EP3242991B1 - Steuerung von mehreren hydraulischen drosseln bei bohrungen mit druckmanagement - Google Patents

Steuerung von mehreren hydraulischen drosseln bei bohrungen mit druckmanagement Download PDF

Info

Publication number
EP3242991B1
EP3242991B1 EP16701218.6A EP16701218A EP3242991B1 EP 3242991 B1 EP3242991 B1 EP 3242991B1 EP 16701218 A EP16701218 A EP 16701218A EP 3242991 B1 EP3242991 B1 EP 3242991B1
Authority
EP
European Patent Office
Prior art keywords
choke
hydraulic
control valve
unit
return
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16701218.6A
Other languages
English (en)
French (fr)
Other versions
EP3242991A1 (de
Inventor
Walter S. Dillard
Paul R. Northam
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Weatherford Technology Holdings LLC
Original Assignee
Weatherford Technology Holdings LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Weatherford Technology Holdings LLC filed Critical Weatherford Technology Holdings LLC
Priority claimed from PCT/US2016/012134 external-priority patent/WO2016111979A1/en
Publication of EP3242991A1 publication Critical patent/EP3242991A1/de
Application granted granted Critical
Publication of EP3242991B1 publication Critical patent/EP3242991B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B21/00Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor
    • E21B21/08Controlling or monitoring pressure or flow of drilling fluid, e.g. automatic filling of boreholes, automatic control of bottom pressure
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B21/00Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor
    • E21B21/01Arrangements for handling drilling fluids or cuttings outside the borehole, e.g. mud boxes
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B21/00Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor
    • E21B21/08Controlling or monitoring pressure or flow of drilling fluid, e.g. automatic filling of boreholes, automatic control of bottom pressure
    • E21B21/085Underbalanced techniques, i.e. where borehole fluid pressure is below formation pressure

