EP3240880A1 - Lubricating oil compositions with engine wear protection - Google Patents
Lubricating oil compositions with engine wear protectionInfo
- Publication number
- EP3240880A1 EP3240880A1 EP15825747.7A EP15825747A EP3240880A1 EP 3240880 A1 EP3240880 A1 EP 3240880A1 EP 15825747 A EP15825747 A EP 15825747A EP 3240880 A1 EP3240880 A1 EP 3240880A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- carboxylic acid
- acid
- lubricating oil
- surfactant
- mixtures
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 213
- 239000010687 lubricating oil Substances 0.000 title claims abstract description 107
- 229910052751 metal Chemical class 0.000 claims abstract description 96
- 239000002184 metal Chemical class 0.000 claims abstract description 96
- 239000000654 additive Substances 0.000 claims abstract description 69
- 239000003921 oil Substances 0.000 claims abstract description 61
- 150000003839 salts Chemical class 0.000 claims abstract description 52
- 239000004094 surface-active agent Substances 0.000 claims abstract description 51
- 238000000034 method Methods 0.000 claims abstract description 49
- 239000000446 fuel Substances 0.000 claims abstract description 42
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 claims abstract description 22
- 235000021355 Stearic acid Nutrition 0.000 claims abstract description 14
- 239000002736 nonionic surfactant Substances 0.000 claims abstract description 14
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 claims abstract description 14
- 239000008117 stearic acid Substances 0.000 claims abstract description 14
- -1 alkyl carbohydrate esters Chemical class 0.000 claims description 95
- 150000001732 carboxylic acid derivatives Chemical class 0.000 claims description 95
- 239000002199 base oil Substances 0.000 claims description 45
- 229920000642 polymer Polymers 0.000 claims description 42
- 229910052717 sulfur Inorganic materials 0.000 claims description 26
- 239000011593 sulfur Substances 0.000 claims description 26
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 25
- 229910052698 phosphorus Inorganic materials 0.000 claims description 18
- 239000011574 phosphorus Substances 0.000 claims description 18
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 17
- 239000011777 magnesium Substances 0.000 claims description 17
- 125000004432 carbon atom Chemical group C* 0.000 claims description 16
- 239000003054 catalyst Substances 0.000 claims description 16
- 235000014113 dietary fatty acids Nutrition 0.000 claims description 15
- 239000000194 fatty acid Substances 0.000 claims description 15
- 229930195729 fatty acid Natural products 0.000 claims description 15
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 14
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 14
- 229910052749 magnesium Inorganic materials 0.000 claims description 14
- 230000003647 oxidation Effects 0.000 claims description 14
- 238000007254 oxidation reaction Methods 0.000 claims description 14
- 150000001298 alcohols Chemical class 0.000 claims description 12
- 150000001412 amines Chemical class 0.000 claims description 10
- 125000001931 aliphatic group Chemical group 0.000 claims description 9
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 claims description 9
- 125000000129 anionic group Chemical group 0.000 claims description 8
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 claims description 8
- 150000004665 fatty acids Chemical class 0.000 claims description 7
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 claims description 7
- WQEPLUUGTLDZJY-UHFFFAOYSA-N pentadecanoic acid Chemical compound CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 claims description 7
- XDOFQFKRPWOURC-UHFFFAOYSA-N 16-methylheptadecanoic acid Chemical compound CC(C)CCCCCCCCCCCCCCC(O)=O XDOFQFKRPWOURC-UHFFFAOYSA-N 0.000 claims description 6
- JYCQQPHGFMYQCF-UHFFFAOYSA-N 4-tert-Octylphenol monoethoxylate Chemical compound CC(C)(C)CC(C)(C)C1=CC=C(OCCO)C=C1 JYCQQPHGFMYQCF-UHFFFAOYSA-N 0.000 claims description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 6
- 229920000463 Poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) Polymers 0.000 claims description 6
- 239000010949 copper Substances 0.000 claims description 6
- GHVNFZFCNZKVNT-UHFFFAOYSA-N decanoic acid Chemical compound CCCCCCCCCC(O)=O GHVNFZFCNZKVNT-UHFFFAOYSA-N 0.000 claims description 6
- UKMSUNONTOPOIO-UHFFFAOYSA-N docosanoic acid Chemical compound CCCCCCCCCCCCCCCCCCCCCC(O)=O UKMSUNONTOPOIO-UHFFFAOYSA-N 0.000 claims description 6
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 claims description 6
- WWZKQHOCKIZLMA-UHFFFAOYSA-N octanoic acid Chemical compound CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 claims description 6
- 229920002113 octoxynol Polymers 0.000 claims description 6
- 229910052763 palladium Inorganic materials 0.000 claims description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 6
- 150000007933 aliphatic carboxylic acids Chemical class 0.000 claims description 5
- 239000002280 amphoteric surfactant Substances 0.000 claims description 5
- 239000003945 anionic surfactant Substances 0.000 claims description 5
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 claims description 5
- 125000002091 cationic group Chemical group 0.000 claims description 5
- 239000003093 cationic surfactant Substances 0.000 claims description 5
- VKOBVWXKNCXXDE-UHFFFAOYSA-N icosanoic acid Chemical compound CCCCCCCCCCCCCCCCCCCC(O)=O VKOBVWXKNCXXDE-UHFFFAOYSA-N 0.000 claims description 5
- 229910052723 transition metal Inorganic materials 0.000 claims description 5
- 150000003624 transition metals Chemical class 0.000 claims description 5
- 239000005639 Lauric acid Substances 0.000 claims description 4
- 229920003171 Poly (ethylene oxide) Polymers 0.000 claims description 4
- NWGKJDSIEKMTRX-AAZCQSIUSA-N Sorbitan monooleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O NWGKJDSIEKMTRX-AAZCQSIUSA-N 0.000 claims description 4
- 239000010931 gold Substances 0.000 claims description 4
- KEMQGTRYUADPNZ-UHFFFAOYSA-N heptadecanoic acid Chemical compound CCCCCCCCCCCCCCCCC(O)=O KEMQGTRYUADPNZ-UHFFFAOYSA-N 0.000 claims description 4
- XMHIUKTWLZUKEX-UHFFFAOYSA-N hexacosanoic acid Chemical compound CCCCCCCCCCCCCCCCCCCCCCCCCC(O)=O XMHIUKTWLZUKEX-UHFFFAOYSA-N 0.000 claims description 4
- 238000002156 mixing Methods 0.000 claims description 4
- ISYWECDDZWTKFF-UHFFFAOYSA-N nonadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCCC(O)=O ISYWECDDZWTKFF-UHFFFAOYSA-N 0.000 claims description 4
- FBUKVWPVBMHYJY-UHFFFAOYSA-N nonanoic acid Chemical compound CCCCCCCCC(O)=O FBUKVWPVBMHYJY-UHFFFAOYSA-N 0.000 claims description 4
- 231100000572 poisoning Toxicity 0.000 claims description 4
- 230000000607 poisoning effect Effects 0.000 claims description 4
- 229920006395 saturated elastomer Polymers 0.000 claims description 4
- SZHOJFHSIKHZHA-UHFFFAOYSA-N tridecanoic acid Chemical compound CCCCCCCCCCCCC(O)=O SZHOJFHSIKHZHA-UHFFFAOYSA-N 0.000 claims description 4
- ZDPHROOEEOARMN-UHFFFAOYSA-N undecanoic acid Chemical compound CCCCCCCCCCC(O)=O ZDPHROOEEOARMN-UHFFFAOYSA-N 0.000 claims description 4
- JNYAEWCLZODPBN-JGWLITMVSA-N (2r,3r,4s)-2-[(1r)-1,2-dihydroxyethyl]oxolane-3,4-diol Chemical class OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O JNYAEWCLZODPBN-JGWLITMVSA-N 0.000 claims description 3
- 235000021357 Behenic acid Nutrition 0.000 claims description 3
- 239000005632 Capric acid (CAS 334-48-5) Substances 0.000 claims description 3
- 239000005635 Caprylic acid (CAS 124-07-2) Substances 0.000 claims description 3
- 235000021314 Palmitic acid Nutrition 0.000 claims description 3
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 claims description 3
- 229940116226 behenic acid Drugs 0.000 claims description 3
- 150000002314 glycerols Chemical class 0.000 claims description 3
- 235000019359 magnesium stearate Nutrition 0.000 claims description 3
- GSGDTSDELPUTKU-UHFFFAOYSA-N nonoxybenzene Chemical compound CCCCCCCCCOC1=CC=CC=C1 GSGDTSDELPUTKU-UHFFFAOYSA-N 0.000 claims description 3
- 229960002446 octanoic acid Drugs 0.000 claims description 3
- 235000011007 phosphoric acid Nutrition 0.000 claims description 3
- 150000003016 phosphoric acids Chemical class 0.000 claims description 3
- 229950004959 sorbitan oleate Drugs 0.000 claims description 3
- TWJNQYPJQDRXPH-UHFFFAOYSA-N 2-cyanobenzohydrazide Chemical compound NNC(=O)C1=CC=CC=C1C#N TWJNQYPJQDRXPH-UHFFFAOYSA-N 0.000 claims description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 2
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 claims description 2
- 235000021353 Lignoceric acid Nutrition 0.000 claims description 2
- CQXMAMUUWHYSIY-UHFFFAOYSA-N Lignoceric acid Natural products CCCCCCCCCCCCCCCCCCCCCCCC(=O)OCCC1=CC=C(O)C=C1 CQXMAMUUWHYSIY-UHFFFAOYSA-N 0.000 claims description 2
- 235000021360 Myristic acid Nutrition 0.000 claims description 2
- TUNFSRHWOTWDNC-UHFFFAOYSA-N Myristic acid Natural products CCCCCCCCCCCCCC(O)=O TUNFSRHWOTWDNC-UHFFFAOYSA-N 0.000 claims description 2
- 239000005643 Pelargonic acid Substances 0.000 claims description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 2
- 229910052797 bismuth Inorganic materials 0.000 claims description 2
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 108010011222 cyclo(Arg-Pro) Proteins 0.000 claims description 2
- LBVKKIZHXBASRJ-UHFFFAOYSA-K di(hexadecanoyloxy)bismuthanyl hexadecanoate Chemical compound [Bi+3].CCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCC([O-])=O LBVKKIZHXBASRJ-UHFFFAOYSA-K 0.000 claims description 2
- GRBFCEINWFRDOG-UHFFFAOYSA-K di(octadecanoyloxy)bismuthanyl octadecanoate Chemical compound [Bi+3].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O GRBFCEINWFRDOG-UHFFFAOYSA-K 0.000 claims description 2
- 230000000694 effects Effects 0.000 claims description 2
- FARYTWBWLZAXNK-WAYWQWQTSA-N ethyl (z)-3-(methylamino)but-2-enoate Chemical compound CCOC(=O)\C=C(\C)NC FARYTWBWLZAXNK-WAYWQWQTSA-N 0.000 claims description 2
- 150000002334 glycols Chemical class 0.000 claims description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 2
- 229910052737 gold Inorganic materials 0.000 claims description 2
- CKDDRHZIAZRDBW-UHFFFAOYSA-N henicosanoic acid Chemical compound CCCCCCCCCCCCCCCCCCCCC(O)=O CKDDRHZIAZRDBW-UHFFFAOYSA-N 0.000 claims description 2
- IPCSVZSSVZVIGE-UHFFFAOYSA-M hexadecanoate Chemical compound CCCCCCCCCCCCCCCC([O-])=O IPCSVZSSVZVIGE-UHFFFAOYSA-M 0.000 claims description 2
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- 235000014593 oils and fats Nutrition 0.000 claims description 2
- MWMPEAHGUXCSMY-UHFFFAOYSA-N pentacosanoic acid Chemical compound CCCCCCCCCCCCCCCCCCCCCCCCC(O)=O MWMPEAHGUXCSMY-UHFFFAOYSA-N 0.000 claims description 2
- 229910052697 platinum Inorganic materials 0.000 claims description 2
- 229910052709 silver Inorganic materials 0.000 claims description 2
- 239000004332 silver Substances 0.000 claims description 2
- LTYHQUJGIQUHMS-UHFFFAOYSA-M silver;hexadecanoate Chemical compound [Ag+].CCCCCCCCCCCCCCCC([O-])=O LTYHQUJGIQUHMS-UHFFFAOYSA-M 0.000 claims description 2
- ORYURPRSXLUCSS-UHFFFAOYSA-M silver;octadecanoate Chemical compound [Ag+].CCCCCCCCCCCCCCCCCC([O-])=O ORYURPRSXLUCSS-UHFFFAOYSA-M 0.000 claims description 2
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 claims description 2
- XEZVDURJDFGERA-UHFFFAOYSA-N tricosanoic acid Chemical compound CCCCCCCCCCCCCCCCCCCCCCC(O)=O XEZVDURJDFGERA-UHFFFAOYSA-N 0.000 claims description 2
- 229940012185 zinc palmitate Drugs 0.000 claims description 2
- GJAPSKMAVXDBIU-UHFFFAOYSA-L zinc;hexadecanoate Chemical compound [Zn+2].CCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCC([O-])=O GJAPSKMAVXDBIU-UHFFFAOYSA-L 0.000 claims description 2
- 238000002485 combustion reaction Methods 0.000 abstract description 16
- 150000001735 carboxylic acids Chemical class 0.000 abstract description 10
- 239000002270 dispersing agent Substances 0.000 description 54
- 239000000314 lubricant Substances 0.000 description 54
- 235000019198 oils Nutrition 0.000 description 53
- 239000002585 base Substances 0.000 description 49
- 239000003599 detergent Substances 0.000 description 47
- 239000000463 material Substances 0.000 description 41
- 238000009472 formulation Methods 0.000 description 36
- 150000002148 esters Chemical class 0.000 description 28
- 239000001993 wax Substances 0.000 description 28
- 125000001183 hydrocarbyl group Chemical group 0.000 description 22
- 229910045601 alloy Inorganic materials 0.000 description 21
- 239000000956 alloy Substances 0.000 description 21
- 230000000996 additive effect Effects 0.000 description 20
- 239000003795 chemical substances by application Substances 0.000 description 20
- 125000003118 aryl group Chemical group 0.000 description 18
- 239000010705 motor oil Substances 0.000 description 18
- 239000004034 viscosity adjusting agent Substances 0.000 description 18
- 150000002430 hydrocarbons Chemical class 0.000 description 17
- 229920013639 polyalphaolefin Polymers 0.000 description 17
- 125000000217 alkyl group Chemical group 0.000 description 16
- 239000003963 antioxidant agent Substances 0.000 description 16
- 229930195733 hydrocarbon Natural products 0.000 description 16
- 239000003607 modifier Substances 0.000 description 16
- 229920005862 polyol Polymers 0.000 description 15
- 239000007866 anti-wear additive Substances 0.000 description 14
- 239000002131 composite material Substances 0.000 description 13
- 229910052739 hydrogen Inorganic materials 0.000 description 13
- 239000001257 hydrogen Substances 0.000 description 13
- 239000000047 product Substances 0.000 description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 12
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 12
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerol Natural products OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 12
- 238000000576 coating method Methods 0.000 description 12
- 150000001875 compounds Chemical class 0.000 description 12
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 12
- 239000002253 acid Substances 0.000 description 11
- 229910052799 carbon Inorganic materials 0.000 description 11
- 239000000919 ceramic Substances 0.000 description 11
- 150000002989 phenols Chemical class 0.000 description 11
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 10
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 10
- 150000001336 alkenes Chemical class 0.000 description 10
- 239000011575 calcium Substances 0.000 description 10
- 230000001050 lubricating effect Effects 0.000 description 10
- 230000008569 process Effects 0.000 description 10
- 238000012360 testing method Methods 0.000 description 10
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 9
- 229910052791 calcium Inorganic materials 0.000 description 9
- 239000003112 inhibitor Substances 0.000 description 9
- 229910052755 nonmetal Inorganic materials 0.000 description 9
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 8
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 8
- 239000012530 fluid Substances 0.000 description 8
- 239000007789 gas Substances 0.000 description 8
- 239000007788 liquid Substances 0.000 description 8
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 7
- 150000001342 alkaline earth metals Chemical class 0.000 description 7
- 239000002518 antifoaming agent Substances 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 7
- 239000012141 concentrate Substances 0.000 description 7
- 239000003085 diluting agent Substances 0.000 description 7
- 150000007522 mineralic acids Chemical class 0.000 description 7
- 229910052757 nitrogen Inorganic materials 0.000 description 7
- 150000003077 polyols Chemical class 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 7
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical compound CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 6
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 6
- 229920002367 Polyisobutene Polymers 0.000 description 6
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 6
- 150000004982 aromatic amines Chemical class 0.000 description 6
- ZMRQTIAUOLVKOX-UHFFFAOYSA-L calcium;diphenoxide Chemical compound [Ca+2].[O-]C1=CC=CC=C1.[O-]C1=CC=CC=C1 ZMRQTIAUOLVKOX-UHFFFAOYSA-L 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 229920001577 copolymer Polymers 0.000 description 6
- 238000005461 lubrication Methods 0.000 description 6
- 150000002739 metals Chemical class 0.000 description 6
- 239000002480 mineral oil Substances 0.000 description 6
- 229910052750 molybdenum Inorganic materials 0.000 description 6
- 239000011733 molybdenum Substances 0.000 description 6
- 239000000178 monomer Substances 0.000 description 6
- 150000007524 organic acids Chemical class 0.000 description 6
- 239000002530 phenolic antioxidant Substances 0.000 description 6
- 229920000058 polyacrylate Polymers 0.000 description 6
- 229920000193 polymethacrylate Polymers 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 229910001868 water Inorganic materials 0.000 description 6
- 239000004711 α-olefin Substances 0.000 description 6
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 5
- CRSBERNSMYQZNG-UHFFFAOYSA-N 1-dodecene Chemical compound CCCCCCCCCCC=C CRSBERNSMYQZNG-UHFFFAOYSA-N 0.000 description 5
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 5
- FALRKNHUBBKYCC-UHFFFAOYSA-N 2-(chloromethyl)pyridine-3-carbonitrile Chemical class ClCC1=NC=CC=C1C#N FALRKNHUBBKYCC-UHFFFAOYSA-N 0.000 description 5
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 5
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 5
- 239000004215 Carbon black (E152) Substances 0.000 description 5
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical class [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 5
- 241000282326 Felis catus Species 0.000 description 5
- 239000005642 Oleic acid Substances 0.000 description 5
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 5
- 229910052783 alkali metal Inorganic materials 0.000 description 5
- 150000001340 alkali metals Chemical class 0.000 description 5
