EP3258116B1 - Hydraulic module with pressure-controlled 2-way flow control valve - Google Patents

Hydraulic module with pressure-controlled 2-way flow control valve Download PDF

Info

Publication number
EP3258116B1
EP3258116B1 EP16174633.4A EP16174633A EP3258116B1 EP 3258116 B1 EP3258116 B1 EP 3258116B1 EP 16174633 A EP16174633 A EP 16174633A EP 3258116 B1 EP3258116 B1 EP 3258116B1
Authority
EP
European Patent Office
Prior art keywords
control
pressure
valve
way flow
controlled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16174633.4A
Other languages
German (de)
French (fr)
Other versions
EP3258116A1 (en
Inventor
Thomas Wechsel
Fridolin EISELE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hawe Hydraulik SE
Original Assignee
Hawe Hydraulik SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hawe Hydraulik SE filed Critical Hawe Hydraulik SE
Priority to EP16174633.4A priority Critical patent/EP3258116B1/en
Publication of EP3258116A1 publication Critical patent/EP3258116A1/en
Application granted granted Critical
Publication of EP3258116B1 publication Critical patent/EP3258116B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/04Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed
    • F15B11/05Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed specially adapted to maintain constant speed, e.g. pressure-compensated, load-responsive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • F15B11/161Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors with sensing of servomotor demand or load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/04Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor
    • F15B13/0416Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor with means or adapted for load sensing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/04Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor
    • F15B13/0416Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor with means or adapted for load sensing
    • F15B13/0417Load sensing elements; Internal fluid connections therefor; Anti-saturation or pressure-compensation valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/605Load sensing circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/605Load sensing circuits
    • F15B2211/6051Load sensing circuits having valve means between output member and the load sensing circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/605Load sensing circuits
    • F15B2211/6051Load sensing circuits having valve means between output member and the load sensing circuit
    • F15B2211/6057Load sensing circuits having valve means between output member and the load sensing circuit using directional control valves

Definitions

  • the present invention relates to a hydraulic module according to the preamble of independent claim 1 and in particular to a hydraulic module with a pressure-controlled 2-way flow control valve.
  • proportional directional spools with a 2-way flow control valve are generally used to enable the simultaneous actuation of several consumers and / or to set a travel speed on one consumer. For example, in practice it is often necessary to control several consumers independently of the load pressure.
  • a proportional directional spool valve type PSL with connection blocks and an add-on block is known.
  • Fig. 1a is schematically an exemplary known hydraulic circuit with two proportional directional spool valves of the type PSL, in Fig. 1a denoted by the reference numerals PS1, PS2, and a suitable connection block for a constant pump 1 for operating two consumers V1, V2.
  • a supply pressure P output by the constant pump 1 is supplied through a supply line 6 to a plurality of consumers V1, V2, for example hydraulic cylinders, shown in a highly schematic manner via the respective proportional directional spool valves PS1, PS2 in order to drive the consumers V1, V2.
  • the inflow upstream of the proportional directional spool valves PS1, PS2 is regulated in each case by a pressure-controlled 2-way flow control valve 41, 42, which is upstream of the corresponding proportional directional spool valve PS1, PS2 (ie, upstream of the corresponding proportional directional spool valve PS1, PS2 ) is arranged. If at least one of the consumers V1, V2 is operated during operation, the associated proportional directional spool valve PS1, PS2 is deflected upwards or downwards from the blocking state shown, depending on whether a connection A1, A2 connected to the corresponding consumer V1, V2 or B1, B2 to be connected to the supply line 6. Via the stroke of the deflection, a volume flow to the respective consumer V1, V2 is predetermined by the proportional directional spool valves PS1, PS2, for example in order to set a speed at the corresponding consumer V1, V2.
  • the load pressure reported by the LS line LS1 or LS2 to the 2-way flow control valve 41 or 42 is applied to the 2-way flow control valve 41 or 42 in the up-control direction to support the biasing force of the biasing spring. Furthermore, each 2-way flow control valve 41, 42 is also applied with a pressure signal tapped on the output side of the respective 2-way flow control valve 41, 42 in the closed control direction (i.e. counteracting the bias) of the respective 2-way flow control valve 41, 42.
  • Each of the 2-way flow control valves 41, 42 is biased in the open control direction by a biasing spring, so that the 2-way flow control valves 41, 42 are opened in the idle state.
  • the volume flow to the consumer and the pressure difference between the pressure provided by the constant pump 1 and the pressure in the load circuit to the consumer are regulated to a constant value.
  • the 2-way flow control valve is controlled in the closed-control direction until a new force balance is established.
  • a control piston moves in the closed control direction and a throttle cross-section in the 2-way flow control valve 41 or 42 decreases.
  • the volume flow and the pressure difference (p A - p LS ) again (which counteracts the initial increase) and an equilibrium of forces is established in which the increase in the volume flow and the pressure difference are compensated.
  • Fig. 1b is the resulting characteristic of the 2-way flow control valve (cf. 41, 42 in Fig. 1a ) and the proportional directional spool (cf. PS1, PS2 in Fig. 1a ) is shown schematically.
  • a volume flow Q is plotted along the abscissa in arbitrary units against a pressure difference ⁇ p (corresponds to the pressure loss across the 2-way flow control valve and the proportional directional spool valve) along the ordinate in arbitrary units.
  • the characteristic curve has three sections: in section a1 the 2-way flow control valve is fully open and the characteristic curve follows the dynamic pressure characteristic curve (the dynamic pressure is proportional to the flow velocity and the dynamic pressure curve shows that the pressure loss is proportional to Q 2 ).
  • a section a2 of the characteristic curve represents the transition between the dynamic pressure characteristic curve and a desired control of the 2-way flow control valve, the control behavior of the 2-way flow control valve depending on the mechanical properties of the preload spring and the reported pressure signals via the LS line and in the tap directly after the 2-way flow control valve.
  • the characteristic curve deviates in section a2 from the dynamic pressure characteristic and even small changes in ⁇ p lead to relatively large (in comparison to section a3) changes in the volume flow, so that no stable control is possible here.
  • the control functions in a stable manner and the volume flow can be kept constant, independently of the load pressure and independent of pressure fluctuations, at a value Q 0 , which is essentially predetermined by the proportional directional spool and means, for example, a desired speed at the consumer.
  • Q 0 which is essentially predetermined by the proportional directional spool and means, for example, a desired speed at the consumer.
  • a change in the spool position of the proportional directional spool valve leads to a different volume flow, which is to be kept pressure-dependent by the 2-way flow control valve.
  • the pressure losses represented by the characteristic curve lead to a power loss of ⁇ p * Q, which dissipates into the heating of a hydraulic medium.
  • the course of the characteristic curve in section a2 deviates from the course in section a1 and the pressure losses in section a2 are greater than in section a1.
  • Section a2 is energetically unfavorable compared to section a1.
  • a hydraulic module of this type is from the publication DE 4420459 already known.
  • a hydraulic module with a pressure-controlled 2-way flow control valve with a pressure-controlled 2-way flow control valve.
  • the pressure-controlled 2-way flow control valve is arranged in a supply line of the hydraulic module and is biased in the open control direction by a first biasing element. Downstream or upstream of the pressure-controlled 2-way flow control valve, a first pressure signal is tapped in the supply line and the first pressure signal can be applied to the pressure-controlled 2-way flow control valve in the closed-control direction or open-control direction via a first control line.
  • a control device is also arranged in the first control line for pressure control of the pressure-controlled 2-way flow control valve.
  • the control device is configured so that application of the first pressure signal to the pressure-controlled 2-way flow control valve is blocked in a first control state. In a second control state, the first pressure signal can be applied by the control device to the pressure-controlled 2-way flow control valve in the closed control direction.
  • the pressure-controlled 2-way flow control valve is controlled in such a way that a deviation of a pressure loss or differential pressure across the pressure-controlled 2-way flow control valve from a course according to a dynamic pressure characteristic curve is determined by the control device and thus energy losses can be kept low. and the entry into stable control mode in the hydraulic module can be reliably provided by the pressure-controlled 2-way flow control valve.
  • the first control line upstream of the pressure-controlled 2-way flow control valve can be tapped in the supply line.
  • the hydraulic module can further comprise a first signal line, which is branched upstream of the control device in the first control line, the control device being switchable to the first or second control state depending on a pressure signal tapped by the first signal line.
  • the first control line upstream of the pressure-controlled 2-way flow control valve can be tapped in the supply line.
  • the hydraulic module can further comprise a second control line, which is connected to the supply line upstream of the pressure-controlled 2-way flow control valve.
  • the control device can be switched to the second control state depending on a second pressure signal tapped by the second control line.
  • control device can comprise a pressure-controlled 2-way valve, which is actuated by a second biasing element (for example in the closed control direction if the first pressure signal is applied in the closed control direction; otherwise in the open control direction if the first pressure signal is in the open position Control direction is applied) is biased.
  • the pressure-controlled 2-way valve is controlled in the closed control direction or open-control direction in the first control state, while it is open-controlled or closed-control in the second control state, so that the first pressure signal depends on the control state of the control device to the pressure-controlled 2 -Way flow control valve can be applied or can be blocked.
  • the second pressure signal can be applied to the pressure-controlled 2-way valve in the closed-control direction via the second control line.
  • the pressure-controlled 2-way flow control valve is completely open-controlled in the first control state of the control device if the first pressure signal is tapped downstream of the 2-way flow control valve. Otherwise, the pressure-controlled 2-way flow control valve can be completely open-controlled in the second control state of the control device if the first pressure signal is tapped upstream of the 2-way flow control valve.
  • the hydraulic module can further comprise a third control line, which is connected downstream of the pressure-controlled 2-way flow control valve to the supply line, a third pressure signal being applied to the pressure-controlled 2-way flow control valve in the open-control direction via the third control line can be.
  • the third control line can be connected to the supply line downstream of a proportional slide valve arranged downstream in the supply line or in front of a consumer in order to tap a pressure signal corresponding to a consumer pressure via the third control line, pressure control of the 2-way flow control valve taking into account a Pressure downstream of the 2-way flow control valve, e.g. consumer pressure.
  • the hydraulic module can further comprise a fourth control line, which is connected to the third control line, wherein the third pressure signal can be applied to the control device via the fourth control line.
  • the control device can thus be switched to the first control state depending on the third pressure signal. This allows regulation depending on the third pressure signal.
  • the third pressure signal can be applied to the pressure-controlled 2-way flow control valve in the closed control direction in the first control state of the control device.
  • the control device can advantageously implement a control of the 2-way flow control valve that is dependent on the third pressure signal.
  • the hydraulic module can further comprise a proportional directional spool, which is arranged in the supply line downstream of the pressure-controlled 2-way flow control valve.
  • the first pressure signal can be tapped upstream of the proportional directional spool.
  • the third pressure signal can be tapped downstream of the proportional directional spool.
  • the 2-way flow control valve and the control device can be integrated in a valve block. This makes it easy to install the hydraulic module in existing hydraulic systems and / or replace it if necessary.
  • control device can comprise an adjustable prestressing element, by means of which the control device is prestressed in the first control state.
  • the time of switching between the first and second control states of the control device can be set in a user-dependent manner.
  • control device can only have the first and second control states as two discrete switching positions. This represents a simple structure for a control device.
  • a hydraulic module system comprising at least two hydraulic modules, only one of the at least two hydraulic modules being designed according to the hydraulic module according to the aspect described above.
  • Fig. 2 14 schematically shows a hydraulic module 100 according to some illustrative embodiments of the invention.
  • the hydraulic module 100 can, for example, be integrated in a valve block or alternatively can be composed of different sub-modules.
  • the hydraulic module 100 comprises a supply line 105 which is connected to a supply unit, for example a constant pump (such as in FIG Fig. 1a is shown) or a variable displacement pump, in order to supply the hydraulic module 100 with a hydraulic medium, for example a hydraulic oil or the like.
  • the supply line 105 is kept at a supply pressure P.
  • the hydraulic module 100 has a proportional directional spool 110 arranged in the supply line 105, through which the supply line 105 can be connected to one of two consumer lines A, B.
  • a hydraulic consumer (not shown), for example a hydraulic cylinder, can be connected to the consumer lines A, B.
  • a pressure-controlled 2-way flow control valve 120 is arranged upstream of the proportional directional spool valve 110 in the supply line 105.
  • a tank line (not shown) is also shown, which is connected to a tank connection R and can be coupled to a reservoir (not shown).
  • the proportional spool 110 can be controlled electromagnetically in order to set a suitable stroke of the proportional spool 110, so that one of the three switch positions shown is adopted. In the switching position shown, the proportional directional spool valve 110 blocks a passage through the supply line 105. In the other two switching positions of the proportional directional spool valve 110, either the consumer line B is connected to the supply line 105 (upper switching position), or the consumer line A becomes the supply line 105 connected (lower switching position). In the upper and lower switching position, a volume flow from the supply line 105 into one of the consumer lines A, B proportional to the stroke of the proportional directional spool valve 110 is set, for example, via a control edge (not shown) in the proportional directional spool valve 110.
  • a desired speed can be set on a hydraulic consumer (not shown), for example a hydraulic cylinder.
  • the pressure-controlled 2-way flow control valve 120 permits pressure-independent control of the volume flow to the consumer to a constant value, as specified by the proportional directional spool valve 110.
  • the 2-way flow control valve 120 is pressure-controlled via a control device 130.
  • the control device is arranged in a first control line 123, which taps a first pressure signal downstream of the 2-way flow control valve 120, which can optionally be applied by the control device 130 in the closed control direction of the 2-way flow control valve 120 or in the illustrated state of the control device 130 is blocked and therefore cannot be applied to the 2-way flow control valve in the closed control direction.
  • the control device 130 can, according to illustrative embodiments, as in FIG Fig. 2 is shown as an example, designed as a 2-way valve with two discrete switching positions.
  • first control state 132 of the control device 130 application of the first pressure signal via the first control line 123 in the closed control direction to the 2-way flow control valve 120 is blocked.
  • second control state 134 of the control device 130 the first pressure signal tapped by the first control line 123 can be applied to the 2-way flow control valve 120 in the closed control direction.
  • the control device 130 can be controlled as a function of a signal 136.
  • the signal 136 represent a hydraulic control signal.
  • the signal 136 can represent an electromagnetic control signal (for example an electrical signal for actuating an electromagnet, which can optionally set the first control state 132 or the second control state 134).
  • a pressure sensor may be disposed in the supply line 105 upstream of the 2-way flow control valve 120 and / or downstream of the 2-way flow control valve 120 and / or downstream of the proportional directional spool valve 110, so that control of the control device 130 into a desired control state of the first and second control states 132, 134 depending on the at least one tapped pressure signal.
  • the 2-way flow control valve 120 is prestressed in the open control direction by means of a prestressing element 122, for example a mechanical spring element. According to specific illustrative examples herein, the 2-way flow control valve may be fully open only by the action of the biasing member 122 in the up-control direction. Downstream of the 2-way flow control valve, for example downstream of the proportional directional spool valve 110, an LS pressure signal is applied to the 2-way flow control valve 120 in the up-control direction by means of an LS line LS1 in support of the biasing by the biasing element 122.
  • a throttle element can be provided in the LS line LS1 in order to set a desired throttling in the LS line LS1.
  • the control device 130 is switched to the first control state 132, the first pressure signal is applied to the 2-way flow control valve 120 in the closed control direction, in particular only the biasing element 122 and possibly the LS pressure signal act via the LS line LS1 in Up-control direction Up-controlling to the 2-way flow control valve 120.
  • the 2-way flow control valve can be completely open-controlled in the first control state 132.
  • a volume flow through the 2-way flow control valve 120 and the proportional directional spool valve 110 in the first control state 132 is thus set to a maximum corresponding to the stroke of the proportional directional spool valve 110.
  • the volume flow through the proportional directional spool valve 110 thus essentially follows a dynamic pressure characteristic curve, ie the pressure loss across the proportional directional spool valve 110 and the 2-way flow control valve 130 is essentially proportional to the square of the volume flow rate and indirectly proportional to the control cross section in the proportional directional spool valve 110
  • the control device 130 is now controlled in the second control state 134
  • the first pressure signal is activated, which is now applied to the 2-way flow control valve 120 in the closed control direction by the first control line 123 and thus the effect of the biasing element 122 and can at least partially compensate the LS pressure signal, in particular a function as a pressure compensator for regulating the volume flow can be provided by the proportional directional spool valve 110.
  • the control signal 136 can, for example, regulate the control device 130 from the first control state 132 to the second control state 134 when the first pressure signal is sufficiently high, so that, in particular, a pressure balance function of the 2-way flow control valve 120 only takes place at higher pressure differences and thus a section the characteristic curve in accordance with section a2 in Fig. 1b is minimized or avoided as far as possible above.
  • the 2-way flow control valve 120 can be given a certain inertia, so that undesired rocking with an upstream further control valve (not shown) or an upstream control device for controlling a supply pump (not shown, for example with regard to 1a and 1b is described above), is prevented since regulation is not carried out in this case and thus the rocking is prevented by the decoupled regulating action of the 2-way flow regulating valve 120 in the first regulating state 132 of the regulating device 130.
  • Fig. 3 schematically shows a characteristic curve in a diagram in which a volume flow Q through the 2-way flow control valve 120 and the proportional directional spool valve 110 along the abscissa against a pressure difference ⁇ p LS across the 2-way flow control valve 120 and the proportional directional spool valve 110 is plotted along the ordinate.
  • the characteristic curve figure 3 has three sections, a characteristic curve course K1 (similar to section a1 in the characteristic curve) in a first section a indicative of small pressures in Fig. 1b ) corresponds to a dynamic pressure characteristic.
  • a characteristic curve course K1 similar to section a1 in the characteristic curve
  • a second section b the characteristic curve now gives way to Fig.
  • a characteristic curve curve S now designates a transition from the characteristic curve curve K2 corresponding to the dynamic pressure characteristic curve to stable control operation according to a characteristic curve curve K4.
  • Fig. 4 shows a hydraulic module 200 with a supply line 205 and a 2-way flow control valve 220 arranged in the supply line 205.
  • the 2-way flow control valve 220 can correspond to the 2-way flow control valve 120 in Fig. 2 be arranged in front of a proportional directional spool valve, as in Fig. 2 is shown according to the proportional directional spool 110.
  • a first control line 223 can be branched off downstream of the 2-way flow control valve 220 at a branch point 209, wherein a first pressure signal is tapped off from the supply line 205 downstream of the two-way flow control valve 220 by means of the first control line 223 at the branch point 209.
  • a control device 230 is arranged on the first control line 223.
  • the first control line 223 is connected to an input E of the control device 230.
  • At an output A of the control device 230 there is an end section 231 of the first control line 223, which is connected to a connection AS2 of the two-way flow control valve 220, so that a pressure medium in the end section 231 in the closed-control direction to the 2-way flow control valve 220 can act.
  • the 2-way flow control valve 220 is biased in the open control direction by a biasing element 222, for example a mechanical spring element, counter to the action of a pressure medium in the end section 231.
  • first control state 232 of the control device 230 a transmission of the first pressure signal in the first control line 223 at the input E of the control device 230 to an output A of the control device 230, and consequently into the end section 231 of the first control line 223.
  • the first pressure signal in the first control line 223 can enter the input E of the control device 230 and enter the end section 231 at the output A of the control device 230 in order to connect to the connection AS2 of the two-way flow control valve 220 in the closed control direction to act on this.
  • the control device 230 has a pretensioning element 235, for example a mechanical pretensioning element, which prestresses the control device 230 in the closed-control direction.
  • the prestressing element 235 can be adjustable or a prestressing can be set by the prestressing element 235. This means that, for example in the case of a mechanical pretensioning element, it can be set and / or exchanged by an operator or user of the hydraulic module, for example against a pretensioning element with different spring hardness, or a spring force can be changed. In this way, for example, a hard or soft switching characteristic of the control device 230 can be specified.
  • a hard prestressing element can mean a regulation from the first regulation state 232 into the second regulation state 234 at relatively high pressures in comparison with soft prestressing elements 235, at which even low pressures are sufficient for regulation from the first regulation state 232 into the second regulation state 234 are. Accordingly, a length of the section S in Fig. 3 on the basis of the preload element 235, since in the case of a relatively hard preload element or a relatively heavily preloaded preload element, the 2-way flow control valve is in the first control state 132 over a larger area and thus follows the dynamic pressure characteristic curve "longer".
  • a further control line 211 can be branched upstream of the 2-way flow control valve 220 at a branch point 207, by means of which a further pressure signal in the open control direction is applied to the control device 230 via the connection AS3 of the control device 230 against the action of the biasing element 235 can be.
  • a switch to the second control state 234 can take place from the first control state 232. It can thereby be set, for example, that the control device 230 can only be switched to the second control state 234 from a certain minimum pressure upstream of the two-way flow control valve 220.
  • an LS control line LS2 acts on the 2-way flow control valve 220 in addition to the biasing element 222 in the up-control direction, the LS control line LS2 on the up-control side being connected to a connection AS1 on the two-way flow control valve.
  • the LS control line LS2 can additionally branch into an optional control line 228 which, at an optional second input E ′ of the control device 230, applies an LS pressure signal tapped at the LS control line LS2, which is applied in the first control state 232 the output A of the control device 230 is transmitted and the first control state 232 of the control device 230 can additionally be applied to the 2-way flow control valve 220 in the closed control direction.
  • the 2-way flow control valve 220 is essentially open-controlled by the biasing element 222.
  • the control line 228 and the additional second input E ′ of the control device 230 cannot be provided.
  • control line 228 can also be branched into a further optional control line 229 before the input E ′ in order to apply the LS pressure signal tapped via the LS control line LS2 to the control device 230 on the control side in addition to the biasing element 235.
  • control line 228 can also be branched into a further optional control line 229 before the input E ′ in order to apply the LS pressure signal tapped via the LS control line LS2 to the control device 230 on the control side in addition to the biasing element 235.
  • contrary to what is shown in Fig. 4 also be dispensed with the second input E '.
  • Fig. 5 schematically shows one to Fig. 2 alternative embodiment, in which case the hydraulic module shown here can also be integrated, for example, in a valve block or alternatively can be composed of different sub-modules.
  • a pressure-controlled 2-way flow control valve 120 is provided, which is arranged upstream of a proportional directional spool valve 110 in a supply line 105, as well as in connection with Fig. 2 was described above.
  • the illustrated embodiment is the 2-way flow control valve 120 in the illustration of FIG Fig. 5 pressure-controlled via a control device 330.
  • the control device 330 is arranged in a first control line 323, which taps a first pressure signal upstream of the 2-way flow control valve 120, which can optionally be applied or blocked by the control device 330 in the up-control direction of the 2-way flow control valve 120.
  • the control device 330 may, according to illustrative embodiments, as in FIG Fig. 5 is shown as an example, designed as a 2-way valve with two discrete switching positions.
  • first control state 332 of the control device 330 application of the first pressure signal via the first control line 323 in the open control direction to the 2-way flow control valve 120 is permitted or enabled, in particular the control device 330 is opened in the first control state 332.
  • second control state 334 of the control device 330 the first pressure signal tapped by the first control line 323 is blocked and is not applied to the 2-way flow control valve 120, in particular the control device 330 is closed in the second control state 334.
  • control device 330 can be controlled as a function of a signal 336.
  • signal 336 may represent a hydraulic control signal.
  • signal 336 may represent an electromagnetic control signal (e.g., an electrical signal for actuation an electromagnet, which can selectively set the first control state 332 or the second control state 334).
  • a pressure sensor may be disposed in the supply line 105 upstream of the 2-way flow control valve 120 and / or downstream of the 2-way flow control valve 120 and / or downstream of the proportional directional spool valve 110, so that control of the control device 330 into a desired control state of the first and second control states 332, 334 depending on the at least one tapped pressure signal.
  • Fig. 5 can, by means of the control device 330, an LS pressure signal, which is applied via an LS line LS1 in the up-control direction to the 2-way flow control valve 120 to support the biasing by the biasing element 122, in the first control state with the first pressure signal or supported by this in the up-control direction to the 2-way flow control valve 120.
  • biasing element for example, a mechanical spring element that mechanically biases the 2-way flow control valve 120 in the open control direction.
  • a first pressure signal which is tapped in the supply line upstream of the 2-way flow control valve 120 by means of the first control line 323 and is applied to the 2-way flow control valve 120 in the up-control direction thereof, in addition to an LS pressure signal
  • the control device 330 If the control device 330 is switched to the first control state 332, it can be compared with a second pressure signal which is tapped downstream of the 2-way flow control valve 120, for example between the 2-way flow control valve and the proportional slide valve 110, via a second control line 339 and depending on the bias by the biasing element 122, a volume flow through the 2-way flow control valve 120 and the proportional directional spool 110 can be set based on the pressure difference between the first pressure signal and the LS pressure relative to the second pressure signal.
  • the 2-way flow control valve 120 can be completely open-controlled as long as the control device 130 is in the first control state 332. If the control device 130 is in the second control state 334, the 2-way flow control valve can generate a volume flow through the 2-way flow control valve 120 and the proportional directional spool valve 110 on the basis of the pressure difference between the LS pressure (tapped via the LS line LS1) and the second pressure signal can be set. Thus, in the second control state 334 of the control device 330, a volume flow through the 2-way flow control valve 120 and the proportional directional spool valve 110 can be set in accordance with the stroke of the proportional directional spool valve 110.
  • the 2-way flow control valve 120 has no regulating effect as long as the control device 330 is in the first control state 332.
  • the volume flow through the proportional directional spool valve 110 thus essentially follows a dynamic pressure characteristic curve, ie the pressure loss across the proportional directional spool valve 110 and the 2-way flow control valve 130 is essentially proportional to the square of the volume flow rate and indirectly proportional to the control cross section in the proportional directional spool valve 110 If the control device 330 is now controlled in the second control state 334, the first pressure signal, which is applied in the first control state 332 by the first control line 323 in the closed control direction to the 2-way flow control valve 120, and thus the effect of the biasing element 122 and the LS pressure signal added, blocked.
  • a function as a pressure compensator for regulating the volume flow through the proportional directional spool 110 depending on the LS pressure and the second pressure signal are provided. Since the time at which the first pressure signal is applied by the first control line 323 in the up-control direction to the 2-way flow control valve 120 depends on the control state of the control device 330 and in particular on the control signal 336, the time from which can be set with a suitable control signal 336 the 2-way flow control valve 120 acts as a pressure compensator.
  • control signal 336 can, for example, regulate the control device 330 from the first control state 332 to the second control state 334 with a sufficiently high first pressure signal, so that, in particular, a pressure balance function of the 2-way flow control valve 120 only takes place at higher pressure differences, and thus a section the characteristic curve in accordance with section a2 in Fig. 1b is minimized or avoided as far as possible above.
  • the 2-way flow control valve 120 can be given a certain inertia, so that undesired rocking with an upstream further control valve (not shown) or an upstream control device for controlling a supply pump (not shown, for example with regard to 1a and 1b is described above), is prevented since regulation is not carried out in this case and thus the rocking is prevented by the decoupled regulating action of the 2-way flow regulating valve 120 in the second regulating state 332 of the regulating device 330.
  • the explanations are now closed Fig. 3 above also on the in Fig. 5 illustrated embodiment can be transferred accordingly.
  • Fig. 6 is now an illustrative example of the in Fig. 5 illustrated embodiment described in more detail.
  • a hydraulic module 400 with a 2-way flow control valve 420 (corresponds to the 2-way flow control valve 120) Fig. 5 ) shown upstream in a supply line 405 a proportional spool valve, not shown, is arranged.
  • a first control line is branched off at a branch point 419.
  • the first control line is connected to an input E "of a control device 430, which corresponds to the representation in FIG Fig. 6 can be designed as a 2-way valve which is biased in the open control direction by a biasing element 435, for example a mechanical spring or the like.
  • a prestress provided by the prestressing element 435 can be adjustable, for example the prestressing element 435 can be exchangeable or the prestressing exerted by the prestressing element 435 can be set as desired by an operator using a tool.
  • a pressure signal can be tapped off in the first control line 423 by means of a first signal line 424 and can be applied to the control device 430 in the closed control direction of the control device 430 against the action of the biasing element 430.
  • the control device 430 can be connected on the output side (at an output A ′ of the control device 430) to a continuation 431 of the first signal line 423, which is connected to an LS line LS3 (similar to the LS lines LS1 and LS2).
  • a second signal line 429 is provided downstream of the control device 430, by means of which a pressure signal downstream of the control device 430 can be tapped in the first control line and can be applied to the control device 430 in the open control direction to support the biasing element 435.
  • the control device is regulated as a function of a pressure difference between the pressure signals which are tapped by the signal lines 424 and 429 in the first control line (relative to the pretension by the pretensioning element 435).
  • the control device 430 is controlled. This blocks transmission of the first pressure signal, which is tapped via the first control line 423, to the LS line LS3 and to the 2-way flow control valve 420.
  • the control device 430 can, depending on a pressure signal that is applied to the control device 430 via the first signal line 424, and a further pressure signal that is applied to the control device 430 via the second signal line 429, into a first control state 432 or a second control state 434 are brought, the first pressure signal in the first control state 432 by the control device 430 in the open control direction is applied to the 2-way flow control valve 420.
  • the second control state 434 application of the first pressure signal to the 2-way flow control valve 420 is blocked.
  • the 2-way flow control valve 420 can be closed in the first control state 432 of the control device, while in the second control state 434 of the control device 430 it is open-controlled, for example completely open-controlled.
  • the first pressure signal can be applied to the 2-way flow control valve 420 in the second control state 434 of the control device 430, while an application of the first pressure signal is blocked in the first control state 432 of the control device 430.
  • an LS pressure signal as shown by the arrow p_LS in Fig. 6 is shown, either from a combination of the LS pressure reported by the LS line LS3 with the first pressure signal (if the control device 430 is open-controlled) or solely from the LS pressure reported by the LS line LS3 (if the control device 430 is controlled) are applied to the 2-way flow control valve 420 in the open control direction.
  • a further control line (second control line) 452 can be branched off downstream of the 2-way flow control valve 420 at a branch point 450, by means of which a further (second) pressure signal in the closed control direction to the 2-way flow control valve 420 against the action of a biasing element 422 and the LS pressure signal, possibly combined with the first pressure signal.
  • the effect of the second pressure signal is at least partially compensated for by the first pressure signal when the control device 430 is open, so that the 2-way flow control valve 420 is opened.
  • Fig. 7 shows characteristic curves of the volume flow through the above-described proportional directional spool valve as a function of the pressure difference ⁇ p above the 2-way flow control valve and the proportional directional spool valve described above.
  • a characteristic curve with a dotted curve shows the case of a high control pressure
  • a characteristic curve with a dash-dotted curve shows the case of a low control pressure in relation to the in Fig. 3 shown characteristic curve (solid curve) means.
  • a characteristic curve or the regulating pressure is set via the adjustable preloading elements, a "harder" preloading element or a preloading element with "greater” preload meaning a "higher regulating pressure.
  • the result is a length of a standard edge, as in Fig. 7 on the basis of the double arrow labeled “ ⁇ x”, by means of which the adjustable prestressing element can be set depending on the application.
  • the structure and function of a hydraulic module with a 2-way flow control valve were described above, which according to some illustrative embodiments in proportional directional spool valves can be used with LS technology.
  • the 2-way flow control valve can be connected upstream or downstream of the individual proportional directional spools or valves.
  • a pressure drop across the proportional directional spool valve, in particular via a measuring orifice in the proportional directional spool is kept constant, and the volume flow through the proportional directional spool can also be kept constant regardless of the pump pressure or a load pressure at the consumer.
  • the 2-way flow control valve In the case of 2-way flow control valves upstream of proportional directional spool valves, the 2-way flow control valve always regulates the pressure that is present directly in front of the proportional directional spool valve (and thus in front of the measuring orifice in the proportional directional spool valve) by the same pressure difference as the consumer pressure.
  • the control device which according to illustrative embodiments based on the 2 to 7
  • the advantages described above have the following advantages: Fig. 1b Section "a2" of the characteristic curve described is bypassed.
  • the two-way flow control valve is open-controlled in this area regardless of the load pressure. By suspending the control of the 2-way flow control valve in this area, energy savings are achieved. Furthermore, independence from special settings on pump controllers or on controllers in the connection block to the hydraulic module is achieved.
  • the control device described above ensures that the 2-way flow control valve is opened up to a certain set pressure difference and that there is no counteracting control on the 2-way flow control valve.
  • the behavior of the 2-way flow control valve is influenced by the biasing element up to a certain adjustable pressure difference.
  • the 2-way flow control valve is completely open-controlled in this pressure range. Only from a certain pressure difference and / or a sufficiently high pressure difference is there a regulating operation of the 2-way flow control valve by at least partially compensating for the opening effect of the prestressing element.
  • the pressure difference from which the 2-way flow control valve switches to regulating operation can be set via the control device.

