EP3264863A1 - Verfahren zur spannungsversorgung von verbrauchern - Google Patents

Verfahren zur spannungsversorgung von verbrauchern Download PDF

Info

Publication number
EP3264863A1
EP3264863A1 EP17175189.4A EP17175189A EP3264863A1 EP 3264863 A1 EP3264863 A1 EP 3264863A1 EP 17175189 A EP17175189 A EP 17175189A EP 3264863 A1 EP3264863 A1 EP 3264863A1
Authority
EP
European Patent Office
Prior art keywords
switching element
voltage
switching
consumers
volts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP17175189.4A
Other languages
English (en)
French (fr)
Other versions
EP3264863B1 (de
Inventor
Marc Fink
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Frensch GmbH
Original Assignee
Frensch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Frensch GmbH filed Critical Frensch GmbH
Publication of EP3264863A1 publication Critical patent/EP3264863A1/de
Application granted granted Critical
Publication of EP3264863B1 publication Critical patent/EP3264863B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]

Definitions

  • the invention relates to a method for supplying power to at least two identical consumers, in particular LEDs or LED arrays, in vehicles with a vehicle electrical system voltage of 12, 24 or 42 volts, comprising at least one input switching element, which is supplied with a supply voltage (U0) and a Switching element controls and a circuit for carrying out the method.
  • Bulbs in the home or office are normally charged with 230 volts mains voltage.
  • low-voltage lamps for example 12-volt halogen lamps, they are generally applied via a transformer with a low output voltage.
  • LED spotlights can be connected directly to the mains voltage of 230 volts, for example via a converter.
  • the vehicles usually have a vehicle electrical system voltage of 12 or 24 volts DC. In individual cases, higher vehicle voltages of up to 42 volts may be present.
  • the vehicle area here includes power, passenger transport and water vehicles.
  • LED's or LED array require, for example, 12 or 24 volts supply voltage. For this reason, in most cases it is necessary to use a voltage regulator to regulate the voltage down to the desired value and apply this voltage to the LED's or LED arrays.
  • the vehicles are used with different vehicle electrical system voltages, there is the need to use a voltage regulator for each individual voltage, with appropriate storage and administrative costs. In addition, losses occur in each analog circuit, which should be avoided if possible.
  • the invention therefore has the object of demonstrating a method and a circuit which enables the lowest possible power losses and can be used for different voltage ranges.
  • the input switching element in the form of a Schmitt trigger depending on the level of the input voltage (U0) controls the switching element to transfer the load from a series circuit in a parallel circuit or vice versa, with a first switching point at 11 to 16 volts and a second switching point at 20 to 30 volts. Further advantageous embodiments of the method can be found in the dependent claims.
  • the method provides that a supply voltage in the nominal voltage range is made available for at least two identical consumers, for example LEDs or LED arrays, with the aid of an input switching element which is connected on the input side to the supply voltage via a voltage divider, a switching element being driven optionally controls the admission of the LED's or LED arrays with the required supply voltage.
  • the input switching element in the form of a Schmitt trigger controls an activation or deactivation of the switching element as a function of the level of the input voltage, which in turn converts the loads from a series connection into a parallel circuit or vice versa.
  • the particular advantage of the present method is that using the method electrical consumers, such as LED lights with different vehicle voltages from 12 to 42 volts can be operated, where otherwise several circuit variants for the power supply of consumers must be produced and stored.
  • electrical consumers such as LED lights with different vehicle voltages from 12 to 42 volts
  • the power loss is minimized in all applications and enables a voltage supply to the consumer over a low voltage range of 12 volts to 42 volts.
  • the input switching element in the form of a Schmitt trigger serves the purpose of determining the voltage of the vehicle electrical system voltage and, depending on the vehicle electrical system voltage of 12 volts, 24 volts or optionally 42 volts to cause the closing of the switching contacts.
  • the switching contacts themselves may consist of purely mechanical switches, or electronic switches, such as transistors, field effect transistors (MOSFETs), etc., are used.
  • the method provides in this case that at a supply voltage of 11 to 16 volts, the switching element is driven to close the two contacts, while at a supply voltage of 20 to 30 volts, the switching element is driven to open the two contacts.
  • the supply voltage is applied to the input switching element via a voltage divider to determine the switching point.
  • a voltage divider On the output side of the input switching element is a direct or indirect control of the switching element, which performs a switch between series connection and parallel connection for the consumer.
  • a first consumer or a first group of consumers is connected to the positive pole of the supply voltage on the one hand and on the other hand via a diode to a second consumer or a second group of consumers.
  • the second group of consumers is also connected to the negative terminal.
  • the consumers are in this case in series, so that the current from the positive pole on the first consumer and the diode and the second consumer can flow to the negative terminal. Due to the series connection, an almost identical voltage is present at almost identical consumers at both consumers or consumer groups, so that, for example, with a supply of 24 volts, each consumer is only supplied with 12 volts.
  • the method therefore provides for this purpose that the switchover from a series connection to a parallel connection takes place with the aid of the switching element with at least one first and second switching contact.
  • the consumers or Consumer groups directly to the supply voltage, for example, a vehicle electrical system voltage of 12 volts and are connected in parallel.
  • a first switching contact is connected directly to the positive pole and is guided on the output side to the cathode of the diode.
  • the second switching contact is on the one hand connected to the negative terminal and on the other hand connected to the anode of the diode, so that the current flows from the positive pole through the first consumer via the second switching contact directly to the negative terminal, while the first switching contact is connected to the positive pole and the current over this the second consumer flows to the negative pole.
  • the method provides in this case that an adaptation to the respective vehicle electrical system voltage by means of the input switching element and the driven switching element takes place in order to carry out the switching of the consumers described above.
  • the input switching element in the form of a Schmitt trigger controls the switching element as a function of the level of the input voltage in order to supply the loads from a series connection in to transfer a parallel connection or vice versa.
  • the vehicle electrical system voltage is determined and carried out depending on the vehicle electrical system voltage of 12 volts, 24 volts or optionally 42 volts closing the switch contacts.
  • the switching points of the Schmitt trigger are on the one hand at 11 to 16 volts, for example, to close the two contacts, while a second switching point at a supply voltage of 20 to 30 volts, for example, to open the two contacts.
  • the supply voltage is applied via a voltage divider to the input of the input switching element, which controls the downstream switching element via its output.
  • the switching point for the voltage ranges U1 or U2 and U1 plus U2 is set.
  • a Schmitt trigger is used as the input switching element, which has an inverted output for the output signal. If a voltage in the input voltage range of U1 or U2 is available, the output is set to a positive logic signal "1", while at a Ein Trentstap U1 plus U2 a negative logic signal "0" is present.
  • switching element is either a mechanical two-pole switch in question or an electronic switch, which are used in both cases for switching from the series connection for parallel connection.
  • mechanical switches they can either be configured bipolar or consist of two individual simultaneously controlled switches.
  • the anode of the diode is connected to a first switching contact of a two-pole switching element, the first switching contact is connected on the output side to the negative terminal and the cathode of the diode with a second switching contact of a two-pole switching element is connected, wherein the second switching contact is connected on the input side to the positive pole.
  • the operating voltage can be applied to the first and second consumers or the first and second load groups when the switch contacts are closed, so that the current of the first consumer group can flow to the negative pole via the second switch contact, while the second consumer group is connected to current via the first switch contact is supplied, which can flow from the positive terminal via the switching contact through the second consumer to the negative terminal.
  • the circuit is used for lamps of vehicles, which have a vehicle electrical system voltage of 12 or 24 volts or higher.
  • the particular advantage of the present circuit and of the disclosed method is that a single circuit can be used to take into account a plurality of on-board voltages of vehicles that are used to load LED's or LED arrays.
  • the consumers are connected directly to the plus and minus poles, if necessary, so that several consumers are connected in parallel, while at a higher vehicle electrical system voltage consumers are connected in series and thus in consequence of the voltage division at each consumer or each Consumer group only half the rated voltage is applied.
  • This circuit thus a costly storage is avoided and also created the possibility that when changing the vehicle electrical system voltage, the same circuit can be used.
  • a particular advantage arises from a much lower power dissipation, as they arise, for example, in analog circuits with different vehicle electrical system voltages.
  • FIG. 1 shows a first embodiment of a circuit which is equipped with conventional switch contacts.
  • the inventive circuit comprises a Schmitt trigger 1 and a first switching contact 2 and a second switching contact 3.
  • the Schmitt trigger 1 is acted on the input side via a voltage divider 4, 5 and is designed as an inventing Schmitt trigger 1 to the two mechanical switching contacts. 2 , 3 so that they are either open or closed.
  • the mechanical switching contacts 2, 3 are further connected to the consumers 6, 7, and indeed the first consumer 6 is connected to a first input directly to the supply voltage U +, while the output of the consumer 6 via a diode 8 to the second consumer. 7 is connected, which in turn is connected to its second output to the supply voltage U-.
  • the cathode of the diode 8 is connected to the output of the first switching contact 2, while the anode is connected to the second switching contact 3.
  • the first switching contact 2 is in this case connected to U +, while the second switching contact 3 is connected to U-.
  • the switching contacts 2, 3 remain open.
  • the two consumers 6, 7 are connected in series to the input voltage U 0 .
  • the current flows from U + through the first load 6 via the diode 8 to the second load 7 to U-.
  • the rated voltage of the two consumers 6, 7 U 0 can thus reach a value which corresponds to twice the rated voltage.
  • LEDs or LED arrays are used, which are usually applied with 12 volts.
  • each consumer 6, 7 would only be charged with 6 volts when the switching contacts 2, 3 were open.
  • the intended LED's or LED arrays using the Schmitt trigger 1 falls below a preset voltage level by the voltage divider 4, 5, a closing of the switching contacts 2, 3.
  • the current flows through the second consumer 7 of U + starting via the first switching contact 2 directly to the consumer 7 and from there to U-.
  • the current for the first consumer 6 also flows from U +, starting from the consumer 6 via the second switching contact 3 to U-.
  • the output of the inverting Schmitt trigger 1 at output "1" is when the voltage is in the input voltage range of U1 and U2, respectively, and "0" if the voltage has the higher input voltage range on U1 plus U2.
  • a first switch point is in this case at 11 to 16 volts and a second switching point at 20 to 30 volts to make the control of the switching element of a switch from a series connection in a parallel circuit and vice versa.
  • FIG. 2 shows a further embodiment of a circuit, which also starts from a supply voltage U 0 , wherein the Schmitt trigger 10 via a voltage divider 11, 12 is applied to the input side. Also in this case, it is an inverted Schmitt trigger 10, which is provided for driving three transistors 13, 14, 15.
  • the transistors 14, 15 are used analogously to the mechanical switching contacts according to the first embodiment and in turn serve to convert the connected loads 16, 17 of a series circuit in a parallel circuit.
  • the loads are designed as LED arrays, with a diode 18 again being arranged between the two loads 16, 17, as in the preceding example.
  • the two transistors 14, 15 are in this case driven once by a series resistor 19 directly from the inverting Schmitt trigger 10 and once via a series resistor 20 and a first transistor 13 and a further voltage divider 21, 22nd
  • the second embodiment by means of electronic switches in the form of transistors 13, 14, 15 fulfills the same purpose as the first circuit example, namely the switching of the adjacent loads 16, 17 from a series circuit to a parallel circuit, so taking into account the applied voltage at the respective loads 16, 17 in turn either in the series circuit half the supply voltage U 0 is present or in the parallel circuit the entire supply voltage U 0th
  • a first switching point is at 11 to 16 volts and a second switching point at 20 to 30 volts to make a switch from a series circuit to a parallel circuit and vice versa.
  • the particular advantage of the two embodiments is that in an existing vehicle electrical system voltage in the automotive sector on the different circumstances can be taken and switching the consumers using the Schmitt trigger, so on the one hand a series circuit and on the other hand, a parallel circuit is present, so either at lower Vehicle electrical system voltage, the supply voltage is applied directly to each consumer or at a higher supply voltage, the load can be applied in an identical design approximately half the supply voltage of the vehicle electrical system voltage.
  • a parallel circuit is present, so either at lower Vehicle electrical system voltage, the supply voltage is applied directly to each consumer or at a higher supply voltage, the load can be applied in an identical design approximately half the supply voltage of the vehicle electrical system voltage.