- WTEOIRVLGSZEPR-UHFFFAOYSA-N boron trifluoride Chemical compound FB(F)F WTEOIRVLGSZEPR-UHFFFAOYSA-N 0.000 description 5
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 description 5
- 230000006872 improvement Effects 0.000 description 5
- 239000004615 ingredient Substances 0.000 description 5
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 5
- UFWIBTONFRDIAS-UHFFFAOYSA-N naphthalene-acid Natural products C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 5
- 230000007935 neutral effect Effects 0.000 description 5
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 5
- 239000003208 petroleum Substances 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- RINCXYDBBGOEEQ-UHFFFAOYSA-N succinic anhydride Chemical class O=C1CCC(=O)O1 RINCXYDBBGOEEQ-UHFFFAOYSA-N 0.000 description 5
- 229940014800 succinic anhydride Drugs 0.000 description 5
- KZNICNPSHKQLFF-UHFFFAOYSA-N succinimide Chemical compound O=C1CCC(=O)N1 KZNICNPSHKQLFF-UHFFFAOYSA-N 0.000 description 5
- AFFLGGQVNFXPEV-UHFFFAOYSA-N 1-decene Chemical compound CCCCCCCCC=C AFFLGGQVNFXPEV-UHFFFAOYSA-N 0.000 description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 4
- 239000005977 Ethylene Substances 0.000 description 4
- 238000005727 Friedel-Crafts reaction Methods 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- MQHWFIOJQSCFNM-UHFFFAOYSA-L Magnesium salicylate Chemical compound [Mg+2].OC1=CC=CC=C1C([O-])=O.OC1=CC=CC=C1C([O-])=O MQHWFIOJQSCFNM-UHFFFAOYSA-L 0.000 description 4
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 4
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 4
- 150000007513 acids Chemical class 0.000 description 4
- AVVIDTZRJBSXML-UHFFFAOYSA-L calcium;2-carboxyphenolate;dihydrate Chemical compound O.O.[Ca+2].OC1=CC=CC=C1C([O-])=O.OC1=CC=CC=C1C([O-])=O AVVIDTZRJBSXML-UHFFFAOYSA-L 0.000 description 4
- 230000003197 catalytic effect Effects 0.000 description 4
- 239000007795 chemical reaction product Substances 0.000 description 4
- 238000004821 distillation Methods 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000003345 natural gas Substances 0.000 description 4
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 4
- 229920001983 poloxamer Polymers 0.000 description 4
- 229920000098 polyolefin Polymers 0.000 description 4
- 238000000746 purification Methods 0.000 description 4
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 4
- 231100000241 scar Toxicity 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- 229920002554 vinyl polymer Polymers 0.000 description 4
- 239000011701 zinc Substances 0.000 description 4
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 3
- RZRNAYUHWVFMIP-KTKRTIGZSA-N 1-oleoylglycerol Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC(O)CO RZRNAYUHWVFMIP-KTKRTIGZSA-N 0.000 description 3
- YIWUKEYIRIRTPP-UHFFFAOYSA-N 2-ethylhexan-1-ol Chemical compound CCCCC(CC)CO YIWUKEYIRIRTPP-UHFFFAOYSA-N 0.000 description 3
- 229910015900 BF3 Inorganic materials 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 229910019142 PO4 Inorganic materials 0.000 description 3
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 3
- 239000004480 active ingredient Substances 0.000 description 3
- 239000008186 active pharmaceutical agent Substances 0.000 description 3
- 125000003342 alkenyl group Chemical group 0.000 description 3
- 150000001491 aromatic compounds Chemical class 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 238000009835 boiling Methods 0.000 description 3
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 3
- 229910002091 carbon monoxide Inorganic materials 0.000 description 3
- 238000004517 catalytic hydrocracking Methods 0.000 description 3
- 239000007859 condensation product Substances 0.000 description 3
- 238000006482 condensation reaction Methods 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 230000000994 depressogenic effect Effects 0.000 description 3
- 239000000539 dimer Substances 0.000 description 3
- 229940069096 dodecene Drugs 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- 229940072082 magnesium salicylate Drugs 0.000 description 3
- TVMXDCGIABBOFY-UHFFFAOYSA-N n-Octanol Natural products CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 235000021317 phosphate Nutrition 0.000 description 3
- 229920000768 polyamine Polymers 0.000 description 3
- 235000013824 polyphenols Nutrition 0.000 description 3
- PDEDQSAFHNADLV-UHFFFAOYSA-M potassium;disodium;dinitrate;nitrite Chemical compound [Na+].[Na+].[K+].[O-]N=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O PDEDQSAFHNADLV-UHFFFAOYSA-M 0.000 description 3
- 150000003333 secondary alcohols Chemical class 0.000 description 3
- 125000001424 substituent group Chemical group 0.000 description 3
- 150000003900 succinic acid esters Chemical class 0.000 description 3
- 150000003871 sulfonates Chemical class 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- WMYJOZQKDZZHAC-UHFFFAOYSA-H trizinc;dioxido-sulfanylidene-sulfido-$l^{5}-phosphane Chemical class [Zn+2].[Zn+2].[Zn+2].[O-]P([O-])([S-])=S.[O-]P([O-])([S-])=S WMYJOZQKDZZHAC-UHFFFAOYSA-H 0.000 description 3
- 229910052725 zinc Inorganic materials 0.000 description 3
- GQEZCXVZFLOKMC-UHFFFAOYSA-N 1-hexadecene Chemical compound CCCCCCCCCCCCCCC=C GQEZCXVZFLOKMC-UHFFFAOYSA-N 0.000 description 2
- QPUYECUOLPXSFR-UHFFFAOYSA-N 1-methylnaphthalene Chemical compound C1=CC=C2C(C)=CC=CC2=C1 QPUYECUOLPXSFR-UHFFFAOYSA-N 0.000 description 2
- HFDVRLIODXPAHB-UHFFFAOYSA-N 1-tetradecene Chemical compound CCCCCCCCCCCCC=C HFDVRLIODXPAHB-UHFFFAOYSA-N 0.000 description 2
- NFIDBGJMFKNGGQ-UHFFFAOYSA-N 2-(2-methylpropyl)phenol Chemical compound CC(C)CC1=CC=CC=C1O NFIDBGJMFKNGGQ-UHFFFAOYSA-N 0.000 description 2
- TXBCBTDQIULDIA-UHFFFAOYSA-N 2-[[3-hydroxy-2,2-bis(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propane-1,3-diol Chemical compound OCC(CO)(CO)COCC(CO)(CO)CO TXBCBTDQIULDIA-UHFFFAOYSA-N 0.000 description 2
- IHQZONJYGAQKGK-UHFFFAOYSA-N 2-tert-butyl-4-dodecylphenol Chemical compound CCCCCCCCCCCCC1=CC=C(O)C(C(C)(C)C)=C1 IHQZONJYGAQKGK-UHFFFAOYSA-N 0.000 description 2
- XCIGNJPXXAPZDP-UHFFFAOYSA-N 2-tert-butyl-4-heptylphenol Chemical compound CCCCCCCC1=CC=C(O)C(C(C)(C)C)=C1 XCIGNJPXXAPZDP-UHFFFAOYSA-N 0.000 description 2
- ZXENURKTAAQNOU-UHFFFAOYSA-N 2-tert-butyl-4-octylphenol Chemical compound CCCCCCCCC1=CC=C(O)C(C(C)(C)C)=C1 ZXENURKTAAQNOU-UHFFFAOYSA-N 0.000 description 2
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- IRIAEXORFWYRCZ-UHFFFAOYSA-N Butylbenzyl phthalate Chemical compound CCCCOC(=O)C1=CC=CC=C1C(=O)OCC1=CC=CC=C1 IRIAEXORFWYRCZ-UHFFFAOYSA-N 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 2
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 2
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- XQVWYOYUZDUNRW-UHFFFAOYSA-N N-Phenyl-1-naphthylamine Chemical class C=1C=CC2=CC=CC=C2C=1NC1=CC=CC=C1 XQVWYOYUZDUNRW-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 125000002252 acyl group Chemical group 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 150000003973 alkyl amines Chemical class 0.000 description 2
- 125000002877 alkyl aryl group Chemical group 0.000 description 2
- 125000002947 alkylene group Chemical group 0.000 description 2
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000010775 animal oil Substances 0.000 description 2
- 230000003078 antioxidant effect Effects 0.000 description 2
- 229910052728 basic metal Inorganic materials 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 150000001642 boronic acid derivatives Chemical class 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- KBPLFHHGFOOTCA-UHFFFAOYSA-N caprylic alcohol Natural products CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000003749 cleanliness Effects 0.000 description 2
- 239000003245 coal Substances 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- WUPRCGRRQUZFAB-DEGKJRJSSA-N corrin Chemical compound N1C2CC\C1=C\C(CC/1)=N\C\1=C/C(CC\1)=N/C/1=C\C1=NC2CC1 WUPRCGRRQUZFAB-DEGKJRJSSA-N 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- VJHINFRRDQUWOJ-UHFFFAOYSA-N dioctyl sebacate Chemical compound CCCCC(CC)COC(=O)CCCCCCCCC(=O)OCC(CC)CCCC VJHINFRRDQUWOJ-UHFFFAOYSA-N 0.000 description 2
- LQZZUXJYWNFBMV-UHFFFAOYSA-N dodecan-1-ol Chemical compound CCCCCCCCCCCCO LQZZUXJYWNFBMV-UHFFFAOYSA-N 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- FKRCODPIKNYEAC-UHFFFAOYSA-N ethyl propionate Chemical compound CCOC(=O)CC FKRCODPIKNYEAC-UHFFFAOYSA-N 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 239000003502 gasoline Substances 0.000 description 2
- 238000005227 gel permeation chromatography Methods 0.000 description 2
- RZRNAYUHWVFMIP-HXUWFJFHSA-N glycerol monolinoleate Natural products CCCCCCCCC=CCCCCCCCC(=O)OC[C@H](O)CO RZRNAYUHWVFMIP-HXUWFJFHSA-N 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 2
- 125000000743 hydrocarbylene group Chemical group 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 239000003879 lubricant additive Substances 0.000 description 2
- 150000002680 magnesium Chemical class 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- 239000002905 metal composite material Substances 0.000 description 2
- 239000006078 metal deactivator Substances 0.000 description 2
- 229910001092 metal group alloy Inorganic materials 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 235000010446 mineral oil Nutrition 0.000 description 2
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 description 2
- 229910052982 molybdenum disulfide Inorganic materials 0.000 description 2
- 150000002763 monocarboxylic acids Chemical class 0.000 description 2
- 239000002086 nanomaterial Substances 0.000 description 2
- 125000001624 naphthyl group Chemical group 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- BDJRBEYXGGNYIS-UHFFFAOYSA-N nonanedioic acid Chemical compound OC(=O)CCCCCCCC(O)=O BDJRBEYXGGNYIS-UHFFFAOYSA-N 0.000 description 2
- 150000002843 nonmetals Chemical class 0.000 description 2
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 2
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920001195 polyisoprene Polymers 0.000 description 2
- 229920002959 polymer blend Polymers 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 229920001451 polypropylene glycol Polymers 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 150000003138 primary alcohols Chemical class 0.000 description 2
- 238000007639 printing Methods 0.000 description 2
- 239000010734 process oil Substances 0.000 description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 2
- 239000001294 propane Substances 0.000 description 2
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 2
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 2
- 229960004889 salicylic acid Drugs 0.000 description 2
- 150000003902 salicylic acid esters Chemical class 0.000 description 2
- 150000003870 salicylic acids Chemical class 0.000 description 2
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 2
- 239000003079 shale oil Substances 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 229920006132 styrene block copolymer Polymers 0.000 description 2
- TYFQFVWCELRYAO-UHFFFAOYSA-N suberic acid Chemical compound OC(=O)CCCCCCC(O)=O TYFQFVWCELRYAO-UHFFFAOYSA-N 0.000 description 2
- 239000001384 succinic acid Substances 0.000 description 2
- 229960002317 succinimide Drugs 0.000 description 2
- 230000002195 synergetic effect Effects 0.000 description 2
- 229920001169 thermoplastic Polymers 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 150000003608 titanium Chemical class 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- 150000003626 triacylglycerols Chemical class 0.000 description 2
- QXJQHYBHAIHNGG-UHFFFAOYSA-N trimethylolethane Chemical compound OCC(C)(CO)CO QXJQHYBHAIHNGG-UHFFFAOYSA-N 0.000 description 2
- 235000015112 vegetable and seed oil Nutrition 0.000 description 2
- 239000008158 vegetable oil Substances 0.000 description 2
- SXYOAESUCSYJNZ-UHFFFAOYSA-L zinc;bis(6-methylheptoxy)-sulfanylidene-sulfido-$l^{5}-phosphane Chemical compound [Zn+2].CC(C)CCCCCOP([S-])(=S)OCCCCCC(C)C.CC(C)CCCCCOP([S-])(=S)OCCCCCC(C)C SXYOAESUCSYJNZ-UHFFFAOYSA-L 0.000 description 2
- CIRMGZKUSBCWRL-LHLOQNFPSA-N (e)-10-[2-(7-carboxyheptyl)-5,6-dihexylcyclohex-3-en-1-yl]dec-9-enoic acid Chemical compound CCCCCCC1C=CC(CCCCCCCC(O)=O)C(\C=C\CCCCCCCC(O)=O)C1CCCCCC CIRMGZKUSBCWRL-LHLOQNFPSA-N 0.000 description 1
- AFSHUZFNMVJNKX-CLFAGFIQSA-N 1,2-dioleoylglycerol Chemical class CCCCCCCC\C=C/CCCCCCCC(=O)OCC(CO)OC(=O)CCCCCCC\C=C/CCCCCCCC AFSHUZFNMVJNKX-CLFAGFIQSA-N 0.000 description 1
- JEJLGIQLPYYGEE-UHFFFAOYSA-N 1,2-dipalmitoylglycerol Chemical class CCCCCCCCCCCCCCCC(=O)OCC(CO)OC(=O)CCCCCCCCCCCCCCC JEJLGIQLPYYGEE-UHFFFAOYSA-N 0.000 description 1
- RLPSARLYTKXVSE-UHFFFAOYSA-N 1-(1,3-thiazol-5-yl)ethanamine Chemical compound CC(N)C1=CN=CS1 RLPSARLYTKXVSE-UHFFFAOYSA-N 0.000 description 1
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 1
- QHZLMUACJMDIAE-UHFFFAOYSA-N 1-monopalmitoylglycerol Chemical class CCCCCCCCCCCCCCCC(=O)OCC(O)CO QHZLMUACJMDIAE-UHFFFAOYSA-N 0.000 description 1
- HBXWUCXDUUJDRB-UHFFFAOYSA-N 1-octadecoxyoctadecane Chemical compound CCCCCCCCCCCCCCCCCCOCCCCCCCCCCCCCCCCCC HBXWUCXDUUJDRB-UHFFFAOYSA-N 0.000 description 1
- HANWHVWXFQSQGJ-UHFFFAOYSA-N 1-tetradecoxytetradecane Chemical compound CCCCCCCCCCCCCCOCCCCCCCCCCCCCC HANWHVWXFQSQGJ-UHFFFAOYSA-N 0.000 description 1
- DKCPKDPYUFEZCP-UHFFFAOYSA-N 2,6-di-tert-butylphenol Chemical compound CC(C)(C)C1=CC=CC(C(C)(C)C)=C1O DKCPKDPYUFEZCP-UHFFFAOYSA-N 0.000 description 1
- SZATXRHXOOLEFV-UHFFFAOYSA-N 2,6-ditert-butyl-4-dodecylphenol Chemical compound CCCCCCCCCCCCC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 SZATXRHXOOLEFV-UHFFFAOYSA-N 0.000 description 1
- OEHMRECZRLQSRD-UHFFFAOYSA-N 2,6-ditert-butyl-4-heptylphenol Chemical compound CCCCCCCC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 OEHMRECZRLQSRD-UHFFFAOYSA-N 0.000 description 1
- RRKBRXPIJHVKIC-UHFFFAOYSA-N 2-(2-ethylhexyl)phenol Chemical compound CCCCC(CC)CC1=CC=CC=C1O RRKBRXPIJHVKIC-UHFFFAOYSA-N 0.000 description 1
- BLDLRWQLBOJPEB-UHFFFAOYSA-N 2-(2-hydroxyphenyl)sulfanylphenol Chemical class OC1=CC=CC=C1SC1=CC=CC=C1O BLDLRWQLBOJPEB-UHFFFAOYSA-N 0.000 description 1
- SZSSMFVYZRQGIM-UHFFFAOYSA-N 2-(hydroxymethyl)-2-propylpropane-1,3-diol Chemical compound CCCC(CO)(CO)CO SZSSMFVYZRQGIM-UHFFFAOYSA-N 0.000 description 1
- CYEJMVLDXAUOPN-UHFFFAOYSA-N 2-dodecylphenol Chemical compound CCCCCCCCCCCCC1=CC=CC=C1O CYEJMVLDXAUOPN-UHFFFAOYSA-N 0.000 description 1
- JVZZUPJFERSVRN-UHFFFAOYSA-N 2-methyl-2-propylpropane-1,3-diol Chemical compound CCCC(C)(CO)CO JVZZUPJFERSVRN-UHFFFAOYSA-N 0.000 description 1
- ROGIWVXWXZRRMZ-UHFFFAOYSA-N 2-methylbuta-1,3-diene;styrene Chemical compound CC(=C)C=C.C=CC1=CC=CC=C1 ROGIWVXWXZRRMZ-UHFFFAOYSA-N 0.000 description 1
- LIPXCSZFXJTFSK-UHFFFAOYSA-N 2-tert-butyl-4-dodecyl-6-methylphenol Chemical compound CCCCCCCCCCCCC1=CC(C)=C(O)C(C(C)(C)C)=C1 LIPXCSZFXJTFSK-UHFFFAOYSA-N 0.000 description 1
- PMRDUCIMVOFYBX-UHFFFAOYSA-N 2-tert-butyl-4-heptyl-6-methylphenol Chemical compound CCCCCCCC1=CC(C)=C(O)C(C(C)(C)C)=C1 PMRDUCIMVOFYBX-UHFFFAOYSA-N 0.000 description 1
- NUCFNMOPTGEHQA-UHFFFAOYSA-N 3-bromo-2h-pyrazolo[4,3-c]pyridine Chemical compound C1=NC=C2C(Br)=NNC2=C1 NUCFNMOPTGEHQA-UHFFFAOYSA-N 0.000 description 1
- MDWVSAYEQPLWMX-UHFFFAOYSA-N 4,4'-Methylenebis(2,6-di-tert-butylphenol) Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(CC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)=C1 MDWVSAYEQPLWMX-UHFFFAOYSA-N 0.000 description 1
- VPWNQTHUCYMVMZ-UHFFFAOYSA-N 4,4'-sulfonyldiphenol Chemical class C1=CC(O)=CC=C1S(=O)(=O)C1=CC=C(O)C=C1 VPWNQTHUCYMVMZ-UHFFFAOYSA-N 0.000 description 1
- CLPFFLWZZBQMAO-UHFFFAOYSA-N 4-(5,6,7,8-tetrahydroimidazo[1,5-a]pyridin-5-yl)benzonitrile Chemical compound C1=CC(C#N)=CC=C1C1N2C=NC=C2CCC1 CLPFFLWZZBQMAO-UHFFFAOYSA-N 0.000 description 1
- WVYWICLMDOOCFB-UHFFFAOYSA-N 4-methyl-2-pentanol Chemical compound CC(C)CC(C)O WVYWICLMDOOCFB-UHFFFAOYSA-N 0.000 description 1
- 241001133760 Acoelorraphe Species 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N Acrylic acid Chemical compound OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 208000016444 Benign adult familial myoclonic epilepsy Diseases 0.000 description 1
- 229930185605 Bisphenol Natural products 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 240000002791 Brassica napus Species 0.000 description 1
- 235000004977 Brassica sinapistrum Nutrition 0.000 description 1
- 208000032544 Cicatrix Diseases 0.000 description 1
- 244000060011 Cocos nucifera Species 0.000 description 1
- 235000013162 Cocos nucifera Nutrition 0.000 description 1
- 208000005156 Dehydration Diseases 0.000 description 1
- MQIUGAXCHLFZKX-UHFFFAOYSA-N Di-n-octyl phthalate Natural products CCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCCC MQIUGAXCHLFZKX-UHFFFAOYSA-N 0.000 description 1
- XTJFFFGAUHQWII-UHFFFAOYSA-N Dibutyl adipate Chemical compound CCCCOC(=O)CCCCC(=O)OCCCC XTJFFFGAUHQWII-UHFFFAOYSA-N 0.000 description 1
- SNRUBQQJIBEYMU-UHFFFAOYSA-N Dodecane Natural products CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 1
- 239000005069 Extreme pressure additive Substances 0.000 description 1
- MBMLMWLHJBBADN-UHFFFAOYSA-N Ferrous sulfide Chemical compound [Fe]=S MBMLMWLHJBBADN-UHFFFAOYSA-N 0.000 description 1
- 238000003547 Friedel-Crafts alkylation reaction Methods 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- 244000020551 Helianthus annuus Species 0.000 description 1
- 235000003222 Helianthus annuus Nutrition 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- 238000006612 Kolbe reaction Methods 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- AMQJEAYHLZJPGS-UHFFFAOYSA-N N-Pentanol Chemical class CCCCCO AMQJEAYHLZJPGS-UHFFFAOYSA-N 0.000 description 1
- IGFHQQFPSIBGKE-UHFFFAOYSA-N Nonylphenol Natural products CCCCCCCCCC1=CC=C(O)C=C1 IGFHQQFPSIBGKE-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004614 Process Aid Substances 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 239000002174 Styrene-butadiene Substances 0.000 description 1
