EP3253849B1 - Reactor for obtaining gas from organic waste - Google Patents
Reactor for obtaining gas from organic waste Download PDFInfo
- Publication number
- EP3253849B1 EP3253849B1 EP15793745.9A EP15793745A EP3253849B1 EP 3253849 B1 EP3253849 B1 EP 3253849B1 EP 15793745 A EP15793745 A EP 15793745A EP 3253849 B1 EP3253849 B1 EP 3253849B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- reactor
- gas
- chamber
- accordance
- cleaning chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000010815 organic waste Substances 0.000 title claims description 18
- 238000006243 chemical reaction Methods 0.000 claims description 57
- 238000004140 cleaning Methods 0.000 claims description 52
- 238000001816 cooling Methods 0.000 claims description 15
- 238000009833 condensation Methods 0.000 claims description 5
- 230000005494 condensation Effects 0.000 claims description 5
- 238000009413 insulation Methods 0.000 claims description 4
- 239000007789 gas Substances 0.000 description 58
- 230000000694 effects Effects 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 2
- 239000002023 wood Substances 0.000 description 2
- 238000007599 discharging Methods 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000004449 solid propellant Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G1/00—Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
- C10G1/02—Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal by distillation
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10B—DESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
- C10B47/00—Destructive distillation of solid carbonaceous materials with indirect heating, e.g. by external combustion
- C10B47/02—Destructive distillation of solid carbonaceous materials with indirect heating, e.g. by external combustion with stationary charge
- C10B47/04—Destructive distillation of solid carbonaceous materials with indirect heating, e.g. by external combustion with stationary charge in shaft furnaces
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10B—DESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
- C10B47/00—Destructive distillation of solid carbonaceous materials with indirect heating, e.g. by external combustion
- C10B47/02—Destructive distillation of solid carbonaceous materials with indirect heating, e.g. by external combustion with stationary charge
- C10B47/06—Destructive distillation of solid carbonaceous materials with indirect heating, e.g. by external combustion with stationary charge in retorts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10B—DESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
- C10B57/00—Other carbonising or coking processes; Features of destructive distillation processes in general
- C10B57/18—Modifying the properties of the distillation gases in the oven
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10K—PURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
- C10K1/00—Purifying combustible gases containing carbon monoxide
- C10K1/04—Purifying combustible gases containing carbon monoxide by cooling to condense non-gaseous materials
Definitions
- the invention relates to a reactor according to the preamble of claim 1.
- Such a reactor is from the EP 0 075 060 A1 known.
- a device for converting plastic into oil is known, and from the FR 914 272 A3 a device for distillation from solid fuels is known.
- a reaction vessel is known which has cooling fins on its lid in order to promote the separation of condensate on the inside of the lid.
- a wood gas generator is known, the lid of which is also designed for the separation of condensate, so that it can be cooled by means of an air stream.
- the FR 905 858 A describes a wood gas generator
- the object of the invention is to improve a generic reactor in such a way that it enables the gas to be obtained in a manner that is as trouble-free and reliable as possible and enables the reactor to be maintained as simply as possible.
- the invention proposes not only to clean the gas obtained in the cleaning chamber, which is not designed as a chamber closed off from the reaction chamber, but rather enables a free gas flow from the reaction chamber into the cleaning chamber.
- a condensate separator is provided in the gas outlet line, so that the gas is additionally cleaned, similarly as is provided in the cleaning chamber anyway.
- This condensate separator enables a particularly effective purification of the gas in that it results in a two-stage purification of the gas as post-purification.
- the condensate separator has a condensation surface protruding into the gas flow and a condensate collection space located underneath, into which the condensate that collects on the condensation surface can drip.
- the gases obtained rise anyway in the reaction chamber, so that, in the proposed design of the reactor, they then automatically get into the cleaning chamber which connects to the reaction chamber at the top.
- the gas meets a cooling surface, so that condensate automatically precipitates on this cooling surface and in this way the gas cleaned from the condensate can be led out of the reactor through a gas outlet line, the gas outlet line opening into the cleaning chamber.
- a second gas line is provided for discharging the gases obtained. This second gas line is referred to as a bypass and is used, in particular, to draw the gases not from the cleaning chamber but from the gas space of the reactor.
- This bypass serves as a safety device: If the opening of the gas outlet line in the cleaning chamber should become blocked by condensate, the temperature inside the cleaning chamber being, for example, in the range from 180 ° C to 200 ° C, it can be assumed that due to the significantly higher temperature level in the Gas space of the reaction space does not block the mouth of the bypass and, accordingly, the gas can be led out of the reactor through the bypass, so that a dangerous pressure increase in the reactor can be avoided.
- the bypass does not have to be of any length, but rather ends at the second end in the gas outlet line, so that the gas can be passed on from here on in its usual way ,
- the temperature level in the reaction space can be controlled by providing a heatable space between the thermal insulation which is provided outside the reaction space and the reactor housing which delimits the reaction space.
- This intermediate space can, for example, be fed with exhaust gases from a cogeneration plant, the cogeneration plant in turn being able to be operated with the gas which is generated in the reactor.
- the cleaning chamber can essentially connect to the reaction chamber with a constant, internal, free cross-section, so that the reactor can be viewed simply as an upright tube, in the lower region of which the reaction chamber is provided and which in its upper region, above the Reaction chamber that forms the cleaning chamber.
- the wall of this reactor which is simply regarded as a tube, has different wall thicknesses, in that the thermal insulation mentioned is provided in the lower region, surrounding the reaction space, while in the upper region, where the cleaning chamber is provided, such insulation can be intentionally dispensed with in this way to use the pipe wall itself as a cooling surface on which the condensate is deposited.
- the reaction chamber can be filled quickly and easily from above, for example by providing the cleaning chamber with an upper cover which, for example, can be pivoted or hinged lid or can be designed as a slide.
- the lid When the lid is open, the organic waste can be poured into the reactor, it automatically falls through the cleaning chamber into the reaction space down to its lower section, which is called the collecting space for the organic waste.
- the lid is then closed again and the reaction space is heated, for example to a temperature level of 360 to 430 ° C.
- the organic waste Under pyrolytic conditions, i.e. without air, the organic waste can now be converted and gas can be extracted from it.
- the gas rises upwards in the reaction chamber, that is, it reaches the section of the reaction chamber referred to as the gas space, and rises further upwards into the cleaning chamber, where it reaches the cooling surface.
- the reactor is operated in batches, in other words until the organic waste is recycled or converted as completely as possible.
- the reactor is then opened and a new batch of organic waste is introduced into the reactor. Since the organic material is almost completely converted, only a very small amount of unreacted material remains in the reactor in relation to the volumetric amount of organic waste initially used. After a certain number of batches, the reactor can be cleaned of these residues and emptied. Condensate, which is deposited on the cooling surface of the cleaning chamber, can flow down or drip and get there again into the reaction space, so that in the manner of a recycle, these substances are treated again and possibly repeatedly in the reaction space, which in total supports the fullest possible implementation of the originally submitted organic waste.
