EP3257749B1 - Aerodynamic noise reducing thin-skin landing gear structure - Google Patents

Aerodynamic noise reducing thin-skin landing gear structure Download PDF

Info

Publication number
EP3257749B1
EP3257749B1 EP17176442.6A EP17176442A EP3257749B1 EP 3257749 B1 EP3257749 B1 EP 3257749B1 EP 17176442 A EP17176442 A EP 17176442A EP 3257749 B1 EP3257749 B1 EP 3257749B1
Authority
EP
European Patent Office
Prior art keywords
support member
landing gear
gear assembly
thin
semi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17176442.6A
Other languages
German (de)
French (fr)
Other versions
EP3257749A1 (en
Inventor
Richard A. Himmelmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Goodrich Corp
Original Assignee
Goodrich Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Goodrich Corp filed Critical Goodrich Corp
Priority to EP21173411.6A priority Critical patent/EP3901032A1/en
Publication of EP3257749A1 publication Critical patent/EP3257749A1/en
Application granted granted Critical
Publication of EP3257749B1 publication Critical patent/EP3257749B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C25/00Alighting gear
    • B64C25/02Undercarriages
    • B64C25/08Undercarriages non-fixed, e.g. jettisonable
    • B64C25/10Undercarriages non-fixed, e.g. jettisonable retractable, foldable, or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C25/00Alighting gear
    • B64C25/02Undercarriages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C25/00Alighting gear
    • B64C25/32Alighting gear characterised by elements which contact the ground or similar surface 
    • B64C25/34Alighting gear characterised by elements which contact the ground or similar surface  wheeled type, e.g. multi-wheeled bogies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C25/00Alighting gear
    • B64C25/32Alighting gear characterised by elements which contact the ground or similar surface 
    • B64C25/58Arrangements or adaptations of shock-absorbers or springs
    • B64C25/60Oleo legs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C25/00Alighting gear
    • B64C25/001Devices not provided for in the groups B64C25/02 - B64C25/68
    • B64C2025/003Means for reducing landing gear noise, or turbulent flow around it, e.g. landing gear doors used as deflectors

