorrichtung gemäss der dritten Ausführungsform, welche nicht Teil der Erfindung ist, in dem mit einem Unterdruck im Gasreservoir gearbeitet wird. Diese sogenannte Niederdruckvariante ist zum Beispiel vorteilhaft bei der Gasversorgung an Endkunden. Im zweiten Ausführungsbeispiel umfasst die Messvorrichtung zusätzlich zum Gasreservoir 4 einen Drucksensor 8, mit dem das Gasreservoir versehen ist, eine Auswerteeinheit 11, die zur Ausführung eines Verfahrens gemäss der dritten Ausführungsform, welche nicht Teil der Erfindung ist, eingerichtet ist und einen mikrothermischen Sensor 7 zur Messung des Durchflusses und der Wärmeleitfähigkeit, wobei das Gasreservoir 4 für die Messung mit dem mikrothermischen Sensor 7 verbunden ist. Fig. 9 shows a second exemplary embodiment of the schematic structure of a measuring device according to the third embodiment, which is not part of the invention, in which a negative pressure is used in the gas reservoir. This so-called low-pressure variant is advantageous, for example, when supplying gas to end customers. In the second exemplary embodiment, the measuring device comprises, in addition to the gas reservoir 4, a pressure sensor 8 with which the gas reservoir is provided, an evaluation unit 11 which is set up to carry out a method according to the third embodiment, which is not part of the invention, and a microthermal sensor 7 for Measurement of the flow and thermal conductivity, the gas reservoir 4 being connected to the microthermal sensor 7 for the measurement.

Bei Bedarf kann die Messvorrichtung zusätzlich eine oder mehrere der folgenden Komponenten enthalten: eine Vakuumpumpe 12, die mit dem Gasreservoir 4 verbunden ist, um einen Unterdruck im Gasreservoir zu erzeugen, eine Messleitung 2, die zum Gasreservoir 4 führt, und die im Betrieb mit einer Hauptgasleitung 1 verbunden sein kann, ein Einlassventil 3, das in der Messleitung 2 angeordnet sein kann, um die Gaszufuhr zum Gasreservoir zu steuern, ein Auslassventil 5, das ausgangsseitig des Gasreservoirs angeordnet ist, um den Gasfluss aus dem Gasreservoir zu steuern, einen Auslass 10, um das aus der Messvorrichtung ausfliessende Gas abzuführen, einen zusätzlichen Drucksensor 8', der in der Messleitung 2 oder Gashauptleitung angeordnet sein kann, und einen Temperatursensor 9, der im Gasreservoir 4 angeordnet ist.If necessary, the measuring device can additionally contain one or more of the following components: a vacuum pump 12, which is connected to the gas reservoir 4 in order to generate a negative pressure in the gas reservoir, a measuring line 2, which leads to the gas reservoir 4, and which, in operation, with a Main gas line 1 can be connected, an inlet valve 3, which can be arranged in the measuring line 2 in order to control the gas supply to the gas reservoir, an outlet valve 5, which is arranged on the outlet side of the gas reservoir in order to control the gas flow from the gas reservoir control, an outlet 10 to remove the gas flowing out of the measuring device, an additional pressure sensor 8 ', which can be arranged in the measuring line 2 or gas main line, and a temperature sensor 9, which is arranged in the gas reservoir 4.

Ein weiteres Ausführungsbeispiel des Verfahrens zur Bestimmung physikalischer Eigenschaften und/oder brenntechnisch relevanter Grössen eines Gases und Gasgemisches gemäss der dritten, welche nicht Teil der Erfindung ist, wird im Folgenden anhand von Fig. 9 beschrieben. In diesem Ausführungsbeispiel fliesst das Gas oder Gasgemisch unter einem Druck, der typisch soviel höher als der Druck nach dem Gasreservoir ist, dass die Zeitspanne, in der das Gas aus dem Gasreservoir 4 über den mikrothermischen Sensor 7 fliesst, lange genug ist, um den Volumenfluss vx·A genügend genau aufsummieren zu können. Der aufsummierte Volumenfluss Vsum wird mit dem aus dem Gasreservoir ausgeflossenen Gasvolumen Vdiff verglichen, aus dem Vergleich der beiden Volumina ein von physikalischen Eigenschaften des Gases oder Gasgemisches abhängiger Gaseigenschaftsfaktor S / v x

