EP3263681B1 - Flüssige saure reinigungsmittel für harte oberflächen mit verbesserter behandlung von metalloberflächen - Google Patents

Flüssige saure reinigungsmittel für harte oberflächen mit verbesserter behandlung von metalloberflächen Download PDF

Info

Publication number
EP3263681B1
EP3263681B1 EP16176326.3A EP16176326A EP3263681B1 EP 3263681 B1 EP3263681 B1 EP 3263681B1 EP 16176326 A EP16176326 A EP 16176326A EP 3263681 B1 EP3263681 B1 EP 3263681B1
Authority
EP
European Patent Office
Prior art keywords
acid
composition
composition according
compositions
copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16176326.3A
Other languages
English (en)
French (fr)
Other versions
EP3263681A1 (de
Inventor
Anna Asmanidou
Coralie Paule Jeannine NAUDIN
Stefano Scialla
Jan-Sebastiaan Uyttersprot
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Procter and Gamble Co
Original Assignee
Procter and Gamble Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Procter and Gamble Co filed Critical Procter and Gamble Co
Priority to EP16176326.3A priority Critical patent/EP3263681B1/de
Publication of EP3263681A1 publication Critical patent/EP3263681A1/de
Application granted granted Critical
Publication of EP3263681B1 publication Critical patent/EP3263681B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/72Ethers of polyoxyalkylene glycols
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/2075Carboxylic acids-salts thereof
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3746Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3769(Co)polymerised monomers containing nitrogen, e.g. carbonamides, nitriles or amines
    • C11D3/3776Heterocyclic compounds, e.g. lactam
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D2111/00Cleaning compositions characterised by the objects to be cleaned; Cleaning compositions characterised by non-standard cleaning or washing processes
    • C11D2111/10Objects to be cleaned
    • C11D2111/14Hard surfaces
    • C11D2111/16Metals

