EP3238857B1 - Two material secondary cooling for a continuous casting plant - Google Patents

Two material secondary cooling for a continuous casting plant Download PDF

Info

Publication number
EP3238857B1
EP3238857B1 EP17164822.3A EP17164822A EP3238857B1 EP 3238857 B1 EP3238857 B1 EP 3238857B1 EP 17164822 A EP17164822 A EP 17164822A EP 3238857 B1 EP3238857 B1 EP 3238857B1
Authority
EP
European Patent Office
Prior art keywords
gas
coolant
compressor
continuous casting
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17164822.3A
Other languages
German (de)
French (fr)
Other versions
EP3238857A1 (en
Inventor
Artemy Krasilnikov
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SMS Group GmbH
Original Assignee
SMS Group GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102016215209.2A external-priority patent/DE102016215209A1/en
Application filed by SMS Group GmbH filed Critical SMS Group GmbH
Publication of EP3238857A1 publication Critical patent/EP3238857A1/en
Application granted granted Critical
Publication of EP3238857B1 publication Critical patent/EP3238857B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/124Accessories for subsequent treating or working cast stock in situ for cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/124Accessories for subsequent treating or working cast stock in situ for cooling
    • B22D11/1246Nozzles; Spray heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/22Controlling or regulating processes or operations for cooling cast stock or mould
    • B22D11/225Controlling or regulating processes or operations for cooling cast stock or mould for secondary cooling