Description

Die vorliegende Erfindung betrifft ein Hydraulikmodul gemäß dem Oberbegriff des unabhängigen Anspruchs 1 und insbesondere ein Hydraulikmodul mit einem druckgesteuerten 2-Wege-Stromregelventil.The present invention relates to a hydraulic module according to the preamble of independent claim 1 and in particular to a hydraulic module with a pressure-controlled 2-way flow control valve.

In anspruchsvollen Hydrokreisen, z.B. in einem Kran, einem Betonverteilermast, einem Stapler und anderen Lasthebe- und Manipuliereinrichtungen, werden im Allgemeinen Proportional-Wegeschieber mit 2-Wege-Stromregelventil eingesetzt, um das gleichzeitige Betätigen mehrerer Verbraucher zu ermöglichen und/oder eine Verfahrgeschwindigkeit an einem Verbraucher einzustellen. Zum Beispiel ist es in der Anwendungspraxis häufig erforderlich, mehrere Verbraucher lastdruckunabhängig anzusteuern.In demanding hydraulic circuits, e.g. In a crane, a concrete placing boom, a forklift and other load lifting and manipulating devices, proportional directional spools with a 2-way flow control valve are generally used to enable the simultaneous actuation of several consumers and / or to set a travel speed on one consumer. For example, in practice it is often necessary to control several consumers independently of the load pressure.

Aus dem Produktprogramm 2015 von HAWE ist gemäß den Seiten 104 bis 113 ein Proportional-Wegeschieber vom Typ PSL mit Anschlussblöcken und einem Aufsatzblock bekannt. Mit Bezug auf Fig. 1a ist schematisch ein beispielhafter bekannter Hydrokreis mit zwei Proportional-Wegeschiebern vom Typ PSL, in Fig. 1a mit den Bezugszeichen PS1, PS2 bezeichnet, und einem geeigneten Anschlussblock für eine Konstantpumpe 1 zum Betrieb von zwei Verbrauchern V1, V2 dargestellt. Ein von der Konstantpumpe 1 ausgegebener Versorgungsdruck P wird durch eine Versorgungsleitung 6 einer Mehrzahl von stark schematisiert dargestellten Verbrauchern V1, V2, z.B. Hydrozylinder, über die jeweiligen Proportional-Wegeschieber PS1, PS2 zugeführt, um die Verbraucher V1, V2 anzutreiben. Der Zufluss vor den Proportional-Wegeschiebern PS1, PS2 wird dabei jeweils durch ein druckgesteuertes 2-Wege-Stromregelventil 41, 42 geregelt, das stromaufwärts des entsprechenden Proportional-Wegeschiebers PS1, PS2 (d.h., in Zuflussrichtung vor dem entsprechenden Proportional-Wegeschieber PS1, PS2) angeordnet ist. Falls im Betrieb wenigstens einer der Verbraucher V1, V2 betrieben werden, so ist der zugehörige Proportional-Wegeschieber PS1, PS2 aus dem dargestellten Sperrzustand nach oben oder unten ausgelenkt, je nachdem, ob ein mit dem entsprechenden Verbraucher V1, V2 verbundener Anschluss A1, A2 oder B1, B2 mit der Versorgungsleitung 6 verbinden werden soll. Über den Hub der Auslenkung wird dabei durch die Proportional-Wegeschieber PS1, PS2 ein Volumenstrom zu dem jeweiligen Verbraucher V1, V2 vorgegeben, beispielsweise um eine Geschwindigkeit am entsprechenden Verbraucher V1, V2 einzustellen.According to pages 104 to 113 of the HAWE product range 2015, a proportional directional spool valve type PSL with connection blocks and an add-on block is known. Regarding Fig. 1a is schematically an exemplary known hydraulic circuit with two proportional directional spool valves of the type PSL, in Fig. 1a denoted by the reference numerals PS1, PS2, and a suitable connection block for a constant pump 1 for operating two consumers V1, V2. A supply pressure P output by the constant pump 1 is supplied through a supply line 6 to a plurality of consumers V1, V2, for example hydraulic cylinders, shown in a highly schematic manner via the respective proportional directional spool valves PS1, PS2 in order to drive the consumers V1, V2. The inflow upstream of the proportional directional spool valves PS1, PS2 is regulated in each case by a pressure-controlled 2-way flow control valve 41, 42, which is upstream of the corresponding proportional directional spool valve PS1, PS2 (ie, upstream of the corresponding proportional directional spool valve PS1, PS2 ) is arranged. If at least one of the consumers V1, V2 is operated during operation, the associated proportional directional spool valve PS1, PS2 is deflected upwards or downwards from the blocking state shown, depending on whether a connection A1, A2 connected to the corresponding consumer V1, V2 or B1, B2 to be connected to the supply line 6. Via the stroke of the deflection, a volume flow to the respective consumer V1, V2 is predetermined by the proportional directional spool valves PS1, PS2, for example in order to set a speed at the corresponding consumer V1, V2.