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Spannungsversorgung zumindest zweier identischer Verbraucher 6, 7, insbesondere LED's oder LED-Arrays, in Fahrzeugen mit einer Bordnetzspannung von 12 oder 24 Volt, umfassend zumindest ein Eingangsschaltelement, welches mit einer Versorgungsspannung U 0 beaufschlagt wird und ein Schaltelement ansteuert. Um die Möglichkeit zu schaffen, Verbraucher 6, 7 in Form von LED's oder LED-Arrays im Fahrzeugbereich mit unterschiedlichen Bordnetzspannungen einzusetzen wird ein Verfahren in der Art vorgeschlagen, dass ein Eingangsschaltelement in Abhängigkeit der Höhe der Eingangsspannung ein Schaltelement aktiviert, um die Verbraucher 6, 7 von einer Serienschaltung in eine Parallelschaltung zu überführen oder umgekehrt. Das Eingangsschaltelement liegt hierbei über einen Spannungsteiler 4, 5 an der Versorgungsspannung U 0 und kann somit in Abhängigkeit des Spannungswertes über ein logisches Ausgangssignal ein Schaltelement aktivieren oder deaktivieren, um die Serien- oder Parallelschaltung zu verändern. Ein erster Schaltpunkt liegt hierbei bei 11 bis 16 Volt und ein zweiter Schaltpunkt bei 20 bis 30 Volt.