- the condensate separator provided according to the proposal can advantageously be arranged downstream of the point where the bypass opens into the gas outlet line. In this way, when the gas is withdrawn from the reaction space through the bypass, at least one-stage cleaning of the gas is ensured, since this gas flowing through the bypass subsequently reaches the condensate separator.
- the condensate separator it can advantageously be provided that the condensate obtained is returned to the reaction space, so that a return line can advantageously be provided which opens at one end into the condensate collection space of the condensate separator and at the other end into the reaction space. Similar to that described above for the condensate, which can flow downward from the cooling surface of the cleaning chamber into the reaction space, the condensate separator also causes the return line, the re-treatment of the condensate in the reaction space and supports in this way the most complete possible conversion of the organic waste originally introduced.
- the cleaning chamber is designed as a separate element, that is to say not only as a certain section of the reactor housing which is provided above the reaction space.
- the configuration as a separate element enables the reactor housing to be divided into a lower part, which receives the reaction space, and an upper part, which receives the cleaning chamber. A thermal separation of these two parts of the reactor housing is possible and also advantageous if the interior of the reactor extends continuously through the reaction space and the cleaning chamber.
- the thermal separation prevents heat conduction from the heated wall of the reaction chamber to the wall of the cleaning chamber and thus supports the achievement of two different temperature zones in the reactor, so that, for example, the wall of the cleaning chamber can be used as a cooling surface on which condensate originating from the gas accumulates , Even if the cleaning chamber is mechanically connected to the reaction chamber, it can be thermally insulated from the reaction chamber, so that the effect of the cooling surface is impaired as little as possible and in this way an optimal cleaning effect of the cleaning chamber is supported.
- the reaction space has a diameter of at most 300 mm.
- the height of the reaction space can, for example be about 1.5 m, and the height of the cleaning chamber, for example, about 0.3 m.
- the diameter of the reaction space can be particularly advantageously limited to a maximum value of 170 mm.
- the performance of a plant for the production of gas from organic waste can advantageously not be increased by increasing the reaction space, for example by increasing the diameter, but by using a larger number of reactors.
- the reactor is not operated continuously, but in batches.
- the advantage of a quasi-continuous operation of the entire system can therefore also be achieved, namely the most uniform possible output of the gas obtained.
- the gas is not to be led into a store, temporarily stored and called up as required, but is to be used directly, for example to be burned in a combined heat and power plant (CHP).
- a storage can be provided as a buffer for possible fluctuations in the gas yield or fluctuations in the needs of the CHP. In comparison to not using the gas obtained immediately, but in principle storing it in a store for a longer and possibly indefinite period of time, this buffer store can be made considerably smaller and, accordingly, less expensive.
- the multiple reactors are not operated synchronously, with simultaneous interruptions for refilling, emptying or cleaning the reactors. Rather, these interruptions in the operation of the reactor are each offset from one reactor to the other, so that the gas output of the plant takes place as evenly as possible over a longer period of time in this way, downstream components, such as the mentioned CHP, can be operated as constantly as possible and at an optimal operating point.
- the cleaning effect in the cleaning chamber can advantageously be influenced by consciously tempering the cooling surface. If, as indicated above, the cooling surface is formed, for example, by the tube wall of the cleaning chamber, an outer shield can run around this wall, so that a double-walled configuration of the cleaning chamber is brought about and by introducing liquid or gaseous media into this double-shell Wall of the cleaning chamber the temperature of the cooling surface can be controlled.
- a reactor 1 denotes a reactor, which can be viewed in simplified terms as an upright pipe.
- a lower section of the reactor 1 has a reaction space 2 which is subdivided into a lower collecting space 3 for the organic waste and into an upper gas space 4, this subdivision automatically resulting from how fully the reaction space 2 is filled with organic waste.
- the reaction space 2 is delimited by a reactor housing 5, which is adjoined radially outwards by a heatable intermediate space 6, which in turn is encased on the outside with a thermal insulating layer 7.
- a reactor housing 5 which is adjoined radially outwards by a heatable intermediate space 6, which in turn is encased on the outside with a thermal insulating layer 7.
- heating gases can be passed through the intermediate space 6 in order in this way to heat the reaction chamber 2 from the outside, namely by heating the reactor housing 5.
- Another nozzle in the reactor housing 5 is indicated in the form of a measuring nozzle 10, which is used, for example, to record parameters in the interior of the reaction chamber 2, for example gas composition, temperature or the like.
- the reactor 1 has a cleaning chamber 11 which is designed like an extension of the tubular reactor housing 5, but is designed as a separate element.
- An upper flange 12 is fixedly connected to the wall of the cleaning chamber 11, and a lower flange 14 is fixedly connected to the reactor housing 5, which surrounds the reaction space 2.
- Both the reactor housing 5 and the lower flange 14 are thermally insulated from the housing of the cleaning chamber 11, so that the wall of the cleaning chamber 11 forms a tubular cooling surface 15, on which condensate from the gas, which has been obtained from the organic waste, is deposited and has risen from the gas space 4 of the reactor 1 upwards into the cleaning chamber 11.
- the cleaned gas is led through a gas outlet line 16 out of the cleaning chamber 11 and into a condensate separator 17 which has a condensation surface 18 which is cooled by means of a cooling connection 19. Condensate from the gas precipitates on this condensation surface 18 and drips from there into a condensate collection space 20.
- a return line 21 connects to the condensate collection space 20 at the bottom and leads the condensate to a location (not shown in the drawing) where it reaches the reaction space 2 ,
- a bypass 22 is provided, via which the gas obtained cannot be drawn off from the cleaning chamber 11 but directly from the gas space 4.
- the bypass 22 opens upstream of the condensate separator 17 into the gas outlet line 16.
- a throttle valve 23 indicated schematically enables it to selectively open or close the bypass 22.
- the reactor 1 is closed at the top by a cover 24 which, like a bottom 25 provided at the bottom of the reactor 1, is designed as a horizontally movable slide and enables the reactor 1 to be opened over its full free internal cross section, so that access is particularly easy the inner surfaces of the cleaning chamber 11 or the reaction chamber 2 is made possible and in this way a simple and quick cleaning of the reactor 1 can be carried out.