- ULUAUXLGCMPNKK-UHFFFAOYSA-N Sulfobutanedioic acid Chemical class OC(=O)CC(C(O)=O)S(O)(=O)=O ULUAUXLGCMPNKK-UHFFFAOYSA-N 0.000 description 1
- 229910021627 Tin(IV) chloride Inorganic materials 0.000 description 1
- XYRMLECORMNZEY-UHFFFAOYSA-B [Mo+4].[Mo+4].[Mo+4].[O-]P([O-])([S-])=S.[O-]P([O-])([S-])=S.[O-]P([O-])([S-])=S.[O-]P([O-])([S-])=S Chemical class [Mo+4].[Mo+4].[Mo+4].[O-]P([O-])([S-])=S.[O-]P([O-])([S-])=S.[O-]P([O-])([S-])=S.[O-]P([O-])([S-])=S XYRMLECORMNZEY-UHFFFAOYSA-B 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 125000005396 acrylic acid ester group Chemical group 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910001860 alkaline earth metal hydroxide Inorganic materials 0.000 description 1
- 229910000287 alkaline earth metal oxide Inorganic materials 0.000 description 1
- 229910000316 alkaline earth metal phosphate Inorganic materials 0.000 description 1
- 125000004450 alkenylene group Chemical group 0.000 description 1
- 150000008055 alkyl aryl sulfonates Chemical class 0.000 description 1
- 150000004996 alkyl benzenes Chemical class 0.000 description 1
- 150000005215 alkyl ethers Chemical class 0.000 description 1
- 150000001350 alkyl halides Chemical class 0.000 description 1
- 150000008051 alkyl sulfates Chemical class 0.000 description 1
- 229940045714 alkyl sulfonate alkylating agent Drugs 0.000 description 1
- 150000008052 alkyl sulfonates Chemical class 0.000 description 1
- 230000002152 alkylating effect Effects 0.000 description 1
- 230000029936 alkylation Effects 0.000 description 1
- 238000005804 alkylation reaction Methods 0.000 description 1
- 125000000304 alkynyl group Chemical group 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 230000000573 anti-seizure effect Effects 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- RQPZNWPYLFFXCP-UHFFFAOYSA-L barium dihydroxide Chemical compound [OH-].[OH-].[Ba+2] RQPZNWPYLFFXCP-UHFFFAOYSA-L 0.000 description 1
- 150000003819 basic metal compounds Chemical class 0.000 description 1
- 239000003225 biodiesel Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 description 1
- WLLCYXDFVBWGBU-UHFFFAOYSA-N bis(8-methylnonyl) nonanedioate Chemical compound CC(C)CCCCCCCOC(=O)CCCCCCCC(=O)OCCCCCCCC(C)C WLLCYXDFVBWGBU-UHFFFAOYSA-N 0.000 description 1
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical class C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 150000001639 boron compounds Chemical class 0.000 description 1
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical compound C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 description 1
- BTANRVKWQNVYAZ-UHFFFAOYSA-N butan-2-ol Chemical compound CCC(C)O BTANRVKWQNVYAZ-UHFFFAOYSA-N 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- VBIGULIJWJPALH-UHFFFAOYSA-L calcium;2-carboxyphenolate Chemical class [Ca+2].OC1=CC=CC=C1C([O-])=O.OC1=CC=CC=C1C([O-])=O VBIGULIJWJPALH-UHFFFAOYSA-L 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 235000019438 castor oil Nutrition 0.000 description 1
- 238000010538 cationic polymerization reaction Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 229920000891 common polymer Polymers 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 150000005676 cyclic carbonates Chemical class 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 125000000392 cycloalkenyl group Chemical group 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 229940100539 dibutyl adipate Drugs 0.000 description 1
- 150000001991 dicarboxylic acids Chemical class 0.000 description 1
- 150000001993 dienes Chemical class 0.000 description 1
- 239000002283 diesel fuel Substances 0.000 description 1
- 150000005690 diesters Chemical class 0.000 description 1
- 125000005028 dihydroxyaryl group Chemical group 0.000 description 1
- 239000004205 dimethyl polysiloxane Substances 0.000 description 1
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 1
- 230000003467 diminishing effect Effects 0.000 description 1
- DMBHHRLKUKUOEG-UHFFFAOYSA-N diphenylamine Chemical class C=1C=CC=CC=1NC1=CC=CC=C1 DMBHHRLKUKUOEG-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 125000004185 ester group Chemical group 0.000 description 1
- 239000010696 ester oil Substances 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- 125000002573 ethenylidene group Chemical group [*]=C=C([H])[H] 0.000 description 1
- 125000005677 ethinylene group Chemical group [*:2]C#C[*:1] 0.000 description 1
- 229920006213 ethylene-alphaolefin copolymer Polymers 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 208000016427 familial adult myoclonic epilepsy Diseases 0.000 description 1
- 235000019387 fatty acid methyl ester Nutrition 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000013022 formulation composition Substances 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 235000011087 fumaric acid Nutrition 0.000 description 1
- 239000003349 gelling agent Substances 0.000 description 1
- YQEMORVAKMFKLG-UHFFFAOYSA-N glycerine monostearate Natural products CCCCCCCCCCCCCCCCCC(=O)OC(CO)CO YQEMORVAKMFKLG-UHFFFAOYSA-N 0.000 description 1
- UHUSDOQQWJGJQS-UHFFFAOYSA-N glycerol 1,2-dioctadecanoate Chemical class CCCCCCCCCCCCCCCCCC(=O)OCC(CO)OC(=O)CCCCCCCCCCCCCCCCC UHUSDOQQWJGJQS-UHFFFAOYSA-N 0.000 description 1
- SVUQHVRAGMNPLW-UHFFFAOYSA-N glycerol monostearate Natural products CCCCCCCCCCCCCCCCC(=O)OCC(O)CO SVUQHVRAGMNPLW-UHFFFAOYSA-N 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 125000001841 imino group Chemical group [H]N=* 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- 239000010699 lard oil Substances 0.000 description 1
- 239000003949 liquefied natural gas Substances 0.000 description 1
- 238000004811 liquid chromatography Methods 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 229910000000 metal hydroxide Inorganic materials 0.000 description 1
- 150000004692 metal hydroxides Chemical class 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 125000005395 methacrylic acid group Chemical group 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- KHYKFSXXGRUKRE-UHFFFAOYSA-J molybdenum(4+) tetracarbamodithioate Chemical class C(N)([S-])=S.[Mo+4].C(N)([S-])=S.C(N)([S-])=S.C(N)([S-])=S KHYKFSXXGRUKRE-UHFFFAOYSA-J 0.000 description 1
- 150000002762 monocarboxylic acid derivatives Chemical class 0.000 description 1
- 125000000896 monocarboxylic acid group Chemical group 0.000 description 1
- 125000001421 myristyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- BQLZCNHPJNMDIO-UHFFFAOYSA-N n-(4-octylphenyl)naphthalen-1-amine Chemical compound C1=CC(CCCCCCCC)=CC=C1NC1=CC=CC2=CC=CC=C12 BQLZCNHPJNMDIO-UHFFFAOYSA-N 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- SNWVRVDHQRBBFG-UHFFFAOYSA-N n-phenyl-n-(2,4,4-trimethylpentan-2-yl)naphthalen-1-amine Chemical compound C=1C=CC2=CC=CC=C2C=1N(C(C)(C)CC(C)(C)C)C1=CC=CC=C1 SNWVRVDHQRBBFG-UHFFFAOYSA-N 0.000 description 1
- 150000002790 naphthalenes Chemical class 0.000 description 1
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 125000001400 nonyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- SNQQPOLDUKLAAF-UHFFFAOYSA-N nonylphenol Chemical compound CCCCCCCCCC1=CC=CC=C1O SNQQPOLDUKLAAF-UHFFFAOYSA-N 0.000 description 1
- 230000000269 nucleophilic effect Effects 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000001117 oleyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])/C([H])=C([H])\C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 150000002902 organometallic compounds Chemical class 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- 238000010525 oxidative degradation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000005325 percolation Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 150000004707 phenolate Chemical class 0.000 description 1
- 125000001484 phenothiazinyl group Chemical class C1(=CC=CC=2SC3=CC=CC=C3NC12)* 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 229920001748 polybutylene Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001522 polyglycol ester Polymers 0.000 description 1
- 239000002685 polymerization catalyst Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- MWWATHDPGQKSAR-UHFFFAOYSA-N propyne Chemical compound CC#C MWWATHDPGQKSAR-UHFFFAOYSA-N 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 150000003856 quaternary ammonium compounds Chemical class 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 238000007127 saponification reaction Methods 0.000 description 1
- 230000037387 scars Effects 0.000 description 1
- 229940116351 sebacate Drugs 0.000 description 1
- CXMXRPHRNRROMY-UHFFFAOYSA-L sebacate(2-) Chemical compound [O-]C(=O)CCCCCCCCC([O-])=O CXMXRPHRNRROMY-UHFFFAOYSA-L 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 239000011949 solid catalyst Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000005480 straight-chain fatty acid group Chemical group 0.000 description 1
- 239000011115 styrene butadiene Substances 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 150000003440 styrenes Chemical class 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 150000003460 sulfonic acids Chemical class 0.000 description 1
- FWMUJAIKEJWSSY-UHFFFAOYSA-N sulfur dichloride Chemical compound ClSCl FWMUJAIKEJWSSY-UHFFFAOYSA-N 0.000 description 1
- 239000003930 superacid Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 229920001897 terpolymer Polymers 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- TUNFSRHWOTWDNC-HKGQFRNVSA-N tetradecanoic acid Chemical compound CCCCCCCCCCCCC[14C](O)=O TUNFSRHWOTWDNC-HKGQFRNVSA-N 0.000 description 1
- 229940095068 tetradecene Drugs 0.000 description 1
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 description 1
- HPGGPRDJHPYFRM-UHFFFAOYSA-J tin(iv) chloride Chemical compound Cl[Sn](Cl)(Cl)Cl HPGGPRDJHPYFRM-UHFFFAOYSA-J 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 239000013638 trimer Substances 0.000 description 1
- PHYFQTYBJUILEZ-IUPFWZBJSA-N triolein Chemical class CCCCCCCC\C=C/CCCCCCCC(=O)OCC(OC(=O)CCCCCCC\C=C/CCCCCCCC)COC(=O)CCCCCCC\C=C/CCCCCCCC PHYFQTYBJUILEZ-IUPFWZBJSA-N 0.000 description 1
- PVNIQBQSYATKKL-UHFFFAOYSA-N tripalmitin Chemical class CCCCCCCCCCCCCCCC(=O)OCC(OC(=O)CCCCCCCCCCCCCCC)COC(=O)CCCCCCCCCCCCCCC PVNIQBQSYATKKL-UHFFFAOYSA-N 0.000 description 1
- DCXXMTOCNZCJGO-UHFFFAOYSA-N tristearoylglycerol Chemical class CCCCCCCCCCCCCCCCCC(=O)OCC(OC(=O)CCCCCCCCCCCCCCCCC)COC(=O)CCCCCCCCCCCCCCCCC DCXXMTOCNZCJGO-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 235000021122 unsaturated fatty acids Nutrition 0.000 description 1
- 150000004670 unsaturated fatty acids Chemical class 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 238000000214 vapour pressure osmometry Methods 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 229920001567 vinyl ester resin Polymers 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 125000002348 vinylic group Chemical group 0.000 description 1
- 239000007762 w/o emulsion Substances 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M169/00—Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
- C10M169/04—Mixtures of base-materials and additives
- C10M169/044—Mixtures of base-materials and additives the additives being a mixture of non-macromolecular and macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M129/00—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M141/00—Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential
- C10M141/06—Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential at least one of them being an organic nitrogen-containing compound
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M161/00—Lubricating compositions characterised by the additive being a mixture of a macromolecular compound and a non-macromolecular compound, each of these compounds being essential
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M169/00—Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
- C10M169/04—Mixtures of base-materials and additives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2203/00—Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
- C10M2203/10—Petroleum or coal fractions, e.g. tars, solvents, bitumen
- C10M2203/1006—Petroleum or coal fractions, e.g. tars, solvents, bitumen used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2203/00—Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
- C10M2203/10—Petroleum or coal fractions, e.g. tars, solvents, bitumen
- C10M2203/102—Aliphatic fractions
- C10M2203/1025—Aliphatic fractions used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2205/00—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
- C10M2205/02—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
- C10M2205/028—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms
- C10M2205/0285—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/02—Hydroxy compounds
- C10M2207/021—Hydroxy compounds having hydroxy groups bound to acyclic or cycloaliphatic carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/02—Hydroxy compounds
- C10M2207/021—Hydroxy compounds having hydroxy groups bound to acyclic or cycloaliphatic carbon atoms
- C10M2207/022—Hydroxy compounds having hydroxy groups bound to acyclic or cycloaliphatic carbon atoms containing at least two hydroxy groups
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/02—Hydroxy compounds
- C10M2207/023—Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/10—Carboxylix acids; Neutral salts thereof
- C10M2207/12—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
- C10M2207/125—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/10—Carboxylix acids; Neutral salts thereof
- C10M2207/12—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
- C10M2207/125—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids
- C10M2207/126—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids monocarboxylic
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/10—Carboxylix acids; Neutral salts thereof
- C10M2207/14—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to carbon atoms of six-membered aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
- C10M2207/283—Esters of polyhydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
- C10M2207/287—Partial esters
- C10M2207/289—Partial esters containing free hydroxy groups
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/10—Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2209/103—Polyethers, i.e. containing di- or higher polyoxyalkylene groups
- C10M2209/104—Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing two carbon atoms only
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/10—Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2209/103—Polyethers, i.e. containing di- or higher polyoxyalkylene groups
- C10M2209/105—Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing three carbon atoms only
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/10—Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2209/103—Polyethers, i.e. containing di- or higher polyoxyalkylene groups
- C10M2209/107—Polyethers, i.e. containing di- or higher polyoxyalkylene groups of two or more specified different alkylene oxides covered by groups C10M2209/104 - C10M2209/106
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/10—Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2209/103—Polyethers, i.e. containing di- or higher polyoxyalkylene groups
- C10M2209/109—Polyethers, i.e. containing di- or higher polyoxyalkylene groups esterified
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/12—Polysaccharides, e.g. cellulose, biopolymers
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/08—Amides
- C10M2215/082—Amides containing hydroxyl groups; Alkoxylated derivatives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/02—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
- C10M2223/04—Phosphate esters
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2010/00—Metal present as such or in compounds
- C10N2010/02—Groups 1 or 11
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2010/00—Metal present as such or in compounds
- C10N2010/04—Groups 2 or 12
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2010/00—Metal present as such or in compounds
- C10N2010/10—Groups 5 or 15
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2010/00—Metal present as such or in compounds
- C10N2010/14—Group 7
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2010/00—Metal present as such or in compounds
- C10N2010/16—Groups 8, 9, or 10
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/04—Detergent property or dispersant property
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/06—Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/10—Inhibition of oxidation, e.g. anti-oxidants
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/12—Inhibition of corrosion, e.g. anti-rust agents or anti-corrosives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/40—Low content or no content compositions
- C10N2030/42—Phosphor free or low phosphor content compositions
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/40—Low content or no content compositions
- C10N2030/43—Sulfur free or low sulfur content compositions
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/54—Fuel economy
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/70—Soluble oils
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/25—Internal-combustion engines
Definitions
- This disclosure relates to a method for improving wear control, while maintaining or improving fuel efficiency, in an engine or other mechanical component lubricated with a lubricating oil by including a mixture of (i) at least one carboxylic acid or metal salt of a carboxylic acid (e.g., metal stearate), and (ii) at least one surfactant (e.g., nonionic surfactant), in the lubricating oil.
- This disclosure relates to a method for improving solubility, compatibility and dispersancy of polar additives in a lubricating oil.
- the lubricating oils of this disclosure are useful in internal combustion engines.
- a major challenge in engine oil formulation is simultaneously achieving wear and deposit control, and oxidation stability, while also maintaining fuel economy performance, over a broad temperature range.
