EP3239644B1 - An aiming-assistance method and device for laser guidance of a projectile - Google Patents

An aiming-assistance method and device for laser guidance of a projectile Download PDF

Info

Publication number
EP3239644B1
EP3239644B1 EP17167889.9A EP17167889A EP3239644B1 EP 3239644 B1 EP3239644 B1 EP 3239644B1 EP 17167889 A EP17167889 A EP 17167889A EP 3239644 B1 EP3239644 B1 EP 3239644B1
Authority
EP
European Patent Office
Prior art keywords
target
guide beam
environment
aiming
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17167889.9A
Other languages
German (de)
French (fr)
Other versions
EP3239644A1 (en
Inventor
Nikolaus Boos
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Helicopters SAS
Original Assignee
Airbus Helicopters SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Airbus Helicopters SAS filed Critical Airbus Helicopters SAS
Priority to PL17167889T priority Critical patent/PL3239644T3/en
Publication of EP3239644A1 publication Critical patent/EP3239644A1/en
Application granted granted Critical
Publication of EP3239644B1 publication Critical patent/EP3239644B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G7/00Direction control systems for self-propelled missiles
    • F41G7/20Direction control systems for self-propelled missiles based on continuous observation of target position
    • F41G7/22Homing guidance systems
    • F41G7/2246Active homing systems, i.e. comprising both a transmitter and a receiver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G3/00Aiming or laying means
    • F41G3/02Aiming or laying means using an independent line of sight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G3/00Aiming or laying means
    • F41G3/14Indirect aiming means
    • F41G3/145Indirect aiming means using a target illuminator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G7/00Direction control systems for self-propelled missiles
    • F41G7/007Preparatory measures taken before the launching of the guided missiles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G7/00Direction control systems for self-propelled missiles
    • F41G7/20Direction control systems for self-propelled missiles based on continuous observation of target position
    • F41G7/22Homing guidance systems
    • F41G7/226Semi-active homing systems, i.e. comprising a receiver and involving auxiliary illuminating means, e.g. using auxiliary guiding missiles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G7/00Direction control systems for self-propelled missiles
    • F41G7/20Direction control systems for self-propelled missiles based on continuous observation of target position
    • F41G7/22Homing guidance systems
    • F41G7/2273Homing guidance systems characterised by the type of waves
    • F41G7/2293Homing guidance systems characterised by the type of waves using electromagnetic waves other than radio waves