Über eine entsprechende LS-Leitung LS1, LS2 (in Fig. 1 gestrichelt dargestellt) wird ein stromabwärts des entsprechenden Proportional-Wegeschiebers PS1, PS2 abfallender Lastdruck an das zugehörige 2-Wege-Stromregelventil 41, 42 gemeldet. Weiterhin wird über Wechselventile 2 sichergestellt, dass der höchste Lastdruck von den durch die LS-Leitungen LS1, LS2 gemeldeten Lastdrücken (entspricht den an den Verbrauchern V1, V2 abfallenden Lastdrücken) an einen Umlaufregler 8 des Konstantpumpensystems gemeldet wird.Via a corresponding LS line LS1, LS2 (in Fig. 1 shown in dashed lines) a load pressure falling downstream of the corresponding proportional directional spool valve PS1, PS2 is applied the associated 2-way flow control valve 41, 42 reported. Furthermore, changeover valves 2 ensure that the highest load pressure from the load pressures reported by the LS lines LS1, LS2 (corresponds to the load pressures dropping at the consumers V1, V2) is reported to a circulation controller 8 of the constant pump system.

Der von der LS-Leitung LS1 bzw. LS2 an das 2-Wege-Stromregelventil 41 bzw. 42 gemeldete Lastdruck wird, die Vorspannung der Vorspannfeder unterstützend, in Auf-Steuerrichtung des 2-Wege-Stromregelventils 41 bzw. 42 wirkend an dieses angelegt. Weiterhin wird jedem 2-Wege-Stromregelventil 41, 42 ferner ein ausgangsseitig am jeweiligen 2-Wege-Stromregelventil 41, 42 abgegriffenes Drucksignal in Zu-Steuerrichtung (d.h. der Vorspannung entgegenwirkend) des jeweiligen 2-Wege-Stromregelventil 41, 42 angelegt. Jedes der 2-Wege-Stromregelventile 41, 42 wird durch eine Vorspannfeder in Auf-Steuerrichtung vorgespannt, so dass die 2-Wege-Stromregelventile 41, 42 im Ruhezustand geöffnet sind.The load pressure reported by the LS line LS1 or LS2 to the 2-way flow control valve 41 or 42 is applied to the 2-way flow control valve 41 or 42 in the up-control direction to support the biasing force of the biasing spring. Furthermore, each 2-way flow control valve 41, 42 is also applied with a pressure signal tapped on the output side of the respective 2-way flow control valve 41, 42 in the closed control direction (i.e. counteracting the bias) of the respective 2-way flow control valve 41, 42. Each of the 2-way flow control valves 41, 42 is biased in the open control direction by a biasing spring, so that the 2-way flow control valves 41, 42 are opened in the idle state.

In der Gleichgewichtslage stellt sich folglich zwischen dem abgegriffenen LS-Druck und einem in der Versorgungsleitung anliegenden Druck (in Fig. 1a jeweils nach dem 2-Wege-Stromregelventil 41, 42 abgegriffen) eine bestimmte Druckdifferenz ein. Hierdurch werden Änderungen im Volumenstrom auf einen konstanten Wert einregelt, wobei für gewöhnlich Vorspannfedern mit kleiner Federkonstante bzw. flacher Federkennlinie verwendet werden. Somit regelt jedes der 2-Wege-Stromregelventil 41, 42 einen Volumenstrom durch den entsprechenden Proportional-Wegeschieber PS1, PS2 lastunabhängig auf einen konstanten Wert ein. Mit anderen Worten, falls der hinter dem Proportional-Wegeschieber PS1 bzw. PS2 auftretende Volumenstrom während des Betriebs des Verbrauchers V1 bzw. V2 sinkt, so sinkt auch die Druckdifferenz zwischen dem hinter dem 2-Wege-Stromregelventil 41 bzw. 42 abfallenden Druck (gemeldet als "pA") und dem hinter dem Proportional-Wegeschieber abfallenden Lastdruck (der als "pLS" über die LS-Leitung LS1 bzw. LS2 an das 2-Wege-Stromregelventil 41 bzw. 42 gemeldet wird), so dass sich ein Regelkolben (nicht dargestellt) im 2-Wege-Stromregelventil 41 bzw. 42 entlang der Auf-Steuerrichtung verschiebt. Die Folge ist, dass sich am Regelkolben im 2-Wege-Stromriegelventil 41 bzw. 42 wieder ein Kräftegleichgewicht einstellt, wenngleich bei einem größeren Drosselquerschnitt im 2-Wege-Stromregelventil 41 bzw. 42. Damit wird die Verringerung des Volumenstroms durch die Druckdifferenz (pA - pLS) im Kräftegleichgewicht mit der Vorspannfeder kompensiert in gewünschtem Maße kompensiert.In the equilibrium position there is consequently between the tapped LS pressure and a pressure present in the supply line (in Fig. 1a tapped after the 2-way flow control valve 41, 42) a certain pressure difference. As a result, changes in the volume flow are regulated to a constant value, whereby prestressing springs with a small spring constant or flat spring characteristic are usually used. Each of the 2-way flow control valves 41, 42 thus regulates a volume flow through the corresponding proportional directional spool valve PS1, PS2 to a constant value regardless of the load. In other words, if the volume flow occurring behind the proportional directional spool valve PS1 or PS2 drops during the operation of the consumer V1 or V2, the pressure difference between the pressure falling behind the 2-way flow control valve 41 or 42 also drops (reported as "p A ") and the load pressure falling behind the proportional directional spool valve (which is reported as "p LS " via the LS line LS1 or LS2 to the 2-way flow control valve 41 or 42), so that a Control piston (not shown) in the 2-way flow control valve 41 or 42 moves along the open control direction. The consequence is that the control piston in the 2-way flow control valve 41 or 42 again achieves a balance of forces, albeit with a larger throttle cross section in the 2-way flow control valve 41 or 42. This reduces the volume flow through the pressure difference (p A - p LS ) in the equilibrium of forces with the preload spring compensated to the desired extent.

Im Ergebnis werden der Volumenstrom zum Verbraucher und die Druckdifferenz zwischen dem von der Konstantpumpe 1 bereitgestellten Druck und dem Druck im Lastkreis zum Verbraucher auf einen konstanten Wert geregelt.As a result, the volume flow to the consumer and the pressure difference between the pressure provided by the constant pump 1 and the pressure in the load circuit to the consumer are regulated to a constant value.

Nimmt andererseits die Druckdifferenz (pA - pLS) am Proportional-Wegeschieber PS1 bzw. PS2 zu, was einer Zunahme des Volumenstroms entspricht, so wird das 2-Wege-Stromregelventil in Zu-Steuerrichtung geregelt, bis sich ein neues Kräftegleichgewicht einstellt. Im-2-Wege-Stromregelventil verschiebt sich somit ein Regelkolben (nicht dargestellt) in Zu-Steuerrichtung und es verringert sich ein Drosselquerschnitt im 2-Wege-Stromregelventil 41 bzw. 42. Mit abnehmendem Drosselquerschnitt nehmen der Volumenstrom und die Druckdifferenz (pA - pLS) wieder ab (wodurch der anfänglichen Zunahme entgegengewirkt wird) und es stellt sich wiederum ein Kräftegleichgewicht ein, in dem die Zunahme im Volumenstrom und der Druckdifferenz kompensiert werden.On the other hand, if the pressure difference (p A - p LS ) at the proportional directional spool PS1 or PS2 increases, which corresponds to an increase in the volume flow, the 2-way flow control valve is controlled in the closed-control direction until a new force balance is established. In the 2-way flow control valve, a control piston (not shown) moves in the closed control direction and a throttle cross-section in the 2-way flow control valve 41 or 42 decreases. As the throttle cross-section decreases, the volume flow and the pressure difference (p A - p LS ) again (which counteracts the initial increase) and an equilibrium of forces is established in which the increase in the volume flow and the pressure difference are compensated.

In Fig. 1b ist die resultierende Kennlinie des 2-Wege-Stromregelventils (vgl. 41, 42 in Fig. 1a) und des Proportional-Wegeschiebers (vgl. PS1, PS2 in Fig. 1a) schematisch dargestellt. Hierbei ist ein Volumenstrom Q entlang der Abszisse in willkürlichen Einheiten gegen eine Druckdifferenz Δp (entspricht dem Druckverlust über dem 2-Wege-Stromregelventil und dem Proportional-Wegeschiebers) entlang der Ordinate in willkürlichen Einheiten aufgetragen.In Fig. 1b is the resulting characteristic of the 2-way flow control valve (cf. 41, 42 in Fig. 1a ) and the proportional directional spool (cf. PS1, PS2 in Fig. 1a ) is shown schematically. Here, a volume flow Q is plotted along the abscissa in arbitrary units against a pressure difference Δp (corresponds to the pressure loss across the 2-way flow control valve and the proportional directional spool valve) along the ordinate in arbitrary units.

Die Kennlinie weist drei Abschnitte auf: in Abschnitt a1 ist das 2-Wege-Stromregelventil vollständig geöffnet und die Kennlinie folgt der Staudruckkennlinie (der Staudruck ist proportional zur Strömungsgeschwindigkeit und es ergibt sich für die Staudruckkennlinie, dass der Druckverlust proportional zu Q2 ist). Ein Abschnitt a2 der Kennlinie stellt den Übergang zwischen der Staudruckkennlinie und einer gewünschten Regelung des 2-Wege-Stromregelventils dar, wobei das Regelverhalten des 2-Wege-Stromregelventils von den mechanischen Eigenschaften der Vorspannfeder und den gemeldeten Drucksignalen über die LS-Leitung und im Abgriff direkt nach dem 2-Wege-Stromregelventil abhängt. Der Kennlinienverlauf weicht in Abschnitt a2 von der Staudruckkennlinie ab und schon geringe Änderungen in Δp führen zu relativ (im Vergleich zu Abschnitt a3) großen Änderungen im Volumenstrom, so dass hier keine stabile Regelung möglich ist. In einem Abschnitt a3 hingegen funktioniert die Regelung stabil und der Volumenstrom kann im Wesentlichen unabhängig vom Lastdruck und unabhängig von Druckschwankungen auf einem Wert Q0 konstant gehalten werden, der im Wesentlichen durch den Proportional-Wegeschieber vorgegeben wird und beispielsweise eine gewünschte Geschwindigkeit am Verbraucher bedeutet. Eine Änderung der Schieberstellung des Proportional-Wegeschiebers führt zu einem verschiedenen Volumenstrom, der durch das 2-Wege-Stromregelventil druckabhängig zu halten ist.The characteristic curve has three sections: in section a1 the 2-way flow control valve is fully open and the characteristic curve follows the dynamic pressure characteristic curve (the dynamic pressure is proportional to the flow velocity and the dynamic pressure curve shows that the pressure loss is proportional to Q 2 ). A section a2 of the characteristic curve represents the transition between the dynamic pressure characteristic curve and a desired control of the 2-way flow control valve, the control behavior of the 2-way flow control valve depending on the mechanical properties of the preload spring and the reported pressure signals via the LS line and in the tap directly after the 2-way flow control valve. The characteristic curve deviates in section a2 from the dynamic pressure characteristic and even small changes in Δp lead to relatively large (in comparison to section a3) changes in the volume flow, so that no stable control is possible here. In a section a3, on the other hand, the control functions in a stable manner and the volume flow can be kept constant, independently of the load pressure and independent of pressure fluctuations, at a value Q 0 , which is essentially predetermined by the proportional directional spool and means, for example, a desired speed at the consumer. A change in the spool position of the proportional directional spool valve leads to a different volume flow, which is to be kept pressure-dependent by the 2-way flow control valve.

Die durch die Kennlinie dargestellten Druckverluste führen zu einer Verlustleistung von Δp*Q, die in die Erwärmung eines Hydraulikmediums dissipiert. Insbesondere weicht der Verlauf der Kennlinie in Abschnitt a2 von dem Verlauf in Abschnitt a1 ab und die Druckverluste in Abschnitt a2 sind größer als in Abschnitt a1. Abschnitt a2 ist im Vergleich zu Abschnitt a1 energetisch ungünstig.The pressure losses represented by the characteristic curve lead to a power loss of Δp * Q, which dissipates into the heating of a hydraulic medium. In particular, the course of the characteristic curve in section a2 deviates from the course in section a1 and the pressure losses in section a2 are greater than in section a1. Section a2 is energetically unfavorable compared to section a1.

Weiterhin tritt in Abschnitt a2 ein Problem auf, dass Druckschwankungen in Abschnitt a2 aufgrund des steileren Verlaufs in Abschnitt a2 gegenüber Abschnitt a1 ungenügend gedämpft werden, und die Gefahr besteht, dass sich ein System aus einem 2-Wege-Stromregelventil und einem damit in Reihe geschalteten Regler im Eingangsabschnitt oder an der Verstellpumpe aufschaukeln kann und damit ein stabiler Eintritt in Abschnitt a3 negativ beeinflusst wird,There is also a problem in section a2 that pressure fluctuations in section a2 are insufficiently damped due to the steeper course in section a2 compared to section a1, and there is a risk that a system consisting of a 2-way flow control valve and a series-connected valve Can swing up the controller in the inlet section or on the variable displacement pump and thus have a negative influence on a stable inlet in section a3,

Ein Hydraulikmodul dieser Art ist aus der Druckschrift DE 4420459 bereits bekannt.A hydraulic module of this type is from the publication DE 4420459 already known.

Angesichts der oben dargestellten Situation ist es wünschenswert, Energieverluste möglichst gering zu halten und auch bei kleinen Drücken und/oder kleinen Volumenströmen einen möglichst stabilen Regelbetrieb zu ermöglichen.In view of the situation described above, it is desirable to keep energy losses as low as possible and to enable control operation to be as stable as possible even at low pressures and / or small volume flows.

Es besteht beispielsweise die Aufgabe, ein 2-Wege-Stromregelventil und eine Ventilanordnung mit einem entsprechenden 2-Wege-Stromregelventilen bereitzustellen, wobei die Volumenstromregelung in den Betriebspunkten stabilisiert wird, speziell im Zusammenspiel mit anderen hydraulischen Reglern, und/oder eine stabile Volumenstromregelung vor allen in niedrigeren Druckdifferenzbereichen ermöglicht wird.For example, there is the task of providing a 2-way flow control valve and a valve arrangement with a corresponding 2-way flow control valve, the volume flow control being stabilized at the operating points, especially in interaction with other hydraulic controllers, and / or a stable volume flow control above all is made possible in lower pressure difference ranges.

Die vorangehenden Aufgaben und Probleme werden in einem ersten Aspekt der Erfindung durch ein Hydraulikmodul mit einem druckgesteuerten 2-Wege-Stromregelventil gelöst. In anschaulichen Ausführungsformen ist das druckgesteuerte 2-Wege-Stromregelventil in einer Versorgungsleitung des Hydraulikmoduls angeordnet und durch ein erstes Vorspannelement in Auf-Steuerrichtung vorgespannt. Stromabwärts bzw. stromaufwärts des druckgesteuerten 2-Wege-Stromregelventils wird in der Versorgungsleitung ein erstes Drucksignal abgegriffen und das erste Drucksignal kann über eine erste Steuerleitung an das druckgesteuerten 2-Wege-Stromregelventil entsprechend in Zu-Steuerrichtung bzw. Auf-Steuerrichtung angelegt werden. Zur Drucksteuerung des druckgesteuerten 2-Wege-Stromregelventils ist ferner in der ersten Steuerleitung eine Regeleinrichtung angeordnet. Die Regeleinrichtung ist dabei konfiguriert, so dass ein Anlegen des ersten Drucksignals an das druckgesteuerte 2-Wege-Stromregelventil in einem ersten Regelzustand blockiert wird. In einem zweiten Regelzustand kann das erste Drucksignal durch die Regeleinrichtung an das druckgesteuerte 2-Wege-Stromregelventil in Zu-Steuerrichtung angelegt werden.The above objects and problems are solved in a first aspect of the invention by a hydraulic module with a pressure-controlled 2-way flow control valve. In illustrative embodiments, the pressure-controlled 2-way flow control valve is arranged in a supply line of the hydraulic module and is biased in the open control direction by a first biasing element. Downstream or upstream of the pressure-controlled 2-way flow control valve, a first pressure signal is tapped in the supply line and the first pressure signal can be applied to the pressure-controlled 2-way flow control valve in the closed-control direction or open-control direction via a first control line. A control device is also arranged in the first control line for pressure control of the pressure-controlled 2-way flow control valve. The control device is configured so that application of the first pressure signal to the pressure-controlled 2-way flow control valve is blocked in a first control state. In a second control state, the first pressure signal can be applied by the control device to the pressure-controlled 2-way flow control valve in the closed control direction.

In dem oben definierten Hydraulikmodul wird das druckgesteuerte 2-Wege-Stromregelventil derart angesteuert, dass ein Abweichen eines Druckverlusts oder Differenzdrucks über dem druckgesteuerten 2-Wege-Stromregelventil von einem Verlauf gemäß einer Staudruckkennlinie durch die Regeleinrichtung festgelegt wird und damit Energieverluste gering gehalten werden können, sowie der Eintritt in einen stabilen Regelbetrieb im Hydraulikmodul durch das druckgesteuerte 2-Wege-Stromregelventil zuverlässig bereitgestellt werden kann.In the hydraulic module defined above, the pressure-controlled 2-way flow control valve is controlled in such a way that a deviation of a pressure loss or differential pressure across the pressure-controlled 2-way flow control valve from a course according to a dynamic pressure characteristic curve is determined by the control device and thus energy losses can be kept low. and the entry into stable control mode in the hydraulic module can be reliably provided by the pressure-controlled 2-way flow control valve.

