EP3259221A1 - Position control of a boom tip - Google Patents

Position control of a boom tip

Info

Publication number
EP3259221A1
EP3259221A1 EP16708951.5A EP16708951A EP3259221A1 EP 3259221 A1 EP3259221 A1 EP 3259221A1 EP 16708951 A EP16708951 A EP 16708951A EP 3259221 A1 EP3259221 A1 EP 3259221A1
Authority
EP
European Patent Office
Prior art keywords
mast
large manipulator
manipulator according
sensor
segment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP16708951.5A
Other languages
German (de)
French (fr)
Other versions
EP3259221B1 (en
Inventor
Johannes HENIKL
Wolfgang KEMMETMÜLLER
Andreas Kugi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Friedrich Wilhelm Schwing GmbH
Original Assignee
Friedrich Wilhelm Schwing GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Friedrich Wilhelm Schwing GmbH filed Critical Friedrich Wilhelm Schwing GmbH
Publication of EP3259221A1 publication Critical patent/EP3259221A1/en
Application granted granted Critical
Publication of EP3259221B1 publication Critical patent/EP3259221B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/04Auxiliary devices for controlling movements of suspended loads, or preventing cable slack
    • B66C13/06Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for minimising or preventing longitudinal or transverse swinging of loads
    • B66C13/066Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for minimising or preventing longitudinal or transverse swinging of loads for minimising vibration of a boom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/46Position indicators for suspended loads or for crane elements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/02Conveying or working-up concrete or similar masses able to be heaped or cast
    • E04G21/04Devices for both conveying and distributing
    • E04G21/0418Devices for both conveying and distributing with distribution hose
    • E04G21/0445Devices for both conveying and distributing with distribution hose with booms
    • E04G21/0463Devices for both conveying and distributing with distribution hose with booms with boom control mechanisms, e.g. to automate concrete distribution

Definitions

  • the invention relates to a large manipulator with a foldable mast arm having a rotatable about a vertical axis turntable and a plurality of mast segments, wherein the mast segments are limited to articulated joints about horizontal bending axes relative to an adjacent mast segment or the turntable by means of a respective drive unit pivotally limited and at Mastarm means for measuring the inclination are arranged, and a truck-mounted concrete pump with a large manipulator according to the invention.
  • the height of the mast top relative to the height of the vehicle can be detected by inclination sensors mounted on all mast segments.
  • the kite's position can be calculated using a kinematic description of the system.
  • the deformation of the pole segments is implicitly taken into account by the use of inclination sensors.
  • the tilt sensors typically used can not distinguish between a change in inclination and a translational acceleration of the sensor. For dynamic movements, these therefore provide incorrect measured values. They are therefore not suitable for the implementation of a position control.
  • a large manipulator is to be provided in which a vertical movement of a boom tip of a truck-mounted concrete pump during the pumping operation can be effectively reduced, which among other things leads to a significant relief for the leader of the end hose.
  • the large manipulator according to the invention comprises a folding mast arm having a rotatable about a vertical axis turntable and a plurality of mast segments, wherein the mast segments are limited to articulated joints about horizontal bending axes relative to an adjacent mast segment or the turntable by means of a respective drive unit pivotally limited.
  • the large manipulator according to the invention is characterized in that it has at least one inertial sensor for measuring the inclination and / or the acceleration of at least one pole segment.
  • the large manipulator according to the invention thus has the advantage over the prior art that a statically and dynamically accurate measurement of the vertical movements of the mast tip can be achieved by it.
  • an inertial sensor is preferably an acceleration sensor which detects the vertical acceleration at the location of the sensor.
  • the inertial sensor is a combined sensor which has a rotation rate sensor in addition to a two-axis acceleration sensor.
  • the axis of the rotation rate sensor is orthogonal to the acceleration axes. Since translational movements have only a very small influence on the rotation rate sensor, the measurement signals of the rotation rate sensor can be used to detect and correct a falsification of the determined from the measurement signals of the acceleration sensor inclination angle.
  • the inclination angle can be determined by temporal integration of the measured rate of rotation, wherein the determined by the acceleration sensors inclination angle is used for stationary balancing.
  • a gyroscope measures the rate of rotation of the inclination, which is not influenced by the translatory movement becomes.
  • an observer in the form of an extended Kalman filter or an approach with complementary filters can be used to combine the measuring signals of the acceleration sensors and the yaw rate sensor.
  • At least one inertial sensor can be arranged on each pole segment. As a result, the measurement accuracy and reliability can be further improved.
  • the inertial sensors are arranged substantially in the middle of a mast segment. Due to the slim design of the mast arm, the individual mast segments have in operation due to the static and dynamic forces not negligible elastic deformations. Due to the arrangement of the sensors in the middle of the mast segments, the difference of the measured inclinations of two successive mast segments in addition to the exact joint angle also includes a portion of the elastic deformation. As a result, the kinematics of the mast arm can be considered approximately as rigid body problem. Ideally, each pole segment has an inertial sensor, which is arranged approximately in the middle of the respective pole segment.
  • the inertial sensor is arranged on the last pole segment.
  • the mast segment is meant according to the invention, which is located furthest away from the turntable and at the outer end of which preferably a hose end is attached.
  • the inertial sensor on the last pole segment is not arranged in the middle. Since the influence of the beam curvature of the last mast segment on the height of the mast tip is small in relation to that of the preceding mast segments, such an arrangement leads to a sufficiently accurate measurement result.
  • the mast arm at the top of the mast has an intertial sensor. As a result, the measurement of the height of the mast tip during rapid movements with large accelerations can be further improved.
  • two sensors can be arranged on the last pole segment.
  • a sensor is in Located substantially in the middle and another sensor at the mast top, so at the outer end of the mast segment.
  • a sensor is arranged.
  • at least one of the articulated joints of the mast arm is associated with an angle sensor which detects the angular position of this articulated joint.
  • each articulated joint is associated with an angle sensor.
  • the large manipulator (by means of a suitable computer) with advantage for calculating the height of the mast top from the detected angular positions of the articulated joints in combination with the detected by means of the last mast segment, in particular at the mast top, arranged inertial acceleration can be established.
  • the angle sensors are not inertial sensors, but sensors with geometric resolution (with mechanical, resistive, inductive, optical or magnetic action principle).
  • the angular sensors serve to determine the (static) position of the mast arm.
  • the height of the mast top can first be determined via the angular positions of the articulated joints. In order to optimize the accuracy, the deflection of the mast segments can be taken into account.
  • the measurement signals ie the measurement signal of the vertical acceleration and the height measurement signal determined by means of the angle of inclination, may preferably be combined with one another by suitably selected, preferably complementary, filters.
  • the over the inclinations of the mast segments determined height of the mast tip is filtered with a low pass with a suitable cutoff frequency to filter out high-frequency dynamic noise.
  • the two-time integrated vertical acceleration signal is filtered with a complementary high pass with the same cutoff frequency.
  • the two filtered signals are then combined and give an accurate reading of the height of the mast top.
  • their function can also be realized by an observer or a Kalman filter.
  • the large manipulator according to the invention preferably has a position controller.
  • the position controller can be realized effectively acting control of the height of the mast tip, whereby an induced vertical movement of the mast tip is compensated.
  • the height of the mast tip can in principle be manipulated with each joint. While a great manipulability is given for inclinations of the associated mast segment near the horizontal for the relevant joint, this disappears at inclinations close to the vertical.
  • the user with a single joystick, which has at least two adjustment directions for the mast tip specifically specify a stretching or shortening while maintaining the height or a lifting or lowering movement while maintaining the radius.
  • an algorithm is used to calculate actuating signals for the hydraulic actuators of the individual joints, which initiate the desired movement.
  • the position controller preferably feeds back the deviation of the measured height of the mast tip from its nominal value as a specification of a lifting or lowering movement of the mast tip for example Cartesian or cylindrical control on the system.
  • a control circuit for vibration damping of the mast is implemented on the basis of a control of the joint angle.
  • This control circuit preferably has a computer unit which calculates the height of the mast top on the basis of a kinematic description of the mast and the measurements of the inclination angle of the individual mast segments with respect to the earth's gravity field.
  • the angular velocities of the individual articulated joints are considered as manipulated variables of this vibration damping control loop.
  • the position control according to the invention is preferably superimposed on the vibration damping.
  • the position control preferably has a proportional / integral differential controller (PID controller). Based on a control deviation (actual / setpoint value of the height of the mast tip), the controller determines a control output, which is specified as the nominal movement of the mast tip in the form of a lifting or lowering movement.
  • the algorithm determines therefrom the control signals which are applied to the control inputs of the individual mast joints, ie in practice the control inputs of the proportional hydraulic valves of the hydraulic drives.
  • the algorithm is designed such that based on the orientation of the individual mast arms and / or the distance of the individual mast joints to the turntable weighting takes place, with which the weighted on the control inputs of the individual mast joints control signals are weighted.
  • the weighting increases, the farther the joint is from the turntable or the closer the joint is arranged on the jib tip.
  • the control of the mast joints farther away from the turntable offers the advantage that the mass to be moved is lower and thus can be counteracted faster and more effectively a change in position.
  • the weighting increases horizontally, the individual mast arms run. The regulation should preferably act on the horizontally extending mast arms in order to be able to influence the height of the cantilever tip effectively.
  • the algorithm or the weighting according to the invention is therefore expediently carried out in such a way that, in principle, the last master arm is subjected to the largest actuating signal if it has an approximately horizontal course. However, if the last boom arm is essentially vertical, then another boom arm with a horizontal course receives a larger weighting and is loaded with a correspondingly larger actuating signal.
  • the sensor and control concept according to the invention can be realized as a total effective control of the height of the cantilever tip.
  • the setpoint for the height of the mast top is preferably determined in practical operation by the method of the operator and therefore results from the rest position for the current position of the mast arm.
  • the large manipulator according to the invention is preferably used for the distribution of thick matter. In particular, it serves to convey concrete.
  • the subject of the invention is a truck-mounted concrete pump.
  • the truck-mounted concrete pump according to the invention has a vehicle frame, a slurry pump arranged on the vehicle frame, in particular a concrete pump, and a large-scale manipulator with the inertial sensors described above.
  • FIGS. show a particularly preferred embodiment of the invention.
  • the invention is not limited to the embodiments shown.
  • the invention includes, as far as is technically feasible, any combination of the technical features that are listed in the claims or described in the description as being relevant to the invention.
  • FIG. 1 is a schematic view of a mast arm according to the invention in a first embodiment
  • FIG. 2 is a schematic view of a mast arm according to the invention in a second embodiment
  • Fig. 3 is a schematic view of a mast arm according to the invention in a third embodiment.
  • Fig. 4 is a schematic view of a mast arm according to the invention in a fourth embodiment.
  • Fig. 5 is a schematic control circuit according to a
  • FIG. 1 shows a schematic representation of a mast arm 10 according to the invention with means 34, 36, 38 for inclination measurement in a first embodiment.
  • the large manipulator has a folding mast arm 10 with a pivotable about a vertical axis turntable 12 and a plurality of mast segments 14, 1 6, 18.
  • the mast segments 14, 1 6, 18 are at buckles 20, 22, 24 about each horizontal bending axes relative to an adjacent mast segment 14, 1 6, 18 or the turntable 12 by means of a respective drive unit 26, 28, 30 pivotally limited.
  • the mast arm 10 preferably has between three and five mast segments 14, 1 6, 18.
  • the large manipulator according to the invention has at least one inertial sensor 34, 36, 38 for detecting the inclination of the pole segments 14, 16, 18 with respect to the earth.
  • the inertial sensors 34, 36, 38 each preferably consist of a two-axis acceleration sensor and a rotation rate sensor. Ideally, the axis of the rotation rate sensor is orthogonal to the acceleration axes of the acceleration sensor. Since the translatory movements have only a very small influence on the yaw rate sensors, their measurements are used to detect and correct distortions of the angles of inclination determined from the acceleration measurements. As a result, a measurement error is reduced during movements of the mast.
  • the mast arm 10 according to the invention shown in FIG. 1 has an inertial sensor 34, 36, 38 on each mast segment 14, 16, 18.
  • the inertial sensors 34, 36, 38 are arranged substantially in the middle of the pole segments 14, 16, 18.
  • FIG. 2 shows a schematic representation of a mast arm 10 according to the invention with means for tilt measurement in a second embodiment.
  • the mast segments 14, 16, 18 each have an inertial sensor 34, 36, 38, which are arranged substantially in the middle thereof.
  • an additional measurement of the accelerations takes place directly at the mast tip 32.
  • the double temporal integration of the portion of the acceleration in the vertical direction produces a measurement signal which is a good match with the dynamic components of the motion sequence in the higher frequency band.
  • FIG. 3 shows a schematic representation of a mast arm 10 according to the invention with means for tilt measurement in a third embodiment.
  • the mast segments 14, 16 each have an inertial sensor 34, 36, which are arranged substantially in the middle thereof.
  • the mast segment 18 has an inertial sensor 40 at its outer end, the mast top 32. Since the influence of the beam curvature of the last mast segment 18 on the height of the mast tip is small in relation to those of the preceding mast segments 14, 16, such an arrangement leads to a sufficiently accurate measurement result.
  • An additional sensor 38 can thus be dispensed with.
  • FIG. 4 shows a schematic view of a mast arm 10 according to the invention in a fourth embodiment.
  • the mast segments 14, 16, 18 each have an angle sensor 48, 50, 52.
  • the angle sensors 48, 50, 52 detect the angular positions of the individual articulated joints 20, 22, 24.
  • An inertial sensor 40 which detects the vertical acceleration of the masthead 32, is also arranged on the masthead 32.
  • the vibration damping according to the invention, a position control based on a PID controller 46 and a module 47 for controlling the lifting or lowering movement of the mast top 32 superimposed.
  • a position control based on a PID controller 46 and a module 47 for controlling the lifting or lowering movement of the mast top 32 superimposed.
  • the position control determines based on the deviation (deviation of the actual value of the height of the mast tip 32 of the setpoint) a controller output A, which is specified as a desired value in the form of a lifting or lowering movement of the mast tip for the module 47.
  • the setpoint for the height of the mast top 32 is determined in practical operation by the method of the operator and therefore results from the rest position for the current position of the mast arm 10.
  • An exact calculation of the rest position of the height of the mast tip 32 based on the current steady state values Joint angle is due to the complexity of the overall system and the only inaccurate knowledge of the model parameters for practical operation not possible and not necessary. Therefore, a simple high pass filter 44 with a suitably chosen cutoff frequency is used for the PID controller 46 to determine the control deviation.
  • a displacement of the height from the original position by the controller intervention is prevented by the underlying vibration damping control, which includes a regulation of the joint positions. Due to the illustrated scheme, vertical Movements of the mast top 32, such as a truck-mounted concrete pump during the pumping operation, can be effectively reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Manipulator (AREA)

