EP3259409B1 - Tête d'aspiration d'un navire de dragage et procédé de dragage utilisant ladite tête d'aspiration - Google Patents

Tête d'aspiration d'un navire de dragage et procédé de dragage utilisant ladite tête d'aspiration Download PDF

Info

Publication number
EP3259409B1
EP3259409B1 EP16715344.4A EP16715344A EP3259409B1 EP 3259409 B1 EP3259409 B1 EP 3259409B1 EP 16715344 A EP16715344 A EP 16715344A EP 3259409 B1 EP3259409 B1 EP 3259409B1
Authority
EP
European Patent Office
Prior art keywords
visor
lower edge
suction head
suction
precutting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16715344.4A
Other languages
German (de)
English (en)
Other versions
EP3259409A1 (fr
Inventor
Bruno Tack
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baggerwerken Decloedt and Zoon NV
Original Assignee
Baggerwerken Decloedt and Zoon NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baggerwerken Decloedt and Zoon NV filed Critical Baggerwerken Decloedt and Zoon NV
Publication of EP3259409A1 publication Critical patent/EP3259409A1/fr
Application granted granted Critical
Publication of EP3259409B1 publication Critical patent/EP3259409B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F5/00Dredgers or soil-shifting machines for special purposes
    • E02F5/02Dredgers or soil-shifting machines for special purposes for digging trenches or ditches
    • E02F5/10Dredgers or soil-shifting machines for special purposes for digging trenches or ditches with arrangements for reinforcing trenches or ditches; with arrangements for making or assembling conduits or for laying conduits or cables
    • E02F5/104Dredgers or soil-shifting machines for special purposes for digging trenches or ditches with arrangements for reinforcing trenches or ditches; with arrangements for making or assembling conduits or for laying conduits or cables for burying conduits or cables in trenches under water
    • E02F5/108Dredgers or soil-shifting machines for special purposes for digging trenches or ditches with arrangements for reinforcing trenches or ditches; with arrangements for making or assembling conduits or for laying conduits or cables for burying conduits or cables in trenches under water using suction-effect devices
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/88Dredgers; Soil-shifting machines mechanically-driven with arrangements acting by a sucking or forcing effect, e.g. suction dredgers
    • E02F3/8858Submerged units
    • E02F3/8875Submerged units pulled or pushed
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/88Dredgers; Soil-shifting machines mechanically-driven with arrangements acting by a sucking or forcing effect, e.g. suction dredgers
    • E02F3/90Component parts, e.g. arrangement or adaptation of pumps
    • E02F3/92Digging elements, e.g. suction heads
    • E02F3/9256Active suction heads; Suction heads with cutting elements, i.e. the cutting elements are mounted within the housing of the suction head