Definitions

  • the invention relates to a device and a method for multi-material secondary cooling in a continuous casting plant, wherein a multi-substance coolant, preferably an air / water mixture, is applied in a secondary cooling zone on surfaces of the cast strand.
  • a multi-substance coolant preferably an air / water mixture
  • a cooling medium which is for example water or a mixture of air and water, is applied or sprayed onto the metal surfaces of the slab to be cooled.
  • the slab or cast strand is deprived of heat by evaporation and / or heating of the cooling medium.
  • the FIG. 1 shows a schematic of a conventional water-secondary cooling for a continuous casting plant.
  • a pump 20 which may be a simple or frequency-controlled water pump, placed in a water distribution network 30.
  • the control valves 31 may be equipped with a valve control and / or a volumetric flow meter, together with the reference numeral 32, to regulate and measure the volume flow via a piping to the nozzle 33.
  • the continuous casting plant may have one or more so-called overflow control valves 34, which have an excess amount of water between the water pump 20 and branch off the control valves 31 and lead into a sintering trough 35.
  • the reference numeral A denotes a fixed part of the installation, a media room or distribution room
  • the reference numeral C denotes a continuous casting segment in the vicinity of the cast strand in which the nozzles 33 for dispensing coolant
  • the reference symbol B denotes a section, in which a piping as part of the water distribution network 30, the water from the distribution chamber A to the continuous casting C feeds.
  • a conventional water nozzle 33 of simple construction has a fixed orifice for discharging the water. This leads to an invariant pressure / volume flow characteristic, in which each pressure, for example in the pressure range of 0.5 to 12 bar, exactly one water flow point is assigned.
  • the desired water volume flow is adjusted with the aforementioned control valve 31 (also referred to as a volume flow control valve) in the distributor room.
  • the single-fluid nozzles 33 have a relatively small adjustment range of approximately 1: 3.2 with respect to water flow.
  • the water-secondary cooling system is not very flexible in this sense. Furthermore, the regulation or change of the volume flow can lead to an energy loss.
  • control valves 31 are designed, for example, as piston valves
  • a large amount of energy of the water flow at the ring diffuser of the piston valve is converted into friction, in particular at low water consumption.
  • Conventional flat jet or full cone spray pattern nozzles are subdivided along standardized volume flow and jet angle graduations and assigned to the secondary carpet zone nozzle carpet according to a system design tradeoff.
  • Another disadvantage of the system described concerns the maintenance required to remove residues on the nozzles, especially lime deposits. Such deposits occur especially at low water flow rates. The small cross-sections of the nozzles set quickly.
  • a further development of the water cooling described above is the secondary cooling as two-fluid cooling by means of an air / water mixture perform.
  • water is premixed in a mixing chamber with air, and the mixture is fed to one or more nozzles and output as atomized binary mixture.
  • Such a two-fluid cooling is for example in the DE 100 15 832 A1 described.
  • FIG. 2 shows a schematic of a conventional dual-fluid secondary cooling for a continuous casting plant.
  • air is compressed by means of a power driven compressor 40 and directed to one or more mixing chambers 51 in an air distribution network 50, which is largely separate from the water distribution network 30. There, the two distribution networks come together, water and air are mixed in the mixing chambers 51 and output from the nozzles 33.
  • the air in the dual-fluid secondary cooling is used for water jet atomization and at the same time for adjusting and maintaining the opening angle of the cooling jet at the nozzle 33, at different pressure settings, in particular at a low water pressure.
  • the strand or slab surface is sprayed with an aerosol of very fine water droplets.
  • the adjustment range with regard to the amount of water can thus be extended to about 1:14.
  • the disadvantage is a poor energy efficiency and consequent high investment and operating costs for the implementation of the dual-material secondary cooling, resulting in particular from the electricity and energy costs for the air compression by means of the compressor 40.
  • the EP 2 527 061 A1 describes a technical variant of the single-fluid secondary cooling, are used in the switching valves for intermittent opening and closing of the flow rate of a coolant.
  • the volume flow control takes place with the help of a pulse width modulation.
  • the use of solenoid valves and Other electronic components require a high level of maintenance and servicing, especially when used in the harsh conditions of continuous casting.
  • the cooling effect cyclic and can lead to increased thermal stresses, which in turn can have an increased cracking in the cast product.
  • the JP H01 271049 A describes a secondary cooling for a continuous casting plant, in which a compressor sucks and compresses the gas, but the drive mode remains open.
  • the GB 1 453 969 A describes a method and apparatus for continuous casting in which an electrically driven compressor compresses the gas.
  • An object of the invention is to provide a device and a method for multi-material secondary cooling for a continuous casting, which overcome at least one of the above-mentioned technical disadvantages.
  • the device and method should be energy efficient and flexible, i. ensure a large adjustment range of the volume flow and / or other parameters, and enable a safe and durable spray pattern.
  • the device according to the invention is used for multi-material secondary cooling, in particular two-component secondary cooling, for one, preferably in a continuous casting plant.
  • the apparatus has at least one nozzle for dispensing a multi-fluid coolant onto surfaces of the cast strand.
  • a "cast strand" is here any cast or found casting, for example, a slab, referred to, which is subjected to a secondary cooling. In particular, it does not depend on the shape or the concrete composition of the cast product or on its processing stage, as far as it has left the casting mold.
  • the multi-fluid coolant has at least two components, a liquid coolant and a gas.
  • the liquid coolant has water or is water, and preferably the gas has air or is air.
  • the air can be used for water atomization and preferably for Modeling and / or maintaining the opening angle of the cooling jet can be used or shared.
  • the liquid coolant and the gas are mixed in at least one mixing chamber, which is part of the nozzle or fluidly connected to the nozzle, to the multi-fluid coolant.
  • the apparatus further comprises a coolant distribution network, with at least one coolant line for transporting the liquid coolant to the mixing chamber and at least one control valve for controlling the volume flow of the liquid coolant to be supplied to the mixing chamber.
  • the device has a gas distribution network with at least one gas line for transporting the gas to the mixing chamber.
  • coolant distribution network and "gas distribution network” each designate an arrangement of fluidic devices, such as lines, pipes, valves, branches, etc., which need not be arranged net like a net yet several different or a plurality of said devices must have.
  • the coolant distribution network has one or more control valves for controlling the volume flow of the liquid coolant and that the two distribution networks communicate with one another at one or more mixing chambers in terms of flow.
  • the coolant distribution network has a control valve and a pipe
  • the gas distribution network has a pipe.
  • the apparatus further comprises a refrigerant driven compressor having a turbine and a gas compressor.
  • the turbine and the gas compressor are connected to each other, preferably mechanically.
  • the compressor is configured to rotate the turbine of a portion of the liquid coolant, whereby the gas compressor sucks, compresses and supplies gas to the gas distribution network.
  • the refrigerant-driven compressor draws and compresses gas through a portion of the kinetic energy of the liquid refrigerant. This energy is used, which is converted in conventional systems such as the volume flow control valve in friction or flows off unused via an overflow control valve.