In einer anschaulichen Ausgestaltung des oben beschriebenen Hydraulikmoduls kann die erste Steuerleitung stromaufwärts des druckgesteuerten 2-Wege-Stromregelventils in der Versorgungsleitung abgegriffen sein. Hierbei kann das Hydraulikmodul ferner eine erste Meldeleitung umfassen, die stromaufwärts der Regeleinrichtung in der ersten Steuerleitung abgezweigt ist, wobei die Regeleinrichtung abhängig von einem durch die erste Meldeleitung abgegriffenem Drucksignal in den ersten oder zweiten Regelzustand schaltbar ist.In an illustrative embodiment of the hydraulic module described above, the first control line upstream of the pressure-controlled 2-way flow control valve can be tapped in the supply line. In this case, the hydraulic module can further comprise a first signal line, which is branched upstream of the control device in the first control line, the control device being switchable to the first or second control state depending on a pressure signal tapped by the first signal line.

In einer anderen anschaulichen Ausgestaltung des Hydraulikmoduls gemäß dem ersten Aspekt oben kann die erste Steuerleitung stromaufwärts des druckgesteuerten 2-Wege-Stromregelventils in der Versorgungsleitung abgegriffen sein. Hierbei kann das Hydraulikmodul ferner eine zweite Steuerleitung umfassen, die mit der Versorgungsleitung stromaufwärts des druckgesteuerten 2-Wege-Stromregelventils verbunden ist. Die Regeleinrichtung ist dabei abhängig von einem durch die zweite Steuerleitung abgegriffenen zweiten Drucksignal in den zweiten Regelzustand schaltbar.In another illustrative embodiment of the hydraulic module according to the first aspect above, the first control line upstream of the pressure-controlled 2-way flow control valve can be tapped in the supply line. Here, the hydraulic module can further comprise a second control line, which is connected to the supply line upstream of the pressure-controlled 2-way flow control valve. The control device can be switched to the second control state depending on a second pressure signal tapped by the second control line.

In einer weiteren anschaulichen Ausgestaltung kann die Regeleinrichtung ein druckgesteuertes 2-Wegeventil umfassen, das durch ein zweites Vorspannelement (z.B. in Zu-Steuerrichtung, falls das erste Drucksignal in Zu-Steuerrichtung angelegt wird; andernfalls in Auf-Steuerrichtung, falls das erste Drucksignal in Auf-Steuerrichtung angelegt wird) vorgespannt ist. Dabei ist das druckgesteuerte 2-Wegeventil im ersten Regelzustand in Zu-Steuerrichtung bzw. Auf-Steuerrichtung gesteuert, während es im zweiten Regelzustand Auf-gesteuert bzw. Zu-gesteuert ist, so dass das erste Drucksignal abhängig vom Regelzustand der Regeleinerichtung an das druckgesteuerte 2-Wege-Stromregelventil angelegt werden kann oder blockiert sein kann.In a further illustrative embodiment, the control device can comprise a pressure-controlled 2-way valve, which is actuated by a second biasing element (for example in the closed control direction if the first pressure signal is applied in the closed control direction; otherwise in the open control direction if the first pressure signal is in the open position Control direction is applied) is biased. The pressure-controlled 2-way valve is controlled in the closed control direction or open-control direction in the first control state, while it is open-controlled or closed-control in the second control state, so that the first pressure signal depends on the control state of the control device to the pressure-controlled 2 -Way flow control valve can be applied or can be blocked.

In einer anschaulicheren Ausgestaltung hiervon kann das zweite Drucksignal über die zweite Steuerleitung an das druckgesteuerte 2-Wegeventil in Zu-Steuerrichtung angelegt werden. Dadurch wird eine Schaltung der als 2-Wegeventil ausgebildeten Regeleinrichtung auf einfache und zuverlässige Weise realisiert.In a more descriptive embodiment of this, the second pressure signal can be applied to the pressure-controlled 2-way valve in the closed-control direction via the second control line. Thereby a circuit of the control device designed as a 2-way valve is implemented in a simple and reliable manner.

In einem anschaulichen Beispiel verschiedener Ausführungsformen ist das druckgesteuerte 2-Wege-Stromregelventil im ersten Regelzustand der Regeleinrichtung vollständig Auf-gesteuert, falls das erste Drucksignal stromabwärts des 2-Wege-Stromregelventils abgegriffen wird. Andernfalls kann das druckgesteuerte 2-Wege-Stromregelventil im zweiten Regelzustand der Regeleinrichtung vollständig Auf-gesteuert sein, falls das erste Drucksignal stromaufwärts des 2-Wege-Stromregelventils abgegriffen wird. Dadurch kann ein energetisch vorteilhafter Betrieb im Bereich kleiner Drücke bereitgestellt werden, da Druckverluste im Bereich kleiner Drücke klein gehalten werden können.In an illustrative example of various embodiments, the pressure-controlled 2-way flow control valve is completely open-controlled in the first control state of the control device if the first pressure signal is tapped downstream of the 2-way flow control valve. Otherwise, the pressure-controlled 2-way flow control valve can be completely open-controlled in the second control state of the control device if the first pressure signal is tapped upstream of the 2-way flow control valve. This enables an energetically advantageous operation in the range of low pressures to be provided, since pressure losses in the range of low pressures can be kept low.

In einer weiteren anschaulichen Ausgestaltung kann das Hydraulikmodul ferner eine dritte Steuerleitung umfassen, die stromabwärts des druckgesteuerten 2-Wege-Stromregelventils mit der Versorgungsleitung verbunden ist, wobei ein drittes Drucksignal über die dritte Steuerleitung in Auf-Steuerrichtung an das druckgesteuerte 2-Wege-Stromregelventil angelegt werden kann. In einem speziellen Beispiel kann die dritte Steuerleitung nach einem Stromabwärts in der Versorgungsleitung angeordneten Proportionalwegeschiebers oder vor einem Verbraucher mit der Versorgungsleitung verbunden sein, um über die dritte Steuerleitung ein einem Verbraucherdruck entsprechendes Drucksignal abzugreifen, wobei eine Drucksteuerung des 2-Wege-Stromregelventils unter Berücksichtigung eines Drucks stromabwärts des 2-Wege-Stromregelventils, z.B. einem Verbraucherdruck, erfolgen kann.In a further illustrative embodiment, the hydraulic module can further comprise a third control line, which is connected downstream of the pressure-controlled 2-way flow control valve to the supply line, a third pressure signal being applied to the pressure-controlled 2-way flow control valve in the open-control direction via the third control line can be. In a special example, the third control line can be connected to the supply line downstream of a proportional slide valve arranged downstream in the supply line or in front of a consumer in order to tap a pressure signal corresponding to a consumer pressure via the third control line, pressure control of the 2-way flow control valve taking into account a Pressure downstream of the 2-way flow control valve, e.g. consumer pressure.

In einer anschaulicheren Ausgestaltung hierein kann das Hydraulikmodul ferner eine vierte Steuerleitung umfassen, die mit der dritten Steuerleitung verbunden ist, wobei das dritte Drucksignal über die vierte Steuerleitung an die Regeleinrichtung angelegt werden kann. Damit kann die Regeleinrichtung abhängig von dem dritten Drucksignal in den ersten Regelzustand geschaltet werden. Dies erlaubt eine Regelung abhängig vom dritten Drucksignal.In a more descriptive embodiment, the hydraulic module can further comprise a fourth control line, which is connected to the third control line, wherein the third pressure signal can be applied to the control device via the fourth control line. The control device can thus be switched to the first control state depending on the third pressure signal. This allows regulation depending on the third pressure signal.

In einer weiteren anschaulicheren Ausgestaltung hierin kann das dritte Drucksignal im ersten Regelzustand der Regeleinrichtung an das druckgesteuerte 2-Wege-Stromregelventil in Zu-Steuerrichtung angelegt werden. Dadurch lässt sich über die Regeleinrichtung vorteilhaft eine Regelung des 2-Wege-Stromregelventils abhängige vom dritten Drucksignal umsetzen.In a further illustrative embodiment, the third pressure signal can be applied to the pressure-controlled 2-way flow control valve in the closed control direction in the first control state of the control device. As a result, the control device can advantageously implement a control of the 2-way flow control valve that is dependent on the third pressure signal.

In einer weiteren anschaulichen Ausgestaltung kann das Hydraulikmodul ferner einen Proportional-Wegeschieber umfassen, der in der Versorgungsleitung stromabwärts des druckgesteuerten 2-Wege-Stromregelventils angeordnet ist.In a further illustrative embodiment, the hydraulic module can further comprise a proportional directional spool, which is arranged in the supply line downstream of the pressure-controlled 2-way flow control valve.

In einer anschaulicheren Ausgestaltung hierin kann das erste Drucksignal stromaufwärts des Proportional-Wegeschiebers abgegriffen werden. Weiterhin kann das dritte Drucksignal stromabwärts des Proportional-Wegeschiebers abgegriffen werden. Dadurch kann eine Regelung des Volumenstroms unter Berücksichtigung des Druckverlusts über dem Proportional-Wegeschieber erfolgen, um den Volumenstrom durch den Proportional-Wegeschieber unabhängig vom Druckverlust konstant zu regeln.In a more illustrative embodiment, the first pressure signal can be tapped upstream of the proportional directional spool. Furthermore, the third pressure signal can be tapped downstream of the proportional directional spool. As a result, the volume flow can be regulated taking into account the pressure loss across the proportional directional spool valve in order to constantly regulate the volume flow through the proportional directional spool valve regardless of the pressure loss.

In einer weiteren anschaulichen Ausgestaltung können das 2-Wege-Stromregelventil und die Regeleinerichtung in einen Ventilblock integriert sein. Dadurch lässt sich das Hydraulikmodul leicht in bestehende Hydrauliksysteme einbauen und/oder bei Bedarf austauschen.In a further illustrative embodiment, the 2-way flow control valve and the control device can be integrated in a valve block. This makes it easy to install the hydraulic module in existing hydraulic systems and / or replace it if necessary.

In einer weiteren anschaulichen Ausgestaltung kann die Regeleinrichtung ein einstellbares Vorspannelement umfassen, durch das die Regeleinrichtung in den ersten Regelzustand vorgespannt ist. Dadurch lässt sich der Zeitpunkt des Umschaltens zwischen den ersten und zweiten Regelzustand der Regeleinrichtung benutzerabhängig einstellen.In a further illustrative embodiment, the control device can comprise an adjustable prestressing element, by means of which the control device is prestressed in the first control state. As a result, the time of switching between the first and second control states of the control device can be set in a user-dependent manner.

In einer weiteren anschaulichen Ausgestaltung kann die Regeleinrichtung lediglich den ersten und zweiten Regelzustand als zwei diskrete Schaltstellungen aufweisen. Dies stellt einen einfachen Aufbau für eine Regeleinrichtung dar.In a further illustrative embodiment, the control device can only have the first and second control states as two discrete switching positions. This represents a simple structure for a control device.

In einem weiteren Aspekt wird ein Hydraulikmodulsystem bereitgestellt, umfassend mindestens zwei Hydraulikmodule, wobei nur eines der mindestens zwei Hydraulikmodule gemäß dem Hydraulikmodul nach dem oben beschriebenen Aspekt ausgebildet ist. Dies ist eine vorteilhafte Lösung für Hydrauliksysteme mit mehreren Verbrauchern.In a further aspect, a hydraulic module system is provided, comprising at least two hydraulic modules, only one of the at least two hydraulic modules being designed according to the hydraulic module according to the aspect described above. This is an advantageous solution for hydraulic systems with multiple consumers.

Weitere vorteilhafte Ausgestaltungen der vorliegenden Erfindung werden nachfolgend mit Bezug auf die folgenden Figuren beschrieben, wobei:

Fig. 1a
schematisch eine bekannte Ventilanordnung mit 2-Wege-Stromregelventilen;
Fig. 1b
die Kernlinie eines bekannten Stromregelventils schematisch darstellt;
Fig. 2
schematisch ein Hydraulikmodul gemäß einer Ausführungsform der vorliegenden Erfindung darstellt;
Fig. 3
schematisch eine Kennlinie des Hydraulikmoduls aus Fig. 2 gemäß einer Ausführungsform der vorliegenden Erfindung darstellt;
Fig. 4
schematisch ein Hydraulikmodul gemäß einer speziellen Ausführungsform der vorliegenden Erfindung darstellt;
Fig. 5
schematisch ein Hydraulikmodul gemäß einer anderen Ausführungsform der vorliegenden Erfindung darstellt;
Fig. 6
schematisch ein Hydraulikmodul gemäß einer speziellen Ausgestaltung zu der in Fig. 5 dargestellten anderen Ausführungsform darstellt; und
Fig. 7
schematisch Kennlinien eines Hydraulikmoduls gemäß verschiedener Ausführungsformen der vorliegenden Erfindung darstellt;
Further advantageous embodiments of the present invention are described below with reference to the following figures, in which:
Fig. 1a
schematically a known valve assembly with 2-way flow control valves;
Fig. 1b
schematically represents the core line of a known flow control valve;
Fig. 2
schematically illustrates a hydraulic module according to an embodiment of the present invention;
Fig. 3
schematically a characteristic of the hydraulic module Fig. 2 according to an embodiment of the present invention;
Fig. 4
schematically illustrates a hydraulic module according to a particular embodiment of the present invention;
Fig. 5
schematically illustrates a hydraulic module according to another embodiment of the present invention;
Fig. 6
schematically a hydraulic module according to a special embodiment to that in Fig. 5 illustrated other embodiment; and
Fig. 7
schematically illustrates characteristics of a hydraulic module according to various embodiments of the present invention;

Nachfolgend werden mit Bezug auf die beiliegenden Figuren verschiedene Aspekte und Ausgestaltungen der vorliegenden Erfindung in größerem Detail beschrieben.Various aspects and refinements of the present invention are described in greater detail below with reference to the accompanying figures.

Fig. 2 zeigt schematisch ein Hydraulikmodul 100 gemäß einigen anschaulichen Ausführungsformen der Erfindung. Das Hydraulikmodul 100 kann beispielsweise in einem Ventilblock integriert sein oder sich alternativ aus verschiedenen Untermodulen zusammensetzten. Fig. 2 14 schematically shows a hydraulic module 100 according to some illustrative embodiments of the invention. The hydraulic module 100 can, for example, be integrated in a valve block or alternatively can be composed of different sub-modules.

Gemäß der dargestellten anschaulichen Ausführungsform umfasst das Hydraulikmodul 100 eine Versorgungsleitung 105, die mit einer Versorgungseinheit, beispielsweise einer Konstantpumpe (wie etwa in Fig. 1a dargestellt ist) oder einer Verstellpumpe, verbunden ist, um das Hydraulikmodul 100 mit einem Hydraulikmedium, beispielsweise einem Hydrauliköl oder dergleichen, zu versorgen. Dabei wird die Versorgungsleitung 105 auf einem Versorgungsdruck P gehalten.According to the illustrative embodiment shown, the hydraulic module 100 comprises a supply line 105 which is connected to a supply unit, for example a constant pump (such as in FIG Fig. 1a is shown) or a variable displacement pump, in order to supply the hydraulic module 100 with a hydraulic medium, for example a hydraulic oil or the like. The supply line 105 is kept at a supply pressure P.

In anschaulichen Ausführungsformen weist das Hydraulikmodul 100 einen in der Versorgungsleitung 105 angeordneten Proportional-Wegeschieber 110 auf, durch den die Versorgungsleitung 105 mit einer von zwei Verbraucherleitungen A, B verbunden werden kann. An die Verbraucherleitungen A, B kann ein Hydroverbraucher (nicht dargestellt), beispielsweise ein Hydraulikzylinder, angeschlossen sein.In illustrative embodiments, the hydraulic module 100 has a proportional directional spool 110 arranged in the supply line 105, through which the supply line 105 can be connected to one of two consumer lines A, B. A hydraulic consumer (not shown), for example a hydraulic cylinder, can be connected to the consumer lines A, B.

Ferner ist gemäß der Darstellung in Fig. 2 ein druckgesteuertes 2-Wege-Stromregelventil 120 stromaufwärts des Proportional-Wegeschiebers 110 in der Versorgungsleitung 105 angeordnet. In dem Hydraulikmodul 100 ist desweiteren eine nicht bezeichnete Tankleitung dargestellt, die mit einem Tankanschluss R verbunden ist und mit einem nicht dargestellten Reservoir gekoppelt werden kann.Furthermore, as shown in Fig. 2 a pressure-controlled 2-way flow control valve 120 is arranged upstream of the proportional directional spool valve 110 in the supply line 105. In the hydraulic module 100, a tank line (not shown) is also shown, which is connected to a tank connection R and can be coupled to a reservoir (not shown).

Der Proportional-Wegeschieber 110 kann elektromagnetisch angesteuert werden, um einen geeigneten Hub des Proportional-Wegeschiebers 110 einzustellen, so dass eine der drei dargestellten Schaltstellungen eingenommen wird. In der dargestellten Schaltstellung sperrt der Proportional-Wegeschieber 110 einen Durchlauf durch die Versorgungsleitung 105. In den beiden anderen Schaltstellungen des Proportional-Wegeschiebers 110 werden entweder die Verbraucherleitung B mit der Versorgungsleitung 105 verbunden (obere Schaltstellung), oder die Verbraucherleitung A wird mit der Versorgungsleitung 105 verbunden (untere Schaltstellung). In der oberen und unteren Schaltstellung wird ein Volumenstrom aus der Versorgungsleitung 105 in eine der Verbraucherleitungen A, B proportional zum Hub des Proportional-Wegeschiebers 110 beispielsweise über eine Regelkante (nicht dargestellt) im Proportional-Wegeschieber 110 eingestellt. Damit kann beispielsweise eine gewünschte Geschwindigkeit an einem Hydroverbraucher (nicht dargestellt), beispielsweise einem Hydrozylinder, eingestellt werden. Wie oben hinsichtlich der Fig. 1a dargestellt wurde, erlaubt das druckgesteuerte 2-Wege-Stromregelventil 120 eine druckunabhängige Regelung des Volumenstroms zum Verbraucher auf einen konstanten Wert, wie er durch den Proportional-Wegeschieber 110 vorgegeben wird.The proportional spool 110 can be controlled electromagnetically in order to set a suitable stroke of the proportional spool 110, so that one of the three switch positions shown is adopted. In the switching position shown, the proportional directional spool valve 110 blocks a passage through the supply line 105. In the other two switching positions of the proportional directional spool valve 110, either the consumer line B is connected to the supply line 105 (upper switching position), or the consumer line A becomes the supply line 105 connected (lower switching position). In the upper and lower switching position, a volume flow from the supply line 105 into one of the consumer lines A, B proportional to the stroke of the proportional directional spool valve 110 is set, for example, via a control edge (not shown) in the proportional directional spool valve 110. In this way, for example, a desired speed can be set on a hydraulic consumer (not shown), for example a hydraulic cylinder. As above regarding the Fig. 1a has been shown, the pressure-controlled 2-way flow control valve 120 permits pressure-independent control of the volume flow to the consumer to a constant value, as specified by the proportional directional spool valve 110.

