EP3247747A1 - Method for improving the critical dimension uniformity of ordered films of block copolymers - Google Patents

Method for improving the critical dimension uniformity of ordered films of block copolymers

Info

Publication number
EP3247747A1
EP3247747A1 EP16703591.4A EP16703591A EP3247747A1 EP 3247747 A1 EP3247747 A1 EP 3247747A1 EP 16703591 A EP16703591 A EP 16703591A EP 3247747 A1 EP3247747 A1 EP 3247747A1
Authority
EP
European Patent Office
Prior art keywords
todt
block copolymer
block
mixture
copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP16703591.4A
Other languages
German (de)
French (fr)
Inventor
Christophe Navarro
Celia NICOLET
Raber INOUBLI
Xavier CHEVALIER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arkema France SA
Original Assignee
Arkema France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France SA filed Critical Arkema France SA
Publication of EP3247747A1 publication Critical patent/EP3247747A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/002Processes for applying liquids or other fluent materials the substrate being rotated
    • B05D1/005Spin coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0254After-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/02Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D153/00Coating compositions based on block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • G03F7/162Coating on a rotating support, e.g. using a whirler or a spinner
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • G03F7/168Finishing the coated layer, e.g. drying, baking, soaking
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2353/00Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2453/00Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure

Definitions

  • the present invention relates to a method for improving the critical dimension uniformity of ordered films of nanoscale block copolymers.
  • the invention also relates to the compositions used to improve the critical size uniformity of ordered films of block copolymers and the ordered films thus obtained which can be used in particular as masks in the field of lithography.
  • Critical dimension uniformity (CDU) in an ordered film of block copolymers having a cylindrical morphology corresponds to the roll size uniformity of the rolls.
  • all the cylinders must have the same diameter, because any variation of this diameter will induce variations on the performances (conductivity, characteristics of the transfer curves, evacuated thermal power, resistance, etc.) for the applications. considered. Pure BCPs organized into ordered films with as good a roll diameter regularity as possible are difficult to obtain.
  • Mixtures comprising at least one BCP are a solution to this problem, and it is shown in the present invention that in the case where it is sought to obtain ordered films having a regularity of the diameter of the rolls as good as possible, the mixtures comprising at least one PCO having an order-disorder temperature (TODT), associated with at least one compound having no TODT, is a solution, when the order-disorder transition temperature (TODT) of the mixture is lower than the TODT of the BCP alone . In this case, an improvement of the CDU is observed with respect to an ordered film obtained with a single block copolymer having a TODT of equivalent period.
  • TODT order-disorder transition temperature
  • a method for improving the critical dimension uniformity of an ordered film comprising a block copolymer, said ordered film comprising a mixture of at least one block copolymer having an order-disorder transition temperature. (TODT) and at least one Tg with at least one compound having no TODT, this mixture having a TODT lower than the TODT of the block copolymer alone, the process comprising the following steps: -Mixing at least one block copolymer having a TODT and at least one compound having no TODT in a solvent, -Desting this mixture on a surface,
  • any block copolymer may be used in the context of the invention, whether it be a di-copolymer or a block copolymer.
  • the order-disorder transition temperature TODT which corresponds to a phase separation of the constituent blocks of the block copolymer can be measured in different ways, such as DSC (differential scanning calorimetry, differential thermal analysis), SAXS (small angle X ray scattering, small angle X-ray scattering), static birefringence, dynamic mechanical analysis, DMA or any other method to visualize the temperature at which a phase separation occurs (corresponding to the disorder order transition). A combination of these techniques can also be used.
  • DSC differential scanning calorimetry, differential thermal analysis
  • SAXS small angle X ray scattering, small angle X-ray scattering
  • static birefringence dynamic mechanical analysis
  • DMA dynamic mechanical analysis
  • the preferred method used in the present invention is DMA.
  • n being an integer between 1 and 10 inclusive.
  • n is between 1 and 5, inclusive, and preferably n is between 1 and 2 inclusive, and more preferably n is 1, m being an integer between 1 and 10, terminals included.
  • m is between 1 and 5, inclusive, and preferably, m is between 1 and 4, including terminals, and more preferably m is equal to 1.
  • block copolymers may be synthesized by any techniques known to those skilled in the art, among which mention may be made of polycondensation, ring-opening polymerization, anionic, cationic or radical polymerization, these techniques being controllable or not, and combined between they or not.
  • radical polymerization they may be controlled by any known technique such as NMP ("Nitroxide Mediated Polymerization"), RAFT ("Reversible Addition and Fragmentation Transfer”), ATRP (“Atom Transfer Radical Polymerization”) , INIFERTER ("Initiator-Transfer- Termination "), RITP (" Reverse Iodine Transfer
  • ITP Iodine Transfer Polymerization
  • the block copolymers are prepared by controlled radical polymerization, more particularly by controlled polymerization with nitroxides, in particular N-tert-butyl-1-diethylphosphono-2,2-dimethylpropyl nitroxide.
  • the block copolymers are prepared by anionic polymerization.
  • the constituent monomers of the block copolymers will be chosen from the following monomers: at least one vinyl, vinylidene, diene, olefinic, allylic or (meth) acrylic monomer.
  • This monomer is chosen more particularly from vinylaromatic monomers such as styrene or substituted styrenes, in particular alpha-methylstyrene, silylated styrenes, acrylic monomers such as acrylic acid or its salts, alkyl acrylates and cycloalkyl acrylates.
  • aryl such as methyl acrylate, ethyl acrylate, butyl acrylate, ethylhexyl acrylate or phenyl acrylate, hydroxyalkyl acrylates such as 2-hydroxyethyl acrylate, alkyl ether acrylates such as 2-methoxyethyl acrylate, alkoxy- or aryloxy-polyalkylene glycol acrylates such as methoxypolyethylene glycol acrylates, ethoxypolyethylene glycol acrylates, methoxypolypropylene glycol acrylates, methoxypolyethylene glycol-polypropylene glycol acrylates or mixtures thereof, aminoalkyl acrylates such as 2- (dimethylamino) ethyl acrylate (ADAME), fluorinated acrylates, silyl acrylates, phosphorus acrylates such as alkylene glycol phosphate acrylates, glycidyl acrylates, dicyclopenten
  • the monomers will be chosen, without limitation, from the following monomers:
  • At least one vinyl, vinylidene, diene, olefinic, allylic or (meth) acrylic monomer are chosen more particularly from vinylaromatic monomers such as styrene or substituted styrenes, in particular alpha-methylstyrene, and acrylic monomers such as alkyl, cycloalkyl or aryl acrylates, such as methyl acrylate, dicyclohexyl acrylate and the like.
  • ether alkyl acrylates such as 2-methoxyethyl acrylate, alkoxy- or aryloxy-polyalkyleneglycol acrylates such as methoxypolyethylene glycol acrylates, ethoxypolyethylene glycol acrylates and the like.
  • methoxypolypropylene glycol acrylates methoxypolyethylene glycol-polypropylene glycol acrylates or mixtures thereof, aminoalkyl acrylates such as acrylate dimethylaminoethyl (ADAME), fluorinated acrylates, silyl acrylates, phosphorus acrylates such as alkylene glycol phosphate acrylates, glycidyl, dicyclopentenyloxyethyl acrylates, alkyl, cycloalkyl, alkenyl or methacrylates.
  • aminoalkyl acrylates such as acrylate dimethylaminoethyl (ADAME), fluorinated acrylates, silyl acrylates, phosphorus acrylates such as alkylene glycol phosphate acrylates, glycidyl, dicyclopentenyloxyethyl acrylates, alkyl, cycloalkyl, alkenyl or methacrylates.
  • aryl radicals such as methyl methacrylate (MMA), lauryl, cyclohexyl, allyl, phenyl or naphthyl, methacrylates of ether alkyl such as 2-ethoxyethyl methacrylate, methacrylates of alkoxy- or aryloxy-polyalkylene glycol such as methoxypolyethylene glycol methacrylates, ethoxypolyethylene glycol methacrylates, methoxypolypropylene glycol methacrylates, methoxy-polyethylene glycol-polypropylene glycol methacrylates or mixtures thereof, aminoalkyl methacrylates such as 2- (dimethylamino) ethyl methacrylate ( MADAME), fluorinated methacrylates such as 2,2,2-trifluoroethyl methacrylate, m silylated ethacrylates such as 3-methacryloylpropyltrimethylsilane, phosphorus methacryl
  • the block copolymers having an order-disorder transition temperature consist of block copolymer one of whose blocks comprises a styrene monomer and the other block comprises a methacrylic monomer, more preferably the block copolymers consist of block copolymer of which one block comprises styrene and the other block comprises methyl methacrylate.
  • the compounds which do not have an order-disorder transition temperature will be chosen from block copolymers, as defined above, but also random copolymers, homopolymers and gradient copolymers. According to a preferred variant, the compounds are homopolymers or random copolymers and have a monomer composition identical to that of one of the block copolymer blocks having a TOD.
  • the homopolymers or random copolymers comprise styrene or methacrylic monomers.
  • random homopolymers or copolymers include styrene or methyl methacrylate.
  • the compounds that do not have an order-disorder transition temperature will also be chosen from plasticizers, among which non-limiting examples are branched or linear phthalates such as di-n-octyl, dibutyl, -2-ethylhexyl phatalate, di-ethylhexyl, diisononyl, di-isodecyl, benzylbutyl, diethyl, di-cyclohexyl, dimethyl, linear di-undecyl, di-tridecyl linear, chlorinated paraffins, trimellitates, branched or linear, in particular di-trimellitate; ethyl hexyl, aliphatic esters or polymeric esters, epoxides, adipates, citrates, benzoates.
  • plasticizers among which non-limiting examples are branched or linear phthalates such as di-n-octyl, dibutyl, -2-ethy
  • the compounds that do not have an order-disorder transition temperature will also be chosen from fillers among which may be mentioned mineral fillers such as carbon black, nanotubes, of carbon or not, fibers, ground or not, stabilizing agents. (Light, in particular UV, and heat), dyes, inorganic or organic photosensitive pigments such as porphyrins, photoinitiators, that is to say compounds capable of generating radicals under irradiation.