  • this excess energy of the Liquid coolant flow used to perform the gas compression ie energetically fully or partially support. This makes cooling more energy efficient.
  • the atomization of the liquid coolant by means of the gas can reduce the clogging of the nozzles by deposits, such as lime.
  • the described secondary cooling system allows a large adjustment range and a safe and durable spray pattern.
  • the apparatus further comprises at least one pump that pumps liquid coolant into the coolant distribution network, wherein the liquid coolant for driving the turbine is branched from a conduit section between the pump and the control valve.
  • the at least one control valve is a piston valve with a ring diffuser.
  • a large amount of energy of the liquid flow on Ring diffuser converted into friction which can be profitably used for compression of the gas by means of the compressor.
  • the turbine and the gas compressor are connected to each other via a transmission, whereby the flexibility of the device with regard to the compression of the gas and thus on the production of the two-fluid coolant is improved.
  • the device has a gas treatment unit which has a filter and / or a dewatering device for the treatment of the gas to be supplied into the gas distribution network, wherein the gas treatment unit is in this case particularly preferably arranged in the flow direction in front of the compressor.
  • the gas - in particular air treatment can be realized with relatively little effort, which protects the system from foreign bodies and thus increase their reliability.
  • the device comprises at least one bypass valve downstream of the compressor for dividing the refrigerant toward the compressor and the nozzle, the bypass valve preferably being a self-regulating valve controlled by the applied liquid refrigerant pilot pressure and for a given gas / refrigerant Ratio at the nozzle is preset.
  • the compressor in this case can be used as an autonomous unit immediately in the vicinity of the continuous casting plant, e.g. on a continuous casting segment or segment support frame or on the cooling chamber wall to arrange, whereby a conventional system in a still simpler manner can be retrofitted with the present invention.
  • the device has a distributor space and a continuous casting segment separated therefrom, wherein the at least one control valve and the compressor are arranged in the distributor space and the at least one nozzle is arranged in the continuous casting segment.
  • the separation is in this case, for example, with respect to the temperature and / or purity of the atmosphere and / or moisture understand.
  • rotating or otherwise more sensitive parts are in a less harsh environment, ie, the manifold space, as compared to the continuous casting segment. This can increase the reliability of the system and reduce maintenance.
  • the above-described object of the invention is further achieved by a method comprising: transporting a liquid coolant, preferably water, by means of at least one coolant line through at least one control valve for controlling the volume flow of the liquid coolant into at least one mixing chamber; Transporting a gas by means of at least one gas line into the at least one mixing chamber, in which the liquid coolant and the gas are mixed to form a multi-substance coolant; Dispensing the multi-fluid coolant through at least one nozzle onto surfaces of the cast strand.
  • the gas is compressed by means of a compressor which is driven by a part of the liquid coolant.
  • the method is particularly preferably carried out by means of the device according to the invention or one of the described preferred embodiments.
  • the described devices and methods primarily serve the multi-material secondary cooling, in particular two-component secondary cooling, in a continuous casting plant. However, if appropriate, the invention can also be used in other systems, as far as multicomponent cooling is carried out.
  • FIG. 3 shows a schematic of a dual-fluid secondary cooling for a continuous casting plant according to an embodiment.
  • the overflow control valves 34 used to drive a water-driven air compressor 60, more precisely, a turbine 61 of the compressor 60.
  • the compressor 60 may, for example, a turbine 61, which is designed according to the basic principle of a Francis turbine.
  • the compressor 60 is disposed in the distribution room or media room A to utilize the energy of the excess water to compress air, which is then supplied via the air distribution network 50 to the mixing chambers 51 of the nozzles 33.
  • the excess water sets a water wheel in the turbine 61 of the compressor 60 in rotary motion.
  • a possible component of the compressor 60 may be a torque converter for the low-impact starting.
  • the rotational movement of the water wheel is forwarded directly or with the aid of a gear 62 to an air compressor 63.
  • the air compressor 63 is part of the compressor 60 and may be designed, for example, as an axial or radial compressor or side channel compressor.
  • the air compressor 63 sucks in the air via an air conditioning unit 64 having, for example, a filter and / or a dewatering device and places the air in the air distribution network 50.
  • FIG. 4 shows an exemplary water powered air compressor 60 suitable for use with the dual-fluid secondary cooling described.
  • the turbine 61, the air compressor 63 and the direct Connection or the gear 62 in between shows the FIG. 4 a water supply port 65 and a water drain port 66, and an air suction port 67 and an air discharge port 68, through which the air compressed by the air compressor 63 is discharged into the air distribution net 50.
  • the water-driven (or generally coolant-driven) compressor 60 By the water-driven (or generally coolant-driven) compressor 60, air is sucked in and compressed by excess water energy.
  • the energy of the water flow which has been converted into friction in conventional systems on the volume flow control valve 31 or flowed off via the overflow control valve 34 unused, can be used to energetically fully or at least partially support the air compression.
  • the water pump (s) 20 By splitting the water circuits for turbine operation and nozzle operation, it is possible to always drive the water pump (s) 20 at the optimum operating point with the highest power, i. at the maximum of the pump characteristic curve, which describes the relationship between the volume flow delivered by the pump and the pressure built up by the pump.
  • the rotating parts are in the unproblematic environment of the distribution chamber, unproblematic in terms of air cleanliness, humidity and / or temperature.
  • the air treatment and / or filtering by means of the air treatment unit 64 can be realized with relatively little effort.
  • water distribution network or “coolant distribution network” and “air distribution network” or “gas distribution network” each designate an arrangement of fluidic devices, such as pipes, pipes, valves, branches, etc., which need not be arranged in the strict sense net or more must have different or a plurality of said facilities.
  • the lines for transporting the water and the air according to the embodiments shown in detail go from the FIGS. 1, 2 . 3 and 5 schematically, even if they do not bear the reference numerals for clarity.
  • FIG. 5 shows a schematic of a two-fluid secondary cooling for a continuous casting plant according to another embodiment.
  • the compressor 60 as an autonomous unit is immediately adjacent to the continuous caster, e.g. in the continuous casting segment C or on the segment support frame or on the cooling chamber wall.
  • the unit includes a turbine 61, an air compressor 63, an optional transmission 62, an optional torque converter (not numbered), an air conditioning unit 64, and a bypass valve 69.
  • the bypass valve 69 may be self-regulating, for example by being controlled by the applied water pressure.
  • the bypass valve 69 may be preset at the nozzle 33 for a given air / water ratio. In order to be able to ensure the variance of the pending water pre-pressure at the bypass valve 69, it is preferable to use a part of the original setting range, for example 80 to 100% of the stroke.
  • FIG. 6 showing a continuous casting segment on the side of which a water driven air compressor 60 is mounted.
  • there are rotating or sensitive mechanical parts compared to the embodiment of FIG. 3 in a harsher environment (possibly casting powder and / or vapor in the atmosphere, radiating strand, high temperatures) since they are arranged in the continuous casting segment C.