Definitions

  • the present invention is in the field of projectile guidance. It relates more particularly to the guidance of projectiles using a laser beam.
  • the present invention relates to a method for assisting in the targeting of a target as well as a device for assisting in the targeting of a target.
  • the present invention also relates to a method for guiding a projectile by a laser beam using such a method of aiming assistance as well as a device for guiding a projectile by a laser beam equipped with such a device. sighting aid.
  • Guidance by a laser beam is used in particular by the military to guide a missile or any other projectile on a target illuminated by means of a laser beam.
  • This technique is a semi-active autoguiding by laser designated by the acronym "SALH” designating in English “Semi-Active Laser Homing”.
  • SALH semi-active autoguiding by laser
  • a laser beam is kept pointed by an operator, often designated by the term "shooter”, on a target. Reflections of this laser beam are then dispersed in a multitude of directions by reflection on the target.
  • a projectile, such as a missile can then be launched or dropped towards the target.
  • a receiving device that the projectile comprises receives part of the laser beam reflected by the target and then determines the source of this part of the reflected laser beam, namely the target.
  • the trajectory of the projectile is then adjusted in the direction of this source.
  • the projectile having no autonomous means of detecting the target proper, is then guided only towards the source by the part of the reflected laser beam which it receives.
  • the trajectory of the projectile can be corrected in order to guide the projectile exactly on the target.
  • the emission of the laser beam is therefore dissociated from the projectile and is carried out for example by an operator.
  • the operator must have the target in his field of vision in order to point the laser beam at it.
  • the projectile launch zone is completely independent of the laser beam emission zone.
  • the laser beam is emitted by a generator of a laser beam such as a laser designator.
  • a laser beam used for guiding a projectile generally consists of a succession of pulses emitted at regular or irregular time intervals, but in all cases known to be identifiable by the means for receiving the projectile.
  • a laser beam used for guiding a projectile can also be a continuous laser beam.
  • the aiming procedure always begins by scanning the environment visible to the operator in search of targets, then by stopping the scanning to focus on a target. Therefore, the operator must continuously point the laser beam at the target in order to guide the projectile towards it.
  • the target can be a moving vehicle, for example an automobile or an aircraft.
  • the operator can also be in motion, for example being on board a rolling vehicle or else an aircraft.
  • the operator has no direct visual feedback on the point of the environment which is actually illuminated by the laser beam.
  • the reflection of the laser on the target is generally not visible to the operator.
  • the operator can therefore only rely on his aiming, carried out for example through a sighting reticle of a sighting scope for a portable laser designator or else by means of a visualization means integrated in a helmet. for a laser designator on board a vehicle. Consequently, an offset between the aiming reticle and the actual laser beam can exist and cause an aiming error which goes unnoticed by the operator. Only the impact of the projectile informs the operator about the accuracy of the initial aim and the possible aim error. In the latter case where the projectile has missed the target, the operator can possibly correct its aiming as a function of the position of the point of impact of the projectile relative to the target, but only after a first failure.
  • a laser beam is a particular light beam composed of coherent and concentrated light.
  • the term “laser” is an acronym designating in English language “Light Amplification by Stimulated Emission of Radiation” and meaning "amplification of light by stimulated emission of radiation”.
  • the term “light beam” is intended to mean a beam generally composed of lights visible to the human eye.
  • a laser beam can therefore be a light beam located both in the area visible to the human eye and in the non-visible area.
  • This correction device emits a beam for guiding the projectiles directed towards a target.
  • This guide beam is divided into at least five partial beams, a central partial beam effectively directed at the target and at least four partial beams inclined with respect to the central partial beam. Projectiles illuminated by an inclined partial beam therefore do not point towards the target and have their trajectories corrected accordingly.
  • the document US 2009/078817 discloses a projectile guidance system to reduce the number of pulses of the guide beam to reduce the total energy sent to the target.
  • This device requires communication between the projectile and the generator of the guide beam in order to synchronize the reception of the reflected guide beam and the emission of this guide beam.
  • an image capture means allows the analysis of the guide beam through the contact points of this guide beam on the target.
  • a radiation capture means allows the analysis of the guide beam reflected by the target, in particular, the time of arrival of this guide beam reflected by the target on the sensor, its angle of arrival and / or its arrival position on the sensor.
  • the document US 6023322 makes it possible to determine the ratio between the number of points of contact of this guide beam reflected by the target and the number of pulses of this guide beam emitted making it possible for example to find the best zone of the target to be aimed with the guide beam .
  • the present invention aims to allow a reliable and precise aiming of a guide beam on a target.
  • the present invention makes it possible to provide the operator with feedback on the zone actually targeted by means of an image of the environment and of the target.
  • the present invention notably uses a new type of camera allowing the creation of a selective image of the target in the environment.
  • the subject of the present invention is therefore a method for assisting in the aiming of a target as well as a device for assisting in the aiming of a target making it possible to overcome the limitations mentioned above in order to improve quality and accuracy of aiming the target via a guide beam.
  • the present invention also relates to a method of guiding a projectile by a guide beam using such a sighting aid method as well as a device for guiding a projectile by a guide beam equipped with such a device. sighting aid.
  • This method according to the invention is particularly intended for methods of guiding a projectile by a guide beam towards a target.
  • the guide beam is emitted by a generator of a guide beam.
  • the guide beam can be a light beam visible or not visible to the human eye depending on the wavelength (s) making up this light beam.
  • the guide beam is preferably a laser beam. This laser beam is for example emitted by a generator of a laser beam of known type such as a laser designator dedicated to the aiming of a target.
  • the guide beam can be a continuous beam or else be formed by a succession of pulses at regular intervals.
  • the guide beam is notably defined by temporal characteristics which are the frequency and the duration of these pulses.
  • the generator of a guide beam can be portable and used directly by an operator.
  • the generator of a guide beam can also be embedded in a vehicle.
  • the generator of a guide beam can be linked to the projectile launching device, the generator of a guide beam and the projectile launching device being for example carried by the same vehicle.
  • the generator of a guide beam can also be carried by a third party, for example by a ground shooter, and then isolated from the projectile launching device, carried for example by a vehicle. We then speak of "external designation” or "remote designation” in the English language.
  • This method also uses a camera in order to record the environment and the target as well as a visualization means for displaying in particular the images recorded by the camera.
  • the display means can be integrated into a telescopic sight of a generator of a portable guide beam or else into a helmet for a generator of guide beam on board a vehicle.
  • the display means can also be a remote screen vis-à-vis the generator of a guide beam.
  • the camera can be linked to the generator of a guide beam or isolated from this generator of a guide beam.
  • the generator of a guide beam is carried by an operator located on the ground while the camera is carried by a vehicle, the vehicle possibly being able to also carry the device for launching the projectile.
  • the camera used by the method according to the invention is preferably a new type of camera known by the English expression "bio-inspired camera” or “event based”. These cameras are characterized by a very high radiometric dynamic, for example the ability to see light and dark objects at the same time, and by a very high temporal resolution, of the order of a microsecond. By their principle, these cameras therefore make it possible for each pixel to measure a change in radiometry with high temporal precision. A detection of change in the scene, for example by the presence of a pulse of a guide beam or a moving object, is therefore done naturally. “Radiometry of an object” is understood to mean the measurement of the energy quantity relating to the radiations emitted by this object or else derived properties such as the flux or the intensity of these radiations.
  • An aiming procedure always begins with a scan of the visible environment in search of targets, then by stopping the scan to focus on a target.
  • the first step of the method according to the invention therefore consists in a complete scanning of an environment using the camera. A complete image of this environment is therefore recorded. This complete image of this environment is then displayed during the second step on the display means so that a target on this complete image of the environment is identified and selected during the third step.
  • This identification and selection is made by an operator who is for example the operator in charge of aiming the target with the guide beam.
  • the operator identifies the target on the complete image of the environment and then selects it.
  • This selection can be made by the operator aiming at the target via the generator of a guide beam, but without emitting a guide beam.
  • the operator then uses the telescopic sight of this generator of a guide beam and when he aims at the target, he actuates a selection means such as a push button or a switch to select the targeted target.
  • the operator generally uses the sighting reticle present in the sighting scope of the generator of a guide beam to aim at the target.
  • This selection can also be made directly on the display means by moving the sighting reticle on the target, then by actuating the selection means.
  • the reticle can be moved by a mouse or directly on the display means which is then a touch screen, the target selection means also being this mouse or this touch screen.
  • the target can also be identified by its coordinates, for example according to a satellite location system, the operator then selecting it via the selection means to confirm that the coordinates correspond to the target.
  • the selection of the target can be automatic when the operator aims at a stationary target or when the aiming reticle is kept stationary for a first predetermined duration.
  • This first predetermined duration is for example 3 seconds (3s).
  • This automatic selection is also possible for a moving target, in particular by using an image processing system, designated for example in English by the expression "moving target indicators", aligning the reticle on the identified moving target.
  • the operator points the guide beam at the target during the fourth step in order to guide the projectile to the target.
  • the operator generally uses the sight reticle present in a sight telescope of the generator of a guide beam to aim the target or directly on the visualization means by positioning the aim reticle on the target.
  • the operator must in fact continuously point the guide beam at the target via the beam generator. guidance until the projectile hits the target. In fact, if the operator points the guide beam at another object outside the target, the projectile will then move towards this other object. Likewise, if the operator stops the generator of a guide beam and if no guide beam is emitted, the projectile will not know where to go.
  • first step and the second step are preferably repeated as long as the operator has not pointed the guide beam at the target in order to update the complete display of the environment.
  • the operator generally does not see the point of contact of the guide beam on the target, the guide beam may be visible or not visible to the human eye. In fact, the operator cannot verify whether the beam actually illuminates the intended target.
  • the guide beam and its reflection on the target are advantageously always visible by the camera.
  • the contact points of the guide beam in the environment and in particular on the target are always visible and can be recorded by the camera.
  • the method according to the invention then advantageously comprises a fifth step during which the complete image of this environment is displayed on the display means with the point of contact of the guide beam in the environment.
  • the operator can then visualize the point of contact of the guide beam on the image of the environment and verify that this point of contact is indeed on the target. In this way, if this contact point is not located on the target, the operator can then correct the aim. Indeed, a shift between the sighting reticle and the guide beam itself may exist due to inaccuracies in the system and cause a shift between the sighting direction and the direction of the guide beam and, consequently, a sighting error. .
  • the operator again points the target with the guide beam.
  • the operator can during this sixth step possibly correct the aiming as a function of the position of the point of contact of the guide beam on the environment with respect to the target on the image displayed during the previous step. .
  • the camera used by the method advantageously makes it possible during the seventh step to selectively scan the target and the point of contact of the guide beam in the environment.
  • the camera used by the method according to the invention makes it possible to record only part of the environment for which a change in radiometry is detected.
  • this camera can specifically record the target selected during the third step and impacted by the guide beam as well as the point of contact of this guide beam.
  • Other environmental objects may also be recorded according to the change in their respective radiometry.
  • the number of objects recorded in step 7 and then displayed in step 8 is significantly reduced when it comes to recording and displaying a complete picture of the environment, in steps 1 and 2 respectively .
  • a selective image of the target and of at least one point of contact of the guide beam in the environment is displayed.
  • the operator can visualize the contact point of the guide beam on the selective image of the environment and check that this contact point is always on the target.
  • this selective image is simplified and mainly displays the target, the point of contact of the guide beam on the environment and possibly other objects whose radiometry changes. This selective display advantageously allows a faster analysis on the part of the operator who immediately sees the position of the contact point of the guide beam on the environment vis-à-vis the target.
  • the sixth, seventh and eighth stages are then repeated until the impact of the projectile, these stages being carried out continuously.
  • the operator first uses the complete image displayed during the fifth step to possibly correct the aiming of the target and then uses the selective images displayed successively during the eighth step.
  • the aiming aid method according to the invention advantageously makes it possible to provide the operator in real time and during his aiming operation with feedback on the positions of the target and of the contact points of the guide beam on the environment thanks to the display of the complete image and then selective images of the environment.
  • This display of the selective image thus makes it possible to improve the aiming precision, the operator being able to immediately correct, in real time and continuously, a deviation from the position of the point of contact of the guide beam on the visible environment. vis-à-vis the target.
  • the aiming reticle can be displayed on the target. This aiming reticle can thus be displayed during the second, fifth and eighth display steps of the aiming aid method according to the invention.
  • the aiming aid method according to the invention may comprise, after the eighth step, additional steps making it possible to quantify the precision of the aiming of the target.
  • the image displayed during the second, fifth and eighth step comprising in particular the target and the point of contact of the guide beam in the environment, it is possible by analyzing each successively displayed image to determine a first number of points of the guide beam contacting the target and a second number of contact points of the guide beam not touching the target since the target was selected in the third step.
  • the aiming aid method according to the invention can thus include a ninth step of calculating the first number of contact points of the guide beam touching the target, and the second number of contact points of the guide beam not touching the target since the target was selected in the third step.
  • the percentage of contact points of the guide beam actually touching the target among the all of the contact points of the guide beam in the environment can possibly be calculated during this ninth step.
  • This information on the precision of the points of contact of the guide beam touching the target can be this first number and this second number or else the percentage of the points of contact of the guide beam actually touching the target among all the points of contact of the beam. guidance in the environment.
  • the contact points of the guide beam in the environment can be recorded for a second predetermined duration, then be displayed with the selective image of the target.
  • the operator can thus view the successive positions of the contact points over this second predetermined duration and thus observe a possible drift in the precision of his aim or else an improvement in this aim.
  • the selective image of the target and the current contact point of the guide beam in the environment can be displayed simultaneously with at least one of the contact points previously displayed.
  • “Current contact point” of the guide beam is understood to mean the contact point of the guide beam picked up by the camera during the seventh selective scanning step immediately preceding this eighth step.
  • point of contact previously displayed the contact point displayed during the fifth step of displaying a complete image of the environment and the point of contact of the guide beam in the environment as well as any contact point displayed during any previous eighth display steps.
  • the contact points previously displayed are for example partly constituted by the contact points registered during the second predetermined duration.
  • the ninth stage can also take place over the second predetermined duration. In this way, the information of the precision displayed during the tenth step is determined over this second determined duration.
  • the aiming aid method according to the invention may include another additional step taking place after the fourth step, that is to say after aiming the guide beam on the target, and parallel to the steps following, namely from the fifth stage to the eighth stage.
  • This additional step allows the identification of the guide beam aimed at the target.
  • the contact points of the guide beam in the environment are always visible and recordable by the camera.
  • the temporal characteristics of the guide beam used to aim at the target are known and constitute the code of the guide beam. It is then advantageously possible to verify that these temporal characteristics of the guide beam visible on the target do indeed correspond to the code of the expected guide beam and to thus determine that the guide beam visible on the target by the camera is indeed the expected guide beam.
  • the aiming aid method according to the invention can thus include an eleventh step of analysis and identification of the guide beam, the points of contact of the guide beam in the environment being analyzed in order to determine the temporal characteristics. of the guide beam and thus identify the guide beam code visible on the target.
  • the temporal characteristics of the guide beam are the frequency and the duration of these pulses.
  • a continuous guide beam has no pulses and no frequency can be determined.
  • the temporal characteristics of such a continuous beam are in fact the absence of pulses and frequency.
  • the points of contact of the guide beam in the environment can be recorded from the pointing of the target by the guide beam during the fourth step or else over a third predetermined duration.
  • This third predetermined duration can be equal to the second predetermined duration.
  • Such recordings of the contact points of the guide beam in the environment may in particular be useful for an analysis subsequent to the firing of the projectile, for example in the event of a target error, and in particular of fratricidal firing.
  • the method for assisting in the targeting of a target may comprise, between the fourth step of pointing the target and the fifth step of displaying, an intermediate step of complete scanning of the environment at camera help.
  • This intermediate step therefore consists of a new complete scan of the environment in order to update the display of the target and of the environment before the complete display of this environment during the fifth step.
  • This intermediate step notably makes it possible to take into account a possible displacement of the objects of the environment and in particular of the target.
  • the method of assisting with the aiming of a target according to the invention advantageously makes it possible, during the fifth and eighth steps, to visualize the spatial behavior of the guide beam in the environment and thus to verify the efficiency of the aiming.
  • this method makes it possible, during the ninth and tenth steps, to quantify this spatial behavior of the guide beam by providing the precision information.
  • this method makes it possible, during the eleventh step, to quantify the temporal behavior of the guide beam and to identify the code of the guide beam in order to ensure that this guide beam is indeed that expected.
  • the guide beam is preferably a laser beam.
  • the aiming assistance method previously described is then applied to the illumination step in order to improve the precision of this illumination of the target and, consequently, to improve the precision of the launching of a projectile on the target.
  • the projectile attachment step on the target can then be carried out as a function of the information of the precision of the contact points of the guide beam touching the target and / or of the temporal characteristics of the guide beam impacting the target.
  • This hooking step can be carried out manually by the operator.
  • This realization can also be done automatically if the information on the precision of the contact points of the guide beam touching the target is greater than or equal to a predetermined threshold and / or if the temporal characteristics of the guide beam impacting the target correspond to the code of the expected guide beam.
  • the projectile launching step can be canceled as a function of this information on the precision of the contact points of the guide beam touching the target.
  • This cancellation can be done manually by the operator.
  • This cancellation can also be carried out if the operator finds on the display of the selective image during the eighth step an unforeseen event, for example a vehicle approaching the target, this vehicle not having to be impacted by the projectile.
  • This cancellation can also be done automatically if the information on the accuracy of the contact points of the guide beam touching the target is less than the predetermined threshold and / or if the temporal characteristics of the beam guides impacting on the target do not correspond to the expected guide beam code.
  • the attachment and / or the firing of the projectile is carried out. Otherwise, the probability that the projectile will hit the target is too low and the projectile is not hooked and / or fired.
  • the projectile launching step can be carried out before the projectile attachment step on the target.
  • the present invention also relates to a device for assisting in the targeting of a target comprising a camera, a display means, a calculator and a selection means.
  • the camera makes it possible to record information specifically on particular objects in the recorded environment, the target being a particular object in the environment.
  • the particular objects are isolated by this camera according to a change in their respective radiometry, for example following a movement of the particular objects.
  • the computer of this device for assisting in the targeting of a target can be configured in particular in order to analyze each image successively displayed on the display means and to determine a first number of contact points of the guide beam touching the target and a second number of contact points of the guide beam not touching the target.
  • This computer also makes it possible to determine the percentage of these points of contact of the guide beam actually touching the target among all the points of contact of the guide beam in the environment.
  • the computer can also be configured to analyze the environment seen by the camera and in particular the contact points of the guide beam in this environment in order to determine the temporal characteristics of the guide beam and, consequently, to identify the guide beam code.
  • the device for assisting with the aiming of a target can thus implement the method for assisting with the aiming of a target previously described in order to improve the accuracy of aiming of the target.
  • the present invention also relates to a system for guiding a projectile by a guide beam comprising a generator of a guide beam, a sighting aid device as previously described and a projectile provided with a receiving device.
  • the sighting aid is configured to improve the accuracy of target illumination so that the accuracy of projectile fire on the target is improved.
  • the generator of a guide beam is preferably a generator of a laser beam.
  • This system for guiding a projectile by a guide beam can thus implement the method for guiding a projectile by a guide beam previously described.
  • the figure 1 represents a system 20 for guiding a projectile 10 by a guide beam comprising a generator 6 of a guide beam 9, a projectile 10 provided with a receiving device 11 and a device 1 for aiming assistance.
  • This system 20 for guiding a projectile 10 by a guide beam ensures the guiding of the projectile 10, a missile for example, towards a target 5.
  • the generator 6 of a guide beam 9 can be used by an operator to aim a target 5 with the guide beam 9, the operator being located on the ground and fixed.
  • the generator 6 of a guide beam 9 then generally comprises a telescopic sight 61 making it possible to achieve the aim of the target 5.
  • the generator 6 of a guide beam 9 can also be embarked in a vehicle such as an aircraft and used then both when the vehicle is moving or when it is stationary.
  • This guide beam 9 is for example a laser beam consisting of successive pulses.
  • the target 5 is first of all illuminated by the guide beam 9 emitted by the generator 6 of a guide beam 9 and reflections of this guide beam 9 are then dispersed in a multitude of directions by reflection on the target 5
  • the guide beam 9 may be visible or not visible to the human eye depending on the wavelength (s) making up this guide beam 9.
  • the projectile 10 is launched in the direction of the target 5.
  • the projectile 10 comprises a receiving device 11 which receives, when it approaches the target 5, part of the guide beam 9 reflected by the target 5 and then determines the source of this part of the guide beam 9 reflected.
  • the projectile 10 is finally guided and directed towards this source, namely the target 5, as long as the guide beam 9 points at the target 5 and illuminates it.
  • the device 1 for aiming at a target 5 comprises a camera 2, a display means 3, a computer 4 and a selection means 7.
  • the display means 3 is a screen.
  • the device 1 for aiming at a target 5 is configured in order to improve the accuracy of aiming at target 5 by implementing a method for assisting at aiming at a target, a block diagram of which is depicted on the figure 2 and which includes the following steps.
  • a complete scanning of an environment is carried out using the camera 2.
  • a complete image of this environment corresponding to this complete scanning of the environment is displayed on the display means 3. This complete image is represented on the figure 3 .
  • a target 5 is identified and then selected from this complete image of the environment. This identification is made by an operator who is in charge of aiming the target with the guide beam 9.
  • the operator selects target 5 on the complete image of the environment.
  • This selection is made by means of a selection means 7 such as a push button while the operator is targeting the target 5.
  • This selection is made by the operator when he is targeting the target 5 by means of the generator 6 of a guide beam, but without emitting a guide beam.
  • the operator uses for example the aiming scope 61 of this generator 6 of a guide beam to aim at the target 5, then he actuates the selection means 7 to select the targeted target 5.
  • This selection of the target 5 can also be made automatically when the operator targets a stationary target 5 or for a first predetermined duration.
  • a fourth step 104 the operator points the guide beam 9 at the target 5 in order to guide the projectile 10 to this target 5.
  • the operator generally uses the aiming reticle present in the telescopic sight 61 of the generator 6 of a guide beam for targeting the target 5.
  • the first step 101 and the second step 102 are repeated before the completion of this fourth step 104 in order to update the complete display of the environment.
  • a fifth display step 105 the complete image of this environment is displayed on the display means 3 with the contact point 91 of the guide beam 9 in the environment.
  • the guide beam 9 and its reflection on the target 5 are advantageously always visible by the camera 2.
  • an aiming reticle 8 can also be displayed on the display means 3 thus indicating to the operator the point of the target environment.
  • This complete image comprising the contact point 91 of the guide beam 9 and the sighting reticle 8 is shown on the figure 4 .
  • This fifth display step 105 thus allows the operator to view and verify on the one hand that the aiming reticle 8 points well at the target 5 and on the other hand that the contact point 91 of the guide beam 9 points also the target 5. In fact, the operator must constantly point the guide beam 9 at the target 5 until the projectile 10 impacts the target 5.
  • an intermediate step 115 of complete scanning of the environment can be carried out between the fourth step 104 of pointing the target 5 and the fifth step 105 of display.
  • an intermediate step 115 of complete scanning of the environment can be carried out between the fourth step 104 of pointing the target 5 and the fifth step 105 of display.
  • a sixth pointing step 106 the operator again points the target 5 with the guide beam 9.
  • This sixth pointing step 106 advantageously allows the operator to correct the aim if the contact point 91 is not located on target 5 on the complete image displayed during the fifth display step 105.
  • a selective scanning of the target 5 and of the contact point 91 of the guide beam 9 in the environment is carried out by the camera 2.
  • the camera 2 is a camera making it possible in fact to '' specifically record information on particular objects in the environment according to a change in their radiometry following, for example, their movement.
  • the camera 2 makes it possible to record specifically and only the information on particular objects in the environment which are in motion, as well as the contact points 91 of the guide beam 9.
  • this selective image of the target 5 and of at least one contact point 91 of the guide beam 9 in the environment is displayed.
  • the operator can view the contact point 91 of the guide beam 9 on the selective image of the environment and check that this contact point 91 is always well on the target 5.
  • this selective image is simplified and mainly displays the target 5 which is for example in motion and the point of contact 91 of the guide beam 9 on the environment.
  • This selective image advantageously allows a quicker analysis on the part of the operator who immediately sees the position of the contact point 91 with respect to the target 5.
  • the reticle of target 8 can be displayed on the display means 3 in order to indicate to the operator the point of the environment which is targeted.
  • This selective image comprising the contact point 91 of the guide beam 9 and the sighting reticle 8 is shown on the figure 5 .
  • the sixth, seventh and eighth stages are then repeated until the impact of the projectile 10, these stages being carried out continuously.
  • the aiming aid device 1 thus advantageously makes it possible to provide the operator in real time and during his aiming operation with a return to the positions of the target 5 and of the contact point 91 of the guide beam 9 on the environment thanks to the images displayed on the viewing means 3 after having identified and selected the target 5. The operator can then immediately correct a difference between the position of the contact point 91 with respect to the target 5 and thus improve the aim accuracy.
  • the aiming aid device 1 also makes it possible to quantify the precision of the aiming.
  • the computer 4 is configured in order to analyze each image successively displayed on the display means 3 and to determine, during a ninth step 109, a first number of contact points 91 of the guide beam 9 touching the target 5 and a second number of contact points 91 of the guide beam not touching the target 5.
  • This computer 4 also makes it possible to calculate the percentage of these contact points 91 actually touching the target 5 among all the contact points 91 of the guide beam 9 in the environment.
  • information 92 of the precision of the contact points 91 touching the target 5 formed by this percentage of contact points 91 actually touching the chosen target can be displayed on the display means 3.
  • the ninth step 109 and the tenth step 110 preferably take place simultaneously with the sixth, seventh and eighth steps as shown in the block diagram of the figure 2 , and repeat until the impact of projectile 10.
  • the contact points 91 of the guide beam 9 in the environment can be recorded for a second predetermined duration, then be displayed with the selective image of the target 5.
  • the selective image of the target 5 and the current contact point 91 of the guide beam 9 picked up during the seventh scanning step 107 can be displayed simultaneously with at least one of the contact points 91 previously displayed during the fifth display step 105 and during previous eighth display steps 108, if any.
  • the ninth step 109 can also take place over the second predetermined duration. In this way, the information 92 of the precision displayed during the tenth step 110 is determined over this second determined duration.
  • This information 92 is displayed on the display means 3 with the contact points 91 recorded during the second predetermined duration as shown in the Figures 6 and 7 .
  • the operator can thus visualize the positions of the contact points 91 over this second predetermined duration and thus visualize the precision of the contact points 91 with respect to the target 5.
  • This information 92 can also be used by the guidance system 20 of a projectile 10 in order to confirm or cancel the attachment of the projectile 10 to the target 5 and the launching of the projectile 10 in the direction of the target 5. In Indeed, if the aiming accuracy is considered too low by the operator, he can cancel the launching of the projectile 10 or else stop it momentarily until there is sufficient aiming accuracy. This cancellation can also be done automatically if the information 92 of the precision of the contact points 91 of the guide beam 9 touching the target 5 is less than a predetermined threshold.
  • the aiming aid device 1 makes it possible to identify the code of the guide beam 9 targeting the target 5.
  • the computer 4 is configured in order to analyze the environment seen by the camera 2 and in particular the contact points 91 of the guide beam 9 in the environment. The computer 4 can thus determine, during an eleventh step 111, the temporal characteristics of the guide beam 9 and identify the code of this guide beam 9. This eleventh step 111 takes place after the fourth step 104 and in parallel with the steps following.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Description

La présente invention est du domaine de guidage des projectiles. Elle concerne plus particulièrement le guidage de projectiles à l'aide d'un faisceau laser.The present invention is in the field of projectile guidance. It relates more particularly to the guidance of projectiles using a laser beam.

La présente invention concerne un procédé d'aide à la visée d'une cible ainsi qu'un dispositif d'aide à la visée d'une cible. La présente invention concerne également un procédé de guidage d'un projectile par un faisceau laser utilisant un tel procédé d'aide à la visée ainsi qu'un dispositif de guidage d'un projectile par un faisceau laser équipé d'un tel dispositif d'aide à la visée.The present invention relates to a method for assisting in the targeting of a target as well as a device for assisting in the targeting of a target. The present invention also relates to a method for guiding a projectile by a laser beam using such a method of aiming assistance as well as a device for guiding a projectile by a laser beam equipped with such a device. sighting aid.

Le guidage par un faisceau laser est employé notamment par les militaires pour guider un missile ou toute autre projectile sur une cible illuminée au moyen d'un faisceau laser. Cette technique est un autoguidage semi actif par laser désigné par l'acronyme « SALH » désignant en langue anglaise « Semi-Active Laser Homing ». Selon cette technique et tel que décrit dans le document US 4143835 , un faisceau laser est maintenu pointé par un opérateur, souvent désigné par le terme « tireur », sur une cible. Des reflets de ce faisceau laser sont alors dispersés dans une multitude de directions par réflexion sur la cible. Un projectile, tel un missile, peut être alors lancé ou lâché en direction de la cible.Guidance by a laser beam is used in particular by the military to guide a missile or any other projectile on a target illuminated by means of a laser beam. This technique is a semi-active autoguiding by laser designated by the acronym "SALH" designating in English "Semi-Active Laser Homing". According to this technique and as described in the document US 4143835 , a laser beam is kept pointed by an operator, often designated by the term "shooter", on a target. Reflections of this laser beam are then dispersed in a multitude of directions by reflection on the target. A projectile, such as a missile, can then be launched or dropped towards the target.