Definitions

  • the disclosure relates generally to aircraft landing gear, with various embodiments relating to thin-skinned landing gear structures.
  • the fuel efficiency of an aircraft may be related to the aircraft's mass and aerodynamic drag.
  • noise regulations for aircraft at low altitudes encourage reduction of the aircraft's noise signature while it is near the ground.
  • Landing gear can be heavy and aerodynamically resistant.
  • deployed landing gear may increase the noise signature of an aircraft as a result of air rushing past the deployed gear.
  • Alternative landing gear structures are described in FR 1 033 176 A and in GB 1 040 424 A , whereby the latter describes an aircraft undercarriage comprising a first member formed of sheet steel, shaped and welded to provide a casing; upper and lower bearings within said casing; a second member within said casing and including a tube slidable in said bearings, which tube passes through the base of the casing for connection with wheel carrying means, and means to prevent undesired relative rotation between the casing and the sliding tube.
  • a landing gear assembly is provided as defined by claim 1.
  • Landing gear assemblies may have reduced weight and improved stress distribution by using a hollow-bodied, thin-skin support member to provide the primary vertical support.
  • This thin-skin design uses thin skin construction, similar to wing design, to distribute the forces along a greater surface area and thereby enable a reduced cross-section area, which reduces the overall mass of the landing gear.
  • This concept also produces a smooth, aerodynamic structure, which reduces drag and noise production due to aerodynamic buffering. Hydraulic lines and landing gear wiring harnesses can be routed through the empty space within the landing gear structure. Internal routing may protect the equipment from environmental damage, while also reducing the aircraft's aerodynamic drag and noise production.
  • Landing gear assembly 100 may include thin-skin support member 102 to provide light-weight support for landing gear assembly 100.
  • Thin-skin support member 102 may be pivotally coupled to support arm 106 at mounting location 110 of thin-skin support member 102.
  • Support arm 106 may further be pivotally coupled to linkage 104, which is pivotally coupled to interface structure 108.
  • a secondary support arm 120 may be mechanically coupled to support arm 106 and thin-skin support member 102.
  • Thin-skin support member 102, support arm 106, and secondary support arm 120 may form a triangular support structure.
  • landing gear assembly 100 may be pivotally coupled to an airframe 101 at mounting interface 112. Landing gear assembly may also be coupled to airframe 101 at interface structure 108. Landing gear assembly may deploy and stow by pivoting about mounting interface 112 in response to translation of interface structure 108.
  • Thin-skin support member 102 may at least partially contain cylinder 119 extending from thin-skin support member 102. Cylinder 119 may be a cylindrical member that is substantially perpendicular to axle 114.
  • a wheel assembly may be coupled to axle 114 and configured to roll while supporting the weight of the aircraft.
  • upper torsion link 116 may be pivotally coupled to thin-skin support member 102 at two vertices of upper torsion link 116.
  • Upper torsion link 116 may resemble an isosceles triangle or an equilateral triangle, with one vertex of upper torsion link 116 pivotally coupled to one vertex of lower torsion link 118.
  • Lower torsion link 118 may also resemble an isosceles triangle or an equilateral triangle, with two vertices of lower torsion link 118 mechanically coupled to axle 114.
  • Upper torsion link 116 and lower torsion link 118 may be configured to pivot in response to translation of cylinder 119 into and/or out from a cylindrical cavity of thin-skin support member 102, as shown in greater detail below.
  • Thin-skin support member 102 defines cavity 200.
  • Cavity 200 may contain internal hydraulic and/or electronic components 202. Cavity 200 may also remain hollow and retain air.
  • Strut assembly 204 may be retained in place by internal walls of thin-skin support member 102, as described in greater detail below.
  • the upper torsion link 116 and lower torsion link 118 may be configured to restrict the twisting of strut assembly 204 (and cylinder 119 and axle 114 of FIG. 1 ) with respect to thin-skin support member 102.
  • Thin-skin support member 102 may include a semi-circular edge 308 adjacent to an elongated surface 306 extending to semicircular edge 309.
  • Elongated surface 306 may be a large-radius rounded surface appearing flattened relative to semi-circular edge 309.
  • Elongated surface 306 may also be a straight face, or a combination of radial surfaces and flat surfaces.
  • Semi-circular edge 308 and semicircular edge 309 may be oriented on the forward and/or aft end of thin-skin support member 102 such that air passing by thin-skin support member 102 moves from a semicircular edge, across the elongated surface, to another semicircular edge.