Description

  • Die Erfindung betrifft ein Verfahren zur Spannungsversorgung zumindest zweier identischer Verbraucher, insbesondere LED's oder LED-Arrays, in Fahrzeugen mit einer Bordnetzspannung von 12, 24 oder 42 Volt, umfassend zumindest ein Eingangs-schaltelement, welches mit einer Versorgungsspannung (U0) beaufschlagt wird und ein Schaltelement ansteuert sowie eine Schaltung zur Durchführung des Verfahrens.
  • Leuchtmittel im Haushalt oder Büro werden im Normalfall mit 230 Volt Netzspannung beaufschlagt. Soweit es sich um Niedervolt-Leuchtmittel handelt, beispielsweise 12 Volt Halogenstrahler werden diese in der Regel über einen Transformer mit niedriger Ausgangsspannung beaufschlagt. LED-Strahler können beispielsweise über einen Konverter unmittelbar an die Netzspannung von 230 Volt angeschlossen werden.
  • Soweit die Leuchtmittel für den Fahrzeugbereich eingesetzt werden sollen, besitzen die Fahrzeuge in der Regel eine Bordnetzspannung von 12 oder 24 Volt Gleichspannung. In Einzelfällen können auch höhere Bordnetzspannungen von bis zu 42 Volt vorhanden sein. Der Fahrzeugbereich umfasst hierbei Kraft-, Personenbeförderungs- und Wasserfahrzeuge. LED's oder LED-Array benötigen beispielsweise 12 oder 24 Volt Versorgungsspannung. Aus diesem Grund ist es in den meisten Fällen erforderlich, mithilfe eines Spannungsreglers die Spannung auf den gewünschten Wert herunter zu regeln und mit dieser Spannung die LED's beziehungsweise LED-Arrays zu beaufschlagen. Soweit die Fahrzeuge mit unterschiedlichen Bordnetzspannungen eingesetzt werden, besteht die Notwendigkeit, einen Spannungsregler für jede Einzelspannung einzusetzen, mit entsprechender Lagerhalterung und Verwaltungsaufwand. Darüber hinaus entstehen bei jeder analogen Schaltung Verluste, die nach Möglichkeit vermieden werden sollten.
  • Aus den vorgenannten Gründen liegt der Erfindung daher die Aufgabe zugrunde, ein Verfahren und eine Schaltung aufzuzeigen, welche geringstmögliche Verlustleistungen ermöglicht und für unterschiedliche Spannungsbereiche einsetzbar ist.
  • Erfindungsgemäß ist zur Lösung der Aufgabe vorgesehen, dass das Eingangsschaltelement in Form eines Schmitt-Triggers in Abhängigkeit der Höhe der Eingangsspannung (U0) das Schaltelement ansteuert, um die Verbraucher von einer Serienschaltung in eine Parallelschaltung zu überführen oder umgekehrt, wobei ein erster Schaltpunkt bei 11 bis 16 Volt und ein zweiter Schaltpunkt bei 20 bis 30 Volt liegt. Weitere vorteilhafte Ausgestaltungen des Verfahrens sind den Unteransprüchen zu entnehmen.
  • Das Verfahren sieht erfindungsgemäß vor, dass für zumindest zwei identische Verbraucher, beispielsweise LED's oder LED-Arrays eine Versorgungsspannung im Nennspannungsbereich zur Verfügung gestellt wird, wobei mithilfe eines Eingangsschaltelementes, welches eingangsseitig über einen Spannungsteiler mit der Versorgungsspannung verbunden ist, ein Schaltelement angesteuert wird, welches wahlweise die Beaufschlagung der LED's oder LED-Arrays mit der erforderlichen Versorgungsspannung regelt. Das Eingangsschaltelement in Form eines Schmitt-Triggers regelt hierbei in Abhängigkeit der Höhe der Eingangsspannung eine Aktivierung oder Deaktivierung des Schaltelementes, welches wiederum die Verbraucher von einer Serienschaltung in eine Parallelschaltung überführt oder umgekehrt. Mit diesem Verfahren können zwei identische Verbraucher mit und ohne Stromregelung unter Berücksichtigung der anliegenden Eingangsspannung, das heißt der Bordnetzspannung in serie oder parallel geschaltet werden. Im Fall der Serienschaltung zweier identischer Verbraucher liegt an jedem Verbraucher die halbe Bordnetzspannung an, beispielsweise 12 Volt bei einer Bordnetzspannung von 24 Volt. Soweit eine Bordnetzspannung von nur 12 Volt zur Verfügung steht, werden die Verbraucher hingegen parallel geschaltet, sodass jeder Verbraucher mit der Nennspannung von 12 Volt betrieben werden kann. Die Umschaltung zwischen Serien- und Parallelschaltung erfolgt durch Ansteuerung des Schaltelementes, welches mechanisch oder elektronisch aufgebaut sein kann. Auf diese Weise können die Verlustleistungen einer herkömmlichen Analogschaltung über den gesamten Spannungsbereich deutlich reduziert werden. Die bevorzugte Anwendung des Verfahrens ist im Fahrzeugbereich zu sehen, und zwar sowohl bei Straßenfahrzeugen, wie Busse, LKW's oder dergleichen und ebenso bei Wasserfahrzeugen, welche ebenfalls über eine eigene Bordnetzspannung mit niedrigem Spannungspegel verfügen. Der besondere Vorteil des vorliegenden Verfahrens liegt darin, dass mithilfe des Verfahrens elektrische Verbraucher, wie zum Beispiels LED-Leuchten mit unterschiedlichen Fahrzeugspannungen von 12 bis zu 42 Volt betrieben werden können, wo sonst mehrere Schaltungsvarianten für die Spannungsversorgung der Verbraucher produziert und bevorratet werden müssen. Darüber hinaus besteht die Möglichkeit, das Verfahren auch bei gleichgerichteter Wechselspannung, zum Beispiel im Niederspannungsbereich zur Verbesserung der Effizienz einzusetzen. Hierbei wird in sämtlichen Anwendungsfällen die Verlustleistung minimiert und eine Spannungsversorgung der Verbraucher über einen Niederspannungsbereich von 12 Volt bis 42 Volt ermöglicht.