Definitions

  • the invention relates to a suction head of a dredging vessel configured for movement in a dragging direction, wherein the suction head comprises a connecting construction connectable to a suction conduit and a visor rotatable relative to the connecting construction and having a suction opening directed toward the bottom for suctioning up bottom material.
  • the invention likewise relates to a dredging device comprising the suction head and a method for dredging bottom material under water while making use of the suction head.
  • a known suction head is for instance described in EP-A-0892116 .
  • the suction head described herein is connected to a suction conduit of a dredging vessel, for instance a trailing suction hopper dredger.
  • the suction head is provided with a visor which can be rotated between a lowered and a raised position around a shaft running transversely of a dragging direction.
  • the visor has a suction opening directed toward the bottom for suctioning up bottom material dislodged by a lower edge of the visor.
  • the suction head connected to the suction conduit is lowered underwater and in the lowered position dragged in a dragging direction of the trailing suction hopper dredger over the bottom for dredging, wherein bottom material is dislodged and suctioned away with a quantity of water to a bin of the dredging vessel through the suction conduit connected to a suction pump.
  • the dredging efficiency depends on, among other factors, the ground condition, wherein a hard and/or highly compacted bottom generally results in a low dredging efficiency. Such a bottom is indeed difficult to dislodge, whereby relatively little bottom material is suctioned up (and a large amount of water).
  • the dredging efficiency can optionally be increased by allowing the bottom material collected in the bin to settle and discharging the water layer resulting on the settled bottom material via an overflow received in the bin. Such a method cannot always be applied and can be deemed harmful to the environment. Smaller bottom material particles, which can cause a high degree of turbidity in the surrounding water, may indeed be entrained by the water.
  • AU 2005200784 A1 in figure 5 discloses a carrier beam 27 provided with a number of cutting teeth 28.
  • the position of the carrier beam 27 can be adjusted by a piston cylinder assembly 30.
  • the carrier beam 27 and teeth 28 dislodge bottom material.
  • US 4,150,502 discloses provided with a dislodging roll 22 to disturb the structure of stony ground prior to sucking it up.
  • EP 0 892 116 A1 shows a drag head having a foot section 15' adapted to provide a fixed support on the ground while dredging.
  • US 2014/0250742 A1 D4 finally discloses a drag head wherein the teeth are actuated by the same actuator that also controls movement of the visor of the drag head.
  • the present invention has for its object, among others, to provide a suction head of a dredging vessel which, compared to the known suction head, has an increased dredging efficiency, in particular for hard and/or highly compacted bottoms. Another object relates to obtaining an increased dredging efficiency in combination with a relatively low, or even non-existent bin overflow (also referred to by the skilled person as spill).
  • the suction head according to the invention comprises for this purpose a suction head according to claim 1.
  • the suction head comprises a connecting construction connectable to a suction conduit and a visor rotatable relative to the connecting construction between a lowered and a raised position around a shaft running transversely of a dragging direction P and having a suction opening directed toward the bottom for suctioning up bottom material dislodged by a lower edge of the visor, wherein the suction head further comprises a precutting device and positioning means configured to carry a lower edge of the precutting device to a greater depth than the lower edge of the raised visor so that bottom material can be dislodged with the lower edge of the precutting device.
  • a suction head according to the invention allows the bottom for dredging to first be dislodged with the pre-cutting device suitable for the purpose, wherein the dislodged bottom material is preferably not or only very partially suctioned up through the suction conduit.
  • the bottom material dislodged by the precutting device can subsequently be suctioned up with the same suction head. Because the bottom material is first dislodged, the dredging efficiency will be higher here.
  • the precutting device can in principle take any form as long as a lower edge of the precutting device can be carried to a greater depth than the lower edge of the raised visor, and the precutting device comprises a holder body which is rotatable with the positioning means relative to the connecting construction between a lowered and a raised position around a shaft running transversely of the dragging direction P.
  • the holder body is configured to be able to receive and at least temporarily hold dislodged bottom material (for instance via an open wall part).
  • a suitable holder body comprises for instance a digger bucket.
  • the dredging efficiency for bottoms which comprise (undesired) objects not suctionable through the suction conduit, such as rocks, stones and the like, is further improved in this way.