  • Thin-skin support member 102 may thus define cylindrical cavity 300 internal to thin-skin support member 102 and adjacent to cavity 200.
  • Cylindrical cavity 300 is configured to engage cylinder 119 of FIG. 2 , optionally to additionally retain strut assembly 204 of FIG. 2 .
  • cylindrical cavity 300 may terminate at circular internal wall 302.
  • Cylindrical cavity 300 may be partially defined by the internal surface of semi-circular edge 30.
  • cavity 200 may be at least partially defined by internal surface 316 of elongated surface 306 and internal surface 312 of semi-circular edge 308.
  • Thin-skin support member 102 may also include mounting interface 112 for coupling to an aircraft.
  • Torsion interface 314 may be disposed adjacent cylindrical cavity 300 and configured to receive upper torsion link 116 of FIG. 1 .
  • Thin-skin support member 102 also includes a cutaway section 310 having a circular and/or semicircular geometry to reduce weight of thin-skin support member 102.
  • Block 400 of metal may be prepared for machining, as shown in FIG. 4A .
  • the metal block may include aluminum, titanium, steel, or any other metal or metal alloy desired for thin-skin support member 102 of FIG. 1 .
  • the use of aluminum for thin-skin support member 102 may reduce weight of landing gear assembly 100 in FIG. 1 by approximately 19% over conventional designs.
  • the use of titanium for thin-skin support member may reduce the weight of landing gear assembly 100 in FIG. 1 by approximately 53% over conventional designs.
  • portions of block 400 may be machined away to leave intermediate support member 402. Intermediate 402 may be machined until support member 404 of FIG. 4C remains. In various embodiments, support member 404 remaining after machining may comprise approximately 12%, 10%-15%, or 8%-20% of the mass initially present in block 400 of metal.
  • Landing gear assembly 500 may be similar to thin-skin support member 102 of FIG. 1 .
  • Landing gear assembly 500 may include thin-skin support member 502 having mid-body support 504 disposed inside of thin-skin support member 502.
  • Thin-skin support member 502 may be pivotally coupled to support arm 506, which is pivotally coupled to linkage 505.
  • Secondary support arm 508 may also be coupled to linkage 505.
  • Landing gear assembly 500 may thus deploy and retract in a manner similar to that of landing gear assembly 100 of FIG. 1 .
  • Thin-skin support member 502 may include semi-circular edge 610 adjacent elongated surface 612.
  • An internal surface 614 of elongated surface 612 may define an internal cavity of thin-skin support member 502.
  • An interface portion 608 of thin-skin support member 502 may be configured for coupling to an aircraft. Interface portion 608 may include a cutaway to reduce the weight of thin-skin support member 502.
  • thin-skin support member 502 may include mid-body support 504 extending completely across internal surface 614.
  • Mid-body support 504 may define a terminus of cylinder 606.
  • Cylinder 606 may extend from mid-body support 504 and be configured to retain a strut assembly similar to strut assembly 204 of FIG. 2 .
  • An interface configured for joining to a torsion link may be included proximate an opening end of cylinder 606.
  • Thin-skin support member 502 may be assembled by welding or otherwise joining the components illustrated in FIG. 7 .
  • Interface portion 608 and mid-body support 504 may be forged components.
  • Method 800 may thus include the steps of forging a mounting interface such as interface portion 608 (Step 802), and forging a mid-body support 504 with a cylinder 606 extending from the mid body support and the mounting interface (Step 804).
  • the method also includes welding sheet metal to the mid-body support and mounting interface (Step 806).
  • Interface portion 608 and mid-body support 504 may be joined by welding to sheet metal elements.
  • Lower curved segment 700 and lower curved segment 702 may be welded or joined to each other as well as to mid-body support 504 and/or cylinder 606.
  • Lower curved segment 700 may also be welded or joined to upper curved segment 704.
  • Lower curved segment 702 may further be welded or joined to upper curved segment 706.
  • Upper curved segment 704 and upper curved segment 706 may be welded or joined to interface portion 608.
  • the lower curved segments and upper curved segments may be formed from sheet metal and joined to the forged components (interface portion 608 and mid-body support 504) at relatively low stress locations.
  • Thin-skinned support members of the present disclosure may tend to reduce weight and increase stiffness, as the curved surfaces and elongated geometry of thin-skinned members use less material to achieve acceptable support levels.
  • the thin-skin support member may also tend to reduce turbulence of air passing by the deployed landing gear with its smooth surfaces and rounded contours. In that regard, thin-skin support members of the present disclosure may thus tend to minimize noise generated by air rushing past deployed landing gear assemblies.