  • mineral fillers such as carbon black, nanotubes, of carbon or not, fibers, ground or not, stabilizing agents. (Light, in particular UV, and heat), dyes, inorganic or organic photosensitive pigments such as porphyrins, photoinitiators, that is to say compounds capable of generating radicals under irradiation.
  • Compounds that do not have an order-disorder transition temperature will also be chosen from ionic compounds, polymeric or non-polymeric.
  • a combination of the compounds mentioned may also be used in the context of the invention, such as a block copolymer having no TODT and a statistical copolymer or homopolymer having no TODT.
  • a block copolymer having a TODT a block copolymer having only no TODT and a charge
  • a homopolymer or a random copolymer for example, having no TODT.
  • the invention therefore also relates to compositions comprising at least one block copolymer having a TODT and at least one compound, this or these compounds having no TODT.
  • the TODT of the mixture which is the subject of the invention should be less than the TODT of the block copolymer organized alone, but should be greater than the glass transition temperature, measured by DSC (differential enthalpy analysis, Tg) of the block presenting the highest Tg.
  • DSC differential enthalpy analysis
  • the ordered films obtained according to the invention have an improved critical dimension uniformity over that obtained either with a single block copolymer having a TODT or with several block copolymers having an equivalent period TODT.
  • the baking temperatures allowing the self-assembly will be between the glass transition temperature, measured by DSC (differential enthalpy analysis, Tg) of the block having the highest Tg and the TODT of the mixture, preferably between 1 and 50 ° C. in below the TODT of the mixture, preferably between 10 and 30 ° C below the TODT of the mixture, and more preferably between 10 and 20 ° C below the TODT of the mixture.
  • Tg differential enthalpy analysis
  • the method of the invention allows the deposition of ordered film on a surface such as silicon, silicon having a native or thermal oxide layer, germanium, platinum, tungsten, gold, titanium nitrides, graphenes, BARC (bottom anti-reflective coating) or any other anti-reflective layer used in lithography.
  • the surfaces may be said to be “free” (planar and homogeneous surface both from a topographic and chemical point of view) or to have structures for guiding the block copolymer "pattern", whether this guidance is chemical guidance type (called “chemistry-epitaxy guidance”) or physical / topographical guidance (called “graphoepitaxy guidance”).
  • a solution of the block copolymer composition is deposited on the surface and then the solvent is evaporated according to techniques known to those skilled in the art such as the so-called “spin coating” technique, “Doctor Blade””Knifesystem", “Slot die System” but any other technique can be used such as a dry deposit, that is to say without going through a prior dissolution.
  • a heat treatment or solvent vapor is carried out, a combination of the two treatments, or any other treatment known to those skilled in the art, which allows the block copolymer composition to organize itself properly by nanostructuring itself, and so to establish the ordered film.
  • the cooking is carried out thermally at a temperature below the TODT of the mixture of the block copolymer with the compound having no TODT.
  • the nanostructuration of a mixture of block copolymer having a TODT and a compound deposited on a surface treated by the process of the invention leading to the ordered film can take the forms such as cylindrical (hexagonal symmetry (symmetry of hexagonal network primitive "6mm") according to the Hermann-Mauguin notation, or tetragonal / quadratic ("4mm” tetragonal lattice symmetry), spherical (hexagonal symmetry ("6mm” or “6 / mmm” primitive hexagonal lattice symmetry), or tetragonal / quadratic (“4mm” tetragonal lattice symmetry), or cubic (“mH” lattice symmetry), lamellar, or gyroid.
  • the preferred form of nanostructuring is of the hexagonal cylindrical type.
  • CDU critical dimensions
  • the ordered film images of BCP are made on a Hitachi CD-SEM H9300.
  • CD measurements are determined from SEM images with the imageJ software developed by the National Institutes of Health (http://imagej.nih.gov) following a specific treatment, although other image processing software may also be used to achieve the same result.
  • the images are processed in four different steps: 1 / "thresholding" of the image to delineate the perimeter of the perpendicular cylinders (determination of the detection threshold of the different gray levels), 2 / determination of the area and diameter of the cylinders thus defined (these are assimilated to ellipsoids), 3 / distribution of the diameters of the cylinders of the image according to a Gaussian distribution, 4 / extraction of the best parameters characterizing the Gaussian curve, whose own “sigma” (the standard deviation) of this giving the value of the CDU.
  • the apparent diameter of the cylinders depends closely on the threshold value of the image: when the threshold is too low, the number of cylinders detected is correct and close to its maximum value, but their diameter is underestimated hence the sigma of the Gaussian too.
  • the threshold value is correct, the correct number of cylinders is detected, and their diameter is close to its maximum value, without being certain that the apparent diameter is the right one.
  • the value of the threshold is too important, the apparent diameter is very close to its maximum value but by higher value (the value of the sigma is therefore possibly overestimated in this case), but a large number of cylinders is no longer detected because there is no longer any possible differentiation between the gray level of the holes and the matrix. This effect of the value is illustrated in FIG. 1 (influence of the treatment of the initial SEM image on the values of the roll diameter of the ordered BCP film, initial image: 1349xl349nm).
  • the best adjustment parameters of the Gaussian curve depend on the "pitch" of it: if the pitch is too small, some frequency values will be zero even if located in the middle of the diameter range of the cylinders. On the other hand, if the step is too big, the adjustment according to a Gaussian curve no longer makes sense because all the values will take a single value. It is therefore necessary to determine the adjustment parameters of the Gaussian for different values of the pitch of the curve ( Figure 2, evolution of the characteristics (amplitude, position of the maximum, sigma value) of the Gaussian curve (solid line) adjusted on experimental values (dashed) for different step values).
  • Example 1 T odt measurement by dynamic mechanical analysis. Two different molecular weight PS- ⁇ -PAM copolymers are synthesized by anionic polymerization, but commercially available products can also be used. The characterizations of these products are summarized in Table No. 1.
  • the AMD makes it possible to measure the conservation modulus G 'and the loss module G' 'of the material and to determine the damping factor tanA defined as the ratio G' '/ G'.
  • the measurements are made on an ARES type viscoelastic meter, on which the PLANS 25mm geometry is installed.
  • the gap setting is made at the initial temperature of 100 ° C.
  • the sample pellet is placed between the planes inside the oven heated to 100 ° C, a slight normal force is applied to ensure the sample-to-plane contact and thus avoid slip problems that could distort the measurement. torque and therefore modules.
  • the temperature sweep is performed at the frequency of 1Hz.
  • the initial strain applied to the sample is 0.1%, then it is automatically adjusted to stay above the sensor sensitivity limit of 0.2 cm. boy Wut.
  • the temperature varies from 100 to 260 ° C in the bearing mode with one measurement every two degrees and a temperature equilibrium time of 30 seconds before the measurement.
  • the lower molecular weight block copolymer After the rubber tray, the lower molecular weight block copolymer has a G 'lower than G''thus reflecting the destructuring of the copolymer, hence the order-disorder transition.
  • the T odt is thus defined as being the first intersection between G 'and G''.
  • T odt is not observed in the case of the copolymer of higher molar mass, where at any time G 'remains greater than G ". This block copolymer do not present T odt below its degradation temperature.
  • Table 2 T odt of the various PS-block copolymers>
  • the silicon substrates are cleaved into 2.5x2.5cm pieces, then the residual particles are removed under a stream of nitrogen.
  • the substrates can be cleaned with either an oxygen plasma or a piranha solution (H 2 SO 4 / H 2 O 2 mixture in a proportion of 2: 1 by volume) for a few minutes and rinsed with distilled water.
  • a solution of PS-r-PMMA as described for example in WO 2013083919 typically 2% by weight in PGMEA (propylene glycol ether-methyl acetate)
  • PGMEA propylene glycol ether-methyl acetate
  • the substrate is annealed at 220 ° C for 10 minutes (or any other suitable temperature / time pair) so as to perform the covalent grafting of a monolayer of molecules on the substrate; the excess of non-grafted molecules is removed by rinsing with PGMEA.
  • the solution of block copolymer ("BCP") PS-j-PMMA or block copolymer mixture (typically 1% by mass in the PGMEA) is dispensed on the substrate functionalized by spin coating (or another technique ) so as to obtain a dry film of desired thickness.
  • the film is then annealed according to the chosen technique, for example a thermal annealing at 230 ° C.
  • the substrate can be immersed for a few minutes in acetic acid and then rinsed with distilled water, or the film can undergo a very mild oxygen plasma, or a combination of these two techniques, in order to increase the contrast between the different phases of the block copolymer film to facilitate the imaging of nano structures by the chosen technique (SEM, AFM ).
  • the block copolymer mixture produced is a mixture between the reference BCP # 2 and # 3, at 8: 2 (80% of No. 2 mixed with 20% of No. 3). It is noted that the mixture can be made either in the solid state (for example by mixing the BCPs in powder form) or in the liquid state (for example by mixing solutions of pure BCPs of the same concentrations; concentrations of the solutions are different, mixing will be done in order to respect the fixed ratio).
  • PCO "Reference # 1" serves as a reference system for the study. Comparisons of characteristics of realized films:
  • the imaging is performed on a scanning electron microscope "CD - SEM H9300" from Hitachi. Images are taken at a constant magnification of 100,000, to facilitate comparison between different systems; each image measures 1349nm * 1349nm.
  • block copolymer mixtures according to the invention have the best results both in terms of period uniformity and critical dimension uniformity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Graft Or Block Polymers (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