  • Das Eingangsschaltelement in Form eines Schmitt-Triggers dient hierbei dem Zweck, die Spannung der Bordnetzspannung zu ermitteln und in Abhängigkeit der Bordnetzspannung von 12 Volt, 24 Volt oder gegebenenfalls 42 Volt das Schließen der Schaltkontakte zu bewirken. Die Schaltkontakte selbst können aus rein mechanischen Schaltern bestehen, oder es werden elektronische Schalter, wie beispielsweise Transisten, Feldeffekttransistoren (MosFet) etc. verwendet. Das Verfahren sieht hierbei vor, dass bei einer Versorgungsspannung von 11 bis 16 Volt das Schaltelement zum Schließen der beiden Kontakte angesteuert wird, während bei einer Versorgungsspannung von 20 bis 30 Volt das Schaltelement zum Öffnen der beiden Kontakte angesteuert wird.
  • Um die Umschaltung zwischen einer Serien- und Parallelschaltung vorzunehmen, liegt die Versorgungsspannung über einen Spannungsteiler an dem Eingangsschaltelement an, um den Schaltpunkt zu ermitteln. Ausgangsseitig des Eingangsschaltelementes erfolgt eine direkte oder indirekte Ansteuerung des Schaltelementes, welches eine Umschaltung zwischen Serienschaltung und Parallelschaltung für die Verbraucher vornimmt.
  • Zu diesem Zweck ist ein erster Verbraucher oder eine erste Gruppe von Verbrauchern mit dem Pluspol der Versorgungsspannung einerseits verbunden und andererseits über eine Diode mit einem zweiten Verbraucher oder einer zweiten Gruppe von Verbrauchern. Die zweite Gruppe von Verbrauchern ist ferner mit dem Minuspol verbunden. Die Verbraucher liegen in diesem Fall in Serie, sodass der Strom vom Pluspol über die ersten Verbraucher und die Diode sowie den zweiten Verbrauchern zum Minuspol fließen kann. Durch die Serienschaltung liegt hierbei bei nahezu identischen Verbrauchern an beiden Verbrauchern beziehungsweise Verbrauchergruppen eine fast identische Spannung an, sodass beispielsweise bei einer Versorgung mit 24 Volt jeder Verbraucher nur mit 12 Volt beaufschlagt wird. Soweit ein Netz von 42 Volt zur Verfügung steht, würde in diesem Fall eine Versorgungsspannung von ca. 21 Volt an den Verbrauchern anliegen, wobei diese entweder für 12 Volt oder 24 Volt konzipiert sein können. Im Normalfall wird somit die Spannung auf diese Weise auf den halben Wert herabgesetzt, um Verbraucher zu beaufschlagen, die für eine deutlich geringere Betriebsspannung vorgesehen sind.
  • Soweit eine niedrigere Bordnetzspannung zur Verfügung steht, wäre bei einer Halbierung dieser Spannung die Beaufschlagung der Verbraucher bei einer Serienschaltung nicht ausreichend. Das Verfahren sieht daher zu diesem Zweck vor, dass mithilfe des Schaltelementes mit zumindest einem ersten und zweiten Schaltkontakt die Umschaltung von einer Serienschaltung zu einer Parallelschaltung erfolgt. In diesem Fall liegen die Verbraucher beziehungsweise Verbrauchergruppen direkt an der Versorgungsspannung an, beispielsweise einer Bordnetzspannung von 12 Volt und sind parallel geschaltet. Zu diesem Zweck ist ein erster Schaltkontakt unmittelbar mit dem Pluspol verbunden und wird ausgangsseitig zur Kathode der Diode geführt. Der zweite Schaltkontakt ist einerseits mit dem Minuspol verbunden und andererseits mit der Anode der Diode verbunden, sodass der Strom vom Pluspol durch den Erstverbraucher über den zweiten Schaltkontakt unmittelbar zum Minuspol fließt, während der erste Schaltkontakt mit dem Pluspol verbunden ist und über diesen der Strom über den zweiten Verbraucher zum Minuspol fließt. Es handelt sich somit um eine klassische Parallelschaltung, die somit zum Einsatz kommt, wenn die Bordnetzspannung beispielsweise 12 Volt beträgt und die Verbraucher direkt mit der Bordnetzspannung beaufschlagt werden können. Das Verfahren sieht hierbei vor, dass eine Adaption an die jeweilige Bordnetzspannung mithilfe des Eingangsschaltelementes und des angesteuerten Schaltelementes erfolgt, um die zuvor beschriebene Umschaltung der Verbraucher vorzunehmen.
  • Zusammenfassend kann somit festgestellt werden, dass bei der Serienschaltung zweier Verbraucher oder Verbrauchergruppen eine doppelt so hohe Bordnetzspannung wie die Nennspannung der Verbraucher vorhanden sein darf, während demgegenüber bei einer niedrigen Bordnetzspannung von 12 Volt Verbraucher aufgrund der Parallelschaltung unmittelbar mit der Bordnetzspannung versorgt werden können.
  • Zur Anwendung des Verfahrens wird eine Schaltung zur Spannungsversorgung von zumindest zwei identischen Verbrauchern, insbesondere LED's oder LED-Arrays, in Fahrzeugen mit einer Bordnetzspannung von 12, 24 oder 42 Volt vorgeschlagen, wobei die Schaltung zumindest ein Eingangsschaltelement, welches mit einer Versorgungsspannung verbunden ist und ein Schaltelement zur Ansteuerung der Verbraucher aufweist. Das Eingangsschaltelement in Form eines Schmitt-Triggers steuert hierbei in Abhängigkeit der Höhe der Eingangsspannung das Schaltelement, um die Verbraucher von einer Serienschaltung in eine Parallelschaltung zu überführen oder umgekehrt. Über den Schmitt-Trigger wird hierbei die Bordnetzspannung ermittelt und in Abhängigkeit der Bordnetzspannung von 12 Volt, 24 Volt oder gegebenenfalls 42 Volt das Schließen der Schaltkontakte vorgenommen. Die Schaltpunkte des Schmitt-Triggers liegen einerseits bei 11 bis 16 Volt, beispielsweise zum Schließen der beiden Kontakte, während ein zweiter Schaltpunkt bei einer Versorgungsspannung von 20 bis 30 Volt liegt, um beispielsweise das Öffnen der beiden Kontakte vorzunehmen.
  • Zu diesem Zweck liegt die Versorgungsspannung über einen Spannungsteiler an dem Eingang des Eingangsschaltelementes an, welches über seinen Ausgang das nachgeschaltete Schaltelement ansteuert. Hierbei wird der Umschaltpunkt für die Spannungsbereiche U1 beziehungsweise U2 und U1 plus U2 festgelegt. Zu diesem Zweck wird als Eingangsschaltelement ein Schmitt-Trigger eingesetzt, welcher einen invertierten Ausgang für das Ausgangssignal aufweist. Steht eine Spannung im Eingangsspannungsbereich von U1 beziehungsweise U2 zur Verfügung, wird der Ausgang auf ein positives logisches Signal "1" gesetzt, während bei einer Einigungsspannung U1 plus U2 ein negatives logisches Signal "0" anliegt.