Description

Technisches GebietTechnical area

Die Erfindung betrifft eine Vorrichtung und ein Verfahren zur Mehrstoff-Sekundärkühlung in einer Stranggießanlage, wobei ein Mehrstoffkühlmittel, vorzugsweise ein Luft/Wasser-Gemisch, in einer Sekundärkühlzone auf Oberflächen des gegossenen Strangs aufgebracht wird.The invention relates to a device and a method for multi-material secondary cooling in a continuous casting plant, wherein a multi-substance coolant, preferably an air / water mixture, is applied in a secondary cooling zone on surfaces of the cast strand.

Hintergrund der ErfindungBackground of the invention

Beim Stranggießen von Brammen ist es bekannt, eine Sekundärkühlung des Gießprodukts, d.h. eine Kühlung die nach dem Austritt der Bramme aus der Kokille erfolgt, durchzuführen. Dabei wird ein Kühlmedium, das beispielsweise Wasser oder ein Gemisch aus Luft und Wasser ist, auf die zu kühlenden Metallflächen der Bramme aufgebracht oder aufgesprüht. Der Bramme oder dem gegossenen Strang wird Wärme durch Verdampfen und/oder Erwärmen des Kühlmediums entzogen. Für das Gießen unterschiedlicher Stahlsorten in einem weiten Bereich unterschiedlicher Gießgeschwindigkeiten ist ein großer Stellbereich betreffend die Kühlstärke erforderlich, die von verschiedenen Parametern, darunter der Wasserbeaufschlagungsdichte bestimmt wird.In the continuous casting of slabs, it is known to provide secondary cooling of the cast product, i. a cooling which takes place after the exit of the slab from the mold to perform. In this case, a cooling medium, which is for example water or a mixture of air and water, is applied or sprayed onto the metal surfaces of the slab to be cooled. The slab or cast strand is deprived of heat by evaporation and / or heating of the cooling medium. For the casting of different steel grades in a wide range of different casting speeds, a large adjustment range is required concerning the cooling intensity, which is determined by various parameters, including the Wasserbeaufschlagungsdichte.