Definitions

  • the disclosure relates to a method and apparatus to control multiple hydraulic chokes in a managed pressure drilling system.
  • controlled pressure drilling includes managed pressure drilling (MPD), underbalanced drilling (UBD), and air drilling (AD) operations.
  • MPD managed pressure drilling
  • UBD underbalanced drilling
  • AD air drilling
  • MPD Managed Pressure Drilling
  • a MPD system uses a closed and pressurizable mud-return system, a rotating control device (RCD), and a choke manifold to control the wellbore pressure during drilling.
  • RCD rotating control device
  • the various MPD techniques used in the industry allow operators to drill successfully in conditions where conventional technology simply will not work by allowing operators to manage the pressure in a controlled fashion during drilling.
  • the bit drills through a formation, and pores become exposed and opened.
  • formation fluids i . e ., gas
  • the drilling system pumps this gas, drilling mud, and the formation cuttings back to the surface.
  • the pressure drops, meaning more gas from the formation may be able to enter the wellbore. If the hydrostatic pressure is less than the formation pressure, then even more gas can enter the wellbore.
  • FIG. 1A schematically shows a controlled pressure drilling system 10 according to the prior art.
  • this system 10 is a Managed Pressure Drilling (MPD) system having a rotating control device (RCD) 12 from which a drill string and drill bit (not shown) extend downhole in a wellbore through a formation.
  • the rotating control device 12 can include any suitable pressure containment device that keeps the wellbore closed at all time while the wellbore is being drilled.
  • the system 10 also includes mud pumps (not shown), a standpipe (not shown), a mud tank (not shown), a mud gas separator 18, and various flow lines (14, 16, etc.), as well as other conventional components.
  • the MPD system 10 includes an automated choke manifold 20 that is incorporated into the other components of the system 10.
  • a drilling system 10 with a choke manifold 20 is the Secure Drilling TM System available from Weatherford. Details related to such a system are disclosed in U.S. Pat. No. 7,044,237 .
  • the automated choke manifold 20 manages pressure during drilling and is incorporated into the system 10 downstream from the rotating control device 12 and upstream from the gas separator 18.
  • the manifold 20 has chokes 22A-B, choke actuators 24A-B, a mass flow meter 26, pressure sensors, a hydraulic power unit 50 to actuate the chokes 22A-B, and a controller 40 to control operation of the manifold 20.
  • the system 10 uses the rotating control device 12 to keep the well closed to atmospheric conditions. Fluid leaving the well flows through the automated choke manifold 20, which measures return flow and density using the flow meter 26 installed in line with the chokes 22A-B. Software components of the manifold 20 then compare the flow rate in and out of the wellbore, the injection pressure (or standpipe pressure), the surface backpressure (measured upstream from the drilling chokes 22), the position of the chokes 22A-B, and the mud density. Comparing these variables, the system 10 identifies minute downhole influxes and losses on a real-time basis and to manage the annulus pressure during drilling. All of the monitored information can be displayed for the operator at the controller 40.
  • the controller 40 monitors for any deviations in values and alerts the operators of any problems that might be caused by a fluid influx into the wellbore from the formation or a loss of drilling mud into the formation. In addition, the controller 40 can automatically detect, control, and circulate out such influxes by operating the chokes 22A-B on the choke manifold 20 with the power unit 50.
  • a possible fluid influx can be noted when the "flow out” value (measured from flow meter 26) deviates from the “flow in” value (measured from the mud pumps).
  • an alert notifies the operator to apply the brake until it is confirmed safe to drill. Meanwhile, no change in the mud pump rate is needed at this stage.
  • the controller 40 automatically closes the choke 22A-B to a determined degree to increase surface backpressure in the wellbore annulus and stop the influx.
  • the controller 40 circulates the influx out of the well by automatically adjusting the surface backpressure, thereby increasing the downhole circulating pressure and avoiding a secondary influx.
  • a hydraulic power unit 50 includes a hydraulic reservoir 52, one or more hydraulic pumps 54, one or more accumulators 56, hydraulic choke control valves 58A-B, and necessary piping, fittings, and valves.
  • Each choke 22A-B located in the choke unit 20 has its actuator 24A-B connected by flow paths 55A-B to one of the hydraulic choke control valves 58A-B located in hydraulic power unit 50.
  • This type of arrangement is disclosed in US 2005/092523 , which shows chokes located with actuators and connected by flowpaths to a remote hydraulic power unit/control valve unit of a console.
  • the flow-paths 55A-B for the hydraulic power used to control the chokes 22A-B may need to travel some distance (e.g ., 12 ft. or so). Additionally, the flow paths 55A-B can be coupled with various bends, not necessarily depicted in this schematic view. Further, wave pulses may tend to originate from the pump(s) 54 and travel along the flow paths 55A-B.
  • any hydraulic hoses used for the flow-paths 55A-B can elastically expand ( i . e ., expand diametrically) as the hydraulic pressure increases.
  • the hydraulic hoses used for the flow-paths 55A-B can elastically contract ( i . e ., contract diametrically) as the hydraulic pressure decreases.
  • the hoses for the flow-paths 55A-B can effectively respond as an accumulator and can further exaggerate or reduce the responsiveness of the choke actuators.
  • the distance, bends, wave pulses, and the like can create hydraulic frictional losses and delays that hinder the response of the chokes 22A-B during operations.
  • the hydraulic losses in the flow-path 55A can be different from the hydraulic losses in flow-path 55B depending on construction of the materials or differences in geometries. This can lead to a different system response between the chokes 22A-B, which requires a more complex control algorithm for the controller 40. For example, one hydraulic choke 22A may tend to respond more slowly than the other choke 22B.
  • electric actuation of the chokes 22A-B may have faster response times (i.e., closing and opening times for the chokes 22A-B) when compared to hydraulic actuation.
  • electric actuation on the drilling rig may not be desirable or even possible for various reasons so that hydraulic actuation may be preferred.
  • an assembly is used with remote hydraulic power to control flow of wellbore fluid in a drilling system, according to appended claim 1.
  • a skid or a manifold can have the at least one choke, the at least one hydraulic actuator, and the at least one control valve disposed thereon.
  • a housing can have the at least one control valve and can be connected to the hydraulic actuator.
  • At least one accumulator can be disposed with the at least one choke and can be coupled to the supply upstream of the at least one control valve.
  • the at least one control valve can couple to the hydraulic actuator with a pair of pilot-operated check valves disposed in fluid communication between the at least one control valve and the hydraulic actuator.
  • a stage tank can be disposed with the at least one choke and can receive the return of the remote hydraulic power from the at least one control valve.
  • a pump in fluid communication with the stage tank can be operable to pump the return from the stage tank.
  • the at least one control valve can be electrically operable between a first state of no flow, a second state of parallel flow, and a third state of cross flow between the supply and the return with the at least one hydraulic actuator.
  • a controller can control operation of at least the at least one control valve.
  • the assembly can have at least one choke, at least one hydraulic actuator, and at least one control valve.
  • the assembly can have at least two ( e . g ., two or more) chokes.