Abstract

The invention relates to a large manipulator, which has a boom arm (10), which can be folded out and which has a turntable (12) that is rotatable about a vertical axis and a plurality of boom segments (14, 16, 18), wherein each boom segment (14, 16, 18) can be pivoted to a limited extent by a drive unit (26, 28, 30) with respect to an adjacent boom segment (14, 16, 18) or the turntable (12) about a horizontal axis of articulation at an articulation joint (20, 22, 24). The problem addressed by the invention is that of developing such a large manipulator in such a way that the dynamics of the system can be sensed metrologically and can be used in respect of control. Overall, a large manipulator for which vertical motion of the boom tip (32) can be reduced should be provided. The problem is solved in that the large manipulator has at least one inertial sensor (34, 36, 38, 40) for measuring the tilt and/or the acceleration of at least one boom segment (14, 16, 18). The invention further relates to a truck-mounted concrete pump.

Description

POSITIONSREGELUNG EINER MASTSPITZE  POSITION CONTROL OF A MASTER TIP
Die Erfindung betrifft einen Großmanipulator mit einem ausfaltbaren Mastarm, der einen um eine Hochachse drehbaren Drehschemel und eine Mehrzahl von Mastsegmenten aufweist, wobei die Mastsegmente an Knickgelenken um jeweils horizontale Knickachsen gegenüber einem benachbarten Mastsegment oder dem Drehschemel mittels je eines Antriebsaggregates begrenzt verschwenkbar sind und wobei an dem Mastarm Mittel zur Neigungsmessung angeordnet sind, sowie eine Autobetonpumpe mit einem erfindungsgemäßen Großmanipulator. The invention relates to a large manipulator with a foldable mast arm having a rotatable about a vertical axis turntable and a plurality of mast segments, wherein the mast segments are limited to articulated joints about horizontal bending axes relative to an adjacent mast segment or the turntable by means of a respective drive unit pivotally limited and at Mastarm means for measuring the inclination are arranged, and a truck-mounted concrete pump with a large manipulator according to the invention.
Bei modernen Autobetonpumpen werden im Allgemeinen Doppelkolbenpumpen zur Förderung des flüssigen Betons eingesetzt. Der Wechsel zwischen den aktiven Phasen der einzelnen Kolben verursacht eine Unterbrechung im Betonfluss. Gerade bei hohen Fördermengen kommt es hierbei zu einer stoßartigen Anregung des Auslegers. Diese zyklische Anregung verursacht Bewegungen an der Spitze des Auslegers, welche für den Führer des Endschlauchs eine Behinderung und Belastung im Betrieb darstellen. Aus dem Stand der Technik ist eine Vielzahl an Systemen zur aktiven Dämpfung von elastischen Schwingungen des Auslegers bekannt. Diese reduziert zwar die Bewegungen und können Resonanzphänomene bei ungünstig eingestellter Pumpfrequenz verhindern, eine zufriedenstellende Kompensation der Bewegungen der Auslegerspitze ist damit jedoch nicht möglich. In modern truck-mounted concrete pumps, double piston pumps are generally used to convey liquid concrete. The change between the active phases of the individual pistons causes an interruption in the concrete flow. Especially at high flow rates, this results in a jerky excitation of the boom. This cyclic excitation causes movements at the tip of the boom, which constitute an obstruction and strain to the operator of the end hose. From the prior art, a variety of systems for active damping of elastic vibrations of the boom is known. Although this reduces the movements and can prevent resonance phenomena at unfavorably set pumping frequency, but a satisfactory compensation of the movements of the cantilever tip is not possible.
Die DE 195 03 895 A1 offenbart einen einfachen Lageregelkreis, welcher die vertikale Bewegung kompensiert. Als problematisch erweist sich hier jedoch die notwendige messtechnische Erfassung der Höhe. Hierzu werden Ultraschall- und Lasersensoren zur Messung des Abstands der Auslegerspitze zum Boden vorgeschlagen. Dieses Messprinzip hat sich jedoch im praktischen Einsatz als unbrauchbar herausgestellt, da im Betrieb kein hindernisfreier Raum zwischen der emittierenden Quelle und der Bezugsebene garantiert werden kann. Des Weiteren wird für die Umsetzung der Regelung die Verwendung des lediglich letzten Mastgelenks vorgeschlagen. Bei Neigungen des Mastes gegenüber dem Erdschwerefeld nahe der Vertikalen ist dieses Regelkonzept jedoch nicht einsetzbar. DE 195 03 895 A1 discloses a simple position control loop which compensates for the vertical movement. However, the necessary metrological detection of the height proves to be problematic here. For this purpose, ultrasonic and Lasersensoren proposed for measuring the distance of the boom tip to the ground. However, this measuring principle has proven to be useless in practical use, since no obstacle-free space between the emitting source and the reference plane can be guaranteed during operation. Furthermore, the use of the only last mast joint is proposed for the implementation of the regulation. In inclinations of the mast with respect to the earth's gravity field near the vertical, however, this control concept can not be used.
Des Weiteren ist aus der EP 1 537 282 B1 bekannt, dass die Höhe der Mastspitze relativ zur Höhe des Fahrzeugs durch an allen Mastsegmenten angebrachte Neigungssensoren erfasst werden kann. Durch die Messung der Neigungen gegenüber dem Erdschwerefeld kann mit einer kinematischen Beschreibung des Systems die Position der Mastspitze berechnet werden. Hierbei ist es von Vorteil, dass durch die Verwendung von Neigungssensoren die Deformation der Mastsegmente implizit mitberücksichtigt wird. Die typischerweise eingesetzten Neigungssensoren können jedoch nicht zwischen einer Änderung der Neigung und einer translatorischen Beschleunigung des Sensors unterscheiden. Bei dynamischen Bewegungen liefern diese daher falsche Messwerte. Sie sind daher für die Umsetzung einer Lageregelung nicht verwendbar. Es ist somit Aufgabe der vorliegenden Erfindung, die bekannten Großmanipulatoren derart weiterzuentwickeln, dass die Dynamik des Systems messtechnisch erfassbar und regelungstechnisch verwertbar ist. Insgesamt soll ein Großmanipulator bereitgestellt werden, bei dem eine vertikale Bewegung einer Auslegerspitze einer Autobetonpumpe während des Pumpbetriebs effektiv reduziert werden kann, was unter anderem zu einer wesentlichen Entlastung für den Führer des Endschlauchs führt. Furthermore, it is known from EP 1 537 282 B1 that the height of the mast top relative to the height of the vehicle can be detected by inclination sensors mounted on all mast segments. By measuring the slopes with respect to the Earth's gravity field, the kite's position can be calculated using a kinematic description of the system. In this case, it is advantageous that the deformation of the pole segments is implicitly taken into account by the use of inclination sensors. However, the tilt sensors typically used can not distinguish between a change in inclination and a translational acceleration of the sensor. For dynamic movements, these therefore provide incorrect measured values. They are therefore not suitable for the implementation of a position control. It is therefore an object of the present invention to further develop the known large manipulators in such a way that the dynamics of the system can be detected metrologically and utilized in terms of control engineering. Overall, a large manipulator is to be provided in which a vertical movement of a boom tip of a truck-mounted concrete pump during the pumping operation can be effectively reduced, which among other things leads to a significant relief for the leader of the end hose.
Gelöst wird diese Aufgabe durch einen Großmanipulator mit den Merkmalen des Anspruchs 1 sowie eine Autobetonpumpe mit den Merkmalen des Anspruchs 19. Vorteilhafte Ausgestaltungen sind jeweils Gegenstand der abhängigen Ansprüche. Es ist darauf hinzuweisen, dass die in den Ansprüchen einzeln aufgeführten Merkmale auch in beliebiger und technologisch sinnvoller Weise miteinander kombiniert werden können und somit weitere Ausgestaltungen der Erfindung aufzeigen. This object is achieved by a large manipulator with the features of claim 1 and a truck-mounted concrete pump with the features of claim 19. Advantageous embodiments are the subject matter of the dependent claims. It should be noted that the features listed individually in the claims also in any technologically meaningful way can be combined with each other and thus show further embodiments of the invention.
Der erfindungsgemäße Großmanipulator umfasst einen ausfaltbaren Mastarm, der einen um eine Hochachse drehbaren Drehschemel und eine Mehrzahl von Mastsegmenten aufweist, wobei die Mastsegmente an Knickgelenken um jeweils horizontale Knickachsen gegenüber einem benachbarten Mastsegment oder dem Drehschemel mittels je eines Antriebsaggregates begrenzt verschwenkbar sind. Der erfindungsgemäße Großmanipulator zeichnet sich dadurch aus, dass er wenigstens einen Inertialsensor zur Messung der Neigung und/oder der Beschleunigung wenigstens eines Mastsegmentes aufweist. The large manipulator according to the invention comprises a folding mast arm having a rotatable about a vertical axis turntable and a plurality of mast segments, wherein the mast segments are limited to articulated joints about horizontal bending axes relative to an adjacent mast segment or the turntable by means of a respective drive unit pivotally limited. The large manipulator according to the invention is characterized in that it has at least one inertial sensor for measuring the inclination and / or the acceleration of at least one pole segment.