Gegenüber den in Fig. 1a dargestellten 2-Wege-Stromregelventilen 41, 42 ist das 2-Wege-Stromregelventil 120 über eine Regeleinrichtung 130 druckgesteuert. Die Regeleinrichtung ist in einer ersten Steuerleitung 123 angeordnet, die stromabwärts des 2-Wege-Stromregelventils 120 ein erstes Drucksignal abgreift, das wahlweise durch die Regeleinrichtung 130 in Zu-Steuerrichtung des 2-Wege-Stromregelventils 120 anlegbar oder in dem dargestellten Zustand der Regeleinrichtung 130 blockiert wird und daher nicht in Zu-Steuerrichtung an das 2-Wege-Stromregelventil angelegt werden kann. Die Regeleinrichtung 130 kann gemäß anschaulichen Ausführungsformen, wie in Fig. 2 beispielhaft dargestellt ist, als 2-Wegeventil mit zwei diskreten Schaltstellungen ausgebildet sein. In einem ersten Regelzustand 132 der Regeleinrichtung 130 wird ein Anlegen des ersten Drucksignals über die erste Steuerleitung 123 in Zu-Steuerrichtung an das 2-Wege-Stromregelventil 120 blockiert. In einem zweiten Regelzustand 134 der Regeleinrichtung 130 ist das durch die erste Steuerleitung 123 abgegriffene erste Drucksignal in Zu-Steuerrichtung des 2-Wege-Stromregelventil 120 an dieses anlegbar.Opposite the in Fig. 1a 2-way flow control valves 41, 42 shown, the 2-way flow control valve 120 is pressure-controlled via a control device 130. The control device is arranged in a first control line 123, which taps a first pressure signal downstream of the 2-way flow control valve 120, which can optionally be applied by the control device 130 in the closed control direction of the 2-way flow control valve 120 or in the illustrated state of the control device 130 is blocked and therefore cannot be applied to the 2-way flow control valve in the closed control direction. The control device 130 can, according to illustrative embodiments, as in FIG Fig. 2 is shown as an example, designed as a 2-way valve with two discrete switching positions. In a first control state 132 of the control device 130, application of the first pressure signal via the first control line 123 in the closed control direction to the 2-way flow control valve 120 is blocked. In a second control state 134 of the control device 130, the first pressure signal tapped by the first control line 123 can be applied to the 2-way flow control valve 120 in the closed control direction.

Gemäß anschaulichen Ausführungsformen kann eine Regelung der Regeleinrichtung 130 abhängig von einem Signal 136 erfolgen. In einigen anschaulichen Beispielen kann das Signal 136 ein hydraulisches Regelsignal darstellen. In alternativen Beispielen kann das Signal 136 ein elektromagnetisches Regelsignal darstellen (beispielsweise ein elektrisches Signal zur Betätigung eines Elektromagneten, der den ersten Regelzustand 132 oder den zweiten Regelzustand 134 wahlweise einstellen kann). In einigen speziellen Beispielen hierin kann in der Versorgungsleitung 105 stromaufwärts des 2-Wege-Stromregelventils 120 und/oder stromabwärts des 2-Wege-Stromregelventils 120 und/oder stromabwärts des Proportional-Wegeschiebers 110 ein Drucksensor angeordnet sein, so dass eine Regelung der Regeleinrichtung 130 in einen gewünschten Regelzustand der ersten und zweiten Regelzustände 132, 134 abhängig von dem wenigstens einen abgegriffenen Drucksignal erfolgen kann.According to illustrative embodiments, the control device 130 can be controlled as a function of a signal 136. In some illustrative examples, the signal 136 represent a hydraulic control signal. In alternative examples, the signal 136 can represent an electromagnetic control signal (for example an electrical signal for actuating an electromagnet, which can optionally set the first control state 132 or the second control state 134). In some specific examples herein, a pressure sensor may be disposed in the supply line 105 upstream of the 2-way flow control valve 120 and / or downstream of the 2-way flow control valve 120 and / or downstream of the proportional directional spool valve 110, so that control of the control device 130 into a desired control state of the first and second control states 132, 134 depending on the at least one tapped pressure signal.

Mit Bezug auf Fig. 2 wird nun das 2-Wege-Stromregelventil 120 ausführlicher beschrieben. Mittels eines Vorspannelements 122, beispielsweise einem mechanischen Federelement, ist das 2-Wege-Stromregelventil 120 in Auf-Steuerrichtung vorgespannt. Gemäß speziellen anschaulichen Beispielen hierin kann das 2-Wege-Stromregelventil allein durch Wirkung des Vorspannelements 122 in Auf-Steuerrichtung vollständig Auf-gesteuert sein. Stromabwärts des 2-Wege-Stromregelventils, beispielsweise stromabwärts des Proportional-Wegeschiebers 110 wird ein LS-Drucksignal mittels einer LS-Leitung LS1 in Auf-Steuerrichtung an das 2-Wege-Stromregelventil 120 unterstützend zur Vorspannung durch das Vorspannelement 122 angelegt. In der LS-Leitung LS1 kann ein Drosselelement vorgesehen sein, um eine gewünschte Drosselung in der LS-Leitung LS1 einzustellen.Regarding Fig. 2 the 2-way flow control valve 120 will now be described in more detail. The 2-way flow control valve 120 is prestressed in the open control direction by means of a prestressing element 122, for example a mechanical spring element. According to specific illustrative examples herein, the 2-way flow control valve may be fully open only by the action of the biasing member 122 in the up-control direction. Downstream of the 2-way flow control valve, for example downstream of the proportional directional spool valve 110, an LS pressure signal is applied to the 2-way flow control valve 120 in the up-control direction by means of an LS line LS1 in support of the biasing by the biasing element 122. A throttle element can be provided in the LS line LS1 in order to set a desired throttling in the LS line LS1.

In anschaulichen Ausführungsformen kann ein erstes Drucksignal, das in der Versorgungsleitung stromabwärts des 2-Wege-Stromregelventils abgegriffen wird und in Zu-Steuerrichtung des 2-Wege-Stromregelventils an dieses angelegt wird, wenn die Regeleinrichtung 130 in den zweiten Regelzustand 134 geschaltet ist, mit einem LS-Druck verglichen und abhängig von der Vorspannung durch das Vorspannelement 122 kann ein Volumenstrom durch das 2-Wege-Stromregelventil 120 und den Proportional-Wegeschieber 110 auf Basis der Druckdifferenz zwischen dem ersten Drucksignal und dem LS-Druck eingestellt werden. Ist die Regeleinrichtung 130 hingegen in den ersten Regelzustand 132 geschaltet, so wird das erste Drucksignal in Zu-Steuerrichtung an das 2-Wege-Stromregelventil 120 angelegt, insbesondere wirken nur das Vorspannelement 122 und gegebenenfalls das LS-Drucksignal über die LS-Leitung LS1 in Auf-Steuerrichtung Auf-steuernd auf das 2-Wege-Stromregelventil 120. Beispielsweise kann das 2-Wege-Stromregelventil im ersten Regelzustand 132 vollständig Auf-gesteuert sein. Damit wird ein Volumenstrom durch das 2-Wege-Stromregelventil 120 und den Proportional-Wegeschieber 110 im ersten Regelzustand 132 entsprechend des Hubs des Proportional-Wegeschiebers 110 maximal eingestellt. Bei gegebenem Regelkantenquerschnitt im Proportional-Wegeschieber 110, der beispielsweise durch eine geeignete Einstellung eines Regelhubs im Proportional-Wegeschieber 110 eingestellt sein kann, erfolgt keine regelnde Wirkung durch das 2-Wege-Stromregelventil 120, solange sich die Regeleinrichtung 130 im ersten Regelzustand 132 befindet. Damit folgt der Volumenstrom durch den Proportional-Wegeschieber 110 im Wesentlichen einer Staudruckkennlinie, d.h. der Druckverlust über dem Proportional-Wegeschieber 110 und dem 2-Wege-Stromregelventil 130 ist im Wesentlichen proportional zum Quadrat des Volumenstroms und indirekt proportional zum Regelquerschnitt im Proportional-Wegeschieber 110. Wird die Regeleinrichtung 130 nun in den zweiten Regelzustand 134 geregelt, so erfolgt eine Aktivierung des ersten Drucksignals, das nun durch die erste Steuerleitung 123 in Zu-Steuerrichtung an das 2-Wege-Stromregelventil 120 angelegt wird und damit die Wirkung des Vorspannelements 122 und des LS-Drucksignals wenigstens teilweise kompensieren kann, insbesondere kann dadurch eine Funktion als Druckwaage zur Regelung des Volumenstroms durch den Proportional-Wegeschieber 110 bereitgestellt werden. Da nunmehr der Zeitpunkt des Anlegens des ersten Drucksignals durch die erste Steuerleitung 123 in Zu-Steuerrichtung an das 2-Wege-Stromregelventil 120 vom Regelzustand der Regeleinrichtung 130 und insbesondere vom Regelsignal 136 abhängt, kann bei geeignetem Regelsignal 136 der Zeitpunkt eingestellt werden, ab dem das 2-Wege-Stromregelventil 120 als Druckwaage fungiert. Insbesondere kann das Regelsignal 136 beispielsweise eine Regelung der Regeleinrichtung 130 aus dem ersten Regelzustand 132 in den zweiten Regelzustand 134 bei einem genügend hohen ersten Drucksignal bewirken, so dass insbesondere eine Druckwaagefunktion des 2-Wege-Stromregelventils 120 erst bei höheren Druckdifferenzen erfolgt und damit ein Abschnitt der Kennlinie entsprechend Abschnitt a2 in Fig. 1b oben möglichst minimiert bzw. vermieden wird. Andererseits kann dem 2-Wege-Stromregelventil 120 eine bestimmte Trägheit verliehen werden, so dass ein unerwünschtes Aufschaukeln mit einem voran geschalteten weiteren Regelventil (nicht dargestellt) bzw. einer vorangeschalteten Regeleinrichtung zur Regelung einer Versorgungspumpe (nicht dargestellt, wie beispielsweise hinsichtlich Fig. 1a und 1b oben beschrieben ist), verhindert wird, da eine Regelung in diesem Fall nicht erfolgt und somit das Aufschaukeln durch die entkoppelte Regelwirkung des 2-Wege-Stromregelventils 120 im ersten Regelzustand 132 der Regeleinrichtung 130 verhindert wird.In illustrative embodiments, a first pressure signal that is tapped in the supply line downstream of the 2-way flow control valve and is applied to the 2-way flow control valve in the closed control direction when the control device 130 is switched to the second control state 134 compared to an LS pressure and depending on the preload by the biasing element 122, a volume flow through the 2-way flow control valve 120 and the proportional directional spool valve 110 can be set on the basis of the pressure difference between the first pressure signal and the LS pressure. If, on the other hand, the control device 130 is switched to the first control state 132, the first pressure signal is applied to the 2-way flow control valve 120 in the closed control direction, in particular only the biasing element 122 and possibly the LS pressure signal act via the LS line LS1 in Up-control direction Up-controlling to the 2-way flow control valve 120. For example, the 2-way flow control valve can be completely open-controlled in the first control state 132. A volume flow through the 2-way flow control valve 120 and the proportional directional spool valve 110 in the first control state 132 is thus set to a maximum corresponding to the stroke of the proportional directional spool valve 110. For a given control edge cross-section in the proportional directional spool 110, which can be set, for example, by a suitable setting of a control stroke in the proportional directional spool 110, there is no regulating effect by the 2-way flow control valve 120, as long as the control device 130 is in the first control state 132. The volume flow through the proportional directional spool valve 110 thus essentially follows a dynamic pressure characteristic curve, ie the pressure loss across the proportional directional spool valve 110 and the 2-way flow control valve 130 is essentially proportional to the square of the volume flow rate and indirectly proportional to the control cross section in the proportional directional spool valve 110 If the control device 130 is now controlled in the second control state 134, the first pressure signal is activated, which is now applied to the 2-way flow control valve 120 in the closed control direction by the first control line 123 and thus the effect of the biasing element 122 and can at least partially compensate the LS pressure signal, in particular a function as a pressure compensator for regulating the volume flow can be provided by the proportional directional spool valve 110. Since the time at which the first pressure signal is applied by the first control line 123 in the closed-control direction to the 2-way flow control valve 120 depends on the control state of the control device 130 and in particular on the control signal 136, the time from which can be set with a suitable control signal 136 the 2-way flow control valve 120 acts as a pressure compensator. In particular, the control signal 136 can, for example, regulate the control device 130 from the first control state 132 to the second control state 134 when the first pressure signal is sufficiently high, so that, in particular, a pressure balance function of the 2-way flow control valve 120 only takes place at higher pressure differences and thus a section the characteristic curve in accordance with section a2 in Fig. 1b is minimized or avoided as far as possible above. On the other hand, the 2-way flow control valve 120 can be given a certain inertia, so that undesired rocking with an upstream further control valve (not shown) or an upstream control device for controlling a supply pump (not shown, for example with regard to 1a and 1b is described above), is prevented since regulation is not carried out in this case and thus the rocking is prevented by the decoupled regulating action of the 2-way flow regulating valve 120 in the first regulating state 132 of the regulating device 130.

Fig. 3 zeigt schematisch eine Kennlinie in einem Diagramm, in dem ein Volumenstrom Q durch das 2-Wege-Stromregelventil 120 und dem Proportional-Wegeschieber 110 entlang der Abszisse gegen einen Druckunterschied ΔpLS über dem 2-Wege-Stromregelventil 120 und dem Proportional-Wegeschieber 110 aus entlang der Ordinate aufgetragen ist. Entsprechend der Kennlinie in Fig. 1b weist die Kennlinienfigur 3 drei Abschnitte auf, wobei in einem ersten Abschnitt a bezeichnend für kleine Drücke ein Kennlinienverlauf K1 (ähnlich dem Abschnitt a1 in der Kennlinie in Fig. 1b) einer Staudruckkennlinie entspricht. In einem zweiten Abschnitt b weicht nun der Kennlinienverlauf in Fig. 3 entsprechend einem Kennlinienabschnitt K2 von dem Kennlinienverlauf in Abschnitt a2 aus Fig. 1b ab (ein Kennlinienverlauf gemäß Fig. 1b ist in Fig. 3 anhand des gestrichelten Kennlinienverlauf K3 eingezeichnet), da hier der Kennlinienverlauf im Wesentlichen weiterhin der Staudruckkennlinie folgt, so dass der Kennlinienverlauf K2 den Kennlinienverlauf K1 im Wesentlichen gemäß der Staudruckkennlinie fortsetzt. Der Grund ist, dass sich hier die Regeleinrichtung 130 in Fig. 2 im ersten Regelzustand 132 befindet, so dass entgegen dem Verlauf in Fig. 1b (demgemäß eine Druckwaagefunktion hinsichtlich Fig. 1a in den dort dargestellten 2-Wege-Stromregelventilen 41, 42 zwar auftritt und sich dort für die Abweichung von der Staudruckkennlinie verantwortlich zeichnet) hier jedoch aufgrund des ersten Regelzustands 132 eine Druckwaagefunktion des 2-Wege-Stromregelventils 120 durch die Regeleinrichtung blockiert wird. Demzufolge setzt sich der Kennlinienverlauf K1 entsprechend der Staudruckkennlinie in K2 fortsetzt. Mit einer zeitlich wohl definierten Schaltung in den zweiten Regelzustand 136 der Regeleinrichtung 130 in Fig. 2 erfolgt nun im Diagramm von Fig. 3 ein diskreter Übergang in den stabilen Betrieb, in dem das 2-Wege-Stromregelventil 120 als Druckwaage den Volumenstrom durch den Proportional-Wegeschieber 110 druckabhängig auf einem konstanten Wert regelt. Ein Kennlinienverlauf S bezeichnet nun einen Übergang von dem Kennlinienverlauf K2 entsprechend der Staudruckkennlinie in den stabilen Regelbetrieb entsprechend einem Kennlinienverlauf K4. Fig. 3 schematically shows a characteristic curve in a diagram in which a volume flow Q through the 2-way flow control valve 120 and the proportional directional spool valve 110 along the abscissa against a pressure difference Δp LS across the 2-way flow control valve 120 and the proportional directional spool valve 110 is plotted along the ordinate. According to the characteristic in Fig. 1b The characteristic curve figure 3 has three sections, a characteristic curve course K1 (similar to section a1 in the characteristic curve) in a first section a indicative of small pressures in Fig. 1b ) corresponds to a dynamic pressure characteristic. In a second section b, the characteristic curve now gives way to Fig. 3 corresponding to a characteristic section K2 from the characteristic curve in section a2 Fig. 1b ab (a characteristic curve according to Fig. 1b is in Fig. 3 on the basis of the dashed curve K3), since here the curve essentially continues to follow the dynamic pressure curve, so that the curve K2 essentially continues the curve K1 according to the dynamic pressure curve. The reason is that the control device 130 is located here Fig. 2 in the first control state 132, so that contrary to the course in Fig. 1b (accordingly a pressure compensator function regarding Fig. 1a occurs in the 2-way flow control valves 41, 42 shown there and is responsible for the deviation from the dynamic pressure characteristic), however, due to the first control state 132, a pressure compensator function of the 2-way flow control valve 120 is blocked by the control device. As a result, the characteristic curve curve K1 continues in accordance with the dynamic pressure characteristic curve in K2. With a well-defined switching into the second control state 136 of the control device 130 in Fig. 2 now takes place in the diagram of Fig. 3 a discrete transition to stable operation, in which the 2-way flow control valve 120, as a pressure compensator, regulates the volume flow through the proportional directional spool valve 110 to a constant value as a function of pressure. A characteristic curve curve S now designates a transition from the characteristic curve curve K2 corresponding to the dynamic pressure characteristic curve to stable control operation according to a characteristic curve curve K4.