  • At least two hydraulic actuators can be disposed respectively with the at least two chokes to actuate operation of the respective chokes in response to hydraulic power.
  • At least two control valves can be disposed respectively with the at least two chokes. The at least two control valves can control supply of the remote hydraulic power respectively to the at least two hydraulic actuators and can control return of the remote hydraulic power respectively from the at least two hydraulic actuators.
  • a first juncture disposed with the at least two chokes can split a common supply line of the supply to at least two supply legs connected respectively to the at least two control valves.
  • a second juncture disposed with the at least two chokes can combine at least two return legs connected respectively from the at least two control valves to a common return line of the return.
  • the assembly can further include a source of the remote hydraulic power having a supply line and a return line.
  • the at least one choke, the at least one hydraulic actuator, and the at least one control valve can be disposed away from the source of the remote hydraulic power.
  • a first skid can have the source, while a second skid can have the at least one choke, the at least one hydraulic actuator, and the at least one control valve disposed thereon.
  • the source can include a reservoir and a pump.
  • the reservoir is coupled to the return line
  • the pump is coupled to the reservoir and the supply line and is operable to provide the hydraulic power via the supply line.
  • the source can also have an accumulator accumulating the supply of the remote hydraulic power.
  • a method is used with a remote source of hydraulic power to control flow of wellbore fluid in a drilling system, according to appended claim 14.
  • Disposing the at least one hydraulic actuator and the at least one control valve with the at least one choke can involve disposing them together on a skid.
  • the method can further include disposing at least one accumulator with the at least one choke, and accumulating the supply of the hydraulic power upstream of the at least one control valve.
  • the method can further include disposing a pair of pilot-operated check valves in fluid communication between the at least one control valve and the hydraulic actuator, and controlling the supply and the return with the pair of pilot-operated check valves.
  • the method can further include receiving the return of the hydraulic power from the at least one control valve at a stage tank disposed with the at least one choke, and pumping the return from the stage tank to the remote source with a pump disposed with the at least one choke.
  • disposing the at least one hydraulic actuator and the at least one control valve with the at least one choke can involve housing the at least one control valve to the hydraulic actuator. Also, controlling with the at least one control valve can include electrically operating the at least one control valve between a first state of no flow, a second state of parallel flow, and a third state of cross flow between the supply and return with the at least one hydraulic actuator.
  • Systems and methods disclosed herein can be used to control one or more hydraulic chokes in a managed pressure drilling system.
  • teachings of the present disclosure can apply equally to other types of controlled pressure drilling systems, such as other MPD systems (Pressurized Mud-Cap Drilling, Returns-Flow-Control Drilling, Dual Gradient Drilling, etc.) as well as to Underbalanced Drilling (UBD) systems, as will be appreciated by one skilled in the art having the benefit of the present disclosure.
  • MPD Pressure Mud-Cap Drilling, Returns-Flow-Control Drilling, Dual Gradient Drilling, etc.
  • UBD Underbalanced Drilling
  • a hydraulic power unit 120 includes a hydraulic reservoir 122, one or more hydraulic pumps 124, and necessary piping, fittings and valves. These components can be housed together on a skid or manifold.
  • a supply line 125A from the pumps 124 communicates the hydraulic power to the choke unit 100 positioned some distance away from the power unit 120.
  • a return line 125B from the control unit 100 returns the hydraulics to the reservoir 122.
  • Each choke 110A-B is actuated by a hydraulic actuator 112A-B controlled by one of the hydraulic choke control valves 140A-B located with the choke 110A-B.
  • the independent control valves 140A-B are used to mitigate differences in the chokes 110A-B and provide independent feedback control of the chokes 110A-B.
  • Pilot-actuated check valves 142 can be disposed between the control valves 140A-B and the chokes' actuators 112A-B, as shown in Fig 6 .
  • These components of the choke unit 100 can be housed together on a skid or manifold.
  • the control valve 140A-B typically has three settings, such as a closed setting closing off both supply and return lines 125A-B, an open setting permitting parallel flow through the lines 125A-B, and a cross-setting that switches the flow direction between the lines 125A-B.
  • the control valves 140A-B can be operated by solenoid valves or the like with control signals from control lines A and B of the controller 40, as noted herein.
  • the hydraulic power directed by the control valve 140A-B operates the respective hydraulic actuators 112A-B for the chokes 11 0A-B.
  • the supply line 125A communicates hydraulic power from the power unit 120 to a supply splitter 127A, which splits the communication to parallel supply legs 129A connected to the control valves 140A-B. Conversely, parallel return legs 129B connect from the control valves 140A-B to a return splitter 127B, which combines the communication to the return line 125B.
  • any hydraulic hoses used for the flow-paths can elastically expand ( i . e ., expand diametrically) as the hydraulic pressure increases and can elastically contract ( i . e ., contract diametrically) as the hydraulic pressure decreases.
  • measurable increases and decreases in hydraulic fluid volume can occur due to the pressure changes and can exaggerate or reduce the responsiveness of the choke actuators.
  • each hydraulic choke control valve 140A-B can be arranged such that the lengths of hydraulic lines 129A-B after the splitters 127A-B to the control valves 140A-B can match and the number of fittings between the splitters 127A-B and each choke 110A-B can be the same.
  • the hydraulic lines 125A-B from the power unit 120 to the splitters 127A-B do not necessarily need a matching length and the like, although they could.
  • each choke actuator 112A-B having the control valves 140A-B located directly adjacent to each choke actuator 112A-B allows the one main supply line 125A and matching supply legs 129A after the supply splitter 127A to be used to operate both the chokes 110A-B.
  • the single hydraulic supply line 125A splits off with the supply splitter or juncture 127A at or near the location of the chokes 140A-B to the matching supply legs 129A so that the hydraulic losses to each choke 110A-B can be relatively equal.
  • This split arrangement of the return legs 129B, return splitter 127B, and the single return line 125B can also be used for the hydraulic returns of the chokes 110A-B to the power unit 120.
  • the arrangement of lines 125A-B, splitters 127A-B, and split legs 129A-B in this manner can make any potential hydraulic losses between each choke 110A-B and the hydraulic power relatively the same.
  • one or more accumulators 126 can be located with the chokes 110A-B instead of being located at the power unit 120. With the accumulators 126 located in this way, the hydraulic response time for the set of two or more chokes 110A-B can be reduced. Using the accumulator(s) 126 can also minimize the response time should the choke unit 100 use a single choke 110.
  • any potential wave pules generated by the pumps 124 can be dampened, which can improve the choke response.
  • a damper such as a biased piston, could be added downstream of the one or more pumps 124.
  • the particular type of pump 124 used can further reduce any potential pulses.
  • the common supply line 125A which can use larger or more rigid tubing, to deliver hydraulic fluid near the chokes 11 0A-B before splitting at the splitter 127 to supply the dual control valves 140A-B and choke actuators 112A-B can reduce effects of tubing oscillation in the hydraulic system.