Durch den erfindungsgemäßen Großmanipulator können die aus dem Stand der Technik bekannten Verfälschungen bei translatorischen Beschleunigungen unterbunden werden. Der erfindungsgemäße Großmanipulator weist somit gegenüber dem Stand der Technik den Vorteil auf, dass sich durch ihn eine statisch und dynamisch genaue Messung der vertikalen Bewegungen der Mastspitze erreichen lässt. By the large manipulator according to the invention the known from the prior art distortions in translational accelerations can be prevented. The large manipulator according to the invention thus has the advantage over the prior art that a statically and dynamically accurate measurement of the vertical movements of the mast tip can be achieved by it.
Bevorzugt ist ein Inertialsensor im Sinne der Erfindung ein Beschleunigungssensor, der die vertikale Beschleunigung am Ort des Sensors erfasst. Besonders bevorzugt handelt es sich bei dem Inertialsensor um einen kombinierten Sensor, der neben einem zweiachsigen Beschleunigungssensor einen Drehratensensor aufweist. Idealerweise steht die Achse des Drehratensensors orthogonal auf den Beschleunigungsachsen. Da translatorische Bewegungen nur einen sehr geringen Einfluss auf den Drehratensensor haben, können die Messsignale des Drehratensensors herangezogen werden, um eine Verfälschung des aus den Messsignalen des Beschleunigungssensors ermittelten Neigungswinkels zu erkennen und zu korrigieren. In einer praktischen Umsetzung kann der Neigungswinkel durch zeitliche Integration der gemessenen Drehrate ermittelt werden, wobei der durch die Beschleunigungssensoren ermittelte Neigungswinkel zum stationären Abgleich verwendet wird. Hierdurch wird bei dynamischen Bewegungen des Inertialsensors ein Messfehler reduziert. Vorteilhafterweise wird ein Gyroskop verwendet. Das Gyroskop misst die Drehrate der Neigung, die nicht durch die translatorische Bewegung beeinflusst wird. Zur Kombination der Messsignale der Beschleunigungssensoren und des Drehratensensors kann beispielsweise ein Beobachter in Form eines erweiterten Kaimanfilters oder ein Ansatz mit komplementären Filtern verwendet werden. In the sense of the invention, an inertial sensor is preferably an acceleration sensor which detects the vertical acceleration at the location of the sensor. Particularly preferably, the inertial sensor is a combined sensor which has a rotation rate sensor in addition to a two-axis acceleration sensor. Ideally, the axis of the rotation rate sensor is orthogonal to the acceleration axes. Since translational movements have only a very small influence on the rotation rate sensor, the measurement signals of the rotation rate sensor can be used to detect and correct a falsification of the determined from the measurement signals of the acceleration sensor inclination angle. In a practical implementation of the inclination angle can be determined by temporal integration of the measured rate of rotation, wherein the determined by the acceleration sensors inclination angle is used for stationary balancing. As a result, a measurement error is reduced during dynamic movements of the inertial sensor. Advantageously, a gyroscope is used. The gyroscope measures the rate of rotation of the inclination, which is not influenced by the translatory movement becomes. For example, an observer in the form of an extended Kalman filter or an approach with complementary filters can be used to combine the measuring signals of the acceleration sensors and the yaw rate sensor.
An jedem Mastsegment kann wenigstens ein Inertialsensor angeordnet sein. Hierdurch kann die Messgenauigkeit und -Zuverlässigkeit weiter verbessert werden. At least one inertial sensor can be arranged on each pole segment. As a result, the measurement accuracy and reliability can be further improved.
Vorteilhafterweise sind die Inertialsensoren im Wesentlichen in der Mitte eines Mastsegments angeordnet. Aufgrund der schlanken Konstruktion des Mastarms weisen die einzelnen Mastsegmente im Betrieb durch die auftretenden statischen und dynamischen Kräfte nicht zu vernachlässigende elastische Deformationen auf. Durch die Anordnung der Sensoren in der Mitte der Mastsegmente beinhaltet die Differenz der gemessenen Neigungen von zwei aufeinanderfolgenden Mastsegmenten neben dem exakten Gelenkwinkel auch einen Anteil der elastischen Deformation. Hierdurch kann die Kinematik des Mastarms annähernd als Starrkörperproblem betrachtet werden. Idealerweise weist jedes Mastsegment einen Inertialsensor auf, wobei dieser etwa in der Mitte des jeweiligen Mastsegmentes angeordnet ist. Advantageously, the inertial sensors are arranged substantially in the middle of a mast segment. Due to the slim design of the mast arm, the individual mast segments have in operation due to the static and dynamic forces not negligible elastic deformations. Due to the arrangement of the sensors in the middle of the mast segments, the difference of the measured inclinations of two successive mast segments in addition to the exact joint angle also includes a portion of the elastic deformation. As a result, the kinematics of the mast arm can be considered approximately as rigid body problem. Ideally, each pole segment has an inertial sensor, which is arranged approximately in the middle of the respective pole segment.
Vorteilhaft ist es, wenn der Inertialsensor am letzten Mastsegment angeordnet ist. Hiermit ist erfindungsgemäß das Mastsegment gemeint, das am weitesten vom Drehschemel entfernt angeordnet ist und an dessen äußerem Ende bevorzugt ein Endschlauch befestigt ist. Besonders bevorzugt ist der Inertialsensor am letzten Mastsegment nicht in der Mitte angeordnet. Da der Einfluss der Balkenkrümmung des letzten Mastsegments auf die Höhe der Mastspitze gering in Relation zu jenen der vorhergehenden Mastsegmente ist, führt eine derartige Anordnung zu einem ausreichend genauen Messergebnis. Idealerweise weist der Mastarm an der Mastspitze einen Intertialsensor auf. Hierdurch kann die Messung der Höhe der Mastspitze bei schnellen Bewegungen mit großen Beschleunigungen weiter verbessert werden. Die zweifache zeitliche Integration des die Beschleunigung in vertikaler Richtung wiedergebenden Messsignals liefert ein Signal, welches eine gute Übereinstimmung mit den dynamischen Anteilen des Bewegungsablaufs im höheren Frequenzband aufweist. Erfindungsgemäß können an dem letzten Mastsegment zwei Sensoren angeordnet sein. Bevorzugt ist ein Sensor im Wesentlichen in der Mitte angeordnet und ein anderer Sensor an der Mastspitze, also an dem äußeren Ende des Mastsegments. Für eine ausreichend genaue Messung ist es aber auch hinreichend, wenn nur an der Mastspitze ein Sensor angeordnet ist. In einer vorteilhaften Ausgestaltung ist wenigstens einem der Knickgelenke des Mastarms ein Winkelsensor zugeordnet, der die Winkelstellung dieses Knickgelenks erfasst. Besonders bevorzugt ist jedem Knickgelenk jeweils ein Winkelsensor zugeordnet. In dieser Ausgestaltung kann der Großmanipulator (mittels eines geeigneten Rechners) mit Vorteil zur Berechnung der Höhe der Mastspitze aus den erfassten Winkelstellungen der Knickgelenke in Kombination mit der mittels des am letzten Mastsegment, insbesondere an der Mastspitze, angeordneten Inertialsensors erfassten Beschleunigung eingerichtet sein. Bei den Winkelsensoren handelt es sich nicht um Inertialsensoren, sondern um Messaufnehmer mit geometrischer Auflösung (mit mechanischem, resistivem, induktivem, optischem oder magnetischem Wirkprinzip). Die Winkelsensoren, dienen, anders ausgedrückt, der Ermittlung der (statischen) Stellung des Mastarms. Erfindungsgemäß kann zunächst über die Winkelstellungen der Knickgelenke die Höhe der Mastspitze ermittelt werden. Um die Genauigkeit zu optimieren, kann dabei die Durchbiegung der Mastsegmente berücksichtigt werden. Dies kann z.B. anhand von mathematischen Modellen allein oder in Kombination mit weiteren Messsignalen, wie z.B. von Drucksensoren an den hydraulischen Antriebsaggregaten des Mastarms, erfolgen. Der so erhaltene Wert der Höhe der Mastspitze kann dann mit dem hochpassgefilterten, zweifach zeitlich integrierten vertikalen Beschleunigungssignal des am letzten Mastsegment bzw. an der Mastspitze angeordneten Inertialsensors zusammengeführt werden und ergibt so einen besonders genauen Messwert der Höhe der Mastspitze. Bei dieser Ausgestaltung wird nur genau ein Inertialsensor in Form eines Beschleunigungssensors in Kombination mit einer Anzahl von Winkelsensoren benötigt, die der Zahl der Knickgelenke entspricht. Alternativ können die Messsignale, d.h. das Messsignal der vertikalen Beschleunigung und das über die Neigungswinkel ermittelte Höhenmesssignal, vorzugsweise durch geeignet gewählte, bevorzugt komplementäre, Filter miteinander kombiniert werden. Die über die Neigungen der Mastsegmente ermittelte Höhe der Mastspitze wird mit einem Tiefpass mit geeigneter Grenzfrequenz gefiltert, um hochfrequente dynamische Störungen herauszufiltern. Das zweifach zeitlich integrierte vertikale Beschleunigungssignal wird mit einem komplementären Hochpass mit derselben Grenzfrequenz gefiltert. Die beiden gefilterten Signale werden anschließend zusammengeführt und ergeben einen genauen Messwert der Höhe der Mastspitze. Alternativ zu der Implementierung mittels komplementärer Filter kann deren Funktion ebenso durch einen Beobachter bzw. ein Kaiman-Filter realisiert werden. It is advantageous if the inertial sensor is arranged on the last pole segment. Hereby, the mast segment is meant according to the invention, which is located furthest away from the turntable and at the outer end of which preferably a hose end is attached. Particularly preferably, the inertial sensor on the last pole segment is not arranged in the middle. Since the influence of the beam curvature of the last mast segment on the height of the mast tip is small in relation to that of the