The invention relates to a method for monitoring the critical dimension uniformity of ordered films of block copolymers on the nanometric scale. The invention also relates to the compositions used to monitor the critical dimension uniformity of ordered films of block copolymers and the ordered films thus obtained, which can be used in particular as masks in the field of lithography.

Description

Procédé d'amélioration de l'uniformité de dimension critique de films ordonnés de copolymères à blocs  Method for improving the critical dimension uniformity of ordered films of block copolymers
La présente invention concerne un procédé d'amélioration de l'uniformité de dimension critique de films ordonnés de copolymères à blocs à l'échelle nanométrique . L'invention concerne également les compositions utilisées pour améliorer l'uniformité de dimension critique de films ordonnés de copolymères à blocs et les films ordonnés ainsi obtenus pouvant être utilisés en particulier comme masques dans le domaine de la lithographie. The present invention relates to a method for improving the critical dimension uniformity of ordered films of nanoscale block copolymers. The invention also relates to the compositions used to improve the critical size uniformity of ordered films of block copolymers and the ordered films thus obtained which can be used in particular as masks in the field of lithography.
L'utilisation des copolymères à blocs pour générer des masques de lithographie est maintenant bien connue. Si cette technologie est prometteuse, il subsiste des difficultés pour générer des surfaces importantes de masques pouvant être exploitées industriellement. Il est en particulier recherché des procédés de fabrication de masques pour la lithographie conduisant à une régularité du diamètre des cylindres aussi bonne que possible. Cette régularité du diamètre des cylindres est caractérisée par l'uniformité de dimension critique. The use of block copolymers to generate lithography masks is now well known. If this technology is promising, there are still difficulties in generating large areas of masks that can be exploited industrially. In particular, methods for making masks for lithography are being sought which lead to as good a cylinder diameter regularity as possible. This regularity of the diameter of the cylinders is characterized by the uniformity of critical dimension.
L'uniformité de dimension critique (CDU) dans un film ordonné de copolymères à blocs présentant une morphologie cylindrique correspond à l'uniformité de taille du diamètre des cylindres. Dans le cas idéal, il faut que tous les cylindres présentent le même diamètre, car toute variation de ce diamètre induira des variations sur les performances (conductivité, caractéristiques des courbes de transfert, puissance thermique évacuée, résistance, etc..) pour les applications considérées. Les BCPs purs s' organisant en films ordonnés et présentant une régularité du diamètre des cylindres aussi bonne que possible sont difficiles à obtenir. Les mélanges comprenant au moins un BCP sont une solution à ce problème, et on montre dans la présente invention que dans le cas où l'on cherche à obtenir des films ordonnés présentant une régularité du diamètre des cylindres aussi bonne que possible, les mélanges comprenant au moins un BCP présentant une température ordre-désordre (TODT) , associé à au moins un composé ne présentant pas de TODT sont une solution, lorsque la température de transition ordre- désordre (TODT) du mélange est inférieure à la TODT du BCP seul. Dans ce cas on observe une amélioration du CDU par rapport à un film ordonné obtenu avec un copolymère à blocs seul présentant une TODT à période équivalente. Critical dimension uniformity (CDU) in an ordered film of block copolymers having a cylindrical morphology corresponds to the roll size uniformity of the rolls. In the ideal case, all the cylinders must have the same diameter, because any variation of this diameter will induce variations on the performances (conductivity, characteristics of the transfer curves, evacuated thermal power, resistance, etc.) for the applications. considered. Pure BCPs organized into ordered films with as good a roll diameter regularity as possible are difficult to obtain. Mixtures comprising at least one BCP are a solution to this problem, and it is shown in the present invention that in the case where it is sought to obtain ordered films having a regularity of the diameter of the rolls as good as possible, the mixtures comprising at least one PCO having an order-disorder temperature (TODT), associated with at least one compound having no TODT, is a solution, when the order-disorder transition temperature (TODT) of the mixture is lower than the TODT of the BCP alone . In this case, an improvement of the CDU is observed with respect to an ordered film obtained with a single block copolymer having a TODT of equivalent period.
Par période, on entend la distance minimale séparant deux domaines voisins de même composition chimique, séparés par un domaine de composition chimique différente.  By period, we mean the minimum distance separating two neighboring domains of the same chemical composition, separated by a domain of different chemical composition.
Résumé de l'invention : Summary of the invention
L'invention concerne un procédé permettant d'améliorer l'uniformité de dimension critique d'un film ordonné comprenant un copolymère à blocs, le dit film ordonné comprenant un mélange d'au moins un copolymère à blocs présentant une température de transition ordre-désordre (TODT) et au moins une Tg avec au moins un composé ne présentant pas de TODT, ce mélange présentant une TODT inférieure à la TODT du copolymère à blocs seul, le procédé comprenant les étapes suivantes : -Mélanger au moins un copolymère à blocs présentant une TODT et au moins un composé ne présentant pas de TODT dans un solvant, -Déposer ce mélange sur une surface, A method for improving the critical dimension uniformity of an ordered film comprising a block copolymer, said ordered film comprising a mixture of at least one block copolymer having an order-disorder transition temperature. (TODT) and at least one Tg with at least one compound having no TODT, this mixture having a TODT lower than the TODT of the block copolymer alone, the process comprising the following steps: -Mixing at least one block copolymer having a TODT and at least one compound having no TODT in a solvent, -Desting this mixture on a surface,
-Cuire le mélange déposé sur la surface à une température comprise entre la Tg la plus haute du copolymère à blocs et la TODT du mélange. -Bake the mixture deposited on the surface at a temperature between the highest Tg of the block copolymer and the TODT of the mixture.
Description détaillée : Detailed description :
S' agissant du ou des copolymères à blocs présentant une température de transition ordre-désordre, tout copolymère à blocs, quelle que soit sa morphologie associée, pourra être utilisé dans le cadre de l'invention, qu'il s'agisse de copolymère di-blocs, tri-blocs linéaire ou en étoile, multi-blocs linéaires, en peigne ou en étoile. De préférence, il s'agit de copolymères di-blocs ou tri-blocs, et de façon encore préférée de copolymères di-blocs. With regard to the block copolymer or copolymers having an order-disorder transition temperature, any block copolymer, whatever its associated morphology, may be used in the context of the invention, whether it be a di-copolymer or a block copolymer. blocks, linear or star triblocks, multiblocks linear, comb or star. Preferably, these are diblock or triblock copolymers, and more preferably diblock copolymers.
La température de transition ordre-désordre TODT, qui correspond à une séparation de phase des blocs constitutifs du copolymère à blocs peut être mesurée de différente manière, telle que la DSC (differential scanning calorimetry, analyse thermique différentielle) , la SAXS (small angle X ray scattering, diffusion des rayons X aux petits angles), la biréfringence statique, l'analyse mécanique dynamique, DMA ou tout autre méthode permettant de visualiser la température à laquelle une séparation de phase apparaît (correspondant à la transition ordre désordre) . Une combinaison de ces techniques peut également être utilisée. On peut citer de façon non limitative les références suivantes faisant état de la mesure de la TODT : The order-disorder transition temperature TODT, which corresponds to a phase separation of the constituent blocks of the block copolymer can be measured in different ways, such as DSC (differential scanning calorimetry, differential thermal analysis), SAXS (small angle X ray scattering, small angle X-ray scattering), static birefringence, dynamic mechanical analysis, DMA or any other method to visualize the temperature at which a phase separation occurs (corresponding to the disorder order transition). A combination of these techniques can also be used. The following references mentioning the measurement of the TODT may be cited in a nonlimiting manner:
-N.P. Balsara et al, Macromolecules 1992, 25, 3896-3901 -N.Sakamoto et al, Macromolecules 1997, 30, 5321-5330 et Macromolecule 1997, 30, 1621-1632 -N.P. Balsara et al., Macromolecules 1992, 25, 3896-3901 -N.Sakamoto et al., Macromolecules 1997, 30, 5321-5330 and Macromolecule 1997, 30, 1621-1632.
-J.K.kim et al, Macromolecules 1998, 31, 4045-4048  J.J.Kim et al, Macromolecules 1998, 31, 4045-4048
La méthode préférée utilisée dans la présente invention est la DMA. The preferred method used in the present invention is DMA.
On pourra dans le cadre de l'invention mélanger n copolymères à blocs à m composés, n étant un nombre entier compris entre 1 et 10, bornes comprises. De façon préférée, n est compris entre 1 et 5, bornes comprises, et de façon préférée, n est compris entre 1 et 2, bornes comprises, et de façon encore préférée n est égal à 1, m étant un nombre entier compris entre 1 et 10, bornes comprises. De façon préférée, m est compris entre 1 et 5, bornes comprises, et de façon préférée, m est compris entre 1 et 4, bornes comprises, et de façon encore préférée m est égal à 1. In the context of the invention, it will be possible to mix n m-block copolymers, n being an integer between 1 and 10 inclusive. Preferably, n is between 1 and 5, inclusive, and preferably n is between 1 and 2 inclusive, and more preferably n is 1, m being an integer between 1 and 10, terminals included. Preferably, m is between 1 and 5, inclusive, and preferably, m is between 1 and 4, including terminals, and more preferably m is equal to 1.
Ces copolymères à blocs pourront être synthétisés par toutes techniques connue de l'homme du métier parmi lesquelles on peut citer la polycondensation, la polymérisation par ouverture de cycle, la polymérisation anionique, cationique ou radicalaire ces techniques pouvant être contrôlées ou non, et combinées entre elles ou non. Lorsque les copolymères sont préparés par polymérisation radicalaire, celles-ci pourront être contrôlées par toute technique connue telle que NMP ("Nitroxide Mediated Polymerization") , RAFT ("Réversible Addition and Fragmentation Transfer") , ATRP ("Atom Transfer Radical Polymerization") , INIFERTER ("Initiator-Transfer- Termination") , RITP (" Reverse Iodine TransferThese block copolymers may be synthesized by any techniques known to those skilled in the art, among which mention may be made of polycondensation, ring-opening polymerization, anionic, cationic or radical polymerization, these techniques being controllable or not, and combined between they or not. When the copolymers are prepared by radical polymerization, they may be controlled by any known technique such as NMP ("Nitroxide Mediated Polymerization"), RAFT ("Reversible Addition and Fragmentation Transfer"), ATRP ("Atom Transfer Radical Polymerization") , INIFERTER ("Initiator-Transfer- Termination "), RITP (" Reverse Iodine Transfer
Polymerization") , ITP ("Iodine Transfer Polymerization) . Polymerization "), ITP (" Iodine Transfer Polymerization).