Wie aus dem Vergleich zwischen den Kennlinien K3 und K2 ersichtlich ist, werden hier insbesondere die Druckverluste ΔpLS gegenüber dem Fall in Fig. 1b gering gehalten, so dass weniger Energie verlorengeht bzw. in die Erwärmung des Hydraulikmediums dissipiert wird. Der Kennlinienverlauf entsprechend K1, K2, S, K4 ist folglich energetisch günstiger als der herkömmliche Kennlinienverlauf, der in Fig. 3 durch K1, K3 und K4 dargestellt ist.As can be seen from the comparison between the characteristic curves K3 and K2, here in particular the pressure losses Δp LS compared to the case in Fig. 1b kept low, so that less energy is lost or is dissipated in the heating of the hydraulic medium. The characteristic curve corresponding to K1, K2, S, K4 is consequently more energetically favorable than the conventional characteristic curve shown in Fig. 3 is represented by K1, K3 and K4.

Hinsichtlich Fig. 4 werden anschaulichen Ausführungsformen der Erfindung detaillierter beschrieben. Fig. 4 zeigt ein Hydraulikmodul 200 mit einer Versorgungsleitung 205 und einem in der Versorgungsleitung 205 angeordneten 2-Wege-Stromregelventil 220. Das 2-Wege-Stromregelventil 220 kann entsprechend dem 2-Wege-Stromregelventil 120 in Fig. 2 vor einem Proportional-Wegeschieber angeordnet sein, wie in Fig. 2 gemäß dem Proportional-Wegeschieber 110 dargestellt ist.Regarding Fig. 4 illustrative embodiments of the invention are described in more detail. Fig. 4 shows a hydraulic module 200 with a supply line 205 and a 2-way flow control valve 220 arranged in the supply line 205. The 2-way flow control valve 220 can correspond to the 2-way flow control valve 120 in Fig. 2 be arranged in front of a proportional directional spool valve, as in Fig. 2 is shown according to the proportional directional spool 110.

In anschaulichen Ausführungsformen kann eine erste Steuerleitung 223 stromabwärts des 2-Wege-Stromregelventils 220 an einem Verzweigungspunkt 209 abgezweigt sein, wobei ein erstes Drucksignal mittels der ersten Steuerleitung 223 am Verzweigungspunkt 209 von der Versorgungsleitung 205 stromabwärts des Zwei-Wege-Stromregelventils 220 abgegriffen wird. In der ersten Steuerleitung 223 ist eine Regeleinrichtung 230 angeordnet. Die erste Steuerleitung 223 ist mit einem Eingang E der Regeleinrichtung 230 verbunden. An einem Ausgang A der Regeleinrichtung 230 ist ein Endabschnitt 231 der ersten Steuerleitung 223 angeordnet, der mit einem Anschluss AS2 des Zwei-Wege-Stromregelventils 220 verbunden ist, so dass ein Druckmedium im Endabschnitt 231 in Zu-Steuerrichtung auf das 2-Wege-Stromregelventil 220 einwirken kann. Das 2-Wege-Stromregelventil 220 wird durch ein Vorspannelement 222, beispielsweise ein mechanisches Federelement, der Wirkung eines Druckmittels im Endabschnitt 231 entgegengerichtet in Auf-Steuerrichtung vorgespannt.In illustrative embodiments, a first control line 223 can be branched off downstream of the 2-way flow control valve 220 at a branch point 209, wherein a first pressure signal is tapped off from the supply line 205 downstream of the two-way flow control valve 220 by means of the first control line 223 at the branch point 209. In A control device 230 is arranged on the first control line 223. The first control line 223 is connected to an input E of the control device 230. At an output A of the control device 230 there is an end section 231 of the first control line 223, which is connected to a connection AS2 of the two-way flow control valve 220, so that a pressure medium in the end section 231 in the closed-control direction to the 2-way flow control valve 220 can act. The 2-way flow control valve 220 is biased in the open control direction by a biasing element 222, for example a mechanical spring element, counter to the action of a pressure medium in the end section 231.

Beispielsweise kann in einem in Fig. 4 dargestellten ersten Regelzustand 232 der Regeleinrichtung 230 eine Übertragung des ersten Drucksignals in der ersten Steuerleitung 223 am Eingang E der Regeleinrichtung 230 zu einem Ausgang A der Regeleinrichtung 230, und folglich in den Endabschnitt 231 der ersten Steuerleitung 223, blockiert sein. In einem zweiten Regelzustand 234 kann das erste Drucksignal in der ersten Steuerleitung 223 in den Eingang E der Regeleinrichtung 230 eintreten und am Ausgang A der Regeleinrichtung 230 in den Endabschnitt 231 eintreten, um am Anschluss AS2 des Zwei-Wege-Stromregelventils 220 in Zu-Steuerrichtung auf dieses einzuwirken.For example, in a Fig. 4 shown first control state 232 of the control device 230, a transmission of the first pressure signal in the first control line 223 at the input E of the control device 230 to an output A of the control device 230, and consequently into the end section 231 of the first control line 223. In a second control state 234, the first pressure signal in the first control line 223 can enter the input E of the control device 230 and enter the end section 231 at the output A of the control device 230 in order to connect to the connection AS2 of the two-way flow control valve 220 in the closed control direction to act on this.

In einer anschaulichen Ausführungsform weist die Regeleinrichtung 230 ein Vorspannelement 235 auf, beispielsweise ein mechanisches Vorspannelement, das die Regeleinrichtung 230 in Zu-Steuerrichtung vorspannt. Gemäß speziellen Beispielen kann das Vorspannelement 235 einstellbar sein bzw. kann eine Vorspannung durch das Vorspannelement 235 einstellbar sein. Dies bedeutet, dass z.B. im Fall eines mechanischen Vorspannelements, dieses durch einen Bediener bzw. Benutzer des Hydraulikmoduls eingestellt werden kann und/oder ausgetauscht werden kann, z.B. gegen ein Vorspannelement mit unterschiedlicher Federhärte oder es kann eine Federkraft geändert werden. Dadurch lässt sich z.B. eine harte oder weiche Schalteigenschaft der Regeleinrichtung 230 vorgeben. Mit anderen Worten, ein hartes Vorspannelement kann eine Regelung aus dem ersten Regelzustand 232 in den zweiten Regelzustand 234 bei relativ hohen Drücken im Vergleich mit weichen Vorspannelementen 235 bedeuten, bei denen schon geringe Drücke zur Regelung aus dem ersten Regelzustand 232 in den zweiten Regelzustand 234 ausreichend sind. Demzufolge kann beispielsweise eine Länge des Abschnitts S in Fig. 3 anhand des Vorspannelementes 235 eingestellt werden, da im Falle eines relativ harten Vorspannelements bzw. eines relative stark vorgespannten Vorspannelements das 2-Wege-Stromregelventil über einen größeren Bereich hinweg sich im ersten Regelzustand 132 befindet und damit der Staudruckkennlinie "länger" folgt.In an illustrative embodiment, the control device 230 has a pretensioning element 235, for example a mechanical pretensioning element, which prestresses the control device 230 in the closed-control direction. According to specific examples, the prestressing element 235 can be adjustable or a prestressing can be set by the prestressing element 235. This means that, for example in the case of a mechanical pretensioning element, it can be set and / or exchanged by an operator or user of the hydraulic module, for example against a pretensioning element with different spring hardness, or a spring force can be changed. In this way, for example, a hard or soft switching characteristic of the control device 230 can be specified. In other words, a hard prestressing element can mean a regulation from the first regulation state 232 into the second regulation state 234 at relatively high pressures in comparison with soft prestressing elements 235, at which even low pressures are sufficient for regulation from the first regulation state 232 into the second regulation state 234 are. Accordingly, a length of the section S in Fig. 3 on the basis of the preload element 235, since in the case of a relatively hard preload element or a relatively heavily preloaded preload element, the 2-way flow control valve is in the first control state 132 over a larger area and thus follows the dynamic pressure characteristic curve "longer".

Wie weiterhin in Fig. 4 dargestellt ist, kann stromaufwärts des 2-Wege-Stromregelventils 220 an einem Verzweigungspunkt 207 eine weitere Steuerleitung 211 abgezweigt sein, mittels der ein weiteres Drucksignal in Auf-Steuerrichtung über einen Anschluss AS3 der Regeleinrichtung 230 entgegen der Wirkung des Vorspannelementes 235 an die Regeleinrichtung 230 angelegt werden kann. Dies bedeutet, dass abhängig von einer Größe des über die weitere Steuerleitung 211 abgegriffenen weiteren Drucksignals am Verzweigungspunkt 207 im Vergleich zu einer eingestellten Vorspannung am Vorspannelement 235 eine Schaltung in den zweiten Regelzustand 234 aus dem ersten Regelzustand 232 heraus erfolgen kann. Dadurch kann z.B. eingestellt werden, dass die Regeleinrichtung 230 erst ab einem bestimmten Mindestdruck stromaufwärts des Zwei-Wege-Stromregelventils 220 in den zweiten Regelzustand 234 geschaltet werden kann.As continues in Fig. 4 is shown, a further control line 211 can be branched upstream of the 2-way flow control valve 220 at a branch point 207, by means of which a further pressure signal in the open control direction is applied to the control device 230 via the connection AS3 of the control device 230 against the action of the biasing element 235 can be. This means that, depending on a size of the further pressure signal tapped via the further control line 211 at the branching point 207, in comparison to a set bias voltage on the biasing element 235, a switch to the second control state 234 can take place from the first control state 232. It can thereby be set, for example, that the control device 230 can only be switched to the second control state 234 from a certain minimum pressure upstream of the two-way flow control valve 220.

In einigen anschaulichen Ausführungsformen kann weiterhin gemäß der Darstellung in Fig. 4 zusätzlich zu einer LS-Steuerleitung entsprechend der Steuerleitung LS1 in Fig. 2 eine LS-Steuerleitung LS2 auf das 2-Wege-Stromregelventil 220 zusätzlich zum Vorspannelement 222 in Auf-Steuerrichtung wirken, wobei die LS-Steuerleitung LS2 Auf-steuerseitig an einem Anschluss AS1 an das Zwei-Wege-Stromregelventil angelegt ist. Weiterhin kann die LS-Steuerleitung LS2 zusätzlich in einigen anschaulichen Ausführungsformen sich in eine optionale Steuerleitung 228 verzweigen, die an einem optionalen zweiten Eingang E' der Regeleinrichtung 230 ein an der LS-Steuerleitung LS2 abgegriffenes LS-Drucksignal anlegt, welches im ersten Regelzustand 232 an den Ausgang A der Regeleinrichtung 230 übertragen wird und dem ersten Regelzustand 232 der Regeleinrichtung 230 zusätzlich in Zu-Steuerrichtung an das 2-Wege-Stromregelventil 220 angelegt werden kann. Dies bedeutet, dass das 2-Wege-Stromregelventil 220 im Wesentlichen durch das Vorspannelement 222 Auf-gesteuert wird. Dies stellt keine Beschränkung der vorliegenden Erfindung dar und die Steuerleitung 228 und der zusätzliche zweite Eingang E' der Regeleinrichtung 230 können nicht vorgesehen sein.In some illustrative embodiments, as shown in FIG Fig. 4 in addition to an LS control line corresponding to the control line LS1 in Fig. 2 an LS control line LS2 acts on the 2-way flow control valve 220 in addition to the biasing element 222 in the up-control direction, the LS control line LS2 on the up-control side being connected to a connection AS1 on the two-way flow control valve. Furthermore, in some illustrative embodiments, the LS control line LS2 can additionally branch into an optional control line 228 which, at an optional second input E ′ of the control device 230, applies an LS pressure signal tapped at the LS control line LS2, which is applied in the first control state 232 the output A of the control device 230 is transmitted and the first control state 232 of the control device 230 can additionally be applied to the 2-way flow control valve 220 in the closed control direction. This means that the 2-way flow control valve 220 is essentially open-controlled by the biasing element 222. This is not a limitation of the present invention and the control line 228 and the additional second input E ′ of the control device 230 cannot be provided.

In einigen anschaulichen Ausführungsformen kann weiterhin die Steuerleitung 228 in eine weiterhin optionale Steuerleitung 229 vor dem Eingang E' verzweigt sein, um das über die LS-Steuerleitung LS2 abgegriffene LS-Drucksignal Zu-steuerseitig zusätzlich zum Vorspannelement 235 an die Regeleinrichtung 230 anzulegen. In einigen anschaulichen Beispielen hierin kann entgegen der Darstellung in Fig. 4 auch auf den zweiten Eingang E' verzichtet sein. Das über die LS-Steuerleitung abgegriffene LS-Druckelement, das über die Steuerleitung 228 und 229 an die Regeleinrichtung 230 angelegt wird, wird mit dem weiteren Drucksignal verglichen, das am Verzweigungspunkt 207 mittels der weiteren Steuerleitung 211 abgegriffen und Auf-steuerseitig an die Regeleinrichtung 230 entgegenwirkend angegriffen wird, so dass in diesem Fall die Regeleinrichtung 230 auf Basis des Druckunterschieds zwischen dem Verzweigungspunkt 207 und einem stromabwärts des Zwei-Wege-Stromregelventils 220 abgegriffenen LS-Drucksignals geregelt wird. Dadurch kann z.B. ein Regelbetrieb der Regeleinrichtung 230 stabilisiert werden und ein im zweiten Regelzustand 234 an das Zwei-Wege-Stromregelventil anlegende erste Drucksignal kann z.B. lastunabhängig auf einem konstanten Niveau gehalten werden. Dadurch kann das Zwei-Wege-Stromregelventil weniger empfindlich gegenüber Druckschwankungen im LS-System gehalten werden.In some illustrative embodiments, the control line 228 can also be branched into a further optional control line 229 before the input E ′ in order to apply the LS pressure signal tapped via the LS control line LS2 to the control device 230 on the control side in addition to the biasing element 235. In some illustrative examples herein, contrary to what is shown in Fig. 4 also be dispensed with the second input E '. The LS pressure element tapped via the LS control line, which is applied to the control device 230 via the control line 228 and 229, is compared with the further pressure signal, which is tapped at the branch point 207 by means of the further control line 211 and on the control side to the control device 230 is attacked counteractively, so in this If the control device 230 is controlled on the basis of the pressure difference between the branch point 207 and an LS pressure signal tapped downstream of the two-way flow control valve 220. In this way, for example, control operation of the control device 230 can be stabilized and a first pressure signal applied to the two-way flow control valve in the second control state 234 can, for example, be kept at a constant level regardless of the load. This makes the two-way flow control valve less sensitive to pressure fluctuations in the LS system.

Fig. 5 zeigt schematisch eine zu Fig. 2 alternative Ausführungsform, wobei auch hier das dargestellte Hydraulikmodul beispielsweise in einen Ventilblock integriert sein oder sich alternativ aus verschiedenen Untermodulen zusammensetzten kann. Zu Fig. 2 ähnliche oder gleiche Elemente sind mit gleichen Bezugszeichen versehen und für eine Beschreibung dieser Elemente wird in diesem Zusammenhang auf die Beschreibung zu Fig. 2 verwiesen. So ist insbesondere ein druckgesteuertes 2-Wege-Stromregelventil 120 vorgesehen, dass stromaufwärts eines Proportional-Wegeschiebers 110 in einer Versorgungsleitung 105 angeordnet ist, wie auch im Zusammenhang mit Fig. 2 oben beschrieben wurde. Fig. 5 schematically shows one to Fig. 2 alternative embodiment, in which case the hydraulic module shown here can also be integrated, for example, in a valve block or alternatively can be composed of different sub-modules. To Fig. 2 Similar or identical elements are provided with the same reference symbols and for a description of these elements reference is made to the description in this connection Fig. 2 directed. In particular, a pressure-controlled 2-way flow control valve 120 is provided, which is arranged upstream of a proportional directional spool valve 110 in a supply line 105, as well as in connection with Fig. 2 was described above.

Im Gegensatz zu der in Fig. 2 dargestellten Ausführungsform ist das 2-Wege-Stromregelventil 120 in der Darstellung von Fig. 5 über eine Regeleinrichtung 330 druckgesteuert. Die Regeleinrichtung 330 ist in einer ersten Steuerleitung 323 angeordnet, die stromaufwärts des 2-Wege-Stromregelventils 120 ein erstes Drucksignal abgreift, das wahlweise durch die Regeleinrichtung 330 in Auf-Steuerrichtung des 2-Wege-Stromregelventils 120 angelegt oder blockiert werden kann. Die Regeleinrichtung 330 kann gemäß anschaulichen Ausführungsformen, wie in Fig. 5 beispielhaft dargestellt ist, als 2-Wegeventil mit zwei diskreten Schaltstellungen ausgebildet sein. In einem ersten Regelzustand 332 der Regeleinrichtung 330 wird ein Anlegen des ersten Drucksignals über die erste Steuerleitung 323 in Auf-Steuerrichtung an das 2-Wege-Stromregelventil 120 zugelassen bzw. ermöglicht, insbesondere ist die Regeleinrichtung 330 im ersten Regelzustand 332 geöffnet. In einem zweiten Regelzustand 334 der Regeleinrichtung 330 wird das durch die erste Steuerleitung 323 abgegriffene erste Drucksignal blockiert und liegt nicht an dem 2-Wege-Stromregelventil 120 an, insbesondere ist die Regeleinrichtung 330 im zweiten Regelzustand 334 geschlossen.In contrast to that in Fig. 2 The illustrated embodiment is the 2-way flow control valve 120 in the illustration of FIG Fig. 5 pressure-controlled via a control device 330. The control device 330 is arranged in a first control line 323, which taps a first pressure signal upstream of the 2-way flow control valve 120, which can optionally be applied or blocked by the control device 330 in the up-control direction of the 2-way flow control valve 120. The control device 330 may, according to illustrative embodiments, as in FIG Fig. 5 is shown as an example, designed as a 2-way valve with two discrete switching positions. In a first control state 332 of the control device 330, application of the first pressure signal via the first control line 323 in the open control direction to the 2-way flow control valve 120 is permitted or enabled, in particular the control device 330 is opened in the first control state 332. In a second control state 334 of the control device 330, the first pressure signal tapped by the first control line 323 is blocked and is not applied to the 2-way flow control valve 120, in particular the control device 330 is closed in the second control state 334.