preceding mast segments, such an arrangement leads to a sufficiently accurate measurement result. Ideally, the mast arm at the top of the mast has an intertial sensor. As a result, the measurement of the height of the mast tip during rapid movements with large accelerations can be further improved. The double integration over time of the measurement signal reproducing the acceleration in the vertical direction produces a signal which has a good agreement with the dynamic components of the movement sequence in the higher frequency band. According to the invention, two sensors can be arranged on the last pole segment. Preferably, a sensor is in Located substantially in the middle and another sensor at the mast top, so at the outer end of the mast segment. For a sufficiently accurate measurement, but it is also sufficient if only at the top of the mast, a sensor is arranged. In an advantageous embodiment, at least one of the articulated joints of the mast arm is associated with an angle sensor which detects the angular position of this articulated joint. Particularly preferably, each articulated joint is associated with an angle sensor. In this embodiment, the large manipulator (by means of a suitable computer) with advantage for calculating the height of the mast top from the detected angular positions of the articulated joints in combination with the detected by means of the last mast segment, in particular at the mast top, arranged inertial acceleration can be established. The angle sensors are not inertial sensors, but sensors with geometric resolution (with mechanical, resistive, inductive, optical or magnetic action principle). The angular sensors, in other words, serve to determine the (static) position of the mast arm. According to the invention, the height of the mast top can first be determined via the angular positions of the articulated joints. In order to optimize the accuracy, the deflection of the mast segments can be taken into account. This can be done, for example, using mathematical models alone or in combination with other measurement signals, such as pressure sensors on the hydraulic drive units of the boom. The resulting value of the height of the mast tip can then be combined with the high-pass filtered, twice time integrated vertical acceleration signal of arranged at the last mast segment or at the mast tip inertial sensor and thus gives a particularly accurate measurement of the height of the mast top. In this embodiment, only one inertial sensor in the form of an acceleration sensor in combination with a number of angle sensors is required, which corresponds to the number of articulated joints. Alternatively, the measurement signals, ie the measurement signal of the vertical acceleration and the height measurement signal determined by means of the angle of inclination, may preferably be combined with one another by suitably selected, preferably complementary, filters. The over the inclinations of the mast segments determined height of the mast tip is filtered with a low pass with a suitable cutoff frequency to filter out high-frequency dynamic noise. The two-time integrated vertical acceleration signal is filtered with a complementary high pass with the same cutoff frequency. The two filtered signals are then combined and give an accurate reading of the height of the mast top. As an alternative to the implementation by means of complementary filters, their function can also be realized by an observer or a Kalman filter.
Der erfindungsgemäße Großmanipulator weist bevorzugt einen Lageregler auf. Durch den Lageregler kann eine effektiv wirkende Regelung der Höhe der Mastspitze realisiert werden, wodurch eine induzierte vertikale Bewegung der Mastspitze kompensiert wird. In Abhängigkeit von den Neigungen der einzelnen Gelenke kann prinzipiell mit jedem Gelenk die Höhe der Mastspitze manipuliert werden. Während bei Neigungen des zugeordneten Mastsegments nahe der Waagerechten für das betreffende Gelenk eine große Manipulierbarkeit gegeben ist, verschwindet diese bei Neigungen nahe der Vertikalen. Dadurch ergibt sich jedoch für die Umsetzung der Lageregelung das Problem der Auswahl des zu verwendenden Stellglieds. Es ist bekannt, dass die Messung der Koordinaten der Auslegerspitze (Höhe und Radius) für die Umsetzung einer sogenannten kartesischen oder zylindrischen Steuerung der Auslegerspitze verwendbar ist. Hierbei kann der Benutzer mit einem einzelnen Joystick, welcher mindestens zwei Verstellrichtungen aufweist, für die Mastspitze gezielt eine Streck- oder Verkürzungsbewegung bei Beibehaltung der Höhe bzw. eine Hub- oder Senkbewegung bei Beibehaltung des Radius vorgeben. Anhand der Joystick- Vorgaben werden mit einem Algorithmus Stellsignale für die hydraulischen Aktoren der einzelnen Gelenke berechnet, welche die gewünschte Bewegung einleiten. Mit einem derartigen Algorithmus wird das Problem der Auswahl des zu verwendenden Stellglieds für die Lageregelung gelöst. Der Lageregler rückkoppelt dabei bevorzugt die Abweichung der gemessenen Höhe der Mastspitze von dessen Sollwert als Vorgabe einer Hub- oder Senkbewegung der Mastspitze für eine beispielsweise kartesische oder zylindrische Steuerung auf das System auf. Bevorzugt ist ein Regelkreis zur Schwingungsdämpfung des Mastes auf Basis einer Regelung der Gelenkwinkel implementiert. Dieser Regelkreis weist bevorzugt eine Rechnereinheit auf, die die Höhe der Mastspitze auf Basis einer kinematischen Beschreibung des Masts und der Messungen der Neigungswinkel der einzelnen Mastsegmente gegenüber dem Erdschwerefeld berechnet. Vorteilhafterweise werden die Winkelgeschwindigkeiten der einzelnen Knickgelenke als Stellgrößen dieses Schwingungsdämpfungsregelkreises betrachtet. The large manipulator according to the invention preferably has a position controller. By the position controller can be realized effectively acting control of the height of the mast tip, whereby an induced vertical movement of the mast tip is compensated. Depending on the inclinations of the individual joints, the height of the mast tip can in principle be manipulated with each joint. While a great manipulability is given for inclinations of the associated mast segment near the horizontal for the relevant joint, this disappears at inclinations close to the vertical. However, this results in the implementation of the position control, the problem of selecting the actuator to be used. It is known that the measurement of the coordinates of the cantilever tip (height and radius) can be used for the implementation of a so-called Cartesian or cylindrical control of the cantilever tip. Here, the user with a single joystick, which has at least two adjustment directions for the mast tip specifically specify a stretching or shortening while maintaining the height or a lifting or lowering movement while maintaining the radius. Based on the joystick specifications, an algorithm is used to calculate actuating signals for the hydraulic actuators of the individual joints, which initiate the desired movement. Such an algorithm solves the problem of selecting the attitude control actuator to be used. The position controller preferably feeds back the deviation of the measured height of the mast tip from its nominal value as a specification of a lifting or lowering movement of the mast tip for example Cartesian or cylindrical control on the system. Preferably, a control circuit for vibration damping of the mast is implemented on the basis of a control of the joint angle. This control circuit preferably has a computer unit which calculates the height of the mast top on the basis of a kinematic description of the mast and the measurements of the inclination angle of the individual mast segments with respect to the earth's gravity field. Advantageously, the angular velocities of the individual articulated joints are considered as manipulated variables of this vibration damping control loop.
Die erfindungsgemäße Lageregelung wird vorzugsweise der Schwingungs- dämpfung überlagert. Die Lageregelung weist bevorzugt einen Proportional- /IntegralVDifferentialregler (PID-Regler) auf. Der Regler bestimmt anhand einer Regelabweichung (lst-/Sollwert der Höhe der Mastspitze) einen Regelausgang, welcher der Mastspitze in Form einer Hub- oder Senkbewegung als Sollbewegung vorgegeben wird. Der Algorithmus ermittelt daraus die Stellsignale, welche auf die Stelleingänge der einzelnen Mastgelenke, d.h. in der Praxis die Steuereingänge der proportionalen Hydraulikventile der Hydraulikantriebe aufgeschaltet werden. Erfindungsgemäß ist der Algorithmus so ausgebildet, dass anhand der Ausrichtung der einzelnen Mastarme und/oder der Entfernung der einzelnen Mastgelenke zum Drehschemel eine Wichtung stattfindet, mit der die auf die Stelleingänge der einzelnen Mastgelenke aufgeschalteten Stellsignale gewichtet werden. Zum einen steigt die Wichtung, je weiter das Gelenk vom Drehschemel entfernt ist bzw. je näher das Gelenk an der Auslegerspitze angeordnet ist. Das Ansteuern der vom Drehschemel weiter entfernten Mastgelenke bietet den Vorteil, dass die zu bewegende Masse geringer ist und somit schneller und effektiver einer Lageänderung entgegen gewirkt werden kann. Zum anderen steigt die Wichtung je horizontaler die einzelnen Mastarme verlaufen. Die Regelung sollte möglichst auf die horizontal verlaufenden Mastarme einwirken, um die Höhe der Auslegerspitze wirksam beeinflussen zu können. Der erfindungsgemäße Algorithmus bzw. die Wichtung wird zweckmäßig daher so ausgeführt, dass grundsätzlich der letzte Mastarm mit dem größten Stellsignal beaufschlagt wird, wenn er einen annähernd horizontalen Verlauf aufweist. Verläuft der letzte Mastarm allerdings im Wesentlichen vertikal, dann erhält ein anderer Mastarm mit horizontalerem Verlauf eine größere Wichtung