  • Als Schaltelement kommt entweder ein mechanischer zweipoliger Schalter in Frage oder ein elektronischer Schalter, welche in beiden Fällen für die Umschaltung von der Serienschaltung zur Parallelschaltung verwendet werden. Soweit es sich um mechanische Schalter handeln kann, können diese entweder zweipolig ausgestaltet sein oder aus zwei einzelnen gleichzeitig angesteuerten Schaltern bestehen.
  • Um den Schaltvorgang zu ermöglichen ist hierzu vorgesehen, dass die Anode der Diode mit einem ersten Schaltkontakt eines zweipoligen Schaltelementes verbunden ist, wobei der erste Schaltkontakt ausgangsseitig mit dem Minuspol verbunden ist und die Kathode der Diode mit einem zweiten Schaltkontakt eines zweipoligen Schaltelementes verbunden ist, wobei der zweite Schaltkontakt eingangsseitig mit dem Pluspol verbunden ist. Auf diese Weise kann beim Schließen der Schaltkontakte der erste und zweite Verbraucher beziehungsweise die ersten und zweiten Verbrauchergruppen mit der Betriebsspannung beaufschlagt werden, sodass der Strom der ersten Verbrauchergruppe über den zweiten Schaltkontakt zum Minuspol fließen kann, während über dem ersten Schaltkontakt die zweite Verbrauchergruppe mit Strom versorgt wird, welcher vom Pluspol über den Schaltkontakt durch den zweiten Verbraucher zum Minuspol fließen kann.
  • Vorzugsweise wird die Schaltung für Leuchtmittel von Fahrzeugen eingesetzt, welche über eine Bordnetzspannung von 12 beziehungsweise 24 Volt oder höher verfügen.
  • Der besondere Vorteil der vorliegenden Schaltung und des aufgezeigten Verfahrens besteht darin, dass mithilfe einer einzigen Schaltung mehrere Bordnetzspannungen von Fahrzeugen berücksichtigt werden können, die zur Beaufschlagung von LED's oder LED-Arrays eingesetzt werden. Zu diesem Zweck werden die Verbraucher bei einer niedrigeren Bordnetzspannung im Bedarfsfall unmittelbar mit dem Plus- und Minuspol verbunden, sodass mehrere Verbraucher parallel geschaltet sind, während bei einer höheren Bordnetzspannung die Verbraucher in Serie geschaltet werden und damit in Folge der Spannungsteilung an jedem Verbraucher oder jeder Verbrauchergruppe nur die halbe Nennspannung anliegt. Durch diese Schaltung wird somit eine aufwendige Lagerhaltung vermieden und ebenso die Möglichkeit geschaffen, dass beim Ändern der Bordnetzspannung die gleiche Schaltung weiter verwendet werden kann. Ein besonderer Vorteil entsteht hierbei durch eine wesentlich geringere Verlustleistung, wie sie beispielsweise bei analogen Schaltungen bei verschiedenen Bordnetzspannungen entstehen.
  • Die Erfindung wird im Weiteren anhand zweier Ausführungsbeispiele nochmals erläutert.
  • Es zeigt
  • Fig. 1
    einen Schaltplan einer ersten Ausführungsform mit zwei mechanischen Schaltkontakten und
    Fig. 2
    einen Schaltplan einer zweiten Ausführungsform mit Transistoren als Schaltelemente.
  • Figur 1 zeigt ein erstes Ausführungsbeispiel einer Schaltung, die mit herkömmlichen Schaltkontakten ausgestattet ist. Die erfindungsgemäße Schaltung umfasst einen Schmitt-Trigger 1 sowie einen ersten Schaltkontakt 2 und einen zweiten Schaltkontakt 3. Der Schmitt-Trigger 1 wird eingangsseitig über einen Spannungsteiler 4, 5 beaufschlagt und ist als inventierender Schmitt-Trigger 1 ausgestaltet, um die beiden mechanischen Schaltkontakte 2, 3 anzusteuern, sodass diese entweder geöffnet oder geschlossen sind. Die mechanischen Schaltkontakte 2, 3 sind im weiteren mit den Verbrauchern 6, 7 verbunden, und zwar liegt der erste Verbraucher 6 mit einem ersten Eingang unmittelbar an der Versorgungsspannung U+ an, während der Ausgang der Verbrauchers 6 über eine Diode 8 mit dem zweiten Verbraucher 7 verbunden ist, welcher wiederum mit seinem zweiten Ausgang mit der Versorgungsspannung U- verbunden ist. Die Kathode der Diode 8 ist mit dem Ausgang des ersten Schaltkontaktes 2 verbunden, während die Anode mit dem zweiten Schaltkontakt 3 verbunden ist. Der erste Schaltkontakt 2 ist hierbei mit U+ verbunden, während der zweite Schaltkontakt 3 mit U- verbunden ist.
  • Sofern die Eingangsspannung U0 den Spannungsbereich von U1 plus U2 nicht unterschreitet, bleiben die Schaltkontakte 2, 3 geöffnet. Somit liegen die beiden Verbraucher 6, 7 in Serie an der Eingangsspannung U0 an. Soweit die beiden Verbraucher 6, 7 nahezu identisch sind, liegt somit bei jedem Verbraucher 6, 7 die Hälfte der Versorgungsspannung U1 und U2 an. Der Strom fließt in diesem Fall von U+ durch den ersten Verbraucher 6 über die Diode 8 zum zweiten Verbraucher 7 zu U-. Unter Berücksichtigung der Nennspannung der beiden Verbraucher 6, 7 kann somit U0 einen Wert erreichen, der der doppelten Nennspannung entspricht. Als Verbraucher 6, 7 werden beispielsweise LED's oder LED-Arrays eingesetzt, die in der Regel mit 12 Volt beaufschlagt werden. Somit kann bei einer Spannung U0 von 24 Volt eine Halbierung der Versorgungsspannung durch die Serienschaltung auf die Nennspannung der Verbraucher reduziert werden.