  • the precutting device can indeed pick up and discharge the objects not suctionable through the suction conduit. This can for instance prevent or delay blockage of the suction opening of the visor.
  • An embodiment of the invented suction head has for this purpose the feature that the positioning means are configured to carry the lower edge of the precutting device to a lesser depth than the lower edge of the visor in the lowered position of the visor, so that bottom material can be dislodged with the lower edge of the visor and can be suctioned up through the suction conduit.
  • the invented suction head is based on the insight that the dredging efficiency can be increased by separating cutting of the bottom from the suctioning and carrying of the cut bottom material to the bin. A shorter suctioning time can also be achieved, which is favourable for the energy consumption of the dredging vessel and can drastically reduce the spill.
  • a lower edge of the precutting device is carried to a greater depth than a lower edge of the visor. Carrying to a greater depth means that the lower edge of the precutting device penetrates deeper into the bottom than the lower edge of the visor. This latter can even (and will generally) be situated above the ground level.
  • a lower edge of the precutting device is carried to a lesser depth than a lower edge of the visor. Carrying to a lesser depth means that the lower edge of the precutting device penetrates less deeply into the bottom than the lower edge of the visor.
  • the lower edge of the precutting device can, and will even preferably be situated above the ground level.
  • Another embodiment according to the invention provides a suction head wherein a lower edge of the precutting device comprises a series of cutting tools which extends in a line transversely of the dragging direction for the purpose of penetrating into the bottom.
  • the cutting tools can be adapted to the set purpose, i.e. precutting of the bottom.
  • the geometry of the cutting tools can for instance be adapted here to the ground condition.
  • An embodiment of the suction head according to the invention comprises a precutting device, the cutting tools of which comprise a concave cutting surface in the dragging direction P. It has been found that such cutting tools are particularly suitable for dislodging hard and/or highly compacted bottom material.
  • a known suction head can be provided with a visor which is provided on a lower edge thereof with a series of cutting tools which extend in a line transversely of the dragging direction for the purpose of penetrating into the bottom.
  • Usual cutting tools or teeth for a visor generally have in the dragging direction P a substantially flat or slightly convex cutting surface.
  • the dimensions of the cutting tools of the precutting device can be chosen within broad limits. According to an embodiment, the dimensions of the cutting tools of the precutting device are at least twice as great, more preferably at least three times and most preferably at least four times as great as the dimensions of the cutting tools of the visor. The same applies to the volume of the cutting teeth, which can for instance be determined by immersing the associated cutting tools in water and measuring the water displacement.
  • the greater depth to which a lower edge of the precutting device can be carried relative to the lower edge of the raised visor can also be selected within broad limits.
  • a suction head wherein the depth at which the lower edge can be situated is at least twice as great, more preferably at least five times as great, and still more preferably at least eight times as great as the depth at which the lower edge of the raised visor is situated.
  • a further improved embodiment for discharging undesired objects is obtained with a suction head wherein a rear wall of the precutting device comprises passage openings. Less resistance is hereby generated during the forward movement, while the rear wall simultaneously functions as capture wall for the undesired objects.
  • the terms front and rear wall must be understood in relation to the dragging direction, wherein the dragging direction points from the rear wall to the front wall.
  • a useful embodiment comprises a suction head wherein the rear wall comprises a latticework of a number of intermediate walls which are placed at a distance from each other and between which the passage openings are located.
  • a number of intermediate walls are optionally connected removably to the holder body. This has the additional advantage that the size of the captured objects can be adjusted.
  • the intermediate walls can be designed in any manner. It is thus possible for instance to apply rigid elements such as rods and plates, though flexible elements such as chains and slings are also possible.
  • the positioning means with which the holder body can be rotated preferably comprise hydraulic cylinders, piston rods of which engage on an upper side of the holder body.
  • Some or all intermediate walls can if desired be connected by means of rods to a fixed part of the suction head, for instance to the connecting construction of the suction head.
  • the holder body can be carried to the retracted position by retracting piston rods or be carried in the direction of the lowered position by pushing piston rods out.