Description

    FIELD
  • The disclosure relates generally to aircraft landing gear, with various embodiments relating to thin-skinned landing gear structures.
  • BACKGROUND
  • Aircraft designers have continuously tried to increase the fuel efficiency of aircraft over the last century. The fuel efficiency of an aircraft may be related to the aircraft's mass and aerodynamic drag. In addition, noise regulations for aircraft at low altitudes encourage reduction of the aircraft's noise signature while it is near the ground. Landing gear can be heavy and aerodynamically resistant. Additionally, deployed landing gear may increase the noise signature of an aircraft as a result of air rushing past the deployed gear. Alternative landing gear structures are described in FR 1 033 176 A and in GB 1 040 424 A , whereby the latter describes an aircraft undercarriage comprising a first member formed of sheet steel, shaped and welded to provide a casing; upper and lower bearings within said casing; a second member within said casing and including a tube slidable in said bearings, which tube passes through the base of the casing for connection with wheel carrying means, and means to prevent undesired relative rotation between the casing and the sliding tube.
  • SUMMARY
  • According to the invention, a landing gear assembly is provided as defined by claim 1.
  • Further embodiments are defined in the dependent claims.
  • These features and elements as well as the operation of the disclosed embodiments will become more apparent in light of the following description and accompanying drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The subject matter of the present disclosure is particularly pointed out and distinctly claimed in the concluding portion of the specification. A more complete understanding of the present disclosure, however, may best be obtained by referring to the detailed description and claims when considered in connection with the drawing figures, wherein like numerals denote like elements.
    • FIG. 1 illustrates a thin-skin landing gear assembly, in accordance with various embodiments;
    • FIG. 2 illustrates a sectional view of a thin-skin landing gear assembly having an internal cavity, in accordance with various embodiments;
    • FIG. 3A illustrates a perspective view a thin-skin vertical support member, in accordance with various embodiments;
    • FIG. 3B illustrates a sectional view of a thin-skin support member having an internal cavity, in accordance with various embodiments;
    • FIGs. 4A, 4B and 4C illustrate a process of machining a thin-skin support member from a metal block, in accordance with various embodiments;
    • FIG. 5 illustrates a partial sectional view of a thin-skin landing gear assembly having a mid-body support member, in accordance with various embodiments;
    • FIG. 6A illustrates perspective view of a thin-skin support member having mid-body support member, in accordance with various embodiments;
    • FIG. 6B illustrates cross-sectional view of a thin-skin support member having mid-body support member, in accordance with various embodiments;
    • FIG. 7 illustrates an exploded view of metal components configured for welding to form a thin-skin support member, in accordance with various embodiments; and
    • FIG. 8 illustrates an exemplary process for forming a thin-skinned support member by welding, in accordance with various embodiments.
    DETAILED DESCRIPTION
  • The detailed description of exemplary embodiments herein makes reference to the accompanying drawings, which show exemplary embodiments by way of illustration and their best mode. While these exemplary embodiments are described in sufficient detail to enable those skilled in the art to practice the disclosures, it should be understood that other embodiments may be realized and that logical, chemical, and mechanical changes may be made without departing from the scope of the disclosures. Thus, the detailed description herein is presented for purposes of illustration only and not of limitation. For example, the steps recited in any of the method or process descriptions may be executed in any order and are not necessarily limited to the order presented. Furthermore, any reference to singular includes plural embodiments, and any reference to more than one component or step may include a singular embodiment or step. Also, any reference to attached, fixed, connected or the like may include permanent, removable, temporary, partial, full and/or any other possible attachment option. Additionally, any reference to without contact (or similar phrases) may also include reduced contact or minimal contact.
  • The present disclosure relates to landing gear assemblies having aerodynamic thin-skin support members, in accordance with various embodiments. Landing gear assemblies may have reduced weight and improved stress distribution by using a hollow-bodied, thin-skin support member to provide the primary vertical support. This thin-skin design uses thin skin construction, similar to wing design, to distribute the forces along a greater surface area and thereby enable a reduced cross-section area, which reduces the overall mass of the landing gear. This concept also produces a smooth, aerodynamic structure, which reduces drag and noise production due to aerodynamic buffering. Hydraulic lines and landing gear wiring harnesses can be routed through the empty space within the landing gear structure. Internal routing may protect the equipment from environmental damage, while also reducing the aircraft's aerodynamic drag and noise production.