  • having shorter lines of communication after the accumulator 126 can reduce the total volume of hydraulic fluid between the accumulator 126 and chokes' actuators 112A-B, thus providing faster response.
  • one accumulator 126 can couple to both the return and the supply. Connection of the accumulator 126 to the return may allow for bleed down of the accumulator 126 and may not be needed.
  • the use of two accumulators 126, one for each of the split legs 129A-B may help improve the chokes' response times by shortening the distance between the stored energy and the hydraulic actuators 112A-B. Having two smaller accumulators 126 compared to a single larger one may also allow for different space requirements on the skid or manifold for the choke unit 100. If human intervention is required to bypass the chokes 110A-B, it may be facilitated by having the accumulator 126 close to the chokes 110A-B since the accumulator 126 needs to be isolated before the choke 110A-B is manually bypassed.
  • lighter components can be used in the solenoid of the control valve 140 to improve its response.
  • Quick disconnects can be used for the various couplings and fittings in the hydraulic system. If the quick disconnect affects the choke's response, this could be mitigated by moving the quick disconnect to just upstream of the actuators 112A-B.
  • each actuator 112A-B and choke 110A-B can be integrated as a unit. This makes sense from an assembly standpoint since different choke-actuator combinations are not typically used.
  • Figure 2A shows an arrangement where the hydraulic power unit 120 can be implemented as one skid or manifold that couples by the lines 125A-B to the choke unit 100 implemented as another skid or manifold having dual chokes 110A-B and the other components.
  • the hydraulic power unit 120 can be implemented as one skid or manifold that couples by the lines 125A-B to the choke unit 100 implemented as another skid or manifold having dual chokes 110A-B and the other components.
  • the hydraulic power unit 120 can be implemented as one skid or manifold that couples by the lines 125A-B to the choke unit 100 implemented as another skid or manifold having dual chokes 110A-B and the other components.
  • the hydraulic power unit 120 can operate a single choke 110, which can be housed on another skid.
  • the hydraulic power unit 120 includes the hydraulic reservoir 122, the one or more hydraulic pumps 124, the accumulator 126, and necessary piping, fittings, and valves. These components can be housed together on a skid or manifold.
  • First supply and return lines 123A from the pumps 124 communicate the hydraulic power and returns between the power unit 120 and the choke unit 100 positioned some distance away from the power unit 120.
  • second supply and return lines 123B communicate the hydraulic power and returns between the power unit 120 and the choke unit 100.
  • Each choke 110A-B is actuated by its hydraulic actuator 112A-B controlled by one of the hydraulic choke control valves 140A-B located with the choke 110A-B.
  • the localized control valves 140A-B are used to mitigate differences in the chokes 11 0A-B and provide independent feedback control of the chokes 11 0A-B.
  • Pilot-actuated check valves 142 can be disposed between the control valves 140A-B and the chokes' actuators 112A-B.
  • FIGs 3-5 schematically illustrate additional arrangements hydraulic power units 120 and choke units 100 according to the present disclosure.
  • the hydraulic power unit 120 includes a tank or reservoir 122, a pump 124, and an accumulator 126. These components are implemented on a skid or manifold for the unit 120 and connect by supply and return lines 125A-B to the choke unit 100, which can be housed on a separate skid or manifold.
  • the choke unit 100 includes a choke 110, a hydraulic actuator 112, and a control valve 140. Pilot-operated check valves 142 may be used between the control valve 140 and the choke's actuator 112. This arrangement places the hydraulic switching of hydraulic power from the power unit 120 at, near, or on the choke 110 of the choke unit 100, which can have a number of benefits as disclosed herein.
  • Figure 4 shows a similar arrangement to Figure 3 except that the choke unit 100 includes the accumulator 126 on its skid near the choke 110.
  • the accumulator 126 on the supply line 125A can have a number of benefits stemming from its close proximity to the choke 110.
  • Backpressure in the hydraulic return line 125B downstream of the choke 110 can be another consideration in choke response.
  • the return tank 122 can be moved closer to the choke 110 to reduce backpressure.
  • a second tank can be added to the return to help deal with backpressure.
  • Figure 5 shows an additional arrangement in which components ( e . g ., control valve 140, actuator 112, choke 110, accumulator 126, etc.) are disposed at the choke unit 100.
  • the choke unit 100 further includes an auxiliary pump 150 and a stage tank 152 on the return from the control valve 140.
  • Expended fluid in the collection tank 152 can then be pumped by the auxiliary pump 150 to the reservoir tank 122 on the hydraulic power unit 120 via the return line 125B.
  • the stage tank 152 can include a level sensor 154.
  • the auxiliary pump 150 can pump fluid back to the unit's main tank 122. Since the distance along the return line 125B can be quite long (e.g., 3.66 m (12 ft), or so), use of the auxiliary pump 150 and collection tank 152 can facilitate the travel of the expelled fluid back to the reservoir tank 122 by reducing the line friction and any potential backpressure that the expelled fluid might otherwise encounter.
  • stage tank 152 as in Figure 5 immediately downstream of the choke 110 can improve sluggish choke response.
  • the hydraulic fluid from the choke actuator 112 can empty directly at atmospheric pressure into the stage tank 152 to then be pumped back by the auxiliary pump 150. This can eliminate the extended and closed return line typically used to return expelled fluid to the hydraulic power unit 120.
  • sluggish choke response can be caused by backpressure in both the supply and return of the hydraulic power.
  • integrating hydraulic components closer to choke 110 and its actuator 112 can improve the sluggish choke response and improve operation. With that said, some of these hydraulic components can be affixed to, integrated into, or otherwise made part of the choke 110 and its actuator 112.
  • Figure 6 shows an arrangement of a control valve 140, a hydraulic actuator 112, and a choke 110 for the choke unit 100.
  • the supply line 125A and return line 125B couple by fittings 162 to an adapter or housing 160.
  • the housing 160 can hold the control valve 140 and its related components, such as the pilot-actuated check valves 142 and solenoid (not shown).
  • the supply line 125A can include an accumulator 126 that is mounted on the choke unit 100 near the choke 110.
  • the return line 125B can couple to the collection tank 152 and auxiliary pump 150 as before to return expended hydraulics from the choke 110.
  • the housing 160 can be affixed to or incorporated into the hydraulic actuator 112 for the choke 110.
  • the housing 160 can be sealed in communication with hydraulic ports 114 of the hydraulic actuator 112 using gaskets, seals, etc.
  • the housing 160 can be used to retrofit or integrate with an existing choke actuator and can be configured to do so in a number of ways.
  • the hydraulic actuator 112 for the choke 110 can be a worm gear actuator.
  • High-pressure fluid communicated from the control valve 140 to a first port 114A can rotate the worm gear to close the choke 110 while low-pressure fluid is expelled from a second port 114B.
  • high-pressure fluid communicated from the control valve 140 to the second port 114B can rotate the worm gear to open the choke 110 while low-pressure fluid is expelled from the first port 114A.
  • the control valve 140 directs the high-pressure fluid from the supply line 125A and returns the low-pressure fluid to the return line 125B.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Fluid-Pressure Circuits (AREA)