- Actuators for actuating the respective slide of the cover 24 or base 25 are each designated by 26.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Combustion & Propulsion (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
- Processing Of Solid Wastes (AREA)
Description
Die Erfindung betrifft ein Reaktor nach dem Oberbegriff des Anspruchs 1.The invention relates to a reactor according to the preamble of
Ein derartiger Reaktor ist aus der
Aus der
Aus der
Diese Aufgabe wird durch einen Reaktor mit den Merkmalen des Anspruchs 1 gelöst.This object is achieved by a reactor with the features of
Die Erfindung schlägt mit anderen Worten vor, die Reinigung des gewonnenen Gases nicht nur in der Reinigungskammer vorzunehmen, die nicht als gegenüber dem Reaktionsraum abgeschlossene Kammer ausgestaltet ist, sondern vielmehr einen freien Gasfluss vom Reaktionsraum in die Reinigungskammer ermöglicht. Vorschlagsgemäß ist in der Gasauslassleitung ein Kondensatabscheider vorgesehen, so dass eine zusätzliche Reinigung des Gases erfolgt, ähnlich wie dies ohnehin in der Reinigungskammer vorgesehen ist. Dieser Kondensatabscheider ermöglicht eine besonders wirksame Reinigung des Gases dadurch, dass er als Nachreinigung eine insgesamt zweistufige Reinigung des Gases bewirkt. Der Kondensatabscheider weist dabei eine in den Gasstrom ragende Kondensationsfläche auf sowie einen darunter befindlichen Kondensatsammelraum, in den das Kondensat, welches sich an der Kondensationsfläche sammelt, abtropfen kann.In other words, the invention proposes not only to clean the gas obtained in the cleaning chamber, which is not designed as a chamber closed off from the reaction chamber, but rather enables a free gas flow from the reaction chamber into the cleaning chamber. According to the proposal, a condensate separator is provided in the gas outlet line, so that the gas is additionally cleaned, similarly as is provided in the cleaning chamber anyway. This condensate separator enables a particularly effective purification of the gas in that it results in a two-stage purification of the gas as post-purification. The condensate separator has a condensation surface protruding into the gas flow and a condensate collection space located underneath, into which the condensate that collects on the condensation surface can drip.
Temperaturbedingt steigen die gewonnenen Gase ohnehin im Reaktionsraum auf, so dass sie bei der vorgeschlagenen Ausgestaltung des Reaktors anschließend automatisch in die Reinigungskammer gelangen, die oben an den Reaktionsraum anschließt. Hier trifft das Gas an eine Kühlfläche, so dass sich Kondensat automatisch an dieser Kühlfläche niederschlägt und auf diese Weise das vom Kondensat gereinigte Gas durch eine Gasauslassleitung aus dem Reaktor geführt werden kann, wobei die Gasauslassleitung in die Reinigungskammer mündet. Abgesehen von der Gasauslassleitung, die mit ihrem einen Ende in die Reinigungskammer mündet und zum Abzug der gereinigten Gase aus der Reinigungskammer dient, ist vorschlagsgemäß eine zweite Gasleitung zum Abführen der gewonnenen Gase vorgesehen. Diese zweite Gasleitung wird als Bypass bezeichnet und dient insbesondere dazu, die Gase nicht aus der Reinigungskammer, sondern aus dem Gasraum des Reaktors abzuziehen. Dieser Bypass dient als Sicherheitseinrichtung: Wenn die Mündungsöffnung der Gasauslassleitung in der Reinigungskammer durch Kondensat verstopfen sollte, wobei die Temperatur innerhalb der Reinigungskammer beispielsweise im Bereich von 180°C bis 200°C liegt, so ist davon auszugehen, dass aufgrund des deutlich höheren Temperaturniveaus im Gasraum des Reaktionsraums die Mündung des Bypass nicht verstopft und dementsprechend das Gas durch den Bypass aus dem Reaktor geführt werden kann, so dass ein gefährlicher Druckanstieg im Reaktor vermieden werden kann.Due to the temperature, the gases obtained rise anyway in the reaction chamber, so that, in the proposed design of the reactor, they then automatically get into the cleaning chamber which connects to the reaction chamber at the top. Here the gas meets a cooling surface, so that condensate automatically precipitates on this cooling surface and in this way the gas cleaned from the condensate can be led out of the reactor through a gas outlet line, the gas outlet line opening into the cleaning chamber. Apart from the gas outlet line, which ends at one end in the cleaning chamber and is used to withdraw the cleaned gases from the cleaning chamber, a second gas line is provided for discharging the gases obtained. This second gas line is referred to as a bypass and is used, in particular, to draw the gases not from the cleaning chamber but from the gas space of the reactor. This bypass serves as a safety device: If the opening of the gas outlet line in the cleaning chamber should become blocked by condensate, the temperature inside the cleaning chamber being, for example, in the range from 180 ° C to 200 ° C, it can be assumed that due to the significantly higher temperature level in the Gas space of the reaction space does not block the mouth of the bypass and, accordingly, the gas can be led out of the reactor through the bypass, so that a dangerous pressure increase in the reactor can be avoided.
Dabei ist schließlich vorschlagsgemäß auch vorgesehen, dass zur Vereinfachung der baulichen Ausgestaltung des Reaktors der Bypass nicht beliebig lang ausgestaltet zu sein braucht, sondern vielmehr an seinem zweiten Ende in die Gasauslassleitung mündet, so dass von hier an das Gas auf seinem üblichen Weg weitergeleitet werden kann.Finally, it is also proposed that, in order to simplify the structural design of the reactor, the bypass does not have to be of any length, but rather ends at the second end in the gas outlet line, so that the gas can be passed on from here on in its usual way ,
In an sich bekannter Weise kann das Temperaturniveau im Reaktionsraum dadurch gesteuert werden, dass zwischen der thermischen Isolierung, die außerhalb des Reaktionsraums vorgesehen ist, und dem Reaktorgehäuse, welches den Reaktionsraum begrenzt, ein beheizbarer Zwischenraum vorgesehen ist. Dieser Zwischenraum kann beispielsweise mit Abgasen aus einem Blockheizkraftwerk beschickt werden, wobei das Blockheizkraftwerk wiederum mit dem Gas betrieben werden kann, welches in dem Reaktor erzeugt wird.In a manner known per se, the temperature level in the reaction space can be controlled by providing a heatable space between the thermal insulation which is provided outside the reaction space and the reactor housing which delimits the reaction space. This intermediate space can, for example, be fed with exhaust gases from a cogeneration plant, the cogeneration plant in turn being able to be operated with the gas which is generated in the reactor.
Vorteilhaft kann die Reinigungskammer im Wesentlichen mit einem gleichbleibendem inneren, freien Querschnitt nach oben an den Reaktionsraum anschließen, so dass der Reaktor vereinfacht als aufrecht stehendes Rohr angesehen werden kann, in dessen unterem Bereich der Reaktionsraum vorgesehen ist und welches in seinem oberen Bereich, oberhalb des Reaktionsraums, die Reinigungskammer bildet. Die Wand dieses vereinfacht als Rohr angesehenen Reaktors weist unterschiedliche Wandstärken auf, indem im unteren Bereich, den Reaktionsraum umgebend, die erwähnte thermische Isolierung vorgesehen ist, während im oberen Bereich, wo die Reinigungskammer vorgesehen ist, auf eine derartige Isolierung bewusst verzichtet sein kann, um auf diese Weise die Rohrwand selbst als Kühlfläche zu nutzen, an welcher sich das Kondensat niederschlägt.Advantageously, the cleaning chamber can essentially connect to the reaction chamber with a constant, internal, free cross-section, so that the reactor can be viewed simply as an upright tube, in the lower region of which the reaction chamber is provided and which in its upper region, above the Reaction chamber that forms the cleaning chamber. The wall of this reactor, which is simply regarded as a tube, has different wall thicknesses, in that the thermal insulation mentioned is provided in the lower region, surrounding the reaction space, while in the upper region, where the cleaning chamber is provided, such insulation can be intentionally dispensed with in this way to use the pipe wall itself as a cooling surface on which the condensate is deposited.