Die Figur 1 zeigt ein Schema einer herkömmlichen Wasser-Sekundärkühlung für eine Stranggießanlage. Hierbei wird Wasser aus einem Reservoir 10 mit Hilfe einer Pumpe 20, die eine einfache oder frequenzgeregelte Wasserpumpe sein kann, in ein Wasserverteilernetz 30 gebracht. Für die Regelung des Wasservolumenstroms werden Regelventile 31, beispielsweise Kolbenventile, verwendet. Die Regelventile 31 können mit einer Ventilsteuerung und/oder einem Volumenstrommessgerät, gemeinsam mit dem Bezugszeichen 32 bezeichnet, ausgestattet sein, um den Volumenstrom über eine Verrohrung hin zu Düsen 33 zu regeln und zu messen. Die Stranggießanlage kann ein oder mehrere sogenannte Überstromregelventile 34 aufweisen, die eine überschüssige Wassermenge zwischen der Wasserpumpe 20 und den Regelventilen 31 abzweigen und in eine Sinterrinne 35 leiten. Die Vorrichtung der Figur 1 ist schematisch in drei Abschnitte unterteilt, wobei das Bezugszeichen A einen feststehenden Anlagenteil, einen Medienraum oder Verteilerraum, das Bezugszeichen C ein Stranggießsegment in der Nähe des gegossenen Strangs, in dem die Düsen 33 zur Kühlmittelabgabe vorgesehen sind, und das Bezugszeichen B einen Abschnitt bezeichnet, in dem eine Verrohrung als Teil des Wasserverteilernetzes 30 das Wasser vom Verteilerraum A zum Stranggießsegment C zuführt.The FIG. 1 shows a schematic of a conventional water-secondary cooling for a continuous casting plant. Here, water from a reservoir 10 by means of a pump 20, which may be a simple or frequency-controlled water pump, placed in a water distribution network 30. For the regulation of the water volume flow control valves 31, for example piston valves, are used. The control valves 31 may be equipped with a valve control and / or a volumetric flow meter, together with the reference numeral 32, to regulate and measure the volume flow via a piping to the nozzle 33. The continuous casting plant may have one or more so-called overflow control valves 34, which have an excess amount of water between the water pump 20 and branch off the control valves 31 and lead into a sintering trough 35. The device of FIG. 1 is schematically divided into three sections, wherein the reference numeral A denotes a fixed part of the installation, a media room or distribution room, the reference numeral C denotes a continuous casting segment in the vicinity of the cast strand in which the nozzles 33 for dispensing coolant, and the reference symbol B denotes a section, in which a piping as part of the water distribution network 30, the water from the distribution chamber A to the continuous casting C feeds.