und wird mit entsprechend größerem Stellsignal beaufschlagt. Mit dem erfindungsgemäßen Sensor- und Regelungskonzept kann so insgesamt eine effektiv wirkende Regelung der Höhe der Auslegerspitze realisiert werden. The position control according to the invention is preferably superimposed on the vibration damping. The position control preferably has a proportional / integral differential controller (PID controller). Based on a control deviation (actual / setpoint value of the height of the mast tip), the controller determines a control output, which is specified as the nominal movement of the mast tip in the form of a lifting or lowering movement. The algorithm determines therefrom the control signals which are applied to the control inputs of the individual mast joints, ie in practice the control inputs of the proportional hydraulic valves of the hydraulic drives. According to the invention, the algorithm is designed such that based on the orientation of the individual mast arms and / or the distance of the individual mast joints to the turntable weighting takes place, with which the weighted on the control inputs of the individual mast joints control signals are weighted. On the one hand, the weighting increases, the farther the joint is from the turntable or the closer the joint is arranged on the jib tip. The control of the mast joints farther away from the turntable offers the advantage that the mass to be moved is lower and thus can be counteracted faster and more effectively a change in position. On the other hand, the weighting increases horizontally, the individual mast arms run. The regulation should preferably act on the horizontally extending mast arms in order to be able to influence the height of the cantilever tip effectively. The algorithm or the weighting according to the invention is therefore expediently carried out in such a way that, in principle, the last master arm is subjected to the largest actuating signal if it has an approximately horizontal course. However, if the last boom arm is essentially vertical, then another boom arm with a horizontal course receives a larger weighting and is loaded with a correspondingly larger actuating signal. With the According to the sensor and control concept according to the invention can be realized as a total effective control of the height of the cantilever tip.
Der Sollwert für die Höhe der Mastspitze wird im praktischen Betrieb bevorzugt durch das Verfahren des Bedieners bestimmt und ergibt sich daher aus der Ruhelage für die jeweils aktuelle Stellung des Mastarms. Der erfindungsgemäße Großmanipulator wird bevorzugt zur Verteilung von Dickstoffen verwendet. Insbesondere dient er zur Förderung von Beton. The setpoint for the height of the mast top is preferably determined in practical operation by the method of the operator and therefore results from the rest position for the current position of the mast arm. The large manipulator according to the invention is preferably used for the distribution of thick matter. In particular, it serves to convey concrete.
Ferner ist Gegenstand der Erfindung eine Autobetonpumpe. Die erfindungsgemäße Autobetonpumpe weist ein Fahrzeuggestell, eine am Fahrzeuggestell angeordnete Dickstoffpumpe, insbesondere Betonpumpe, und einen Großmanipulator mit den oben beschriebenen Inertialsensoren auf. Furthermore, the subject of the invention is a truck-mounted concrete pump. The truck-mounted concrete pump according to the invention has a vehicle frame, a slurry pump arranged on the vehicle frame, in particular a concrete pump, and a large-scale manipulator with the inertial sensors described above.
Die Erfindung sowie das technische Umfeld werden nachfolgend anhand der Figuren näher erläutert. Es ist darauf hinzuweisen, dass die Figuren jeweils eine besonders bevorzugte Ausführungsvariante der Erfindung zeigen. Die Erfindung ist jedoch nicht auf die gezeigten Ausführungsvarianten beschränkt. Insbesondere umfasst die Erfindung, soweit es technisch sinnvoll ist, beliebige Kombinationen der technischen Merkmale, die in den Ansprüchen aufgeführt oder in der Beschreibung als erfindungsrelevant beschrieben sind. The invention and the technical environment will be explained in more detail with reference to FIGS. It should be noted that the figures each show a particularly preferred embodiment of the invention. However, the invention is not limited to the embodiments shown. In particular, the invention includes, as far as is technically feasible, any combination of the technical features that are listed in the claims or described in the description as being relevant to the invention.
Es zeigen: Show it:
Fig. 1 schematische Ansicht eines erfindungsgemäßen Mastarms in einer ersten Ausgestaltung, 1 is a schematic view of a mast arm according to the invention in a first embodiment,
Fig. 2 schematische Ansicht eines erfindungsgemäßen Mastarms in einer zweiten Ausgestaltung, 2 is a schematic view of a mast arm according to the invention in a second embodiment,
Fig. 3 schematische Ansicht eines erfindungsgemäßen Mastarms in einer dritten Ausgestaltung. Fig. 4 schematische Ansicht eines erfindungsgemäßen Mastarms in einer vierten Ausgestaltung. Fig. 3 is a schematic view of a mast arm according to the invention in a third embodiment. Fig. 4 is a schematic view of a mast arm according to the invention in a fourth embodiment.
Fig. 5 schematischer Regelkreis gemäß einer Fig. 5 is a schematic control circuit according to a
Ausgestaltungsform der Erfindung.  Embodiment of the invention.
Figur 1 zeigt eine schematische Darstellung eines erfindungsgemäßen Mastarms 10 mit Mitteln 34, 36, 38 zur Neigungsmessung in einer ersten Ausgestaltung. Der Großmanipulator weist einen ausfaltbaren Mastarm 10 mit einem um eine Hochachse drehbaren Drehschemel 12 und einer Mehrzahl von Mastsegmenten 14, 1 6, 18 auf. Die Mastsegmente 14, 1 6, 18 sind an Knickgelenken 20, 22, 24 um jeweils horizontale Knickachsen gegenüber einem benachbarten Mastsegment 14, 1 6, 18 oder dem Drehschemel 12 mittels je eines Antriebsaggregats 26, 28, 30 begrenzt verschwenkbar. Der Mastarm 10 weist bevorzugt zwischen drei und fünf Mastsegmente 14, 1 6, 18 auf. Der erfindungsgemäße Großmanipulator weist wenigstens einen Inertialsensor 34, 36, 38 zur Erfassung der Neigung der Mastsegmenten 14, 1 6, 18 gegenüber der Erde auf. Die Inertialsensoren 34, 36, 38 bestehen jeweils bevorzugt aus einem zweiachsigen Beschleunigungssensor und einem Drehratensensor. Idealerweise steht die Achse des Drehratensensors orthogonal auf den Beschleunigungsachsen des Beschleunigungssensors. Da die translatorischen Bewegungen nur einen sehr geringen Einfluss auf die Drehratensensoren haben, werden deren Messungen herangezogen, um Verfälschungen der aus den Beschleunigungsmessungen ermittelten Neigungswinkel zu erkennen und zu korrigieren. Hierdurch wird bei Bewegungen des Mastes ein Messfehler reduziert. Der in Figur 1 dargestellte erfindungsgemäße Mastarm 10 weist an jedem Mastsegment 14, 1 6, 18 einen Inertialsensor 34, 36, 38 auf. Die Inertialsensoren 34, 36, 38 sind im Wesentlichen in der Mitte der Mastsegmente 14, 1 6, 18 angeordnet. Durch eine derartige Anordnung der Sensoren 34, 36, 38 beinhaltet die Differenz der gemessenen Neigungen von zwei aufeinanderfolgenden Mastsegmenten 14, 1 6, 18 neben dem exakten Gelenkwinkel auch einen Anteil der elastischen Deformation. Hierdurch kann die Kinematik des Mastarms annähernd als Starrkörperproblem betrachtet werden. Figur 2 zeigt eine schematische Darstellung eines erfindungsgemäßen Mastarms 10 mit Mitteln zur Neigungsmessung in einer zweiten Ausgestaltung. Die Mastsegmente 14, 1 6, 18 weisen jeweils einen Inertialsensor 34, 36, 38 auf, die im Wesentlichen in deren Mitte angeordnet sind. Um die Messung der Höhe der Mastspitze 32 insbesondere bei schnellen Bewegungen mit großen Beschleunigungen weiter zu verbessern, erfolgt eine zusätzliche Messung der Beschleunigungen direkt an der Mastspitze 32. Die zweifache zeitliche Integration des Anteils der Beschleunigung in vertikaler Richtung liefert ein Messsignal, welches eine gute Übereinstimmung mit den dynamischen Anteilen des Bewegungsablaufs im höheren Frequenzband aufweist. Hierzu weist das Mastsegment 18, dessen äußeres Ende die Mastspitze 32 darstellt, einen zusätzlichen Sensor 40 an seinem äußeren Ende, der Mastspitze 32, auf. Figure 1 shows a schematic representation of a mast arm 10 according to the invention with means 34, 36, 38 for inclination measurement in a first embodiment. The large manipulator has a folding mast arm 10 with a pivotable about a vertical axis turntable 12 and a plurality of mast segments 14, 1 6, 18. The mast segments 14, 1 6, 18 are at buckles 20, 22, 24 about each horizontal bending axes relative to an adjacent mast segment 14, 1 6, 18 or the turntable 12 by means of a respective drive unit 26, 28, 30 pivotally limited. The mast arm 10 preferably has between three and five mast segments 14, 1 6, 18. The large manipulator according to the invention has at least one inertial sensor 34, 36, 38 for detecting the inclination of the pole segments 14, 16, 18 with respect to the earth. The inertial sensors 34, 36, 38 each preferably consist of a two-axis acceleration sensor and a rotation rate sensor. Ideally, the axis of the rotation rate sensor is orthogonal to the acceleration axes of the acceleration sensor. Since the translatory movements have only a very small influence on the yaw rate sensors, their measurements are used to detect and correct distortions of the angles of inclination determined from the acceleration measurements. As a result, a measurement error is reduced during movements of the mast. The mast arm 10 according to the invention shown in FIG. 1 has an inertial sensor 34, 36, 38 on each mast segment 14, 16, 18. The inertial sensors 34, 36, 38 are arranged substantially in the middle of the pole segments 14, 16, 18. By such an arrangement of the sensors 34, 36, 38, the difference of the measured inclinations of two successive mast segments 14, 1 6, 18 in addition to the exact joint angle also includes a portion of the elastic deformation. As a result, the kinematics of the mast arm can be considered approximately as rigid body problem. Figure 2 shows a schematic representation of a mast arm 10 according to the invention with means for tilt measurement in a second embodiment. The mast segments 14, 16, 18 each have an inertial sensor 34, 36, 38, which are arranged substantially in the middle thereof. In order to further improve the measurement of the height of the mast tip 32, in particular during rapid movements with large accelerations, an additional measurement of the accelerations takes place directly at the mast tip 32. The double temporal integration of the portion of the acceleration in the vertical direction produces a measurement signal which is a good match with the dynamic components of the motion sequence in the higher frequency band. For this purpose, the mast segment 18, whose outer end represents the mast top 32, an additional sensor 40 at its outer end, the mast top 32, on.