Figure imgb0042
bestimmt, in dem v x
Figure imgb0043
die aus dem ausgeflossenen Gasvolumen bestimmte Fliessgeschwindigkeit bezeichnet, und aus dem Gaseigenschaftsfaktor, der zum Beispiel durch S / v x = c p ρ / λ
Figure imgb0044
gegeben sein kann (siehe Gleichung (9)), mittels Korrelation eine gesuchte physikalische Eigenschaft oder brenntechnisch relevante Grösse ermittelt.A further exemplary embodiment of the method for determining physical properties and/or combustion-relevant variables of a gas and gas mixture according to the third, which is not part of the invention, is described below with reference to Fig. 9 described. In this exemplary embodiment, the gas or gas mixture flows under a pressure that is typically so much higher than the pressure after the gas reservoir that the period of time in which the gas flows from the gas reservoir 4 over the microthermal sensor 7 is long enough to maintain the volume flow v x ·A to be able to sum up with sufficient precision. The summed volume flow V sum is compared with the gas volume V diff that flowed out of the gas reservoir, and from the comparison of the two volumes a gas property factor is derived that is dependent on the physical properties of the gas or gas mixture S / v x
Figure imgb0042
determined in which v x
Figure imgb0043
denotes the flow velocity determined from the gas volume that has flowed out, and from the gas property factor, which is determined, for example, by S / v x = c p ρ / λ
Figure imgb0044
can be given (see equation (9)), a desired physical property or combustion-relevant variable is determined by means of correlation.

In einer vorteilhaften Ausführungsform des Verfahrens wird mit Hilfe des mikrothermischen Sensors 7 die Wärmeleitfähigkeit λ des Gases oder Gasgemisches bestimmt und beispielsweise zusammen mit dem Gaseigenschaftsfaktors S / v x = c p ρ / λ

Figure imgb0045
eine Einteilung des gemessenen Gases in H- beziehungsweise L-Gas vorgenommen.In an advantageous embodiment of the method, the thermal conductivity λ of the gas or gas mixture is determined with the help of the microthermal sensor 7 and, for example, together with the gas property factor S / v x = c p ρ / λ
Figure imgb0045
the measured gas is divided into H or L gas.

Für weitere vorteilhafte Ausführungsformen und -varianten des Verfahrens und für Einzelheiten zum Verfahren, die bei Bedarf verwendet werden können, wird auf die vorangehenden Abschnitte der Beschreibung verwiesen, wobei gegebenenfalls der Begriff "Druckabfall" durch "Druckzunahme" ersetzt werden muss.For further advantageous embodiments and variants of the method and for details of the method that can be used if necessary, reference is made to the previous sections of the description, whereby the term "pressure drop" must be replaced by "pressure increase" if necessary.

Fig. 10 zeigt eine Darstellung, wie anhand bekannter Wärmeleitfähigkeiten λ (x-Achse) und Wärmediffusivitäten λ/(cpρ), auch Temperaturleitfähigkeiten genannt, (y-Achse) eine Unterscheidung in H- bzw. L-Gas getroffen werden kann. L-Gase oberhalb der H-/L-Gas Trennlinie (H-/L-Gas Separation Line) haben typischerweise höhere Wärmediffusivitäten als H-Gase bei gleicher Wärmeleitfähigkeit unterhalb der Trennlinie (doppelter Pfeil bei x ≈1.024). Da der Gaseigenschaftsfaktor S / v x = c p ρ / λ

Figure imgb0046
im Wesentlichen der Kehrwert der Wärmediffusivität des Gasgemisches ist, kann demnach mit zusätzlich gemessener Wärmeleitfähigkeit λ die Unterscheidung H- bzw. L-Gas getroffen werden. Alle Werte sind bei Normbedingungen (0°C, 1013.25 mbar) gezeigt. Als Referenzgas wurde ein typisches H-Erdgas verwendet (gestrichelte Linie bei der Koordinate (1.00,1.00). Fig. 10 shows a representation of how a distinction can be made between H and L gas based on known thermal conductivities λ (x-axis) and thermal diffusivities λ/(c p ρ), also called thermal conductivities, (y-axis). L gases above the H/L gas separation line typically have higher heat diffusivities than H gases with the same thermal conductivity below the separation line (double arrow at x ≈1.024). Since the gas property factor S / v x = c p ρ / λ
Figure imgb0046
is essentially the reciprocal of the heat diffusivity of the gas mixture, the distinction between H and L gas can be made with additionally measured thermal conductivity λ. All values are shown under standard conditions (0°C, 1013.25 mbar). A typical H natural gas was used as the reference gas (dashed line at the coordinate (1.00,1.00).