- Lubricant-related wear control is highly desirable due to increasing use of low viscosity engine oils for improved fuel efficiency. As governmental regulations for vehicle fuel consumption and carbon emissions become more stringent, use of low viscosity engine oils to meet the regulatory standards is becoming more prevalent. At the same time, lubricants need to provide a substantial level of durability and wear protection due to the formation of thinner lubricant films during engine operation. As such, use of antiwear additives and friction modifiers in a lubricant formulation is the typical method for achieving low friction, wear control and durability. Due to limitations of using high levels of some antiwears due to catalyst poisoning and deposit formation, it is highly desirable to find alternative methods for achieving excellent wear control and durability without poisoning the catalyst.
- Zinc dialkyl dithiophosphate is a common antiwear additive used in engine lubricants.
- these elements are known to harm catalysts used to treat exhaust gases from internal combustion engines, and thus antiwear additives which are free of sulfur and phosphorus will be advantaged in the marketplace.
- This disclosure relates to a method for improving wear control, while maintaining or improving fuel efficiency, in an engine or other mechanical component lubricated with a lubricating oil.
- this disclosure relates to a method for improving solubility, compatibility and dispersancy of polar additives in a lubricating oil.
- This disclosure relates in part to a method for improving wear control, while maintaining or improving fuel efficiency, in an engine or other mechanical component lubricated with a lubricating oil by using as the lubricating oil a formulated oil.
- the formulated oil has a composition comprising a lubricating oil base stock as a major component; and a mixture of (i) at least one carboxylic acid or metal salt of a carboxylic acid, and (ii) at least one surfactant, as minor components.
- the minor components contain no sulfur or phosphorus.
- the metal comprises a transition metal or mixtures thereof, and the carboxylic acid is selected from the group consisting of an aliphatic carboxylic acid, a cycloaliphatic carboxylic acid, an aromatic carboxylic acid, and mixtures thereof.
- the surfactant is selected from the group consisting of nonionic, anionic, cationic, and amphoteric surfactants, and mixtures thereof. Wear control is improved and fuel efficiency is maintained or improved as compared to wear control and fuel efficiency achieved using a lubricating oil containing minor components other than the mixture of (i) the at least one carboxylic acid or metal salt of a carboxylic acid, and (ii) the at least one surfactant..
- the lubricating oils of this disclosure are useful in internal combustion engines.
- wear control is improved and deposit control (e.g., additive solubility, compatibility and dispersancy), oxidation stability and fuel efficiency are maintained or improved as compared to wear control, deposit control, oxidation stability and fuel efficiency achieved using a lubricating oil containing minor components other than the mixture of (i) the at least one carboxylic acid or metal salt of a carboxylic acid, and (ii) the at least one surfactant.
- deposit control e.g., additive solubility, compatibility and dispersancy
- oxidation stability and fuel efficiency are maintained or improved as compared to wear control, deposit control, oxidation stability and fuel efficiency achieved using a lubricating oil containing minor components other than the mixture of (i) the at least one carboxylic acid or metal salt of a carboxylic acid, and (ii) the at least one surfactant.
- This disclosure also relates in part to a method of improving solubility, compatibility and/or dispersancy of polar lubricating oil additives in a nonpolar lubricating oil base stock.
- the method comprises providing a lubricating oil comprising a nonpolar lubricating oil base stock as a major component and one or more polar lubricating oil additives as a minor component.
- the one or more polar lubricating oil additives comprise at least one carboxylic acid or metal salt of a carboxylic acid.
- the method further comprises blending at least one surfactant in the lubricating oil.
- This disclosure further relates in part to a lubricating oil having a composition comprising a lubricating oil base stock as a major component; and a mixture of (i) at least one carboxylic acid or metal salt of a carboxylic acid, and (ii) at least one surfactant, as minor components.
- the minor components contain no sulfur or phosphorus.
- the metal comprises a transition metal or mixtures thereof, and the carboxylic acid is selected from the group consisting of an aliphatic carboxylic acid, a cycloaliphatic carboxylic acid, an aromatic carboxylic acid, and mixtures thereof.
- the surfactant is selected from nonionic, anionic, cationic, and amphoteric surfactants, and mixtures thereof.
- Wear control is improved and fuel efficiency is maintained or improved as compared to wear control and fuel efficiency achieved using a lubricating oil containing minor components other than the mixture of (i) the at least one carboxylic acid or metal salt of a carboxylic acid, and (ii) the at least one surfactant.
- wear control is improved and deposit control, oxidation stability and fuel efficiency are maintained or improved as compared to wear control, deposit control, oxidation stability and fuel efficiency achieved using a lubricating oil containing minor components other than the mixture of (i) the at least one carboxylic acid or metal salt of a carboxylic acid, and (ii) the at least one surfactant.
- This disclosure yet further relates in part to a method for reducing sulfur and phosphorus and their harmful side effects of exhaust catalyst poisoning and increased corrosivity in an engine or other mechanical component lubricated with a lubricating oil by including a mixture of (i) at least one carboxylic acid or metal salt of a carboxylic acid, and (ii) at least one surfactant, in the lubricating oil.
- the mixture contains no sulfur or phosphorus.
- This disclosure also relates in part to a low-sulfur, low-phosphorus lubricating oil having a composition comprising a lubricating oil base stock as a major component, and a mixture of (i) at least one carboxylic acid or metal salt of a carboxylic acid, and (ii) at least one surfactant, as minor components.
- the mixture of (i) the at least one carboxylic acid or metal salt of a carboxylic acid (e.g., zinc stearate or stearic acid), and (ii) the at least one surfactant (e.g., nonionic surfactant) affords greater improvements in additive compatibility in the lubricating oil and wear control, while maintaining or improving fuel efficiency.
- a carboxylic acid e.g., zinc stearate or stearic acid
- the at least one surfactant e.g., nonionic surfactant
- a carboxylic acid e.g., zinc stearate or stearic acid
- the at least one surfactant e.g., nonionic surfactant
- Fig. 1 shows the benchmark performance of three reference formulation lubricants in the absence of a carboxylic acid or metal salt of a carboxylic acid additive and a surfactant additive in accordance with the Examples.
- Fig. 2 shows formulations prepared in accordance with the Examples, and the results of High Frequency Reciprocating Rig (HFRR) testing in accordance with the Examples.
- HFRR High Frequency Reciprocating Rig
- a formulated oil that has a mixture of (i) at least one carboxylic acid or metal salt of a carboxylic acid, and (ii) at least one surfactant, in the lubricating oil.
- the formulated oil preferably comprises a lubricating oil base stock as a major component, and a mixture of (i) at least one carboxylic acid or metal salt of a carboxylic acid, and (ii) at least one surfactant, as minor components.
- the lubricating oils of this disclosure are particularly advantageous as passenger vehicle engine oil (PVEO) products.
- the lubricating oils of this disclosure can be useful as commercial vehicle engine oil products (e.g., heavy duty diesel lubricants).
- the lubricating oils of this disclosure can be useful for reducing wear in high soot content lubricants and diesel (i.e., compression ignition) engine oils.
- the lubricating oils of this disclosure provide excellent engine protection including antiwear performance. This benefit is demonstrated for the lubricating oils of this disclosure in the Sequence IIIG engine tests.
- the low viscosity lubricating oils of this disclosure provide improved fuel efficiency.
- the lubricating engine oils of this disclosure have a composition sufficient to pass wear protection requirements of one or more engine tests selected from Sequence IIIG and others.
- the present disclosure provides lubricant compositions with excellent antiwear properties. Antiwear additives are generally required for reducing wear in operating equipment where two solid surfaces engage in contact. In the absence of antiwear chemistry, the surfaces can rub together causing material loss on one or both surfaces which can eventually lead to equipment malfunction and failure. Antiwear additives can produce a protective surface layer which reduces wear and material loss. Most commonly the materials of interest are metals such as steel and other iron-containing alloys. However, other materials such as ceramics, polymer coatings, diamond-like carbon, corresponding composites, and the like can also be used to produce durable surfaces in modern equipment. The lubricant compositions of this disclosure can provide antiwear properties to such surfaces.
- the lubricant compositions of this disclosure provide advantaged wear, including advantaged wear and friction, performance in the lubrication of internal combustion engines, power trains, drivelines, transmissions, gears, gear trains, gear sets, compressors, pumps, hydraulic systems, bearings, bushings, turbines, and the like.
- the lubricant compositions of this disclosure provide advantaged wear, including advantaged wear and friction, performance in the lubrication of mechanical components, which can include, for example, pistons, piston rings, cylinder liners, cylinders, cams, tappets, lifters, bearings (journal, roller, tapered, needle, ball, and the like), gears, valves, and the like.
- the lubricant compositions of this disclosure provide advantaged wear, including advantaged wear and friction, performance as a component in lubricant compositions, which can include, for example, lubricating liquids, semisolids, solids, greases, dispersions, suspensions, material concentrates, additive concentrates, and the like.
- the lubricant compositions of this disclosure are useful in additive concentrates that include the combination of the minor component of this disclosure with at least one other additive component, having combined weight % concentrations in the range of 1% to 80%, preferably 1% to 60%, more preferably 1%) to 50%), even more preferably ⁇ % to 40%, and in some instances preferably ⁇ % to 30%).
- the combined weight % concentrations cited above may be in the range of ⁇ % to 20%, and preferably ⁇ % to 10%>.
- the lubricant compositions of this disclosure provide advantaged wear, including advantaged wear and friction, performance under diverse lubrication regimes, that include, for example, hydrodynamic, elastohydrodynamic, boundary, mixed lubrication, extreme pressure regimes, and the like.
- the lubricant compositions of this disclosure provide advantaged wear, including advantaged wear and friction, performance under a range of lubrication contact pressures, less than 1 MPa, and from 1 MPas to greater than 10 GPa, preferably greater than 10 MPa, more preferably greater than 100 MPa, even more preferably greater than 300 MPa. Under certain circumstances, the lubricant compositions of this disclosure provide advantaged wear, including advantaged wear and friction, performance at greater than 0.5 GPa, often at greater than 1 GPa, sometimes greater than 2 GPa, under selected circumstances greater than 5 GPa.
- the lubricant compositions of this disclosure provide advantaged wear, including advantaged wear and friction, performance in spark-ignition internal combustion engines, compression-ignition internal combustion engines, mixed-ignition (spark-assisted and compression) internal combustion engines, jet- or plasma-ignition internal combustion engines, and the like.
- the lubricant compositions of this disclosure provide advantaged wear, including advantaged wear and friction, performance in diverse engine and power plant types, which can include, for example, the following: 2-stroke engines;
- the lubricant compositions of this disclosure provide advantaged wear, including advantaged wear and friction, performance in, for example, the following: naturally aspirated engines; turbocharged and supercharged, port-fueled injection engines; turbocharged and supercharged, direct injection engines (for gasoline, diesel, natural gas, mixtures of these, and other fuel types); turbocharged engines designed to operate with in-cylinder combustion pressures of greater than 12 bar, preferably greater than 18 bar, more preferably greater than 20 bar, even more preferably greater than 22 bar, and in certain instances combustion pressures greater than 24 bar, even greater than 26 bar, and even more so greater than 28 bar, and with particular designs greater than 30 bar; engines having low- temperature burn combustion, lean-burn combustion, and high thermal efficiency designs.
- the lubricant compositions of this disclosure provide advantaged wear, including advantaged wear and friction, performance in engines that are fueled with fuel compositions that include, for example, the following: gasoline; distillate fuel, diesel fuel, jet fuel, gas-to-liquid and Fischer-Tropsch-derived high- cetane fuels; compressed natural gas, liquefied natural gas, methane, ethane, propane, other natural gas components, other natural gas liquids; ethanol, methanol, other higher MW alcohols; FAMEs, vegetable-derived esters and polyesters; biodiesel, bio-derived and bio-based fuels; hydrogen; dimethyl ether; other alternate fuels; fuels diluted with EGR (exhaust gas recirculation) gases, with EGR gases enriched in hydrogen or carbon monoxide or combinations of H 2 /CO, in both dilute and high concentration (in concentrations of >0.1%, preferably >0.5%, more preferably >1%, even more preferably >2%, and even more so preferably >3%), and blend
- fuel compositions
- the lubricant compositions of this disclosure provide advantaged wear, including advantaged wear and friction, performance on lubricated surfaces that include, for example, the following: metals, metal alloys, non-metals, non- metal alloys, mixed carbon-metal composites and alloys, mixed carbon-nonmetal composites and alloys, ferrous metals, ferrous composites and alloys, non-ferrous metals, non-ferrous composites and alloys, titanium, titanium composites and alloys, aluminum, aluminum composites and alloys, magnesium, magnesium composites and alloys, ion-implanted metals and alloys, plasma modified surfaces; surface modified materials; coatings; mono-layer, multi-layer, and gradient layered coatings; honed surfaces; polished surfaces; etched surfaces; textured surfaces; mircro and nano structures on textured surfaces; super- finished surfaces; diamondlike carbon (DLC), DLC with high-hydrogen content, DLC with moderate hydrogen content, DLC with low-hydrogen content, DLC with near-zero hydrogen content
- DLC diamond
- the lubricant compositions of this disclosure provide advantaged wear, including advantaged wear and friction, performance on lubricated surfaces of 3-D printed materials, and similar materials derived from additive manufacturing techniques, with or without post-printing surface finishing; surfaces of 3-D printed materials that have been post-printing treated with coatings, which may include plasma spray coatings, ion beam-generated coatings, electrolytically- or galvanically-generated coatings, electro-deposition coatings, vapor-deposition coatings, liquid-deposition coatings, thermal coatings, laser-based coatings; surfaces of 3-D printed materials, where the surfaces may be as-printed, finished, or coated, that include: metals, metal alloys, non-metals, non-metal alloys, mixed carbon-metal composites and alloys, mixed carbon-nonmetal composites and alloys, ferrous metals, ferrous composites and alloys, non-ferrous metals, non- ferrous composites and alloys, titanium, titanium composites and alloys, aluminum, aluminum composites and alloy
- the lubricant compositions of this disclosure provide advantaged synergistic wear, including advantaged synergistic wear and friction, performance in combination with one or more performance additives, with performance additives at effective concentration ranges, and with performance additives at effective ratios with the minor component of this disclosure.
- Lubricating base oils that are useful in the present disclosure are natural oils, mineral oils and synthetic oils, and unconventional oils (or mixtures thereof) can be used unrefined, refined, or rerefined (the latter is also known as reclaimed or reprocessed oil).
- Unrefined oils are those obtained directly from a natural or synthetic source and used without added purification. These include shale oil obtained directly from retorting operations, petroleum oil obtained directly from primary distillation, and ester oil obtained directly from an esterification process. Refined oils are similar to the oils discussed for unrefined oils except refined oils are subjected to one or more purification steps to improve at least one lubricating oil property.
- Groups I, II, III, IV and V are broad base oil stock categories developed and defined by the American Petroleum Institute (API Publication 1509; www.API.org) to create guidelines for lubricant base oils.
- Group I base stocks have a viscosity index of between about 80 to 120 and contain greater than about 0.03% sulfur and/or less than about 90% saturates.
- Group II base stocks have a viscosity index of between about 80 to 120, and contain less than or equal to about 0.03%) sulfur and greater than or equal to about 90% saturates.
- Group III stocks have a viscosity index greater than about 120 and contain less than or equal to about 0.03 % sulfur and greater than about 90% saturates.
- Group IV includes polyalphaolefins (PAO).
- Group V base stock includes base stocks not included in Groups I-IV. The table below summarizes properties of each of these five groups.
- Group I ⁇ 90 and/or >0.03% and >80 and ⁇ 120
- Group II >90 and ⁇ 0.03% and >80 and ⁇ 120
- Group III >90 and ⁇ 0.03% and >120
- PAO Group IV polyalphaolefins
- Natural oils include animal oils, vegetable oils (castor oil and lard oil, for example), and mineral oils. Animal and vegetable oils possessing favorable thermal oxidative stability can be used. Of the natural oils, mineral oils are preferred. Mineral oils vary widely as to their crude source, for example, as to whether they are paraffinic, naphthenic, or mixed paraffinic-naphthenic. Oils derived from coal or shale are also useful. Natural oils vary also as to the method used for their production and purification, for example, their distillation range and whether they are straight run or cracked, hydrorefined, or solvent extracted.
- Group II and/or Group III hydroprocessed or hydrocracked base stocks are also well known base stock oils.
- Synthetic oils include hydrocarbon oil.
- Hydrocarbon oils include oils such as polymerized and interpolymerized olefins (polybutylenes, polypropylenes, propylene isobutylene copolymers, ethylene-olefin copolymers, and ethylene- alphaolefin copolymers, for example).
- Polyalphaolefin (PAO) oil base stocks are commonly used synthetic hydrocarbon oil.
- PAOs derived from C 8 , C 10 , C 12 , C 14 olefins or mixtures thereof may be utilized. See U.S. Patent Nos. 4,956,122; 4,827,064; and 4,827,073.
- the number average molecular weights of the PAOs typically vary from about 250 to about 3,000, although PAO's may be made in viscosities up to about 150 cSt (100°C).
- the PAOs are typically comprised of relatively low molecular weight hydrogenated polymers or oligomers of alphaolefins which include, but are not limited to, C 2 to about C 32 alphaolefins with the C 8 to about C 16 alphaolefins, such as 1 -octene, 1 -decene, 1-dodecene and the like, being preferred.
- the preferred poly alphaolefins are poly- 1 -octene, poly-1 - decene and poly- 1-dodecene and mixtures thereof and mixed olefin-derived poly olefins.
- the dimers of higher olefins in the range of C 12 to C 18 may be used to provide low viscosity base stocks of acceptably low volatility.
- the PAOs may be predominantly dimers, trimers and tetramers of the starting olefins, with minor amounts of the lower and/or higher oligomers, having a viscosity range of 1.5 cSt to 12 cSt.
- PAO fluids of particular use may include 3 cSt, 3.4 cSt, and/or 3.6 cSt and combinations thereof. Mixtures of PAO fluids having a viscosity range of 1.5 cSt to approximately 150 cSt or more may be used if desired. Unless indicated otherwise, all viscosities cited herein are measured at 100°C.
- the PAO fluids may be conveniently made by the polymerization of an alphaolefin in the presence of a polymerization catalyst such as the Friedel-Crafts catalysts including, for example, aluminum trichloride, boron trifluoride or complexes of boron trifluoride with water, alcohols such as ethanol, propanol or butanol, carboxylic acids or esters such as ethyl acetate or ethyl propionate.
- a polymerization catalyst such as the Friedel-Crafts catalysts including, for example, aluminum trichloride, boron trifluoride or complexes of boron trifluoride with water, alcohols such as ethanol, propanol or butanol, carboxylic acids or esters such as ethyl acetate or ethyl propionate.