Dadurch, dass der freie innere Querschnitt des Reaktors im Wesentlichen ohne Veränderung vom Reaktionsraum in die Reinigungskammer übergeht, ist einerseits eine schnelle und problemlose Befüllung des Reaktionsraums von oben möglich, indem beispielsweise die Reinigungskammer mit einem oberen Deckel versehen ist, der beispielsweise als schwenkbarer bzw. klappbarer Deckel oder als Schieber ausgestaltet sein kann. Bei geöffnetem Deckel können die organischen Abfälle in den Reaktor eingefüllt werden, sie fallen automatisch durch die Reinigungskammer in den Reaktionsraum bis in dessen unteren Abschnitt, der als Sammelraum für die organischen Abfälle bezeichnet ist. Anschließend wird der Deckel wieder geschlossen und der Reaktionsraum aufgeheizt, beispielsweise auf ein Temperaturniveau von 360 bis 430°C. Unter pyrolytischen Bedingungen, also unter Luftabschluss, können nun die organischen Abfälle umgesetzt und Gas aus ihnen gewonnen werden. Das Gas steigt in der Reaktionskammer nach oben auf, gelangt also in den als Gasraum bezeichneten Abschnitt des Reaktionsraumes, und steigt von dort weiter nach oben in die Reinigungskammer auf, wo es gegen die Kühlfläche gelangt.Because the free inner cross section of the reactor passes from the reaction chamber into the cleaning chamber essentially without any change, on the one hand, the reaction chamber can be filled quickly and easily from above, for example by providing the cleaning chamber with an upper cover which, for example, can be pivoted or hinged lid or can be designed as a slide. When the lid is open, the organic waste can be poured into the reactor, it automatically falls through the cleaning chamber into the reaction space down to its lower section, which is called the collecting space for the organic waste. The lid is then closed again and the reaction space is heated, for example to a temperature level of 360 to 430 ° C. Under pyrolytic conditions, i.e. without air, the organic waste can now be converted and gas can be extracted from it. The gas rises upwards in the reaction chamber, that is, it reaches the section of the reaction chamber referred to as the gas space, and rises further upwards into the cleaning chamber, where it reaches the cooling surface.
Der Betrieb des Reaktors erfolgt chargenweise, also jeweils bis zur möglichst vollständigen Verwertung bzw. Umsetzung der organischen Abfälle. Anschließend wird der Reaktor geöffnet und eine neue Charge von organischen Abfällen in den Reaktor eingebracht. Da das organische Material nahezu vollständig umgesetzt wird, verbleibt im Verhältnis zu der zunächst eingesetzten volumetrischen Menge der organischen Abfälle ein nur sehr geringer Rest an nicht umgesetzten Stoffen im Reaktor. Nach einer gewissen Anzahl von Chargen kann der Reaktor von diesen Resten gereinigt und geleert werden. Kondensat, welches sich an der Kühlfläche der Reinigungskammer niederschlägt, kann nach unten fließen bzw. tropfen und gerät dort erneut in den Reaktionsraum, so dass in Art einer Rückführung eine erneute und ggf. mehrfach wiederholte Behandlung dieser Substanzen in dem Reaktionsraum erfolgt, was die insgesamt möglichst vollständige Umsetzung der ursprünglich eingereichten organischen Abfälle unterstützt.The reactor is operated in batches, in other words until the organic waste is recycled or converted as completely as possible. The reactor is then opened and a new batch of organic waste is introduced into the reactor. Since the organic material is almost completely converted, only a very small amount of unreacted material remains in the reactor in relation to the volumetric amount of organic waste initially used. After a certain number of batches, the reactor can be cleaned of these residues and emptied. Condensate, which is deposited on the cooling surface of the cleaning chamber, can flow down or drip and get there again into the reaction space, so that in the manner of a recycle, these substances are treated again and possibly repeatedly in the reaction space, which in total supports the fullest possible implementation of the originally submitted organic waste.
Der vorschlagsgemäß vorgesehene Kondensatabscheider kann vorteilhaft stromabwärts von der Stelle angeordnet sein, wo der Bypass in die Gasauslassleitung mündet. Auf diese Weise ist, wenn das Gas aus dem Reaktionsraum durch den Bypass abgezogen wird, zumindest eine einstufige Reinigung des Gases sichergestellt, da nämlich dieses durch den Bypass strömende Gas anschließend in den Kondensatabscheider gelangt.The condensate separator provided according to the proposal can advantageously be arranged downstream of the point where the bypass opens into the gas outlet line. In this way, when the gas is withdrawn from the reaction space through the bypass, at least one-stage cleaning of the gas is ensured, since this gas flowing through the bypass subsequently reaches the condensate separator.
Bei dem Kondensatabscheider kann vorteilhaft vorgesehen sein, das gewonnene Kondensat in den Reaktionsraum zurückzuführen, so dass vorteilhaft eine Rückleitung vorgesehen sein kann, welche mit ihrem einen Ende in den Kondensatsammelraum des Kondensatabscheiders und mit ihrem anderen Ende in den Reaktionsraum mündet. Ähnlich wie weiter oben für das Kondensat beschrieben, welches von der Kühlfläche der Reinigungskammer nach unten in den Reaktionsraum strömen kann, bewirkt auch für den Kondensatabscheider die Rückleitung, die erneute Behandlung des Kondensats in dem Reaktionsraum und unterstützt auf diese Weise eine möglichst vollständige Umsetzung des ursprünglich eingebrachten organischen Abfalls.In the case of the condensate separator, it can advantageously be provided that the condensate obtained is returned to the reaction space, so that a return line can advantageously be provided which opens at one end into the condensate collection space of the condensate separator and at the other end into the reaction space. Similar to that described above for the condensate, which can flow downward from the cooling surface of the cleaning chamber into the reaction space, the condensate separator also causes the return line, the re-treatment of the condensate in the reaction space and supports in this way the most complete possible conversion of the organic waste originally introduced.