Selon une forme préférée de l'invention, les copolymères à blocs sont préparés par polymérisation radicalaire contrôlée, encore plus particulièrement par polymérisation contrôlée par les nitroxydes, en particulier le nitroxyde de N-tertiobutyl-l-diéthylphosphono-2 , 2-diméthyl-propyle . Selon une seconde forme préférée de l'invention, les copolymères à blocs sont préparés par polymérisation anionique . According to a preferred form of the invention, the block copolymers are prepared by controlled radical polymerization, more particularly by controlled polymerization with nitroxides, in particular N-tert-butyl-1-diethylphosphono-2,2-dimethylpropyl nitroxide. . According to a second preferred form of the invention, the block copolymers are prepared by anionic polymerization.
Lorsque la polymérisation est conduite de façon radicalaire, les monomères constitutifs des copolymères à blocs seront choisis parmi les monomères suivants : au moins un monomère vinylique, vinylidénique, diénique, oléfinique, allylique ou (méth) acrylique . Ce monomère est choisi plus particulièrement parmi les monomères vinylaromatiques tels que le styrène ou les styrènes substitués notamment l' alpha-méthylstyrène, les styrènes silylés, les monomères acryliques tels que l'acide acrylique ou ses sels, les acrylates d'alkyle, de cycloalkyle ou d' aryle tels que l'acrylate de méthyle, d'éthyle, de butyle, d' éthylhexyle ou de phényle, les acrylates d' hydroxyalkyle tels que l'acrylate de 2- hydroxyéthyle, les acrylates d' étheralkyle tels que l'acrylate de 2-méthoxyéthyle, les acrylates d' alcoxy- ou aryloxy-polyalkylèneglycol tels que les acrylates de méthoxypolyéthylèneglycol , les acrylates d' éthoxypolyéthylèneglycol , les acrylates de méthoxypolypropylèneglycol , les acrylates de méthoxy- polyéthylèneglycol-polypropylèneglycol ou leurs mélanges, les acrylates d' aminoalkyle tels que l'acrylate de 2- (diméthylamino) éthyle (ADAME) , les acrylates fluorés, les acrylates silylés, les acrylates phosphorés tels que les acrylates de phosphate d' alkylèneglycol , les acrylates de glycidyle, de dicyclopentenyloxyethyle, les monomères méthacryliques comme l'acide méthacrylique ou ses sels, les méthacrylates d'alkyle, de cycloalkyle, d' alcényle ou d' aryle tels que le méthacrylate de méthyle (MAM) , de lauryle, de cyclohexyle, d'allyle, de phényle ou de naphtyle, les méthacrylates d' hydroxyalkyle tels que le méthacrylate de 2-hydroxyéthyle ou le méthacrylate de 2- hydroxypropyle, les méthacrylates d' étheralkyle tels que le méthacrylate de 2-éthoxyéthyle, les méthacrylates d' alcoxy- ou aryloxy-polyalkylèneglycol tels que les méthacrylates de méthoxypolyéthylèneglycol , les méthacrylates d' éthoxypolyéthylèneglycol , les méthacrylates de méthoxypolypropylèneglycol , les méthacrylates de méthoxy- polyéthylèneglycol-polypropylèneglycol ou leurs mélanges, les méthacrylates d' aminoalkyle tels que le méthacrylate de 2- (diméthylamino) éthyle (MADAME), les méthacrylates fluorés tels que le méthacrylate de 2 , 2 , 2-trifluoroéthyle, les méthacrylates silylés tels que le 3- méthacryloylpropyltriméthylsilane, les méthacrylates phosphorés tels que les méthacrylates de phosphate d' alkylèneglycol , le méthacrylate d'hydroxy- éthylimidazolidone, le méthacrylate d'hydroxy- éthylimidazolidinone, le méthacrylate de 2- (2-oxo-l- imidazolidinyl) éthyle, 1 ' acrylonitrile, l'acrylamide ou les acrylamides substitués, la 4-acryloylmorpholine, le N- méthylolacrylamide, le méthacrylamide ou les méthacrylamides substitués, le N-méthylolméthacrylamide, le chlorure de méthacrylamido-propyltriméthyle ammonium (MAPTAC) , les méthacrylates de glycidyle, de dicyclopentenyloxyethyle, l'acide itaconique, l'acide maléique ou ses sels, l'anhydride maléique, les maléates ou hémimaléates d'alkyle ou d'alcoxy- ou aryloxy- polyalkylèneglycol , la vinylpyridine, la vinylpyrrolidinone, les (alcoxy) poly (alkylène glycol) vinyl éther ou divinyl éther, tels que le méthoxy poly (éthylène glycol) vinyl éther, le poly (éthylène glycol) divinyl éther, les monomères oléfiniques, parmi lesquels on peut citer l'éthylène, le butène, l'hexène et le 1-octène, les monomères dièniques dont le butadiène, l'isoprène ainsi que les monomères oléfiniques fluorés, et les monomères vinylidénique, parmi lesquels on peut citer le fluorure de vinylidène, seuls ou en mélange d'au moins deux monomères précités . When the polymerization is carried out in a radical manner, the constituent monomers of the block copolymers will be chosen from the following monomers: at least one vinyl, vinylidene, diene, olefinic, allylic or (meth) acrylic monomer. This monomer is chosen more particularly from vinylaromatic monomers such as styrene or substituted styrenes, in particular alpha-methylstyrene, silylated styrenes, acrylic monomers such as acrylic acid or its salts, alkyl acrylates and cycloalkyl acrylates. or aryl such as methyl acrylate, ethyl acrylate, butyl acrylate, ethylhexyl acrylate or phenyl acrylate, hydroxyalkyl acrylates such as 2-hydroxyethyl acrylate, alkyl ether acrylates such as 2-methoxyethyl acrylate, alkoxy- or aryloxy-polyalkylene glycol acrylates such as methoxypolyethylene glycol acrylates, ethoxypolyethylene glycol acrylates, methoxypolypropylene glycol acrylates, methoxypolyethylene glycol-polypropylene glycol acrylates or mixtures thereof, aminoalkyl acrylates such as 2- (dimethylamino) ethyl acrylate (ADAME), fluorinated acrylates, silyl acrylates, phosphorus acrylates such as alkylene glycol phosphate acrylates, glycidyl acrylates, dicyclopentenyloxyethyl acrylates, methacrylic monomers such as methacrylic acid or its salts, alkyl, cycloalkyl, alkenyl or aryl methacrylates such as methyl methacrylate (MMA), lauryl, cyclohexyl, allyl, phenyl or naphthyl, hydroxyalkyl methacrylates such as 2-hydroxyethyl methacrylate or 2-hydroxypropyl methacrylate, alkyl ether methacrylates such as 2-ethoxyethyl methacrylate, alkoxy- or aryloxy-polyalkylene glycol methacrylates such as methoxypolyethylene glycol methacrylates, ethoxypolyethylene glycol methacrylates, methoxypolypropylene glycol methacrylates, methoxy-methacrylates olyethylene glycol-polypropylene glycol or mixtures thereof, aminoalkyl methacrylates such as 2- (dimethylamino) ethyl methacrylate (MADAME), fluorinated methacrylates such as 2,2,2-trifluoroethyl methacrylate, silylated methacrylates such as 3 methacryloylpropyltrimethylsilane, phosphorus methacrylates such as alkylene glycol phosphate methacrylates, hydroxyethylimidazolidone methacrylate, hydroxyethylimidazolidinone methacrylate, 2- (2-oxo-1-imidazolidinyl) ethyl methacrylate, acrylonitrile, acrylamide or substituted acrylamides, 4-acryloylmorpholine, N-methylolacrylamide, methacrylamide or substituted methacrylamides, N-methylolmethacrylamide, methacrylamido-propyltrimethyl ammonium chloride (MAPTAC), glycidyl methacrylates, dicyclopentenyloxyethyl, itaconic acid, maleic acid or its salts, maleic anhydride, alkyl or alkoxy- or aryloxypolyalkyleneglycol maleates or hemimaleate, vinylpyridine, vinylpyrrolidinone, (alkoxy) polyalkylene glycol) vinyl ether or divinyl ether, such as methoxy poly (ethylene glycol) vinyl ether, poly (ethylene glycol) divinyl ether, olefinic monomers, among which mention may be made of ethylene, butene, hexene and 1-octene, diene monomers including butadiene, isoprene and fluorinated olefinic monomers, and vinylidene monomers, among which mention may be made of vinylidene fluoride, alone or as a mixture of at least two aforementioned monomers.
Lorsque la polymérisation est conduite par voie anionique les monomères seront choisis, de façon non limitative parmi les monomères suivants : When the polymerization is carried out anionically, the monomers will be chosen, without limitation, from the following monomers:
Au moins un monomère vinylique, vinylidénique, diénique, oléfinique, allylique ou (méth) acrylique . Ces monomères sont choisis plus particulièrement parmi les monomères vinylaromatiques tels que le styrène ou les styrènes substitués notamment l' alpha-méthylstyrène, les monomères acryliques tels les acrylates d'alkyle, de cycloalkyle ou d' aryle tels que l'acrylate de méthyle, d'éthyle, de butyle, d' éthylhexyle ou de phényle, les acrylates d' étheralkyle tels que l'acrylate de 2-méthoxyéthyle, les acrylates d'alcoxy- ou aryloxy-polyalkylèneglycol tels que les acrylates de méthoxypolyéthylèneglycol , les acrylates d' éthoxypolyéthylèneglycol , les acrylates de méthoxypolypropylèneglycol , les acrylates de méthoxy- polyéthylèneglycol-polypropylèneglycol ou leurs mélanges, les acrylates d' aminoalkyle tels que l'acrylate de 2- (diméthylamino) éthyle (ADAME) , les acrylates fluorés, les acrylates silylés, les acrylates phosphorés tels que les acrylates de phosphate d' alkylèneglycol , les acrylates de glycidyle, de dicyclopentenyloxyethyle, les méthacrylates d'alkyle, de cycloalkyle, d' alcényle ou d' aryle tels que le méthacrylate de méthyle (MAM) , de lauryle, de cyclohexyle, d'allyle, de phényle ou de naphtyle, les méthacrylates d' étheralkyle tels que le méthacrylate de 2-éthoxyéthyle, les méthacrylates d' alcoxy- ou aryloxy-polyalkylèneglycol tels que les méthacrylates de méthoxypolyéthylèneglycol , les méthacrylates d' éthoxypolyéthylèneglycol , les méthacrylates de méthoxypolypropylèneglycol , les méthacrylates de méthoxy-polyéthylèneglycol- polypropylèneglycol ou leurs mélanges, les méthacrylates d' aminoalkyle tels que le méthacrylate de 2- (diméthylamino) éthyle (MADAME), les méthacrylates fluorés tels que le méthacrylate de 2 , 2 , 2-trifluoroéthyle, les méthacrylates silylés tels que le 3- méthacryloylpropyltriméthylsilane, les méthacrylates phosphorés tels que les méthacrylates de phosphate d' alkylèneglycol , le méthacrylate d'hydroxy- éthylimidazolidone, le méthacrylate d'hydroxy- éthylimidazolidinone, le méthacrylate de 2- (2-oxo-l- imidazolidinyl) éthyle, 1 ' acrylonitrile, l'acrylamide ou les acrylamides substitués, la 4-acryloylmorpholine, le N- méthylolacrylamide, le méthacrylamide ou les méthacrylamides substitués, le N-méthylolméthacrylamide, le chlorure de méthacrylamido-propyltriméthyle ammonium (MAPTAC) , les méthacrylates de glycidyle, de dicyclopentenyloxyethyle, l'anhydride maléique, les maléates ou hémimaléates d'alkyle ou d' alcoxy- ou aryloxy- polyalkylèneglycol, la vinylpyridine, la vinylpyrrolidinone, les (alcoxy) poly (alkylène glycol) vinyl éther ou divinyl éther, tels que le méthoxy poly (éthylène glycol) vinyl éther, le poly (éthylène glycol) divinyl éther, les monomères oléfiniques, parmi lesquels on peut citer l' éthylène, le butène, l'hexène et le 1-octène, les monomères dièniques dont le butadiène, l'isoprène ainsi que les monomères oléfiniques fluorés, et les monomères vinylidénique, parmi lesquels on peut citer le fluorure de vinylidène, seuls ou en mélange d'au moins deux monomères précités . At least one vinyl, vinylidene, diene, olefinic, allylic or (meth) acrylic monomer. These monomers are chosen more particularly from vinylaromatic monomers such as styrene or substituted styrenes, in particular alpha-methylstyrene, and acrylic monomers such as alkyl, cycloalkyl or aryl acrylates, such as methyl acrylate, dicyclohexyl acrylate and the like. ethyl, butyl, ethylhexyl or phenyl, ether alkyl acrylates such as 2-methoxyethyl acrylate, alkoxy- or aryloxy-polyalkyleneglycol acrylates such as methoxypolyethylene glycol acrylates, ethoxypolyethylene glycol acrylates and the like. methoxypolypropylene glycol acrylates, methoxypolyethylene glycol-polypropylene glycol acrylates or mixtures thereof, aminoalkyl acrylates such as acrylate dimethylaminoethyl (ADAME), fluorinated acrylates, silyl acrylates, phosphorus acrylates such as alkylene glycol phosphate acrylates, glycidyl, dicyclopentenyloxyethyl acrylates, alkyl, cycloalkyl, alkenyl or methacrylates. aryl radicals such as methyl methacrylate (MMA), lauryl, cyclohexyl, allyl, phenyl or naphthyl, methacrylates of ether alkyl such as 2-ethoxyethyl methacrylate, methacrylates of alkoxy- or aryloxy-polyalkylene glycol such as methoxypolyethylene glycol methacrylates, ethoxypolyethylene glycol methacrylates, methoxypolypropylene glycol methacrylates, methoxy-polyethylene glycol-polypropylene glycol methacrylates or mixtures thereof, aminoalkyl methacrylates such as 2- (dimethylamino) ethyl methacrylate ( MADAME), fluorinated methacrylates such as 2,2,2-trifluoroethyl methacrylate, m silylated ethacrylates such as 3-methacryloylpropyltrimethylsilane, phosphorus methacrylates such as alkylene glycol phosphate methacrylates, hydroxyethylimidazolidone methacrylate, hydroxyethylimidazolidinone methacrylate, 2- (2-oxo-1-yl) methacrylate; imidazolidinyl) ethyl, acrylonitrile, acrylamide or substituted acrylamides, 4-acryloylmorpholine, N-methylolacrylamide, methacrylamide or substituted methacrylamides, N-methylolmethacrylamide, methacrylamido-propyltrimethyl ammonium chloride (MAPTAC), glycidyl, dicyclopentenyloxyethyl methacrylates, maleic anhydride, alkyl or alkoxy- or aryloxypolyalkyleneglycol maleates or hemimaleate, vinylpyridine, vinylpyrrolidinone, (alkoxy) poly (alkylene glycol) vinyl ether or divinyl ether, such as methoxy poly (ethylene glycol) vinyl ether, poly (ethylene glycol) divinyl ether, olefinic monomers, among which mention may be made of ethylene, butene, hexene and octene, diene monomers including butadiene, isoprene and fluorinated olefinic monomers, and vinylidene monomers, among which mention may be made of vinylidene fluoride, alone or as a mixture of at least two aforementioned monomers.