Gemäß anschaulichen Ausführungsformen kann eine Regelung der Regeleinrichtung 330 abhängig von einem Signal 336 erfolgen. In einigen anschaulichen Beispielen kann das Signal 336 ein hydraulisches Regelsignal darstellen. In alternativen Beispielen kann das Signal 336 ein elektromagnetisches Regelsignal darstellen (beispielsweise ein elektrisches Signal zur Betätigung eines Elektromagneten, der den ersten Regelzustand 332 oder den zweiten Regelzustand 334 wahlweise einstellen kann). In einigen speziellen Beispielen hierin kann in der Versorgungsleitung 105 stromaufwärts des 2-Wege-Stromregelventils 120 und/oder stromabwärts des 2-Wege-Stromregelventils 120 und/oder stromabwärts des Proportional-Wegeschiebers 110 ein Drucksensor angeordnet sein, so dass eine Regelung der Regeleinrichtung 330 in einen gewünschten Regelzustand der ersten und zweiten Regelzustände 332, 334 abhängig von dem wenigstens einen abgegriffenen Drucksignal erfolgen kann.According to illustrative embodiments, the control device 330 can be controlled as a function of a signal 336. In some illustrative examples, signal 336 may represent a hydraulic control signal. In alternative examples, signal 336 may represent an electromagnetic control signal (e.g., an electrical signal for actuation an electromagnet, which can selectively set the first control state 332 or the second control state 334). In some specific examples herein, a pressure sensor may be disposed in the supply line 105 upstream of the 2-way flow control valve 120 and / or downstream of the 2-way flow control valve 120 and / or downstream of the proportional directional spool valve 110, so that control of the control device 330 into a desired control state of the first and second control states 332, 334 depending on the at least one tapped pressure signal.

Gemäß der Darstellung in Fig. 5 kann durch die Regeleinrichtung 330 ein LS-Drucksignal mittels, das über eine LS-Leitung LS1 in Auf-Steuerrichtung an das 2-Wege-Stromregelventil 120 unterstützend zur Vorspannung durch das Vorspannelement 122 angelegt wird, im ersten Regelzustand mit dem ersten Drucksignal überlagert bzw. durch dieses unterstützt in Auf-Steuerrichtung an das 2-Wege-Stromregelventil 120 angelegt werden. Ähnlich dem Vorspannelement 122 aus Fig. 2, kann das in Fig. 5 dargestellte Vorspannelement beispielsweise ein mechanisches Federelement sein, das das 2-Wege-Stromregelventil 120 in Auf-Steuerrichtung mechanisch vorspannt. Gemäß speziellen anschaulichen Beispielen hierin ist es nicht unbedingt erforderlich, dass das 2-Wege-Stromregelventil allein durch Wirkung des Vorspannelements 122 in Auf-Steuerrichtung vollständig Auf-gesteuert wird.As shown in Fig. 5 can, by means of the control device 330, an LS pressure signal, which is applied via an LS line LS1 in the up-control direction to the 2-way flow control valve 120 to support the biasing by the biasing element 122, in the first control state with the first pressure signal or supported by this in the up-control direction to the 2-way flow control valve 120. Similar to the biasing element 122 Fig. 2 , can that in Fig. 5 shown biasing element, for example, a mechanical spring element that mechanically biases the 2-way flow control valve 120 in the open control direction. According to specific illustrative examples herein, it is not absolutely necessary that the 2-way flow control valve be fully opened in the open-control direction solely by the action of the biasing element 122.

In anschaulichen Ausführungsformen kann ein erstes Drucksignal, das in der Versorgungsleitung stromaufwärts des 2-Wege-Stromregelventils 120 mittels der ersten Steuerleitung 323 abgegriffen wird und in Auf-Steuerrichtung des 2-Wege-Stromregelventils 120 zusätzlich zu einem LS-Drucksignal an dieses angelegt wird, wenn die Regeleinrichtung 330 in den ersten Regelzustand 332 geschaltet ist, mit einem zweiten Drucksignal verglichen werden, der stromabwärts des 2-Wege-Stromregelventils 120, bspw. zwischen dem 2-Wege-Stromregelventil und dem Proportianl-Wegeschieber 110 über eine zweite Steuerleitung 339 abgegriffen wird, und abhängig von der Vorspannung durch das Vorspannelement 122 kann ein Volumenstrom durch das 2-Wege-Stromregelventil 120 und den Proportional-Wegeschieber 110 auf Basis der Druckdifferenz zwischen dem ersten Drucksignal und dem LS-Druck relativ zum zweiten Drucksignal eingestellt werden. Insbesondere kann das 2-Wege-Stromregelventil 120 vollständig Auf-gesteuert sein, solange sich die Regeleinrichtung 130 im ersten Regelzustand 332 befindet. Falls sich die Regeleinrichtung 130 im zweiten Regelzustand 334 befindet, kann das 2-Wege-Stromregelventil einen Volumenstrom durch das 2-Wege-Stromregelventil 120 und den Proportional-Wegeschieber 110 auf Basis der Druckdifferenz zwischen dem LS-Druck (abgegriffen über die LS-Leitung LS1) und dem zweiten Drucksignal eingestellt werden. Damit kann im zweiten Regelzustand 334 der Regeleinrichtung 330 ein Volumenstrom durch das 2-Wege-Stromregelventil 120 und den Proportional-Wegeschieber 110 entsprechend dem Hub des Proportional-Wegeschiebers 110 maximal eingestellt werden. Andererseits erfolgt keine regelnde Wirkung durch das 2-Wege-Stromregelventil 120, solange sich die Regeleinrichtung 330 im ersten Regelzustand 332 befindet. Damit folgt der Volumenstrom durch den Proportional-Wegeschieber 110 im Wesentlichen einer Staudruckkennlinie, d.h. der Druckverlust über dem Proportional-Wegeschieber 110 und dem 2-Wege-Stromregelventil 130 ist im Wesentlichen proportional zum Quadrat des Volumenstroms und indirekt proportional zum Regelquerschnitt im Proportional-Wegeschieber 110. Wird die Regeleinrichtung 330 nun in den zweiten Regelzustand 334 geregelt, so wird das erste Drucksignal, das im ersten Regelzustand 332 durch die erste Steuerleitung 323 in Zu-Steuerrichtung an das 2-Wege-Stromregelventil 120 angelegt wird und damit die Wirkung des Vorspannelements 122 und des LS-Drucksignals ergänzt, blockiert. Damit kann in der in Fig. 5 dargestellten Ausführungsform eine Funktion als Druckwaage zur Regelung des Volumenstroms durch den Proportional-Wegeschieber 110 abhängig vom LS-Druck und dem zweiten Drucksignal bereitgestellt werden. Da nunmehr der Zeitpunkt des Anlegens des ersten Drucksignals durch die erste Steuerleitung 323 in Auf-Steuerrichtung an das 2-Wege-Stromregelventil 120 vom Regelzustand der Regeleinrichtung 330 und insbesondere vom Regelsignal 336 abhängt, kann bei geeignetem Regelsignal 336 der Zeitpunkt eingestellt werden, ab dem das 2-Wege-Stromregelventil 120 als Druckwaage fungiert. Insbesondere kann das Regelsignal 336 beispielsweise eine Regelung der Regeleinrichtung 330 aus dem ersten Regelzustand 332 in den zweiten Regelzustand 334 bei einem genügend hohen ersten Drucksignal bewirken, so dass insbesondere eine Druckwaagefunktion des 2-Wege-Stromregelventils 120 erst bei höheren Druckdifferenzen erfolgt und damit ein Abschnitt der Kennlinie entsprechend Abschnitt a2 in Fig. 1b oben möglichst minimiert bzw. vermieden wird. Andererseits kann dem 2-Wege-Stromregelventil 120 eine bestimmte Trägheit verliehen werden, so dass ein unerwünschtes Aufschaukeln mit einem voran geschalteten weiteren Regelventil (nicht dargestellt) bzw. einer vorangeschalteten Regeleinrichtung zur Regelung einer Versorgungspumpe (nicht dargestellt, wie beispielsweise hinsichtlich Fig. 1a und 1b oben beschrieben ist), verhindert wird, da eine Regelung in diesem Fall nicht erfolgt und somit das Aufschaukeln durch die entkoppelte Regelwirkung des 2-Wege-Stromregelventils 120 im zweiten Regelzustand 332 der Regeleinrichtung 330 verhindert wird. Damit sind die Erläuterungen zu Fig. 3 oben auch auf die in Fig. 5 dargestellte Ausführungsform entsprechend übertragbar.In illustrative embodiments, a first pressure signal, which is tapped in the supply line upstream of the 2-way flow control valve 120 by means of the first control line 323 and is applied to the 2-way flow control valve 120 in the up-control direction thereof, in addition to an LS pressure signal, If the control device 330 is switched to the first control state 332, it can be compared with a second pressure signal which is tapped downstream of the 2-way flow control valve 120, for example between the 2-way flow control valve and the proportional slide valve 110, via a second control line 339 and depending on the bias by the biasing element 122, a volume flow through the 2-way flow control valve 120 and the proportional directional spool 110 can be set based on the pressure difference between the first pressure signal and the LS pressure relative to the second pressure signal. In particular, the 2-way flow control valve 120 can be completely open-controlled as long as the control device 130 is in the first control state 332. If the control device 130 is in the second control state 334, the 2-way flow control valve can generate a volume flow through the 2-way flow control valve 120 and the proportional directional spool valve 110 on the basis of the pressure difference between the LS pressure (tapped via the LS line LS1) and the second pressure signal can be set. Thus, in the second control state 334 of the control device 330, a volume flow through the 2-way flow control valve 120 and the proportional directional spool valve 110 can be set in accordance with the stroke of the proportional directional spool valve 110. On the other hand, the 2-way flow control valve 120 has no regulating effect as long as the control device 330 is in the first control state 332. The volume flow through the proportional directional spool valve 110 thus essentially follows a dynamic pressure characteristic curve, ie the pressure loss across the proportional directional spool valve 110 and the 2-way flow control valve 130 is essentially proportional to the square of the volume flow rate and indirectly proportional to the control cross section in the proportional directional spool valve 110 If the control device 330 is now controlled in the second control state 334, the first pressure signal, which is applied in the first control state 332 by the first control line 323 in the closed control direction to the 2-way flow control valve 120, and thus the effect of the biasing element 122 and the LS pressure signal added, blocked. So that in the Fig. 5 Embodiment shown a function as a pressure compensator for regulating the volume flow through the proportional directional spool 110 depending on the LS pressure and the second pressure signal are provided. Since the time at which the first pressure signal is applied by the first control line 323 in the up-control direction to the 2-way flow control valve 120 depends on the control state of the control device 330 and in particular on the control signal 336, the time from which can be set with a suitable control signal 336 the 2-way flow control valve 120 acts as a pressure compensator. In particular, the control signal 336 can, for example, regulate the control device 330 from the first control state 332 to the second control state 334 with a sufficiently high first pressure signal, so that, in particular, a pressure balance function of the 2-way flow control valve 120 only takes place at higher pressure differences, and thus a section the characteristic curve in accordance with section a2 in Fig. 1b is minimized or avoided as far as possible above. On the other hand, the 2-way flow control valve 120 can be given a certain inertia, so that undesired rocking with an upstream further control valve (not shown) or an upstream control device for controlling a supply pump (not shown, for example with regard to 1a and 1b is described above), is prevented since regulation is not carried out in this case and thus the rocking is prevented by the decoupled regulating action of the 2-way flow regulating valve 120 in the second regulating state 332 of the regulating device 330. The explanations are now closed Fig. 3 above also on the in Fig. 5 illustrated embodiment can be transferred accordingly.

Mit Bezug auf Fig. 6 wird nun ein anschauliches Beispiel der in Fig. 5 dargestellten Ausführungsform detaillierter beschrieben.Regarding Fig. 6 is now an illustrative example of the in Fig. 5 illustrated embodiment described in more detail.

Es ist ein Hydraulikmodul 400 mit einem 2-Wege-Stromregelventil 420 (entspricht dem 2-Wege-Stromregelventil 120 aus Fig. 5) dargestellt, das in einer Versorgungsleitung 405 stromaufwärts eines nicht dargestellten Proportional-Wegeschiebers angeordnet ist. Stromaufwärts des 2-Wege-Stromregelventils 420 (entspricht dem 2-Wege-Stromregelventil 120 aus Fig. 5) wird an einem Verzweigungspunkt 419 eine erste Steuerleitung abgezweigt. Die erste Steuerleitung liegt an einem Eingang E" einer Regeleinrichtung 430 an, die entsprechend der Darstellung in Fig. 6 als ein 2-Wegeventil ausgeführt sein kann, das durch ein Vorspannelement 435, beispielsweise eine mechanische Feder oder dergleichen, in Auf-Steuerrichtung vorgespannt wird. Eine durch das Vorspannelement 435 bereitgestellte Vorspannung kann einstellbar sein, beispielsweise kann das Vorspannelement 435 austauschbar sein oder die durch das Vorspannelement 435 ausgeübte Vorspannung kann durch einen Bediener mittels eines Werkzeugs wunschgemäß eingestellt werden.It is a hydraulic module 400 with a 2-way flow control valve 420 (corresponds to the 2-way flow control valve 120) Fig. 5 ) shown upstream in a supply line 405 a proportional spool valve, not shown, is arranged. Upstream of the 2-way flow control valve 420 (corresponds to the 2-way flow control valve 120 Fig. 5 ) a first control line is branched off at a branch point 419. The first control line is connected to an input E "of a control device 430, which corresponds to the representation in FIG Fig. 6 can be designed as a 2-way valve which is biased in the open control direction by a biasing element 435, for example a mechanical spring or the like. A prestress provided by the prestressing element 435 can be adjustable, for example the prestressing element 435 can be exchangeable or the prestressing exerted by the prestressing element 435 can be set as desired by an operator using a tool.

Stromaufwärts der Regeleinrichtung 430 kann in der ersten Steuerleitung 423 ein Drucksignal mittels einer ersten Meldeleitung 424 abgegriffen und entgegen der Wirkung des Vorspannelements 430 an die Regeleinrichtung 430 in Zu-Steuerrichtung der Regeleinrichtung 430 angelegt werden.Upstream of the control device 430, a pressure signal can be tapped off in the first control line 423 by means of a first signal line 424 and can be applied to the control device 430 in the closed control direction of the control device 430 against the action of the biasing element 430.

Die Regeleinrichtung 430 kann ausgangsseitig (an einem Ausgang A' der Regeleinrichtung 430) mit einer Fortsetzung 431 der ersten Signalleitung 423 verbunden sein, die mit einer LS-Leitung LS3 (ähnlich den LS-Leitungen LS1 und LS2) verbunden ist. In der Fortsetzung 431 ist stromabwärts der Regeleinrichtung 430 eine zweite Meldeleitung 429 vorgesehen, mittels der ein Drucksignal stromabwärts der Regeleinrichtung 430 in der ersten Steuerleitung abgegriffen und in Auf-Steuerrichtung der Regeleinrichtung 430 an diese zu Unterstützung des Vorspannelements 435 angelegt werden kann. Dementsprechend erfolgt eine Regelung der Regeleinrichtung abhängig von einem Druckunterschied zwischen den Drucksignalen, die durch die Meldeleitungen 424 und 429 in der ersten Steuerleitung abgegriffen werden (relativ zur Vorspannung durch das Vorspannelement 435). Übersteigt nun eine Wirkung eines durch die erste Meldeleitung 424 gemeldeten Drucks eine Wirkung eines durch die zweite Meldeleitung 429 gemeldeten Drucks in Kombination mit der Wirkung des Vorspannelements 435, so wird die Regeleinrichtung 430 Zu-gesteuert. Damit wird eine Übertragung des ersten Drucksignals, das über die erste Steuerleitung 423 abgegriffen wird, zur LS-Leitung LS3 und zum 2-Wege-Stromregelventil 420 blockiert.The control device 430 can be connected on the output side (at an output A ′ of the control device 430) to a continuation 431 of the first signal line 423, which is connected to an LS line LS3 (similar to the LS lines LS1 and LS2). In the continuation 431, a second signal line 429 is provided downstream of the control device 430, by means of which a pressure signal downstream of the control device 430 can be tapped in the first control line and can be applied to the control device 430 in the open control direction to support the biasing element 435. Accordingly, the control device is regulated as a function of a pressure difference between the pressure signals which are tapped by the signal lines 424 and 429 in the first control line (relative to the pretension by the pretensioning element 435). If an effect of a pressure reported by the first signaling line 424 now exceeds an effect of a pressure reported by the second signaling line 429 in combination with the effect of the biasing element 435, the control device 430 is controlled. This blocks transmission of the first pressure signal, which is tapped via the first control line 423, to the LS line LS3 and to the 2-way flow control valve 420.

Beispielsweise kann die Regeleinrichtung 430 abhängig von einem Drucksignal, das über die erste Meldeleitung 424 an die Regeleinrichtung 430 angelegt wird, und einem weiteren Drucksignal, das über die zweite Meldeleitung 429 an die Regeleinrichtung 430 angelegt wird, in einen ersten Regelzustand 432 oder einen zweiten Regelzustand 434 gebracht werden, wobei das erste Drucksignal im ersten Regelzustand 432 durch die Regeleinrichtung 430 in Auf-Steuerrichtung an das 2-Wege-Stromregelventil 420 angelegt wird. Im zweiten Regelzustand 434 wird ein Anlegen des ersten Drucksignals an das 2-Wege-Stromregelventil 420 blockiert. Dementsprechend kann das 2-Wege-Stromregelventil 420 im ersten Regelzustand 432 der Regeleinrichtung Zu-gesteuert werden, während es im zweiten Regelzustand 434 der Regeleinrichtung 430 Auf-gesteuert, beispielsweise vollständig Auf-gesteuert, ist. Das erste Drucksignal ist im zweiten Regelzustand 434 der Regeleinrichtung 430 an das 2-Wege-Stromregelventil 420 anlegbar, während ein Anlegen des ersten Drucksignals im ersten Regelzustand 432 der Regeleinrichtung 430 blockiert ist.For example, the control device 430 can, depending on a pressure signal that is applied to the control device 430 via the first signal line 424, and a further pressure signal that is applied to the control device 430 via the second signal line 429, into a first control state 432 or a second control state 434 are brought, the first pressure signal in the first control state 432 by the control device 430 in the open control direction is applied to the 2-way flow control valve 420. In the second control state 434, application of the first pressure signal to the 2-way flow control valve 420 is blocked. Accordingly, the 2-way flow control valve 420 can be closed in the first control state 432 of the control device, while in the second control state 434 of the control device 430 it is open-controlled, for example completely open-controlled. The first pressure signal can be applied to the 2-way flow control valve 420 in the second control state 434 of the control device 430, while an application of the first pressure signal is blocked in the first control state 432 of the control device 430.

Es kann ein LS-Drucksignal, wie anhand des Pfeils p_LS in Fig. 6 dargestellte ist, entweder aus einer Kombination des durch die LS-Leitung LS3 gemeldeten LS-Drucks mit dem ersten Drucksignal (falls die Regeleinrichtung 430 Auf-gesteuert ist) oder alleine aus dem von der LS-Leitung LS3 gemeldeten LS-Drucks (falls die Regeleinrichtung 430 Zu-gesteuert ist) an das 2-Wege-Stromregelventil 420 in Auf-Steuerrichtung angelegt werden.There can be an LS pressure signal, as shown by the arrow p_LS in Fig. 6 is shown, either from a combination of the LS pressure reported by the LS line LS3 with the first pressure signal (if the control device 430 is open-controlled) or solely from the LS pressure reported by the LS line LS3 (if the control device 430 is controlled) are applied to the 2-way flow control valve 420 in the open control direction.