  • the stationary intermediate walls will be able to move relatively unobstructed here relative to the holder body. This enhances the escape of undesired objects from the holder body when the holder body is moved to the raised (or open) position.
  • the holder body In order to enable a lower edge of the holder body to be carried to a greater depth the holder body is rotated around a shaft running transversely of the dragging direction into a lowered position of the holder body. It is possible for the holder body to be rotated around the same shaft with which the visor is rotatable.
  • a more suitable embodiment comprises a suction head wherein the shaft around which the holder body is rotatable differs from the shaft around which the visor is rotatable. Greater depths can hereby be reached.
  • the shaft around which the holder body is rotatable is received in the visor, preferably on a downstream side (rear side) of the visor. A downstream side forms a side of the visor facing away from the dragging direction.
  • the positioning means of the precutting device can comprise any means with which a lower edge of the precutting device can be carried to a greater depth than the lower edge of the raised visor and can be held with a sufficient force at this depth during movement through the bottom. It is thus possible to move the precutting device by means of cables, screws, gear rack connections and the like.
  • a preferred embodiment comprises a suction head wherein the positioning means of the precutting device comprise hydraulic cylinders.
  • the hydraulic cylinders can for instance be connected with a movable rod side to a wall part of the precutting device. The wall part can be moved by pushing out or conversely retracting the cylinder rod.
  • a particularly suitable embodiment of the invention provides a suction head provided with means for rotating the visor, wherein these means are utilized as positioning means to carry a lower edge of the precutting device to a greater depth.
  • the drive of a visor generally comprises protruding mounts which are arranged on the connecting construction and which are connected using remotely controllable hydraulic cylinders to protruding mounts arranged on (an upper wall of) the visor.
  • the hydraulic cylinders used for rotation of the visor are also utilized to move the lower edge of the precutting device in the direction of the bottom, for instance by rotating the precutting device around a shaft running transversely of the dragging direction.
  • a wall part of the precutting device can be provided for this purpose with protruding mounts to which the hydraulic cylinder rods used for rotation of the visor can be connected.
  • a part not for rotation (visor or precutting device) can be blocked, and a part for rotation (precutting device or visor) can be unblocked by changing the position of pins.
  • This embodiment has the additional advantage that the (remote) control of (the hydraulic cylinders of) the visor can remain unchanged relative to the known suction head, and that a separate or separated drive is not necessary for the precutting device.
  • protruding mounts and hydraulic drive can take a heavier form than is the case in the known suction head.
  • the suction head according to the invention preferably comprises a visor provided with a series of cutting tools or teeth which are disposed in a line transversely of the dragging direction and which, during suctioning up of dislodged ground material, can penetrate partially into the ground dislodged by the precutting device.
  • the invention likewise relates to a dredging device comprising a dredging vessel which is configured for movement in a dragging direction P and to which a suction head according to the invention is connected.
  • a method for underwater dredging of bottom material with such a dredging device is provided in yet another aspect of the invention.
  • the suction head is dragged here in the dragging direction P over a bottom for dredging, wherein the lower edge of the precutting device is carried to a greater depth than the lower edge of the visor in the raised position of the visor, and is moved through the bottom in order to dislodge bottom material with the lower edge of the precutting device.
  • a suction pump connected to the suction conduit is set here to the OFF-position whereby substantially no bottom material is suctioned through the suction conduit.
  • a rear wall of the precutting device preferably comprises passage openings, and during movement through the bottom the precutting device carries with it and discharges objects not suctionable through the suction conduit, preferably to a position outside the area for dredging.
  • the visor is rotated into the lowered position of the visor, the lower edge of the precutting device is carried to a lesser depth than the lower edge of the lowered visor, a suction pump connected to the suction conduit is set to the ON-position and the lower edge of the visor is moved through the bottom in order to suction up the bottom material dislodged by the precutting device.
  • the method according to the invention is particularly suitable for dredging bottom material comprising rocks and/or stones, and/or for dredging hard and/or highly compacted bottoms.