De préférence les copolymères à blocs présentant une température de transition ordre-désordre sont constitués de copolymère à blocs dont un des blocs comprend un monomère styrènique et l'autre bloc comprend un monomère méthacrylique, de façon encore préférée, les copolymères à blocs sont constitués de copolymère à blocs dont un des blocs comprend du styrène et l'autre bloc comprend du méthacrylate de méthyle. Les composés ne présentant pas de température de transition ordre-désordre seront choisis parmi les copolymères à blocs, tels que définis ci-dessus mais également les copolymères statistiques, les homopolymères , les copolymères à gradients. Selon une variante préférée, les composés sont des homopolymères ou des copolymères statistiques et présentent une composition en monomère identique à celle de l'un des blocs du copolymère à blocs présentant une TOD . Preferably, the block copolymers having an order-disorder transition temperature consist of block copolymer one of whose blocks comprises a styrene monomer and the other block comprises a methacrylic monomer, more preferably the block copolymers consist of block copolymer of which one block comprises styrene and the other block comprises methyl methacrylate. The compounds which do not have an order-disorder transition temperature will be chosen from block copolymers, as defined above, but also random copolymers, homopolymers and gradient copolymers. According to a preferred variant, the compounds are homopolymers or random copolymers and have a monomer composition identical to that of one of the block copolymer blocks having a TOD.
Selon une forme encore préférée, les homopolymères ou copolymères statistiques comprennent des monomères styrèniques ou méthacryliques . Selon encore une forme préférée, les homopolymères ou copolymères statistiques comprennent du styrène ou du méthacrylate de méthyle. Les composés ne présentant pas de température de transition ordre-désordre seront également choisis les plastifiants, parmi lesquels on peut citer de façon non limitative les phtalates branchés ou linéaires tels que les phatalate de di-n-octyle, dibutyle, -2-éthylhexyle, di-ethyl-hexyle, di- isononyle, di-isodécyle, benzylbutyle, diéthyle, di- cyclohexyle, diméthyle, di-undecyl linéaire, di tridecyl linéaire, les paraffines chlorées, les trimellitates , branchés ou linéaires , en particulier le trimellitate de di-ethyl hexyle, les esters aliphatiques ou les esters polymériques , les époxydes, les adipates, les citrates, les benzoates . In a still preferred form, the homopolymers or random copolymers comprise styrene or methacrylic monomers. In still another preferred form, random homopolymers or copolymers include styrene or methyl methacrylate. The compounds that do not have an order-disorder transition temperature will also be chosen from plasticizers, among which non-limiting examples are branched or linear phthalates such as di-n-octyl, dibutyl, -2-ethylhexyl phatalate, di-ethylhexyl, diisononyl, di-isodecyl, benzylbutyl, diethyl, di-cyclohexyl, dimethyl, linear di-undecyl, di-tridecyl linear, chlorinated paraffins, trimellitates, branched or linear, in particular di-trimellitate; ethyl hexyl, aliphatic esters or polymeric esters, epoxides, adipates, citrates, benzoates.
Les composés ne présentant pas de température de transition ordre-désordre seront également choisis parmi les charges parmi lesquelles on peut citer charges minérales telles que le noir de carbone, des nanotubes, de carbone ou non, des fibres, broyées ou non, des agents stabilisants (lumière, en particulier UV, et chaleur) , colorants, pigments minéraux ou organiques photosensibles comme par exemple les porphyrines, les photo-amorceurs , c'est-à-dire des composés susceptibles de générer des radicaux sous irradiation.  The compounds that do not have an order-disorder transition temperature will also be chosen from fillers among which may be mentioned mineral fillers such as carbon black, nanotubes, of carbon or not, fibers, ground or not, stabilizing agents. (Light, in particular UV, and heat), dyes, inorganic or organic photosensitive pigments such as porphyrins, photoinitiators, that is to say compounds capable of generating radicals under irradiation.
Les composés ne présentant pas de température de transition ordre-désordre seront également choisis parmi les composés ioniques, polymères ou non. Compounds that do not have an order-disorder transition temperature will also be chosen from ionic compounds, polymeric or non-polymeric.
Une combinaison des composés cités pourra également être utilisée dans le cadre de l'invention, telle qu'un copolymère à blocs ne présentant pas de TODT et un copolymère statistique ou homopolymère ne présentant pas de TODT. On pourra par exemple mélanger un copolymère à blocs présentant une TODT, un copolymère à blocs ne présentant pas de TODT et une charge, un homopolymère ou un copolymère statistique par exemple ne présentant pas de TODT. A combination of the compounds mentioned may also be used in the context of the invention, such as a block copolymer having no TODT and a statistical copolymer or homopolymer having no TODT. For example, a block copolymer having a TODT, a block copolymer having only no TODT and a charge, a homopolymer or a random copolymer, for example, having no TODT.
L' invention concerne donc également les compositions comprenant au moins un copolymère à blocs présentant une TODT et au moins un composé, ce ou ces composés ne présentant pas de TODT. The invention therefore also relates to compositions comprising at least one block copolymer having a TODT and at least one compound, this or these compounds having no TODT.
La TODT du mélange objet de l'invention devra être inférieure à la TODT du copolymère à blocs organisé seul, mais devra être supérieure à la température de transition vitreuse, mesurée par DSC (analyse enthalpique différentielle, Tg) du bloc présentant la plus haute Tg. En termes de comportement morphologique du mélange lors de l'auto-assemblage, cela signifie que la composition comprenant un copolymère à blocs présentant une température de transition ordre-désordre et au moins un composé ne présentant pas de température de transition ordre-désordre présentera un auto-assemblage à plus basse température que celle du copolymère à bloc seul. The TODT of the mixture which is the subject of the invention should be less than the TODT of the block copolymer organized alone, but should be greater than the glass transition temperature, measured by DSC (differential enthalpy analysis, Tg) of the block presenting the highest Tg. In terms of the morphological behavior of the mixture during the self-assembly, this means that the composition comprising a block copolymer having an order-disorder transition temperature and at least one compound having no order-disorder transition temperature will exhibit a lower temperature self-assembly than that of the block-only copolymer.
Les films ordonnés obtenus conformément à l'invention présentent une uniformité de dimension critique améliorée par rapport à celle obtenue soit avec un seul copolymère à blocs présentant un TODT soit avec plusieurs copolymères à blocs présentant une TODT à période équivalente. The ordered films obtained according to the invention have an improved critical dimension uniformity over that obtained either with a single block copolymer having a TODT or with several block copolymers having an equivalent period TODT.
Les températures de cuisson permettant l'auto-assemblage seront comprises entre la température de transition vitreuse, mesurée par DSC (analyse enthalpique différentielle, Tg) du bloc présentant la plus haute Tg et la TODT du mélange, de préférence entre 1 et 50°C en dessous de la TODT du mélange, de façon préférée entre 10 et 30°C en dessous la TODT du mélange, et de façon encore préférée entre 10 et 20°C en dessous la TODT du mélange. Le procédé de l'invention autorise le dépôt de film ordonné sur une surface telle que le silicium, le silicium présentant une couche d'oxyde natif ou thermique, le germanium, le platine, le tungstène, l'or, les nitrures de titane, les graphènes, le BARC (bottom anti reflecting coating) ou toute autre couche anti-réflective utilisée en lithographie. Parfois il peut être nécessaire de préparer la surface. Parmi les possibilités connues, on dépose sur la surface un copolymère statistique dont les monomères peuvent être identiques en tout ou partie à ceux utilisés dans la composition de copolymère à blocs et/ou du composé que l'on veut déposer. Dans un article pionnier Mansky et al. (Science, vol 275 pages 1458-1460, 1997) décrit bien cette technologie, maintenant bien connue de l'homme du métier . The baking temperatures allowing the self-assembly will be between the glass transition temperature, measured by DSC (differential enthalpy analysis, Tg) of the block having the highest Tg and the TODT of the mixture, preferably between 1 and 50 ° C. in below the TODT of the mixture, preferably between 10 and 30 ° C below the TODT of the mixture, and more preferably between 10 and 20 ° C below the TODT of the mixture. The method of the invention allows the deposition of ordered film on a surface such as silicon, silicon having a native or thermal oxide layer, germanium, platinum, tungsten, gold, titanium nitrides, graphenes, BARC (bottom anti-reflective coating) or any other anti-reflective layer used in lithography. Sometimes it may be necessary to prepare the surface. Among the known possibilities, there is deposited on the surface a random copolymer whose monomers may be identical in whole or in part to those used in the block copolymer composition and / or the compound that is to be deposited. In a pioneering article Mansky et al. (Science, vol 275 pages 1458-1460, 1997) describes this technology well, now well known to those skilled in the art.
Selon une variante de l'invention, Les surfaces peuvent être dites « libres » (surface plane et homogène tant d'un point de vue topographique que chimique) ou présenter des structures de guidage du copolymère à bloc « pattern », que ce guidage soit du type guidage chimique (appelé « guidage par chimie-épitaxie ») ou guidage physique/topographique (appelé « guidage par graphoépitaxie ». According to a variant of the invention, the surfaces may be said to be "free" (planar and homogeneous surface both from a topographic and chemical point of view) or to have structures for guiding the block copolymer "pattern", whether this guidance is chemical guidance type (called "chemistry-epitaxy guidance") or physical / topographical guidance (called "graphoepitaxy guidance").