Definitions

  • the present invention relates to acidic liquid compositions for cleaning a variety of hard surfaces such as hard surfaces found in around the house, such as bathrooms, toilets, garages, driveways, basements, gardens, kitchens, etc., the acidic liquid compositions being particularly suited for treatment of metal surfaces such as chromed surfaces and stainless steel surfaces.
  • Limescale deposits are formed due to the fact that tap water contains a certain amount of solubilised ions, which upon water evaporation eventually deposit as salts such as calcium carbonate on hard surfaces.
  • the visible limescale deposits result in an unaesthetic aspect of the surfaces.
  • the limescale formation and deposition phenomenon is even more acute in places where water is particularly hard.
  • limescale deposits are prone to combination with other types of soils, such as soap scum or grease, and can lead to the formation of limescale-soil mixture deposits (limescale-containing soils).
  • the removal of limescale deposits and limescale-containing soils is herein in general referred to as "limescale removal” or "removing limescale”.
  • Films and streaks may be left which results in poor shine, and an impression that the surface is not yet sufficiently clean. Such films and streaks are particularly noticeable on chromed and stainless steel surfaces, and are particularly difficult to remove without avoiding damage to the surface.
  • Surface active polymers such as polyvinylpyrrolidone and polycarboxylates have been formulated into acidic cleaners to improve shine on ceramic surfaces. However, such polymers have been found to be less effective on such chrome and stainless steel surfaces, leading to greater scrubbing being required and hence more risk of damage to the metal finish.
  • EP1531671 A1 relates to a disinfectant with residual antimicrobial activity comprises an organic acid, water and a polymer, which is preferably either a copolymer of vinyl pyrrolidone with another monomer such as vinyl acetate, acrylic acid, methacrylic acid or vinyl caprolactam; or poly(vinyl pyrrolidone); or it is a copolymer of an alkyl/alkoxy vinyl ether with maleic acid or an ether thereof.
  • EP0957156 A1 relates to liquid acidic cleaning compositions suitable for cleaning bathroom surfaces comprising a homo or copolymer of vinylpyrrolidone, or a mixture thereof, a polysaccharide polymer, or a mixture thereof, an anionic surfactant, and an acid.
  • WO 2004/016087 A1 relates to compositions which comprise a polymer capable of forming a complex with an organic acid, for providing a broad spectrum antimicrobial benefit.
  • WO99/23194 and EP2206766A1 disclose compositions comprising vinylpyrrolidone homo- and co-polymer.
  • the present invention relates to a liquid acidic hard surface cleaning composition according to claim 1.
  • the present compositions provide good limescale removal and long lasting shine over a wide range of surfaces.
  • the acidic cleaning compositions provide good cleaning and long lasting shine, with little or no damage to delicate surfaces, especially metal surfaces such as stainless steel and chrome.
  • the liquid acidic hard surface cleaning composition is the liquid acidic hard surface cleaning composition
  • compositions according to the present invention are designed as hard surfaces cleaners.
  • the compositions according to the present invention are liquid compositions (including gels) as opposed to a solid or a gas.
  • the liquid acidic hard surface cleaning compositions according to the present invention are preferably aqueous compositions. Therefore, they may comprise from 70% to 99% by weight of the total composition of water, preferably from 75% to 95% and more preferably from 80% to 95%.
  • compositions herein may have a water-like viscosity.
  • water-like viscosity it is meant herein a viscosity that is close to that of water.
  • the liquid acidic hard surface cleaning compositions herein have a viscosity of up to 50 cps at 60rpm, more preferably from 0 cps to 30 cps, yet more preferably from 0 cps to 20 cps and most preferably from 0 cps to 10 cps at 60rpm 1 and 20°C when measured with a Brookfield digital viscometer model DV II, with spindle 2.
  • the compositions herein are thickened compositions.
  • the liquid acidic hard surface cleaning compositions herein preferably have a viscosity of from 50 cps to 5000 cps at 10 s -1 , more preferably from 50 cps to 2000 cps, yet more preferably from 50 cps to 1000 cps and most preferably from 50 cps to 500 cps at 10 s -1 and 20°C when measured with a Rheometer, model AR 1000 (Supplied by TA Instruments) with a 4 cm conic spindle in stainless steal, 2° angle (linear increment from 0.1 to 100 sec -1 in max. 8 minutes).
  • the thickened compositions according to this specific embodiment are shear-thinning compositions.
  • the thickened liquid acidic hard surface cleaning compositions herein preferably comprise a thickener, more preferably a polysaccharide polymer (as described herein below) as thickener, still more preferably a gum-type polysaccharide polymer thickener and most preferably Xanthan gum.
  • the liquid acidic hard surface cleaning composition of the present invention comprises a vinylpyrrolidone copolymer, nonionic surfactant, and an organic acid system.
  • the weight ratio of organic acid to vinylpyrrolidone copolymer is from 50:1 to 500:1, preferably from 100:1 to 350:1, more preferably from 250:1 to 300:1.
  • the weight ratio of nonionic surfactant to vinylpyrrolidone copolymer is from 20 to 200, preferably from 40 to 150, more preferably from 50:1 to 100:1.
  • the hard surface cleaning composition of the invention can comprise the vinylpyrrolidone copolymer at a level of from 0.001% to 2.0%, more preferably from 0.01% to 1.0%, yet more preferably from 0.02% to 0.10%, most preferably from 0.025 to 0.05% by weight of the cleaning composition, of the copolymer
  • the vinylpyrrolidone copolymers have the following structure: wherein:
  • Such vinylpyrrolidone copolymers are more fully described in United States Patent No. 4,445,521 , United States Patent No. 4,165,367 , United States Patent No. 4,223,009 , United States Patent No. 3,954,960 , as well as GB1331819 .
  • the monomer unit within [ ] y is a dimethylaminomethyl methacrylate.