- a polymerization catalyst such as the Friedel-Crafts catalysts including, for example, aluminum trichloride, boro
- Other useful lubricant oil base stocks include wax isomerate base stocks and base oils, comprising hydroisomerized waxy stocks (e.g. waxy stocks such as gas oils, slack waxes, fuels hydrocracker bottoms, etc.), hydroisomerized Fischer- Tropsch waxes, Gas-to-Liquids (GTL) base stocks and base oils, and other wax isomerate hydroisomerized base stocks and base oils, or mixtures thereof.
- Fischer- Tropsch waxes the high boiling point residues of Fischer-Tropsch synthesis, are highly paraffinic hydrocarbons with very low sulfur content.
- the hydroprocessing used for the production of such base stocks may use an amorphous hydrocracking/hydroisomerization catalyst, such as one of the specialized lube hydrocracking (LHDC) catalysts or a crystalline hydrocracking/hydroisomerization catalyst, preferably a zeolitic catalyst.
- an amorphous hydrocracking/hydroisomerization catalyst such as one of the specialized lube hydrocracking (LHDC) catalysts or a crystalline hydrocracking/hydroisomerization catalyst, preferably a zeolitic catalyst.
- LHDC specialized lube hydrocracking
- a zeolitic catalyst preferably ZSM-48 as described in U.S. Patent No. 5,075,269, the disclosure of which is incorporated herein by reference in its entirety.
- Processes for making hydrocracked/hydroisomerized distillates and hydrocracked/hydroisomerized waxes are described, for example, in U.S. Patent Nos.
- Gas-to-Liquids (GTL) base oils, Fischer-Tropsch wax derived base oils, and other wax-derived hydroisomerized (wax isomerate) base oils be advantageously used in the instant disclosure, and may have useful kinematic viscosities at 100°C of about 2 cSt to about 50 cSt, preferably about 2 cSt to about 30 cSt, more preferably about 3 cSt to about 25 cSt, as exemplified by GTL 4 with kinematic viscosity of about 4.0 cSt at 100°C and a viscosity index of about 141.
- Gas-to-Liquids (GTL) base oils, Fischer-Tropsch wax derived base oils, and other wax-derived hydroisomerized base oils may have useful pour points of about - 20°C or lower, and under some conditions may have advantageous pour points of about -25°C or lower, with useful pour points of about -30°C to about -40°C or lower.
- Useful compositions of Gas-to-Liquids (GTL) base oils, Fischer-Tropsch wax derived base oils, and wax-derived hydroisomerized base oils are recited in U.S. Patent Nos. 6,080,301 ; 6,090,989, and 6,165,949 for example, and are incorporated herein in their entirety by reference.
- the hydrocarbyl aromatics can be used as a base oil or base oil component and can be any hydrocarbyl molecule that contains at least about 5% of its weight derived from an aromatic moiety such as a benzenoid moiety or naphthenoid moiety, or their derivatives.
- These hydrocarbyl aromatics include alkyl benzenes, alkyl naphthalenes, alkyl biphenyls, alkyl diphenyl oxides, alkyl naphthols, alkyl diphenyl sulfides, alkylated bis-phenol A, alkylated thiodiphenol, and the like.
- the aromatic can be mono-alkylated, dialkylated, polyalkylated, and the like.
- the aromatic can be mono- or poly-functionalized.
- the hydrocarbyl groups can also be comprised of mixtures of alkyl groups, alkenyl groups, alkynyl, cycloalkyl groups, cycloalkenyl groups and other related hydrocarbyl groups.
- the hydrocarbyl groups can range from about C 6 up to about C 6 o with a range of about C 8 to about C 2 o often being preferred. A mixture of hydrocarbyl groups is often preferred, and up to about three such substituents may be present.
- the hydrocarbyl group can optionally contain sulfur, oxygen, and/or nitrogen containing substituents.
- the aromatic group can also be derived from natural (petroleum) sources, provided at least about 5% of the molecule is comprised of an above-type aromatic moiety. Viscosities at 100°C of approximately 2 cSt to about 50 cSt are preferred, with viscosities of approximately 3 cSt to about 20 cSt often being more preferred for the hydrocarbyl aromatic component.
- an alkyl naphthalene where the alkyl group is primarily comprised of 1 -hexadecene is used.
- Other alkylates of aromatics can be advantageously used.
- Naphthalene or methyl naphthalene for example, can be alkylated with olefins such as octene, decene, dodecene, tetradecene or higher, mixtures of similar olefins, and the like.
- Alkylated naphthalene and analogues may also comprise compositions with isomeric distribution of alkylating groups on the alpha and beta carbon positions of the ring structure.
- Distribution of groups on the alpha and beta positions of a naphthalene ring may range from 100: 1 to 1 : 100, more often 50: 1 to 1 :50
- Useful concentrations of hydrocarbyl aromatic in a lubricant oil composition can be about 2% to about 25%, preferably about 4% to about 20%, and more preferably about 4% to about 15%), depending on the application.
- Alkylated aromatics such as the hydrocarbyl aromatics of the present disclosure may be produced by well-known Friedel-Crafts alkylation of aromatic compounds. See Friedel-Crafts and Related Reactions, Olah, G. A. (ed.), Inter- science Publishers, New York, 1963.
- an aromatic compound such as benzene or naphthalene
- an olefin, alkyl halide or alcohol in the presence of a Friedel-Crafts catalyst. See Friedel-Crafts and Related Reactions, Vol. 2, part 1, chapters 14, 17, and 18, See Olah, G. A. (ed.), Inter-science Publishers, New York, 1964.
- esters comprise a useful base stock. Additive solvency and seal compatibility characteristics may be secured by the use of esters such as the esters of dibasic acids with monoalkanols and the polyol esters of monocarboxylic acids.
- Esters of the former type include, for example, the esters of dicarboxylic acids such as phthalic acid, succinic acid, alkyl succinic acid, alkenyl succinic acid, maleic acid, azelaic acid, suberic acid, sebacic acid, fumaric acid, adipic acid, linoleic acid dimer, malonic acid, alkyl malonic acid, alkenyl malonic acid, etc., with a variety of alcohols such as butyl alcohol, hexyl alcohol, dodecyl alcohol, 2-ethylhexyl alcohol, etc.
- dicarboxylic acids such as phthalic acid, succinic acid, alkyl succinic acid, alkenyl succinic acid, maleic acid, azelaic acid, suberic acid, sebacic acid, fumaric acid, adipic acid, linoleic acid dimer, malonic acid, alkyl malonic acid, alkenyl malonic acid, etc
- esters include dibutyl adipate, di(2- ethylhexyl) sebacate, di-n-hexyl fumarate, dioctyl sebacate, diisooctyl azelate, diisodecyl azelate, dioctyl phthalate, didecyl phthalate, dieicosyl sebacate, etc.
- Particularly useful synthetic esters are those which are obtained by reacting one or more polyhydric alcohols, preferably the hindered polyols (such as the neopentyl polyols, e.g., neopentyl glycol, trimethylol ethane, 2-methyl-2-propyl- 1,3-propanediol, trimethylol propane, pentaerythritol and dipentaerythritol) with alkanoic acids containing at least about 4 carbon atoms, preferably C 5 to C 30 acids such as saturated straight chain fatty acids including caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, arachic acid, and behenic acid, or the corresponding branched chain fatty acids or unsaturated fatty acids such as oleic acid, or mixtures of any of these materials.
- the hindered polyols such as the neopentyl polyols
- Suitable synthetic ester components include the esters of trimethylol propane, trimethylol butane, trimethylol ethane, pentaerythritol and/or dipentaerythritol with one or more monocarboxylic acids containing from about 5 to about 10 carbon atoms. These esters are widely available commercially, for example, the Mobil P-41 and P-51 esters of ExxonMobil Chemical Company. [0053] Also useful are esters derived from renewable material such as coconut, palm, rapeseed, soy, sunflower and the like. These esters may be monoesters, di- esters, polyol esters, complex esters, or mixtures thereof. These esters are widely available commercially, for example, the Mobil P-51 ester of ExxonMobil Chemical Company.
- Engine oil formulations containing renewable esters are included in this disclosure.
- the renewable content of the ester is typically greater than about 70 weight percent, preferably more than about 80 weight percent and most preferably more than about 90 weight percent.
- Other useful fluids of lubricating viscosity include non-conventional or unconventional base stocks that have been processed, preferably catalytically, or synthesized to provide high performance lubrication characteristics.
- Non-conventional or unconventional base stocks/base oils include one or more of a mixture of base stock(s) derived from one or more Gas-to-Liquids (GTL) materials, as well as isomerate/isodewaxate base stock(s) derived from natural wax or waxy feeds, mineral and or non-mineral oil waxy feed stocks such as slack waxes, natural waxes, and waxy stocks such as gas oils, waxy fuels hydrocracker bottoms, waxy raffinate, hydrocrackate, thermal crackates, or other mineral, mineral oil, or even non-petroleum oil derived waxy materials such as waxy materials received from coal liquefaction or shale oil, and mixtures of such base stocks.
- GTL Gas-to-Liquids
- GTL materials are materials that are derived via one or more synthesis, combination, transformation, rearrangement, and/or degradation/deconstructive processes from gaseous carbon-containing compounds, hydrogen-containing compounds and/or elements as feed stocks such as hydrogen, carbon dioxide, carbon monoxide, water, methane, ethane, ethylene, acetylene, propane, propylene, propyne, butane, butylenes, and butynes.
- GTL base stocks and/or base oils are GTL materials of lubricating viscosity that are generally derived from hydrocarbons; for example, waxy synthesized hydrocarbons, that are themselves derived from simpler gaseous carbon-containing compounds, hydrogen-containing compounds and/or elements as feed stocks.
- GTL base stock(s) and/or base oil(s) include oils boiling in the lube oil boiling range (1) separated/fractionated from synthesized GTL materials such as, for example, by distillation and subsequently subjected to a final wax processing step which involves either or both of a catalytic dewaxing process, or a solvent dewaxing process, to produce lube oils of reduced/low pour point; (2) synthesized wax isomerates, comprising, for example, hydrodewaxed or hydroisomerized cat and/or solvent dewaxed synthesized wax or waxy hydrocarbons; (3) hydrodewaxed or hydroisomerized cat and/or solvent dewaxed Fischer-Tropsch (F-T) material (i.e., hydrocarbons, waxy hydrocarbons, waxes and possible analogous oxygenates); preferably hydrodewaxed or hydroisomerized/followed by cat and/or solvent dewaxing dewaxed F-T waxy hydrocarbons, or hydrodewaxed
- GTL base stock(s) and/or base oil(s) derived from GTL materials are characterized typically as having kinematic viscosities at 100°C of
- the GTL base stock(s) and/or base oil(s) are typically highly paraffinic (>90% saturates), and may contain mixtures of monocycloparaffins and multicycloparaffins in combination with non-cyclic isoparaffins.
- the ratio of the naphthenic (i.e., cycloparaffin) content in such combinations varies with the catalyst and temperature used.
- GTL base stock(s) and/or base oil(s) typically have very low sulfur and nitrogen content, generally containing less than about 10 ppm, and more typically less than about 5 ppm of each of these elements.
- the sulfur and nitrogen content of GTL base stock(s) and/or base oil(s) obtained from F-T material, especially F-T wax, is essentially nil.
- the absence of phosphorus and aromatics make this materially especially suitable for the formulation of low SAP products.
- GTL base stock and/or base oil and/or wax isomerate base stock and/or base oil is to be understood as embracing individual fractions of such materials of wide viscosity range as recovered in the production process, mixtures of two or more of such fractions, as well as mixtures of one or two or more low viscosity fractions with one, two or more higher viscosity fractions to produce a blend wherein the blend exhibits a target kinematic viscosity.
- the GTL material, from which the GTL base stock(s) and/or base oil(s) is/are derived is preferably an F-T material (i.e., hydrocarbons, waxy hydrocarbons, wax).
- Base oils for use in the formulated lubricating oils useful in the present disclosure are any of the variety of oils corresponding to API Group I, Group II, Group III, Group IV, and Group V oils and mixtures thereof, preferably API Group II, Group III, Group IV, and Group V oils and mixtures thereof, more preferably the Group III to Group V base oils due to their exceptional volatility, stability, viscometric and cleanliness features.
- Minor quantities of Group I stock such as the amount used to dilute additives for blending into formulated lube oil products, can be tolerated but should be kept to a minimum, i.e. amounts only associated with their use as diluent/carrier oil for additives used on an "as-received" basis.
- Even in regard to the Group II stocks it is preferred that the Group II stock be in the higher quality range associated with that stock, i.e. a Group II stock having a viscosity index in the range 100 ⁇ VI ⁇ 120.
- the base oil constitutes the major component of the engine oil lubricant composition of the present disclosure and typically is present in an amount ranging from about 6 to about 99 weight percent or from about 6 to about 95 weight percent, preferably from about 50 to about 99 weight percent or from about 70 to about 95 weight percent, and more preferably from about 85 to about 95 weight percent, based on the total weight of the composition.
- the base oil may be selected from any of the synthetic or natural oils typically used as crankcase lubricating oils for spark-ignited and compression-ignited engines.
- the base oil conveniently has a kinematic viscosity, according to ASTM standards, of about 2.5 cSt to about 18 cSt
- the co-base stock component is present in an amount sufficient for providing solubility, compatibility and dispersancy of polar additives in the lubricating oil.
- the co-base stock component is present in the lubricating oils of this disclosure in an amount from about 1 to about 99 weight percent, preferably from about 5 to about 95 weight percent, and more preferably from about 10 to about 90 weight percent.
- Illustrative antiwear additives useful in this disclosure include, for example, carboxylic acids and metal salts of a carboxylic acid.
- the metal is selected from a transition metal and mixtures thereof.
- the carboxylic acid is selected from an aliphatic carboxylic acid, a cycloaliphatic carboxylic acid, an aromatic carboxylic acid, and mixtures thereof.
- the metal is preferably selected from Groups 2, 10, 1 1, 12, and 13, 14, 15 of the elemental periodic table, more preferably Groups 2, 10, 1 1 , 12, and 15, and mixtures thereof.
- the carboxylic acid is preferably an aliphatic, saturated, unbranched carboxylic acid having from about 8 to about 26 carbon atoms, and mixtures thereof.
- the metal is preferably selected from zinc (Zn), magnesium (Mg), nickel (Ni), palladium (Pd), platinum (Pt), copper (Cu), silver (Ag), gold (Au), bismuth (Bi), and mixtures thereof.
- the carboxylic acid is preferably selected from caprylic acid (C8), pelargonic acid (C9), capric acid (CI O), undecylic acid (Cl l), lauric acid (CI 2), tridecylic acid (CI 3), myristic acid (CI 4), pentadecylic acid (CI 5), palmitic acid (C16), margaric acid (CI 7), isostearic acid (CI 8), stearic acid (CI 8), nonadecylic acid (CI 9), arachidic acid (C20), heneicosylic acid (C21), behenic acid (C22), tricosylic acid (C23), lignoceric acid (C24), pentacosylic acid (C25), cerotic acid (C26), and mixtures thereof.
- the metal salt of a carboxylic acid comprises zinc stearate, magnesium stearate, silver stearate, palladium stearate, zinc palmitate, silver palmitate, palladium palmitate, bismuth stearate, bismuth palmitate, and mixtures thereof.
- the weight ratio of the at least one carboxylic acid or metal salt of a carboxylic acid to the at least one surfactant is from about 0.1 : 1 to about 1000: 1, or from about 0.1 : 1 to about 100: 1, or from about 0.1 : 1 to about 20: 1, preferably from about 0.5 : 1 to about 20: 1, and more preferably from about 1 : 1 to about 20: 1.
- the concentration of the surfactant is preferably less than the concentration of the carboxylic acid or the metal salt of a carboxylic acid.
- the carboxylic acid or metal salt of a carboxylic acid is present in the engine oil formulations of this disclosure in an amount of from about 0.001 weight percent to about 5 weight percent, based on the total weight of the formulated oil.
- Low phosphorus engine oil formulations are included in this disclosure.
- the phosphorus content is typically less than about 0.12 weight percent, preferably less than about 0.10 weight percent, more preferably less than about 0.085 weight percent, and most preferably less than about 0.04 weight percent.
- the surfactant useful in the lubricating oil compositions of this disclosure can be anionic, cationic, nonionic or amphoteric, and combinations.
- Illustrative anionic surfactants include, for example, carboxylic acids, esters of carboxylic acids, alkyl sulfates, alkyl ether sulfates, alkyl sulfonates, alkyl aryl sulfonates, sulfosuccinates, sulfo fatty acid esters, fatty acid isothionates, phosphoric acids and salts, acyl glutamates and salts, acyl peptides, acyl sarcosides, and the like.
- Illustrative cationic surfactants include, for example, alkyl amines, alkylimidazolines, quaternary ammonium compounds, such as: tetraalkyl(-aryl) ammonium salts, heterocyclic ammonium salts, alkyl betaines; ethoxylated alkyl amines, esterified quaternaries, and the like.
- the amphoteric surfactants include, for example, acyl ethylenediamines, n-alkyl amino acids, imino diacids, and the like.
- Illustrative nonionic surfactants include, for example, alcohols, alkyloxylated alcohols, such as ethoxylated or propoxylated alcohols; ethylene oxide/propylene oxide block polymers, alkylpolyglucosides, ethoxylated oils and fats, alkanolamides, ethoxylated alkanolamides, ethoxylated fatty acids, glycol esters, glycerol esters, sorbitan esters, alkyl carbohydrate esters, trimesters of phosphoric acids, amine oxides, and the like.
- alcohols alkyloxylated alcohols, such as ethoxylated or propoxylated alcohols
- ethylene oxide/propylene oxide block polymers alkylpolyglucosides, ethoxylated oils and fats, alkanolamides, ethoxylated alkanolamides, ethoxylated fatty acids, glycol esters, glyce
- Preferred nonionic surfactants include, for example, sorbitan oleate (e.g., Span® 80), polyoxyethylene (5) nonylphenylether (e.g., Igepal® CO-520), poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) average M n 1,100 (e.g., Pluronic® L31), poly(ethylene glycol)-block- poly(propylene glycol)-block-poly(ethylene glycol) average M n 2,000 (e.g., Pluronic® L61), octylphenol ethoxylate moles EO 1.5 (e.g., TritonTM X-15), octylphenol ethoxylate moles EO 9.5 (e.g., TritonTM X-100), or mixtures thereof.
- sorbitan oleate e.g., Span® 80
- polyoxyethylene (5) nonylphenylether
- the weight ratio of the at least one carboxylic acid or metal salt of a carboxylic acid to the at least one surfactant is from about 0.1 : 1 to about 1000: 1, or from about 0.1 : 1 to about 100: 1, or from about 0.1 : 1 to about 20: 1, preferably from about 0.5 : 1 to about 20: 1, and more preferably from about 1 : 1 to about 20: 1.
- the concentration of the surfactant is preferably less than the concentration of the carboxylic acid or the metal salt of a carboxylic acid.