Pour fabriquer le film ordonné, une solution de la composition de copolymère à blocs est déposée sur la surface puis le solvant est évaporé selon des techniques connues de l'homme de métier comme par exemple la technique dite « spin coating », « docteur Blade » « knife System », « slot die System » mais tout autre technique peut être utilisée telle qu'un dépôt à sec, c'est-à-dire sans passer par une dissolution préalable. On effectue par la suite un traitement thermique ou par vapeur de solvant, une combinaison des deux traitements, ou tout autre traitement connu de l'homme du métier, qui permet à la composition de copolymère à blocs de s'organiser correctement en se nanostructurant , et ainsi d'établir le film ordonné. Dans le cadre préféré de l'invention, la cuisson s'effectue de façon thermique à une température inférieure à la TODT du mélange du copolymère à bloc avec le composé ne présentant pas de TODT. To produce the ordered film, a solution of the block copolymer composition is deposited on the surface and then the solvent is evaporated according to techniques known to those skilled in the art such as the so-called "spin coating" technique, "Doctor Blade""Knifesystem", "Slot die System" but any other technique can be used such as a dry deposit, that is to say without going through a prior dissolution. Subsequently, a heat treatment or solvent vapor is carried out, a combination of the two treatments, or any other treatment known to those skilled in the art, which allows the block copolymer composition to organize itself properly by nanostructuring itself, and so to establish the ordered film. In the preferred context of the invention, the cooking is carried out thermally at a temperature below the TODT of the mixture of the block copolymer with the compound having no TODT.
La nanostructuration d'un mélange de copolymère à blocs présentant une TODT et d'un composé déposé sur une surface traitée par le procédé de l'invention conduisant au film ordonné peut prendre les formes telles que cylindriques (symétrie hexagonale (symétrie de réseau hexagonal primitif « 6mm ») selon la notation de Hermann-Mauguin, ou tétragonale/quadratique (symétrie de réseau tétragonal primitif « 4mm ») ) , , sphérique (symétrie hexagonale (symétrie de réseau hexagonal primitif « 6mm » ou « 6/mmm ») , ou tétragonale/quadratique (symétrie de réseau tétragonal primitif « 4mm ») , ou cubique (symétrie de réseau « mH ») ) , lamellaires, ou gyroïde. De préférence, la forme préférée que prend la nanostructuration est du type cylindrique hexagonal. The nanostructuration of a mixture of block copolymer having a TODT and a compound deposited on a surface treated by the process of the invention leading to the ordered film can take the forms such as cylindrical (hexagonal symmetry (symmetry of hexagonal network primitive "6mm") according to the Hermann-Mauguin notation, or tetragonal / quadratic ("4mm" tetragonal lattice symmetry), spherical (hexagonal symmetry ("6mm" or "6 / mmm" primitive hexagonal lattice symmetry), or tetragonal / quadratic ("4mm" tetragonal lattice symmetry), or cubic ("mH" lattice symmetry), lamellar, or gyroid. Preferably, the preferred form of nanostructuring is of the hexagonal cylindrical type.
L'uniformité des dimensions critiques (CDU) dans un film ordonné de BCP correspond à l'uniformité de taille du diamètre des cylindres. Dans le cas idéal, il faut que tous les cylindres présentent le même diamètre, car toute variation de ce diamètre induira des variations sur les performances (conductivité, caractéristiques des courbes de transfert, puissance thermique évacuée, résistance, etc..) pour les applications considérées. The uniformity of critical dimensions (CDU) in an ordered BCP film corresponds to the uniformity of size of the roll diameter. In the ideal case, all the cylinders must have the same diameter, since any variation of this diameter will induce variations on the performances (conductivity, characteristics of the transfer curves, evacuated thermal power, resistance, etc.) for the considered applications.
Les images des films ordonné de BCP sont effectuées sur un CD-SEM H9300 de chez Hitachi. Les mesures de CD sont déterminées à partir des images SEM avec le logiciel imageJ développé par les National Institutes of Health (http : //imagej . nih . gov) suivant un traitement spécifique, bien que d'autres logiciels de traitement d'images puissent être également utilisés pour aboutir au même résultat. Le traitement des images se fait en quatre différentes étapes : 1/ « seuillage » de l'image pour délimiter le pourtour des cylindres perpendiculaires (détermination du seuil de détection des différents niveaux de gris) , 2/ détermination de l'aire et diamètre des cylindres ainsi définis (ceux-ci sont assimilés à des ellipsoïdes) , 3/ répartition des diamètres des cylindres de l'image suivant une distribution gaussienne, 4/ extraction des meilleurs paramètres caractérisant la courbe gaussienne, dont le « sigma » propre (l'écart-type) de celle-ci donnant la valeur de la CDU.  The ordered film images of BCP are made on a Hitachi CD-SEM H9300. CD measurements are determined from SEM images with the imageJ software developed by the National Institutes of Health (http://imagej.nih.gov) following a specific treatment, although other image processing software may also be used to achieve the same result. The images are processed in four different steps: 1 / "thresholding" of the image to delineate the perimeter of the perpendicular cylinders (determination of the detection threshold of the different gray levels), 2 / determination of the area and diameter of the cylinders thus defined (these are assimilated to ellipsoids), 3 / distribution of the diameters of the cylinders of the image according to a Gaussian distribution, 4 / extraction of the best parameters characterizing the Gaussian curve, whose own "sigma" (the standard deviation) of this giving the value of the CDU.
Pour une image donnée, le diamètre apparent des cylindres dépend étroitement de la valeur de seuillage de l'image : lorsque le seuil est trop bas, le nombre de cylindres détecté est correct et proche de sa valeur maximale, mais leur diamètre est sous-estimé, par conséquent le sigma de la gaussienne aussi. Lorsque la valeur du seuil est correcte, le bon nombre de cylindres est détecté, et leur diamètre est proche de sa valeur maximale, sans toutefois être certain que le diamètre apparent soit le bon. Enfin, lorsque la valeur du seuil est trop importante, le diamètre apparent est très proche de sa valeur maximale mais par valeur supérieure (la valeur du sigma est donc possiblement surestimée dans ce cas), mais un nombre important de cylindres n'est plus détecté car il n'y a plus de différenciation possible entre le niveau de gris des trous et la matrice. Cet effet de la valeur est illustré sur la figure 1 (influence du traitement de l'image SEM initiale sur les valeurs du diamètre des cylindres du film ordonné de BCP, image initiale : 1349xl349nm) . For a given image, the apparent diameter of the cylinders depends closely on the threshold value of the image: when the threshold is too low, the number of cylinders detected is correct and close to its maximum value, but their diameter is underestimated hence the sigma of the Gaussian too. When the threshold value is correct, the correct number of cylinders is detected, and their diameter is close to its maximum value, without being certain that the apparent diameter is the right one. Finally, when the value of the threshold is too important, the apparent diameter is very close to its maximum value but by higher value (the value of the sigma is therefore possibly overestimated in this case), but a large number of cylinders is no longer detected because there is no longer any possible differentiation between the gray level of the holes and the matrix. This effect of the value is illustrated in FIG. 1 (influence of the treatment of the initial SEM image on the values of the roll diameter of the ordered BCP film, initial image: 1349xl349nm).
Par ailleurs, pour un niveau de seuillage donné, les meilleurs paramètres d'ajustement de la courbe gaussienne sont fonction du « pas » de celle-ci : si le pas est trop petit, certaines valeurs de fréquence seront nulles même si situées au milieu de la plage du diamètre des cylindres. A l'inverse, si le pas est trop grand, l'ajustement selon une courbe gaussienne n'a plus de sens car toutes les valeurs prendront une valeur unique. Il est donc nécessaire de déterminer les paramètres d'ajustement de la gaussienne pour différentes valeurs du pas de la courbe (figure 2, évolution des caractéristiques (amplitude, position du maximum, valeur du sigma) de la courbe Gaussienne (trait plein) ajustée sur les valeurs expérimentales (pointillés) pour différentes valeurs de pas) .  Moreover, for a given threshold level, the best adjustment parameters of the Gaussian curve depend on the "pitch" of it: if the pitch is too small, some frequency values will be zero even if located in the middle of the diameter range of the cylinders. On the other hand, if the step is too big, the adjustment according to a Gaussian curve no longer makes sense because all the values will take a single value. It is therefore necessary to determine the adjustment parameters of the Gaussian for different values of the pitch of the curve (Figure 2, evolution of the characteristics (amplitude, position of the maximum, sigma value) of the Gaussian curve (solid line) adjusted on experimental values (dashed) for different step values).
En définitive, une seule image est traitée selon trois valeurs de seuil différentes, et la courbe gaussienne obtenue pour chacune de ces trois valeurs est elle-même traitée suivant trois valeurs de pas différentes. On a donc 9 valeurs de CDU pour une image donnée, la valeur réelle de la CDU étant située entre les valeurs minimales et maximales de la plage de CDU obtenue. Exemple 1 : mesure de Todt par analyse mécanique dynamique. Deux copolymères à blocs PS-j -PMMA de masse molaire différente sont synthétisés par polymérisation anionique, mais des produits commerciaux disponibles peuvent aussi être utilisés . Les caractérisations de ces produits sont résumées dans le Tableau n°l. Ultimately, a single image is processed according to three different threshold values, and the Gaussian curve obtained for each of these three values is itself processed according to three different pitch values. There are therefore 9 CDU values for a given image, the actual value of the CDU being between the minimum and maximum values of the obtained CDU range. Example 1: T odt measurement by dynamic mechanical analysis. Two different molecular weight PS-β-PAM copolymers are synthesized by anionic polymerization, but commercially available products can also be used. The characterizations of these products are summarized in Table No. 1.
Tableau n°l : Caractérisations des copolymères PS-j -PMMA Table No. 1: Characterizations of PS-J-PMMA Copolymers
Ces polymères sont analysés dans les mêmes conditions par analyse mécanique dynamique (AMD) . L'AMD permet de mesurer le module de conservation G' et le module de perte G' ' du matériau et de déterminer le facteur d'amortissement tanA défini comme le rapport G' '/G'.  These polymers are analyzed under the same conditions by dynamic mechanical analysis (DMA). The AMD makes it possible to measure the conservation modulus G 'and the loss module G' 'of the material and to determine the damping factor tanA defined as the ratio G' '/ G'.