  • the polyvinylpyrrolidone copolymer herein is vinylpyrrolidone / dimethylaminoethylmethacrylate (VP/DMAEMA) copolymers having the formula: wherein x and y have values selected such that the total molecular weight is 50,000 to 5,000,000 Da, preferably 100,000 Da to 2,500,000Da, more preferably from 500,000 to 1,500,000 Da.
  • VP/DMAEMA vinylpyrrolidone / dimethylaminoethylmethacrylate
  • copolymers of use in the compositions of the present invention are generally provided as a technical grade mixture which includes the polymer dispersed in an aqueous or aqueous/alcoholic carrier and are available in a variety of molecular weights from Ashland Inc. Suitable polymers are available commercially, including from Ashland Inc. under the tradenames SorezTM HS-205, copolymer 845, copolymer 937, copolymer 958.
  • Nonionic surfactants have been found to be particularly effective in combination with the vinylpyrrolidone copolymer for providing improved shine to metal surfaces, in comparison to anionic surfactants, amphoteric surfactants, and the like.
  • the compositions of the present invention comprise a nonionic surfactant, or a mixture thereof.
  • This class of surfactants may be desired as it further contributes to cleaning performance of the hard surface cleaning compositions herein. It has been found in particular that nonionic surfactants strongly contribute in achieving highly improved performance on greasy soap scum removal.
  • compositions according to the present invention may comprise up to 15% by weight of the total composition of a nonionic surfactant or a mixture thereof, preferably from 0.1% to 10%, more preferably from 0.5% to 5%, even more preferably from 1.0% to 3% by weight of the total composition.
  • Suitable nonionic surfactants for use herein are alkoxylated alcohol nonionic surfactants, which can be readily made by condensation processes which are well-known in the art. However, a great variety of such alkoxylated alcohols, especially ethoxylated and/or propoxylated alcohols, are conveniently commercially available. Surfactants catalogs are available which list a number of surfactants, including nonionics.
  • Preferred alkoxylated alcohols are nonionic surfactants according to the formula RO(E)e(P)pH where R is a hydrocarbon chain of from 2 to 24 carbon atoms, E is ethylene oxide and P is propylene oxide, and e and p which represent the average degree of, respectively ethoxylation and propoxylation, are of from 0 to 24 (with the sum of e + p being at least 1).
  • the hydrophobic moiety of the nonionic compound can be a primary or secondary, straight or branched alcohol having from 8 to 24 carbon atoms.
  • Preferred nonionic surfactants for use in the compositions according to the invention are the condensation product of ethylene and/or propylene oxide with an alcohol having a straight alkyl chain comprising from 6 to 22 carbon atoms, wherein the degree of ethoxylation/propoxylation is from 1 to 15, preferably from 5 to 12 or mixtures thereof.
  • Such suitable nonionic surfactants are commercially available from Shell, for instance, under the trade name Neodol® or from BASF under the trade name Lutensol®, and from Sasol under the tradename Marilpal®.
  • the liquid compositions of the present invention are acidic. Certain lesser grade chrome finishing and stainless steels can be prone to pitting in highly acidic conditions. As such, the composition has a pH of from 2.1 to 2.4, measured at 25°C.
  • the composition comprises an organic acid system, for improved safety on such chromed surfaces and stainless steel surfaces.
  • the acid system comprises any organic acid well-known to those skilled in the art, or a mixture thereof.
  • the organic acid system comprises acids selected from the group consisting of: citric acid, formic acid, acetic acid, maleic acid, lactic acid, glycolic acid, oxalic acid, succinic acid, glutaric acid, adipic acid, methansulphonic acid, and mixtures thereof, more preferably citric acid, formic acid, acetic acid, and mixtures thereof.
  • the composition preferably comprises the acid system at a level of from 0.01 % to 15%, preferably from 0.5% to 10%, more preferably from 2% to 8%, most preferably from 4% to 7.5% by weight of the total composition.
  • the weight percentages are measured according to the added amounts of the acid, before any in-situ neutralization.
  • the composition preferably comprises formic acid as part of the acid system.
  • the compositions of the present invention may comprise from 0.01% to 15%, preferably from 0.5% to 10%, more preferably from 1% to 8%, even more preferably from 1% to 6%, still more preferably 1% to 4%, yet more preferably 1% to 3%, yet still more preferably 2% to 3% by weight of the total composition of formic acid.
  • Lactic acid can be used as part of the acid system, especially where antimicrobial or disinfecting benefits are desired.
  • Such compositions may comprise up to 10% by weight of the total composition of lactic acid, preferably from 0.1% to 6%, more preferably from 0.2% to 4%, even more preferably from 0.2% to 3%, and most preferably from 0.5% to 2%.
  • compositions of the present invention may comprise from 0.1 to 30%, preferably from 2% to 20%, more preferably from 3% to 15%, most preferably from 3% to 10% by weight of the total composition of acetic acid.
  • the compositions of the present invention may comprise from 0.1 to 5%, preferably from 0.1% to 3%, more preferably from 0.1% to 2%, most preferably from 0.5% to 2% by weight of the total composition of acetic acid.
  • compositions of the present invention may comprise from 0.1 to 30%, preferably from 1% to 20%, more preferably from 1.5% to 15%, most preferably from 1.5% to 10% by weight of the total composition of citric acid.
  • compositions herein can comprise an alkaline material.
  • the alkaline material may be present to trim the pH and/or maintain the pH of the compositions according to the present invention.
  • alkaline material are sodium hydroxide, potassium hydroxide and/or lithium hydroxide, and/or the alkali metal oxides such, as sodium and/or potassium oxide or mixtures thereof and/or monoethanolamine and/or triethanolamine.
  • suitable bases include ammonia, ammonium carbonate, choline base, etc.
  • source of alkalinity is sodium hydroxide or potassium hydroxide, preferably sodium hydroxide.
  • the amount of alkaline material is of from 0.001 % to 20 % by weight, preferably from 0.01 % to 10 % and more preferably from 0.05 % to 3 % by weight of the composition.