Eine herkömmliche Wasserdüse 33 mit einfacher Bauart weist eine feste Mündung zur Abgabe des Wassers auf. Dies führt zu einer invarianten Druck/Volumenstrom-Kennlinie, bei der jedem Druck, beispielsweise im Druckbereich von 0,5 bis 12 bar, genau ein Wasservolumenstrompunkt zugeordnet ist. Der gewünschte Wasservolumenstrom wird mit dem oben genannten Regelventil 31 (auch als Volumenstromregelventil bezeichnet) im Verteilerraum eingestellt. In dem genannten Druckbereich von 0,5 bis 12 bar weisen die Einstoffdüsen 33 einen relativ geringen Stellbereich von etwa 1:3,2 bezüglich Wasserdurchfluss auf. Das Wasser-Sekundärkühlsystem ist in diesem Sinne wenig flexibel. Ferner kann die Regelung oder Änderung des Volumenstroms zu einem Energieverlust führen. Denn wenn die Regelventile 31 beispielsweise als Kolbenventile ausgeführt sind, wird insbesondere bei einem niedrigen Wasserverbrauch eine große Menge an Energie des Wasserstroms am Ringdiffusor des Kolbenventils in Reibung umgewandelt. Herkömmliche Flachstrahl- oder Vollkegelsprühbild-Düsen sind entlang standardisierter Volumenstrom- und Strahlwinkelabstufungen unterteilt und gemäß einem Kompromiss bei der Anlagenauslegung dem Düsenteppich der Sekundärkühlzone zugeordnet. Ein weiterer Nachteil der beschriebenen Anlage betrifft den Wartungsaufwand, der zur Beseitigung von Rückständen an den Düsen, insbesondere Kalkablagerungen, erforderlich ist. Solche Ablagerungen treten insbesondere bei geringen Wasservolumenströmen auf. Die kleinen Querschnitte der Düsen setzen sich schnell zu.A conventional water nozzle 33 of simple construction has a fixed orifice for discharging the water. This leads to an invariant pressure / volume flow characteristic, in which each pressure, for example in the pressure range of 0.5 to 12 bar, exactly one water flow point is assigned. The desired water volume flow is adjusted with the aforementioned control valve 31 (also referred to as a volume flow control valve) in the distributor room. In the mentioned pressure range of 0.5 to 12 bar, the single-fluid nozzles 33 have a relatively small adjustment range of approximately 1: 3.2 with respect to water flow. The water-secondary cooling system is not very flexible in this sense. Furthermore, the regulation or change of the volume flow can lead to an energy loss. For if the control valves 31 are designed, for example, as piston valves, a large amount of energy of the water flow at the ring diffuser of the piston valve is converted into friction, in particular at low water consumption. Conventional flat jet or full cone spray pattern nozzles are subdivided along standardized volume flow and jet angle graduations and assigned to the secondary carpet zone nozzle carpet according to a system design tradeoff. Another disadvantage of the system described concerns the maintenance required to remove residues on the nozzles, especially lime deposits. Such deposits occur especially at low water flow rates. The small cross-sections of the nozzles set quickly.

Eine Weiterentwicklung der oben beschriebenen Wasserkühlung besteht darin, die Sekundärkühlung als Zweistoffkühlung mittels eines Luft/Wasser-Gemischs durchzuführen. Dabei wird Wasser in einer Mischkammer mit Luft vorgemischt, und das Gemisch wird einer oder mehreren Düsen zugeführt und als zerstäubtes Zweistoffgemisch ausgegeben. Eine solche Zweistoffkühlung ist beispielsweise in der DE 100 15 832 A1 beschrieben.A further development of the water cooling described above is the secondary cooling as two-fluid cooling by means of an air / water mixture perform. In this case, water is premixed in a mixing chamber with air, and the mixture is fed to one or more nozzles and output as atomized binary mixture. Such a two-fluid cooling is for example in the DE 100 15 832 A1 described.

Die Figur 2 zeigt ein Schema einer herkömmlichen Zweistoff-Sekundärkühlung für eine Stranggießanlage. Dabei sind gleiche, ähnliche oder gleichwirkende Elemente relativ zur Figur 1 mit identischen Bezugszeichen versehen, und auf eine wiederholende Beschreibung dieser Elemente wird teilweise verzichtet, um Redundanzen zu vermeiden. Im Verteilerraum A wird Luft mittels eines strombetriebenen Kompressors 40 verdichtet und in einem Luftverteilernetz 50, das von dem Wasserverteilernetz 30 größtenteils getrennt ist, bis zu einer oder mehreren Mischkammern 51 geleitet. Dort kommen die beiden Verteilernetze zusammen, Wasser und Luft werden in den Mischkammern 51 vermischt und aus den Düsen 33 ausgegeben.The FIG. 2 shows a schematic of a conventional dual-fluid secondary cooling for a continuous casting plant. Here are the same, similar or equivalent elements relative to FIG. 1 provided with identical reference numerals, and a repetitive description of these elements is partially omitted in order to avoid redundancies. In the distribution room A, air is compressed by means of a power driven compressor 40 and directed to one or more mixing chambers 51 in an air distribution network 50, which is largely separate from the water distribution network 30. There, the two distribution networks come together, water and air are mixed in the mixing chambers 51 and output from the nozzles 33.