  • With reference to FIGs. 1 and 2, landing gear assembly 100 is shown, in accordance with various embodiments. Landing gear assembly 100 may include thin-skin support member 102 to provide light-weight support for landing gear assembly 100. Thin-skin support member 102 may be pivotally coupled to support arm 106 at mounting location 110 of thin-skin support member 102. Support arm 106 may further be pivotally coupled to linkage 104, which is pivotally coupled to interface structure 108. A secondary support arm 120 may be mechanically coupled to support arm 106 and thin-skin support member 102. Thin-skin support member 102, support arm 106, and secondary support arm 120 may form a triangular support structure.
  • In various embodiments, landing gear assembly 100 may be pivotally coupled to an airframe 101 at mounting interface 112. Landing gear assembly may also be coupled to airframe 101 at interface structure 108. Landing gear assembly may deploy and stow by pivoting about mounting interface 112 in response to translation of interface structure 108. Thin-skin support member 102 may at least partially contain cylinder 119 extending from thin-skin support member 102. Cylinder 119 may be a cylindrical member that is substantially perpendicular to axle 114. A wheel assembly may be coupled to axle 114 and configured to roll while supporting the weight of the aircraft.
  • In various embodiments, upper torsion link 116 may be pivotally coupled to thin-skin support member 102 at two vertices of upper torsion link 116. Upper torsion link 116 may resemble an isosceles triangle or an equilateral triangle, with one vertex of upper torsion link 116 pivotally coupled to one vertex of lower torsion link 118. Lower torsion link 118 may also resemble an isosceles triangle or an equilateral triangle, with two vertices of lower torsion link 118 mechanically coupled to axle 114. Upper torsion link 116 and lower torsion link 118 may be configured to pivot in response to translation of cylinder 119 into and/or out from a cylindrical cavity of thin-skin support member 102, as shown in greater detail below.
  • Referring now to FIG. 2, a partial cross-section of landing gear assembly 100 through thin-skin support member 102 is shown, in accordance with various embodiments. Thin-skin support member 102 defines cavity 200. Cavity 200 may contain internal hydraulic and/or electronic components 202. Cavity 200 may also remain hollow and retain air. Strut assembly 204 may be retained in place by internal walls of thin-skin support member 102, as described in greater detail below. The upper torsion link 116 and lower torsion link 118 may be configured to restrict the twisting of strut assembly 204 (and cylinder 119 and axle 114 of FIG. 1) with respect to thin-skin support member 102.
  • With reference to FIGs. 3A and 3B, thin-skin support member 102 is shown, in accordance with various embodiments. Thin-skin support member 102 may include a semi-circular edge 308 adjacent to an elongated surface 306 extending to semicircular edge 309. Elongated surface 306 may be a large-radius rounded surface appearing flattened relative to semi-circular edge 309. Elongated surface 306 may also be a straight face, or a combination of radial surfaces and flat surfaces. Semi-circular edge 308 and semicircular edge 309 may be oriented on the forward and/or aft end of thin-skin support member 102 such that air passing by thin-skin support member 102 moves from a semicircular edge, across the elongated surface, to another semicircular edge. Thin-skin support member 102 may thus define cylindrical cavity 300 internal to thin-skin support member 102 and adjacent to cavity 200. Cylindrical cavity 300 is configured to engage cylinder 119 of FIG. 2, optionally to additionally retain strut assembly 204 of FIG. 2. Thus, cylindrical cavity 300 may terminate at circular internal wall 302. Cylindrical cavity 300 may be partially defined by the internal surface of semi-circular edge 30.
  • In various embodiments, cavity 200 may be at least partially defined by internal surface 316 of elongated surface 306 and internal surface 312 of semi-circular edge 308. Thin-skin support member 102 may also include mounting interface 112 for coupling to an aircraft. Torsion interface 314 may be disposed adjacent cylindrical cavity 300 and configured to receive upper torsion link 116 of FIG. 1. Thin-skin support member 102 also includes a cutaway section 310 having a circular and/or semicircular geometry to reduce weight of thin-skin support member 102.
  • Referring now to FIGs. 4A, 4B, and 4C, an exemplary process for making thin-skin support member 102 by machining is shown, in accordance with various embodiments. Block 400 of metal may be prepared for machining, as shown in FIG. 4A. The metal block may include aluminum, titanium, steel, or any other metal or metal alloy desired for thin-skin support member 102 of FIG. 1. The use of aluminum for thin-skin support member 102 may reduce weight of landing gear assembly 100 in FIG. 1 by approximately 19% over conventional designs. The use of titanium for thin-skin support member may reduce the weight of landing gear assembly 100 in FIG. 1 by approximately 53% over conventional designs.