  • compositions herein would remain acidic compositions.
  • compositions according to the present invention may comprise a variety of optional ingredients depending on the technical benefit aimed for and the surface treated.
  • Suitable optional ingredients for use herein include other acids, chelating agents, nonionic surfactants, vinylpyrrolidone homopolymer, polysaccharide polymer, radical scavengers, perfumes, solvents, other surfactants, builders, buffers, bactericides, hydrotropes, colorants, stabilizers, bleaches, bleach activators, suds controlling agents like fatty acids, enzymes, soil suspenders, brighteners, anti dusting agents, dispersants, pigments, and dyes.
  • Suitable other acids include inorganic acids, such as hydrochloric acid, sulphurinc acid, sulphamic acid, and the like.
  • Preferred thickeners are anionic polymeric thickener, more preferably xanthan gum. Surprisingly, anionic polymeric thickeners can be used to achieve the desired composition viscosity, even though the copolymers comprise cationic monomeric units (monomer B).
  • compositions of the present invention may optionally comprise a polysaccharide polymer or a mixture thereof.
  • the compositions of the present invention may comprise from 0.01% to 5% by weight of the total composition of a polysaccharide polymer or a mixture thereof, more preferably from 0.05% to 3% and most preferably from 0.05 % to 1%.
  • Suitable polysaccharide polymers for use herein include substituted cellulose materials like carboxymethylcellulose, ethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxymethyl cellulose, succinoglycan and naturally occurring polysaccharide polymers like Xanthan gum, gellan gum, guar gum, locust bean gum, tragacanth gum or derivatives thereof, or mixtures thereof.
  • compositions of the present invention comprise a polysaccharide polymer selected from the group consisting of: carboxymethylcellulose, ethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxymethyl cellulose, succinoglycan gum, xanthan gum, gellan gum, guar gum, locust bean gum, tragacanth gum, derivatives of the aforementioned, and mixtures thereof.
  • the compositions herein comprise a polysaccharide polymer selected from the group consisting of : succinoglycan gum, xanthan gum, gellan gum, guar gum, locust bean gum, tragacanth gum, derivatives of the aforementioned, and mixtures thereof. More preferably, the compositions herein comprise a polysaccharide polymer selected from the group consisting of: xanthan gum, gellan gum, guar gum, derivatives of the aforementioned, and mixtures thereof. Most preferably, the compositions herein comprise xanthan gum, derivatives thereof, and mixtures thereof. Particularly polysaccharide polymers for use herein are xanthan gum and derivatives thereof.
  • Xanthan gum and derivatives thereof may be commercially available for instance from CP Kelco under the trade name Keltrol RD®, Kelzan S® or Kelzan T®.
  • Other suitable xanthan gums are commercially available by Rhodia under the trade name Rhodopol T® and Rhodigel X747®.
  • Succinoglycan gum for use herein is commercially available by Rhodia under the trade name Rheozan®.
  • composition of the invention may comprise additional cleaning ingredients.
  • the compositions of the present invention may comprise a vinylpyrrolidone homopolymer or other polymer, or a mixture thereof.
  • the compositions of the present invention may comprise from 0.01% to 5% by weight of the total composition of a vinylpyrrolidone homopolymer or other polymer, or a mixture thereof, more preferably from 0.01% to 3% and most preferably from 0.02% to 0.5%.
  • Suitable vinylpyrrolidone homopolymers for use herein are homopolymers of N-vinylpyrrolidone having the following repeating monomer: wherein n (degree of polymerisation) is an integer of from 10 to 1,000,000, preferably from 20 to 100,000, and more preferably from 20 to 10,000.
  • suitable vinylpyrrolidone homopolymers for use herein have an average molecular weight of from 1,000 to 100,000,000, preferably from 2,000 to 10,000,000, more preferably from 5,000 to 1,000,000, and most preferably from 50,000 to 500,000.
  • Suitable vinylpyrrolidone homopolymers are commercially available from ISP Corporation, New York, NY and Montreal, Canada under the product names PVP K-15® (viscosity molecular weight of 10,000), PVP K-30® (average molecular weight of 40,000), PVP K-60® (average molecular weight of 160,000), and PVP K-90® (average molecular weight of 360,000).
  • vinylpyrrolidone homopolymers which are commercially available from BASF Cooperation include Sokalan HP 165®, Sokalan HP 12®, Luviskol K30®, Luviskol K60®, Luviskol K80®, Luviskol K90®; vinylpyrrolidone homopolymers known to persons skilled in the detergent field (see for example EP-A-262,897 and EP-A-256,696 ).
  • vinylpyrrolidone homopolymers are advantageously selected.
  • compositions of the present invention may comprise a chelating agent or mixtures thereof, as a preferred optional ingredient.
  • Chelating agents can be incorporated in the compositions herein in amounts ranging up to 10% by weight of the total composition, preferably 0.01% to 5.0%, more preferably 0.05% to 1%.
  • Suitable phosphonate chelating agents to be used herein may include alkali metal ethane 1-hydroxy diphosphonates (HEDP), alkylene poly (alkylene phosphonate), as well as amino phosphonate compounds, including amino aminotri(methylene phosphonic acid) (ATMP), nitrilo trimethylene phosphonates (NTP), ethylene diamine tetra methylene phosphonates, and diethylene triamine penta methylene phosphonates (DTPMP).
  • the phosphonate compounds may be present either in their acid form or as salts of different cations on some or all of their acid functionalities.
  • Preferred chelating agents to be used herein are diethylene triamine penta methylene phosphonate (DTPMP) and ethane 1-hydroxy diphosphonate (HEDP).
  • DTPMP diethylene triamine penta methylene phosphonate
  • HEDP ethane 1-hydroxy diphosphonate
  • the chelating agent is selected to be ethane 1-hydroxy diphosphonate (HEDP).
  • HEDP ethane 1-hydroxy diphosphonate
  • Such phosphonate chelating agents are commercially available from Monsanto under the trade name DEQUEST®.
  • Polyfunctionally-substituted aromatic chelating agents may also be useful in the compositions herein. See U.S. patent 3,812,044, issued May 21, 1974, to Connor et al.