Claims (18)

  1. Baugruppe, die mit hydraulischer Fernleistung verwendet wird, die zwischen einer Leistungseinheit (120) und einer Drosseleinheit (100) über eine Zufuhrleitung (125A) und eine Rückführungsleitung (125B) übermittelt wird, um einen Strom von Bohrlochfluid in einem Bohrsystem zu steuern, wobei die Leistungseinheit (120) in einiger Entfernung weg von der Drosseleinheit (100) positioniert ist, wobei die Baugruppe Folgendes umfasst:
    mindestens eine Drossel (110), die an der Drosseleinheit (100) angeordnet ist und funktionsfähig ist, um den Strom des Bohrlochfluids zu anderen Abschnitten des Bohrsystems (10) zu steuern;
    mindestens einen hydraulischen Stellantrieb (112), der mit der mindestens einen Drossel (110) an der Drosseleinheit (100) angeordnet ist und einen Betrieb der mindestens einen Drossel (110) als Reaktion auf die hydraulischen Fernleistung auslöst; und
    mindestens ein Steuerventil (140), das mit der mindestens einen Drossel (110) an der Drosseleinheit (100) angeordnet ist, wobei das mindestens eine Steuerventil (140) eine Zufuhr der hydraulischen Fernleistung von der Leistungseinheit (120) zu dem mindestens einen hydraulischen Stellantrieb (112) über die Zufuhrleitung (125A) steuert und eine Rückführung der hydraulischen Fernleistung von dem mindestens einen hydraulischen Stellantrieb (112) zu der Leistungseinheit (120) über die Rückführungsleitung (125B) steuert.
  2. Baugruppe nach Anspruch 1, die ferner eines von Folgendem umfasst:
    ein Gleitstück, das die Drosseleinheit (100) aufnimmt, welche mindestens eine Drossel (110), den mindestens einen hydraulischen Stellantrieb (112) und das mindestens eine Steuerventil (140) an derselben angeordnet aufweist,
    mindestens einen Akkumulator (126), der sich mit der mindestens einen Drossel (110) an der Drosseleinheit befindet und stromaufwärts von dem mindestens einen Steuerventil (140) an die Zufuhr gekoppelt ist;
    ein Gehäuse, welches das mindestens eine Steuerventil (140) aufweist und mit dem mindestens einen hydraulischen Stellantrieb (120) verbunden ist; und
    eine Steuerung (40), die den Betrieb mindestens des mindestens einen Steuerventils (40) steuert.
  3. Baugruppe nach Anspruch 1, wobei sich das mindestens eine Steuerventil (140) an den mindestens einen hydraulischen Stellantrieb (112) mit einem Paar von vorgesteuerten Rückschlagventilen (142) koppelt, die in Fluidverbindung zwischen dem mindestens einen Steuerventil (140) und dem mindestens einen hydraulischen Stellantrieb (112) angeordnet sind.
  4. Baugruppe nach Anspruch 1, die ferner Folgendes umfasst:
    einen Stufentank (152), der sich mit der mindestens einen Drossel (110) an der Drosseleinheit (100) befindet und die Rückführung der hydraulischen Fernleistung von dem mindestens einen Steuerventil (140) empfängt; und
    eine Stufenpumpe (150), die in Fluidverbindung mit dem Stufentank (152) steht und die funktionsfähig ist, um die Rückführung von dem Stufentank (152) zu pumpen.
  5. Baugruppe nach einem der Ansprüche 1 bis 4, wobei das mindestens eine Steuerventil (140) zwischen einem ersten Zustand ohne Strom, einem zweiten Zustand mit parallelem Strom und einem dritten Zustand mit Querstrom zwischen der Zufuhr und der Rückführung mit dem mindestens einen hydraulischen Stellantrieb (112) elektrisch betreibbar ist.
  6. Baugruppe nach Anspruch 5, wobei:
    der mindestens eine hydraulische Stellantrieb (112) einen Schneckenrad-Stellantrieb umfasst, der einen ersten und einen zweiten Hydraulikanschluss (114A-B) umfasst, dafür konfiguriert, einen Betrieb der mindestens einen Drossel (110) als Reaktion auf die hydraulische Fernleistung, die mit dem ersten und dem zweiten Hydraulikanschluss (114A-B) übermittelt wird, auszulösen;
    das mindestens eine Steuerventil (140) in dem ersten Zustand sowohl die Zufuhr-(125A) als auch die Rückführungsleitung (125B) absperrt;
    das mindestens eine Steuerventil (140) in dem zweiten und dem dritten Zustand die Zufuhr (125A) der Zufuhrleitung und die Rückführung (125B) der Rückführungsleitung (125B) der hydraulischen Fernleistung mit dem ersten und dem zweiten Hydraulikanschluss (114A-B) verbindet;
    das mindestens eine Steuerventil (140) in dem zweiten Zustand mit parallelem Strom, um die mindestens eine Drossel (110) zu schließen, dafür konfiguriert ist, die Zufuhr der hydraulischen Fernleistung von der Zufuhrleitung (125A) zu dem ersten Hydraulikanschluss (114A) des mindestens einen hydraulischen Stellantriebs (112) zu steuern, und dafür konfiguriert ist, die Rückführung der hydraulischen Fernleistung von dem zweiten Hydraulikanschluss (114B) des mindestens einen hydraulischen Stellantriebs (112) zu der Rückführungsleitung (125B) zu der zweiten entfernten Position zu steuern; und