Die oben stehend beschriebene Messvorrichtung zur Bestimmung physikalischer Eigenschaften und/oder brenntechnisch relevanter Grössen eines Gases und Gasgemisches ist einer neuen Kategorie zuzuteilen, nämlich "Wärmeleitfähigkeits- und Durchflussmessung mit Hilfe eines mikrothermischen Sensors, Aufsummieren der Durchflusswerte und Vergleich mit einem Volumenausfluss aus einem Referenzvolumen. Zuteilung der Erdgase zur H-Gas bzw. L-Gas Gruppe ". Die verwendeten Komponenten sind kostengünstig, wodurch neue Märkte erschlossen werden können, in denen heute aus Kostengründen keine Gasqualitätssensoren eingesetzt werden. Von der Genauigkeit her sind nur wenig Einbussen gegenüber teureren, kommerziell erhältlichen Geräten zu erwarten, da hier anstatt drei noch zwei voneinander unabhängige Messwerte für die Korrelation verwendet werden.The measuring device described above for determining physical properties and/or combustion-relevant variables of a gas and gas mixture is to be assigned to a new category, namely "thermal conductivity and flow measurement using a microthermal sensor, adding up the flow values and comparing them with a volume outflow from a reference volume. Allocation of natural gases to the H-Gas or L-Gas group. The components used are inexpensive, which makes it possible to open up new markets in which gas quality sensors are not currently used due to cost reasons. In terms of accuracy, little loss is to be expected compared to more expensive, commercially available devices, since two independent measured values are used for the correlation instead of three.

Claims (7)

  1. Use of a gas reservoir (4) and a critical nozzle (6) for determining physical properties and/or combustion-relevant quantities of a gas or gas mixture, wherein:
    - the gas or gas mixture flows under pressure from the gas reservoir (4) through the critical nozzle (6);
    - the pressure drop in the gas reservoir (4) is measured as a function of time;
    - a gas property factor (Γ*) dependent on physical properties of the gas or gas mixture is determined from the measured values of the pressure drop, which is derived from a time constant of the pressure drop, wherein an exponential drop of the measured pressure is assumed; and
    - a desired physical property or combustion-relevant quantity is determined from the gas property factor (Γ*) by means of correlation.
  2. A method according to claim 1, in which the percentage of the one component is determined in a binary gas mixture, wherein the variable to be correlated corresponds either to the composition percentage of the one component (x%) and/or to any other physical property of the binary gas mixture.
  3. The method according to any one of the preceding claims, in which binary gas mixtures are analyzed for their content of the two components forming the gas mixture, wherein the gas property factor (Γ*) is intrinsically a continuous function of the gas content (x% or 1-x%), and with knowledge of the gas content (x% or 1-x%), physical properties and/or combustion-relevant quantities of the binary gas mixture are subsequently determined from sets of tables or by means of corresponding calculation programs.
  4. The method according to any one of the preceding claims, wherein the desired physical property is the density or the thermal conductivity or the heat capacity or the viscosity of the gas or gas mixture, and/or wherein the combustion-relevant quantity is the energy content or the calorific value or the Wobbe index or the methane number or the air requirement of the gas or gas mixture.
  5. The method according to any one of the preceding claims, wherein the desired physical property or combustion-relevant quantity (Q) is determined by means of a correlation function Qcorr = a + Γ* + c · - Γ*2 + d · Γ*3, wherein a, b, c, and d are constants.
  6. A measuring device for determining physical properties and/or combustion-relevant quantities of a gas or gas mixture, having an evaluation unit (11) which is equipped for carrying out a method according to any one of the claims 1 to 5, and having a critical nozzle (6) and a gas reservoir (4) which is provided with a pressure sensor (8), wherein the gas reservoir is connected to the critical nozzle for the measurement.
  7. The measuring device according to claim 6 additionally comprising a compressor (12') to increase the pressure in the gas reservoir or a vacuum pump (12) which is connected to the gas reservoir (4) to generate a negative pressure in the gas reservoir.
EP17000682.9A 2013-05-24 2014-05-20 Method and measuring device for determining physical gas properties Active EP3273237B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP13002708 2013-05-24
EP14001767.4A EP2806271B1 (en) 2013-05-24 2014-05-20 Method and measuring device for determining physical gas properties