  • Preferred compounds of this type in acid form are dihydroxydisulfobenzenes such as 1,2-dihydroxy -3,5-disulfobenzene.
  • a preferred biodegradable chelating agent for use herein is ethylene diamine N,N'- disuccinic acid, or alkali metal, or alkaline earth, ammonium or substitutes ammonium salts thereof or mixtures thereof.
  • Ethylenediamine N,N'- disuccinic acids especially the (S,S) isomer have been extensively described in US patent 4, 704, 233, November 3, 1987, to Hartman and Perkins .
  • Ethylenediamine N,N'- disuccinic acids is, for instance, commercially available under the tradename ssEDDS® from Palmer Research Laboratories.
  • Suitable amino carboxylates to be used herein include tetra sodium glutamate diacetate (GLDA), ethylene diamine tetra acetates, diethylene triamine pentaacetates, diethylene triamine pentaacetate (DTPA), N- hydroxyethylethylenediamine triacetates, nitrilotri-acetates, ethylenediamine tetrapropionates, triethylenetetraaminehexa-acetates, ethanol-diglycines, propylene diamine tetracetic acid (PDTA) and methyl glycine di-acetic acid (MGDA), both in their acid form, or in their alkali metal, ammonium, and substituted ammonium salt forms.
  • GLDA tetra sodium glutamate diacetate
  • DTPA diethylene triamine pentaacetate
  • N- hydroxyethylethylenediamine triacetates nitrilotri-acetates
  • Particularly suitable amino carboxylates to be used herein are diethylene triamine penta acetic acid, propylene diamine tetracetic acid (PDTA) which is, for instance, commercially available from BASF under the trade name Trilon FS® methyl glycine di-acetic acid (MGDA), tetra sodium glutamate diacetate (GLDA) which is, for instance, commercially available from AkzoNobel under the trade name Dissolvine® GL.
  • PDTA diethylene triamine penta acetic acid
  • MGDA Trilon FS® methyl glycine di-acetic acid
  • GLDA tetra sodium glutamate diacetate
  • carboxylate chelating agents to be used herein include salicylic acid, aspartic acid, glutamic acid, glycine, malonic acid or mixtures thereof.
  • compositions of the present invention may further comprise a solvent or a mixture thereof, as an optional ingredient.
  • Solvents to be used herein include all those known to those skilled in the art of hard-surfaces cleaner compositions.
  • the compositions herein comprise an alkoxylated glycol ether (such as n-Butoxy Propoxy Propanol (n-BPP)) or a mixture thereof.
  • compositions of the present invention may comprise from 0.1% to 5% by weight of the total composition of a solvent or mixtures thereof, preferably from 0.5% to 5% by weight of the total composition and more preferably from 1% to 3% by weight of the total composition.
  • compositions of the present invention may comprise an additional surfactant, or mixtures thereof, on top of the nonionic surfactant already described herein.
  • Additional surfactants may be desired herein as they further contribute to the cleaning performance and/or shine benefit of the compositions of the present invention.
  • Surfactants to be used herein include anionic surfactants, cationic surfactants, amphoteric surfactants, zwitterionic surfactants, and mixtures thereof. Accordingly, the compositions according to the present invention may comprise up to 15% by weight of the total composition of another surfactant or a mixture thereof, on top of the nonionic surfactant already described herein.
  • the composition comprises limited amounts, or no anionic surfactant.
  • the hard surface composition can comprise less than 2wt%, preferably less than 1wt%, more preferably less than 0.5wt%, most preferably less than 0.1 wt% of anionic surfactant.
  • Suitable anionic surfactants include alkyl sulphonates, alkyl aryl sulphonates, or mixtures thereof. If used, suitable linear alkyl sulphonates include C8 sulphonate like Witconate® NAS 8 commercially available from Witco.
  • Suitable zwitterionic surfactants for use herein contain both basic and acidic groups which form an inner salt giving both cationic and anionic hydrophilic groups on the same molecule at a relatively wide range of pH's.
  • the typical cationic group is a quaternary ammonium group, although other positively charged groups like phosphonium, imidazolium and sulfonium groups can be used.
  • the typical anionic hydrophilic groups are carboxylates and sulfonates, although other groups like sulfates, phosphonates, and the like can be used.
  • zwitterionic surfactants i.e. betaine/sulphobetaine
  • betaine/sulphobetaine Some common examples of zwitterionic surfactants (i.e. betaine/sulphobetaine) are described in U.S. Pat. Nos. 2,082,275 , 2,702,279 and 2,255,082 .
  • coconut dimethyl betaine is commercially available from Seppic under the trade name of Amonyl 265®.
  • Lauryl betaine is commercially available from Albright & Wilson under the trade name Empigen BB/L®.
  • a further example of betaine is Lauryl-immino-dipropionate commercially available from Rhodia under the trade name Mirataine H2C-HA®.
  • Particularly preferred zwitterionic surfactants for use in the compositions of the present invention are the sulfobetaine surfactants as they deliver optimum soap scum cleaning benefits.
  • sulfobetaine surfactants include tallow bis(hydroxyethyl) sulphobetaine, cocoamido propyl hydroxy sulphobetaines which are commercially available from Rhodia and Witco, under the trade name of Mirataine CBS® and Rewoteric AM CAS 15® respectively.
  • Amphoteric and ampholytic detergents which can be either cationic or anionic depending upon the pH of the system are represented by detergents such as dodecylbeta-alanine, N-alkyltaurines such as the one prepared by reacting dodecylamine with sodium isethionate according to the teaching of U.S. Pat. No. 2,658,072 , N-higher alkylaspartic acids such as those produced according to the teaching of U.S. Pat. No. 2,438,091 , and the products sold under the trade name "Miranol", and described in U.S. Pat. No. 2,528,378 . Additional synthetic detergents and listings of their commercial sources can be found in McCutcheon's Detergents and Emulsifiers, North American Ed. 1980.
  • Suitable amphoteric surfactants include the amine oxides.
  • amine oxides for use herein are for instance coconut dimethyl amine oxides, C12-C16 dimethyl amine oxides. Said amine oxides may be commercially available from Clariant, Stepan, and AKZO (under the trade name Aromox®).
  • Other suitable amphoteric surfactants for the purpose of the invention are the phosphine or sulfoxide surfactants.