Vorteilhaft kann vorgesehen sein, dass die Reinigungskammer als separates Element ausgestaltet ist, also nicht nur als ein gewisser Abschnitt des Reaktorgehäuses, welcher oberhalb des Reaktionsraums vorgesehen ist. Durch die Ausgestaltung als separates Element ist eine Aufteilung des Reaktorgehäuses in einen unteren Teil, der den Reaktionsraum aufnimmt, und einen oberen Teil möglich, der die Reinigungskammer aufnimmt. Eine thermische Trennung dieser beiden Teile des Reaktorgehäuses ist möglich und auch dann vorteilhaft, wenn der Innenraum des Reaktors sich durchgängig durch den Reaktionsraum und die Reinigungskammer erstreckt. Die thermische Trennung verhindert eine Wärmeleitung von der beheizten Wand des Reaktionsraums zu der Wand der Reinigungskammer und unterstützt somit die Erzielung zweier unterschiedlicher Temperaturzonen im Reaktor, so dass beispielsweise die Wand der Reinigungskammer als Kühlfläche genutzt werden kann, an der sich aus dem Gas stammendes Kondensat anlagert. Auch wenn die Reinigungskammer mechanisch mit dem Reaktionsraum fest verbunden ist, kann sie gegenüber dem Reaktionsraum thermisch isoliert werden, so dass auf diese Weise die Wirkung der Kühlfläche möglichst wenig beeinträchtigt wird und auf diese Weise eine optimale Reinigungswirkung der Reinigungskammer unterstützt wird.It can advantageously be provided that the cleaning chamber is designed as a separate element, that is to say not only as a certain section of the reactor housing which is provided above the reaction space. The configuration as a separate element enables the reactor housing to be divided into a lower part, which receives the reaction space, and an upper part, which receives the cleaning chamber. A thermal separation of these two parts of the reactor housing is possible and also advantageous if the interior of the reactor extends continuously through the reaction space and the cleaning chamber. The thermal separation prevents heat conduction from the heated wall of the reaction chamber to the wall of the cleaning chamber and thus supports the achievement of two different temperature zones in the reactor, so that, for example, the wall of the cleaning chamber can be used as a cooling surface on which condensate originating from the gas accumulates , Even if the cleaning chamber is mechanically connected to the reaction chamber, it can be thermally insulated from the reaction chamber, so that the effect of the cooling surface is impaired as little as possible and in this way an optimal cleaning effect of the cleaning chamber is supported.
Vorteilhaft kann vorgesehen sein, dass der Reaktionsraum einen Durchmesser von höchstens 300 mm aufweist. Auf diese Weise ist angesichts der Beheizung von außen, nämlich vom Reaktorgehäuse her, eine möglichst gleichmäßige Wärmeverteilung über den gesamten im Querschnitt des Reaktionsraums sichergestellt, während bei größeren Durchmessern des Reaktionsraums nicht auszuschließen ist, dass sich in der Mitte des Reaktionsraums eine Zone bildet, die nur ungenügend intensiv beheizt werden kann. Die Höhe des Reaktionsraums kann beispielsweise etwa 1,5 m betragen, und die Höhe der Reinigungskammer beispielsweise etwa 0,3 m.It can advantageously be provided that the reaction space has a diameter of at most 300 mm. In this way, in view of the heating from the outside, namely from the reactor housing, the most uniform possible heat distribution over the entire cross section of the reaction space is ensured, while with larger diameters of the reaction space it cannot be ruled out that a zone forms in the middle of the reaction space can only be heated insufficiently intensively. The height of the reaction space can, for example be about 1.5 m, and the height of the cleaning chamber, for example, about 0.3 m.
Aus den vorgenannten Gründen kann besonders vorteilhaft der Durchmesser des Reaktionsraums auf einen Höchstwert von 170 mm begrenzt werden.For the aforementioned reasons, the diameter of the reaction space can be particularly advantageously limited to a maximum value of 170 mm.
Die Leistungsfähigkeit einer Anlage zur Gasgewinnung aus organischen Abfällen kann dementsprechend vorteilhaft nicht etwa durch eine Vergrößerung des Reaktionsraums erhöht werden, beispielsweise durch einen vergrößerten Durchmesser, sondern durch die Verwendung einer größeren Anzahl von Reaktoren. Wie bereits erwähnt, erfolgt der Betrieb des Reaktors nicht kontinuierlich, sondern chargenweise. Bei Verwendung einer Anzahl von mehreren Reaktoren lässt sich daher auch der Vorteil eines quasi-kontinuierlichen Betriebs der gesamten Anlage erzielen, nämlich ein möglichst gleichmäßiger Output an gewonnenem Gas. Dies ist insbesondere vorteilhaft, wenn das Gas nicht in einen Speicher geleitet, zwischengespeichert und je nach Bedarf abgerufen wird, sondern direkt weiter genutzt werden soll, beispielsweise in einem Blockheizkraftwerk (BHKW) verbrannt werden soll. Ein Speicher kann als Puffer für eventuelle Schwankungen bei der Gasausbeute oder Schwankungen im Bedarf des BHKW vorgesehen sein. Im Vergleich dazu, das gewonnene Gas nicht sofort zu verwenden, sondern grundsätzlich in einem Speicher für längere und ggf. unbestimmte Zeit zu bewahren, kann dieser Pufferspeicher erheblich kleiner und dementsprechend preisgünstiger ausgestaltet sein.Accordingly, the performance of a plant for the production of gas from organic waste can advantageously not be increased by increasing the reaction space, for example by increasing the diameter, but by using a larger number of reactors. As already mentioned, the reactor is not operated continuously, but in batches. When using a number of several reactors, the advantage of a quasi-continuous operation of the entire system can therefore also be achieved, namely the most uniform possible output of the gas obtained. This is particularly advantageous if the gas is not to be led into a store, temporarily stored and called up as required, but is to be used directly, for example to be burned in a combined heat and power plant (CHP). A storage can be provided as a buffer for possible fluctuations in the gas yield or fluctuations in the needs of the CHP. In comparison to not using the gas obtained immediately, but in principle storing it in a store for a longer and possibly indefinite period of time, this buffer store can be made considerably smaller and, accordingly, less expensive.
Für den erwähnten quasi-kontinuierlichen Betrieb werden die mehreren Reaktoren nicht synchron betrieben, mit zeitgleichen Unterbrechungen zum erneuten Befüllen bzw. Entleeren bzw. Reinigen der Reaktoren. Vielmehr sind diese Unterbrechungen des Reaktorbetriebs jeweils von einem zum anderen Reaktor versetzt vorgesehen, so dass der Gasausstoß der Anlage auch über einen längeren Zeitraum möglichst gleichmäßig erfolgt und auf diese Weise nachgeschaltete Komponenten, wie beispielsweise das erwähnte BHKW, möglichst konstant und auf einem optimalen Betriebspunkt betrieben werden können.For the quasi-continuous operation mentioned, the multiple reactors are not operated synchronously, with simultaneous interruptions for refilling, emptying or cleaning the reactors. Rather, these interruptions in the operation of the reactor are each offset from one reactor to the other, so that the gas output of the plant takes place as evenly as possible over a longer period of time in this way, downstream components, such as the mentioned CHP, can be operated as constantly as possible and at an optimal operating point.
Eine Beeinflussung der Reinigungswirkung in der Reinigungskammer kann vorteilhaft dadurch erfolgen, dass die Kühlfläche bewusst temperiert wird. Wenn, wie weiter oben angedeutet, die Kühlfläche beispielsweise durch die Rohrwandung der Reinigungskammer gebildet ist, so kann um diese Wandung herum eine äußere Abschirmung verlaufen, so dass quasi eine doppelwandige Ausgestaltung der Reinigungskammer bewirkt ist und durch Einleiten von flüssigen oder gasförmigen Medien in diese doppelschalige Wand der Reinigungskammer die Temperatur der Kühlfläche gesteuert werden kann.The cleaning effect in the cleaning chamber can advantageously be influenced by consciously tempering the cooling surface. If, as indicated above, the cooling surface is formed, for example, by the tube wall of the cleaning chamber, an outer shield can run around this wall, so that a double-walled configuration of the cleaning chamber is brought about and by introducing liquid or gaseous media into this double-shell Wall of the cleaning chamber the temperature of the cooling surface can be controlled.