  • Figure 1 shows a dredging vessel 1 which is provided with a motor, not shown in the drawing, for driving a propeller 2 via a propeller shaft for the purpose of propelling dredging vessel 1. Also present are devices, not shown in the drawings, for steering dredging vessel 1, such as a rudder and transversely placed propellers for facilitating manoeuvring.
  • a dredge pump is arranged in dredging vessel 1.
  • a suction conduit 3 Arranged against a side wall of the dredging vessel is a suction conduit 3, one end of which is connected to the suction connection of the dredge pump.
  • the suction conduit 3 comprises two members 3a and 3b which are connected to each other by means of a coupling allowing some relative angular displacement.
  • the connection between upper member 3a of suction conduit 3 and the vessel also allows angular displacement in the vertical plane and about the axis.
  • this member is connected to a cable 4a, the other end of which is connected to a winch 5a.
  • a suction head 6 is arranged on the free end of second member 3b of suction conduit 3.
  • Suction head 6 comprises a connecting construction 7 connectable to suction conduit 3 and a visor 9 rotatable relative to connecting construction 7 around a shaft 8 running transversely of dragging direction P and having a suction opening directed toward the bottom for suctioning up bottom material.
  • Visor 9 of suction head 6 is provided with a series of cutting tools in the form of teeth 10 which are attached to a toothed beam 11 running transversely of the dragging direction P and which can penetrate partially into the ground during dredging.
  • Suction head 6 further comprises a precutting device which in the shown embodiment comprises, among other parts, a holder body 12 which can be rotated relative to connecting construction 7 around a shaft 14 running transversely of dragging direction P between a lowered position as shown in figures 1 , 2 , 3 , 4 , 5A to 5C , 5E and 5F and a raised position as shown in figures 5D and 5G .
  • Shaft 14 is received in (a flange of) visor 9 and differs from shaft 8 around which visor 9 can be rotated. As shown in figures 3 and 5G , visor 9 can be rotated around shaft 8 from a raised position shown in figure 3 to a lowered position shown in figure 5G .
  • visor 9 In the raised position visor 9 is fixed by a pin-hole connection (15a, 15b) although another manner of fixing is also possible.
  • pin-hole connection (15a, 15b) When pin-hole connection (15a, 15b) is released visor 9 can be rotated around shaft 8 by means of positioning means which are formed in the shown embodiment by a pair of hydraulic cylinders 17 which are generally remotely controllable and which are connected with a movable piston rod outer end to protruding mounts 18 attached to an upper wall of holder body 12 and on a cylinder housing side to tubular mounts 19 attached to connecting construction 7.
  • visor 9 After visor 9 has been blocked by blocking pins (15a, 15b) and hydraulic cylinders 17 have been extended, holder body 12 rotates around the shaft 14 running transversely of dragging direction P with which holder body 12 and fixed visor 9 are mutually connected.
  • Holder body 12 is for instance embodied as a digger bucket and comprises two side walls (12a, 12b), a front side (facing in the dragging direction P) allowing entry of bottom material and a rear wall facing away from the dragging direction P.
  • the rear wall is provided with passage openings 20 formed by a number of intermediate walls (21a, 21b) which are placed at a distance from each other and between which passage openings 20 are located.
  • Suction head 6 is further provided with positioning means in the form of a number of hydraulic cylinders 17 with which holder body 12 can be rotated around shaft 14.
  • the piston rods of hydraulic cylinders 17 are connected to holder body 12 by means of connections 18.
  • Holder body 12 can be carried to the retracted position shown in figures 5D and 5G by retracting the piston rods of cylinders 17. Holder body 12 is lowered in the direction of the bottom by pushing the piston rods out. A number or all of the intermediate walls 21b are further connected pivotally at the bottom to holder body 12 and likewise connected pivotally on a top side to connecting construction 7 of suction head 6 by means of rods 22 and hinges 23. Intermediate walls 21 can hereby move relative to holder body 12. During raising and lowering the holder body rotates around shaft 14 and intermediate walls 21b slide in slots 24 arranged in an upper wall of holder body 12 (see figure 5C ).
  • non-suctionable objects 50 collected in holder body 12 during the precutting can be released relatively easily when holder body 12 is raised, whereby these objects 50 can exit holder body 12 in simple manner and can be offloaded outside the dredging zone ( figure 5D ).
  • a lower edge 25 of holder body 12 comprises a series of cutting tools 38 which extends in a line transversely of dragging direction P and which in use can penetrate into the bottom.
  • Cutting tools 38 can comprise any cutting tool suitable for precutting the bottom.
  • cutting tools 38 are provided with a cutting face 39 with a concave shape in the direction of the dragging direction P as shown in figure 3 . This facilitates dislodging of hard and/or highly compacted ground.