Für eine ausreichend genaue Messung ist es aber auch hinreichend, wenn nur an der Mastspitze ein Sensor angeordnet ist. Figur 3 zeigt eine schematische Darstellung eines erfindungsgemäßen Mastarms 10 mit Mitteln zur Neigungsmessung in einer dritten Ausgestaltung. Die Mastsegmente 14, 1 6 weisen jeweils einen Inertialsensor 34, 36 auf, die im Wesentlichen in deren Mitte angeordnet sind. Das Mastsegment 18 weist einen Inertialsensor 40 an dessen äußerem Ende, der Mastspitze 32, auf. Da der Einfluss der Balkenkrümmung des letzten Mastsegments 18 auf die Höhe der Mastspitze gering in Relation zu jenen der vorhergehenden Mastsegmente 14, 1 6 ist, führt eine derartige Anordnung zu einem ausreichend genauen Messergebnis. Auf einen zusätzlichen Sensor 38 kann somit verzichtet werden. For a sufficiently accurate measurement, but it is also sufficient if only at the top of the mast, a sensor is arranged. Figure 3 shows a schematic representation of a mast arm 10 according to the invention with means for tilt measurement in a third embodiment. The mast segments 14, 16 each have an inertial sensor 34, 36, which are arranged substantially in the middle thereof. The mast segment 18 has an inertial sensor 40 at its outer end, the mast top 32. Since the influence of the beam curvature of the last mast segment 18 on the height of the mast tip is small in relation to those of the preceding mast segments 14, 16, such an arrangement leads to a sufficiently accurate measurement result. An additional sensor 38 can thus be dispensed with.
Figur 4 zeigt eine schematische Ansicht eines erfindungsgemäßen Mastarms 10 in einer vierten Ausgestaltung. Die Mastsegmente 14, 16, 18 weisen jeweils einen Winkelsensor 48, 50, 52 auf. Die Winkelsensoren 48, 50, 52 erfassen die Winkelstellungen der einzelnen Knickgelenke 20, 22, 24. An der Mastspitze 32 ist ferner ein Inertialsensor 40 angeordnet, der die vertikale Beschleunigung der Mastspitze 32 erfasst. Durch Kombination der Signale der Winkelsensoren 48, 50, 52 mit den Signalen des Inertialsensors 40 lässt sich eine sehr genaue Bestimmung der momentanen Höhe der Mastspitze 32 realisieren. Mit dem dargestellten Sensorkonzept kann eine effektiv wirkende Regelung der Höhe der Auslegerspitze realisiert werden. Dies ist in Figur 5 schematisch gezeigt. FIG. 4 shows a schematic view of a mast arm 10 according to the invention in a fourth embodiment. The mast segments 14, 16, 18 each have an angle sensor 48, 50, 52. The angle sensors 48, 50, 52 detect the angular positions of the individual articulated joints 20, 22, 24. An inertial sensor 40, which detects the vertical acceleration of the masthead 32, is also arranged on the masthead 32. By combining the signals of the angle sensors 48, 50, 52 with the signals of the inertial sensor 40, a very accurate determination of the instantaneous height of the mast tip 32 can be realized. With the illustrated sensor concept an effectively acting control of the height of the cantilever tip can be realized. This is shown schematically in FIG.
Es wird dabei davon ausgegangen, dass zur Schwingungsdämpfung des Mastarms 10 eine Regelung der Gelenkwinkel implementiert ist. Die Winkelgeschwindigkeiten der einzelnen Gelenke 20, 22, 24 sind dabei die Stellgrößen U1 , U2, U3 des Systems. It is assumed that a control of the joint angle is implemented for vibration damping of the boom arm 10. The angular velocities of the individual joints 20, 22, 24 are the manipulated variables U1, U2, U3 of the system.
Der Schwingungsdämpfung wird erfindungsgemäß eine Lageregelung auf Basis eines PID-Reglers 46 und eines Moduls 47 zur Steuerung der Hub- oder Senkbewegung der Mastspitze 32 überlagert. Aus den Messsignalen der an dem Mast 10 angeordneten Inertialsensoren 34, 36, 38, 40 (siehe Figur 2) oder aus den Signalen der Winkelsensoren 48, 50, 52 in Kombination mit dem Signal des Inertialsensors 40 (siehe Figur 4) wird wie oben beschrieben die momentane Höhe H der Mastspitze mittels eines Rechners 42 ermittelt. Die Lageregelung bestimmt anhand der Regelabweichung (Abweichung des Istwertes der Höhe der Mastspitze 32 von dessen Sollwert) einen Reglerausgang A, der als Sollwert in Form einer Hub- oder Senkbewegung der Mastspitze für das Modul 47 vorgegeben wird. Diese berechnet die Steuersignale, welche auf die Stellgrößen U1 , U2 und U3 der einzelnen Gelenke 20, 22 und 24 aufgeschaltet werden. Der Sollwert für die Höhe der Mastspitze 32 wird im praktischen Betrieb durch das Verfahren des Bedieners bestimmt und ergibt sich daher aus der Ruhelage für die jeweils aktuelle Stellung des Mastarms 10. Eine genaue Berechnung der Ruhelage der Höhe der Mastspitze 32 anhand der aktuellen stationären Werte der Gelenkwinkel ist aufgrund der Komplexität des Gesamtsystems und der nur ungenauen Kenntnis der Modellparameter für den praktischen Betrieb nicht möglich und auch nicht nötig. Daher wird für den PID-Regler 46 zur Bestimmung der Regelabweichung ein einfaches Hochpassfilter 44 mit einer geeignet gewählten Grenzfrequenz verwendet. Ein Wegdriften der Höhe von der ursprünglichen Position durch den Reglereingriff wird durch die zugrunde liegende Schwingungsdämpfungsregelung verhindert, welche eine Regelung der Gelenkpositionen beinhaltet. Durch die dargestellte Regelung können vertikale Bewegungen der Mastspitze 32, z.B. einer Autobetonpumpe während des Pumpbetriebs, effektiv reduziert werden. The vibration damping according to the invention, a position control based on a PID controller 46 and a module 47 for controlling the lifting or lowering movement of the mast top 32 superimposed. From the measurement signals of the inertial sensors 34, 36, 38, 40 arranged on the mast 10 (see FIG. 2) or of the signals of the angle sensors 48, 50, 52 in combination with the signal of the inertial sensor 40 (see FIG. 4) is described above determines the instantaneous height H of the mast top by means of a computer 42. The position control determines based on the deviation (deviation of the actual value of the height of the mast tip 32 of the setpoint) a controller output A, which is specified as a desired value in the form of a lifting or lowering movement of the mast tip for the module 47. This calculates the control signals which are applied to the manipulated variables U1, U2 and U3 of the individual joints 20, 22 and 24. The setpoint for the height of the mast top 32 is determined in practical operation by the method of the operator and therefore results from the rest position for the current position of the mast arm 10. An exact calculation of the rest position of the height of the mast tip 32 based on the current steady state values Joint angle is due to the complexity of the overall system and the only inaccurate knowledge of the model parameters for practical operation not possible and not necessary. Therefore, a simple high pass filter 44 with a suitably chosen cutoff frequency is used for the PID controller 46 to determine the control deviation. A displacement of the height from the original position by the controller intervention is prevented by the underlying vibration damping control, which includes a regulation of the joint positions. Due to the illustrated scheme, vertical Movements of the mast top 32, such as a truck-mounted concrete pump during the pumping operation, can be effectively reduced.
- Bezugszeichenliste - - List of Reference Signs -
BezuaszeichenlisteBezuaszeichenliste
10 Mastarm 10 mast arm
12 Drehschemel  12 bogies
14 erstes Mastsegment  14 first pole segment
1 6 zweites Mastsegment 1 6 second pole segment
18 drittes Mastsegment  18 third mast segment
20 erstes Knickgelenk  20 first articulation
22 zweites Knickgelenk  22 second articulated joint
24 drittes Kickgelenk  24 third kick joint
26 erstes Antriebselement 26 first drive element
28 zweites Antriebselement  28 second drive element
30 drittes Antriebselement  30 third drive element
32 Mastspitze  32 mast top
34 erster Inertialsensor  34 first inertial sensor
36 zweiter Inertialsensor 36 second inertial sensor
38 dritter Inertialsensor  38 third inertial sensor
40 Inertialsensor Mastspitze Rechner 40 Inertial sensor Mastspitze computer
Hochpassfilter High Pass Filter
PID-Regler PID controller
Modul zur Steuerung der Hub-und Senkbewegung der Mastspitze erster Winkelsensor Module for controlling the lifting and lowering movement of the mast top first angle sensor
zweiter Winkelsensor second angle sensor
dritter Winkelsensor third angle sensor
- Patentansprüche -  - Claims -