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
EP14001767.4A Division EP2806271B1 (en) 2013-05-24 2014-05-20 Method and measuring device for determining physical gas properties

Publications (2)

Publication Number Publication Date
EP3273237A1 EP3273237A1 (en) 2018-01-24
EP3273237B1 true EP3273237B1 (en) 2023-11-29

Family

ID=48536667

Family Applications (2)

Application Number Title Priority Date Filing Date
EP14001767.4A Active EP2806271B1 (en) 2013-05-24 2014-05-20 Method and measuring device for determining physical gas properties
EP17000682.9A Active EP3273237B1 (en) 2013-05-24 2014-05-20 Method and measuring device for determining physical gas properties

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP14001767.4A Active EP2806271B1 (en) 2013-05-24 2014-05-20 Method and measuring device for determining physical gas properties

Country Status (5)

Country Link
US (3) US9612229B2 (en)
EP (2) EP2806271B1 (en)
CN (2) CN109946195B (en)
ES (1) ES2626074T3 (en)
HK (1) HK1201922A1 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6100771B2 (en) * 2011-07-13 2017-03-22 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Gas detector
RU2690099C2 (en) 2014-11-14 2019-05-30 Мемс Аг Method and measuring device for determining specific parameters for gas properties
US9874467B2 (en) * 2015-02-23 2018-01-23 Aceinna, Inc. MEMS thermal flow sensor with compensation for fluid composition
EP3265791B1 (en) 2015-03-05 2019-01-16 Sensirion AG Determination of fluid parameters
EP3153854B1 (en) * 2015-10-05 2021-03-31 Sensirion AG Determination of volumetric flow rate of a gas in a gas flow
DE102015117468A1 (en) 2015-10-14 2017-04-20 Endress+Hauser Flowtec Ag A method for determining properties of a hydrocarbon-containing gas mixture and apparatus therefor
EP3182118B1 (en) 2015-12-19 2019-03-06 Mems Ag Method and measuring device for determining gas properties using correlation
JP2017187450A (en) * 2016-04-08 2017-10-12 株式会社デンソー Heat flux meter and abnormality diagnosis device
WO2017204779A1 (en) * 2016-05-23 2017-11-30 Siemens Energy, Inc. Gas turbine having fuel gas monitoring system
DE102016220023B4 (en) 2016-10-13 2022-11-10 Vitesco Technologies GmbH Method and device for diagnosing a gas quality sensor for a gas-powered internal combustion engine
DE102016014151A1 (en) * 2016-11-25 2018-05-30 Diehl Metering Gmbh Method for determining a calorific value and / or a Wobbe index of a gas mixture
KR102250967B1 (en) * 2017-03-28 2021-05-12 가부시키가이샤 후지킨 Pressure type flow control device and flow control method
DE102017106904A1 (en) * 2017-03-30 2018-10-04 Endress+Hauser Flowtec Ag Method for determining the methane number of a hydrocarbon-containing fuel gas mixture
WO2018185008A1 (en) * 2017-04-07 2018-10-11 Continental Automotive Gmbh Method for ascertaining a property of a fluid and sensor device for this purpose
EP3421947B1 (en) 2017-06-30 2019-08-07 Sensirion AG Operation method for flow sensor device
JP7253551B2 (en) * 2017-08-14 2023-04-06 ハーン-シッカート-ゲゼルシャフト フュア アンゲヴァンテ フォアシュング アインゲトラーゲナー フェライン Gas sensor for determining exhaled CO2 concentration in breathing air
EP3502687B1 (en) * 2017-12-20 2022-06-29 Sensirion AG Determination of gas parameters
EP3521816A1 (en) * 2018-02-06 2019-08-07 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method for in-situ monitoring of the quality of gas delivered to a consuming industrial site using the thermal conductivity technique
CN109884118B (en) * 2019-04-02 2023-08-29 中国工程物理研究院化工材料研究所 Explosion-proof automatic testing system and method based on heating method
EP3812753B1 (en) 2019-10-24 2023-11-29 Sensirion AG Determination of gas-specific parameters from heat transfer in the temperature jump regime