  • Sollte hingegen die anliegende Spannung U0 nur bei etwa 12 Volt liegen, würde demzufolge bei geöffneten Schaltkontakten 2, 3 jeder Verbraucher 6, 7 nur mit 6 Volt Spannung beaufschlagt. Um den Betrieb der Verbraucher 6, 7, insbesondere der vorgesehenen LED's oder LED-Arrays zu gewährleisten erfolgt mithilfe des Schmitt-Triggers 1 beim Unterschreiten eines voreingestellten Spannungspegels durch den Spannungsteiler 4, 5 ein Schließen der Schaltkontakte 2, 3. Durch das Schließen wird die bisher vorliegende Serienschaltung der beiden Verbraucher 6, 7 in eine Parallelschaltung überführt. In diesem Fall fließt der Strom durch den zweiten Verbraucher 7 von U+ ausgehend über den ersten Schaltkontakt 2 direkt zum Verbraucher 7 und von dort zu U-. Der Strom für den ersten Verbraucher 6 fließt ebenfalls von U+ ausgehend durch den Verbraucher 6 über den zweiten Schaltkontakt 3 zu U-. Somit liegen die beiden Verbraucher 6, 7 parallel, sodass beide mit der anliegenden Spannung U0 = 12 Volt beaufschlagt werden.
  • Durch die Umschaltung mithilfe des Schmitt-Triggers 1 kann somit in Abhängigkeit der anliegenden Versorgungsspannung U0 mit derselben Schaltung eine Beaufschlagung der beiden Verbraucher 6, 7 sowohl bei 12 Volt als auch bei 24 Volt erfolgen. Zu diesem Zweck ist der Ausgang des invertierenden Schmitt-Triggers 1 am Ausgang "1" wenn die Spannung im Eingangsspannungsbereich von U1 beziehungsweise U2 liegt und "0", wenn die Spannung den höheren Eingangsspannungsbereich on U1 plus U2 aufweist.
  • Ein erster Schalterpunkt liegt hierbei bei 11 bis 16 Volt und ein zweiter Schaltpunkt bei 20 bis 30 Volt, um die Ansteuerung des Schaltelementes einer Umschaltung von einer Serienschaltung in einer Parallelschaltung und umgekehrt vorzunehmen.
  • Figur 2 zeigt ein weiteres Ausführungsbeispiel für eine Schaltung, die ebenfalls von einer Versorgungsspannung U0 ausgeht, wobei der Schmitt-Trigger 10 über einen Spannungsteiler 11, 12 eingangsseitig beaufschlagt wird. Auch in diesem Fall handelt es sich um einen invertierten Schmitt-Trigger 10, welcher zur Ansteuerung dreier Transistoren 13, 14, 15 vorgesehen ist. Die Transistoren 14, 15 werden analog zu den mechanischen Schaltkontakten gemäß dem ersten Ausführungsbeispiel eingesetzt und dienen wiederum dazu, die angeschlossenen Verbraucher 16, 17 von einer Serienschaltung in einer Parallelschaltung zu überführen. Im gezeigten Ausführungsbeispiel sind die Verbraucher als LED-Arrays ausgebildet, wobei wiederum zwischen beiden Verbrauchern 16, 17 eine Diode 18, wie im vorhergehenden Beispiel angeordnet ist.
  • Im nicht leitenden Zustand der beiden Transistoren 14, 15 liegt eine Serienschaltung der beiden Verbraucher 16, 17 vor, sodass die anliegende Spannung U0 einen Strom generiert, welcher von U+ über den ersten Verbraucher 16 und die Diode 18 zum zweiten Verbraucher 17 und von diesem zu U- fließt. Soweit die beiden Transistoren 14, 15 an ihrer Basis beaufschlagt werden, wird der leitende Zustand erreicht, sodass der Strom für den zweiten Verbraucher 17 über den ersten Transistor 15 von U+ nach U- fließen kann, während der Strom für den ersten Verbraucher 16 von U+ über den Verbraucher und den zweiten Transistor 14 nach U- fließt.
  • Die beiden Transistoren 14, 15 werden hierbei einmal über einen Vorwiderstand 19 unmittelbar von dem invertierenden Schmitt-Trigger 10 angesteuert und einmal über einen Vorwiderstand 20 und einem ersten Transistor 13 sowie einem weiteren Spannungsteiler 21, 22.
  • Das zweite Ausführungsbeispiel mithilfe von elektronischen Schaltern in Form von Transistoren 13, 14 ,15 erfüllt hierbei den gleichen Zweck, wie das erste Schaltungsbeispiel, und zwar die Umschaltung der anliegenden Verbraucher 16, 17 von einer Serienschaltung in eine Parallelschaltung, sodass unter Berücksichtigung der anliegenden Spannung an den jeweiligen Verbrauchern 16, 17 wiederum entweder in der Serienschaltung die halbe Versorgungsspannung U0 anliegt oder in der Parallelschaltung die gesamte Versorgungsspannung U0. Wie bei dem ersten Ausführungsbeispiel liegt einer erster Schaltpunkt bei 11 bis 16 Volt und einer zweiter Schaltpunkt bei 20 bis 30 Volt, um eine Umschaltung von einer Serienschaltung in eine Parallelschaltung und umgekehrt vorzunehmen.
  • Der besondere Vorteil der beiden Ausführungsbeispiele liegt darin, dass bei einer vorhandenen Bordnetzspannung im Kraftfahrzeugbereich auf die unterschiedlichen Gegebenheiten Rücksicht genommen werde kann und mithilfe des Schmitt-Triggers eine Umschaltung der Verbraucher erfolgt, sodass einerseits eine Serienschaltung und andererseits eine Parallelschaltung vorliegt, sodass entweder bei niedriger Bordnetzspannung die Versorgungsspannung unmittelbar an jedem Verbraucher anliegt oder bei einer höheren Versorgungsspannung die Verbraucher bei identischer Ausführung annähernd mit der halben Versorgungsspannung der Bordnetzspannung beaufschlagt werden können. Durch diese Maßnahme wird erreicht, dass ein und dieselbe Schaltung für unterschiedliche Bordnetzspannungen eingesetzt werden kann und damit eine Lagerhaltung deutlich reduziert werden kann. Darüber hinaus wird die Verlustleistung gegenüber analogen Schaltungen deutlich reduziert, weil eventuelle Spannungsabfälle über Vorwiderstände etc. vermieden werden können.
  • Bezugszeichenliste
  • 1
    Schmitt-Trigger
    2
    Schaltkontakt
    3
    Schaltkontakt
    4
    Spannungsteiler
    5
    Spannungsteiler
    6
    Verbraucher
    7
    Verbraucher
    8
    Diode
    10
    Schmitt-Trigger
    11
    Spannungsteiler
    12
    Spannungsteiler
    13
    Transistor
    14
    Transistor
    15
    Transistor
    16
    Verbraucher
    17
    Verbraucher
    18
    Diode
    19
    Vorwiderstand
    20
    Vorwiderstand
    21
    Spannungsteiler
    22
    Spannungsteiler