  • a lower edge 25 of holder body 12 is carried to a greater depth 30 than the depth 31 at which a lower edge 26 of the raised visor 9 is situated (see for instance figure 3 ).
  • the depth 31 of the visor lower edge 26 is positive relative to ground level 32 and edge 26 is situated above ground level 32.
  • lower edge 25 lies lower than lower edge 26 of visor 9 and also lower than ground level 32.
  • Lower edge 25 of holder body 12 can hereby be brought into contact with the bottom and dislodge bottom material during movement of the suction head in dragging direction P.
  • the depth 30 at which lower edge 25 can be situated amounts to at least five times the depth at which lower edge 26 of visor 9 is situated in the raised position of visor 9.
  • lower edge 25 of holder body 12 can be carried to a lesser depth 30 than lower edge 26 of visor 9 in the lowered position of the visor so that bottom material can be dislodged with lower edge 26 of visor 9, wherein teeth 10 enhance dislodging by penetrating into the bottom.
  • lower edge 26 of visor 9 comprises a series of cutting tools 10 which extends in a line transversely of dragging direction P and which in use can penetrate into the bottom.
  • Cutting tools 10 can comprise any cutting tool suitable for shovelling up the precut ground in relatively simple manner.
  • bottom material can be dredged under water.
  • a suction head 6 connected to a dredging vessel 1 and lowered under water can here be dragged over the bottom in dragging direction P, wherein lower edge 25 of holder body 12 is brought to a greater depth 30 than lower edge 26 of visor 9 in the raised position thereof.
  • lower edge 25 of holder body 12 is moved through the bottom in dragging direction P in order to dislodge bottom material.
  • Holder body 12 is held in a lowered position here by hydraulic cylinders 17.
  • a suction pump (not shown) connected to suction conduit 3 is in the OFF-position here, whereby substantially no bottom material is suctioned by suction conduit 3 during dislodging of the bottom.
  • a known suction head is often not capable of penetrating deeply into hard and/or highly compacted bottoms. A cutting depth of for instance only 1-15 cm can thus be reached in so-called glacial till.
  • lower edge 25 of suction head 6 is moved several times over part of a bottom, wherein ground layer thicknesses in a range of for instance 1-50 cm are dislodged during each passage.
  • ground layer thicknesses 0.5 m to at least 2 m can be dislodged in this way.
  • holder body 12 is provided with a rear wall with passage openings 20 present between intermediate walls (21a, 21b) for water and for objects of dimensions smaller than the distance between intermediate walls (21a, 21b). Larger objects 50 which cannot be suctioned up by suction conduit 3 are carried along as holder body 12 moves through the bottom ( figures 5B and 5C ). This can already take place during a first passage as shown in figures 5A to 5C wherein the depth at which lower edge 25 of holder body 12 is situated amounts to the order of magnitude of 10-15 cm. Objects 50 can for instance comprise stones or rocks present in the bottom with dimensions of 30 cm and more.
  • holder body 12 When holder body 12 is filled with objects 50, these objects 50 are discharged to a suitable location outside the area for dredging, as shown in figure 5D .
  • the degree of filling of holder body 12 can be measured with a measuring device suitable for the purpose, the measurement of which is visible to the operator of suction head 6.
  • a layer thickness of dislodged ground material is obtained of 10-15 cm.
  • the dislodged ground material remains lying on the bottom as a relatively soft layer of fragments of bottom material, for instance glacial till fragments.
  • a subsequent passage holder body 12 will penetrate easily through the dislodged ground layer.
  • lower edge 25 of holder body 12 will have penetrated to a depth of for instance 1.5 m into the dislodged ground, as shown in figures 5E and 5F .
  • suction head 6 is changed from the precutting position, in which holder body 12 is in the lowered position, to a suction position wherein visor 9 is brought into the lowered position of visor 9.
  • This can take place in simple manner by raising holder body 12 with hydraulic cylinders 17, and connecting it rigidly in the raised position to visor 9 by means of a pin-hole connection.
  • Pins 15a are subsequently removed from holes 15b, whereby pin-hole connection (15a, 15b) is released and visor 9 can be moved freely relative to connecting construction 7 using hydraulic cylinders 17.
  • Lower edge 25 of holder body 12 is brought to a lesser depth 30 here than lower edge 26 of the lowered visor 9 (the depth 30 is thus negative).
  • Lower edge 26 of visor 19 is held at a depth 31 with hydraulic cylinders 17 and moved through the bottom in dragging direction P in order to suction up the bottom material dislodged by holder body 12.
  • a suction pump (not shown) connected to suction conduit 3 is placed for this purpose in the ON-position. Because the dislodged ground material forms a soft bottom layer, it is suctioned up with increased efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Manipulator (AREA)
  • Cleaning Of Streets, Tracks, Or Beaches (AREA)