  • Cationic surfactants suitable for use in compositions of the present invention are those having a long-chain hydrocarbyl group.
  • cationic surfactants include the quaternary ammonium surfactants such as alkyldimethylammonium halogenides.
  • Other cationic surfactants useful herein are also described in U.S. Patent 4,228,044, Cambre, issued October 14, 1980 .
  • copolymers described herein, can be used in an acidic composition for removing limescale and/or improving shine on chromed surfaces and stainless steel surfaces.
  • the present invention further encompasses a process of cleaning a hard surface or an object, preferably removing limescale and/or improving shine on said chromed surface or stainless steel surface.
  • the objects having a stainless steel surface or a chromed surface may be water-taps or parts thereof, shower heads, other chromed or stainless steel bathroom fittings, water-valves, metal objects, objects made of stainless-steel, cutlery and the like.
  • the preferred process of cleaning a hard-surface or an object comprises the step of applying a composition according to the present invention onto said chromed surface or stainless steel surface, leaving said composition on said surface, preferably for an effective amount of time, more preferably for a period comprised between 10 seconds and 10 minutes, most preferably for a period comprised between 15 seconds and 4 minutes; optionally wiping said hard-surface or object with an appropriate instrument, e.g. a sponge; and then preferably rinsing said surface with water.
  • compositions of the present invention may be contacted to the surface to be treated in its neat form or in its diluted form.
  • the composition is applied in its neat form.
  • compositions according to the present invention are particularly suitable for treating hard-surfaces located in and around the house, such as in bathrooms, toilets, garages, on driveways, basements, gardens, kitchens, etc., and preferably in bathrooms. It is however known that such surfaces (especially bathroom surfaces) may be soiled by the so-called "limescale-containing soils".
  • limescale-containing soils it is meant herein any soil which contains not only limescale mineral deposits, such as calcium and/or magnesium carbonate, but also soap scum (e.g., calcium stearate) and other grease (e.g. body grease).
  • limescale deposits it is mean herein any pure limescale soil, i.e., any soil or stains composed essentially of mineral deposits, such as calcium and/or magnesium carbonate.
  • compositions herein may be packaged in any suitable container, such as bottles, preferably plastic bottles, optionally equipped with an electrical or manual trigger spray-head.
  • the pH is measured on the neat composition, at 25°C, using a Sartarius PT-10P pH meter with gel-filled probe (such as the Toledo probe, part number 52 000 100), calibrated according to the instructions manual.
  • Stainless steel tiles (Inox 304L grade, bright annealed (BA) finish), 20 cm x 20 cm, supplied by LASERTEK N.V. (Jubellaan 76B, 2800 Mechelen) were prepared using the following procedure: Clean tiles were prepared by washing using a nil-polymer hard-surface cleaner and rinsing with tap water having a water hardness of 15 grains per gallon (257 ppm) until free of residue, before drying using paper towels. The tiles were then cleaned using isopropanol alcohol to remove any remaining residue.
  • test composition was applied to the top of the tile, starting from the left to the right corner, with a pipette before being spread uniformly using a wet sponge, with four vertical strokes followed and four horizontal strokes, such that the entire tile is contacted with the test product.
  • the treated tiles were then left for 15 seconds.
  • the tiles were inclined against a wall at a near vertical angle, then rinsed uniformly for 30 seconds using a shower head connected to a tap with a water flow rate of 4L/minute.
  • the tiles were then left to dry in a controlled temperature and humidity room at 20°C and a relative humidity of 40%.
  • the tiles were visually graded by three panelists to assess the shine (level of watermarks and gloss) after the aforementioned application procedure.
  • the grading was done using clean tiles as reference. In the visual grading, the following scale was used:
  • the tiles were rinsed again, using the same procedure as above, and regraded to give the relative shine after one rinse cycle.
  • the tiles were then rinsed again twice, using the same procedure and regraded to give the relative shine after three rinse cycles.
  • Example 1 is a composition of the present invention
  • example A is a comparative composition which comprised polyvinylpyrrolidone homopolymer instead of the copolymer.
  • Composition Ex 1 of invention Ex A Comparative wt% wt% Citric acid 1.7 1.7 Formic acid 2.7 2.7 C9-C11 8EO 1 2.2 2.2 Sodium Hydroxide 0.15 0.15 Xantham gum 0.15 0.15 Perfume 0.2 0.2 dyes 0.008 0.008 Polyvinylpyrrolidone (PVP) 2 - 0.025 PVP Copolymer 3 0.025 - Water Balance up to 100 Balance up to 100 pH 2.2 2.2 Shine (visual grading): after application -0.6 -3.5 after 1 cycle -1.1 -2.8 after 3 cycles -1.8 -3.2 1 Nonionic surfactant, sourced as Neodol® 91-8 from Shell.
  • PVP Polyvinylpyrrolidone
  • Polyvinylpyrrolidone sourced as PVP K-60 from Ashland Inc.
  • vinylpyrrolidone/dimethylaminoethylmethacrylate (VP/DMAEMA) copolymer sourced as SorezTM HS-205 from Ashland Inc.
  • the composition comprising the polyvinylpyrrolidone copolymer provides improved shine in comparison to equivalent compositions comprising the polyvinylpyrrolidone homopolymer.
  • Examples 2, 3 and 8- 10 are further examples of compositions of the present invention.
  • Examples 4-7 are comparative.
  • Solvent n-BPP 1.0 - - - 2.0 - - - - Minors: (preservative, dye, perfume, and the like) 0.10 0.50 0.25 0.55 0.10
  • Formic acid, lactic acid and acetic acid are commercially available from Aldrich.
  • Neodol 91-8® is a C 9 -C 11 EO8 nonionic surfactant, commercially available from SHELL.
  • Sulphated Safol 23® is a branched C 12-13 sulphate surfactant based on Safol 23 an alcohol commercially available from Sasol, which has been sulphated.
  • n-BPP is n-butoxy propoxy propanol.
  • Kelzan T® is a Xanthan gum supplied by Kelco.
  • PVP is a vinylpyrrolidone homopolymer, commercially available from ISP Corporation
  • BHT is Butylated Hydroxy Toluene