Ein Ausführungsbeispiel der Erfindung wird anhand der rein schematischen Darstellung nachfolgend näher erläutert.An exemplary embodiment of the invention is explained in more detail below on the basis of the purely schematic illustration.
Dabei ist mit 1 insgesamt ein Reaktor bezeichnet, der vereinfacht als aufrecht ausgerichtetes Rohr angesehen werden kann. Ein unterer Abschnitt des Reaktors 1 weist einen Reaktionsraum 2 auf, der in einen unteren Sammelraum 3 für die organischen Abfälle und in einen oberen Gasraum 4 unterteilt ist, wobei sich diese Unterteilung automatisch dadurch ergibt, wie voll der Reaktionsraum 2 mit organischen Abfällen angefüllt ist.1 denotes a reactor, which can be viewed in simplified terms as an upright pipe. A lower section of the
Der Reaktionsraum 2 wird durch ein Reaktorgehäuse 5 begrenzt, an welches sich radial nach außen ein beheizbarer Zwischenraum 6 anschließt, der seinerseits außen mit einer thermischen Isolierschicht 7 ummantelt ist. Mittels eines Einlassstutzens 8 und eines Auslassstutzens 9 können Heizgase durch den Zwischenraum 6 geführt werden, um auf diese Weise den Reaktionsraum 2 von außen her, nämlich durch Beheizung des Reaktorgehäuses 5, zu beheizen.The
Ein weiterer Stutzen im Reaktorgehäuse 5 ist in Form eines Messstutzens 10 angedeutet, der beispielsweise dazu dient, Parameter im Inneren des Reaktionsraums 2 zu erfassen, beispielsweise Gaszusammensetzung, Temperatur o. dgl.Another nozzle in the
Oberhalb des Reaktionsraums 2 weist der Reaktor 1 eine Reinigungskammer 11 auf, die wie eine Verlängerung des rohrförmigen Reaktorgehäuses 5 ausgestaltet ist, jedoch als separates Element ausgestaltet ist. Ein oberer Flansch 12 ist fest mit der Wand der Reinigungskammer 11 verbunden, und ein unterer Flansch 14 ist fest mit dem Reaktorgehäuse 5 verbunden, welches den Reaktionsraum 2 umgibt. Thermisch ist sowohl das Reaktorgehäuse 5 als auch der untere Flansch 14 gegenüber dem Gehäuse der Reinigungskammer 11 isoliert, so dass die Wand der Reinigungskammer 11 eine rohrförmige Kühlfläche 15 bildet, an der sich Kondensat aus dem Gas niederschlägt, welches aus den organischen Abfällen gewonnen wurde und aus dem Gasraum 4 des Reaktors 1 nach oben in die Reinigungskammer 11 aufgestiegen ist.Above the
Das gereinigte Gas wird durch eine Gasauslassleitung 16 aus der Reinigungskammer 11 geführt und gelangt in einen Kondensatabscheider 17, der eine Kondensationsfläche 18 aufweist, die mittels eines Kühlanschlusses 19 gekühlt wird. An dieser Kondensationsfläche 18 schlägt sich Kondensat aus dem Gas nieder und tropft von dort in einen Kondensatsammelraum 20. Eine Rückleitung 21 schließt unten an den Kondensatsammelraum 20 an und führt das Kondensat zu einer aus der Zeichnung nicht ersichtlichen Stelle, wo es in den Reaktionsraum 2 gelangt.The cleaned gas is led through a
Abgesehen von der erwähnten Gasauslassleitung 16 ist ein Bypass 22 vorgesehen, über den das gewonnene Gas nicht aus der Reinigungskammer 11, sondern unmittelbar aus dem Gasraum 4 abgezogen werden kann. Der Bypass 22 mündet stromaufwärts von dem Kondensatabscheider 17 in die Gasauslassleitung 16. Eine schematisch angedeutete Drosselklappe 23 ermöglicht es, den Bypass 22 wahlweise zu öffnen oder zu schließen.Apart from the
Nach oben wird der Reaktor 1 durch einen Deckel 24 verschlossen, der ebenso wie ein unten am Reaktor 1 vorgesehener Boden 25 als horizontal beweglicher Schieber ausgestaltet ist und die Öffnung des Reaktors 1 jeweils über seinen vollen freien Innenquerschnitt ermöglicht, so dass eine besonders einfache Zugänglichkeit zu den Innenflächen der Reinigungskammer 11 bzw. des Reaktionsraums 2 ermöglicht ist und auf diese Weise eine einfache und schnelle Reinigung des Reaktors 1 durchgeführt werden kann. Stellantriebe zur Betätigung der jeweiligen Schieber des Deckels 24 bzw. Bodens 25 sind jeweils mit 26 bezeichnet. The
Claims (9)
- Reactor (1) for obtaining gas from organic waste, having a columnar, upright reactor housing (5) that encloses a reaction chamber (2) that incorporates a section that is described as a collection chamber (3) and can be filled with organic waste and that incorporates above the collection chamber (3) a gas chamber (4) to receive the gas obtained from the organic waste, wherein the reaction chamber (2) is thermally insulated against the outside, that is, against the surrounding atmosphere, and wherein a cleaning chamber (11) connects upwards to the reaction chamber (2), wherein the inner space of the cleaning chamber (11) adjoins a cooling surface (15) and a gas outlet line (16) to conduct the obtained gas out of the reactor (1) feeds into the cleaning chamber (11), and wherein a condensate separator (17) that incorporates a condensation surface (18) that projects into the gas flow and a condensate collection chamber (20) under the condensate separator (17) is provided for in the gas outlet line (16), characterised in that a second gas line, described as a bypass (22), to also conduct the obtained gas out of the reactor (1) feeds into the gas chamber (4) and wherein the bypass (22) feeds into the gas outlet line (16).
- Reactor in accordance with claim 1, characterised in that a heatable intermediate chamber (6) is provided for between the reactor housing (5) and the thermal insulation (7).
- Reactor in accordance with claim 1 or 2, characterised in that the cleaning chamber (11) connects upwards to the reaction chamber (2) essentially without reduction of the free inside cross-section.
- Reactor in accordance with any one of the foregoing claims, characterised in that the condensate separator (17) is disposed downstream of the point where the bypass (22) feeds into the gas outlet line (16).
- Reactor in accordance with any one of the foregoing claims, characterised in that a return line (21) is provided for that feeds into the condensate collection chamber (20) at one end and into the reaction chamber (2) at the other.
- Reactor in accordance with any one of the foregoing claims, characterised in that the cleaning chamber (11) incorporates a filling hole for the organic waste to be treated.