- the surfactant concentration in the lubricating oils of this disclosure can range from about 0.001 to about 20 weight percent, preferably about 0.01 to 10 weight percent, and more preferably from about 0.01 weight percent to about 5 weight percent, and even more preferably from about 0.01 weight percent to about 2 weight percent, based on the total weight of the lubricating oil.
- the formulated lubricating oil useful in the present disclosure may additionally contain one or more of the other commonly used lubricating oil performance additives including but not limited to other antiwear additives, dispersants, detergents, viscosity modifiers, corrosion inhibitors, rust inhibitors, metal deactivators, extreme pressure additives, anti-seizure agents, wax modifiers, viscosity modifiers, fluid-loss additives, seal compatibility agents, lubricity agents, anti-staining agents, chromophoric agents, defoamants, demulsifiers, densifiers, wetting agents, gelling agents, tackiness agents, colorants, and others.
- other antiwear additives dispersants, detergents, viscosity modifiers, corrosion inhibitors, rust inhibitors, metal deactivators, extreme pressure additives, anti-seizure agents, wax modifiers, viscosity modifiers, fluid-loss additives, seal compatibility agents, lubricity agents, anti-staining agents, chrom
- the additives useful in this disclosure do not have to be soluble in the lubricating oils. Insoluble additives in oil can be dispersed in the lubricating oils of this disclosure.
- a metal alkylthiophosphate and more particularly a metal dialkyl dithio phosphate in which the metal constituent is zinc, or zinc dialkyl dithio phosphate can be a useful component of the lubricating oils of this disclosure.
- ZDDP can be derived from primary alcohols, secondary alcohols or mixtures thereof.
- ZDDP compounds generally are of the formula
- R and R are C ⁇ C ⁇ alkyl groups, preferably C 2 -C 12 alkyl groups. These alkyl groups may be straight chain or branched.
- Alcohols used in the ZDDP can be propanol, 2-propanol, butanol, secondary butanol, pentanols, hexanols such as 4- methyl-2-pentanol, n-hexanol, n-octanol, 2-ethyl hexanol, alkylated phenols, and the like. Mixtures of secondary alcohols or of primary and secondary alcohol can be preferred. Alkyl aryl groups may also be used.
- Preferable zinc dithiophosphates which are commercially available include secondary zinc dithiophosphates such as those available from for example, The Lubrizol Corporation under the trade designations "LZ 677 A”, “LZ 1095” and “LZ 1371", from for example Chevron Oronite under the trade designation "OLOA 262" and from for example Afton Chemical under the trade designation "HITEC 7169".
- the ZDDP is typically used in amounts of from about 0.3 weight percent to about 1.5 weight percent, preferably from about 0.4 weight percent to about 1.2 weight percent, more preferably from about 0.5 weight percent to about 1.0 weight percent, and even more preferably from about 0.6 weight percent to about 0.8 weight percent, based on the total weight of the lubricating oil, although more or less can often be used advantageously.
- the ZDDP is a secondary ZDDP and present in an amount of from about 0.6 to 1.0 weight percent of the total weight of the lubricating oil.
- Dispersants help keep these byproducts in solution, thus diminishing their deposition on metal surfaces.
- Dispersants used in the formulation of the lubricating oil may be ashless or ash-forming in nature.
- the dispersant is ashless.
- So called ashless dispersants are organic materials that form substantially no ash upon combustion.
- non-metal-containing or borated metal-free dispersants are considered ashless.
- metal-containing detergents discussed above form ash upon combustion.
- Suitable dispersants typically contain a polar group attached to a relatively high molecular weight hydrocarbon chain.
- the polar group typically contains at least one element of nitrogen, oxygen, or phosphorus.
- Typical hydrocarbon chains contain 50 to 400 carbon atoms.
- a particularly useful class of dispersants are the (poly)alkenylsuccinic derivatives, typically produced by the reaction of a long chain hydrocarbyl substituted succinic compound, usually a hydrocarbyl substituted succinic anhydride, with a polyhydroxy or polyamino compound.
- the long chain hydrocarbyl group constituting the oleophilic portion of the molecule which confers solubility in the oil, is normally a polyisobutylene group.
- Many examples of this type of dispersant are well known commercially and in the literature. Exemplary U.S. patents describing such dispersants are U.S. Patent Nos.
- Hydrocarbyl-substituted succinic acid and hydrocarbyl-substituted succinic anhydride derivatives are useful dispersants.
- succinimide, succinate esters, or succinate ester amides prepared by the reaction of a hydrocarbon-substituted succinic acid compound preferably having at least 50 carbon atoms in the hydrocarbon substituent, with at least one equivalent of an alkylene amine are particularly useful.
- Succinimides are formed by the condensation reaction between hydrocarbyl substituted succinic anhydrides and amines. Molar ratios can vary depending on the polyamine. For example, the molar ratio of hydrocarbyl substituted succinic anhydride to TEPA can vary from about 1 : 1 to about 5 : 1. Representative examples are shown in U.S. Patent Nos. 3,087,936; 3,172,892; 3,219,666; 3,272,746; 3,322,670; and 3,652,616, 3,948,800; and Canada Patent No. 1,094,044.
- Succinate esters are formed by the condensation reaction between hydrocarbyl substituted succinic anhydrides and alcohols or polyols. Molar ratios can vary depending on the alcohol or polyol used. For example, the condensation product of a hydrocarbyl substituted succinic anhydride and pentaerythritol is a useful dispersant.
- Succinate ester amides are formed by condensation reaction between hydrocarbyl substituted succinic anhydrides and alkanol amines.
- suitable alkanol amines include ethoxylated polyalkylpolyamines, propoxylated polyalkylpolyamines and polyalkenylpolyamines such as polyethylene polyamines.
- propoxylated hexamethylenediamine Representative examples are shown in U.S. Patent No. 4,426,305.
- the molecular weight of the hydrocarbyl substituted succinic anhydrides used in the preceding paragraphs will typically range between 800 and 2,500 or more.
- the above products can be post-reacted with various reagents such as sulfur, oxygen, formaldehyde, carboxylic acids such as oleic acid.
- the above products can also be post reacted with boron compounds such as boric acid, borate esters or highly borated dispersants, to form borated dispersants generally having from about 0.1 to about 5 moles of boron per mole of dispersant reaction product.
- Mannich base dispersants are made from the reaction of alkylphenols, formaldehyde, and amines. See U.S. Patent No. 4,767,551, which is incorporated herein by reference. Process aids and catalysts, such as oleic acid and sulfonic acids, can also be part of the reaction mixture. Molecular weights of the alkylphenols range from 800 to 2,500. Representative examples are shown in U.S. Patent Nos. 3,697,574; 3,703,536; 3,704,308; 3,751,365; 3,756,953; 3,798,165; and 3,803,039.
- Typical high molecular weight aliphatic acid modified Mannich condensation products useful in this disclosure can be prepared from high molecular weight alky 1- substituted hydroxyaromatics or HNR 2 group-containing reactants.
- Hydrocarbyl substituted amine ashless dispersant additives are well known to one skilled in the art; see, for example, U.S. Patent Nos. 3,275,554; 3,438,757; 3,565,804; 3,755,433, 3,822,209, and 5,084,197.
- Preferred dispersants include borated and non-borated succinimides, including those derivatives from mono-succinimides, bis-succinimides, and/or mixtures of mono- and bis-succinimides, wherein the hydrocarbyl succinimide is derived from a hydrocarbylene group such as polyisobutylene having a Mn of from about 500 to about 5000, or from about 1000 to about 3000, or about 1000 to about 2000, or a mixture of such hydrocarbylene groups, often with high terminal vinylic groups.
- Other preferred dispersants include succinic acid-esters and amides, alkylphenol-polyamine-coupled Mannich adducts, their capped derivatives, and other related components.
- Polymethacrylate or polyacrylate derivatives are another class of dispersants. These dispersants are typically prepared by reacting a nitrogen containing monomer and a methacrylic or acrylic acid esters containing 5 -25 carbon atoms in the ester group. Representative examples are shown in U.S. Patent Nos. 2, 100, 993, and 6,323,164. Polymethacrylate and polyacrylate dispersants are normally used as multifunctional viscosity modifiers. The lower molecular weight versions can be used as lubricant dispersants or fuel detergents.
- Illustrative preferred dispersants useful in this disclosure include those derived from polyalkenyl-substituted mono- or dicarboxylic acid, anhydride or ester, which dispersant has a polyalkenyl moiety with a number average molecular weight of at least 900 and from greater than 1.3 to 1.7, preferably from greater than 1.3 to 1.6, most preferably from greater than 1.3 to 1.5, functional groups (mono- or dicarboxylic acid producing moieties) per polyalkenyl moiety (a medium functionality dispersant).
- Functionality (F) can be determined according to the following formula:
- SAP saponification number (i.e., the number of milligrams of KOH consumed in the complete neutralization of the acid groups in one gram of the succinic-containing reaction product, as determined according to ASTM D94); M n is the number average molecular weight of the starting olefin polymer; and A.I. is the percent active ingredient of the succinic-containing reaction product (the remainder being unreacted olefin polymer, succinic anhydride and diluent).
- the polyalkenyl moiety of the dispersant may have a number average molecular weight of at least 900, suitably at least 1500, preferably between 1800 and 3000, such as between 2000 and 2800, more preferably from about 2100 to 2500, and most preferably from about 2200 to about 2400.
- the molecular weight of a dispersant is generally expressed in terms of the molecular weight of the polyalkenyl moiety. This is because the precise molecular weight range of the dispersant depends on numerous parameters including the type of polymer used to derive the dispersant, the number of functional groups, and the type of nucleophilic group employed.
- Polymer molecular weight can be determined by various known techniques.
- One convenient method is gel permeation chromatography (GPC), which additionally provides molecular weight distribution information (see W. W. Yau, J. J. Kirkland and D. D. Bly, "Modern Size Exclusion Liquid Chromatography", John Wiley and Sons, New York, 1979).
- GPC gel permeation chromatography
- Another useful method for determining molecular weight, particularly for lower molecular weight polymers is vapor pressure osmometry (e.g., ASTM D3592).
- the polyalkenyl moiety in a dispersant preferably has a narrow molecular weight distribution (MWD), also referred to as polydispersity, as determined by the ratio of weight average molecular weight (M w ) to number average molecular weight (M n ).
- MWD molecular weight distribution
- M w weight average molecular weight
- M n number average molecular weight
- Suitable polymers have a polydispersity of from about 1.5 to 2.1, preferably from about 1.6 to about 1.8.
- Suitable polyalkenes employed in the formation of the dispersants include homopolymers, interpolymers or lower molecular weight hydrocarbons.
- such polymers comprise interpolymers of ethylene and at least one alpha-olefin of the above formula, wherein R 1 is alkyl of from 1 to 18 carbon atoms, and more preferably is alkyl of from 1 to 8 carbon atoms, and more preferably still of from 1 to 2 carbon atoms.
- Another useful class of polymers is polymers prepared by cationic polymerization of monomers such as isobutene and styrene.
- monomers such as isobutene and styrene.
- Common polymers from this class include polyisobutenes obtained by polymerization of a C 4 refinery stream having a butene content of 35 to 75% by wt, and an isobutene content of 30 to 60% by wt.
- a preferred source of monomer for making poly-n-butenes is petroleum feedstreams such as Raffinate II. These feedstocks are disclosed in the art such as in U.S. Pat. No. 4,952,739.
- a preferred embodiment utilizes polyisobutylene prepared from a pure isobutylene stream or a Raffinate I stream to prepare reactive isobutylene polymers with terminal vinylidene olefins.
- Polyisobutene polymers that may be employed are generally based on a polymer chain of from 1500 to 3000.
- the dispersant(s) are preferably non-polymeric (e.g., mono- or bis- succinimides). Such dispersants can be prepared by conventional processes such as disclosed in U.S. Patent Application Publication No. 2008/0020950, the disclosure of which is incorporated herein by reference.
- the dispersant(s) can be borated by conventional means, as generally disclosed in U.S. Patent Nos. 3,087,936, 3,254,025 and 5,430,105.
- Such dispersants may be used in an amount of about 0.01 to 20 weight percent or 0.01 to 10 weight percent, preferably about 0.5 to 8 weight percent, or more preferably 0.5 to 4 weight percent. Or such dispersants may be used in an amount of about 2 to 12 weight percent, preferably about 4 to 10 weight percent, or more preferably 6 to 9 weight percent. On an active ingredient basis, such additives may be used in an amount of about 0.06 to 14 weight percent, preferably about 0.3 to 6 weight percent.
- the hydrocarbon portion of the dispersant atoms can range from C 6 o to C 10 oo, or from C 70 to C 30 o, or from C 70 to C 2 oo - These dispersants may contain both neutral and basic nitrogen, and mixtures of both.
- Dispersants can be end-capped by borates and/or cyclic carbonates.
- Nitrogen content in the finished oil can vary from about 200 ppm by weight to about 2000 ppm by weight, preferably from about 200 ppm by weight to about 1200 ppm by weight.
- Basic nitrogen can vary from about 100 ppm by weight to about 1000 ppm by weight, preferably from about 100 ppm by weight to about 600 ppm by weight.
- the dispersant concentrations are given on an “as delivered” basis.
- the active dispersant is delivered with a process oil.
- the "as delivered” dispersant typically contains from about 20 weight percent to about 80 weight percent, or from about 40 weight percent to about 60 weight percent, of active dispersant in the "as delivered" dispersant product.
- Illustrative detergents useful in this disclosure include, for example, alkali metal detergents, alkaline earth metal detergents, or mixtures of one or more alkali metal detergents and one or more alkaline earth metal detergents.
- a typical detergent is an anionic material that contains a long chain hydrophobic portion of the molecule and a smaller anionic or oleophobic hydrophilic portion of the molecule.
- the anionic portion of the detergent is typically derived from an organic acid such as a sulfur-containing acid, carboxylic acid (e.g., salicylic acid), phosphorus-containing acid, phenol, or mixtures thereof.
- the counterion is typically an alkaline earth or alkali metal.
- the detergent can be overbased as described herein.
- the detergent is preferably a metal salt of an organic or inorganic acid, a metal salt of a phenol, or mixtures thereof.
- the metal is preferably selected from an alkali metal, an alkaline earth metal, and mixtures thereof.
- the organic or inorganic acid is selected from an aliphatic organic or inorganic acid, a cycloaliphatic organic or inorganic acid, an aromatic organic or inorganic acid, and mixtures thereof.
- the metal is preferably selected from an alkali metal, an alkaline earth metal, and mixtures thereof. More preferably, the metal is selected from calcium (Ca), magnesium (Mg), and mixtures thereof.
- the organic acid or inorganic acid is preferably selected from a sulfur-containing acid, a carboxylic acid, a phosphorus-containing acid, and mixtures thereof.
- the metal salt of an organic or inorganic acid or the metal salt of a phenol comprises calcium phenate, calcium sulfonate, calcium salicylate, magnesium phenate, magnesium sulfonate, magnesium salicylate, an overbased detergent, and mixtures thereof.
- Salts that contain a substantially stochiometric amount of the metal are described as neutral salts and have a total base number (TBN, as measured by ASTM D2896) of from 0 to 80.
- TBN total base number
- Many compositions are overbased, containing large amounts of a metal base that is achieved by reacting an excess of a metal compound (a metal hydroxide or oxide, for example) with an acidic gas (such as carbon dioxide).
- Useful detergents can be neutral, mildly overbased, or highly overbased. These detergents can be used in mixtures of neutral, overbased, highly overbased calcium salicylate, sulfonates, phenates and/or magnesium salicylate, sulfonates, phenates.
- the TBN ranges can vary from low, medium to high TBN products, including as low as 0 to as high as 600.
- the TBN delivered by the detergent is between 1 and 20. More preferably between 1 and 12.
- Mixtures of low, medium, high TBN can be used, along with mixtures of calcium and magnesium metal based detergents, and including sulfonates, phenates, salicylates, and carboxylates.
- a detergent mixture with a metal ratio of 1 in conjunction of a detergent with a metal ratio of 2, and as high as a detergent with a metal ratio of 5, can be used. Borated detergents can also be used.
- Alkaline earth phenates are another useful class of detergent. These detergents can be made by reacting alkaline earth metal hydroxide or oxide (CaO, Ca(OH) 2 , BaO, Ba(OH) 2 , MgO, Mg(OH) 2 , for example) with an alkyl phenol or sulfurized alkylphenol.
- alkaline earth metal hydroxide or oxide CaO, Ca(OH) 2 , BaO, Ba(OH) 2 , MgO, Mg(OH) 2 , for example
- alkyl phenol or sulfurized alkylphenol Useful alkyl groups include straight chain or branched C - C 30 alkyl groups, preferably, C 4 -C 20 or mixtures thereof. Examples of suitable phenols include isobutylphenol, 2-ethylhexylphenol, nonylphenol, dodecyl phenol, and the like.
- starting alkylphenols may contain more than one alkyl substituent that are each independently straight chain or branched and can be used from 0.5 to 6 weight percent.
- the sulfurized product may be obtained by methods well known in the art. These methods include heating a mixture of alkylphenol and sulfurizing agent (including elemental sulfur, sulfur halides such as sulfur dichloride, and the like) and then reacting the sulfurized phenol with an alkaline earth metal base.
- metal salts of carboxylic acids are preferred detergents.
- carboxylic acid detergents may be prepared by reacting a basic metal compound with at least one carboxylic acid and removing free water from the reaction product. These compounds may be overbased to produce the desired TBN level.
- Detergents made from salicylic acid are one preferred class of detergents derived from carboxylic acids.
- Useful salicylates include long chain alkyl salicylates.
- One useful family of compositions is of the formula
- R is an alkyl group having 1 to about 30 carbon atoms
- n is an integer from 1 to 4
- M is an alkaline earth metal.
- Preferred R groups are alkyl chains of at least C u , preferably C 13 or greater. R may be optionally substituted with substituents that do not interfere with the detergent's function.
- M is preferably, calcium, magnesium, barium, or mixtures thereof. More preferably, M is calcium.
- Hydrocarbyl-substituted salicylic acids may be prepared from phenols by the Kolbe reaction (see U.S. Patent No. 3,595,791).
- the metal salts of the hydrocarbyl-substituted salicylic acids may be prepared by double decomposition of a metal salt in a polar solvent such as water or alcohol.
- Alkaline earth metal phosphates are also used as detergents and are known in the art.
- Detergents may be simple detergents or what is known as hybrid or complex detergents. The latter detergents can provide the properties of two detergents without the need to blend separate materials. See U.S. Patent No. 6,034,039.
- Preferred detergents include calcium sulfonates, magnesium sulfonates, calcium salicylates, magnesium salicylates, calcium phenates, magnesium phenates, and other related components (including borated detergents), and mixtures thereof.