  • In various embodiments, and with reference to FIGs. 4A and 4B, portions of block 400 may be machined away to leave intermediate support member 402. Intermediate 402 may be machined until support member 404 of FIG. 4C remains. In various embodiments, support member 404 remaining after machining may comprise approximately 12%, 10%-15%, or 8%-20% of the mass initially present in block 400 of metal.
  • Referring now to FIG. 5, an exemplary landing gear assembly 500 is shown, in accordance with various embodiments. Landing gear assembly 500 may be similar to thin-skin support member 102 of FIG. 1. Landing gear assembly 500 may include thin-skin support member 502 having mid-body support 504 disposed inside of thin-skin support member 502. Thin-skin support member 502 may be pivotally coupled to support arm 506, which is pivotally coupled to linkage 505. Secondary support arm 508 may also be coupled to linkage 505. Landing gear assembly 500 may thus deploy and retract in a manner similar to that of landing gear assembly 100 of FIG. 1.
  • Referring now to FIGs. 6A and 6B, thin-skin support member 502 is shown, in accordance with various embodiments. Thin-skin support member 502 may include semi-circular edge 610 adjacent elongated surface 612. An internal surface 614 of elongated surface 612 may define an internal cavity of thin-skin support member 502. An interface portion 608 of thin-skin support member 502 may be configured for coupling to an aircraft. Interface portion 608 may include a cutaway to reduce the weight of thin-skin support member 502.
  • In various embodiments, thin-skin support member 502 may include mid-body support 504 extending completely across internal surface 614. Mid-body support 504 may define a terminus of cylinder 606. Cylinder 606 may extend from mid-body support 504 and be configured to retain a strut assembly similar to strut assembly 204 of FIG. 2. An interface configured for joining to a torsion link may be included proximate an opening end of cylinder 606.
  • In various embodiments, and with reference to FIG. 7, exemplary components of thin-skin support member 502 are shown, in accordance with various embodiments. Thin-skin support member 502 may be assembled by welding or otherwise joining the components illustrated in FIG. 7. Interface portion 608 and mid-body support 504 may be forged components. Method 800 may thus include the steps of forging a mounting interface such as interface portion 608 (Step 802), and forging a mid-body support 504 with a cylinder 606 extending from the mid body support and the mounting interface (Step 804).
  • In various embodiments, the method also includes welding sheet metal to the mid-body support and mounting interface (Step 806). Interface portion 608 and mid-body support 504 may be joined by welding to sheet metal elements. Lower curved segment 700 and lower curved segment 702 may be welded or joined to each other as well as to mid-body support 504 and/or cylinder 606. Lower curved segment 700 may also be welded or joined to upper curved segment 704. Lower curved segment 702 may further be welded or joined to upper curved segment 706. Upper curved segment 704 and upper curved segment 706 may be welded or joined to interface portion 608. In various embodiments, the lower curved segments and upper curved segments may be formed from sheet metal and joined to the forged components (interface portion 608 and mid-body support 504) at relatively low stress locations.
  • Thin-skinned support members of the present disclosure may tend to reduce weight and increase stiffness, as the curved surfaces and elongated geometry of thin-skinned members use less material to achieve acceptable support levels. The thin-skin support member may also tend to reduce turbulence of air passing by the deployed landing gear with its smooth surfaces and rounded contours. In that regard, thin-skin support members of the present disclosure may thus tend to minimize noise generated by air rushing past deployed landing gear assemblies.
  • Benefits, other advantages, and solutions to problems have been described herein with regard to specific embodiments. Furthermore, the connecting lines shown in the various figures contained herein are intended to represent exemplary functional relationships and/or physical couplings between the various elements. It should be noted that many alternative or additional functional relationships or physical connections may be present in a practical system. However, the benefits, advantages, solutions to problems, and any elements that may cause any benefit, advantage, or solution to occur or become more pronounced are not to be construed as critical, required, or essential features or elements of the disclosures. The scope of the disclosures is accordingly to be limited by nothing other than the appended claims, in which reference to an element in the singular is not intended to mean "one and only one" unless explicitly so stated, but rather "one or more." Moreover, where a phrase similar to "at least one of A, B, or C" is used in the claims, it is intended that the phrase be interpreted to mean that A alone may be present in an embodiment, B alone may be present in an embodiment, C alone may be present in an embodiment, or that any combination of the elements A, B and C may be present in a single embodiment; for example, A and B, A and C, B and C, or A and B and C. Different cross-hatching is used throughout the figures to denote different parts but not necessarily to denote the same or different materials.