Lorsque le projectile est suffisamment proche de la cible, un dispositif de réception que comporte le projectile reçoit une partie du faisceau laser réfléchi par la cible et détermine alors la source de cette partie du faisceau laser réfléchi, à savoir la cible. La trajectoire du projectile est alors ajustée en direction de cette source. Le projectile, ne possédant aucun moyen autonome de détection de la cible proprement dite, est alors guidé uniquement vers la source par la partie du faisceau laser réfléchi qu'il reçoit.When the projectile is close enough to the target, a receiving device that the projectile comprises receives part of the laser beam reflected by the target and then determines the source of this part of the reflected laser beam, namely the target. The trajectory of the projectile is then adjusted in the direction of this source. The projectile, having no autonomous means of detecting the target proper, is then guided only towards the source by the part of the reflected laser beam which it receives.

Ainsi, tant que le faisceau laser est maintenu pointé sur la cible et que le dispositif de guidage du projectile reçoit une partie du faisceau laser réfléchi, la trajectoire du projectile peut être corrigée afin de guider le projectile exactement sur la cible. L'émission du faisceau laser est donc dissociée du projectile et est effectuée par exemple par un opérateur. Par contre, l'opérateur doit avoir la cible dans son champ de vision afin de pointer le faisceau laser sur elle. Avantageusement, la zone de lancement du projectile est totalement indépendante de la zone d'émission du faisceau laser. Le faisceau laser est émis par un générateur d'un faisceau laser tel qu'un désignateur laser.Thus, as long as the laser beam is kept pointed at the target and the projectile guide device receives part of the reflected laser beam, the trajectory of the projectile can be corrected in order to guide the projectile exactly on the target. The emission of the laser beam is therefore dissociated from the projectile and is carried out for example by an operator. However, the operator must have the target in his field of vision in order to point the laser beam at it. Advantageously, the projectile launch zone is completely independent of the laser beam emission zone. The laser beam is emitted by a generator of a laser beam such as a laser designator.

Pour guider avec précision le projectile vers la cible, la qualité du faisceau laser illuminant la cible est essentielle et repose principalement sur le pourcentage du faisceau laser atteignant réellement la cible. Un faisceau laser utilisé pour le guidage d'un projectile est généralement constitué par une succession d'impulsions émises à intervalles de temps réguliers ou bien irréguliers, mais dans tous les cas connus pour être identifiables par le moyen de réception du projectile.To accurately guide the projectile towards the target, the quality of the laser beam illuminating the target is essential and is mainly based on the percentage of the laser beam actually reaching the target. A laser beam used for guiding a projectile generally consists of a succession of pulses emitted at regular or irregular time intervals, but in all cases known to be identifiable by the means for receiving the projectile.

En conséquence, toutes les impulsions du faisceau laser ne pointant pas la cible guideront le projectile en dehors de la cible alors que toutes les impulsions du faisceau laser pointant sur la cible guideront le projectile exactement sur la cible.As a result, all pulses of the laser beam not pointing at the target will guide the projectile out of the target while all pulses of the laser beam pointing at the target will guide the projectile exactly at the target.

Un faisceau laser utilisé pour le guidage d'un projectile peut également être un faisceau laser continu.A laser beam used for guiding a projectile can also be a continuous laser beam.

La procédure de visée commence toujours par un balayage de l'environnement visible par l'opérateur à la recherche de cibles, puis par l'arrêt du balayage pour se focaliser sur une cible. Dès lors, l'opérateur doit pointer en permanence le faisceau laser sur la cible afin de guider le projectile jusqu'à elle.The aiming procedure always begins by scanning the environment visible to the operator in search of targets, then by stopping the scanning to focus on a target. Therefore, the operator must continuously point the laser beam at the target in order to guide the projectile towards it.

Toutefois, il peut être difficile de pointer précisément sur une cible en permanence, en particulier lorsque cette cible est mobile vis-à-vis de l'opérateur. En effet, la cible peut être un véhicule en mouvement, par exemple une automobile ou un aéronef. L'opérateur peut également être en mouvement, étant par exemple embarqué à bord d'un véhicule roulant ou bien d'un aéronef.However, it can be difficult to point precisely at a target at all times, in particular when this target is mobile vis-à-vis the operator. Indeed, the target can be a moving vehicle, for example an automobile or an aircraft. The operator can also be in motion, for example being on board a rolling vehicle or else an aircraft.

De plus, l'opérateur n'a pas de retour visuel direct sur le point de l'environnement qui est réellement illuminé par le faisceau laser. En effet, le reflet du laser sur la cible n'est généralement pas visible par l'opérateur. L'opérateur ne peut ainsi se fier qu'à sa visée, effectuée par exemple à travers un réticule de visée d'une lunette de visée pour un désignateur laser portatif ou bien par l'intermédiaire d'un moyen de visualisation intégré à un casque pour un désignateur laser embarqué dans un véhicule. En conséquence, un décalage entre le réticule de visée et le faisceau laser proprement dit peut exister et provoquer une erreur de visée qui passe inaperçue pour l'opérateur. Seul l'impact du projectile informe l'opérateur sur la précision de la visée initiale et l'erreur éventuelle de visée. Dans ce dernier cas où le projectile a raté la cible, l'opérateur peut éventuellement corriger sa visée en fonction de la position du point d'impact du projectile par rapport à la cible, mais uniquement après un premier échec.In addition, the operator has no direct visual feedback on the point of the environment which is actually illuminated by the laser beam. In fact, the reflection of the laser on the target is generally not visible to the operator. The operator can therefore only rely on his aiming, carried out for example through a sighting reticle of a sighting scope for a portable laser designator or else by means of a visualization means integrated in a helmet. for a laser designator on board a vehicle. Consequently, an offset between the aiming reticle and the actual laser beam can exist and cause an aiming error which goes unnoticed by the operator. Only the impact of the projectile informs the operator about the accuracy of the initial aim and the possible aim error. In the latter case where the projectile has missed the target, the operator can possibly correct its aiming as a function of the position of the point of impact of the projectile relative to the target, but only after a first failure.

Par ailleurs, on rappelle qu'un faisceau laser est un faisceau lumineux particulier composé d'une lumière cohérente et concentrée. Le terme « laser » est un acronyme désignant en langue anglaise « Light Amplification by Stimulated Emission of Radiation » et signifiant « amplification de la lumière par émission stimulée de radiation ». En outre, on entend par « faisceau lumineux », un faisceau généralement composé de lumières visibles par l'œil humain. Toutefois et par extension, on peut également désigner par « faisceau lumineux », un faisceau composé d'ondes électromagnétiques non visibles, par exemple situées dans les domaines infrarouge et ultraviolet. Un faisceau laser peut donc être un faisceau lumineux situé aussi bien dans le domaine visible par l'œil humain que dans le domaine non visible.Furthermore, it is recalled that a laser beam is a particular light beam composed of coherent and concentrated light. The term "laser" is an acronym designating in English language "Light Amplification by Stimulated Emission of Radiation" and meaning "amplification of light by stimulated emission of radiation". In addition, the term “light beam” is intended to mean a beam generally composed of lights visible to the human eye. However and by extension, one can also designate by “light beam”, a beam composed of invisible electromagnetic waves, for example located in the infrared and ultraviolet domains. A laser beam can therefore be a light beam located both in the area visible to the human eye and in the non-visible area.

En outre, un dispositif de correction de la trajectoire de projectiles est décrit dans le document FR 2719659 . Ce dispositif de correction émet un faisceau de guidage des projectiles dirigé vers une cible. Ce faisceau de guidage est divisé en au moins cinq faisceaux partiels, un faisceau partiel central dirigé effectivement sur la cible et au moins quatre faisceaux partiels inclinés vis-à-vis du faisceau partiel central. Les projectiles illuminés par un faisceau partiel incliné ne se dirigent donc pas vers la cible et voient leurs trajectoires corrigées en conséquence.In addition, a device for correcting the trajectory of projectiles is described in the document. FR 2719659 . This correction device emits a beam for guiding the projectiles directed towards a target. This guide beam is divided into at least five partial beams, a central partial beam effectively directed at the target and at least four partial beams inclined with respect to the central partial beam. Projectiles illuminated by an inclined partial beam therefore do not point towards the target and have their trajectories corrected accordingly.

Par ailleurs, on connait les documents US 2009/078817 et EP 2642238 qui décrivent un système de guidage pour un missile ou toute autre projectile sur une cible illuminée au moyen d'un faisceau laser.We also know the documents US 2009/078817 and EP 2642238 which describe a guidance system for a missile or other projectile on a target illuminated by a laser beam.

En particulier, le document US 2009/078817 décrit un système de guidage de projectiles visant à réduire le nombre de pulsations du faisceau de guidage afin de réduire l'énergie totale envoyée vers la cible. Ce dispositif nécessite une communication entre le projectile et le générateur du faisceau de guidage afin de synchroniser la réception du faisceau de guidage réfléchi et l'émission de ce faisceau de guidage.In particular, the document US 2009/078817 discloses a projectile guidance system to reduce the number of pulses of the guide beam to reduce the total energy sent to the target. This device requires communication between the projectile and the generator of the guide beam in order to synchronize the reception of the reflected guide beam and the emission of this guide beam.

On connait aussi le document US 6069656 qui décrit une méthode et un dispositif de stabilisation d'images destinés à un système de guidage laser d'un projectile. Cette méthode permet notamment la possibilité d'afficher la scène totale captée par une caméra ou bien uniquement une partie de cette scène correspondant à un mode zoom. De plus, cette méthode permet l'affichage d'un seul point de contact du faisceau de guidage, la distance entre un réticule situé sur la cible et ce point de contact étant utilisée pour corriger le faisceau de guidage.We also know the document US 6,069,656 which describes a method and an image stabilization device for a laser guidance system of a projectile. This method notably allows the possibility of displaying the total scene captured by a camera or even only a part of this scene corresponding to a zoom mode. In addition, this method allows the display of a single point of contact of the guide beam, the distance between a reticle located on the target and this point of contact being used to correct the guide beam.

Enfin, on connait les documents US 2013/087684 , WO 2016/009440 et US 6023322 qui décrivent un système et/ou une méthode d'analyse des critères de qualité d'un faisceau de guidage d'un système de désignation laser d'une cible.Finally, we know the documents US 2013/087684 , WO 2016/009440 and US 6023322 which describe a system and / or a method for analyzing the quality criteria of a guide beam of a laser designation system of a target.

Selon le document US 2013/087684 , un moyen de capture d'image permet l'analyse du faisceau de guidage par l'intermédiaire des points de contact de ce faisceau de guidage sur la cible.According to the document US 2013/087684 , an image capture means allows the analysis of the guide beam through the contact points of this guide beam on the target.

Selon le document WO 2016/009440 , un moyen de capture de radiation permet l'analyse du faisceau de guidage réfléchi par la cible, en particulier, le temps d'arrivée de ce faisceau de guidage réfléchi par la cible sur le capteur, son angle d'arrivée et/ou sa position d'arrivée sur le capteur.According to the document WO 2016/009440 , a radiation capture means allows the analysis of the guide beam reflected by the target, in particular, the time of arrival of this guide beam reflected by the target on the sensor, its angle of arrival and / or its arrival position on the sensor.

Le document US 6023322 permet de déterminer le rapport entre le nombre de points de contact de ce faisceau de guidage réfléchi par la cible et le nombre de pulsations de ce faisceau de guidage émis permettant par exemple de trouver la meilleure zone de la cible à viser avec le faisceau de guidage.The document US 6023322 makes it possible to determine the ratio between the number of points of contact of this guide beam reflected by the target and the number of pulses of this guide beam emitted making it possible for example to find the best zone of the target to be aimed with the guide beam .

Dans ce cadre, la présente invention a pour objectif de permettre une visée fiable et précise d'un faisceau de guidage sur une cible. La présente invention permet la fourniture à l'opérateur d'un retour d'informations sur la zone réellement visée par l'intermédiaire d'une image de l'environnement et de la cible. La présente invention utilise notamment un nouveau type de caméras permettant la création d'une image sélective de la cible dans l'environnement.In this context, the present invention aims to allow a reliable and precise aiming of a guide beam on a target. The present invention makes it possible to provide the operator with feedback on the zone actually targeted by means of an image of the environment and of the target. The present invention notably uses a new type of camera allowing the creation of a selective image of the target in the environment.

La présente invention a alors pour objet un procédé d'aide à la visée d'une cible ainsi qu'un dispositif d'aide à la visée d'une cible permettant de s'affranchir des limitations mentionnées ci-dessus afin d'améliorer la qualité et la précision de la visée de la cible par l'intermédiaire d'un faisceau de guidage. La présente invention concerne également un procédé de guidage d'un projectile par un faisceau de guidage utilisant un tel procédé d'aide à la visée ainsi qu'un dispositif de guidage d'un projectile par un faisceau de guidage équipé d'un tel dispositif d'aide à la visée.The subject of the present invention is therefore a method for assisting in the aiming of a target as well as a device for assisting in the aiming of a target making it possible to overcome the limitations mentioned above in order to improve quality and accuracy of aiming the target via a guide beam. The present invention also relates to a method of guiding a projectile by a guide beam using such a sighting aid method as well as a device for guiding a projectile by a guide beam equipped with such a device. sighting aid.

Selon l'invention, un procédé d'aide à la visée d'une cible comporte les étapes suivantes :

  • une première étape de balayage complet d'un environnement à l'aide d'une caméra,
  • une deuxième étape d'affichage d'une image complète de l'environnement,
  • une troisième étape d'identification et de sélection d'une cible sur l'image complète de l'environnement,
  • une quatrième étape de pointage de la cible par un opérateur par l'intermédiaire d'un faisceau de guidage,
  • une cinquième étape d'affichage d'une image complète de l'environnement et du point de contact du faisceau de guidage dans l'environnement,
  • une sixième étape de pointage par l'opérateur par l'intermédiaire d'un faisceau de guidage de la cible,
  • une septième étape de balayage sélectif de la cible et du point de contact du faisceau de guidage dans l'environnement à l'aide de la caméra, et
  • une huitième étape d'affichage d'une image sélective de la cible et d'au moins un point de contact du faisceau de guidage dans l'environnement.
According to the invention, a method for assisting in the targeting of a target comprises the following steps:
  • a first step of complete scanning of an environment using a camera,
  • a second step of displaying a complete image of the environment,
  • a third step of identifying and selecting a target on the complete image of the environment,
  • a fourth step of aiming the target by an operator via a guide beam,
  • a fifth step of displaying a complete image of the environment and of the point of contact of the guide beam in the environment,
  • a sixth step of aiming by the operator by means of a target guiding beam,
  • a seventh step of selective scanning of the target and the point of contact of the guide beam in the environment using the camera, and
  • an eighth step of displaying a selective image of the target and at least one point of contact of the guide beam in the environment.