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Detergent Compositions (AREA)

Claims (11)

  1. Flüssige saure Zusammensetzung zum Reinigen harter Oberflächen mit einem an der unverdünnten Zusammensetzung bei 25 °C gemessenen pH-Wert von 2,1 bis 2,4, und umfassend:
    a. ein Vinylpyrrolidon-Copolymer, wobei das Vinylpyrrolidon-Copolymer die folgende Struktur aufweist:
    Figure imgb0005
    wobei:
    x von 20 bis 99 Mol-% beträgt,
    y von 1 bis 80 Mol-%, vorzugsweise von 1 bis 40 Mol-% beträgt,
    sodass (x+y) = 100,
    R1 H oder CH3 ist,
    Z O oder NH ist,
    R2 CaH2a ist, wobei a von 1 bis 4 beträgt
    R3 unabhängig C1- bis C4-Alkyl ist, und
    b. nichtionisches Tensid; und
    c. ein organisches Säuresystem;
    wobei das Vinylpyrrolidon-Copolymer ein Vinylpyrrolidon-Dimethylaminoethylmethacrylat(VP/DMAEMA)-Copolymer mit einem Molekulargewicht von 50.000 bis 5.000.000 Da ist.
  2. Zusammensetzung zum Reinigen harter Oberflächen nach Anspruch 1, wobei die Zusammensetzung Vinylpyrrolidon-Copolymer in einer Menge von 0,001 Gew.-% bis 2,0 Gew.-%, mehr bevorzugt von 0,01 Gew.-% bis 1,0 Gew.-%, noch mehr bevorzugt von 0,02 Gew.-% bis 0,10 Gew.-%, am meisten bevorzugt von 0,025 bis 0,05 Gew.-% der Reinigungszusammensetzung das Copolymer umfasst.
  3. Zusammensetzung nach einem der vorstehenden Ansprüche, wobei die organische Säure ausgewählt ist aus der Gruppe, bestehend aus: Zitronensäure, Ameisensäure, Essigsäure, Maleinsäure, Milchsäure, Glycolsäure, Oxalsäure, Bernsteinsäure, Glutarsäure, Adipinsäure, Methansulfonsäure und Mischungen davon.
  4. Zusammensetzung nach Anspruch 3, wobei das Säuresystem Säure umfasst, ausgewählt aus der Gruppe, bestehend aus: Zitronensäure, Ameisensäure, Essigsäure und Mischungen davon.
  5. Zusammensetzung nach einem der vorstehenden Ansprüche, wobei die Zusammensetzung das Säuresystem in einer Menge von 0,01 Gew.-% bis 15 Gew.-%, vorzugsweise von 0,5 Gew.-% bis 10 Gew.-%, mehr bevorzugt von 2 Gew.-% bis 8 Gew.-%, am meisten bevorzugt von 4 Gew.-% bis 7,5 Gew.-% der Gesamtzusammensetzung umfasst.
  6. Zusammensetzung nach einem der vorstehenden Ansprüche, wobei das nichtionische Tensid das Kondensationsprodukt von Ethylen- und/oder Propylenoxid mit einem Alkohol ist, der eine gerade Alkylkette, die 6 bis 22 Kohlenstoffatome umfasst, aufweist, wobei der Ethoxylierungs-/Propoxylierungsgrad von 1 bis 15, vorzugsweise von 5 bis 12, beträgt, oder Mischungen davon.
  7. Zusammensetzung nach einem der vorstehenden Ansprüche, wobei das nichtionische Tensid in einer Menge von 0,1 Gew.-% bis 10 Gew.-%, vorzugsweise von 0,5 bis 5 Gew.-%, mehr bevorzugt von 1,0 bis 3 Gew.-% der Zusammensetzung vorhanden ist.
  8. Zusammensetzung nach einem der vorstehenden Ansprüche, wobei das Gewichtsverhältnis von organischer Säure zu Vinylpyrrolidon-Copolymer von 50 : 1 bis 500 : 1, vorzugsweise von 100 : 1 bis 350 : 1, mehr bevorzugt von 250 : 1 bis 300 : 1 beträgt.
  9. Zusammensetzung nach einem der vorstehenden Ansprüche, wobei das Gewichtsverhältnis von nichtionischem Tensid zu Vinylpyrrolidon-Copolymer von 20 bis 200, vorzugsweise von 40 bis 150, mehr bevorzugt von 50 : 1 bis 100 : 1 beträgt.
  10. Zusammensetzung nach einem der vorstehenden Ansprüche, wobei die Zusammensetzung weniger als 2 Gew.-%, vorzugsweise weniger als 1 Gew.-%, mehr bevorzugt weniger als 0,5 Gew.-%, am meisten bevorzugt weniger 0,1 Gew.-% anionisches Tensid umfasst.
  11. Zusammensetzung nach einem der vorstehenden Ansprüche, wobei die Zusammensetzung ferner ein Verdickungsmittel, vorzugsweise ein anionisches polymeres Verdickungsmittel, mehr bevorzugt Xanthangummi umfasst.
EP16176326.3A 2016-06-27 2016-06-27 Flüssige saure reinigungsmittel für harte oberflächen mit verbesserter behandlung von metalloberflächen Active EP3263681B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP16176326.3A EP3263681B1 (de) 2016-06-27 2016-06-27 Flüssige saure reinigungsmittel für harte oberflächen mit verbesserter behandlung von metalloberflächen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP16176326.3A EP3263681B1 (de) 2016-06-27 2016-06-27 Flüssige saure reinigungsmittel für harte oberflächen mit verbesserter behandlung von metalloberflächen

Publications (2)

Publication Number Publication Date
EP3263681A1 EP3263681A1 (de) 2018-01-03
EP3263681B1 true EP3263681B1 (de) 2020-09-16

Family

ID=56235750

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16176326.3A Active EP3263681B1 (de) 2016-06-27 2016-06-27 Flüssige saure reinigungsmittel für harte oberflächen mit verbesserter behandlung von metalloberflächen

Country Status (1)

Country Link
EP (1) EP3263681B1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3783091A1 (de) 2019-08-20 2021-02-24 The Procter & Gamble Company Reinigungszusammensetzung
ES2959960T3 (es) 2019-08-20 2024-02-29 Procter & Gamble Composición antimicrobiana que comprende polímero de polivinilpirrolidona alquilada
EP3783090A1 (de) * 2019-08-20 2021-02-24 The Procter & Gamble Company Reinigungszusammensetzung