Die Luft bei der Zweistoff-Sekundärkühlung wird zur Wasserstrahlzerstäubung und gleichzeitig zum Einstellen und Aufrechterhalten des Öffnungswinkels des Kühlstrahls an der Düse 33 genutzt, bei verschiedenen Druckeinstellungen, insbesondere bei einem niedrigen Wasserdruck. Im Unterschied zur "reinen" Wasserkühlung der Figur 1 wird die Strang- oder Brammenoberfläche mit einem Aerosol mit sehr feinen Wassertröpfchen besprüht. Der Stellbereich hinsichtlich der Wassermenge lässt sich dadurch etwa bis auf 1:14 erweitern. Nachteilig, allerdings, sind eine schlechte Energieeffizienz und daraus folgende hohe Investitions- und Betriebskosten zur Implementierung der Zweistoff-Sekundärkühlung, dich sich insbesondere aus den Strom- und Energiekosten für die Luftverdichtung mittels des Kompressors 40 ergeben.The air in the dual-fluid secondary cooling is used for water jet atomization and at the same time for adjusting and maintaining the opening angle of the cooling jet at the nozzle 33, at different pressure settings, in particular at a low water pressure. In contrast to the "pure" water cooling of FIG. 1 The strand or slab surface is sprayed with an aerosol of very fine water droplets. The adjustment range with regard to the amount of water can thus be extended to about 1:14. The disadvantage, however, is a poor energy efficiency and consequent high investment and operating costs for the implementation of the dual-material secondary cooling, resulting in particular from the electricity and energy costs for the air compression by means of the compressor 40.

Die EP 2 527 061 A1 beschreibt eine technische Variante der Einstoff-Sekundärkühlung, bei der Schaltventile zum intermittierenden Öffnen und Schließen des Volumenstroms eines Kühlmittels eingesetzt werden. Die Volumenstromregelung erfolgt mit Hilfe einer Pulsweitenmodulation. Die Verwendung von Magnetventilen und anderen elektronischen Komponenten erfordert einen hohen Wartungs- und Instandhaltungsaufwand, insbesondere beim Einsatz unter den rauen Bedingungen des Stranggießens. Zudem ist bei dieser Art der Volumenstromregelung die Kühlwirkung zyklisch und kann zu erhöhten thermischen Spannungen führen, die wiederrum eine vermehrte Rissbildung im Gießprodukt zur Folge haben können.The EP 2 527 061 A1 describes a technical variant of the single-fluid secondary cooling, are used in the switching valves for intermittent opening and closing of the flow rate of a coolant. The volume flow control takes place with the help of a pulse width modulation. The use of solenoid valves and Other electronic components require a high level of maintenance and servicing, especially when used in the harsh conditions of continuous casting. In addition, in this type of flow control, the cooling effect cyclic and can lead to increased thermal stresses, which in turn can have an increased cracking in the cast product.

Die JP H01 271049 A beschreibt eine Sekundärkühlung für eine Stranggießanlage, in der ein Kompressor das Gas ansaugt und verdichtet, wobei dessen Antriebsart jedoch offen bleibt. Die GB 1 453 969 A beschreibt ein Verfahren und eine Vorrichtung zum Stranggießen, in der ein elektrisch betriebener Kompressor das Gas komprimiert.The JP H01 271049 A describes a secondary cooling for a continuous casting plant, in which a compressor sucks and compresses the gas, but the drive mode remains open. The GB 1 453 969 A describes a method and apparatus for continuous casting in which an electrically driven compressor compresses the gas.

Darstellung der ErfindungPresentation of the invention

Eine Aufgabe der Erfindung besteht darin, eine Vorrichtung und ein Verfahren zur Mehrstoff-Sekundärkühlung für eine Stranggießanlage anzugeben, die wenigstens einen der oben genannten technischen Nachteile überwinden. Insbesondere sollen die Vorrichtung und das Verfahren energieeffizient und flexibel sein, d.h. einen großen Einstellbereich des Volumenstroms und/oder anderer Parameter gewährleisten, und ein sicheres und dauerhaftes Spritzbild ermöglichen.An object of the invention is to provide a device and a method for multi-material secondary cooling for a continuous casting, which overcome at least one of the above-mentioned technical disadvantages. In particular, the device and method should be energy efficient and flexible, i. ensure a large adjustment range of the volume flow and / or other parameters, and enable a safe and durable spray pattern.