Claims (16)

  1. Tête aspirante (6) d'un navire de dragage (1) configurée pour se déplacer dans une direction de dragage P, étant entendu que la tête aspirante (6) comprend une structure de raccordement (7) raccordable à une conduite aspirante (3) et une visière (9) rotative par rapport à la structure de raccordement (7) entre une position abaissée et une position relevée autour d'un arbre (8) courant transversalement à la direction de dragage P et comportant une ouverture d'aspiration dirigée vers le fond en vue d'aspirer du matériau du fond détaché par un bord inférieur de la visière (9), étant entendu que la tête aspirante (6) comprend par ailleurs un dispositif de prédécoupe et des moyens de positionnement (17) configurés pour amener un bord inférieur du dispositif de prédécoupe à une profondeur plus grande que le bord inférieur de la visière (9) dans la position relevée de la visière (9) de telle sorte que le matériau du fond puisse être détaché par le bord inférieur du dispositif de prédécoupe, caractérisée en ce que le dispositif de prédécoupe comprend un corps conteneur (12) qui est rotatif avec les moyens de positionnement (17) par rapport à la structure de raccordement (7) entre une position abaissée et une position relevée autour d'un arbre (14) courant transversalement à la direction de dragage P, étant entendu qu'une paroi arrière du dispositif de prédécoupe comprend des ouvertures de passage (20) et que le corps conteneur (12) est configuré en vue de recevoir et de contenir le matériau détaché du fond.
  2. Tête aspirante (6) selon la revendication 1, étant entendu que les moyens de positionnement (17) sont configurés pour amener le bord inférieur du dispositif de prédécoupe à une profondeur moindre que le bord inférieur de la visière (9) dans la position abaissée de la visière (9) de telle sorte que du matériau du fond puisse être détaché par le bord inférieur de la visière (9).
  3. Tête aspirante (6) selon la revendication 1 ou 2, étant entendu qu'un bord inférieur du dispositif de prédécoupe comprend une série d'outils de coupe qui s'étendent sur une ligne transversalement à la direction de dragage dans le but de pénétrer dans le fond.
  4. Tête aspirante (6) selon la revendication 3, étant entendu qu'un bord inférieur de la visière (9) comprend une série d'outils de coupe qui s'étendent sur une ligne transversalement à la direction de dragage dans le but de pénétrer dans le fond, et que les outils de coupe du dispositif de prédécoupe diffèrent des outils de coupe de la visière (9).
  5. Tête aspirante (6) selon l'une quelconque des revendications précédentes, étant entendu que la profondeur à laquelle le bord inférieur du dispositif de prédécoupe peut se situer, est au moins égale à cinq fois la distance depuis le bord inférieur de la visière (9) dans les positions relevée et abaissée.
  6. Tête aspirante (6) selon la revendication 1, étant entendu que l'arbre (14) autour duquel le corps conteneur (12) est rotatif, diffère de l'arbre (8) autour duquel la visière (9) est rotative.
  7. Tête aspirante (6) selon la revendication 6, étant entendu que l'arbre (14) autour duquel le corps conteneur (12) est rotatif, est reçu dans la visière (9).
  8. Tête aspirante (6) selon l'une quelconque des revendications précédentes, étant entendu que les moyens de positionnement (17) du dispositif de prédécoupe comprennent des vérins hydrauliques.
  9. Tête aspirante (6) selon l'une quelconque des revendications précédentes, étant entendu que la tête aspirante (6) est dotée de moyens pour faire tourner la visière (9) et que ces moyens sont utilisés comme moyens de positionnement (17) pour amener un bord inférieur du dispositif de prédécoupe à une profondeur plus grande.
  10. Tête aspirante (6) selon l'une quelconque des revendications précédentes, étant entendu que la paroi arrière comprend un treillis constitué d'un certain nombre de parois intermédiaires qui sont placées à une certaine distance l'une de l'autre et entre lesquelles les ouvertures de passage (20) sont situées.
  11. Tête aspirante (6) selon la revendication 10, étant entendu que les moyens de positionnement (17) comprennent des vérins hydrauliques qui prennent appui sur un côté supérieur du dispositif de prédécoupe, et que les parois intermédiaires sont reliées de manière fixe à la structure de raccordement (7) de la tête aspirante (6).
  12. Dispositif de dragage comprenant un navire de dragage (1) qui est configuré pour se déplacer dans une direction de dragage P, et une tête aspirante (6) selon l'une quelconque des revendications 1-11 raccordée au navire de dragage (1).
  13. Procédé de dragage subaquatique de matériau du fond avec un dispositif de dragage selon la revendication 12, étant entendu que la tête aspirante (6) est traînée dans la direction de dragage P sur un fond en vue de son dragage, étant entendu que le bord inférieur du dispositif de prédécoupe est amené à une profondeur plus grande que le bord inférieur de la visière (9) dans la position relevée de la visière (9), et qu'elle est déplacée dans le fond en vue de détacher du matériau du fond avec le bord inférieur du dispositif de prédécoupe.
  14. Procédé selon la revendication 13, étant entendu qu'une pompe aspirante reliée à la conduite aspirante (3) est mise sur la position ARRÊT moyennant quoi sensiblement aucun matériau du fond n'est aspiré dans la conduite aspirante (3).
  15. Procédé selon la revendication 13 ou 14, étant entendu qu'une paroi arrière du dispositif de prédécoupe comprend des ouvertures de passage (20) et que, pendant son déplacement dans le fond, le dispositif de prédécoupe emmène avec lui et décharge des objets non aspirables dans la conduite aspirante (3).
  16. Procédé selon la revendication 13, étant entendu que la visière (9) est amenée dans la position abaissée de la visière (9), que le bord inférieur du dispositif de prédécoupe est amené à une profondeur moindre que le bord inférieur de la visière (9) dans la position abaissée de la visière (9), qu'une pompe aspirante reliée à la conduite aspirante (3) est mise sur la position MARCHE et que le bord inférieur de la visière (9) est déplacé dans le fond en vue d'aspirer le matériau du fond détaché par le dispositif de prédécoupe.
EP16715344.4A 2015-02-18 2016-02-17 Tête d'aspiration d'un navire de dragage et procédé de dragage utilisant ladite tête d'aspiration Active EP3259409B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BE2015/5089A BE1022377B1 (nl) 2015-02-18 2015-02-18 Zuigkop van een baggerschip en werkwijze voor het baggeren met behulp van deze zuigkop
PCT/IB2016/050838 WO2016132299A1 (fr) 2015-02-18 2016-02-17 Tête d'aspiration d'un navire de dragage et procédé de dragage utilisant ladite tête d'aspiration