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2389129A1 (en) * 1977-04-26 1978-11-24 Elf Aquitaine METHOD AND DEVICE FOR MEASURING THE SPECIFIC HEAT RATIO AT CONSTANT PRESSURE AND VOLUME FOR A REAL FLUID
DE2928739C2 (en) * 1979-07-17 1981-03-19 Ruhrgas Ag, 4300 Essen Method and device for combustion-free measurement and / or control of the amount of heat supplied to gas consumption devices
US4527418A (en) * 1984-02-09 1985-07-09 Honeywell Inc. Method of measuring specific gravity and apparatus utilizing the same
CN86211096U (en) * 1986-12-31 1987-11-07 梁嘉麟 Pressure-difference type measuring equipment of flow resistance of tube
EP0612405B1 (en) * 1991-10-23 2001-08-01 Honeywell Inc. Apparatus for combustionless measuring fuel gas quality
US5323657A (en) * 1991-11-04 1994-06-28 Badger Meter, Inc. Volumetric flow corrector and method
US5307668A (en) * 1992-10-05 1994-05-03 Badger Meter, Inc. Gas density meter and method
NL1003973C2 (en) * 1996-09-06 1998-03-09 Berkin Bv Method for instantaneous identification of a gas or liquid flow and device for carrying out the method.
FR2765966B1 (en) * 1997-07-09 1999-08-20 Gaz De France METHOD AND DEVICE FOR DETERMINING THE DENSITY OF A GAS
AU737737B2 (en) 1998-01-16 2001-08-30 Lattice Intellectual Property Limited Method and apparatus for measuring the calorific value of a gas
WO2002040992A1 (en) * 2000-11-15 2002-05-23 Lattice Intellectual Property Ltd. Determination of effective composition of a mixture of hydrocarbon gases
EP1265068A1 (en) * 2001-06-05 2002-12-11 Abb Research Ltd. Method and apparatus for the determination of changes in the calorific value of a gas mixture
JP3655569B2 (en) * 2001-09-06 2005-06-02 大陽日酸株式会社 Gas component concentration measuring method and apparatus
US7104112B2 (en) * 2002-09-27 2006-09-12 Honeywell International Inc. Phased micro analyzer IV
EP1411355A1 (en) 2002-10-18 2004-04-21 Emerson Electric Co. Method and device for determining a characteristic value that is representative of the condition of a gas
US7536908B2 (en) * 2004-03-11 2009-05-26 Siargo, Ltd. Micromachined thermal mass flow sensors and insertion type flow meters and manufacture methods
EP1707940A1 (en) * 2005-03-31 2006-10-04 Ecole Polytechnique Fédérale de Lausanne (EPFL) Gas viscosity sensor
US7523641B2 (en) * 2006-10-11 2009-04-28 Juon Co., Ltd. Method to measure exhaust-gas components
DE102007030700A1 (en) * 2007-06-30 2009-05-07 Endress + Hauser Flowtec Ag Measuring system for a medium flowing in a process line
ATE463740T1 (en) 2007-07-07 2010-04-15 Mems Ag METHOD AND SENSOR FOR DETERMINING A COMBUSTION-RELEVANT SIZE OF A GAS MIXTURE
US20090013759A1 (en) * 2007-07-13 2009-01-15 General Electric Company Wobbe index sensor system
US7871826B2 (en) 2007-09-26 2011-01-18 Air Products And Chemicals, Inc. Method for determining carbon content of a hydrocarbon-containing mixture
GB2454202B (en) * 2007-10-31 2011-03-23 Anubiz Bvba Method for determining the heating value of a hydrocarbon fuel and apparatus for the same
CN101539480B (en) * 2009-04-30 2011-05-11 哈尔滨工业大学 One-dimensional evaluation method of combustion efficiency for scramjet engine
EP2366448B1 (en) * 2010-03-16 2016-07-27 Amminex Emissions Technology A/S Method and device for controlled dosing of a gas with fluctuating supply pressure
CN101907427B (en) * 2010-07-15 2015-06-24 西安近代化学研究所 Device for testing transfiguration burning rate of gun propellant
JP5136868B2 (en) * 2010-08-18 2013-02-06 横河電機株式会社 Thermal conductivity detector and gas chromatograph using the same
US8281578B2 (en) * 2011-03-24 2012-10-09 Ford Global Technologies, Llc Method for correcting an estimate of NH3 stored within a selective catalyst reduction system
EP2574918B1 (en) * 2011-09-28 2014-12-10 Mems Ag Microthermal method and sensor for determining physical gas properties
KR101222874B1 (en) * 2012-06-26 2013-01-16 주식회사가스로드 Fuel tank charge measure system by pressure and volume
RU2690099C2 (en) * 2014-11-14 2019-05-30 Мемс Аг Method and measuring device for determining specific parameters for gas properties