Claims (15)

  1. Verfahren zur Spannungsversorgung zumindest zweier identischer Verbraucher (6, 7, 16, 17), insbesondere LED's oder LED-Arrays, in Fahrzeugen mit einer Bordnetzspannung von 12, 24 oder 42 Volt, umfassend zumindest ein Eingangsschaltelement, welches mit einer Versorgungsspannung (U0) beaufschlagt wird und ein Schaltelement ansteuert,
    dadurch gekennzeichnet,
    dass das Eingangsschaltelement in Form eines Schmitt-Triggers in Abhängigkeit der Höhe der Eingangsspannung (U0) das Schaltelement ansteuert, um die Verbraucher (6, 7, 16, 17) von einer Serienschaltung in eine Parallelschaltung zu überführen oder umgekehrt, wobei ein erster Schaltpunkt bei 11 bis 16 Volt und ein zweiter Schaltpunkt bei 20 bis 30 Volt liegt.
  2. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet,
    dass die Versorgungsspannung (U0) über einen Spannungsteiler (4, 5, 21 ,22) an dem Eingangsschaltelement anliegt.
  3. Verfahren nach Anspruch 1 oder 2,
    dadurch gekennzeichnet,
    dass ein erster Verbraucher (6, 7, 16, 17) oder eine erste Gruppe von Verbrauchern (6, 7, 16, 17) mit dem Pluspol der Versorgungsspannung (U0) einerseits verbunden ist und andererseits über eine Diode (8, 18) mit einem zweiten Verbraucher (6, 7, 16, 17) oder einer zweiten Gruppe von Verbrauchern (6, 7, 16, 17) verbunden ist, welche ferner mit dem Minuspol verbunden sind.
  4. Verfahren nach einem der Ansprüche 1, 2 oder 3,
    dadurch gekennzeichnet,
    dass ein Wechsel von der Parallelschaltung zur Serienschaltung und umgekehrt über ansteuerbare Schaltkontakte (2, 3), insbesondere zwei Schaltkontakte (2, 3) erfolgt.
  5. Verfahren nach einem der Ansprüche 1 bis 4,
    dadurch gekennzeichnet,
    dass beim Schließen der ersten und zweiten Schaltkontakte (2, 3) die ersten und zweiten Verbraucher (6, 7, 16, 17) beziehungsweise Verbrauchergruppen (6, 7, 16, 17) direkt an der Versorgungsspannung (U0) anliegen und parallel geschaltet werden.
  6. Verfahren nach einem der Ansprüche 1 bis 5,
    dadurch gekennzeichnet,
    dass beim Öffnen der ersten und zweiten Schaltkontakte (2, 3) die ersten und zweiten Verbraucher (6, 7, 16, 17) beziehungsweise Verbrauchergruppen (6, 7, 16, 17) in Reihe geschaltet werden.
  7. Verfahren nach einem der Ansprüche 1 bis 6,
    dadurch gekennzeichnet,
    dass das Eingangsschaltelement bei einer Versorgungsspannung von 11 bis 16 Volt das Schaltelement zum Schließen der beiden Schaltkontakte (2, 3) ansteuert.
  8. Verfahren nach einem der Ansprüche 1 bis 7,
    dadurch gekennzeichnet,
    dass das Eingangsschaltelement bei einer Versorgungsspannung von 20 bis 30 Grad das Schaltelement zum Öffnen der beiden Schaltkontakte (2, 3) ansteuert.
  9. Schaltung zur Spannungsversorgung zumindest zweier identischer Verbraucher (6, 7, 16, 17), insbesondere LED's oder LED-Arrays, in Fahrzeugen mit einer Bordnetzspannung von 12, 24 oder 42 Volt, umfassend zumindest ein Eingangsschaltelement, welches mit einer Versorgungsspannung (U0) beaufschlagt ist und ein Schaltelement ansteuert,
    dadurch gekennzeichnet,
    dass das Eingangsschaltelement in Form eines Schmitt-Triggers in Abhängigkeit der Höhe der Eingangsspannung (U0) das Schaltelement ansteuert, um die Verbraucher (6, 7, 16, 17) von einer Serienschaltung in eine Parallelschaltung zu überführen oder umgekehrt, wobei ein erster Schaltpunkt bei 11 bis 16 Volt und ein zweiter Schaltpunkt bei 20 bis 30 Volt vorgesehen ist.
  10. Schaltung nach einem der Anspruch 9,
    dadurch gekennzeichnet,
    dass die Versorgungsspannung (U0) über einen Spannungsteiler (4, 5, 21 ,22) an dem Eingangsschaltelement anliegt.
  11. Schaltung nach Anspruch 9 oder 10,
    dadurch gekennzeichnet,
    dass das Schaltelement zweipolig ausgebildet ist oder aus zwei einzelnen gleichzeitig angesteuerten Schaltelementen, insbesondere Schaltkontakten (2, 3) besteht.
  12. Schaltung nach Anspruch 9, 10 oder 11,
    dadurch gekennzeichnet,
    dass die Anode der Diode (8, 18) mit einem ersten Schaltkontakt (2, 3) eines zweipoligen Schaltelementes verbunden ist, wobei der erste Schaltkontakt (2, 3) ausgangsseitig mit dem Minuspol verbunden ist und die Kathode der Diode (8, 18) mit einem zweiten Schaltkontakt (2, 3) eines zweipoligen Schaltelementes verbunden ist, wobei der zweite Schaltkontakt (2, 3) eingangsseitig mit dem Pluspol verbunden ist.
  13. Schaltung nach einem der Ansprüche 9 bis 12,
    dadurch gekennzeichnet,
    dass die Diode (8, 18) vom Pluspol zum Minuspol in Durchflussrichtung geschaltet ist.
  14. Schaltung nach einem der Ansprüche 9 bis 13,
    dadurch gekennzeichnet,
    dass ein erster Verbraucher (6, 7, 16, 17) oder eine erste Gruppe von Verbrauchern (6, 7, 16, 17) mit dem Pluspol der Versorgungsspannung (U0) einerseits verbunden ist und andererseits über eine Diode (8, 18) mit einem zweiten Verbraucher (6, 7, 16, 17) oder einer zweiten Gruppe von Verbrauchern (6, 7, 16, 17) verbunden ist, welche ferner mit dem Minuspol verbunden sind.
  15. Schaltung nach einem der Ansprüche 9 bis 14,
    dadurch gekennzeichnet,
    dass das Eingangsschaltelement einen invertierenden Ausgang für das Ausgangssignal aufweist und/oder dass das Schaltelement aus einem mechanischen oder elektronischen Schalter besteht.
EP17175189.4A 2016-06-10 2017-06-09 Verfahren zur spannungsversorgung von verbrauchern Active EP3264863B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102016007095.1A DE102016007095A1 (de) 2016-06-10 2016-06-10 Verfahren zur Spannungsversorgung von Verbrauchern