Publications (2)

Publication Number Publication Date
EP3259409A1 EP3259409A1 (fr) 2017-12-27
EP3259409B1 true EP3259409B1 (fr) 2019-04-10

Family

ID=53476605

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16715344.4A Active EP3259409B1 (fr) 2015-02-18 2016-02-17 Tête d'aspiration d'un navire de dragage et procédé de dragage utilisant ladite tête d'aspiration

Country Status (5)

Country Link
EP (1) EP3259409B1 (fr)
BE (1) BE1022377B1 (fr)
DK (1) DK3259409T3 (fr)
LT (1) LT3259409T (fr)
WO (1) WO2016132299A1 (fr)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL165249C (nl) * 1975-12-19 1981-03-16 Ballast Nedam Groep Nv Werkwijze en inrichting voor het breken van onder water gelegen harde grond.
BE1011285A3 (nl) * 1997-07-17 1999-07-06 Dredging Int Sleepkop voor een sleephopperzuiger en werkwijze voor het baggeren met behulp van deze sleepkop.
BE1015911A3 (nl) * 2004-02-19 2005-11-08 Dredeco Pty Ltd Sleepkop en hopperzuiger.
US20140250742A1 (en) * 2013-03-11 2014-09-11 Great Lakes Dredge & Dock Company, Llc Draghead system for use in dredging or the like

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3259409A1 (fr) 2017-12-27
BE1022377B1 (nl) 2016-03-18
DK3259409T3 (da) 2019-07-15
LT3259409T (lt) 2019-10-25
WO2016132299A1 (fr) 2016-08-25

Similar Documents

Publication Publication Date Title
EP1851386B1 (fr) Tête à défoncer pour draguer le sol, et procédé de dragage correspondant
EP2729629B1 (fr) Tête de drague et drague aspiratrice en marche
CA2495337C (fr) Godet excavateur de tranchees
RU2603685C2 (ru) Грунтозаборное устройство для драгирующего судна и способ драгирования, используя упомянутое грунтозаборное устройство
EP2342385B1 (fr) Tête de traînage pour une drague aspiratrice remorquée et procédé pour draguer à l aide de cette tête de traînage
EP3205778B1 (fr) Tête de dragage et procédé associé permettant de former une tranchée dans un fond sous-marin
EP2877640B1 (fr) Appareil et procédé de ramassage autonettoyants
EP3271517B1 (fr) Appareil de dragage et procédé de dragage
US20160244926A1 (en) Method and device for deepening riverbeds and their cleaning from sediments
AU2013264903B2 (en) Suction head for a dredging vessel and method for dredging using this suction head
CA2441988A1 (fr) Broyeuse de souches verticale a deplacement souterrain
EP2855781B1 (fr) Bec d'élinde d'une drague aspiratrice en marche et procédé pour le dragage à l'aide de ledit bec d'élinde
EP3259409B1 (fr) Tête d'aspiration d'un navire de dragage et procédé de dragage utilisant ladite tête d'aspiration
CN210049308U (zh) 一种耙吸式挖泥船深挖耙头
EP2871292A2 (fr) Dispositif de coupe pour déloger un fond sous-marin et procédé correspondant
DE19753349C2 (de) Unterwasser-Bodenabbaugerät
JPS62225631A (ja) 浚渫装置
NL2020061B1 (en) Device and associated method for clearing boulders and other objects from an underwater bottom
EP2804991B1 (fr) Embout de dragage pour un engin de dragage et procédé associé
JPS62160329A (ja) 採取ブ−ム付き砂採取船
NL2009062C2 (en) Vessel for forming a trench in a water bottom.

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170911

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20181002

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1118812

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602016012267

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20190711

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1118812

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190410

REG Reference to a national code

Ref country code: EE

Ref legal event code: FG4A

Ref document number: E017819

Country of ref document: EE

Effective date: 20190709

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190910

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190810

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602016012267

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

26N No opposition filed

Effective date: 20200113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200217

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200217

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20210223

Year of fee payment: 6

Ref country code: EE

Payment date: 20210203

Year of fee payment: 6

Ref country code: FI

Payment date: 20210225

Year of fee payment: 6

Ref country code: LT

Payment date: 20210202

Year of fee payment: 6

Ref country code: NL

Payment date: 20210224

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LV

Payment date: 20210204

Year of fee payment: 6

Ref country code: GB

Payment date: 20210225

Year of fee payment: 6

Ref country code: DK

Payment date: 20210225

Year of fee payment: 6

Ref country code: SE

Payment date: 20210225

Year of fee payment: 6

Ref country code: BE

Payment date: 20210225

Year of fee payment: 6

Ref country code: DE

Payment date: 20210225

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602016012267

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MM4D

Effective date: 20220217

REG Reference to a national code

Ref country code: EE

Ref legal event code: MM4A

Ref document number: E017819

Country of ref document: EE

Effective date: 20220228

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20220228

REG Reference to a national code

Ref country code: FI

Ref legal event code: MAE

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20220301

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220228

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220218

Ref country code: LT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220217

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220217

Ref country code: EE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220301

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220217

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220228

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220228