Also Published As

Publication number Publication date
US20170176405A1 (en) 2017-06-22
CN104181074B (en) 2019-02-19
CN104181074A (en) 2014-12-03
EP2806271B1 (en) 2017-04-26
US10816525B2 (en) 2020-10-27
EP3273237A1 (en) 2018-01-24
EP2806271A1 (en) 2014-11-26
HK1201922A1 (en) 2015-09-11
US9612229B2 (en) 2017-04-04
ES2626074T3 (en) 2017-07-21
US20170261480A1 (en) 2017-09-14
CN109946195B (en) 2022-06-07
CN109946195A (en) 2019-06-28
US20140345363A1 (en) 2014-11-27

Similar Documents

Publication Publication Date Title
EP3273237B1 (en) Method and measuring device for determining physical gas properties
EP2015056B1 (en) Method and sensor for determining a significant value in combustibility terms of a gas mixture
EP3021117B1 (en) Method and measuring device for the determination of specific values for the constitution of gas
EP2574918B1 (en) Microthermal method and sensor for determining physical gas properties
DE2928739C2 (en) Method and device for combustion-free measurement and / or control of the amount of heat supplied to gas consumption devices
EP2932205B1 (en) Thermal flow meter and method for determining and/or monitoring a flow rate of a medium
WO2007063114A2 (en) Device for determining and/or monitoring the mass flow rate of a gaseous medium
EP2562541A1 (en) High precision detection of the volume proportion of a component in a multicomponent fluid
DE102011120899A1 (en) Apparatus and method for determining the mass flow of a fluid
EP0453444A1 (en) Process for measuring the control cross-sectional area of a nozzle.
DE3044219A1 (en) Fluid flow vol. measuring appts. - has measured value generator with elastically deformable measuring member with elongation measuring strip(s)
EP3602040B1 (en) Method for determining the methane index of a hydrocarbon-containing combustion gas mixture
WO2018095563A1 (en) Method for determining the calorific value and/or wobbe-index of a gas mixture
DE102012001573A1 (en) Method for measuring a flow rate of a flowing gas
EP2848934B1 (en) Method and sensor for determining fuel characteristics of gas mixtures
DE102010000755B4 (en) Arrangement for measuring the viscosity of a uniformly tempered liquid
DE112018000081B4 (en) FLOW METER
DE10331698B4 (en) Apparatus and method for determining the flow of vapor or gaseous substances through a pipeline
DE2933224A1 (en) METHOD AND DEVICE FOR DETERMINING THE RELATIONSHIP BETWEEN A GAS OR A GAS MIXTURE AND THE VAPOR OF A VOLATILE ANESTHETIC LIQUID, AND DEVICE FOR IMPLEMENTING THIS METHOD AND PREFERREDLY INTO-USE
DE2704048A1 (en) DEVICE FOR REGULATING AND MEASURING THE QUANTITY OF A GAS FLOWING IN A LINE
DE2346178A1 (en) METHOD AND DEVICE FOR ELECTRONIC MEASUREMENT OF THE CURRENT FLOW RATE OF THE SUCTION AIR IN A CARBURETTOR
EP3513178B1 (en) Gas meter
DE102009029169A1 (en) Thermal flow sensor for determining flow rate of flowing fluid medium, has regulation-evaluation unit producing output signal based on digital voltage signal derived from analog voltage value, where output signal indicates medium flow rate
EP1686355A1 (en) Method and system for monitoring the flow of multiphase mixtures
DE102015113999A1 (en) Measuring body, flow measuring system and computer program for it

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AC Divisional application: reference to earlier application

Ref document number: 2806271

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180718

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20191023

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230623

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AC Divisional application: reference to earlier application

Ref document number: 2806271

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20231030

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014016734

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231129