    das mindestens eine Steuerventil (140) in dem dritten Zustand mit Querstrom, um die mindestens eine Drossel (110) zu öffnen, dafür konfiguriert ist, die Zufuhr der Zufuhrleitung (125A) und die Rückführung der Rückführungsleitung (125B) im Verhältnis zu dem ersten und dem zweiten Hydraulikanschluss (114A-B) zu kreuzen.
  7. Baugruppe nach Anspruch 1, wobei die mindestens eine Drossel (110) zwei oder mehr Drosseln (110) umfasst, die funktionsfähig sind, um den Strom des Bohrlochfluids zu den anderen Abschnitten des Bohrsystems (10) zu steuern;
    wobei der mindestens hydraulische Stellantrieb (112) zwei oder mehr hydraulische Stellantriebe (112) umfasst, die an der Drosseleinheit (100) jeweils mit den zwei oder mehr Drosseln (110) angeordnet sind und einen Betrieb der jeweiligen Drosseln (110) als Reaktion auf die hydraulische Fernleistung auslösen; und wobei das mindestens eine Steuerventil (112) zwei oder mehr Steuerventile (112) umfasst, die an der Drosseleinheit (100) jeweils mit den zwei oder mehr Drosseln (110) angeordnet sind, wobei die zwei oder mehr Steuerventile (112) die Zufuhr der hydraulischen Fernleistung jeweils zu den zwei oder mehr hydraulischen Stellantrieben (112) steuern und die Rückführung der hydraulischen Fernleistung jeweils von den zwei oder mehr hydraulischen Stellantrieben (112) steuern.
  8. Baugruppe nach Anspruch 7, die Folgendes umfasst:
    eine erste Verbindungsstelle, die sich mit den zwei oder mehr Drosseln (110) an der Drosseleinheit (100) befindet und die Zufuhrleitung (125A) der Zufuhr in zwei oder mehr Zufuhrzweige (129A) teilt, die jeweils mit den zwei oder mehr Steuerventilen (110) verbunden sind; und
    eine zweite Verbindungsstelle (127B), die sich bei den zwei oder mehr Drosseln (110) befindet und zwei oder mehr Rückführungszweige (129B) kombiniert, die jeweils von den zwei oder mehr Steuerventilen (110) mit der Rückführungsleitung (125B) der Rückführung verbunden sind.
  9. Baugruppe nach Anspruch 7, die ferner mindestens einen Akkumulator umfasst, der sich mit den zwei oder mehr Drosseln (110) an der Drosseleinheit (100) befindet und stromaufwärts von den zwei oder mehr Steuerventilen (100) an die Zufuhr gekoppelt ist,
    wobei sich die zwei oder mehr Steuerventile (110) jeweils an den jeweiligen hydraulischen Stellantrieb (112) mit einem Paar von vorgesteuerten Rückschlagventilen (142) koppeln, die in Fluidverbindung zwischen dem jeden Steuerventil (11) und dem jeweiligen hydraulischen Stellantrieb (112) angeordnet sind.
  10. Baugruppe nach Anspruch 1, die ferner eine Quelle (120) der hydraulischen Fernleistung umfasst, die an der hydraulischen Fernleistungseinheit (120) angeordnet ist und eine Rückführungsleitung (125B) aufweist, wobei die mindestens eine Drossel (110), der mindestens eine hydraulische Stellantrieb (112) und das mindestens eine Steuerventil (140) an der Drosseleinheit (100) entfernt von der Quelle (120) der hydraulischen Fernleistung angeordnet sind, wobei die Quelle Folgendes umfasst:
    ein Reservoir (122), das an die Rückführungsleitung (125B) gekoppelt ist; und
    eine Quellenpumpe (124), die an das Reservoir (122) und die Zufuhrleitung (125A) gekoppelt ist, wobei die Quellenpumpe (124) funktionsfähig ist, um die hydraulische Leistung über die Zufuhrleitung (125A) bereitzustellen.
  11. Baugruppe nach Anspruch 10, die ferner Folgendes umfasst:
    einen Stufentank (152), der sich mit der mindestens einen Drossel (110) an der Drosseleinheit befindet und die Rückführung der hydraulischen Fernleistung von dem mindestens einen Steuerventil (140) empfängt; und
    eine Stufenpumpe (150), die in Fluidverbindung mit dem Stufentank (152) steht und die funktionsfähig ist, um die Rückführung von dem Stufentank (152) zu der Quelle (120) zu pumpen.
  12. Baugruppe nach Anspruch 10, wobei die Quelle einen Akkumulator (126) umfasst, der die Zufuhr der hydraulischen Fernleistung sammelt.
  13. Baugruppe nach Anspruch 10, die ein erstes Gleitstück, das die Leistungseinheit (120) aufnimmt, welche die Quelle (120) aufweist, und ein zweites Gleitstück, das die Drosseleinheit (100) aufnimmt, welche die mindestens eine Drossel (110), die mindestens eine Drossel (110), den mindestens einen hydraulischen Stellantrieb (112) und das mindestens eine Steuerventil (140) an derselben angeordnet aufweist, umfasst.
  14. Verfahren, das mit einer entfernten Quelle von hydraulischer Leistung verwendet wird, die zwischen einer Leistungseinheit (120) und einer Drosseleinheit (100) über eine Zufuhrleitung (125A) übermittelt wird, um einen Strom von Bohrlochfluid in einem Bohrsystem (10) zu steuern, wobei die Leistungseinheit in einiger Entfernung weg von der Drosseleinheit (100) positioniert ist, wobei das Verfahren Folgendes umfasst:
    Anordnen mindestens eines hydraulischen Stellantriebs (112) und mindestens eines Steuerventils (140) an der Drosseleinheit (100) mit mindestens einer Drossel (110);