Publications (2)

Publication Number Publication Date
EP3264863A1 true EP3264863A1 (de) 2018-01-03
EP3264863B1 EP3264863B1 (de) 2019-08-07

Family

ID=59077829

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17175189.4A Active EP3264863B1 (de) 2016-06-10 2017-06-09 Verfahren zur spannungsversorgung von verbrauchern

Country Status (2)

Country Link
EP (1) EP3264863B1 (de)
DE (1) DE102016007095A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111465139A (zh) * 2020-04-15 2020-07-28 上汽大众汽车有限公司 自适应led线性驱动电路

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0499673A1 (de) * 1991-02-21 1992-08-26 Siemens Aktiengesellschaft Regelschaltung für einen Substratvorspannungsgenerator
DE4334338A1 (de) * 1993-10-08 1995-04-13 Bosch Gmbh Robert Schaltung zur Überwachung einer Versorgungsspannung
DE102013201766A1 (de) * 2013-02-04 2014-08-07 Osram Gmbh Beleuchtungseinrichtung und Verfahren zum Betreiben einer Beleuchtungseinrichtung

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009283775A (ja) * 2008-05-23 2009-12-03 Stanley Electric Co Ltd Led駆動回路
JP5518098B2 (ja) * 2009-12-22 2014-06-11 シチズンホールディングス株式会社 Led駆動回路
EP2630843B1 (de) * 2010-10-19 2014-12-10 Koninklijke Philips N.V. Led-schaltungsanordnung
FR3025395B1 (fr) * 2014-08-26 2019-06-28 Commissariat A L'energie Atomique Et Aux Energies Alternatives Dispositif d'eclairage a led

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0499673A1 (de) * 1991-02-21 1992-08-26 Siemens Aktiengesellschaft Regelschaltung für einen Substratvorspannungsgenerator
DE4334338A1 (de) * 1993-10-08 1995-04-13 Bosch Gmbh Robert Schaltung zur Überwachung einer Versorgungsspannung
DE102013201766A1 (de) * 2013-02-04 2014-08-07 Osram Gmbh Beleuchtungseinrichtung und Verfahren zum Betreiben einer Beleuchtungseinrichtung

Also Published As

Publication number Publication date
DE102016007095A1 (de) 2017-12-14
EP3264863B1 (de) 2019-08-07

Similar Documents

Publication Publication Date Title
DE19841490B4 (de) Schaltungsanordnung zum Schutz einer Serienschaltung aus mindestens zwei Leuchdioden vor dem Ausfall
DE68921773T2 (de) Kraftfahrzeugversorgungsschaltung mit zwei Betriebsspannungen.
DE102016112250A1 (de) Elektronisches System
DE102017116739A1 (de) Beleuchtungsvorrichtung und Fahrzeug
DE102019130741A1 (de) Batterie mit einer Batteriezelle und Verfahren zu deren Betrieb
DE19732828A1 (de) Schaltungsanordnung zur Ansteuerung eines Leuchtdioden-Arrays
DE102006024607A1 (de) Leuchtsystem
DE102013201766A1 (de) Beleuchtungseinrichtung und Verfahren zum Betreiben einer Beleuchtungseinrichtung
DE102018221519B4 (de) Fahrzeugseitige Ladevorrichtung
DE112017005404T5 (de) DC-DC Wandler
DE112015006875T5 (de) Leistungswandler
EP3264863B1 (de) Verfahren zur spannungsversorgung von verbrauchern
EP2959492B1 (de) Verfahren zum betrieb eines laststufenschalters mit halbleiterelementen
DE102016210736A1 (de) Anordnung und Verfahren zum Betreiben von LEDs
DE102021204358A1 (de) Verfahren zum Steuern einer Vorrichtung und Schaltungsvorrichtung
EP2282610A2 (de) Verfahren zur Ansteuerung einer Leuchte
DE102019212887A1 (de) Ansteuerverfahren für einen Gleichspannungswandler und Gleichspannungswandler
EP3590770A1 (de) Vorrichtung zum ansteuern eines elektrischen verbrauchers in einem fahrzeug-bordnetz und bordnetz eines fahrzeugs
DE10253980B4 (de) Vorrichtung zur Begrenzung des Einschaltstromes
DE102021204968B4 (de) Ladegerät
EP3673551B1 (de) Spannungsversorgungsschaltkreis
DE3445875C1 (de) Schaltungsanordnung zur Erzeugung einer Kleinspannung
DE112021006773T5 (de) Schaltvorrichtung
WO2017108073A1 (de) Längsspannungsquelle sowie gleichstromübertragungssystem mit längsspannungsquelle
AT395793B (de) Schaltungsanordnung fuer umkehrstromrichter mit zwei kompakt-drehstrombruecken in gegenparallelschaltung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180306

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190425

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1165872

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190815

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017001956

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502017001956

Country of ref document: DE

Representative=s name: DEMSKI & NOBBE PATENTANWAELTE, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502017001956

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H05B0033080000

Ipc: H05B0045000000

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190807

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191107

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191107

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191108

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191207

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017001956

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

26N No opposition filed

Effective date: 20200603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200609

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200609

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1165872

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220609

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220609

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502017001956

Country of ref document: DE

Representative=s name: SEYER & NOBBE PATENTANWAELTE PARTNERSCHAFTSGES, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240620

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240617

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20240618

Year of fee payment: 8