Les mesures sont réalisées sur un viscoélasticimètre type ARES, sur lequel est installée la géométrie PLANS 25mm. Le réglage entrefer est réalisé à la température initiale de 100°C. La pastille d'échantillon est placée entre les plans à l'intérieur du four chauffé à 100°C, on applique une légère force normale afin de s'assurer du contact échantillon - plans et éviter ainsi les problèmes de glissement qui pourraient fausser la mesure du couple et donc des modules. Le balayage en température est réalisé à la fréquence de 1Hz . La déformation initiale appliquée à l'échantillon est de 0.1%, elle est ensuite automatiquement ajustée afin de rester au-dessus de la limite de sensibilité du capteur qui est de 0.2 cm. g. La température varie de 100 à 260°C en mode palier avec une mesure tous les deux degrés et un temps d'équilibre en température de 30 secondes avant la mesure. Dans le cas des deux copolymères, certaines transitions sont bien observées : après passage de la transition vitreuse (Tg) caractérisée par l'atteinte d'un premier maximum pour tanA, le polymère atteint le plateau caoutchoutique où G' est supérieur à G' ' . Dans le cas d'un copolymère à blocs présentant un assemblage, le copolymère à blocs est structuré sur le plateau caoutchoutique. The measurements are made on an ARES type viscoelastic meter, on which the PLANS 25mm geometry is installed. The gap setting is made at the initial temperature of 100 ° C. The sample pellet is placed between the planes inside the oven heated to 100 ° C, a slight normal force is applied to ensure the sample-to-plane contact and thus avoid slip problems that could distort the measurement. torque and therefore modules. The temperature sweep is performed at the frequency of 1Hz. The initial strain applied to the sample is 0.1%, then it is automatically adjusted to stay above the sensor sensitivity limit of 0.2 cm. boy Wut. The temperature varies from 100 to 260 ° C in the bearing mode with one measurement every two degrees and a temperature equilibrium time of 30 seconds before the measurement. In the case of the two copolymers, certain transitions are well observed: after passage of the glass transition (Tg) characterized by the achievement of a first maximum for tanA, the polymer reaches the rubbery plateau where G 'is greater than G " . In the case of a block copolymer having an assembly, the block copolymer is structured on the rubber tray.
Après le plateau caoutchoutique, le copolymère à blocs de plus petite masse molaire présente un G' inférieur à G' ' traduisant ainsi de la déstructuration du copolymère, donc de la transition ordre-désordre. La Todt est donc définie comme étant la première intersection entre G' et G' ' . After the rubber tray, the lower molecular weight block copolymer has a G 'lower than G''thus reflecting the destructuring of the copolymer, hence the order-disorder transition. The T odt is thus defined as being the first intersection between G 'and G''.
La Todt n'est pas observée dans le cas du copolymère de masse molaire plus élevée, où à tout moment G' reste supérieur à G' ' . Ce copolymère à blocs ne présente donc pas de Todt inférieure à sa température de dégradation. Les résultats de l'analyse AMD sont résumés dans le Tableau n°2 et les graphiques associés sont dans la Figure n°3. Tableau n°2 : Todt des différents copolymères à blocs PS-£>-T odt is not observed in the case of the copolymer of higher molar mass, where at any time G 'remains greater than G ". This block copolymer do not present T odt below its degradation temperature. The results of the AMD analysis are summarized in Table 2 and the associated graphs are in Figure 3. Table 2: T odt of the various PS-block copolymers>
PMMA PMMA
En figure 3 on trouvera l'évolution des modules G' et G'' en fonction de la température pour les différents copolymères à blocs PS-fc-PMMA. Exemple 2 : Uniformité de 1 ' autoassemblage des copolymères à blocs. In FIG. 3, the evolution of the modules G 'and G''as a function of the temperature for the various PS-fc-PMMA block copolymers will be found. Example 2 Uniformity of Self-Assembly of Block Copolymers
Les substrats de silicium sont clivés en pièces de 2.5x2.5cm, puis les particules résiduelles sont éliminées sous un flux d'azote. Optionnellement , les substrats peuvent être nettoyés soit avec un plasma d'oxygène, soit via une solution piranha (mélange H2SO4 / H2O2 en proportion de 2:1 en volume) durant quelques minutes et rincés à l'eau distillée. Une solution de PS-r-PMMA comme décrit par exemple dans WO 2013083919 (typiquement à 2% massique dans le PGMEA (acétate d' éthermonométhylique de propylène glycol) ) de composition S/MMA appropriée est alors déposée sur le substrat propre par spin coating (ou tout autre technique appropriée connue de l'homme du métier pour réaliser ce dépôt) de façon à obtenir un film de ~70nm d'épaisseur. Puis le substrat est recuit durant 220°C durant 10 minutes (ou tout autre couple approprié température/temps) de façon à réaliser le greffage covalent d'une monocouche de molécules sur le substrat ; l'excès de molécules non-greffées est éliminé par un rinçage avec du PGMEA. Par la suite, la solution de copolymère à bloc (« BCP ») PS-j -PMMA ou de mélange de copolymère à bloc (typiquement 1% massique dans le PGMEA) est dispensée sur le substrat fonctionnalisé par spin coating (ou une autre technique) de façon à obtenir un film sec d'épaisseur souhaitée. Le film est alors recuit selon la technique choisie, par exemple un recuit thermique à 230 °C durant 5 minutes, afin de procéder à l'auto-organisation du copolymère à bloc. Enfin, optionnellement le substrat peut être immergé durant quelques minutes dans l'acide acétique puis rincé à l'eau distillée, ou bien le film peut subir un plasma d'oxygène très doux, ou encore une combinaison de ces deux techniques, afin d'augmenter le contraste entre les différentes phase du film de copolymère à bloc pour faciliter d' imagerie des nano-structures par la technique choisie (MEB, AFM...) . The silicon substrates are cleaved into 2.5x2.5cm pieces, then the residual particles are removed under a stream of nitrogen. Optionally, the substrates can be cleaned with either an oxygen plasma or a piranha solution (H 2 SO 4 / H 2 O 2 mixture in a proportion of 2: 1 by volume) for a few minutes and rinsed with distilled water. . A solution of PS-r-PMMA as described for example in WO 2013083919 (typically 2% by weight in PGMEA (propylene glycol ether-methyl acetate)) of appropriate S / MMA composition is then deposited on the clean substrate by spin coating. (Or any other suitable technique known to those skilled in the art to make this deposit) so as to obtain a film ~ 70nm thick. Then the substrate is annealed at 220 ° C for 10 minutes (or any other suitable temperature / time pair) so as to perform the covalent grafting of a monolayer of molecules on the substrate; the excess of non-grafted molecules is removed by rinsing with PGMEA. Subsequently, the solution of block copolymer ("BCP") PS-j-PMMA or block copolymer mixture (typically 1% by mass in the PGMEA) is dispensed on the substrate functionalized by spin coating (or another technique ) so as to obtain a dry film of desired thickness. The film is then annealed according to the chosen technique, for example a thermal annealing at 230 ° C. for 5 minutes, in order to carry out the self-organization of the block copolymer. Finally, optionally the substrate can be immersed for a few minutes in acetic acid and then rinsed with distilled water, or the film can undergo a very mild oxygen plasma, or a combination of these two techniques, in order to increase the contrast between the different phases of the block copolymer film to facilitate the imaging of nano structures by the chosen technique (SEM, AFM ...).
Trois coplymères à blocs synthétisés par polymérisation anionique ou disponibles commercialement sont utilisés. Leurs caractéristiques sont données au tableau 3 : Three block copolymers synthesized by anionic polymerization or commercially available are used. Their characteristics are given in Table 3:
a) Déterminée par SEC (chromatographie d'exclusion de taille)  a) Determined by SEC (size exclusion chromatography)
b) Déterminée par RMN 1E b) Determined by NMR 1 E
c) Déterminée par DMA (analyse dynamique mécanique) , non détectable pour les copolymères 3 et 4. Pour la suite, le mélange de copolymère à bloc réalisé est un mélange entre les BCP de référence n°2 et n°3 , à hauteur de 8:2 (80% de n°2 mélangé avec 20% de n°3) . On note que le mélange peut être réalisé indifféremment soit à l'état solide (par exemple en mélangeant les BCPs sous forme de poudre), soit à l'état liquide (par exemple en mélangeant des solutions des BCPs pur de mêmes concentrations ; si les concentrations des solutions sont différentes, le mélange sera effectué de façon à respecter le ratio fixé) . Le BCP « référence n°l » sert de système de référence pour l'étude. Comparaisons des caractéristiques des films réalisés : c) Determined by DMA (mechanical dynamic analysis), not detectable for copolymers 3 and 4. For the following, the block copolymer mixture produced is a mixture between the reference BCP # 2 and # 3, at 8: 2 (80% of No. 2 mixed with 20% of No. 3). It is noted that the mixture can be made either in the solid state (for example by mixing the BCPs in powder form) or in the liquid state (for example by mixing solutions of pure BCPs of the same concentrations; concentrations of the solutions are different, mixing will be done in order to respect the fixed ratio). PCO "Reference # 1" serves as a reference system for the study. Comparisons of characteristics of realized films:
L' imagerie est réalisée sur un microscope électronique à balayage « CD-SEM H9300 » de chez Hitachi. Les images sont prises à un grossissement constant de 100 000, afin de faciliter la comparaison entre les différents systèmes ; chaque image mesure 1349nm*1349nm. The imaging is performed on a scanning electron microscope "CD - SEM H9300" from Hitachi. Images are taken at a constant magnification of 100,000, to facilitate comparison between different systems; each image measures 1349nm * 1349nm.
Pour l'étude comparative, on a réalisé des films d'épaisseurs équivalentes variables pour chaque système. La comparaison est réalisée pour chaque épaisseur identique. La figure 2 montre que les assemblages réalisés avec les mélange sont bien plus uniformes quelque soient les épaisseurs . Le traitement des images ainsi obtenues est réalisé avec les logiciels appropriés et bien décrits, de façon à extraire les valeurs des périodes et des diamètres des cylindres, ainsi que les variations intrinsèques à chaque image de ces différents paramètres. Les résultats des mesures sont regroupés dans les tableaux suivants 4 et 5 :  For the comparative study, films of varying equivalent thicknesses were produced for each system. The comparison is made for each identical thickness. Figure 2 shows that the assemblies made with the mixture are much more uniform regardless of the thickness. The processing of the images thus obtained is carried out with the appropriate software and well described, so as to extract the values of the periods and diameters of the cylinders, as well as the intrinsic variations in each image of these different parameters. The results of the measurements are grouped in the following tables 4 and 5:
Epaisseur de Période Diamètre moyen Uniformité du diamètrePeriod Thickness Average Diameter Uniformity of Diameter
Tableau 4 film (nm) mesurée (nm) des cylindres (nm) des cylindres (CDU ; nm) Table 4 film (nm) measured (nm) of cylinders (nm) of cylinders (CDU; nm)
30 48,1 17,2 7,7  30 48.1 17.2 7.7
35 48,1 18,5 7,4  35 48.1 18.5 7.4
Copolymère 3  Copolymer 3
40 47,5 18,2 6,4  40 47.5 18.2 6.4
45 46,6 18,0 6,4  45 46.6 18.0 6.4
30 48,4 18,2 2,7  30 48.4 18.2 2.7
Mélange de 35 47,1 17,9 2,0 copolymères 4 et 5 40 47,3 17,4 1,9  Blend of 47.1 17.9 2.0 copolymers 4 and 5 40 47.3 17.4 1.9
45 47,8 18,4 2,0 Epaisseur de film Période mesurée Uniformité de la période45 47.8 18.4 2.0 Film thickness Measured period Uniformity of the period
Tableau 5 (nm) (nm) (nm) Table 5 (nm) (nm) (nm)
30 48,1 6,8  30 48.1 6.8
35 48,1 5,9  35 48.1 5.9
Copolymère 3  Copolymer 3
40 47,5 4,8  40 47.5 4.8
45 46,6 4,2  45 46.6 4.2
30 48,4 2,9  30 48.4 2.9
Mélange de copolymères 4 35 47,1 2,4  Mixture of copolymers 4 35 47,1 2,4
et 5 40 47,3 2,4  and 5 40 47.3 2.4
45 47,8 2,6  45 47.8 2.6
On voit aisément que les mélanges de copolymères à blocs selon l'invention présentent les meilleurs résultats aussi bien en terme d'uniformité de période que d'uniformité de dimension critique.  It is easy to see that the block copolymer mixtures according to the invention have the best results both in terms of period uniformity and critical dimension uniformity.