- Preferred mixtures of detergents include magnesium sulfonate and calcium salicylate, magnesium sulfonate and calcium sulfonate, magnesium sulfonate and calcium phenate, calcium phenate and calcium salicylate, calcium phenate and calcium sulfonate, calcium phenate and magnesium salicylate, calcium phenate and magnesium phenate.
- Overbased detergents are also preferred.
- the detergent concentration in the lubricating oils of this disclosure can range from about 0.5 to about 6.0 weight percent, preferably about 0.6 to 5.0 weight percent, and more preferably from about 0.8 weight percent to about 4.0 weight percent, based on the total weight of the lubricating oil.
- the detergent concentrations are given on an “as delivered” basis.
- the active detergent is delivered with a process oil.
- the "as delivered” detergent typically contains from about 20 weight percent to about 100 weight percent, or from about 40 weight percent to about 60 weight percent, of active detergent in the "as delivered" detergent product.
- Viscosity modifiers also known as viscosity index improvers (VI improvers), and viscosity improvers
- VI improvers viscosity index improvers
- Viscosity modifiers can be included in the lubricant compositions of this disclosure.
- Viscosity modifiers provide lubricants with high and low temperature operability. These additives impart shear stability at elevated temperatures and acceptable viscosity at low temperatures.
- Suitable viscosity modifiers include high molecular weight hydrocarbons, polyesters and viscosity modifier dispersants that function as both a viscosity modifier and a dispersant. Typical molecular weights of these polymers are between about 10,000 to 1 ,500,000, more typically about 20,000 to 1 ,200,000, and even more typically between about 50,000 and 1 ,000,000.
- suitable viscosity modifiers are linear or star-shaped polymers and copolymers of methacrylate, butadiene, olefins, or alkylated styrenes.
- Polyisobutylene is a commonly used viscosity modifier.
- Another suitable viscosity modifier is polymethacrylate (copolymers of various chain length alkyl methacrylates, for example), some formulations of which also serve as pour point depressants.
- Other suitable viscosity modifiers include copolymers of ethylene and propylene, hydrogenated block copolymers of styrene and isoprene, and polyacrylates (copolymers of various chain length acrylates, for example). Specific examples include styrene-isoprene or styrene-butadiene based polymers of 50,000 to 200,000 molecular weight.
- Olefin copolymers are commercially available from Chevron Oronite Company LLC under the trade designation "PARATONE®” (such as “PARATONE® 8921” and “PARATONE® 8941”); from Afton Chemical Corporation under the trade designation “HiTEC®” (such as “HiTEC® 5850B”; and from The Lubrizol Corporation under the trade designation "Lubrizol® 7067C”.
- Hydrogenated polyisoprene star polymers are commercially available from Infineum International Limited, e.g., under the trade designation "SV200” and “SV600”.
- Hydrogenated diene-styrene block copolymers are commercially available from Infineum International Limited, e.g., under the trade designation "SV 50".
- the polymethacrylate or polyacrylate polymers can be linear polymers which are available from Evnoik Industries under the trade designation "Viscoplex®” (e.g., Viscoplex 6-954) or star polymers which are available from Lubrizol Corporation under the trade designation AstericTM (e.g., Lubrizol 87708 and Lubrizol 87725).
- Viscoplex® e.g., Viscoplex 6-954
- AstericTM e.g., Lubrizol 87708 and Lubrizol 87725.
- Illustrative vinyl aromatic-containing polymers useful in this disclosure may be derived predominantly from vinyl aromatic hydrocarbon monomer.
- Illustrative vinyl aromatic-containing copolymers useful in this disclosure may be represented by the following general formula:
- A-B wherein A is a polymeric block derived predominantly from vinyl aromatic hydrocarbon monomer, and B is a polymeric block derived predominantly from conjugated diene monomer.
- the viscosity modifiers may be used in an amount of less than about 10 weight percent, preferably less than about 7 weight percent, more preferably less than about 4 weight percent, and in certain instances, may be used at less than 2 weight percent, preferably less than about 1 weight percent, and more preferably less than about 0.5 weight percent, based on the total weight of the formulated oil or lubricating engine oil.
- Viscosity modifiers are typically added as concentrates, in large amounts of diluent oil.
- the viscosity modifier concentrations are given on an "as delivered" basis. Typically, the active polymer is delivered with a diluent oil.
- the "as delivered" viscosity modifier typically contains from 20 weight percent to 75 weight percent of an active polymer for polymethacrylate or polyacrylate polymers, or from 8 weight percent to 20 weight percent of an active polymer for olefin copolymers, hydrogenated polyisoprene star polymers, or hydrogenated diene-styrene block copolymers, in the "as delivered" polymer concentrate.
- Antioxidants retard the oxidative degradation of base oils during service. Such degradation may result in deposits on metal surfaces, the presence of sludge, or a viscosity increase in the lubricant.
- One skilled in the art knows a wide variety of oxidation inhibitors that are useful in lubricating oil compositions. See, Klamann in Lubricants and Related Products, op cite, and U.S. Patent Nos. 4,798,684 and 5,084,197, for example.
- Useful antioxidants include hindered phenols. These phenolic antioxidants may be ashless (metal-free) phenolic compounds or neutral or basic metal salts of certain phenolic compounds. Typical phenolic antioxidant compounds are the hindered phenolics which are the ones which contain a sterically hindered hydroxyl group, and these include those derivatives of dihydroxy aryl compounds in which the hydroxyl groups are in the o- or p-position to each other. Typical phenolic antioxidants include the hindered phenols substituted with C 6 + alkyl groups and the alkylene coupled derivatives of these hindered phenols.
- phenolic materials of this type 2-t-butyl-4-heptyl phenol; 2-t-butyl-4-octyl phenol; 2-t-butyl-4-dodecyl phenol; 2,6-di-t-butyl-4-heptyl phenol; 2,6-di-t-butyl-4- dodecyl phenol; 2-methyl-6-t-butyl-4-heptyl phenol; and 2-methyl-6-t-butyl-4- dodecyl phenol.
- Other useful hindered mono-phenolic antioxidants may include for example hindered 2,6-di-alkyl-phenolic proprionic ester derivatives.
- Bis-phenolic antioxidants may also be advantageously used in combination with the instant disclosure.
- ortho-coupled phenols include: 2,2'-bis(4-heptyl-6-t- butyl-phenol); 2,2'-bis(4-octyl-6-t-butyl-phenol); and 2,2'-bis(4-dodecyl-6-t-butyl- phenol).
- Para-coupled bisphenols include for example 4,4'-bis(2,6-di-t-butyl phenol) and 4,4'-methylene-bis(2,6-di-t-butyl phenol).
- catalytic antioxidants comprise an effective amount of a) one or more oil soluble polymetal organic compounds; and, effective amounts of b) one or more substituted N,N'-diaryl-o-phenylenediamine compounds or c) one or more hindered phenol compounds; or a combination of both b) and c).
- Catalytic antioxidants are more fully described in U.S. Patent No. 8, 048,833, herein incorporated by reference in its entirety.
- Non-phenolic oxidation inhibitors which may be used include aromatic amine antioxidants and these may be used either as such or in combination with phenolics.
- Typical examples of non-phenolic antioxidants include: alkylated and non-alkylated aromatic amines such as aromatic monoamines of the formula R R R °N where R 8 is an aliphatic, aromatic or substituted aromatic group, R 9 is an aromatic or a substituted aromatic group, and R 1U is H, alkyl, aryl or R ⁇ S ⁇ xR 12 where R 11 is an alkylene, alkenylene, or aralkylene group, R 12 is a higher alkyl group, or an alkenyl, aryl, or alkaryl group, and x is 0, 1 or 2.
- the aliphatic group R may contain from 1 to about 20 carbon atoms, and preferably contains from about 6 to 12 carbon atoms.
- the aliphatic group is a saturated aliphatic group.
- both R and R are aromatic or substituted aromatic groups, and the aromatic group may be a fused ring aromatic group such as naphthyl.
- groups R and R may be joined together with other groups such as S.
- Typical aromatic amines antioxidants have alkyl substituent groups of at least about 6 carbon atoms.
- Examples of aliphatic groups include hexyl, heptyl, octyl, nonyl, and decyl. Generally, the aliphatic groups will not contain more than about 14 carbon atoms.
- the general types of amine antioxidants useful in the present compositions include diphenylamines, phenyl naphthylamines, phenothiazines, imidodibenzyls and diphenyl phenylene diamines. Mixtures of two or more aromatic amines are also useful. Polymeric amine antioxidants can also be used.
- aromatic amine antioxidants useful in the present disclosure include: ⁇ , ⁇ '-dioctyldiphenylamine; t-octylphenyl-alpha-naphthylamine; phenyl-alphanaphthylamine; and p-octylphenyl-alpha-naphthylamine.
- Sulfurized alkyl phenols and alkali or alkaline earth metal salts thereof also are useful antioxidants.
- Preferred antioxidants include hindered phenols, arylamines. These antioxidants may be used individually by type or in combination with one another. Such additives may be used in an amount of about 0.01 to 5 weight percent, preferably about 0.01 to 1.5 weight percent, more preferably zero to less than 1.5 weight percent, more preferably zero to less than 1 weight percent.
- pour point depressants also known as lube oil flow improvers
- pour point depressants may be added to lubricating compositions of the present disclosure to lower the minimum temperature at which the fluid will flow or can be poured.
- suitable pour point depressants include polymethacrylates, polyacrylates, polyarylamides, condensation products of haloparaffin waxes and aromatic compounds, vinyl carboxylate polymers, and terpolymers of dialkylfumarates, vinyl esters of fatty acids and allyl vinyl ethers.
- 1,815,022; 2,015,748; 2,191,498; 2,387,501 ; 2,655, 479; 2,666,746; 2,721,877; 2,721 ,878; and 3,250,715 describe useful pour point depressants and/or the preparation thereof.
- Such additives may be used in an amount of about 0.01 to 5 weight percent, preferably about 0.01 to 1.5 weight percent.
- Seal compatibility agents help to swell elastomeric seals by causing a chemical reaction in the fluid or physical change in the elastomer.
- Suitable seal compatibility agents for lubricating oils include organic phosphates, aromatic esters, aromatic hydrocarbons, esters (butylbenzyl phthalate, for example), and polybutenyl succinic anhydride. Such additives may be used in an amount of about 0.01 to 3 weight percent, preferably about 0.01 to 2 weight percent.
- Anti-foam agents may advantageously be added to lubricant compositions. These agents retard the formation of stable foams. Silicones and organic polymers are typical anti-foam agents. For example, polysiloxanes, such as silicon oil or polydimethyl siloxane, provide antifoam properties. Anti-foam agents are commercially available and may be used in conventional minor amounts along with other additives such as demulsifiers; usually the amount of these additives combined is less than 1 weight percent and often less than 0.1 weight percent. Inhibitors and Antirust Additives
- Antirust additives are additives that protect lubricated metal surfaces against chemical attack by water or other contaminants. A wide variety of these are commercially available.
- One type of antirust additive is a polar compound that wets the metal surface preferentially, protecting it with a film of oil.
- Another type of antirust additive absorbs water by incorporating it in a water-in-oil emulsion so that only the oil touches the metal surface.
- Yet another type of antirust additive chemically adheres to the metal to produce a non-reactive surface.
- suitable additives include zinc dithiophosphates, metal phenolates, basic metal sulfonates, fatty acids and amines. Such additives may be used in an amount of about 0.01 to 5 weight percent, preferably about 0.01 to 1.5 weight percent.
- a friction modifier is any material or materials that can alter the coefficient of friction of a surface lubricated by any lubricant or fluid containing such material(s).
- Friction modifiers also known as friction reducers, or lubricity agents or oiliness agents, and other such agents that change the ability of base oils, formulated lubricant compositions, or functional fluids, to modify the coefficient of friction of a lubricated surface may be effectively used in combination with the base oils or lubricant compositions of the present disclosure if desired. Friction modifiers that lower the coefficient of friction are particularly advantageous in combination with the base oils and lube compositions of this disclosure.
- Illustrative friction modifiers may include, for example, organometallic compounds or materials, or mixtures thereof.
- Illustrative organometallic friction modifiers useful in the lubricating engine oil formulations of this disclosure include, for example, molybdenum amine, molybdenum diamine, an organotungstenate, a molybdenum dithiocarbamate, molybdenum dithiophosphates, molybdenum amine complexes, molybdenum carboxylates, and the like, and mixtures thereof. Similar tungsten based compounds may be preferable.
- illustrative friction modifiers useful in the lubricating engine oil formulations of this disclosure include, for example, alkoxylated fatty acid esters, alkanolamides, polyol fatty acid esters, borated glycerol fatty acid esters, fatty alcohol ethers, and mixtures thereof.
- Illustrative alkoxylated fatty acid esters include, for example, polyoxyethylene stearate, fatty acid polyglycol ester, and the like. These can include polyoxypropylene stearate, polyoxybutylene stearate, polyoxyethylene isosterate, polyoxypropylene isostearate, polyoxyethylene palmitate, and the like.
- Illustrative alkanolamides include, for example, lauric acid diethylalkanolamide, palmic acid diethylalkanolamide, and the like. These can include oleic acid diethyalkanolamide, stearic acid diethylalkanolamide, oleic acid diethylalkanolamide, polyethoxylated hydrocarbylamides, polypropoxylated hydrocarbylamides, and the like.
- Illustrative polyol fatty acid esters include, for example, glycerol mono-oleate, saturated mono-, di-, and tri-glyceride esters, glycerol mono- stearate, and the like. These can include polyol esters, hydroxyl-containing polyol esters, and the like.
- Illustrative borated glycerol fatty acid esters include, for example, borated glycerol mono-oleate, borated saturated mono-, di-, and tri-glyceride esters, borated glycerol mono-sterate, and the like.
- glycerol polyols these can include trimethylolpropane, pentaerythritol, sorbitan, and the like.
- esters can be polyol monocarboxylate esters, polyol dicarboxylate esters, and on occasion polyoltricarboxylate esters.
- Preferred can be the glycerol mono-oleates, glycerol dioleates, glycerol trioleates, glycerol monostearates, glycerol distearates, and glycerol tristearates and the corresponding glycerol monopalmitates, glycerol dipalmitates, and glycerol tripalmitates, and the respective isostearates, linoleates, and the like.
- the glycerol esters can be preferred as well as mixtures containing any of these. Ethoxylated, propoxylated, butoxylated fatty acid esters of polyols, especially using glycerol as underlying polyol can be preferred.
- Illustrative fatty alcohol ethers include, for example, stearyl ether, myristyl ether, and the like. Alcohols, including those that have carbon numbers from C 3 to C 50 , can be ethoxylated, propoxylated, or butoxylated to form the corresponding fatty alkyl ethers.
- the underlying alcohol portion can preferably be stearyl, myristyl, C u ⁇ C 13 hydrocarbon, oleyl, isosteryl, and the like.
- the lubricating oils of this disclosure exhibit desired properties, e.g., wear control, in the presence or absence of a friction modifier.
- Useful concentrations of friction modifiers may range from 0.01 weight percent to 5 weight percent, or about 0.1 weight percent to about 2.5 weight percent, or about 0.1 weight percent to about 1.5 weight percent, or about 0.1 weight percent to about 1 weight percent. Concentrations of molybdenum- containing materials are often described in terms of Mo metal concentration. Advantageous concentrations of Mo may range from 25 ppm to 700 ppm or more, and often with a preferred range of 50-200 ppm. Friction modifiers of all types may be used alone or in mixtures with the materials of this disclosure. Often mixtures of two or more friction modifiers, or mixtures of friction modifier(s) with alternate surface active material(s), are also desirable.
- lubricating oil compositions contain one or more of the additives discussed above, the additive(s) are blended into the composition in an amount sufficient for it to perform its intended function. Typical amounts of such additives useful in the present disclosure are shown in Table 1 below.
- the weight amounts in the table below, as well as other amounts mentioned herein, are directed to the amount of active ingredient (that is the non-diluent portion of the ingredient).
- the weight percent (wt%) indicated below is based on the total weight of the lubricating oil composition.
- Anti-foam Agent 0.001-3 0.001-0.15
- Viscosity Modifier (solid 0.1-2 0.1-1
- additives are all commercially available materials. These additives may be added independently but are usually precombined in packages which can be obtained from suppliers of lubricant oil additives. Additive packages with a variety of ingredients, proportions and characteristics are available and selection of the appropriate package will take the requisite use of the ultimate composition into account. [00156] The following non-limiting examples are provided to illustrate the disclosure.
- the antiwear additives used in the formulations were zinc stearate, magnesium stearate, and stearic acid.
- the surfactants used in the formulations were sorbitan oleate (e.g., Span® 80), polyoxyethylene (5) nonylphenylether (e.g., Igepal® CO-520), poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) average M n 1,100 (e.g., Pluronic® L31), poly(ethylene glycol)-block- poly(propylene glycol)-block-poly(ethylene glycol) average M n 2,000 (e.g., Pluronic® L61), octylphenol ethoxylate moles EO 1.5 (e.g., TritonTM X-15), and octylphenol ethoxylate moles EO 9.5 (e.g., TritonTM X-100).
- sorbitan oleate e.g., Span® 80
- polyoxyethylene (5) nonylphenylether e.g., I
- the additive package used in the formulations included conventional additives in conventional amounts.
- Conventional additives used in the formulations were one or more of an antioxidant, dispersant, pour point depressant, detergent, corrosion inhibitor, metal deactivator, seal compatibility additive, anti-foam agent, inhibitor, anti-rust additive, optional friction modifier, optional antiwear additive, and other optional lubricant performances additives.
- HFRR High Frequency Reciprocating Rig
- HFRR HFRR
- the test equipment and procedure are similar to the ASTM D6079 method.
- the HFRR test conditions were as follows: temperature 100°C; test duration 2 hours; stroke length 1 mm; frequency 10 Hz; and load 400 grams. Wear was measured on the disk.
- the ball is 6 mm diameter ANSI E-52100 steel, Rockwell C hardness of 58-66.
- the disc is AISI E-52100 steel, Vickers HV30 hardness of -200.
- Friction and percent film thickness were measured in real-time during the test. At the end of each test, the disk was removed and wear depth was measured. A mechanical stylus profile was used to measure the depth of the wear scar along three lines perpendicular to the long axis of the wear scar at three positions along the length of the scar. Wear performance was represented as the depth of the scars at the deepest point along these three lines.
- Reference formulations were prepared including a PA04 formulation, a partial formulation, and a full formulation.
- the composition of the reference formulations are given in Table 3 below.
- Formulations were prepared by blending at least one carboxylic acid or metal salt of a carboxylic acid, and at least one surfactant, into a base stock and/or a co-base stock.
- the additives were made with several compositions using similar synthetic conditions: The metal stearate or stearic acid, was heated in PAO to melting point, and a surfactant was added prior to cooling to avoid precipitation of the starting solid.
- the formulations are set forth in Fig. 2.