Ce procédé selon l'invention est notamment destiné aux procédés de guidage d'un projectile par un faisceau de guidage vers une cible. Le faisceau de guidage est émis par un générateur d'un faisceau de guidage. Le faisceau de guidage peut être un faisceau lumineux visible ou non visible par l'œil humain selon la ou les longueurs d'ondes composant ce faisceau lumineux. Le faisceau de guidage est de préférence un faisceau laser. Ce faisceau laser est par exemple émis par un générateur d'un faisceau laser de type connu tel un désignateur laser dédié à la visée d'une cible.This method according to the invention is particularly intended for methods of guiding a projectile by a guide beam towards a target. The guide beam is emitted by a generator of a guide beam. The guide beam can be a light beam visible or not visible to the human eye depending on the wavelength (s) making up this light beam. The guide beam is preferably a laser beam. This laser beam is for example emitted by a generator of a laser beam of known type such as a laser designator dedicated to the aiming of a target.

En outre, le faisceau de guidage peut être un faisceau continu ou bien être formé par une succession d'impulsions sur des intervalles réguliers. Dans ce dernier cas, le faisceau de guidage est notamment défini par des caractéristiques temporelles qui sont la fréquence et la durée de ces impulsions.In addition, the guide beam can be a continuous beam or else be formed by a succession of pulses at regular intervals. In the latter case, the guide beam is notably defined by temporal characteristics which are the frequency and the duration of these pulses.

Le générateur d'un faisceau de guidage peut être portatif et utilisé directement par un opérateur. Le générateur d'un faisceau de guidage peut également être embarqué dans un véhicule.The generator of a guide beam can be portable and used directly by an operator. The generator of a guide beam can also be embedded in a vehicle.

De plus, le générateur d'un faisceau de guidage peut être lié au dispositif de lancement du projectile, le générateur d'un faisceau de guidage et le dispositif de lancement du projectile étant par exemple portés par le même véhicule. On parle alors de « désignation autonome » ou bien de « autonomous designation » en langue anglaise.In addition, the generator of a guide beam can be linked to the projectile launching device, the generator of a guide beam and the projectile launching device being for example carried by the same vehicle. We then speak of "autonomous designation" or "autonomous designation" in the English language.

Le générateur d'un faisceau de guidage peut également être porté par une tiers partie, par exemple par un tireur au sol, et alors isolé du dispositif de lancement du projectile, porté par exemple par un véhicule. On parle alors de « désignation externe » ou bien de « remote designation » en langue anglaise.The generator of a guide beam can also be carried by a third party, for example by a ground shooter, and then isolated from the projectile launching device, carried for example by a vehicle. We then speak of "external designation" or "remote designation" in the English language.

Ce procédé utilise également une caméra afin d'enregistrer l'environnement et la cible ainsi qu'un moyen de visualisation pour afficher notamment les images enregistrées par la caméra. Le moyen de visualisation peut être intégré à une lunette de visée d'un générateur d'un faisceau de guidage portatif ou bien à un casque pour un générateur de faisceau de guidage embarqué dans un véhicule. Le moyen de visualisation peut également être un écran déporté vis-à-vis du générateur d'un faisceau de guidage.This method also uses a camera in order to record the environment and the target as well as a visualization means for displaying in particular the images recorded by the camera. The display means can be integrated into a telescopic sight of a generator of a portable guide beam or else into a helmet for a generator of guide beam on board a vehicle. The display means can also be a remote screen vis-à-vis the generator of a guide beam.

De même, la caméra peut être liée au générateur d'un faisceau de guidage ou bien isolé de ce générateur d'un faisceau de guidage. Par exemple, le générateur d'un faisceau de guidage est porté par un opérateur situé au sol alors que la caméra est portée par un véhicule, le véhicule pouvant éventuellement porter également le dispositif de lancement du projectile.Likewise, the camera can be linked to the generator of a guide beam or isolated from this generator of a guide beam. For example, the generator of a guide beam is carried by an operator located on the ground while the camera is carried by a vehicle, the vehicle possibly being able to also carry the device for launching the projectile.

La caméra utilisée par le procédé selon l'invention est de préférence un nouveau de type de caméras connues sous l'expression anglaise « bio-inspired caméra » ou « event based ». Ces cameras se caractérisent par une très grande dynamique radiométrique, par exemple la capacité de voir des objets clairs et sombres à la fois, et par une très grande résolution temporelle, de l'ordre de la microseconde. De par leur principe, ces caméras permettent donc pour chaque pixel de mesurer un changement de la radiométrie avec une haute precision temporelle. Une détection de changement dans la scène, par exemple par la présence d'une impulsion d'un faisceau de guidage ou un objet en mouvement, se fait donc naturellement. On entend par « radiométrie d'un objet » la mesure de la grandeur énergétique relative aux rayonnements émis par cet objet ou bien des propriétés dérivées telles que le flux ou l'intensité de ces rayonnements.The camera used by the method according to the invention is preferably a new type of camera known by the English expression "bio-inspired camera" or "event based". These cameras are characterized by a very high radiometric dynamic, for example the ability to see light and dark objects at the same time, and by a very high temporal resolution, of the order of a microsecond. By their principle, these cameras therefore make it possible for each pixel to measure a change in radiometry with high temporal precision. A detection of change in the scene, for example by the presence of a pulse of a guide beam or a moving object, is therefore done naturally. “Radiometry of an object” is understood to mean the measurement of the energy quantity relating to the radiations emitted by this object or else derived properties such as the flux or the intensity of these radiations.

Ainsi, des objets particuliers pour lesquels un changement de leur radiométrie respective est détecté peuvent être isolés dans l'environnement. De la sorte, une telle caméra n'enregistre pas obligatoirement une image complète de l'environnement comme le fait une caméra traditionnelle, mais une image de l'environnement ne comportant qu'un ou plusieurs objets particuliers, pour lesquels un changement de leur radiométrie est détecté, et en particulier une ou plusieurs cibles choisies.Thus, particular objects for which a change in their respective radiometry is detected can be isolated in the environment. In this way, such a camera does not necessarily record a complete image of the environment as does a traditional camera, but an image of the environment comprising only one or more particular objects, for which a change in their radiometry is detected, and in particular one or more selected targets.

Une procédure de visée commence toujours par un balayage de l'environnement visible à la recherche de cibles, puis par l'arrêt du balayage pour se focaliser sur une cible.An aiming procedure always begins with a scan of the visible environment in search of targets, then by stopping the scan to focus on a target.

La première étape du procédé selon l'invention consiste donc en un balayage complet d'un environnement à l'aide de la caméra. Une image complète de cet environnement est donc enregistrée. Cette image complète de cet environnement est ensuite affichée lors de la deuxième étape sur le moyen de visualisation afin que soit identifiée et sélectionnée une cible sur cette image complète de l'environnement au cours de la troisième étape.The first step of the method according to the invention therefore consists in a complete scanning of an environment using the camera. A complete image of this environment is therefore recorded. This complete image of this environment is then displayed during the second step on the display means so that a target on this complete image of the environment is identified and selected during the third step.

Cette identification et cette sélection sont faites par un opérateur qui est par exemple l'opérateur en charge de la visée de la cible avec le faisceau de guidage. L'opérateur identifie la cible sur l'image complète de l'environnement et la sélectionne alors.This identification and selection is made by an operator who is for example the operator in charge of aiming the target with the guide beam. The operator identifies the target on the complete image of the environment and then selects it.

Cette sélection peut être faite par l'opérateur qui vise la cible par l'intermédiaire du générateur d'un faisceau de guidage, mais sans émettre de faisceau de guidage. L'opérateur utilise alors la lunette de visée de ce générateur d'un faisceau de guidage et lorsqu'il vise la cible, il actionne un moyen de sélection tel un bouton poussoir ou un interrupteur pour sélectionner la cible visée. L'opérateur utilise généralement le réticule de visée présent dans la lunette de visée du générateur d'un faisceau de guidage pour viser la cible.This selection can be made by the operator aiming at the target via the generator of a guide beam, but without emitting a guide beam. The operator then uses the telescopic sight of this generator of a guide beam and when he aims at the target, he actuates a selection means such as a push button or a switch to select the targeted target. The operator generally uses the sighting reticle present in the sighting scope of the generator of a guide beam to aim at the target.

Cette sélection peut également être faite directement sur le moyen de visualisation en déplaçant le réticule de visée sur la cible, puis en actionnant le moyen de sélection. Le déplacement du réticule peut être effectué par une souris ou bien directement sur le moyen de visualisation qui est alors un écran tactile, le moyen de sélection de la cible étant également cette souris ou cet écran tactile.This selection can also be made directly on the display means by moving the sighting reticle on the target, then by actuating the selection means. The reticle can be moved by a mouse or directly on the display means which is then a touch screen, the target selection means also being this mouse or this touch screen.

La cible peut également être identifiée par ses coordonnées, par exemple selon un système de localisation par satellites, l'opérateur la sélectionnant ensuite par l'intermédiaire du moyen de sélection pour confirmer que les coordonnées correspondent bien à la cible.The target can also be identified by its coordinates, for example according to a satellite location system, the operator then selecting it via the selection means to confirm that the coordinates correspond to the target.

Dans tous les cas, la sélection de la cible peut être automatique lorsque l'opérateur vise une cible immobile ou bien lorsque le réticule de visée est maintenu immobile pendant une première durée prédéterminée. Cette première durée prédéterminée est par exemple de 3 secondes (3s).In all cases, the selection of the target can be automatic when the operator aims at a stationary target or when the aiming reticle is kept stationary for a first predetermined duration. This first predetermined duration is for example 3 seconds (3s).

Cette sélection automatique est également possible pour une cible en mouvement, en utilisant notamment un système de traitement d'images, désigné par exemple en langue anglaise par l'expression « moving target indicators », alignant le réticule sur la cible mobile identifiée.This automatic selection is also possible for a moving target, in particular by using an image processing system, designated for example in English by the expression "moving target indicators", aligning the reticle on the identified moving target.

Ensuite, l'opérateur pointe le faisceau de guidage sur la cible lors de la quatrième étape afin de guider le projectile jusqu'à la cible. L'opérateur utilise généralement le réticule de visée présent dans une lunette de visée du générateur d'un faisceau de guidage pour viser la cible ou bien directement sur le moyen de visualisation en positionnant le réticule de visée sur la cible. De plus, l'opérateur doit en fait pointer en permanence le faisceau de guidage sur la cible par l'intermédiaire du générateur d'un faisceau de guidage jusqu'à ce que le projectile impacte la cible. En effet, si l'opérateur pointe le faisceau de guidage sur un autre objet hors de la cible, le projectile se dirigera alors vers cet autre objet. De même, si l'opérateur arrête le générateur d'un faisceau de guidage et si aucun faisceau de guidage n'est émis, le projectile ne saura pas où se diriger.Then, the operator points the guide beam at the target during the fourth step in order to guide the projectile to the target. The operator generally uses the sight reticle present in a sight telescope of the generator of a guide beam to aim the target or directly on the visualization means by positioning the aim reticle on the target. In addition, the operator must in fact continuously point the guide beam at the target via the beam generator. guidance until the projectile hits the target. In fact, if the operator points the guide beam at another object outside the target, the projectile will then move towards this other object. Likewise, if the operator stops the generator of a guide beam and if no guide beam is emitted, the projectile will not know where to go.

Par ailleurs, la première étape et la deuxième étape se répètent de préférence tant que l'opérateur n'a pas pointé le faisceau de guidage sur la cible afin de mettre à jour l'affichage complet de l'environnement.Furthermore, the first step and the second step are preferably repeated as long as the operator has not pointed the guide beam at the target in order to update the complete display of the environment.

En outre, l'opérateur ne voit généralement pas le point de contact du faisceau de guidage sur la cible, le faisceau de guidage pouvant être visible ou non visible par l'œil humain. De fait, l'opérateur ne peut pas vérifier si le faisceau illumine réellement la cible visée.In addition, the operator generally does not see the point of contact of the guide beam on the target, the guide beam may be visible or not visible to the human eye. In fact, the operator cannot verify whether the beam actually illuminates the intended target.

Toutefois, le faisceau de guidage et son reflet sur la cible sont avantageusement toujours visibles par la caméra. Par suite, les points de contact du faisceau de guidage dans l'environnement et en particulier sur la cible sont toujours visibles et enregistrables par la caméra.However, the guide beam and its reflection on the target are advantageously always visible by the camera. As a result, the contact points of the guide beam in the environment and in particular on the target are always visible and can be recorded by the camera.

Il est à noter que d'autres dispositifs faisant leur apparition aujourd'hui permettent d'enregistrer des points de contact du faisceau de guidage dans l'environnement. Il existe par exemple un capteur dont la désignation en langue anglaise est « see spot ». Toutefois, ces dispositifs ont une faible fréquence d'enregistrement et ne peuvent alors pas enregistrer les points de contact du faisceau de guidage dans l'environnement s'ils sont trop proches dans le temps les uns des autres et sous réserve qu'ils tombent dans la fenêtre temporelle où ces dispositifs enregistrent une image.It should be noted that other devices making their appearance today make it possible to record contact points of the guide beam in the environment. For example, there is a sensor whose designation in English is “see spot”. However, these devices have a low recording frequency and cannot therefore record the contact points of the guide beam in the environment if they are too close in time to each other and provided that they fall into the time window where these devices record an image.

Le procédé selon l'invention comporte alors avantageusement une cinquième étape au cours de laquelle l'image complète de cet environnement est affichée sur le moyen de visualisation avec le point de contact du faisceau de guidage dans l'environnement.The method according to the invention then advantageously comprises a fifth step during which the complete image of this environment is displayed on the display means with the point of contact of the guide beam in the environment.

L'opérateur peut alors visualiser le point de contact du faisceau de guidage sur l'image de l'environnement et vérifier que ce point de contact se situe bien sur la cible. De la sorte, si ce point de contact ne se situe pas sur la cible, l'opérateur peut alors corriger la visée. En effet, un décalage entre le réticule de visée et le faisceau de guidage proprement dit peut exister suite à des imprécisions du système et provoquer un décalage entre la direction de visée et la direction du faisceau de guidage et, par suite, une erreur de visée.The operator can then visualize the point of contact of the guide beam on the image of the environment and verify that this point of contact is indeed on the target. In this way, if this contact point is not located on the target, the operator can then correct the aim. Indeed, a shift between the sighting reticle and the guide beam itself may exist due to inaccuracies in the system and cause a shift between the sighting direction and the direction of the guide beam and, consequently, a sighting error. .

Ensuite, au cours de la sixième étape, l'opérateur pointe de nouveau la cible avec le faisceau de guidage. L'opérateur peut au cours de cette sixième étape éventuellement corriger la visée en fonction de la position du point de contact du faisceau de guidage sur l'environnement vis-à-vis de la cible sur l'image affichée lors de l'étape précédente.Then, during the sixth step, the operator again points the target with the guide beam. The operator can during this sixth step possibly correct the aiming as a function of the position of the point of contact of the guide beam on the environment with respect to the target on the image displayed during the previous step. .

La cible étant identifiée, la caméra utilisée par le procédé permet avantageusement d'effectuer lors de la septième étape un balayage sélectif de la cible et du point de contact du faisceau de guidage dans l'environnement. En effet, comme évoqué précédemment, la caméra utilisée par le procédé selon l'invention permet de n'enregistrer qu'une partie de l'environnement pour laquelle un changement de la radiométrie est détecté. Ainsi, cette caméra peut enregistrer spécifiquement la cible sélectionnée lors de la troisième étape et impactée par le faisceau de guidage ainsi que le point de contact de ce faisceau de guidage. D'autres objets de l'environnement pourront également être enregistrés en fonction du changement de leur radiométrie respective. Toutefois, le nombre des objets enregistrés lors de la septième étape et ensuite affichés lors de la huitième étape est nettement réduit vis-à-vis de l'enregistrement et de l'affichage d'une image complète de l'environnement, respectivement aux première et deuxième étapes.The target being identified, the camera used by the method advantageously makes it possible during the seventh step to selectively scan the target and the point of contact of the guide beam in the environment. Indeed, as mentioned above, the camera used by the method according to the invention makes it possible to record only part of the environment for which a change in radiometry is detected. Thus, this camera can specifically record the target selected during the third step and impacted by the guide beam as well as the point of contact of this guide beam. Other environmental objects may also be recorded according to the change in their respective radiometry. However, the number of objects recorded in step 7 and then displayed in step 8 is significantly reduced when it comes to recording and displaying a complete picture of the environment, in steps 1 and 2 respectively .