- Reactor in accordance with any one of the foregoing claims, characterised in that the cleaning chamber (11) is designed as a separate element that is firmly attached to the reactor housing (5) enclosing the reaction chamber (2), and is thermally insulated from the reactor housing (5).
- Reactor in accordance with any one of the foregoing claims, characterised in that the reaction chamber (2) has a diameter measuring not more than 300 mm.
- Reactor in accordance with claim 8, characterised in that the reaction chamber (2) has a diameter measuring not more than 170 mm.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RS20200319A RS60364B1 (en) | 2014-11-26 | 2015-11-04 | Reactor for obtaining gas from organic waste |
SI201531135T SI3253849T1 (en) | 2014-11-26 | 2015-11-04 | Reactor for obtaining gas from organic waste |
PL15793745T PL3253849T3 (en) | 2014-11-26 | 2015-11-04 | Reactor for obtaining gas from organic waste |
HRP20200441TT HRP20200441T1 (en) | 2014-11-26 | 2020-03-17 | Reactor for obtaining gas from organic waste |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102014117333.3A DE102014117333A1 (en) | 2014-11-26 | 2014-11-26 | Gas recovery reactor from organic waste |
PCT/EP2015/075719 WO2016083089A1 (en) | 2014-11-26 | 2015-11-04 | Reactor for obtaining gas from organic waste |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3253849A1 EP3253849A1 (en) | 2017-12-13 |
EP3253849B1 true EP3253849B1 (en) | 2019-12-25 |
Family
ID=54540035
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15793745.9A Active EP3253849B1 (en) | 2014-11-26 | 2015-11-04 | Reactor for obtaining gas from organic waste |
Country Status (13)
Country | Link |
---|---|
EP (1) | EP3253849B1 (en) |
CY (1) | CY1123171T1 (en) |
DE (1) | DE102014117333A1 (en) |
DK (1) | DK3253849T3 (en) |
ES (1) | ES2777307T3 (en) |
HR (1) | HRP20200441T1 (en) |
HU (1) | HUE050612T2 (en) |
LT (1) | LT3253849T (en) |
PL (1) | PL3253849T3 (en) |
PT (1) | PT3253849T (en) |
RS (1) | RS60364B1 (en) |
SI (1) | SI3253849T1 (en) |
WO (1) | WO2016083089A1 (en) |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR887439A (en) * | 1941-09-18 | 1943-11-12 | Process and device for the recovery of condensable by-products, in the partial distillation of wood with a view to its carbonization | |
FR905858A (en) * | 1944-07-11 | 1945-12-17 | Generator for wood gasifier | |
FR914272A (en) * | 1945-04-09 | 1946-10-03 | Process and apparatus for the distillation of solid fuels, oil shales and resins and rosins, and process for recovering hydrogen sulphide, benzol and other volatile carbides, by deriving | |
DE3131476C2 (en) * | 1981-08-08 | 1983-12-22 | Fritz Werner Industrie-Ausrüstungen GmbH, 6222 Geisenheim | Wood gas generator |
IT1171542B (en) * | 1981-09-21 | 1987-06-10 | Marco Vincenzo De | RUBBER TRANSFORMATION DEVICE PLASTIC MATERIALS AND URBAN WASTE WITH RECOVERY OF MIXTURES OF LIQUID HYDROCARBONS AND COAL AND COMBUSTION PROCEDURE |
GB2242687B (en) * | 1990-03-31 | 1994-08-31 | Uss Kk | Apparatus for converting synthetic resin into oil |
EP2495299A1 (en) | 2011-03-04 | 2012-09-05 | Eckhoff, Peter | Assembly for thermal exploitation of organic material and fusion container of such an assembly |
-
2014
- 2014-11-26 DE DE102014117333.3A patent/DE102014117333A1/en not_active Withdrawn
-
2015
- 2015-11-04 RS RS20200319A patent/RS60364B1/en unknown
- 2015-11-04 ES ES15793745T patent/ES2777307T3/en active Active
- 2015-11-04 WO PCT/EP2015/075719 patent/WO2016083089A1/en active Application Filing
- 2015-11-04 SI SI201531135T patent/SI3253849T1/en unknown
- 2015-11-04 HU HUE15793745A patent/HUE050612T2/en unknown
- 2015-11-04 PL PL15793745T patent/PL3253849T3/en unknown
- 2015-11-04 LT LTEP15793745.9T patent/LT3253849T/en unknown
- 2015-11-04 EP EP15793745.9A patent/EP3253849B1/en active Active
- 2015-11-04 PT PT157937459T patent/PT3253849T/en unknown
- 2015-11-04 DK DK15793745.9T patent/DK3253849T3/en active
-
2020
- 2020-03-17 HR HRP20200441TT patent/HRP20200441T1/en unknown
- 2020-03-19 CY CY20201100259T patent/CY1123171T1/en unknown
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
SI3253849T1 (en) | 2020-10-30 |
PL3253849T3 (en) | 2020-08-10 |
WO2016083089A1 (en) | 2016-06-02 |
LT3253849T (en) | 2020-06-25 |
DE102014117333A1 (en) | 2016-06-02 |
EP3253849A1 (en) | 2017-12-13 |
HRP20200441T1 (en) | 2020-09-04 |
DK3253849T3 (en) | 2020-03-23 |
HUE050612T2 (en) | 2020-12-28 |
ES2777307T3 (en) | 2020-08-04 |
CY1123171T1 (en) | 2022-03-24 |
PT3253849T (en) | 2020-03-27 |
RS60364B1 (en) | 2020-07-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2661475B1 (en) | Thermal reactor | |
DE2400660C2 (en) | Device for separating volatile components of liquids, with a two-stage expansion evaporator, the two stages of which are each formed by a heatable expansion tank | |
DE2430637A1 (en) | ARRANGEMENT FOR THE CONDENSATION AND SEPARATION OF WAX, PARFFIN AND OTHER SUBSTANCES FROM A GAS FLOW | |
WO2012031667A1 (en) | Device and method for regulating the chamber pressure of coking chambers of a coke-oven battery using adjustable diaphragms at the ascending pipe elbow openings into the raw gas receivers | |
EP2622045B1 (en) | Device and method for setting up a control element for the gas pressure of a coke oven chamber without expansion-induced deviations of the control assembly | |
EP1767920B2 (en) | Apparatus for hot gas sampling from a reactor. | |
DE102005015713B4 (en) | Method and device for degassing and maintaining a continuous volume flow of a milk to be treated in an ultra-high-temperature (UHT) system | |
EP3253849B1 (en) | Reactor for obtaining gas from organic waste | |
EP3201293B1 (en) | Method and device for carrying out a pyrolysis | |
CH643649A5 (en) | HOT GAS COOLER WITH A PRESSURE TANK. | |
EP0265908B1 (en) | Device for boiling wort | |
EP3640537B1 (en) | Evaporator device and electric appliance comprising an evaporator device | |
DE3214064A1 (en) | DEVICE FOR VAPOR DISCHARGING ON A MASH AND / OR ROOT PANS | |
DE1773893A1 (en) | Multi-stage distillation device | |
DE4418597C1 (en) | Reactor for the treatment of hydrocarbon compounds | |
CH705828B1 (en) | Reactor useful for producing charcoal, comprises vertical installation of reaction chamber, which is accommodated in lower part and upper part, flue gas passage, inlet opening for introducing carbonization-product, and curved guide plate | |
DE136390C (en) | ||
DE102008005861B3 (en) | distiller | |
AT111565B (en) | Process for purifying hydrocarbons. | |
AT130652B (en) | Plant for generating gas from vegetable waste by heating these substances in a retort. | |
EP3940051A1 (en) | Container cascade for use in a burner | |
DE430158C (en) | Standing retort | |
DE744544C (en) | Fractional distillation and equipment to carry it out | |
WO2012119598A2 (en) | Plant for the thermal recovery of organic material, and cleaning container of such a plant | |
DE1156823B (en) | Device for separating a mixture of water, tar and solids |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20170929 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20190131 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 502015011345 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: C10B0001040000 Ipc: C10B0047040000 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C10B 47/06 20060101ALI20190618BHEP Ipc: C10B 47/04 20060101AFI20190618BHEP Ipc: C10G 1/02 20060101ALI20190618BHEP Ipc: C10B 57/18 20060101ALI20190618BHEP Ipc: C10K 1/04 20060101ALI20190618BHEP |
|
INTG | Intention to grant announced |
Effective date: 20190710 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1217120 Country of ref document: AT Kind code of ref document: T Effective date: 20200115 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502015011345 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: HR Ref legal event code: TUEP Ref document number: P20200441T Country of ref document: HR |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 Effective date: 20200320 Ref country code: FI Ref legal event code: FGE |