- the type of surfactant used, the ratio of metal stearate or stearic acid to surfactant, the presence of an additional co-base, and the resulting wear performance as measured by HFRR are set forth in Fig. 2.
- Igepal® CO-520 leads to a stable lubricant with high antiwear performance.
- Igepal® CO-520 the fully formulated oil is clear, compared to the partial formulation which is hazy (although stable).
- One partial formulation was prepared by adding melted Zn stearate to the partial formulation concentrate, resulting in a stable lubricant with excellent antiwear performance (Example 18).
- the lubricants of this invention are low in sulfur and are less corrosive than antiwear additives containing sulfur.
- One manifestation of this is that the present disclosure is less likely to corrode ferrous materials (e.g., steel) to produce iron sulfide.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Lubricants (AREA)
Abstract
Description
Claims
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201462097661P | 2014-12-30 | 2014-12-30 | |
US201562218739P | 2015-09-15 | 2015-09-15 | |
PCT/US2015/067583 WO2016109382A1 (en) | 2014-12-30 | 2015-12-28 | Lubricating oil compositions with engine wear protection |
Publications (1)
Publication Number | Publication Date |
---|---|
EP3240880A1 true EP3240880A1 (en) | 2017-11-08 |
Family
ID=55168449
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15825747.7A Withdrawn EP3240880A1 (en) | 2014-12-30 | 2015-12-28 | Lubricating oil compositions with engine wear protection |
Country Status (4)
Country | Link |
---|---|
US (1) | US20160186084A1 (en) |
EP (1) | EP3240880A1 (en) |
SG (1) | SG11201704101UA (en) |
WO (1) | WO2016109382A1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3440166B1 (en) * | 2016-04-08 | 2020-12-23 | Croda International PLC | A lubricated system comprising a dlc surface |
WO2020109568A1 (en) * | 2018-11-30 | 2020-06-04 | Total Marketing Services | Quaternary fatty amidoamine compound for use as an additive for fuel |
CN110437918A (en) * | 2019-08-26 | 2019-11-12 | 黄娟 | A kind of antioxygen body self-restoring lubricating oil and preparation method thereof containing graphene oxide |
KR20220080909A (en) * | 2020-12-08 | 2022-06-15 | 에스케이이노베이션 주식회사 | Lubricating composition for inhibiting plugging and method for inhibiting plugging using the same |
EP4310164A1 (en) * | 2022-07-22 | 2024-01-24 | Speira GmbH | Cooling lubricant for the hot rolling of aluminium |
Family Cites Families (100)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1815022A (en) | 1930-05-03 | 1931-07-14 | Standard Oil Dev Co | Hydrocarbon oil and process for manufacturing the same |
US2015748A (en) | 1933-06-30 | 1935-10-01 | Standard Oil Dev Co | Method for producing pour inhibitors |
US2100993A (en) | 1934-12-14 | 1937-11-30 | Rohm & Haas | Process for preparing esters and products |
US2191498A (en) | 1935-11-27 | 1940-02-27 | Socony Vacuum Oil Co Inc | Mineral oil composition and method of making |
US2387501A (en) | 1944-04-04 | 1945-10-23 | Du Pont | Hydrocarbon oil |
US2655479A (en) | 1949-01-03 | 1953-10-13 | Standard Oil Dev Co | Polyester pour depressants |
US2721878A (en) | 1951-08-18 | 1955-10-25 | Exxon Research Engineering Co | Strong acid as a polymerization modifier in the production of liquid polymers |
US2721877A (en) | 1951-08-22 | 1955-10-25 | Exxon Research Engineering Co | Lubricating oil additives and a process for their preparation |
US2666746A (en) | 1952-08-11 | 1954-01-19 | Standard Oil Dev Co | Lubricating oil composition |
US2817693A (en) | 1954-03-29 | 1957-12-24 | Shell Dev | Production of oils from waxes |
US3036003A (en) | 1957-08-07 | 1962-05-22 | Sinclair Research Inc | Lubricating oil composition |
US3444170A (en) | 1959-03-30 | 1969-05-13 | Lubrizol Corp | Process which comprises reacting a carboxylic intermediate with an amine |
DE1248643B (en) | 1959-03-30 | 1967-08-31 | The Lubrizol Corporation, Cleveland, Ohio (V. St. A.) | Process for the preparation of oil-soluble aylated amines |
US3215707A (en) | 1960-06-07 | 1965-11-02 | Lubrizol Corp | Lubricant |
US3200107A (en) | 1961-06-12 | 1965-08-10 | Lubrizol Corp | Process for preparing acylated amine-cs2 compositions and products |
US3087936A (en) | 1961-08-18 | 1963-04-30 | Lubrizol Corp | Reaction product of an aliphatic olefinpolymer-succinic acid producing compound with an amine and reacting the resulting product with a boron compound |
US3449250A (en) | 1962-05-14 | 1969-06-10 | Monsanto Co | Dispersency oil additives |
US3329658A (en) | 1962-05-14 | 1967-07-04 | Monsanto Co | Dispersency oil additives |
NL137371C (en) | 1963-08-02 | |||
US3322670A (en) | 1963-08-26 | 1967-05-30 | Standard Oil Co | Detergent-dispersant lubricant additive having anti-rust and anti-wear properties |
US3250715A (en) | 1964-02-04 | 1966-05-10 | Lubrizol Corp | Terpolymer product and lubricating composition containing it |
US3316177A (en) | 1964-12-07 | 1967-04-25 | Lubrizol Corp | Functional fluid containing a sludge inhibiting detergent comprising the polyamine salt of the reaction product of maleic anhydride and an oxidized interpolymer of propylene and ethylene |
NL145565B (en) | 1965-01-28 | 1975-04-15 | Shell Int Research | PROCESS FOR PREPARING A LUBRICANT COMPOSITION. |
US3382291A (en) | 1965-04-23 | 1968-05-07 | Mobil Oil Corp | Polymerization of olefins with bf3 |
US3574576A (en) | 1965-08-23 | 1971-04-13 | Chevron Res | Distillate fuel compositions having a hydrocarbon substituted alkylene polyamine |
US3756953A (en) | 1965-10-22 | 1973-09-04 | Standard Oil Co | Vatives of high molecular weight mannich reaction condensation concentrate and crankcase oils comprising oil solutions of boron deri |
US3751365A (en) | 1965-10-22 | 1973-08-07 | Standard Oil Co | Concentrates and crankcase oils comprising oil solutions of boron containing high molecular weight mannich reaction condensation products |
US3704308A (en) | 1965-10-22 | 1972-11-28 | Standard Oil Co | Boron-containing high molecular weight mannich condensation |
US3798165A (en) | 1965-10-22 | 1974-03-19 | Standard Oil Co | Lubricating oils containing high molecular weight mannich condensation products |
US3697574A (en) | 1965-10-22 | 1972-10-10 | Standard Oil Co | Boron derivatives of high molecular weight mannich condensation products |
US3272746A (en) | 1965-11-22 | 1966-09-13 | Lubrizol Corp | Lubricating composition containing an acylated nitrogen compound |
US3413347A (en) | 1966-01-26 | 1968-11-26 | Ethyl Corp | Mannich reaction products of high molecular weight alkyl phenols, aldehydes and polyaminopolyalkyleneamines |
US3822209A (en) | 1966-02-01 | 1974-07-02 | Ethyl Corp | Lubricant additives |
US3519565A (en) | 1967-09-19 | 1970-07-07 | Lubrizol Corp | Oil-soluble interpolymers of n-vinylthiopyrrolidones |
US3703536A (en) | 1967-11-24 | 1972-11-21 | Standard Oil Co | Preparation of oil-soluble boron derivatives of an alkylene polyamine-substituted phenol-formaldehyde addition product |
US3541012A (en) | 1968-04-15 | 1970-11-17 | Lubrizol Corp | Lubricants and fuels containing improved acylated nitrogen additives |
GB1244435A (en) | 1968-06-18 | 1971-09-02 | Lubrizol Corp | Oil-soluble graft polymers derived from degraded ethylene-propylene interpolymers |
GB1282887A (en) | 1968-07-03 | 1972-07-26 | Lubrizol Corp | Acylation of nitrogen-containing products |
US3725480A (en) | 1968-11-08 | 1973-04-03 | Standard Oil Co | Ashless oil additives |
US3726882A (en) | 1968-11-08 | 1973-04-10 | Standard Oil Co | Ashless oil additives |
US3702300A (en) | 1968-12-20 | 1972-11-07 | Lubrizol Corp | Lubricant containing nitrogen-containing ester |
US3454607A (en) | 1969-02-10 | 1969-07-08 | Lubrizol Corp | High molecular weight carboxylic compositions |
US3595791A (en) | 1969-03-11 | 1971-07-27 | Lubrizol Corp | Basic,sulfurized salicylates and method for their preparation |
US3652616A (en) | 1969-08-14 | 1972-03-28 | Standard Oil Co | Additives for fuels and lubricants |
US3632511A (en) | 1969-11-10 | 1972-01-04 | Lubrizol Corp | Acylated nitrogen-containing compositions processes for their preparationand lubricants and fuels containing the same |
FR2133524B2 (en) | 1970-06-05 | 1975-10-10 | Shell Berre Raffinage | |
FR2194767B1 (en) | 1972-08-04 | 1975-03-07 | Shell France | |
US3803039A (en) | 1970-07-13 | 1974-04-09 | Standard Oil Co | Oil solution of aliphatic acid derivatives of high molecular weight mannich condensation product |
GB1390359A (en) | 1971-05-13 | 1975-04-09 | Shell Int Research | Process for the preparation of lubricating oil with high viscosity index |
US3804763A (en) | 1971-07-01 | 1974-04-16 | Lubrizol Corp | Dispersant compositions |
US3787374A (en) | 1971-09-07 | 1974-01-22 | Lubrizol Corp | Process for preparing high molecular weight carboxylic compositions |
US3742082A (en) | 1971-11-18 | 1973-06-26 | Mobil Oil Corp | Dimerization of olefins with boron trifluoride |
US3755433A (en) | 1971-12-16 | 1973-08-28 | Texaco Inc | Ashless lubricating oil dispersant |
US3769363A (en) | 1972-03-13 | 1973-10-30 | Mobil Oil Corp | Oligomerization of olefins with boron trifluoride |
CA1003778A (en) | 1972-04-06 | 1977-01-18 | Peter Ladeur | Hydrocarbon conversion process |
US3876720A (en) | 1972-07-24 | 1975-04-08 | Gulf Research Development Co | Internal olefin |
US4100082A (en) | 1976-01-28 | 1978-07-11 | The Lubrizol Corporation | Lubricants containing amino phenol-detergent/dispersant combinations |
US4149178A (en) | 1976-10-05 | 1979-04-10 | American Technology Corporation | Pattern generating system and method |
US4454059A (en) | 1976-11-12 | 1984-06-12 | The Lubrizol Corporation | Nitrogenous dispersants, lubricants and concentrates containing said nitrogenous dispersants |
IT1104171B (en) | 1977-02-25 | 1985-10-21 | Lubrizol Corp | ACILATING AGENTS LUBRICANT COMPOSITIONS CONTAINING THEM AND PROCEDURE FOR THEIR PREPARATION |
US4218330A (en) | 1978-06-26 | 1980-08-19 | Ethyl Corporation | Lubricant |
US4234435A (en) | 1979-02-23 | 1980-11-18 | The Lubrizol Corporation | Novel carboxylic acid acylating agents, derivatives thereof, concentrate and lubricant compositions containing the same, and processes for their preparation |
US4239930A (en) | 1979-05-17 | 1980-12-16 | Pearsall Chemical Company | Continuous oligomerization process |
JPS56126315A (en) | 1980-03-11 | 1981-10-03 | Sony Corp | Oscillator |
US4367352A (en) | 1980-12-22 | 1983-01-04 | Texaco Inc. | Oligomerized olefins for lubricant stock |
US4426305A (en) | 1981-03-23 | 1984-01-17 | Edwin Cooper, Inc. | Lubricating compositions containing boronated nitrogen-containing dispersants |
US4956122A (en) | 1982-03-10 | 1990-09-11 | Uniroyal Chemical Company, Inc. | Lubricating composition |
US4413156A (en) | 1982-04-26 | 1983-11-01 | Texaco Inc. | Manufacture of synthetic lubricant additives from low molecular weight olefins using boron trifluoride catalysts |
US4897178A (en) | 1983-05-02 | 1990-01-30 | Uop | Hydrocracking catalyst and hydrocracking process |
NL8401253A (en) | 1984-04-18 | 1985-11-18 | Shell Int Research | PROCESS FOR PREPARING HYDROCARBONS. |
US4921594A (en) | 1985-06-28 | 1990-05-01 | Chevron Research Company | Production of low pour point lubricating oils |
US4975177A (en) | 1985-11-01 | 1990-12-04 | Mobil Oil Corporation | High viscosity index lubricants |
US4767551A (en) | 1985-12-02 | 1988-08-30 | Amoco Corporation | Metal-containing lubricant compositions |
US4827064A (en) | 1986-12-24 | 1989-05-02 | Mobil Oil Corporation | High viscosity index synthetic lubricant compositions |
US4798684A (en) | 1987-06-09 | 1989-01-17 | The Lubrizol Corporation | Nitrogen containing anti-oxidant compositions |
US4943672A (en) | 1987-12-18 | 1990-07-24 | Exxon Research And Engineering Company | Process for the hydroisomerization of Fischer-Tropsch wax to produce lubricating oil (OP-3403) |
US4827073A (en) | 1988-01-22 | 1989-05-02 | Mobil Oil Corporation | Process for manufacturing olefinic oligomers having lubricating properties |
US4952739A (en) | 1988-10-26 | 1990-08-28 | Exxon Chemical Patents Inc. | Organo-Al-chloride catalyzed poly-n-butenes process |
US4910355A (en) | 1988-11-02 | 1990-03-20 | Ethyl Corporation | Olefin oligomer functional fluid using internal olefins |
US5075269A (en) | 1988-12-15 | 1991-12-24 | Mobil Oil Corp. | Production of high viscosity index lubricating oil stock |
US5366648A (en) | 1990-02-23 | 1994-11-22 | The Lubrizol Corporation | Functional fluids useful at high temperatures |
AU640490B2 (en) | 1990-07-05 | 1993-08-26 | Mobil Oil Corporation | Production of high viscosity index lubricants |
AU638336B2 (en) | 1990-07-05 | 1993-06-24 | Mobil Oil Corporation | Production of high viscosity index lubricants |
US5068487A (en) | 1990-07-19 | 1991-11-26 | Ethyl Corporation | Olefin oligomerization with BF3 alcohol alkoxylate co-catalysts |
US5084197A (en) | 1990-09-21 | 1992-01-28 | The Lubrizol Corporation | Antiemulsion/antifoam agent for use in oils |
US5259967A (en) * | 1992-06-17 | 1993-11-09 | The Lubrizol Corporation | Low ash lubricant composition |
US5430105A (en) | 1992-12-17 | 1995-07-04 | Exxon Chemical Patents Inc. | Low sediment process for forming borated dispersant |
AU719520B2 (en) | 1995-09-19 | 2000-05-11 | Lubrizol Corporation, The | Additive compositions for lubricants and functional fluids |
US6090989A (en) | 1997-10-20 | 2000-07-18 | Mobil Oil Corporation | Isoparaffinic lube basestock compositions |
EP0963429B1 (en) | 1997-11-28 | 2012-03-07 | Infineum USA L.P. | Lubricating oil compositions |
US6080301A (en) | 1998-09-04 | 2000-06-27 | Exxonmobil Research And Engineering Company | Premium synthetic lubricant base stock having at least 95% non-cyclic isoparaffins |
US6165949A (en) | 1998-09-04 | 2000-12-26 | Exxon Research And Engineering Company | Premium wear resistant lubricant |
US6323164B1 (en) | 2000-11-01 | 2001-11-27 | Ethyl Corporation | Dispersant (meth) acrylate copolymers having excellent low temperature properties |
EP1518920A1 (en) * | 2001-05-11 | 2005-03-30 | Infineum International Limited | Lubricating oil composition |
US20030191032A1 (en) | 2002-01-31 | 2003-10-09 | Deckman Douglas E. | Mixed TBN detergents and lubricating oil compositions containing such detergents |
US8030258B2 (en) * | 2005-07-29 | 2011-10-04 | Chevron Oronite Company Llc | Overbased alkaline earth metal alkylhydroxybenzoates having low crude sediment |
US9012382B2 (en) | 2006-07-19 | 2015-04-21 | Infineum International Limited | Lubricating oil composition |
JP5638240B2 (en) * | 2007-04-26 | 2014-12-10 | 出光興産株式会社 | Lubricating oil composition |
US8048833B2 (en) | 2007-08-17 | 2011-11-01 | Exxonmobil Research And Engineering Company | Catalytic antioxidants |
SG10201604800QA (en) * | 2011-06-30 | 2016-08-30 | Exxonmobil Res & Eng Co | Lubricating compositions containing polyalkylene glycol mono ethers |
-
2015
- 2015-12-28 WO PCT/US2015/067583 patent/WO2016109382A1/en active Application Filing
- 2015-12-28 SG SG11201704101UA patent/SG11201704101UA/en unknown
- 2015-12-28 US US14/979,773 patent/US20160186084A1/en not_active Abandoned
- 2015-12-28 EP EP15825747.7A patent/EP3240880A1/en not_active Withdrawn
Also Published As
Publication number | Publication date |
---|---|
WO2016109382A1 (en) | 2016-07-07 |
SG11201704101UA (en) | 2017-07-28 |
US20160186084A1 (en) | 2016-06-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10487289B2 (en) | Lubricating oil compositions and methods of use thereof | |
US10066184B2 (en) | Lubricating oil compositions containing encapsulated microscale particles | |
US10000721B2 (en) | Lubricating oil compositions with engine wear protection | |
US10738262B2 (en) | Lubricating oil compositions with engine wear protection | |
US9951290B2 (en) | Lubricant compositions | |
EP3149132A1 (en) | Lubricating oil compositions with engine wear protection | |
US10781397B2 (en) | Lubricating oil compositions with engine wear protection | |
US20160186084A1 (en) | Lubricating oil compositions with engine wear protection | |
US20190203139A1 (en) | Friction and wear reduction using liquid crystal base stocks | |
US11976251B2 (en) | Method for controlling lubrication of a rotary shaft seal | |
US9926509B2 (en) | Lubricating oil compositions with engine wear protection and solubility | |
US20180298302A1 (en) | Lubricating oil compositions with engine wear protection | |
US20200140775A1 (en) | Lubricating oil compositions having improved cleanliness and wear performance | |
US20200199475A1 (en) | Lubricant Compositions With Improved Wear Control | |
US20200032158A1 (en) | Lubricating oil compositions with engine corrosion protection | |
US20190203142A1 (en) | Lubricating oil compositions with wear and sludge control |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20170727 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20180310 |