Enfin, lors de la huitième étape, une image sélective de la cible et d'au moins un point de contact du faisceau de guidage dans l'environnement est affichée. L'opérateur peut là encore visualiser le point de contact du faisceau de guidage sur l'image sélective de l'environnement et vérifier que ce point de contact se situe toujours bien sur la cible. Avantageusement, cette image sélective est simplifiée et affiche principalement la cible, le point de contact du faisceau de guidage sur l'environnement et éventuellement d'autres objets dont la radiométrie change. Cet affichage sélectif permet avantageusement une analyse plus rapide de la part de l'opérateur qui voit immédiatement la position du point de contact du faisceau de guidage sur l'environnement vis-à-vis de la cible.Finally, during the eighth step, a selective image of the target and of at least one point of contact of the guide beam in the environment is displayed. Here again, the operator can visualize the contact point of the guide beam on the selective image of the environment and check that this contact point is always on the target. Advantageously, this selective image is simplified and mainly displays the target, the point of contact of the guide beam on the environment and possibly other objects whose radiometry changes. This selective display advantageously allows a faster analysis on the part of the operator who immediately sees the position of the contact point of the guide beam on the environment vis-à-vis the target.

Les sixième, septième et huitième étapes se répètent ensuite jusqu'à l'impact du projectile, ces étapes étant réalisées de façon continue.The sixth, seventh and eighth stages are then repeated until the impact of the projectile, these stages being carried out continuously.

Ainsi, pour la sixième étape de pointage, l'opérateur utilise une première fois l'image complète affichée lors de la cinquième étape pour corriger éventuellement la visée de la cible et utilise ensuite les images sélectives affichées successivement lors de la huitième étape.Thus, for the sixth pointing step, the operator first uses the complete image displayed during the fifth step to possibly correct the aiming of the target and then uses the selective images displayed successively during the eighth step.

Le procédé d'aide à la visée selon l'invention permet avantageusement de fournir à l'opérateur en temps réel et pendant son opération de visée un retour d'informations sur les positions de la cible et des points de contact du faisceau de guidage sur l'environnement grâce à l'affichage de l'image complète puis des images sélectives de l'environnement. Cet affichage de l'image sélective permet ainsi d'améliorer la précision de visée, l'opérateur pouvant corriger immédiatement, en temps réel et de façon continue un écart de la position du point de contact du faisceau de guidage sur l'environnement vis-à-vis de la cible.The aiming aid method according to the invention advantageously makes it possible to provide the operator in real time and during his aiming operation with feedback on the positions of the target and of the contact points of the guide beam on the environment thanks to the display of the complete image and then selective images of the environment. This display of the selective image thus makes it possible to improve the aiming precision, the operator being able to immediately correct, in real time and continuously, a deviation from the position of the point of contact of the guide beam on the visible environment. vis-à-vis the target.

Par ailleurs, afin de faciliter l'identification de la cible sur l'image affichée, qu'il s'agisse d'une image complète de l'environnement ou bien d'une image sélective de la cible et d'au moins un point de contact du faisceau de guidage dans l'environnement, le réticule de visée peut être affiché sur la cible. Ce réticule de visée peut ainsi être affiché au cours des deuxième, cinquième et huitième étapes d'affichage du procédé d'aide à la visée selon l'invention.Furthermore, in order to facilitate the identification of the target on the displayed image, whether it is a complete image of the environment or else a selective image of the target and of at least one point of contact of the guide beam in the environment, the aiming reticle can be displayed on the target. This aiming reticle can thus be displayed during the second, fifth and eighth display steps of the aiming aid method according to the invention.

En outre, le procédé d'aide à la visée selon l'invention peut comporter, après la huitième étape, des étapes supplémentaires permettant de quantifier la précision de la visée de la cible. En effet, l'image affichée lors de la deuxième, cinquième et huitième étape comportant notamment la cible et le point de contact du faisceau de guidage dans l'environnement, il est possible en analysant chaque image successivement affichée de déterminer un premier nombre de points de contact du faisceau de guidage touchant la cible et un second nombre de points de contact du faisceau de guidage ne touchant pas la cible depuis que la cible a été sélectionnée lors de la troisième étape.In addition, the aiming aid method according to the invention may comprise, after the eighth step, additional steps making it possible to quantify the precision of the aiming of the target. Indeed, the image displayed during the second, fifth and eighth step comprising in particular the target and the point of contact of the guide beam in the environment, it is possible by analyzing each successively displayed image to determine a first number of points of the guide beam contacting the target and a second number of contact points of the guide beam not touching the target since the target was selected in the third step.

Le procédé d'aide à la visée selon l'invention peut ainsi comporter une neuvième étape de calcul du premier nombre des points de contact du faisceau de guidage touchant la cible, et du second nombre de points de contact du faisceau de guidage ne touchant pas la cible depuis que la cible a été sélectionnée lors de la troisième étape. De plus, le pourcentage des points de contact du faisceau de guidage touchant réellement la cible parmi la totalité des points de contact du faisceau de guidage dans l'environnement peut éventuellement être calculé au cours de cette neuvième étape.The aiming aid method according to the invention can thus include a ninth step of calculating the first number of contact points of the guide beam touching the target, and the second number of contact points of the guide beam not touching the target since the target was selected in the third step. In addition, the percentage of contact points of the guide beam actually touching the target among the all of the contact points of the guide beam in the environment can possibly be calculated during this ninth step.

Ensuite, au cours d'une dixième étape d'affichage, une information relative à la précision des points de contact du faisceau de guidage touchant la cible est affichée sur le moyen de visualisation.Then, during a tenth display step, information relating to the precision of the contact points of the guide beam touching the target is displayed on the display means.

Cette information de la précision des points de contact du faisceau de guidage touchant la cible peut être ce premier nombre et ce second nombre ou bien le pourcentage des points de contact du faisceau de guidage touchant réellement la cible parmi la totalité des points de contact du faisceau de guidage dans l'environnement.This information on the precision of the points of contact of the guide beam touching the target can be this first number and this second number or else the percentage of the points of contact of the guide beam actually touching the target among all the points of contact of the beam. guidance in the environment.

En outre, au cours de la huitième étape, les points de contact du faisceau de guidage dans l'environnement peuvent être enregistrés pendant une deuxième durée prédéterminée, puis être affichés avec l'image sélective de la cible. L'opérateur peut ainsi visualiser les positions successives des points de contact sur cette deuxième durée prédéterminée et constater ainsi une éventuelle dérive dans la précision de sa visée ou bien une amélioration de cette visée.Furthermore, during the eighth step, the contact points of the guide beam in the environment can be recorded for a second predetermined duration, then be displayed with the selective image of the target. The operator can thus view the successive positions of the contact points over this second predetermined duration and thus observe a possible drift in the precision of his aim or else an improvement in this aim.

Dès lors, au cours de cette huitième étape, l'image sélective de la cible et le point de contact courant du faisceau de guidage dans l'environnement peuvent être affichés simultanément avec au moins un des points de contact précédemment affichés.Therefore, during this eighth step, the selective image of the target and the current contact point of the guide beam in the environment can be displayed simultaneously with at least one of the contact points previously displayed.

On entend par « point de contact courant » du faisceau de guidage le point de contact du faisceau de guidage capté par la caméra lors de la septième étape de balayage sélectif précédent immédiatement cette huitième étape. On entend par « point de contact précédemment affiché » le point de contact affiché lors de la cinquième étape d'affichage d'une image complète de l'environnement et du point de contact du faisceau de guidage dans l'environnement ainsi que tout point de contact affiché lors d'éventuelles précédentes huitièmes étapes d'affichage. Les points de contact précédemment affichés sont par exemple constitués en partie par les points de contact enregistrés pendant la deuxième durée prédéterminée.“Current contact point” of the guide beam is understood to mean the contact point of the guide beam picked up by the camera during the seventh selective scanning step immediately preceding this eighth step. By "point of contact previously displayed »the contact point displayed during the fifth step of displaying a complete image of the environment and the point of contact of the guide beam in the environment as well as any contact point displayed during any previous eighth display steps. The contact points previously displayed are for example partly constituted by the contact points registered during the second predetermined duration.

De même, la neuvième étape peut également se dérouler sur la deuxième durée prédéterminée. De la sorte, l'information de la précision affichée au cours de la dixième étape est déterminée sur cette deuxième durée déterminée.Likewise, the ninth stage can also take place over the second predetermined duration. In this way, the information of the precision displayed during the tenth step is determined over this second determined duration.

De plus, le procédé d'aide à la visée selon l'invention peut comporter une autre étape supplémentaire se déroulant après la quatrième étape, c'est-à-dire après le pointage du faisceau de guidage sur la cible, et parallèlement aux étapes suivantes, à savoir de la cinquième étape à la huitième étape. Cette étape supplémentaire permet l'identification du faisceau de guidage visant la cible. En effet, les points de contact du faisceau de guidage dans l'environnement sont toujours visibles et enregistrables par la caméra. De fait, il est possible en analysant ces points de contact de déterminer d'une part si le faisceau de guidage est continu ou bien constitué par une succession d'impulsions et d'autre part des caractéristiques temporelles de ce faisceau de guidage. Ensuite, les caractéristiques temporelles du faisceau de guidage utilisé pour viser la cible sont connues et constituent le code du faisceau de guidage. Il est alors avantageusement possible de vérifier que ces caractéristiques temporelles du faisceau de guidage visible sur la cible correspondent bien au code du faisceau de guidage attendu et de déterminer ainsi que le faisceau de guidage visible sur la cible par la caméra est bien le faisceau de guidage attendu.In addition, the aiming aid method according to the invention may include another additional step taking place after the fourth step, that is to say after aiming the guide beam on the target, and parallel to the steps following, namely from the fifth stage to the eighth stage. This additional step allows the identification of the guide beam aimed at the target. Indeed, the contact points of the guide beam in the environment are always visible and recordable by the camera. In fact, it is possible by analyzing these contact points to determine on the one hand if the guide beam is continuous or else constituted by a succession of pulses and on the other hand of the temporal characteristics of this guide beam. Then, the temporal characteristics of the guide beam used to aim at the target are known and constitute the code of the guide beam. It is then advantageously possible to verify that these temporal characteristics of the guide beam visible on the target do indeed correspond to the code of the expected guide beam and to thus determine that the guide beam visible on the target by the camera is indeed the expected guide beam.

Le procédé d'aide à la visée selon l'invention peut ainsi comporter une onzième étape d'analyse et d'identification du faisceau de guidage, les points de contact du faisceau de guidage dans l'environnement étant analysés afin de déterminer les caractéristiques temporelles du faisceau de guidage et identifier ainsi le code faisceau de guidage visible sur la cible.The aiming aid method according to the invention can thus include an eleventh step of analysis and identification of the guide beam, the points of contact of the guide beam in the environment being analyzed in order to determine the temporal characteristics. of the guide beam and thus identify the guide beam code visible on the target.

Pour un faisceau de guidage constitué par une succession d'impulsions, les caractéristiques temporelles du faisceau de guidage sont la fréquence et la durée de ces impulsions. Par contre, un faisceau de guidage continu ne comporte pas d'impulsions et aucune fréquence ne peut être déterminée. Les caractéristiques temporelles d'un tel faisceau continu sont de fait l'absence d'impulsions et de fréquence.For a guide beam consisting of a succession of pulses, the temporal characteristics of the guide beam are the frequency and the duration of these pulses. However, a continuous guide beam has no pulses and no frequency can be determined. The temporal characteristics of such a continuous beam are in fact the absence of pulses and frequency.

Il est à noter que les dispositifs existants permettant d'enregistrer des points de contact du faisceau de guidage dans l'environnement, tels qu'un dispositif « see spot », sont incapables d'analyser ces points de contact afin de déterminer les caractéristiques temporelles du faisceau de guidage.It should be noted that existing devices making it possible to record contact points of the guide beam in the environment, such as a “see spot” device, are unable to analyze these contact points in order to determine the temporal characteristics. of the guide beam.

Les points de contact du faisceau de guidage dans l'environnement peuvent être enregistrés depuis le pointage de la cible par le faisceau de guidage lors de la quatrième étape ou bien sur une troisième durée prédéterminée. Cette troisième durée prédéterminée peut être égale à la deuxième durée prédéterminée.The points of contact of the guide beam in the environment can be recorded from the pointing of the target by the guide beam during the fourth step or else over a third predetermined duration. This third predetermined duration can be equal to the second predetermined duration.

De tels enregistrements des points de contact du faisceau de guidage dans l'environnement peuvent notamment être utiles pour une analyse postérieure au tir du projectile, par exemple en cas d'erreur de cible, et notamment de tir fratricide.Such recordings of the contact points of the guide beam in the environment may in particular be useful for an analysis subsequent to the firing of the projectile, for example in the event of a target error, and in particular of fratricidal firing.

Enfin, le procédé d'aide à la visée d'une cible selon l'invention peut comporter entre la quatrième étape de pointage de la cible et la cinquième étape d'affichage, une étape intermédiaire de balayage complet de l'environnement à l'aide de la caméra. Cette étape intermédiaire consiste donc en un nouveau balayage complet de l'environnement afin de mettre à jour l'affichage de la cible et de l'environnement avant l'affichage complet de cet environnement lors de la cinquième étape. Cette étape intermédiaire permet notamment de prendre en compte un éventuel déplacement des objets de l'environnement et en particulier de la cible.Finally, the method for assisting in the targeting of a target according to the invention may comprise, between the fourth step of pointing the target and the fifth step of displaying, an intermediate step of complete scanning of the environment at camera help. This intermediate step therefore consists of a new complete scan of the environment in order to update the display of the target and of the environment before the complete display of this environment during the fifth step. This intermediate step notably makes it possible to take into account a possible displacement of the objects of the environment and in particular of the target.

Le procédé d'aide à la visée d'une cible selon l'invention permet avantageusement, lors des cinquième et huitième étapes, de visualiser le comportement spatial du faisceau de guidage dans l'environnement et de vérifier ainsi l'efficacité de la visée.The method of assisting with the aiming of a target according to the invention advantageously makes it possible, during the fifth and eighth steps, to visualize the spatial behavior of the guide beam in the environment and thus to verify the efficiency of the aiming.

De plus, ce procédé permet, lors des neuvième et dixième étapes, de quantifier ce comportement spatial du faisceau de guidage en fournissant l'information de précision.In addition, this method makes it possible, during the ninth and tenth steps, to quantify this spatial behavior of the guide beam by providing the precision information.

En outre, ce procédé permet, lors de la onzième étape, de quantifier le comportement temporel du faisceau de guidage et d'identifier le code du faisceau de guidage afin de s'assurer que ce faisceau de guidage est bien celui attendu.In addition, this method makes it possible, during the eleventh step, to quantify the temporal behavior of the guide beam and to identify the code of the guide beam in order to ensure that this guide beam is indeed that expected.

La présente invention a également pour objet un procédé de guidage d'un projectile par un faisceau de guidage comportant :

  • une étape d'illumination d'une cible par un faisceau de guidage,
  • une étape d'accrochage du projectile sur la cible,
  • une étape de lancement d'un projectile, et
  • une étape de guidage du projectile vers la cible.
The present invention also relates to a method for guiding a projectile by a guide beam comprising:
  • a step of illuminating a target with a guide beam,
  • a step for attaching the projectile to the target,
  • a stage of launching a projectile, and
  • a step of guiding the projectile towards the target.