    Steuern des Stroms des Bohrlochfluids zu anderen Abschnitten des Bohrsystems (10) durch Betreiben der mindestens einen Drossel (110) mit dem mindestens einen hydraulischen Stellantrieb (112); und
    Betreiben des hydraulischen Stellantriebs mit der hydraulischen Leistung, die zwischen der hydraulischen Leistungseinheit (120) und der Drosseleinheit (100) übermittelt wird, durch
    Steuern, mit dem mindestens einen Steuerventil (140), das an der Drosseleinheit (100) angeordnet ist, einer Zufuhr der hydraulischen Leistung von der entfernten Quelle an der Drosseleinheit (100) zu dem mindestens einen hydraulischen Stellantrieb, der an der Drosseleinheit (100) angeordnet ist, und
    Steuern, mit dem mindestens einen Steuerventil (140), das an der Drosseleinheit (100) angeordnet ist, einer Rückführung der hydraulischen Leistung zu der entfernten Quelle, die an der hydraulischen Leistungseinheit (120) angeordnet ist, von dem mindestens einen hydraulischen Stellantrieb (112), der an der Drosseleinheit (100) angeordnet ist.
  15. Verfahren nach Anspruch 14, wobei das Anordnen des mindestens einen hydraulischen Stellantriebs (112) und des mindestens einen Steuerventils (140) mit der mindestens einen Drossel (110) das Anordnen derselben zusammen an einem Gleitstück für die Drosseleinheit (100) umfasst; oder
    wobei das Anordnen des mindestens einen hydraulischen Stellantriebs (112) und des mindestens einen Steuerventils (140) mit der mindestens einen Drossel (110) an der Drosseleinheit (100) das Aufnehmen des mindestens einen Steuerventils (140) an dem hydraulischen Stellantrieb (112) umfasst.
  16. Verfahren nach Anspruch 14, das ferner eines von Folgendem umfasst:
    Anordnen mindestens eines Akkumulators (126) an der Drosseleinheit (100) mit der mindestens einen Drossel (11) und Sammeln der Zufuhr von hydraulischer Leistung stromaufwärts von dem mindestens einen Steuerventil (140);
    Anordnen eines Paares von vorgesteuerten Rückschlagventilen (142) in Fluidverbindung zwischen dem mindestens einen Steuerventil (140) und dem mindestens einen hydraulischen Stellantrieb (112) und Steuern der Zufuhr und der Rückführung mit dem Paar von vorgesteuerten Rückschlagventilen; und
    Empfangen der Rückführung der hydraulischen Leistung von dem mindestens einen Steuerventil (140) an einem einen Stufentank (152), der an der Drosseleinheit (100) mit der mindestens einen Drossel (110) angeordnet ist, und
    Pumpen der Rückführung von dem Stufentank (152) zu der entfernten Quelle mit einer Pumpe, die an der Drosseleinheit (100) mit der mindestens einen Drossel (110) angeordnet ist.
  17. Verfahren nach einem der Ansprüche 14 bis 16, wobei das Steuern mit dem mindestens einen Steuerventil (140) das elektrische Betreiben des mindestens einen Steuerventils (140) zwischen einem ersten Zustand ohne Strom, einem zweiten Zustand mit parallelem Strom und einem dritten Zustand mit Querstrom zwischen der Zufuhr und der Rückführung mit dem mindestens einen hydraulischen Stellantrieb umfasst.
  18. Verfahren nach Anspruch 17,
    wobei der mindestens eine hydraulische Stellantrieb (112) einen Schneckenrad-Stellantrieb umfasst, der einen ersten und einen zweiten Hydraulikanschluss (114A-B) umfasst, dafür konfiguriert, einen Betrieb der mindestens einen Drossel (110) als Reaktion auf die hydraulische Fernleistung, die mit dem ersten und dem zweiten Hydraulikanschluss (114A-B) übermittelt wird, auszulösen;
    wobei das Steuern Folgendes umfasst:
    Steuern, mit dem mindestens einen Steuerventil (140), das an der Drosseleinheit (100) angeordnet ist, in dem zweiten Zustand mit parallelem Strom, um die mindestens eine Drossel (110) zu schließen, der Zufuhr der hydraulischen Leistung über die Zufuhrleitung (125A) von der entfernten Quelle zu dem ersten Hydraulikanschluss (114A) des mindestens einen hydraulischen Stellantriebs (112), und Steuern der Rückführung der hydraulischen Leistung über die Rückführungsleitung (125B) zu der entfernten Quelle von dem mindestens einen hydraulischen Stellantrieb (112); und
    Steuern, mit dem mindestens einen Steuerventil in dem dritten Zustand mit Querstrom, um die mindestens eine Drossel (110) zu öffnen, der Zufuhr der hydraulischen Leistung über die Zufuhrleitung (125A) von der entfernten Quelle zu dem zweiten Hydraulikanschluss (114B) des mindestens einen hydraulischen Stellantriebs (112), und Steuern der Rückführung der hydraulischen Leistung zu der entfernten Quelle über die Rückführungsleitung (125B) von dem mindestens einen hydraulischen Stellantrieb (140).
EP16701218.6A 2015-01-05 2016-01-05 Steuerung von mehreren hydraulischen drosseln bei bohrungen mit druckmanagement Active EP3242991B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562099936P 2015-01-05 2015-01-05
PCT/US2016/012134 WO2016111979A1 (en) 2015-01-05 2016-01-05 Control of multiple hydraulic chokes in managed pressure drilling