Weiterhin kann stromabwärts des 2-Wege-Stromregelventils 420 an einem Verzweigungspunkt 450 eine weitere Steuerleitung (zweite Steuerleitung) 452 abgezweigt sein, mittels der ein weiteres (zweites) Drucksignal in Zu-Steuerrichtung an das 2-Wege-Stromregelventil 420 entgegen der Wirkung eines Vorspannelementes 422 und des LS-Drucksignals, möglicherweise kombiniert mit dem ersten Drucksignal, angelegt werden kann. Insbesondere wird die Wirkung des zweiten Drucksignals wenigstens teilweise bei geöffneter Regeleinrichtung 430 durch das erste Drucksignal kompensiert, so dass das 2-Wege-Stromregelventil 420 Auf-gesteuert wird.Furthermore, a further control line (second control line) 452 can be branched off downstream of the 2-way flow control valve 420 at a branch point 450, by means of which a further (second) pressure signal in the closed control direction to the 2-way flow control valve 420 against the action of a biasing element 422 and the LS pressure signal, possibly combined with the first pressure signal. In particular, the effect of the second pressure signal is at least partially compensated for by the first pressure signal when the control device 430 is open, so that the 2-way flow control valve 420 is opened.

Fig. 7 zeigt Kennlinien des Volumenstroms durch die oben beschriebenen Proportional-Wegeschieber in Abhängigkeit vom Druckunterschied Δp über den oben beschriebenen 2-Wege-Stromregelventilen und den Proportional-Wegeschieben. Insbesondere zeigt eine Kennlinie mit gepunktetem Verlauf den Fall eines hohen Regeldrucks, während eine Kennlinie mit strich-punktiertem Verlauf den Fall eines niedrigen Regeldrucks bezogen auf die in Fig. 3 dargestellte Kennlinie (durchgezogener Verlauf) bedeutet. Die Einstellung einer Kennlinie bzw. des Regeldrucks erfolgt über die einstellbaren Vorspannelemente, wobei ein "härteres" Vorspannelement oder ein Vorspannelement mit "größerer" Vorspannung einen "höheren Regeldruck bedeutet. Wie aus der Darstellung in Fig. 7 hervorgeht kann eine Länge einer Regelkante, wie in Fig. 7 anhand des mit "Δx" bezeichneten Doppelpfeils dargestellt wird, durch das einstellbare Vorspannelement anwendungsabhängig eingestellt werden. Fig. 7 shows characteristic curves of the volume flow through the above-described proportional directional spool valve as a function of the pressure difference Δp above the 2-way flow control valve and the proportional directional spool valve described above. In particular, a characteristic curve with a dotted curve shows the case of a high control pressure, while a characteristic curve with a dash-dotted curve shows the case of a low control pressure in relation to the in Fig. 3 shown characteristic curve (solid curve) means. A characteristic curve or the regulating pressure is set via the adjustable preloading elements, a "harder" preloading element or a preloading element with "greater" preload meaning a "higher regulating pressure. As shown in FIG Fig. 7 the result is a length of a standard edge, as in Fig. 7 on the basis of the double arrow labeled “Δx”, by means of which the adjustable prestressing element can be set depending on the application.

Vorangehend wurden Aufbau und Funktion eines Hydraulikmoduls mit einem 2-Wege-Stromregelventil beschrieben, das gemäß einigen anschaulichen Ausführungsformen in Proportional-Wegeschieberventilen mit LS-Technologie verwendet werden kann. Das 2-Wege-Stromregelventil kann dabei den einzelnen Proportional-Wegeschiebern bzw. -ventilen vorgeschaltet oder auch nachgeschaltet sein. Hierbei wird ein Druckabfall über dem Proportional-Wegeschieberventil, insbesondere über einer Messblende im Proportional-Wegeschieber, konstant gehalten, wobei auch der Volumenstrom durch den Proportional-Wegeschieber unabhängig vom Pumpendruck oder einem Lastdruck am Verbraucher konstant gehalten werden kann. Im Falle von 2-Wege-Stromregelventilen vor Proportional-Wegeschiebern regelt das 2-Wege-Stromregelventil den Druck, der direkt vor dem Proportional-Wegeschieberventil (und damit vor der Messblende im Proportional-Wegeschieberventil) ansteht, immer um dieselbe Druckdifferenz zum Verbraucherdruck ein.The structure and function of a hydraulic module with a 2-way flow control valve were described above, which according to some illustrative embodiments in proportional directional spool valves can be used with LS technology. The 2-way flow control valve can be connected upstream or downstream of the individual proportional directional spools or valves. Here, a pressure drop across the proportional directional spool valve, in particular via a measuring orifice in the proportional directional spool, is kept constant, and the volume flow through the proportional directional spool can also be kept constant regardless of the pump pressure or a load pressure at the consumer. In the case of 2-way flow control valves upstream of proportional directional spool valves, the 2-way flow control valve always regulates the pressure that is present directly in front of the proportional directional spool valve (and thus in front of the measuring orifice in the proportional directional spool valve) by the same pressure difference as the consumer pressure.

Die Regeleinrichtung, die gemäß anschaulicher Ausführungsformen anhand der Fig. 2 bis 7 oben beschrieben wurde, bringt folgende Vorteile mit sich: Der bezüglich Fig. 1b beschriebene Abschnitt "a2" der Kennlinie wird umgangen. Das Zwei-Wege-Stromregelventil wird in diesem Bereich unabhängig vom Lastdruck Auf-gesteuert. Durch Aussetzen der Regelung des 2-Wege-Stromregelventils in diesem Bereich wird eine Energieeinsparung erreicht. Weiterhin wird eine Unabhängigkeit von speziellen Einstellungen an Pumpenreglern oder an Reglern im Anschlussblock an das Hydraulikmodul erreicht.The control device, which according to illustrative embodiments based on the 2 to 7 The advantages described above have the following advantages: Fig. 1b Section "a2" of the characteristic curve described is bypassed. The two-way flow control valve is open-controlled in this area regardless of the load pressure. By suspending the control of the 2-way flow control valve in this area, energy savings are achieved. Furthermore, independence from special settings on pump controllers or on controllers in the connection block to the hydraulic module is achieved.

In einigen anschaulichen Ausführungsformen wird durch die oben beschriebene Regeleinrichtung erreicht, dass das 2-Wege-Stromregelventil bis zu einem bestimmten eingestellten Druckunterschied Auf-gesteuert wird und keine entgegenwirkende Zu-Steuerung auf das 2-Wege-Stromregelventil einwirkt. Im Wesentlichen wird das Verhalten des 2-Wege-Stromregelventils bis zu einer bestimmten einstellbaren Druckdifferenz von dem Vorspannelement beeinflusst. In speziellen anschaulichen Ausführungsformen ist das 2-Wege-Stromregelventil in diesem Druckbereich vollständig Auf-geregelt. Erst ab einer bestimmten Druckdifferenz und/oder einer ausreichend hohen Druckdifferenz erfolgt ein regelnder Betrieb des 2-Wege-Stromregelventils, indem die Auf-steuernde Wirkung des Vorspannelementes wenigstens teilweise kompensiert wird. Über die Regeleinrichtung ist die Druckdifferenz, ab der das 2-Wege-Stromregelventil in den regelnden Betrieb übergeht, einstellbar.In some illustrative embodiments, the control device described above ensures that the 2-way flow control valve is opened up to a certain set pressure difference and that there is no counteracting control on the 2-way flow control valve. In essence, the behavior of the 2-way flow control valve is influenced by the biasing element up to a certain adjustable pressure difference. In special illustrative embodiments, the 2-way flow control valve is completely open-controlled in this pressure range. Only from a certain pressure difference and / or a sufficiently high pressure difference is there a regulating operation of the 2-way flow control valve by at least partially compensating for the opening effect of the prestressing element. The pressure difference from which the 2-way flow control valve switches to regulating operation can be set via the control device.

In den vorangehend anhand der Figuren beschriebenen Ausführungsformen ist von einem Proportional-Wegeschieber und einem Verbraucher die Rede. Dies stellt keine Beschränkung der vorliegenden Erfindung dar. Statt einem Verbraucher und einem Proportional-Wegeschieber können in Analogie zu der Darstellung in Fig. 1a zwei Proportional-Wegeschieber und zwei Verbraucher oder sogar mehr als zwei Proportional-Wegeschieber und mehr als zwei Verbraucher vorgesehen sein, wobei vor mindestens einem Proportional-Wegeschieber ein 2-Wege-Stromregelventil bereitgestellt sein kann und eines der 2-Wege-Stromregelventile durch eine Regeleinrichtung druckgesteuert ist, wie oben beschrieben wurde. In einer vorteilhaften Ausführungsform hierin kann das durch die Regeleinrichtung druckgesteuerte 2-Wege-Stromregelventil einem Verbraucher zugeordnet sein, der im Betrieb der größten Belastung ausgesetzt ist.In the embodiments described above with reference to the figures, there is talk of a proportional directional spool valve and a consumer. This does not represent a limitation of the present invention. Instead of a consumer and a proportional directional spool valve, analogy to the illustration in FIG Fig. 1a Two proportional directional spool valves and two consumers or even more than two proportional directional spool valves and more than two consumers are provided, with a 2-way flow control valve in front of at least one proportional directional spool valve can be provided and one of the 2-way flow control valves is pressure-controlled by a control device, as described above. In an advantageous embodiment herein, the 2-way flow control valve pressure-controlled by the control device can be assigned to a consumer which is exposed to the greatest load during operation.

Claims (14)

  1. Hydraulic module (200; 400) comprising a pressure-controlled 2-way valve (220; 420) arranged in a supply line (205; 405) of the hydraulic module (200; 400), wherein the pressure-controlled 2-way valve (220; 420) is biased by a first biasing element (222; 422) in the open control direction, wherein a first pressure signal, which is tapped downstream or upstream of the pressure-controlled 2-way valve (220; 420) in the supply line (205; 405), is applicable to the pressure-controlled 2-way valve (220; 430) via a first control line (223; 423) accordingly in the close control direction or the open control direction, wherein a control device (230; 430) is arranged in the first control line (223; 423) for pressure control of the pressure-controlled 2-way valve (220; 420), wherein the control device (230; 430) is configured to block application of the first pressure signal to the pressure-controlled 2-way valve (220; 420) in a first control state (232), while the first pressure signal is applicable to the pressure-controlled 2-way valve (220; 420) by the control device (230; 430) in a second control state (234; 434), characterised in that the 2-way valve is configured as a 2-way flow control valve.
  2. Hydraulic module (400) according to claim 1, wherein the first control line (423) is tapped upstream of the pressure-controlled 2-way flow control valve (420) in the supply line (405), the hydraulic module (400) further comprising a first signal line (424), which is branched off upstream of the control device (430) in the first control line (423), wherein the control device is switchable into the first or second control state in accordance with a pressure signal tapped off by the first signal line (424).
  3. Hydraulic module (200) according to claim 1, wherein the first control line (223) is tapped downstream of the pressure-controlled 2-way flow control valve (220) in the supply line (205), the hydraulic module (200) further comprising a second control line (211), which is connected to the supply line (205) upstream of the pressure-controlled 2-way flow control valve (220), wherein the control device (230) is switchable into the second control state (234) in accordance with a second pressure signal tapped by the second control line (211).
  4. Hydraulic module (200; 400) according to any one of claims 1 to 3, wherein the control device (230; 430) comprises a pressure controlled 2-way valve, which is biased by a second biasing element (235; 435), wherein the pressure controlled 2-way valve (230; 430) in the first control state (232; 432) is closed-controlled, while in the second control state (234; 434) it is open-controlled, so that the first pressure signal is applicable to the pressure-controlled 2-way flow control valve (220; 420) when the pressure-controlled 2-way valve (230; 430) is open-controlled.
  5. Hydraulic module (200) according to claim 4 in combination with claim 3, wherein the second pressure signal is applicable via the second control line (211) to the pressure-controlled 2-way valve (230) in the open control direction.
  6. Hydraulic module (200; 400) according to one of claims 1 to 5, further comprising a third control line (LS2; LS3) connected to the supply line (205; 405) downstream of the pressure-controlled 2-way flow control valve (220; 420), wherein a third pressure signal is applicable via the third control line (LS2; LS3) to the pressure-controlled 2-way flow control valve (220; 420) in the open control direction.
  7. Hydraulic module (200) according to claim 6 in combination with claim 2, further comprising a fourth control line (228) which is connected to the third control line (LS2), wherein the third pressure signal is applicable to the control device (230) via the fourth control line (228) and the control device is switchable to the first control state (232) in accordance with the third pressure signal.
  8. Hydraulic module (200) according to claim 6 or 7 in combination with claim 2, wherein the third pressure signal is applicable to the pressure-controlled 2-way flow control valve (220) in the first control state (232) of the control device (230) in the close control direction.
  9. Hydraulic module (100) according to any one of claims 1 to 8, further comprising a proportional directional control valve (110) arranged in the supply line (105) downstream of the pressure-controlled 2-way flow control valve (120).
  10. Hydraulic module (100) according to claim 9 in combination with one of claims 6 to 8, wherein the first pressure signal is tapped upstream of the proportional directional control valve (110) and the third pressure signal is tapped downstream of the proportional directional control valve (110).
  11. Hydraulic module (200) according to any one of claims 1 to 10, wherein the 2-way flow control valve (220) and the control device (230) are integrated into a valve block.
  12. Hydraulic module (200) according to any one of claims 1 to 11, wherein the control device (230) has only the first and second control states (232, 234) as two discrete switching positions.
  13. Hydraulic module (200) according to any one of claims 1 to 12, wherein the control device (230) comprises an adjustable biasing element (235) by which the control device (230) is biased to the first control state (232).
  14. Hydraulic module system comprising at least two hydraulic modules, wherein only one of the at least two hydraulic modules is configured according to the hydraulic module (200) according to any one of claims 1 to 13.
EP16174633.4A 2016-06-15 2016-06-15 Hydraulic module with pressure-controlled 2-way flow control valve Active EP3258116B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP16174633.4A EP3258116B1 (en) 2016-06-15 2016-06-15 Hydraulic module with pressure-controlled 2-way flow control valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP16174633.4A EP3258116B1 (en) 2016-06-15 2016-06-15 Hydraulic module with pressure-controlled 2-way flow control valve

Publications (2)

Publication Number Publication Date
EP3258116A1 EP3258116A1 (en) 2017-12-20
EP3258116B1 true EP3258116B1 (en) 2019-12-25

Family

ID=56263511

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16174633.4A Active EP3258116B1 (en) 2016-06-15 2016-06-15 Hydraulic module with pressure-controlled 2-way flow control valve

Country Status (1)

Country Link
EP (1) EP3258116B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113152575B (en) * 2021-05-19 2022-11-25 徐州徐工挖掘机械有限公司 Hydraulic bridge circuit based set pilot positive flow control system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE500119C2 (en) * 1993-01-14 1994-04-18 Voac Hydraulics Boraas Ab Procedure for controlling a hydraulic motor, as well as hydraulic valve for this
DE4311191C2 (en) * 1993-04-05 1995-02-02 Deere & Co Hydraulic system for supplying open or closed hydraulic functions
SE510508C2 (en) * 1993-06-11 1999-05-31 Voac Hydraulics Boraas Ab Device for controlling a hydraulic motor
DE202005001417U1 (en) * 2005-01-28 2006-06-08 Hawe Hydraulik Gmbh & Co. Kg Hydraulic control device
EP1754682B1 (en) * 2005-08-11 2007-07-04 HAWE Hydraulik GmbH & Co. KG Electrohydraulic device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3258116A1 (en) 2017-12-20

Similar Documents

Publication Publication Date Title
EP0073268B1 (en) Electro-hydraulic control of an actuator piston
DE102004063044B4 (en) Hydraulic control
EP3519701B1 (en) Directional control valve with a damping system, for controlling the swing motor of a construction machine
EP0016719B1 (en) Hydraulic motor control device
DE102012207422A1 (en) Hydraulic control system used for working machine e.g. mini excavators, has pressure reduction device for high load pressure, which is more adjusted in dependence of controlled volumetric flow of adjuster of the hydraulic pump
DE102012220863A1 (en) Control arrangement for driving e.g. hydraulic cylinder for e.g. hydraulic excavators, has control surface of pilot or primary stage of directly or servo-controlled lowering brake valve device acted upon by return control pressure
DE10219717B3 (en) Hydraulic valve arrangement
DE4235707B4 (en) Hydrostatic drive system
EP1711715A1 (en) Metering orifice arrangement for a hydraulic current divider and current adding device
WO2001002736A1 (en) Hydraulic control device for supplying a pressure means to preferably, several hydraulic consumers
EP2880316B1 (en) Valve, in particular pilot-operated proportional directional poppet valve
EP3258116B1 (en) Hydraulic module with pressure-controlled 2-way flow control valve
DE112004002768B4 (en) Hydraulic control system
DE102007014550A1 (en) valve assembly
EP1934487B1 (en) Hydraulic control device
EP2487390B1 (en) Hydrostatic drive system
EP3464908B1 (en) Valve device
DE10149791A1 (en) Hydraulic control valve device, e.g. for the rotary drive of an excavator with a load-sensing drive system, has pressure control device with a bypass setting that improves the operating characteristic of the valve
DE10119276B4 (en) Hydraulic control circuit
EP2908013B1 (en) Hydraulic system for a lowering operation that can be constantly controlled with a tilting valve with a lowering speed that is not limited by the tilting valve
DE102016123504B4 (en) Hydraulic valve section, connection section and hydraulic valve assembly as well as commercial vehicles with one
DE102005025441A1 (en) Control block and control block section
EP3093504A1 (en) Pressure controlled two-way flow control valve for hydraulics applications and valve assembly with a corresponding two-way flow control valve
DE3408593A1 (en) Hydraulic three-way continuous valve for block fitting
DE102013224322A1 (en) Hydraulic control arrangement

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170322

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HAWE HYDRAULIK SE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190726

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1217432

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016008116

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20191225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200326

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200425

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016008116

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

26N No opposition filed

Effective date: 20200928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200615

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200615

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200615

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1217432

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210615

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230523

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230627

Year of fee payment: 8