Claims (13)

  1. A landing gear assembly of an aircraft, comprising:
    a hollow-bodied thin skin support member (102) defining an internal cavity (200) and a cylindrical cavity (300), wherein the support member comprises a mounting interface (112) at an upper end thereof configured for coupling to the aircraft;
    a cylinder (119) extending from the cylindrical cavity;
    an axle (114) extending from the cylinder; and
    a torsion link (116) coupled to the axle and a torsion interface of the support member;
    the support member (102) having a cutaway section (310) on the upper end of the support member to reduce the weight of the support member.
  2. The landing gear assembly of claim 1, wherein the cylindrical cavity is configured to retain a strut assembly.
  3. The landing gear assembly of claim 2, wherein the support member comprises a mounting location (110) configured for pivotal coupling to a support arm.
  4. The landing gear assembly of claim 1, wherein the internal cavity is configured to retain at least one of an electronic component or a hydraulic component (202).
  5. The landing gear assembly of any of claims 1 to 4, wherein the support member comprises at least one of aluminum, titanium, or steel.
  6. The landing gear assembly of any of claims 1 to 5, wherein the support member is machined from a block of metal or metal alloy.
  7. The landing gear assembly of any of claims 1 to 6, further comprising a mid-body support, wherein the cylindrical cavity extends from the mid-body support.
  8. The landing gear assembly of any preceding claim, wherein the support member comprises a pair of elongate surfaces (306) disposed opposite each other, the cutaway section (310) being included in each elongate surface.
  9. The landing gear assembly of claim 8, wherein the elongate surfaces are joined by first and second semi-circular edges (308, 309) to define the internal cavity (200), the first semi-circular edge (308) and the second semi-circular edge (309) oriented on the forward, respectively aft end of the support member such that air passing by the support member (102) moves from the first semi-circular edge, across the elongated surfaces, to the second semi-circular edge.
  10. The landing gear assembly of claim 9, wherein the elongate surfaces (306) are spaced apart in a dimension in which the axle (114) extends.
  11. The landing gear assembly of claim 10, wherein a semi-circular edge of the support member and an elongated surface of the support member are at least partially defined by a segment of sheet metal welded to the mid-body support.
  12. The landing gear assembly of any of claims 1 to 11, further comprising:
    a primary support arm (106) pivotally coupled to the support member;
    a linkage (104) pivotally coupled to the primary support arm; and
    a secondary support arm (120) coupled to the support member and at least one of the primary support arm or the linkage.
  13. The landing gear assembly of claim 12, further comprising an interface structure coupled to the linkage, wherein the landing gear assembly is configured to at least one of deploy or retract in response to a translation of the interface structure.
EP17176442.6A 2016-06-16 2017-06-16 Aerodynamic noise reducing thin-skin landing gear structure Active EP3257749B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21173411.6A EP3901032A1 (en) 2016-06-16 2017-06-16 Aerodynamic noise reduction thin-skin landing gear structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US15/184,517 US10315755B2 (en) 2016-06-16 2016-06-16 Aerodynamic noise reducing thin-skin landing gear structure

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP21173411.6A Division EP3901032A1 (en) 2016-06-16 2017-06-16 Aerodynamic noise reduction thin-skin landing gear structure

Publications (2)

Publication Number Publication Date
EP3257749A1 EP3257749A1 (en) 2017-12-20
EP3257749B1 true EP3257749B1 (en) 2021-05-26

Family

ID=59070557

Family Applications (2)

Application Number Title Priority Date Filing Date
EP17176442.6A Active EP3257749B1 (en) 2016-06-16 2017-06-16 Aerodynamic noise reducing thin-skin landing gear structure
EP21173411.6A Pending EP3901032A1 (en) 2016-06-16 2017-06-16 Aerodynamic noise reduction thin-skin landing gear structure

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP21173411.6A Pending EP3901032A1 (en) 2016-06-16 2017-06-16 Aerodynamic noise reduction thin-skin landing gear structure

Country Status (2)

Country Link
US (2) US10315755B2 (en)
EP (2) EP3257749B1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10933981B2 (en) * 2016-06-21 2021-03-02 Goodrich Corporation Aerodynamic noise reducing thin-skin landing gear structures and manufacturing techniques
EP3431785B1 (en) * 2017-07-17 2020-09-23 Safran Landing Systems UK Limited Aircraft assembly with safety guide
US11192638B2 (en) * 2019-10-31 2021-12-07 Safran Landing Systems Canada Inc. Aircraft landing gear acoustic shields
CN211731793U (en) * 2020-01-17 2020-10-23 深圳市道通智能航空技术有限公司 Unmanned aerial vehicle foot rest and unmanned aerial vehicle