Claims

Patentansprüche claims
1 . Großmanipulator mit einem ausfaltbaren Mastarm (10), der einen um eine Hochachse drehbaren Drehschemel (12) und eine Mehrzahl von Mastsegmenten (14, 1 6, 18) aufweist, wobei die Mastsegmente (14, 1 6, 18) an Knickgelenken (20, 22, 24) um jeweils horizontale Knickachsen gegenüber einem benachbarten Mastsegment (14, 1 6, 18) oder dem Drehschemel (12) mittels je eines Antriebsaggregates (26, 28, 30) begrenzt verschwenkbar sind, 1 . A large manipulator comprising a foldable mast arm (10) having a turntable (12) rotatable about a vertical axis and a plurality of mast segments (14, 16, 18), the mast segments (14, 16, 18) being connected to articulated joints (20, 20). 22, 24) are pivotable about a respective horizontal axis of articulation with respect to an adjacent pole segment (14, 16, 18) or the turntable (12) by means of a respective drive unit (26, 28, 30),
g e k e n n z e i c h n e t d u r c h wenigstens einen Inertialsensor (34, 36, 38, 40) zur Messung der Neigung und/oder der Beschleunigung wenigstens eines Mastsegmentes (14, 1 6, 18). At least one inertial sensor (34, 36, 38, 40) for measuring the inclination and / or the acceleration of at least one pole segment (14, 16, 18) is at least one inertial sensor (34, 36, 38, 40).
2. Großmanipulator nach Anspruch 1 , dadurch gekennzeichnet, dass der Inertialsensor (34, 36, 38, 40) einen zweiachsigen Beschleunigungssensor und einen Drehratensensor umfasst. 2. large manipulator according to claim 1, characterized in that the inertial sensor (34, 36, 38, 40) comprises a two-axis acceleration sensor and a rotation rate sensor.
3. Großmanipulator nach Anspruch 2, dadurch gekennzeichnet, dass der Inertialsensor so ausgebildet ist, dass er die Messsignale des zweiachsigen Beschleunigungssensors mit dem zeitlich integrierten Messsignal des Drehratensensors kombiniert. 3. large manipulator according to claim 2, characterized in that the inertial sensor is designed so that it combines the measuring signals of the biaxial acceleration sensor with the time-integrated measuring signal of the rotation rate sensor.
4. Großmanipulator nach Anspruch 3, dadurch gekennzeichnet, dass er zur Verarbeitung der Messsignale des zweiachsigen Beschleunigungssensors und des Drehratensensors einen Beobachter, insbesondere ein erweitertes Kaimanfilter oder ein komplementäres Filter verwendet. 4. Large manipulator according to claim 3, characterized in that it uses an observer, in particular an extended Kalman filter or a complementary filter for processing the measurement signals of the biaxial acceleration sensor and the rotation rate sensor.
5. Großmanipulator nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass an jedem Mastsegment (14, 16, 18) wenigstens ein Inertialsensor (34, 36, 38) angeordnet ist. 5. large manipulator according to one of claims 1 to 4, characterized in that at each pole segment (14, 16, 18) at least one inertial sensor (34, 36, 38) is arranged.
6. Großmanipulator nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Inertialsensoren (34, 36, 38) im Wesentlichen in der Mitte eines Mastsegments (14, 1 6, 18) angeordnet sind. 6. Large manipulator according to one of the preceding claims, characterized in that the inertial sensors (34, 36, 38) substantially in the middle of a mast segment (14, 1 6, 18) are arranged.
7. Großmanipulator nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass er zur Berechnung der Höhe der Mastspitze (32) aus den gemessenen Neigungen der Mastsegmente (14, 1 6, 18) eingerichtet ist. 7. Large manipulator according to one of the preceding claims, characterized in that it is set up to calculate the height of the mast top (32) from the measured inclinations of the mast segments (14, 16, 18).
8. Großmanipulator nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der wenigstens eine Inertialsensor (38, 40) an dem letzten Mastsegment (18), insbesondere an der Mastspitze (32), angeordnet ist und die Beschleunigung des letzten Mastsegmentes (18) erfasst. 8. large manipulator according to one of claims 1 to 7, characterized in that the at least one inertial sensor (38, 40) on the last mast segment (18), in particular at the mast top (32) is arranged, and the acceleration of the last mast segment (18 ) detected.
9. Großmanipulator nach Anspruch 8, dadurch gekennzeichnet, dass er zur Berechnung der Höhe der Mastspitze (32) aus den gemessenen Neigungen der Mastsegmente (14, 1 6, 18) in Kombination mit der mittels des am letzten Mastsegment (18), insbesondere an der Mastspitze (32), angeordneten Inertialsensors (38, 40) erfassten Beschleunigung eingerichtet ist. 9. large manipulator according to claim 8, characterized in that it for calculating the height of the mast tip (32) from the measured inclinations of the mast segments (14, 1 6, 18) in combination with the means of the last mast segment (18), in particular to the mast tip (32), arranged inertial sensors (38, 40) detected acceleration is set up.
10. Großmanipulator nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass wenigstens einem der Knickgelenke (20, 22, 24) ein Winkelsensor (48, 50, 52) zugeordnet ist, der die Winkelstellung dieses Knickgelenks (20, 22, 24) erfasst. 10. Large manipulator according to one of the preceding claims, characterized in that at least one of the articulated joints (20, 22, 24) an angle sensor (48, 50, 52) is associated, which detects the angular position of this articulated joint (20, 22, 24).
1 1 . Großmanipulator nach Anspruch 10, dadurch gekennzeichnet, dass jedem Knickgelenk (20, 22, 24) jeweils ein Winkelsensor (48, 50, 52) zugeordnet ist. 1 1. Large manipulator according to claim 10, characterized in that each articulated joint (20, 22, 24) is associated with an angle sensor (48, 50, 52) in each case.
12. Großmanipulator nach den Ansprüchen 8 und 10 oder 1 1 , dadurch gekennzeichnet, dass er zur Berechnung der Höhe der Mastspitze (32) aus den erfassten Winkelstellungen der Knickgelenke (20, 22, 24) in Kombination mit der mittels des am letzten Mastsegment (18), insbesondere an der Mastspitze (32), angeordneten Inertialsensors (38, 40) erfassten Beschleunigung eingerichtet ist. 12. Large manipulator according to claims 8 and 10 or 1 1, characterized in that it is for calculating the height of the mast top (32) from the detected angular positions of the articulated joints (20, 22, 24) in combination with the means of the last mast segment (18), in particular at the mast top (32), arranged inertial sensor (38, 40) detected acceleration is set up.
13. Großmanipulator nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Großmanipulator eine Regeleinrichtung zur13. Large manipulator according to one of the preceding claims, characterized in that the large manipulator a control device for
Schwingungsdämpfung aufweist. Has vibration damping.
14. Großmanipulator nach einem der Ansprüche 1 bis 13, gekennzeichnet durch eine auf den Messsignalen des wenigstens einen Inertialsensors (34, 36, 38, 40) basierende Lageregelung zur Regelung der Höhe der Mastspitze (32). 14. Large manipulator according to one of claims 1 to 13, characterized by a on the measurement signals of the at least one inertial sensor (34, 36, 38, 40) based position control for controlling the height of the mast top (32).
15. Großmanipulator nach den Ansprüchen 13 und 14, dadurch gekennzeichnet, dass die Lagerregelung der Schwingungsdämpfung überlagert ist. 15. Grand manipulator according to claims 13 and 14, characterized in that the bearing control of the vibration damping is superimposed.
16. Großmanipulator nach Anspruch 14 oder 15, dadurch gekennzeichnet, dass die Lagereglung so ausgebildet ist, dass sie Stellsignale, welche auf die Stelleingänge der einzelnen Mastgelenke aufgeschaltet werden, in Abhängigkeit von der Ausrichtung der einzelnen Mastarme und/oder der Entfernung der einzelnen Mastgelenke/Mastarme zum Drehschemel ermittelt. 16. Grand manipulator according to claim 14 or 15, characterized in that the position control is designed so that it control signals which are switched to the control inputs of the individual mast joints, depending on the orientation of the individual mast arms and / or the removal of the individual mast joints / Mast arms to the turntable determined.
17. Großmanipulator nach Anspruch 1 6, dadurch gekennzeichnet, dass die Lagereglung so ausgebildet ist, dass sie die Stellsignale anhand einer kartesischen oder zylindrischen Steuerung der Mastspitze ermittelt. 17. Large Manipulator according to claim 1 6, characterized in that the position control is designed so that it determines the control signals based on a Cartesian or cylindrical control of the mast top.
18. Autobetonpumpe aufweisend ein Fahrzeuggestell, eine am Fahrzeuggestell angeordnete Dickstoffpumpe, insbesondere Betonpumpe, und einen Großmanipulator nach einem der vorangehenden Ansprüche. 18. truck-mounted concrete pump comprising a vehicle frame, arranged on the vehicle frame thick matter pump, in particular concrete pump, and a large manipulator according to one of the preceding claims.
- Zusammenfassung - - Summary -
EP16708951.5A 2015-02-19 2016-02-19 Position control of a masthead Active EP3259221B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015102368.7A DE102015102368A1 (en) 2015-02-19 2015-02-19 Position control mast top
PCT/EP2016/053596 WO2016131977A1 (en) 2015-02-19 2016-02-19 Position control of a boom tip