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2702279A (en) 1955-02-15 Detergent compositions having
US2082275A (en) 1934-04-26 1937-06-01 Gen Aniline Works Inc Substituted betaines
US2255082A (en) 1938-01-17 1941-09-09 Gen Aniline & Film Corp Capillary active compounds and process of preparing them
US2438091A (en) 1943-09-06 1948-03-16 American Cyanamid Co Aspartic acid esters and their preparation
US2528378A (en) 1947-09-20 1950-10-31 John J Mccabe Jr Metal salts of substituted quaternary hydroxy cycloimidinic acid metal alcoholates and process for preparation of same
US2658072A (en) 1951-05-17 1953-11-03 Monsanto Chemicals Process of preparing amine sulfonates and products obtained thereof
CH557174A (de) 1970-01-30 1974-12-31 Gaf Corp Kosmetische zubereitung.
SE375780B (de) 1970-01-30 1975-04-28 Gaf Corp
US3812044A (en) 1970-12-28 1974-05-21 Procter & Gamble Detergent composition containing a polyfunctionally-substituted aromatic acid sequestering agent
LU76955A1 (de) 1977-03-15 1978-10-18
US4223009A (en) 1977-06-10 1980-09-16 Gaf Corporation Hair preparation containing vinyl pyrrolidone copolymer
US4165367A (en) 1977-06-10 1979-08-21 Gaf Corporation Hair preparations containing vinyl pyrrolidone copolymer
US4228044A (en) 1978-06-26 1980-10-14 The Procter & Gamble Company Laundry detergent compositions having enhanced particulate soil removal and antiredeposition performance
US4368146A (en) * 1979-01-12 1983-01-11 Lever Brothers Company Light duty hand dishwashing liquid detergent composition
GB8618635D0 (en) 1986-07-30 1986-09-10 Unilever Plc Detergent composition
US4954292A (en) 1986-10-01 1990-09-04 Lever Brothers Co. Detergent composition containing PVP and process of using same
US4704233A (en) 1986-11-10 1987-11-03 The Procter & Gamble Company Detergent compositions containing ethylenediamine-N,N'-disuccinic acid
ATE291073T1 (de) * 1997-10-31 2005-04-15 Procter & Gamble Saure flüssige zusammensetzungen zum entfernen von kesselstein verpackt in einem sprühspender
ATE293673T1 (de) 1998-05-15 2005-05-15 Procter & Gamble Flüssige, saure reinigungszusammensetzung für harte oberflächen
EP1167500A1 (de) * 2000-06-29 2002-01-02 The Procter & Gamble Company Verfahren zum Reinigen einer harten Oberfläche
GB2391810A (en) 2002-08-14 2004-02-18 Reckitt Benckiser Inc Disinfectant with residual antimicrobial activity
US7064232B2 (en) * 2003-12-08 2006-06-20 Rhodia Inc. Hydrophobic modified diquaternary monomers and polymers as thickening agents of acidic aqueous compositions
GB0717397D0 (en) * 2007-09-07 2007-10-17 Reckitt Benckiser Inc Improvements in hard surface treatment compositions
EP2944685A1 (de) * 2008-12-23 2015-11-18 The Procter and Gamble Company Flüssiges saures reinigungsmittel für harte oberflächen
ES2514522T3 (es) * 2009-12-17 2014-10-28 The Procter & Gamble Company Composición limpiadora de superficies duras ácida líquida

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3263681A1 (de) 2018-01-03

Similar Documents

Publication Publication Date Title
EP2025742B1 (de) Flüssiges Reinigungssäuremittel für harte Oberflächen
EP2336282B1 (de) Flüssiges Reinigungssäuremittel für harte Oberflächen
EP2586855B1 (de) Flüssiges saures Reinigungsmittel für harte Oberflächen
ES2325554T3 (es) Composicion para limpiar superficies duras, liquida, acida.
US11603509B2 (en) Acidic hard surface cleaners comprising alkylpyrrolidones
EP3228688B1 (de) Flüssige saure reinigungsmittelzusammensetzung für harte oberflächen mit verbessertem glanz
US8198227B2 (en) Liquid acidic hard surface cleaning composition
EP1721961B1 (de) Flüssiges saures Reinigungsmittel für harte Oberflächen
EP3263681B1 (de) Flüssige saure reinigungsmittel für harte oberflächen mit verbesserter behandlung von metalloberflächen
US10995302B2 (en) Liquid acidic hard surface cleaning compositions having improved viscosity
US20170015947A1 (en) Acidic hard surface cleaners comprising a solvent
EP3569683B1 (de) Flüssige saure hartflächenreinigungszusammensetzungen für verbesserte aufrechterhaltung von oberflächenglanz und verhinderung von wasserflecken und spritzern
EP3418362A1 (de) Saurer reiniger mit kationischen quervernetzten verdickungsmitteln
EP3569681A1 (de) Verbesserte verhinderung von wasserflecken und spritzern

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180221

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180620

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200414

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602016043999

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1314182

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201015

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200916

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201217

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200916

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200916

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1314182

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200916

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200916

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200916

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200916

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200916

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200916

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200916

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210118

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200916

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200916

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200916

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200916

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200916

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200916

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210116

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602016043999

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200916

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200916

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200916

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200916

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210627

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160627

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200923

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200916

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230502

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200916

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240509

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240513

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200916