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2395690A (en) 1941-11-10 1946-02-26 Smith Corp A O Welded pressed metal landing gear strut
GB565052A (en) 1942-07-22 1944-10-25 George Herbert Dowty Improvements in leg structures for mounting aircraft landing elements
FR1033176A (en) 1951-02-27 1953-07-08 Constructions Aeronautiques Sudest Improvements to shock absorbers for landing gear, in particular for large tonnage aerodynes
GB1040424A (en) * 1963-10-28 1966-08-24 Electro Hydraulics Ltd Aircraft undercarriages
US5743491A (en) * 1994-12-08 1998-04-28 The Boeing Company Very large aircraft landing gear having eight wheel truck
US6349901B1 (en) 2000-08-30 2002-02-26 Northrop Grumman Corporation Landing gear
US8376261B2 (en) * 2002-11-01 2013-02-19 Airbus Uk Limited Landing gear
GB0814291D0 (en) 2008-08-05 2008-09-10 Airbus Uk Ltd Landing gear with noise reduction fairing
US9302767B2 (en) 2012-11-12 2016-04-05 Gulfstream Aerospace Corporation Nose landing gear arrangement for aircraft and method of assembly
EP3159260B1 (en) * 2015-10-23 2019-11-27 Safran Landing Systems UK Limited Aircraft landing gear assembly including a health and usage monitoring system (hums) and method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US20170361924A1 (en) 2017-12-21
EP3901032A1 (en) 2021-10-27
US11084574B2 (en) 2021-08-10
EP3257749A1 (en) 2017-12-20
US10315755B2 (en) 2019-06-11
US20190233090A1 (en) 2019-08-01

Similar Documents

Publication Publication Date Title
US11084574B2 (en) Aerodynamic noise reducing thin-skin landing gear structure
US11685520B2 (en) Aerodynamic noise reducing thin-skin landing gear structures and manufacturing techniques
US9868540B2 (en) Aircraft engine mounting system
JP5020943B2 (en) Pylon suspension attachment for aircraft jet engines
US11827341B2 (en) Thin-skin side stay beams and landing gear assemblies
CN106335629B (en) Fuselage spar structure with continuous integral fastened upper and lower chord sections
US5277382A (en) Aircraft engine forward mount
EP3031711B1 (en) Aircraft frame for tailstrike angle enhancement
US8881536B2 (en) Aircraft engine assembly comprising a turbojet engine with reinforcing structures connecting the fan casing to the central casing
FR2989666A1 (en) AIRCRAFT AERODYNAMIC SURFACE, AND AIRCRAFT PROVIDED WITH SAID AERODYNAMIC SURFACE
US10450081B2 (en) Aircraft engine pylon to wing mounting assembly
CN107600392B (en) Retractable truss-supported landing gear
CN112533824A (en) Method for improving the concept of a closed-wing aircraft and corresponding aircraft construction
EP3670331B1 (en) Wing element having a mobile element
US20170088279A1 (en) Aircraft engine pylon to wing mounting assembly
WO2022170420A1 (en) Hybrid main landing gear fitting with detachable drag arm
EP3118119A1 (en) Beam with hybrid cross-sectional structure
CN113002763A (en) Aircraft subassembly with main landing gear assembly and nose
EP2465769A2 (en) Optimization of structures subjected to hot gas streams
EP3623287B1 (en) Aircraft landing gear component
EP4186790A1 (en) An aircraft landing gear bay door
EP4186789A1 (en) An aircraft landing gear
JPH04113991A (en) Aircraft provided with tip fin

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180620

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20191202

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20201223

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017039134

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1395997

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1395997

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210826

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210826

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210927

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210827

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210926

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602017039134

Country of ref document: DE

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210630

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210616

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210616

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

26N No opposition filed

Effective date: 20220301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210926

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210826

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170616

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230523

Year of fee payment: 7

Ref country code: DE

Payment date: 20230523

Year of fee payment: 7