Publications (2)

Publication Number Publication Date
EP3259221A1 true EP3259221A1 (en) 2017-12-27
EP3259221B1 EP3259221B1 (en) 2020-02-12

Family

ID=55521673

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16708951.5A Active EP3259221B1 (en) 2015-02-19 2016-02-19 Position control of a masthead

Country Status (5)

Country Link
US (1) US10407282B2 (en)
EP (1) EP3259221B1 (en)
CN (1) CN107406237B (en)
DE (1) DE102015102368A1 (en)
WO (1) WO2016131977A1 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015108473A1 (en) * 2015-05-28 2016-12-01 Schwing Gmbh Large manipulator with quick folding and unfolding articulated mast
GB2593394B (en) 2016-09-19 2022-01-05 Somero Entpr Inc Concrete screeding system with boom mounted screed head
US10315850B2 (en) 2017-07-13 2019-06-11 1875452 Alberta Ltd. Proppant conveyor systems and methods of use
CN107727151A (en) * 2017-11-10 2018-02-23 公安部上海消防研究所 A kind of elevating fire truck arm support motion state dynamic checkout unit
DE102018104491A1 (en) * 2018-02-27 2019-08-29 Putzmeister Engineering Gmbh Grand manipulator with vibration damper
DE102018109088A1 (en) 2018-04-17 2019-10-17 Liebherr-Mischtechnik Gmbh Large manipulator, especially for concrete pumps
DE102018109098A1 (en) 2018-04-17 2019-10-17 Liebherr-Mischtechnik Gmbh concrete pump
DE102018109057A1 (en) 2018-04-17 2019-10-17 Liebherr-Mischtechnik Gmbh concrete pump
CN108867747B (en) * 2018-09-10 2023-10-03 江苏徐工工程机械研究院有限公司 Automatic return adjusting system and method for engineering machinery operation arm support and engineering machinery
CN110465942A (en) * 2019-07-26 2019-11-19 深圳前海达闼云端智能科技有限公司 Pose compensation method, device, storage medium and electronic equipment
CN110549335A (en) * 2019-08-16 2019-12-10 珠海格力电器股份有限公司 Automatic calibration method for joint reduction ratio, control system and robot thereof
CN112720450B (en) * 2019-10-28 2022-07-19 深圳市大族机器人有限公司 Robot joint angle inspection method, device, equipment and medium
FI131037B1 (en) * 2020-06-03 2024-08-08 Ponsse Oyj Controlling boom of work machine
EP3978420B1 (en) * 2020-09-30 2024-03-27 STILL GmbH Method for damping mast torsional vibration in an industrial truck and industrial truck
CN112900878A (en) * 2021-01-27 2021-06-04 徐州徐工施维英机械有限公司 Concrete pump truck arm support control system and method and concrete pump truck
CN112943323B (en) * 2021-02-08 2022-07-22 中国铁建重工集团股份有限公司 Anchor rod trolley control system
CA3215318A1 (en) 2021-04-12 2022-10-20 James T. Benzing Systems and methods for assisting a crane operator
CN113899915B (en) * 2021-09-28 2024-06-04 湖南三一智能控制设备有限公司 Cantilever crane linear velocity obtaining method and device and engineering vehicle
CN114215362B (en) * 2021-12-17 2023-04-25 徐州徐工施维英机械有限公司 Automatic arm support obstacle avoidance system, obstacle avoidance method and pump truck

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS612312A (en) 1984-06-15 1986-01-08 Hitachi Ltd Capacitor type bushing pd
JPS6123212A (en) * 1984-07-11 1986-01-31 Hitachi Ltd Controller of multi-joint structure machine
DE19503895A1 (en) 1995-02-07 1996-08-08 Putzmeister Maschf Mobile concrete pumping unit with segmented delivery arm
JP3091667B2 (en) * 1995-06-09 2000-09-25 日立建機株式会社 Excavation control device for construction machinery
JP3811190B2 (en) * 1997-06-20 2006-08-16 日立建機株式会社 Area-limited excavation control device for construction machinery
DE10046546A1 (en) * 2000-09-19 2002-03-28 Putzmeister Ag Heavy manipulator for concrete pumping, incorporates damping of mechanical oscillation of handling mast
DE10240180A1 (en) 2002-08-27 2004-03-11 Putzmeister Ag Device for actuating an articulated mast
DE102007012575A1 (en) * 2007-03-13 2008-09-18 Putzmeister Concrete Pumps Gmbh large manipulator
KR101755739B1 (en) * 2009-10-19 2017-07-19 히다찌 겐끼 가부시키가이샤 Operation machine
IT1397794B1 (en) * 2010-01-26 2013-01-24 Cifa Spa DEVICE FOR ACTIVE CONTROL OF THE VIBRATIONS OF AN ARTICULATED ARM FOR CONCRETE PUMPING.
DE102010035291A1 (en) * 2010-08-25 2012-03-01 Robert Bosch Gmbh Method for position determination of portion of working arm of work machine e.g. mobile crane, involves determining position of portion of working arm based on height of point of working arm and acceleration of another point of arm
AT514115B1 (en) * 2013-04-09 2015-05-15 Ttcontrol Gmbh Electrohydraulic control circuit
AT514116A1 (en) 2013-04-09 2014-10-15 Ttcontrol Gmbh A control system and method for controlling the orientation of a segment of a manipulator
JP5823046B1 (en) * 2014-05-14 2015-11-25 株式会社小松製作所 Hydraulic excavator calibration system and calibration method
DE112014000075B4 (en) * 2014-06-03 2020-09-24 Komatsu Ltd. Control system for earth moving machine and earth moving machine
WO2015186215A2 (en) * 2014-06-04 2015-12-10 株式会社小松製作所 Device for computing orientation of work machine, work machine, and method for computing orientation of work machine

Also Published As

Publication number Publication date
CN107406237B (en) 2020-08-25
US10407282B2 (en) 2019-09-10
WO2016131977A1 (en) 2016-08-25
DE102015102368A1 (en) 2016-08-25
US20180037444A1 (en) 2018-02-08
EP3259221B1 (en) 2020-02-12
CN107406237A (en) 2017-11-28

Similar Documents

Publication Publication Date Title
EP3259221B1 (en) Position control of a masthead
AT514115B1 (en) Electrohydraulic control circuit
EP2422018B1 (en) Mobile working machine comprising a position control device of a working arm and method for controlling the position of a working arm of a mobile working machine
EP1537282B1 (en) Large manipulator with an articulated mast and with a regulation system for controlling said mast
EP3649072B1 (en) Crane and method for controlling such a crane
EP3556969B1 (en) Concrete pump
EP3183963B1 (en) Device for dispensing fluid and/or solid agents and method for controlling the device
EP3408208B1 (en) Crane, and method for controlling such a crane
DE102018005068A1 (en) Crane and method for controlling such a crane
EP3439834B1 (en) Cartesian control of a boom tip of a large manipulator, in particular a concrete pump
EP3689141A1 (en) Device for dispensing fluid and/or solid agents and method for controlling the device
DE102009032267A1 (en) Crane for handling a load suspended on a load rope
EP3556967B1 (en) Large manipulator, especially for concrete pumps
EP1478898A1 (en) Probing head for co-ordinate measuring devices
AT514116A1 (en) A control system and method for controlling the orientation of a segment of a manipulator
DE102013014626A1 (en) Determining the position of a displaceable measuring point on a machine
WO2011020561A1 (en) Mobile working machine with a control device, comprising a working arm, and methods for controlling the operating point of a working arm of a mobile working machine
DE102005042721A1 (en) Rotating ladder e.g. fire fighting ladder, for use on vehicle, has controller provided to move ladder parts, where map-based pilot control representing idealized movement behavior of ladder in dynamic model is provided
DE102015208577A1 (en) Method for controlling a kink mast in a large manipulator
DE102018109098A1 (en) concrete pump
DE202019004672U1 (en) Compensation device for trouble-free 3D concrete printing using a truck-mounted concrete pump
WO2024088882A1 (en) Method for controlling an articulated arm with a mobile remote control unit located spatially distant therefrom, and suction excavator
CH712422A2 (en) Control device for tracking a directable weapon.

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170919

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190315

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: B66C 13/06 20060101ALI20190816BHEP

Ipc: E04G 21/04 20060101ALI20190816BHEP

Ipc: B66C 13/46 20060101AFI20190816BHEP

INTG Intention to grant announced

Effective date: 20190910

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KEMMETMUELLER, WOLFGANG

Inventor name: HENIKL, JOHANNES

Inventor name: KUGI, ANDREAS

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1231843

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016008700

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200512

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200512

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200612

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200705

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200219

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016008700

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20201113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1231843

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20231108

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240228

Year of fee payment: 9

Ref country code: GB

Payment date: 20240220

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20240206

Year of fee payment: 9

Ref country code: IT

Payment date: 20240222

Year of fee payment: 9

Ref country code: FR

Payment date: 20240226

Year of fee payment: 9