Le faisceau de guidage est de préférence un faisceau laser. Le procédé d'aide à la visée précédemment décrit est alors appliqué à l'étape d'illumination afin d'améliorer la précision de cette d'illumination de la cible et, en conséquence, d'améliorer la précision du lancement d'un projectile sur la cible.The guide beam is preferably a laser beam. The aiming assistance method previously described is then applied to the illumination step in order to improve the precision of this illumination of the target and, consequently, to improve the precision of the launching of a projectile on the target.

L'étape d'accrochage du projectile sur la cible peut alors être réalisée en fonction de l'information de la précision des points de contact du faisceau de guidage touchant la cible et/ou des caractéristiques temporelles du faisceau de guidage impactant la cible. La réalisation de cette étape d'accrochage peut être effectuée de façon manuelle par l'opérateur.The projectile attachment step on the target can then be carried out as a function of the information of the precision of the contact points of the guide beam touching the target and / or of the temporal characteristics of the guide beam impacting the target. This hooking step can be carried out manually by the operator.

Cette réalisation peut également être faite de façon automatique si l'information de la précision des points de contact du faisceau de guidage touchant la cible est supérieure ou égale à un seuil prédéterminé et/ou si les caractéristiques temporelles du faisceau de guidage impactant la cible correspondent au code du faisceau de guidage attendu.This realization can also be done automatically if the information on the precision of the contact points of the guide beam touching the target is greater than or equal to a predetermined threshold and / or if the temporal characteristics of the guide beam impacting the target correspond to the code of the expected guide beam.

En outre, l'étape de lancement du projectile peut être annulée en fonction de cette information de la précision des points de contact du faisceau de guidage touchant la cible. Cette annulation peut être effectuée de façon manuelle par l'opérateur. Cette annulation peut également être effectuée si l'opérateur constate sur l'affichage de l'image sélective au cours de la huitième étape un événement imprévu, par exemple un véhicule s'approchant de la cible, ce véhicule ne devant pas être impacté par le projectile.In addition, the projectile launching step can be canceled as a function of this information on the precision of the contact points of the guide beam touching the target. This cancellation can be done manually by the operator. This cancellation can also be carried out if the operator finds on the display of the selective image during the eighth step an unforeseen event, for example a vehicle approaching the target, this vehicle not having to be impacted by the projectile.

Cette annulation peut également être faite de façon automatique si l'information de la précision des points de contact du faisceau de guidage touchant la cible est inférieure au seuil prédéterminé et/ou si les caractéristiques temporelles du faisceau de guidage impactant la cible ne correspondent pas au code du faisceau de guidage attendu.This cancellation can also be done automatically if the information on the accuracy of the contact points of the guide beam touching the target is less than the predetermined threshold and / or if the temporal characteristics of the beam guides impacting on the target do not correspond to the expected guide beam code.

Ainsi, si la précision des points de contact vis-à-vis de la cible sélectionnée est suffisante, l'accrochage et/ou le tir du projectile est réalisé. Dans le cas contraire, la probabilité que le projectile atteigne la cible est trop faible et l'accrochage et/ou le tir du projectile n'est pas réalisé.Thus, if the precision of the points of contact with respect to the selected target is sufficient, the attachment and / or the firing of the projectile is carried out. Otherwise, the probability that the projectile will hit the target is too low and the projectile is not hooked and / or fired.

Par ailleurs, l'étape de lancement du projectile peut être effectuée avant l'étape d'accrochage du projectile sur la cible.Furthermore, the projectile launching step can be carried out before the projectile attachment step on the target.

La présente invention a aussi pour objet un dispositif d'aide à la visée d'une cible comportant une caméra, un moyen de visualisation, un calculateur et un moyen de sélection.The present invention also relates to a device for assisting in the targeting of a target comprising a camera, a display means, a calculator and a selection means.

La caméra permet d'enregistrer spécifiquement les informations sur des objets particuliers de l'environnement enregistré, la cible étant un objet particulier de l'environnement. Les objets particuliers sont isolés par cette caméra selon un changement de leur radiométrie respective par exemple suite à un mouvement des objets particuliers.The camera makes it possible to record information specifically on particular objects in the recorded environment, the target being a particular object in the environment. The particular objects are isolated by this camera according to a change in their respective radiometry, for example following a movement of the particular objects.

Par ailleurs, le calculateur de ce dispositif d'aide à la visée d'une cible peut être configuré afin notamment d'analyser chaque image successivement affichée sur le moyen de visualisation et de déterminer un premier nombre de points de contact du faisceau de guidage touchant la cible et un second nombre de points de contact du faisceau de guidage ne touchant pas la cible. Ce calculateur permet également de déterminer le pourcentage de ces points de contact du faisceau de guidage touchant réellement la cible parmi la totalité des points de contact du faisceau de guidage dans l'environnement.Furthermore, the computer of this device for assisting in the targeting of a target can be configured in particular in order to analyze each image successively displayed on the display means and to determine a first number of contact points of the guide beam touching the target and a second number of contact points of the guide beam not touching the target. This computer also makes it possible to determine the percentage of these points of contact of the guide beam actually touching the target among all the points of contact of the guide beam in the environment.

Le calculateur peut également être configuré afin d'analyser l'environnement vu par la caméra et en particulier les points de contact du faisceau de guidage dans cet environnement afin de déterminer des caractéristiques temporelles du faisceau de guidage et, par suite, d'identifier le code du faisceau de guidage.The computer can also be configured to analyze the environment seen by the camera and in particular the contact points of the guide beam in this environment in order to determine the temporal characteristics of the guide beam and, consequently, to identify the guide beam code.

Le dispositif d'aide à la visée d'une cible peut ainsi mettre en œuvre le procédé d'aide à la visée d'une cible précédemment décrit afin d'améliorer la précision de la visée de la cible.The device for assisting with the aiming of a target can thus implement the method for assisting with the aiming of a target previously described in order to improve the accuracy of aiming of the target.

Enfin, la présente invention a aussi pour objet un système de guidage d'un projectile par un faisceau de guidage comportant un générateur d'un faisceau de guidage, un dispositif d'aide à la visée tel que précédemment décrit et un projectile muni d'un dispositif de réception.Finally, the present invention also relates to a system for guiding a projectile by a guide beam comprising a generator of a guide beam, a sighting aid device as previously described and a projectile provided with a receiving device.

Le dispositif d'aide à la visée est configuré afin d'améliorer la précision de l'illumination de la cible de sorte que la précision du tir de projectile sur la cible soit améliorée. Le générateur d'un faisceau de guidage est de préférence un générateur d'un faisceau laser.The sighting aid is configured to improve the accuracy of target illumination so that the accuracy of projectile fire on the target is improved. The generator of a guide beam is preferably a generator of a laser beam.

Ce système de guidage d'un projectile par un faisceau de guidage peut ainsi mettre en oeuvre le procédé de guidage d'un projectile par un faisceau de guidage précédemment décrit.This system for guiding a projectile by a guide beam can thus implement the method for guiding a projectile by a guide beam previously described.

L'invention et ses avantages apparaîtront avec plus de détails dans le cadre de la description qui suit avec des exemples de réalisation donnés à titre illustratif en référence aux figures annexées qui représentent :

  • la figure 1, un système de guidage d'un projectile par un faisceau de guidage selon l'invention,
  • la figure 2, un schéma synoptique d'un procédé d'aide à la visée d'une cible,
  • les figures 3 et 4, une image complète de l'environnement affichée sur le moyen de visualisation, et
  • les figures 5 à 7, une image sélective de l'environnement affichée sur le moyen de visualisation.
The invention and its advantages will appear in more detail in the context of the description which follows with examples of embodiment given by way of illustration with reference to the appended figures which represent:
  • the figure 1 , a system for guiding a projectile by a guide beam according to the invention,
  • the figure 2 , a block diagram of a method for assisting in the targeting of a target,
  • the figures 3 and 4 , a complete image of the environment displayed on the display means, and
  • the Figures 5 to 7 , a selective image of the environment displayed on the display means.

Les éléments présents dans plusieurs figures distinctes sont affectés d'une seule et même référence.The elements present in several separate figures are assigned a single reference.

La figure 1 représente un système de guidage 20 d'un projectile 10 par un faisceau de guidage comportant un générateur 6 d'un faisceau de guidage 9, un projectile 10 muni d'un dispositif de réception 11 et un dispositif 1 d'aide à la visée. Ce système de guidage 20 d'un projectile 10 par un faisceau de guidage assure le guidage du projectile 10, un missile par exemple, vers une cible 5. Le générateur 6 d'un faisceau de guidage 9 peut être utilisé par un opérateur pour viser une cible 5 avec le faisceau de guidage 9, l'opérateur étant situé sur le terrain et fixe. Le générateur 6 d'un faisceau de guidage 9 comporte alors généralement une lunette de visée 61 permettant de réaliser la visée de la cible 5. Le générateur 6 d'un faisceau de guidage 9 peut aussi être embarqué dans un véhicule tel un aéronef et utilisé alors aussi bien lorsque le véhicule se déplace ou bien est à l'arrêt. Ce faisceau de guidage 9 est par exemple un faisceau laser constitué d'impulsions successives.The figure 1 represents a system 20 for guiding a projectile 10 by a guide beam comprising a generator 6 of a guide beam 9, a projectile 10 provided with a receiving device 11 and a device 1 for aiming assistance. This system 20 for guiding a projectile 10 by a guide beam ensures the guiding of the projectile 10, a missile for example, towards a target 5. The generator 6 of a guide beam 9 can be used by an operator to aim a target 5 with the guide beam 9, the operator being located on the ground and fixed. The generator 6 of a guide beam 9 then generally comprises a telescopic sight 61 making it possible to achieve the aim of the target 5. The generator 6 of a guide beam 9 can also be embarked in a vehicle such as an aircraft and used then both when the vehicle is moving or when it is stationary. This guide beam 9 is for example a laser beam consisting of successive pulses.

La cible 5 est tout d'abord illuminée par le faisceau de guidage 9 émis par le générateur 6 d'un faisceau de guidage 9 et des reflets de ce faisceau de guidage 9 sont alors dispersés dans une multitude de directions par réflexion sur la cible 5. Le faisceau de guidage 9 peut être visible ou non visible par l'œil humain selon la ou les longueurs d'ondes composants ce faisceau de guidage 9.The target 5 is first of all illuminated by the guide beam 9 emitted by the generator 6 of a guide beam 9 and reflections of this guide beam 9 are then dispersed in a multitude of directions by reflection on the target 5 The guide beam 9 may be visible or not visible to the human eye depending on the wavelength (s) making up this guide beam 9.

Parallèlement ou bien suite à cette illumination de la cible 5, le projectile 10 est lancé en direction de la cible 5. Le projectile 10 comporte un dispositif de réception 11 qui reçoit, lorsqu'il se rapproche de la cible 5, une partie du faisceau de guidage 9 réfléchi par la cible 5 et détermine alors la source de cette partie du faisceau de guidage 9 réfléchi. Le projectile 10 est enfin guidé et dirigé vers cette source, à savoir la cible 5, tant que le faisceau de guidage 9 pointe sur la cible 5 et l'illumine.In parallel with or following this illumination of the target 5, the projectile 10 is launched in the direction of the target 5. The projectile 10 comprises a receiving device 11 which receives, when it approaches the target 5, part of the guide beam 9 reflected by the target 5 and then determines the source of this part of the guide beam 9 reflected. The projectile 10 is finally guided and directed towards this source, namely the target 5, as long as the guide beam 9 points at the target 5 and illuminates it.

Le dispositif 1 d'aide à la visée d'une cible 5 comporte une caméra 2, un moyen de visualisation 3, un calculateur 4 et un moyen de sélection 7. Le moyen de visualisation 3 est un écran. Le dispositif 1 d'aide à la visée d'une cible 5 est configuré afin d'améliorer la précision de la visée de la cible 5 en mettant en œuvre un procédé d'aide à la visée d'une cible dont un schéma synoptique est représenté sur la figure 2 et qui comporte les étapes suivantes.The device 1 for aiming at a target 5 comprises a camera 2, a display means 3, a computer 4 and a selection means 7. The display means 3 is a screen. The device 1 for aiming at a target 5 is configured in order to improve the accuracy of aiming at target 5 by implementing a method for assisting at aiming at a target, a block diagram of which is depicted on the figure 2 and which includes the following steps.

Au cours d'une première étape de balayage 101, un balayage complet d'un environnement est exécuté à l'aide de la caméra 2.During a first scanning step 101, a complete scanning of an environment is carried out using the camera 2.

Au cours d'une deuxième étape d'affichage 102, une image complète de cet environnement correspondant à ce balayage complet de l'environnement est affichée sur le moyen de visualisation 3. Cette image complète est représentée sur la figure 3.During a second display step 102, a complete image of this environment corresponding to this complete scanning of the environment is displayed on the display means 3. This complete image is represented on the figure 3 .

Au cours d'une troisième étape d'identification et de sélection d'une cible 103, une cible 5 est identifiée puis sélectionnée sur cette image complète de l'environnement. Cette identification est faite par un opérateur qui est en charge de la visée de la cible avec le faisceau de guidage 9.During a third step of identifying and selecting a target 103, a target 5 is identified and then selected from this complete image of the environment. This identification is made by an operator who is in charge of aiming the target with the guide beam 9.

Ensuite, l'opérateur sélectionne la cible 5 sur l'image complète de l'environnement. Cette sélection est faite par l'intermédiaire d'un moyen de sélection 7 tel un bouton poussoir pendant que l'opérateur vise la cible 5. Cette sélection est faite par l'opérateur lorsqu'il vise la cible 5 par l'intermédiaire du générateur 6 d'un faisceau de guidage, mais sans émettre de faisceau de guidage. L'opérateur utilise alors par exemple la lunette de visée 61 de ce générateur 6 d'un faisceau de guidage pour viser la cible 5, puis il actionne le moyen de sélection 7 pour sélectionner la cible 5 visée.Then, the operator selects target 5 on the complete image of the environment. This selection is made by means of a selection means 7 such as a push button while the operator is targeting the target 5. This selection is made by the operator when he is targeting the target 5 by means of the generator 6 of a guide beam, but without emitting a guide beam. The operator then uses for example the aiming scope 61 of this generator 6 of a guide beam to aim at the target 5, then he actuates the selection means 7 to select the targeted target 5.

Cette sélection de la cible 5 peut également être faite de façon automatique lorsque l'opérateur vise une cible 5 immobile ou pendant une première durée prédéterminée.This selection of the target 5 can also be made automatically when the operator targets a stationary target 5 or for a first predetermined duration.

Au cours d'une quatrième étape 104, l'opérateur pointe le faisceau de guidage 9 sur la cible 5 afin de guider le projectile 10 jusqu'à cette cible 5. L'opérateur utilise généralement le réticule de visée présent dans la lunette de visée 61 du générateur 6 d'un faisceau de guidage pour viser la cible 5.During a fourth step 104, the operator points the guide beam 9 at the target 5 in order to guide the projectile 10 to this target 5. The operator generally uses the aiming reticle present in the telescopic sight 61 of the generator 6 of a guide beam for targeting the target 5.

La première étape 101 et la deuxième étape 102 se répètent avant la réalisation de cette quatrième étape 104 afin de mettre à jour l'affichage complet de l'environnement.The first step 101 and the second step 102 are repeated before the completion of this fourth step 104 in order to update the complete display of the environment.