|
REG | Reference to a national code |
Ref country code: RO Ref legal event code: EPE |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: SC4A Ref document number: 3253849 Country of ref document: PT Date of ref document: 20200327 Kind code of ref document: T Free format text: AVAILABILITY OF NATIONAL TRANSLATION Effective date: 20200318 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: NO Ref legal event code: T2 Effective date: 20191225 |
|
REG | Reference to a national code |
Ref country code: EE Ref legal event code: FG4A Ref document number: E018982 Country of ref document: EE Effective date: 20200323 |
|
REG | Reference to a national code |
Ref country code: NO Ref legal event code: CREP Representative=s name: BRYN AARFLOT AS, STORTINGSGATA 8, 0161 OSLO, NORGE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: BRAUNPAT BRAUN EDER AG, CH |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2777307 Country of ref document: ES Kind code of ref document: T3 Effective date: 20200804 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191225 |
|
REG | Reference to a national code |
Ref country code: HR Ref legal event code: T1PR Ref document number: P20200441 Country of ref document: HR |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502015011345 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: SK Ref legal event code: T3 Ref document number: E 34829 Country of ref document: SK |
|
REG | Reference to a national code |
Ref country code: GR Ref legal event code: EP Ref document number: 20200400852 Country of ref document: GR Effective date: 20201014 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20200928 |
|
REG | Reference to a national code |
Ref country code: HR Ref legal event code: ODRP Ref document number: P20200441 Country of ref document: HR Payment date: 20201127 Year of fee payment: 6 |
|
REG | Reference to a national code |
Ref country code: HU Ref legal event code: AG4A Ref document number: E050612 Country of ref document: HU |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PT Payment date: 20201125 Year of fee payment: 6 Ref country code: EE Payment date: 20201126 Year of fee payment: 6 Ref country code: MT Payment date: 20201124 Year of fee payment: 6 Ref country code: ES Payment date: 20201204 Year of fee payment: 6 Ref country code: NO Payment date: 20201127 Year of fee payment: 6 Ref country code: HU Payment date: 20201123 Year of fee payment: 6 Ref country code: IE Payment date: 20201125 Year of fee payment: 6 Ref country code: RO Payment date: 20201127 Year of fee payment: 6 Ref country code: BG Payment date: 20201201 Year of fee payment: 6 Ref country code: HR Payment date: 20201127 Year of fee payment: 6 Ref country code: GR Payment date: 20201125 Year of fee payment: 6 Ref country code: FI Payment date: 20201125 Year of fee payment: 6 Ref country code: SE Payment date: 20201125 Year of fee payment: 6 Ref country code: LT Payment date: 20201130 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: RS Payment date: 20201126 Year of fee payment: 6 Ref country code: SK Payment date: 20201202 Year of fee payment: 6 Ref country code: LV Payment date: 20201125 Year of fee payment: 6 Ref country code: SI Payment date: 20201125 Year of fee payment: 6 Ref country code: IS Payment date: 20201127 Year of fee payment: 6 |
|
REG | Reference to a national code |
Ref country code: EE Ref legal event code: HC1A Ref document number: E018982 Country of ref document: EE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20201210 Year of fee payment: 6 Ref country code: AL Payment date: 20201202 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191225 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201104 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201104 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: MK Payment date: 20201130 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20211216 Year of fee payment: 7 Ref country code: CZ Payment date: 20211229 Year of fee payment: 7 Ref country code: GB Payment date: 20211222 Year of fee payment: 7 Ref country code: FR Payment date: 20211130 Year of fee payment: 7 Ref country code: DK Payment date: 20211130 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20211130 Year of fee payment: 7 Ref country code: CH Payment date: 20211222 Year of fee payment: 7 Ref country code: BE Payment date: 20211130 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20211124 Year of fee payment: 7 Ref country code: NL Payment date: 20211130 Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: HR Ref legal event code: PBON Ref document number: P20200441 Country of ref document: HR Effective date: 20211104 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MM4D Effective date: 20211104 |
|
REG | Reference to a national code |
Ref country code: EE Ref legal event code: MM4A Ref document number: E018982 Country of ref document: EE Effective date: 20211130 |
|
REG | Reference to a national code |
Ref country code: NO Ref legal event code: MMEP |
|
REG | Reference to a national code |
Ref country code: SK Ref legal event code: MM4A Ref document number: E 34829 Country of ref document: SK Effective date: 20211104 |
|
REG | Reference to a national code |
Ref country code: FI Ref legal event code: MAE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211104 Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211105 Ref country code: RS Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211104 Ref country code: RO Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211104 Ref country code: PT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220504 Ref country code: NO Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211130 Ref country code: LT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211104 Ref country code: HU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211105 Ref country code: HR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211104 Ref country code: EE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211130 Ref country code: BG Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211105 Ref country code: LV Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211104 Ref country code: GR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220607 Ref country code: FI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211104 |
|
REG | Reference to a national code |
Ref country code: SI Ref legal event code: KO00 Effective date: 20220707 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211104 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20230214 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211105 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EBP Effective date: 20221130 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20221201 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1217120 Country of ref document: AT Kind code of ref document: T Effective date: 20221104 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20221104 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20221130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221130 Ref country code: CZ Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221104 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221130 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221104 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221201 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502015011345 Country of ref document: DE Representative=s name: PATENTANWAELTE OLBRICHT, BUCHHOLD, KEULERTZ PA, DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221104 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221104 Ref country code: DK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221130 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221130 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20230830 Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221104 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210411 |