Claims

Revendications claims
Procédé permettant d'améliorer l'uniformité de dimension critique d'un film ordonné comprenant un copolymère à blocs, le dit film ordonné comprenant un mélange d'au moins un copolymère à blocs présentant une température de transition ordre- désordre (TODT) et au moins une Tg avec au moins un copolymère à blocs ne présentant pas de TODT, ce mélange présentant une TODT inférieure à la TODT du copolymère à blocs seul, le procédé comprenant les étapes suivantes: -Mélanger au moins un copolymère à blocs présentant une TODT et au moins un copolymère à blocs ne présentant pas de TODT dans un solvant, A method of improving the critical dimension uniformity of an ordered film comprising a block copolymer, said ordered film comprising a mixture of at least one block copolymer having an order-disorder transition temperature (TODT) and at least one minus a Tg with at least one block copolymer having no TODT, this mixture having a TODT lower than the TODT of the block copolymer alone, the process comprising the following steps: -mixing at least one block copolymer having a TODT and at least one block copolymer having no TODT in a solvent,
-Déposer ce mélange sur une surface, -Dest this mixture on a surface,
-Cuire le mélange déposé sur la surface à une température comprise entre la Tg la plus haute du copolymère à blocs présentant une TODT et la TODT du mélange . -Bake the mixture deposited on the surface at a temperature between the highest Tg of the block copolymer having a TODT and the TODT of the mixture.
Procédé selon revendication 1 dans lequel le copolymère à blocs présentant une TODT est un copolymère di-blocs. The process of claim 1 wherein the block copolymer having a TODT is a di-block copolymer.
Procédé selon la revendication 2 selon laquelle un des blocs du copolymère di-bloc comprend un monomère styrènique et l'autre bloc comprend un monomère méthacrylique . Procédé selon la revendication 3 selon laquelle un des blocs du copolymère di-bloc comprend du styrène et l'autre bloc comprend du méthacrylate de méthyle . The method of claim 2 wherein one of the blocks of the diblock copolymer comprises a styrene monomer and the other block comprises a methacrylic monomer. The process of claim 3 wherein one block of the di-block copolymer comprises styrene and the other block comprises methyl methacrylate.
Procédé selon la revendication 1 dans lequel le copolymère à blocs ne présentant pas de TODT est un copolymère di-blocs.  The process of claim 1 wherein the block copolymer lacking TODT is a diblock copolymer.
Procédé selon la revendication 5 selon laquelle un des blocs du copolymère di-blocs comprend un monomère styrènique et l'autre bloc comprend un monomère méthacrylique .  The method of claim 5 wherein one of the blocks of the diblock copolymer comprises a styrene monomer and the other block comprises a methacrylic monomer.
Procédé selon la revendication 6 selon laquelle un des blocs du copolymère di-blocs comprend du styrène et l'autre bloc comprend du méthacrylate de méthyle .  The method of claim 6 wherein one of the blocks of the diblock copolymer comprises styrene and the other block comprises methyl methacrylate.
Procédé selon la revendication 1 dans lequel la surface est libre.  The method of claim 1 wherein the surface is free.
Procédé selon la revendication 1 dans lequel la surface est guidée.  The method of claim 1 wherein the surface is guided.
Composition comprenant au moins un copolymère à blocs présentant une TODT et au moins un copolymère à blocs ne présentant pas de TODT.  Composition comprising at least one block copolymer having a TODT and at least one block copolymer having no TODT.
Utilisation du procédé selon l'une des revendications là 9 précédentes pour générer des masques de lithographie ou des films ordonnés.  Use of the method according to one of the preceding claims to generate lithography masks or ordered films.
Masque de lithographie ou film ordonné obtenu selon la revendication 11. Mask lithography or ordered film obtained according to claim 11.
EP16703591.4A 2015-01-21 2016-01-21 Method for improving the critical dimension uniformity of ordered films of block copolymers Withdrawn EP3247747A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1550466A FR3031749B1 (en) 2015-01-21 2015-01-21 METHOD FOR ENHANCING THE CRITICAL DIMENSIONAL UNIFORMITY OF ORDINATED BLOCK COPOLYMER FILMS
PCT/FR2016/050113 WO2016116705A1 (en) 2015-01-21 2016-01-21 Method for improving the critical dimension uniformity of ordered films of block copolymers

Publications (1)

Publication Number Publication Date
EP3247747A1 true EP3247747A1 (en) 2017-11-29

Family

ID=52779889

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16703591.4A Withdrawn EP3247747A1 (en) 2015-01-21 2016-01-21 Method for improving the critical dimension uniformity of ordered films of block copolymers

Country Status (9)

Country Link
US (2) US20180203348A1 (en)
EP (1) EP3247747A1 (en)
JP (1) JP2018506183A (en)
KR (1) KR20170118744A (en)
CN (1) CN107406660A (en)
FR (1) FR3031749B1 (en)
SG (1) SG11201705896UA (en)
TW (1) TWI598395B (en)
WO (1) WO2016116705A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3031748B1 (en) * 2015-01-21 2018-09-28 Arkema France METHOD FOR REDUCING THE ASSEMBLY TIME OF ORDINATED BLOCK COPOLYMER FILMS
FR3075800B1 (en) * 2017-12-21 2020-10-09 Arkema France ANTI-STICK COATS FOR TRANSFER PRINTING PROCESSES
US20220236639A1 (en) * 2021-01-22 2022-07-28 Tokyo Electron Limited Directed self-assembly

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4127682B2 (en) * 1999-06-07 2008-07-30 株式会社東芝 Pattern formation method
US8133534B2 (en) * 2004-11-22 2012-03-13 Wisconsin Alumni Research Foundation Methods and compositions for forming patterns with isolated or discrete features using block copolymer materials
US20110111170A1 (en) * 2008-05-30 2011-05-12 Canon Kabushiki Kaisha Block copolymer film and method of producing the same
US8821978B2 (en) * 2009-12-18 2014-09-02 International Business Machines Corporation Methods of directed self-assembly and layered structures formed therefrom
JP5802740B2 (en) * 2010-04-14 2015-11-04 エーエスエムエル ネザーランズ ビー.ブイ. Method for providing an ordered layer of self-organizable polymer used in lithography
JP5300799B2 (en) * 2010-07-28 2013-09-25 株式会社東芝 Pattern forming method and polymer alloy base material
JP5694109B2 (en) * 2011-09-26 2015-04-01 株式会社東芝 Pattern formation method
FR2983773B1 (en) 2011-12-09 2014-10-24 Arkema France PROCESS FOR PREPARING SURFACES
US8513356B1 (en) * 2012-02-10 2013-08-20 Dow Global Technologies Llc Diblock copolymer blend composition
US9012545B2 (en) * 2012-08-31 2015-04-21 Rohm And Haas Electronic Materials Llc Composition and method for preparing pattern on a substrate

Also Published As

Publication number Publication date
CN107406660A (en) 2017-11-28
US20180203348A1 (en) 2018-07-19
US20200057368A1 (en) 2020-02-20
JP2018506183A (en) 2018-03-01
TW201700593A (en) 2017-01-01
FR3031749A1 (en) 2016-07-22
SG11201705896UA (en) 2017-08-30
KR20170118744A (en) 2017-10-25
TWI598395B (en) 2017-09-11
WO2016116705A1 (en) 2016-07-28
FR3031749B1 (en) 2018-09-28

Similar Documents

Publication Publication Date Title
EP2788442B1 (en) Method for preparing surfaces
FR3037071B1 (en) METHOD FOR REDUCING THE DEFECTIVITY OF A BLOCK COPOLYMER FILM
FR3010413A1 (en) METHOD FOR CONTROLLING THE PERIOD OF A NANO-STRUCTURE ASSEMBLY COMPRISING A MIXTURE OF BLOCK COPOLYMERS
FR3045645B1 (en) METHOD OF REDUCING DEFECTS IN ORDINATED BLOCK COPOLYMER FILM
FR3010414A1 (en) PROCESS FOR OBTAINING NANO-STRUCTURED THICK FILMS OBTAINED FROM A BLOCK COPOLYMER COMPOSITION
EP3247747A1 (en) Method for improving the critical dimension uniformity of ordered films of block copolymers
WO2015004392A1 (en) Method for the perpendicular orientation of nanodomains of block copolymers, using statistical or gradient copolymers, the monomers of which differ at least in part from those present in each of the blocks of the block copolymer
WO2016116706A1 (en) Method for producing thick ordered films and high periods comprising a block copolymer
FR3045643A1 (en) METHOD FOR ENHANCING THE CRITICAL DIMENSIONAL UNIFORMITY OF ORDINATED BLOCK COPOLYMER FILMS
WO2016116707A1 (en) Method for reducing defects in an ordered film made of block copolymer
FR3045644A1 (en) PROCESS FOR OBTAINING THICK ORDERED FILMS AND HIGH PERIODS COMPRISING A BLOCK COPOLYMER
FR3045642A1 (en) METHOD FOR REDUCING THE STRUCTURING TIME OF ORDINATED BLOCK COPOLYMER FILMS
FR3010411A1 (en) METHOD FOR CONTROLLING THE PERIOD OF A NANO-STRUCTURE ASSEMBLY COMPRISING A MIXTURE OF BLOCK COPOLYMERS
WO2016116708A1 (en) Method for reducing the assembly time of ordered films made of block copolymer
EP3191894A1 (en) Method for controlling the defect rate in films obtained with mixtures of block copolymers and polymers
FR3032713A1 (en) METHOD OF REDUCING DEFECTS IN ORDINATED BLOCK COPOLYMER FILM
FR3032714A1 (en) METHOD FOR REDUCING THE TIME OF ASSEMBLY OF ORDERED BLOCK COPOLYMER FILMS
FR3032712A1 (en) PROCESS FOR OBTAINING THICK ORDERED FILMS AND HIGH PERIODS COMPRISING A BLOCK COPOLYMER
FR3101354A1 (en) Neutral underlayer for block copolymer and polymer stack comprising such an underlayer covered with a film of block copolymer

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20170720

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: NICOLET, CELIA

Inventor name: INOUBLI, RABER

Inventor name: CHEVALIER, XAVIER

Inventor name: NAVARRO, CHRISTOPHE

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20180309