Au cours d'une cinquième étape d'affichage 105, l'image complète de cet environnement est affichée sur le moyen de visualisation 3 avec le point de contact 91 du faisceau de guidage 9 dans l'environnement. En effet, le faisceau de guidage 9 et son reflet sur la cible 5 sont avantageusement toujours visibles par la caméra 2. En outre, un réticule de visée 8 peut également être affiché sur le moyen de visualisation 3 indiquant ainsi à l'opérateur le point de l'environnement qui est visé. Cette image complète comprenant le point de contact 91 du faisceau de guidage 9 et le réticule de visée 8 est représentée sur la figure 4.During a fifth display step 105, the complete image of this environment is displayed on the display means 3 with the contact point 91 of the guide beam 9 in the environment. In fact, the guide beam 9 and its reflection on the target 5 are advantageously always visible by the camera 2. In addition, an aiming reticle 8 can also be displayed on the display means 3 thus indicating to the operator the point of the target environment. This complete image comprising the contact point 91 of the guide beam 9 and the sighting reticle 8 is shown on the figure 4 .

Cette cinquième étape d'affichage 105 permet ainsi à l'opérateur de visualiser et de vérifier d'une part que le réticule de visée 8 pointe bien la cible 5 et d'autre part que le point de contact 91 du faisceau de guidage 9 pointe également la cible 5. En effet, l'opérateur doit pointer en permanence le faisceau de guidage 9 sur la cible 5 jusqu'à ce que le projectile 10 impacte la cible 5.This fifth display step 105 thus allows the operator to view and verify on the one hand that the aiming reticle 8 points well at the target 5 and on the other hand that the contact point 91 of the guide beam 9 points also the target 5. In fact, the operator must constantly point the guide beam 9 at the target 5 until the projectile 10 impacts the target 5.

En outre, une étape intermédiaire 115 de balayage complet de l'environnement peut être effectuée entre la quatrième étape 104 de pointage de la cible 5 et la cinquième étape 105 d'affichage. De la sorte, en réalisant un nouveau balayage complet de l'environnement à l'aide de la caméra 2, une nouvelle image complète de l'environnement avec le point de contact 91 du faisceau de guidage 9 peut être affichée lors de la cinquième étape 105 afin de mettre à jour cet affichage de la cible 5 et de l'environnement.In addition, an intermediate step 115 of complete scanning of the environment can be carried out between the fourth step 104 of pointing the target 5 and the fifth step 105 of display. In this way, by carrying out a new complete scan of the environment using the camera 2, a new complete image of the environment with the point of contact 91 of the guide beam 9 can be displayed during the fifth step. 105 in order to update this display of target 5 and the environment.

Ensuite, au cours d'une sixième étape de pointage 106, l'opérateur pointe de nouveau la cible 5 avec le faisceau de guidage 9. Cette sixième étape de pointage 106 permet avantageusement à l'opérateur de corriger la visée si le point de contact 91 ne se situe pas sur la cible 5 sur l'image complète affichée lors de la cinquième étape d'affichage 105.Then, during a sixth pointing step 106, the operator again points the target 5 with the guide beam 9. This sixth pointing step 106 advantageously allows the operator to correct the aim if the contact point 91 is not located on target 5 on the complete image displayed during the fifth display step 105.

Au cours d'une septième étape de balayage 107, un balayage sélectif de la cible 5 et du point de contact 91 du faisceau de guidage 9 dans l'environnement est effectué par la caméra 2. La caméra 2 est une caméra permettant en effet d'enregistrer spécifiquement les informations sur des objets particuliers de l'environnement selon un changement de leur radiométrie suite par exemple à leur mouvement. Par exemple, la caméra 2 permet d'enregistrer spécifiquement et uniquement les informations sur des objets particuliers de l'environnement qui sont en mouvement, ainsi que les points de contact 91 du faisceau de guidage 9.During a seventh scanning step 107, a selective scanning of the target 5 and of the contact point 91 of the guide beam 9 in the environment is carried out by the camera 2. The camera 2 is a camera making it possible in fact to '' specifically record information on particular objects in the environment according to a change in their radiometry following, for example, their movement. For example, the camera 2 makes it possible to record specifically and only the information on particular objects in the environment which are in motion, as well as the contact points 91 of the guide beam 9.

Enfin, au cours d'une huitième étape d'affichage 108, cette image sélective de la cible 5 et d'au moins un point de contact 91 du faisceau de guidage 9 dans l'environnement est affichée. L'opérateur peut là encore visualiser le point de contact 91 du faisceau de guidage 9 sur l'image sélective de l'environnement et vérifier que ce point de contact 91 se situe toujours bien sur la cible 5. Avantageusement, cette image sélective est simplifiée et affiche principalement la cible 5 qui est par exemple en mouvement et le point de contact 91 du faisceau de guidage 9 sur l'environnement. Cette image sélective permet avantageusement une analyse plus rapide de la part de l'opérateur qui voit immédiatement la position du point de contact 91 vis-à-vis de la cible 5. Comme lors de la cinquième étape d'affichage 105, le réticule de visée 8 peut être affiché sur le moyen de visualisation 3 afin d'indiquer à l'opérateur le point de l'environnement qui est visé. Cette image sélective comprenant le point de contact 91 du faisceau de guidage 9 et le réticule de visée 8 est représentée sur la figure 5.Finally, during an eighth display step 108, this selective image of the target 5 and of at least one contact point 91 of the guide beam 9 in the environment is displayed. Here again, the operator can view the contact point 91 of the guide beam 9 on the selective image of the environment and check that this contact point 91 is always well on the target 5. Advantageously, this selective image is simplified and mainly displays the target 5 which is for example in motion and the point of contact 91 of the guide beam 9 on the environment. This selective image advantageously allows a quicker analysis on the part of the operator who immediately sees the position of the contact point 91 with respect to the target 5. As during the fifth display step 105, the reticle of target 8 can be displayed on the display means 3 in order to indicate to the operator the point of the environment which is targeted. This selective image comprising the contact point 91 of the guide beam 9 and the sighting reticle 8 is shown on the figure 5 .

Les sixième, septième et huitième étapes se répètent ensuite jusqu'à l'impact du projectile 10, ces étapes étant réalisées de façon continue.The sixth, seventh and eighth stages are then repeated until the impact of the projectile 10, these stages being carried out continuously.

Le dispositif 1 d'aide à la visée permet ainsi avantageusement de fournir à l'opérateur en temps réel et pendant son opération de visée un retour sur les positions de la cible 5 et du point de contact 91 du faisceau de guidage 9 sur l'environnement grâce aux images affichées sur le moyen de visualisation 3 après avoir identifié et sélectionné la cible 5. L'opérateur peut alors corriger immédiatement un écart entre la position du point de contact 91 vis-à-vis de la cible 5 et ainsi améliorer la précision de la visée.The aiming aid device 1 thus advantageously makes it possible to provide the operator in real time and during his aiming operation with a return to the positions of the target 5 and of the contact point 91 of the guide beam 9 on the environment thanks to the images displayed on the viewing means 3 after having identified and selected the target 5. The operator can then immediately correct a difference between the position of the contact point 91 with respect to the target 5 and thus improve the aim accuracy.

En outre, le dispositif 1 d'aide à la visée permet également de quantifier la précision de la visée. En effet, le calculateur 4 est configuré afin d'analyser chaque image successivement affichée sur le moyen de visualisation 3 et de déterminer, au cours d'une neuvième étape 109, un premier nombre de points de contact 91 du faisceau de guidage 9 touchant la cible 5 et un second nombre de points de contact 91 du faisceau de guidage ne touchant pas la cible 5. Ce calculateur 4 permet également de calculer le pourcentage de ces points de contact 91 touchant réellement la cible 5 parmi la totalité des points de contact 91 du faisceau de guidage 9 dans l'environnement. Ensuite, au cours d'une dixième étape 110, une information 92 de la précision des points de contact 91 touchant la cible 5 formée par ce pourcentage des points de contact 91 touchant réellement la cible choisie peut être affichée sur le moyen de visualisation 3.In addition, the aiming aid device 1 also makes it possible to quantify the precision of the aiming. Indeed, the computer 4 is configured in order to analyze each image successively displayed on the display means 3 and to determine, during a ninth step 109, a first number of contact points 91 of the guide beam 9 touching the target 5 and a second number of contact points 91 of the guide beam not touching the target 5. This computer 4 also makes it possible to calculate the percentage of these contact points 91 actually touching the target 5 among all the contact points 91 of the guide beam 9 in the environment. Then, during a tenth step 110, information 92 of the precision of the contact points 91 touching the target 5 formed by this percentage of contact points 91 actually touching the chosen target can be displayed on the display means 3.

La neuvième étape 109 et la dixième étape 110 se déroulent de préférence de façon simultanée aux sixième, septième et huitième étapes comme représenté sur le schéma synoptique de la figure 2, et se répètent jusqu'à l'impact du projectile 10.The ninth step 109 and the tenth step 110 preferably take place simultaneously with the sixth, seventh and eighth steps as shown in the block diagram of the figure 2 , and repeat until the impact of projectile 10.

En outre, au cours de la huitième étape 108, les points de contact 91 du faisceau de guidage 9 dans l'environnement peuvent être enregistrés pendant une deuxième durée prédéterminée, puis être affichés avec l'image sélective de la cible 5.Furthermore, during the eighth step 108, the contact points 91 of the guide beam 9 in the environment can be recorded for a second predetermined duration, then be displayed with the selective image of the target 5.

Dès lors, au cours de la huitième étape d'affichage 108, l'image sélective de la cible 5 et le point de contact 91 courant du faisceau de guidage 9 capté lors de la septième étape de balayage 107 peuvent être affichés simultanément avec au moins un des points de contact 91 précédemment affichés lors de la cinquième étape d'affichage 105 et lors de précédentes huitièmes étapes d'affichage 108 éventuelles.Therefore, during the eighth display step 108, the selective image of the target 5 and the current contact point 91 of the guide beam 9 picked up during the seventh scanning step 107 can be displayed simultaneously with at least one of the contact points 91 previously displayed during the fifth display step 105 and during previous eighth display steps 108, if any.

De même, la neuvième étape 109 peut également se dérouler sur la deuxième durée prédéterminée. De la sorte, l'information 92 de la précision affichée au cours de la dixième étape 110 est déterminée sur cette deuxième durée déterminée.Likewise, the ninth step 109 can also take place over the second predetermined duration. In this way, the information 92 of the precision displayed during the tenth step 110 is determined over this second determined duration.

Cette information 92 est affichée sur le moyen de visualisation 3 avec les points de contact 91 enregistrés pendant la deuxième durée prédéterminée comme représenté sur les figures 6 et 7. L'opérateur peut ainsi visualiser les positions des points de contact 91 sur cette deuxième durée prédéterminée et visualiser ainsi la précision des points de contact 91 vis-à-vis de la cible 5.This information 92 is displayed on the display means 3 with the contact points 91 recorded during the second predetermined duration as shown in the Figures 6 and 7 . The operator can thus visualize the positions of the contact points 91 over this second predetermined duration and thus visualize the precision of the contact points 91 with respect to the target 5.

Cette information 92 peut également être utilisée par le système de guidage 20 d'un projectile 10 afin de confirmer ou bien d'annuler l'accrochage du projectile 10 sur la cible 5 et le lancement du projectile 10 en direction de la cible 5. En effet, si la précision de la visée est jugée trop faible par l'opérateur, il peut annuler le lancement du projectile 10 ou bien le stopper momentanément jusqu'à avoir une précision de visée suffisante. Cette annulation peut également être faite de façon automatique si l'information 92 de la précision des points de contact 91 du faisceau de guidage 9 touchant la cible 5 est inférieure à un seuil prédéterminé.This information 92 can also be used by the guidance system 20 of a projectile 10 in order to confirm or cancel the attachment of the projectile 10 to the target 5 and the launching of the projectile 10 in the direction of the target 5. In Indeed, if the aiming accuracy is considered too low by the operator, he can cancel the launching of the projectile 10 or else stop it momentarily until there is sufficient aiming accuracy. This cancellation can also be done automatically if the information 92 of the precision of the contact points 91 of the guide beam 9 touching the target 5 is less than a predetermined threshold.

Enfin, le dispositif 1 d'aide à la visée permet d'identifier le code du faisceau de guidage 9 visant la cible 5. En effet, le calculateur 4 est configuré afin d'analyser l'environnement vu par la caméra 2 et en particulier les points de contact 91 du faisceau de guidage 9 dans l'environnement. Le calculateur 4 peut ainsi déterminer, au cours d'une onzième étape 111, des caractéristiques temporelles du faisceau de guidage 9 et identifier le code de ce faisceau de guidage 9. Cette onzième étape 111 se déroule après la quatrième étape 104 et parallèlement aux étapes suivantes.Finally, the aiming aid device 1 makes it possible to identify the code of the guide beam 9 targeting the target 5. In fact, the computer 4 is configured in order to analyze the environment seen by the camera 2 and in particular the contact points 91 of the guide beam 9 in the environment. The computer 4 can thus determine, during an eleventh step 111, the temporal characteristics of the guide beam 9 and identify the code of this guide beam 9. This eleventh step 111 takes place after the fourth step 104 and in parallel with the steps following.

Naturellement, la présente invention est sujette à de nombreuses variations quant à sa mise en œuvre. Bien que plusieurs modes de réalisation aient été décrits, on comprend bien qu'il n'est pas concevable d'identifier de manière exhaustive tous les modes possibles. Il est bien sûr envisageable de remplacer un moyen décrit par un moyen équivalent sans sortir du cadre de la présente invention.Naturally, the present invention is subject to numerous variations as to its implementation. Although several embodiments have been described, it is understood that it is not conceivable to identify exhaustively all the possible modes. It is of course conceivable to replace a means described by an equivalent means without departing from the scope of the present invention.

Claims (16)