Publications (2)

Publication Number Publication Date
EP3242991A1 EP3242991A1 (de) 2017-11-15
EP3242991B1 true EP3242991B1 (de) 2024-04-10

Family

ID=60021586

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16701218.6A Active EP3242991B1 (de) 2015-01-05 2016-01-05 Steuerung von mehreren hydraulischen drosseln bei bohrungen mit druckmanagement

Country Status (2)

Country Link
EP (1) EP3242991B1 (de)
BR (1) BR112017014564B1 (de)

Also Published As

Publication number Publication date
BR112017014564A2 (pt) 2018-04-10
EP3242991A1 (de) 2017-11-15
BR112017014564B1 (pt) 2022-08-09

Similar Documents

Publication Publication Date Title
US8757272B2 (en) Method and apparatus for precise control of wellbore fluid flow
US7954552B2 (en) Overriding a primary control subsystem of a downhole tool
CA2972462C (en) Control of multiple hydraulic chokes in managed pressure drilling
CA2884920C (en) Method for initiating fluid circulation using dual drill pipe
US10287843B2 (en) Pressure assisted blowout preventer
US20180245411A1 (en) Method of operating a drilling system
US10746205B2 (en) Flow responsiveness enhancer for a blowout preventer
CN106401512A (zh) 一种利用控压钻井自动分流管汇的控压钻井系统及其控压钻井方法
EP3242991B1 (de) Steuerung von mehreren hydraulischen drosseln bei bohrungen mit druckmanagement
US11732550B2 (en) Low power consumption electro-hydraulic system with pilot cartridge
US9346634B2 (en) System and method for passing matter in a flow passage
CN105408578A (zh) 阀致动器

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170627

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190627

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

111Z Information provided on other rights and legal means of execution

Free format text: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Effective date: 20200511

R11X Information provided on other rights and legal means of execution (corrected)

Free format text: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Effective date: 20200511

111Z Information provided on other rights and legal means of execution

Free format text: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Effective date: 20200511

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230922

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20231102

RIN1 Information on inventor provided before grant (corrected)

Inventor name: NORTHAM, PAUL R.

Inventor name: DILLARD, WALTER S.

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602016086803

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D