  1. Aiming-assistance method for a target (5), characterised in that the said method comprises the following steps,
    - a first step (101) of complete scanning of an environment by means of a camera (2),
    - a second step (102) of displaying a complete image of the said environment,
    - a third step (103) of identifying and selecting a target (5) on the said complete image of the said environment,
    - a fourth step (104) of aiming at the said target (5) by an operator by means of a guide beam (9),
    - a fifth step (105) of displaying a complete image of the said environment and the point of contact (91) of the said guide beam (9) in the said environment,
    - a sixth step (106) of aiming at the said target (5) by the said operator by means of the said guide beam (9),
    - a seventh step (107) of selective scanning of the said target (5) and point of contact (91) of the said guide beam (9) in the said environment by means of the said camera (2),
    - an eighth step (108) of displaying a selective image of the said target (5), the said current point of contact (91) of the said guide beam (9) in the said environment and at least one of the said previously displayed points of contact (91),
    - a ninth step (109) of calculating a first number of the said points of contact (91) of the said guide beam (9) touching the said target (5) and a second number of the said points of contact (91) of the said guide beam (9) not touching the said target (5), and
    - a tenth step (110) of displaying information of the accuracy of the said points of contact (91) of the said guide beam (9) touching the said target (5).
  2. Aiming-assistance method for a target (5) according to claim 1, characterised in that during the said eighth step (108) the said points of contact (91) of the said guide beam (9) in the said environment are recorded for a predetermined time, and are then displayed with the said selective image of the said target (5).
  3. Aiming-assistance method for a target (5) according to either of claims 1 and 2, characterised in that the said information of the accuracy of the said points of contact (91) of the said guide beam (9) touching the said target (5) is formed by the said first number and the said second number or by the percentage of the said points of contact (91) of the said guide beam (9) actually touching the said target (5) of the total number of the said points of contact (91) of the said guide beam (9) in the said environment.
  4. Aiming-assistance method for a target (5) according to any one of claims 1 to 3, characterised in that the said ninth step (109) takes place for a predetermined time.
  5. Aiming-assistance method for a target (5) according to any one of claims 1 to 4, characterised in that if a guide beam (9) is defined by a code consisting of time characteristics, the said method comprises, after the said fourth step (104) of aiming at the said target (5) and in parallel to the said following steps, an eleventh step (111) of analysing and identifying the said guide beam (9), the said points of contact (91) of the said guide beam (9) in the said environment being analysed so as to determine the said time characteristics of the said guide beam (9) and to identify the said code of the said guide beam (9).
  6. Aiming-assistance method for a target (5) according to claim 5, characterised in that when the said guide beam (9) consists of a succession of pulses, the said time characteristics of the said guide beam (9) are a frequency and a duration of the said pulses.
  7. Aiming-assistance method for a target (5) according to any one of claims 1 to 6, characterised in that the said method comprises, between the said fourth step (104) of aiming at the said target (5) and the said display step (105), an intermediate step (115) of complete scanning of the said environment by means of the said camera (2) so as to update the display of the said target (5) and the said environment.
  8. Aiming-assistance method for a target (5) according to any one of claims 1 to 7, characterised in that cross hairs (8) are displayed on the said target (5) during the said second, fifth and eighth display steps (102, 105, 108) so as to facilitate the identification of the said target (5).
  9. Aiming-assistance method for a target (5) according to any one of claims 1 to 8, characterised in that during the said seventh scanning step (107), the said selective scanning of the said target (5) and of the said point of contact (91) of the said guide beam (9) is carried out by recording each object of the said environment for which a change of the radiometry is detected as well as the point of contact (91).
  10. Aiming-assistance method for a target (5) according to any one of claims claim 1 to 8, characterised in that during the said seventh scanning step (107), the said selective scanning of the said target (5) and of the said point of contact (91) of the said guide beam (91) is carried out by recording information on particular objects of the environment that are moving, as well as the said point of contact (91).
  11. Method for guiding a projectile (10) by a guide beam, comprising
    - a step of illuminating a target (5) by a guide beam (9),
    - a step of targeting the said projectile (10) on the said target (5),
    - a step of launching the said projectile (10), and
    - a step of guiding the said projectile (10) to the said target (5),
    characterised in that the said aiming-assistance method according to any one of claims 1 to 10 is applied during the said illumination step so as to improve the accuracy of the said illumination of the said target (5).
  12. Method of guiding a projectile (10) by a guide beam according to claim 11, characterised in that the said step of targeting the said projectile (10) on the said target (5) and/or the said step of launching the said projectile (10) are cancelled depending on information of the accuracy of the said points of contact (91) of the said guide beam (9) touching the said target (5) and/or time characteristics of the said guide beam (9).
  13. Aiming-assistance device for a target (5), comprising a camera (2), a visualisation means (3), a computer (4) and a selection means (7), characterised in that the said aiming-assistance device (1) for a target (5) is configured for the implementation of the said method according to any one of claims 1 to 10 and the said camera (2) is a camera enabling information to be specifically recorded concerning the particular objects of the recorded environment, the said target (5) being a particular object of the said environment, the said computer (4) being configured so as to analyse each selective image successively displayed on the said visualisation means (3) and to determine a first number of points of contact (91) of the said guide beam (9) touching the said target (5) and a second number of points of contact (91) of the said guide beam (9) not touching the said target (5), and information is then determined concerning the accuracy of the said points of contact (91) of the said guide beam (9) touching the said target (5).
  14. Aiming-assistance device for a target (5) according to claim 13, characterised in that the said computer (4) is configured so as to analyse the said environment seen by the said camera (4) and in particular the said points of contact (91) of the said guide beam (9) in the said environment so as to determine time characteristics of the said guide beam (9) and to identify the said guide beam (9) by means of the said time characteristics.
  15. System (20) for guiding a projectile (10) by a guide beam (9), comprising a guide beam generator (6) and a projectile (10) provided with a receiving device (11), characterised in that the said system (20) for guiding a projectile (10) comprises an aiming-assistance device (1) according to either of claims 13 and 14.
  16. System (20) for guiding a projectile (10) by a guide beam according to claim 15, characterised in that the said system (20) for guiding a projectile (10) by a guide beam implements the said method for guiding a projectile (10) by a guide beam according to either of claims 11 and 12.
EP17167889.9A 2016-04-29 2017-04-25 An aiming-assistance method and device for laser guidance of a projectile Active EP3239644B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL17167889T PL3239644T3 (en) 2016-04-29 2017-04-25 An aiming-assistance method and device for laser guidance of a projectile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1600721A FR3050814B1 (en) 2016-04-29 2016-04-29 METHOD AND DEVICE FOR ASSISTED AID FOR LASER GUIDANCE OF A PROJECTILE

Publications (2)

Publication Number Publication Date
EP3239644A1 EP3239644A1 (en) 2017-11-01
EP3239644B1 true EP3239644B1 (en) 2020-02-19

Family

ID=57396488

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17167889.9A Active EP3239644B1 (en) 2016-04-29 2017-04-25 An aiming-assistance method and device for laser guidance of a projectile

Country Status (4)

Country Link
US (1) US10281239B2 (en)
EP (1) EP3239644B1 (en)
FR (1) FR3050814B1 (en)
PL (1) PL3239644T3 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017011407A1 (en) * 2017-12-11 2019-06-13 Mbda Deutschland Gmbh SYSTEM AND METHOD FOR THE PERSONNEL COORDINATED TARGETING OF A STEERING AIR BODY
DE102022122842A1 (en) * 2022-09-08 2024-03-14 Rheinmetall Electronics Gmbh Device for determining an angular deviation, vehicle and method for determining an angular deviation

Family Cites Families (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2557401A (en) * 1945-01-10 1951-06-19 Arma Corp Remote control apparatus
US2969018A (en) * 1957-05-01 1961-01-24 Itt Quadrant homing system
US3239674A (en) * 1960-02-02 1966-03-08 Thompson Ramo Wooldridge Inc Radiant energy receiving and detection systems
US3306206A (en) * 1962-12-04 1967-02-28 Rodney E Grantham Radio frequency free communication system
US3366346A (en) * 1965-07-19 1968-01-30 Army Usa Remote missile command system
US3617016A (en) * 1968-05-27 1971-11-02 Emil J Bolsey Image motion and change transducers and systems controlled thereby
US4143835A (en) * 1972-09-12 1979-03-13 The United States Of America As Represented By The Secretary Of The Army Missile system using laser illuminator
US3859460A (en) * 1972-11-27 1975-01-07 Baird Atomic Inc Passive image stabilization system
DE2947492C2 (en) * 1979-11-24 1983-04-28 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Guidance methods for missiles
DE3230267A1 (en) * 1982-08-14 1984-02-16 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt SEMI-ACTIVE GUIDE SYSTEM FOR A TARGET-SEARCHABLE, STEERABLE MISSILE
US4615590A (en) * 1984-07-17 1986-10-07 Schwem Instruments Optically stabilized camera lens system
US6491253B1 (en) * 1985-04-15 2002-12-10 The United States Of America As Represented By The Secretary Of The Army Missile system and method for performing automatic fire control
US6487953B1 (en) * 1985-04-15 2002-12-03 The United States Of America As Represented By The Secretary Of The Army Fire control system for a short range, fiber-optic guided missile
US4678142A (en) * 1985-07-25 1987-07-07 The United States Of America As Represented By The Secretary Of The Air Force Precision guided antiaircraft munition
US4913547A (en) * 1988-01-29 1990-04-03 Moran Steven E Optically phased-locked speckle pattern interferometer
US4911541A (en) * 1988-04-06 1990-03-27 Schwem Technology Incorporated Inertial pendulum optical stabilizer
US5122908A (en) * 1989-04-21 1992-06-16 Tinsley Laboratories, Inc. Non-linear controller functions for inertial optical stabilizers
US5375008A (en) * 1991-07-17 1994-12-20 Electronic Warfare Associates, Inc. Systems for distinguishing between friendly ground targets and those of a foe
US5194908A (en) * 1991-11-29 1993-03-16 Computing Devices Canada Ltd. Detecting target movement
DE4416211C2 (en) 1994-05-07 1996-09-26 Rheinmetall Ind Gmbh Method and device for missile trajectory correction
US6023322A (en) * 1995-05-04 2000-02-08 Bushnell Corporation Laser range finder with target quality display and scan mode
DE69706738T2 (en) * 1996-04-05 2002-07-04 Luchaire Defense S.A., Versailles Projectile whose explosive charge is triggered by a target indicator
US5664741A (en) * 1996-04-19 1997-09-09 The United States Of America As Represented By The Secretary Of The Army Nutated beamrider guidance using laser designators
FR2753796B1 (en) * 1996-09-25 1998-11-13 PHOTOSENSITIVE AND MOSAIC DETECTOR OF PHOTOSENSITIVE DETECTORS FOR DETECTION OF LIGHT SHARDS AND APPLICATIONS
FR2753785B1 (en) * 1996-09-25 1998-11-13 SELF-DIRECTING A FLYING BODY
US6069656A (en) * 1997-12-17 2000-05-30 Raytheon Company Method and apparatus for stabilization of images by closed loop control
US6671538B1 (en) * 1999-11-26 2003-12-30 Koninklijke Philips Electronics, N.V. Interface system for use with imaging devices to facilitate visualization of image-guided interventional procedure planning
FR2821929B1 (en) * 2001-03-06 2003-08-29 Sagem LASER POINT SIGHTING SYSTEM WITH DESIGNER TELEMETER
DE10147837A1 (en) * 2001-09-27 2003-04-24 Rheinmetall Landsysteme Gmbh Warhead throwing system with a mine neutralizer
US6891984B2 (en) * 2002-07-25 2005-05-10 Lightlab Imaging, Llc Scanning miniature optical probes with optical distortion correction and rotational control
EP1553758A1 (en) * 2003-12-03 2005-07-13 Stueckler Gerd Optical device for correcting image-shake with means for displaying the amount of correction
US6851645B1 (en) * 2003-12-05 2005-02-08 Lockheed Martin Corporation Non-coherent fresnel direction finding method and apparatus
EP1607710A1 (en) * 2004-06-18 2005-12-21 Saab Ab System for determining the target range for a laser guided weapon
FR2885213B1 (en) * 2005-05-02 2010-11-05 Giat Ind Sa METHOD FOR CONTROLLING A MUNITION OR SUB-MUNITION, ATTACK SYSTEM, MUNITION AND DESIGNER EMPLOYING SUCH A METHOD
JP4832013B2 (en) * 2005-07-05 2011-12-07 富士フイルム株式会社 Image blur correction device
US7767945B2 (en) * 2005-11-23 2010-08-03 Raytheon Company Absolute time encoded semi-active laser designation
US7575191B2 (en) * 2006-01-27 2009-08-18 Lockheed Martin Corporation Binary optics SAL seeker (BOSS)
FR2921149B1 (en) * 2007-09-14 2009-11-06 Thales Sa STABILIZED IMAGE TELEMETRY METHOD
FR2922008B1 (en) * 2007-10-03 2015-12-11 Nexter Munitions DEVICE FOR REMOTE CONTROL OF A TARGET DESIGNER FROM AN ATTACK MODULE, ATTACK MODULE, AND DESIGNER EMPLOYING SUCH A DEVICE
US7978313B2 (en) * 2008-05-30 2011-07-12 The Boeing Company Systems and methods for targeting directed energy devices
SG170644A1 (en) * 2009-11-02 2011-05-30 Dso Nat Lab A device for illuminating a target
EP2513597B1 (en) * 2009-12-14 2020-06-24 Shilat Optronics Ltd Laser daylight designation and pointing
US8344302B1 (en) * 2010-06-07 2013-01-01 Raytheon Company Optically-coupled communication interface for a laser-guided projectile
FR2965935B1 (en) * 2010-10-06 2012-11-16 Sagem Defense Securite OPTRONIC OBSERVATION AND / OR VIEWING DEVICE OF A SCENE COMPRISING A TELEMETRE, AND ASSOCIATED TELEMETRY METHOD
DE102010062161A1 (en) * 2010-11-30 2012-05-31 Hilti Aktiengesellschaft Distance measuring device and surveying system
US8970708B2 (en) * 2011-05-23 2015-03-03 The Johns Hopkins University Automatic device alignment mechanism
US8525088B1 (en) * 2012-03-21 2013-09-03 Rosemont Aerospace, Inc. View-point guided weapon system and target designation method
US9360680B1 (en) * 2012-08-10 2016-06-07 Ilias Syrgabaev Electromagnetic beam or image stabilization system
IL233692A (en) * 2014-07-17 2017-04-30 Elbit Systems Electro-Optics Elop Ltd System and method for analyzing quality criteria of a radiation spot
JP6348225B2 (en) * 2015-03-20 2018-06-27 富士フイルム株式会社 Ranging device, ranging control method, and ranging control program
WO2016151927A1 (en) * 2015-03-20 2016-09-29 富士フイルム株式会社 Distance measurement device, distance-measurement control method, and distance-measurement control program
WO2016151928A1 (en) * 2015-03-20 2016-09-29 富士フイルム株式会社 Distance measurement device, distance-measurement control method, and distance-measurement control program
WO2016151929A1 (en) * 2015-03-20 2016-09-29 富士フイルム株式会社 Distance measurement device, distance-measurement control method, and distance-measurement control program
JP6348221B2 (en) * 2015-03-20 2018-06-27 富士フイルム株式会社 Ranging device, ranging control method, and ranging control program

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
PL3239644T3 (en) 2020-07-13
US20170314891A1 (en) 2017-11-02
US10281239B2 (en) 2019-05-07
EP3239644A1 (en) 2017-11-01
FR3050814B1 (en) 2019-06-07
FR3050814A1 (en) 2017-11-03

Similar Documents

Publication Publication Date Title
US9897688B2 (en) Laser detection and image fusion system and method
US5408541A (en) Method and system for recognizing targets at long ranges
US10408574B2 (en) Compact laser and geolocating targeting system
EP0432014A1 (en) Optoelectronic assistance system for air-raid missions and navigation
EP0033679A1 (en) Laser object-designation system
EP3239644B1 (en) An aiming-assistance method and device for laser guidance of a projectile
US20140022388A1 (en) Air Surveillance System for Detecting Missiles Launched from Inside an Area to be Monitored and Air Surveillance Method
EP1925902A1 (en) Sighting system with a built-in deviation indicator
FR2514884A1 (en) METHOD AND APPARATUS FOR GLOBALLY CORRECTING, FROM A SHOOTING TO THE FOLLOWING, THE FIRE OF A TENDERED SHOOTING ARM
US20240125936A1 (en) Time-resolved contrast imaging for lidar
EP3103062A1 (en) Method for detecting and classifying events of a scene
US8547531B2 (en) Imaging device
WO2013108204A1 (en) Laser target seeker with photodetector and image sensor
US10267900B2 (en) System and method for covert pointer/communications and laser range finder
EP2625544B1 (en) Optoelectronic device for observing and/or aiming at a scene, comprising a rangefinder, and related range-finding method
EP2652430B1 (en) Method and system for detecting a stream of electromagnetic pulses, and device including such a detection system and intended for electromagnetically guiding ammunition toward a target
FR2765960A1 (en) METHOD AND DEVICE FOR ELIMINATING UNDERGROUND MINES
EP2929284B1 (en) Optronic device
EP2364455B1 (en) Rangefinder
EP0605290A1 (en) Optronic shooting aid device for hand weapon and its application to progress in a hostile environment
Steindorfer et al. Daylight space debris laser ranging
FR2524137A1 (en) SHUTTLE DRAWING SYSTEM WITH OBSERVATION GLASS CONTROLLED BY AN AUTOMATIC TRACKING DEVICE
FR2974432A1 (en) LASER ACTIVE IMAGING DIFFERENTIAL GUIDING DEVICE
FR2736731A1 (en) Detecting optical telemetry signals arriving from monitoring enemy on target surface
FR3129493A1 (en) Method and device for visualizing impacts of laser pulses on a target

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180130

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190314

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20191007

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017011840

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1235449

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200519

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200519

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200619

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200712

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602017011840

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1235449

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20201120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200425

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201103

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240419

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240424

Year of fee payment: 8

Ref country code: FR

Payment date: 20240425

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20240412

Year of fee payment: 8