Gelöst wird die Aufgabe mit einer Vorrichtung mit den Merkmalen des Anspruchs 1 sowie einem Verfahren mit den Merkmalen des Anspruchs 9. Vorteilhafte Weiterbildungen folgen aus den Unteransprüchen, der folgenden Darstellung der Erfindung sowie der Beschreibung bevorzugter Ausführungsbeispiele.The object is achieved with a device having the features of claim 1 and a method having the features of claim 9. Advantageous developments follow from the subclaims, the following description of the invention and the description of preferred embodiments.

Die erfindungsgemäße Vorrichtung dient der Mehrstoff-Sekundärkühlung, insbesondere Zweistoff-Sekundärkühlung, für eine, bevorzugt in einer Stranggießanlage. Die Vorrichtung weist wenigstens eine Düse zum Abgeben eines Mehrstoffkühlmittels auf Oberflächen des gegossenen Strangs auf. Als "gegossener Strang" wird hier jedwedes gegossenes oder im gießen befindliche Gießprodukt, beispielsweise eine Bramme, bezeichnet, das einer Sekundärkühlung zu unterziehen ist. Insbesondere kommt es nicht auf die Form oder die konkrete Zusammensetzung des Gießprodukts oder auf dessen Bearbeitungsstadium an, insoweit es die Gießkokille verlassen hat. Das Mehrstoffkühlmittel hat wenigstens zwei Komponenten, ein flüssiges Kühlmittel und ein Gas. Vorzugsweise weist das flüssige Kühlmittel Wasser auf oder ist Wasser, und vorzugsweise weist das Gas Luft auf oder ist Luft. In diesem Fall kann die Luft etwa zur Wasserzerstäubung und vorzugsweise zum
Modellieren und/oder Einhalten des Öffnungswinkels des Kühlstrahls genutzt oder mitgenutzt werden. Das flüssige Kühlmittel und das Gas werden in wenigstens einer Mischkammer, die Teil der Düse ist oder mit der Düse strömungstechnisch verbunden ist, zum Mehrstoffkühlmittel vermischt. Die Vorrichtung weist ferner ein Kühlmittelverteilernetz auf, mit wenigstens einer Kühlmittelleitung zum Transport des flüssigen Kühlmittels zur Mischkammer und wenigstens einem Regelventil zur Regelung des der Mischkammer zuzuführenden Volumenstroms des flüssigen Kühlmittels. Ferner weist die Vorrichtung ein Gasverteilernetz mit wenigstens einer Gasleitung zum Transport des Gases zur Mischkammer auf. Die Begriffe "Kühlmittelverteilernetz" und "Gasverteilernetz" bezeichnen jeweils eine Anordnung strömungstechnischer Einrichtungen, wie etwa Leitungen, Rohre, Ventile, Abzweigungen usw., wobei diese weder im strengen Sinne netzartig angeordnet sein müssen noch mehrere unterschiedliche oder eine Vielzahl der genannten Einrichtungen aufweisen müssen. Für die vorliegende Erfindung ist es wichtig, dass das Kühlmittelverteilernetz ein oder mehrere Regelventile zur Regelung des Volumenstroms des flüssigen Kühlmittels aufweist und dass die beiden Verteilernetze an einer oder mehreren Mischkammern miteinander strömungstechnisch kommunizieren. Im einfachsten Fall weist das Kühlmittelverteilernetz ein Regelventil und eine Leitung, und das Gasverteilernetz eine Leitung auf.
The device according to the invention is used for multi-material secondary cooling, in particular two-component secondary cooling, for one, preferably in a continuous casting plant. The apparatus has at least one nozzle for dispensing a multi-fluid coolant onto surfaces of the cast strand. As a "cast strand" is here any cast or found casting, for example, a slab, referred to, which is subjected to a secondary cooling. In particular, it does not depend on the shape or the concrete composition of the cast product or on its processing stage, as far as it has left the casting mold. The multi-fluid coolant has at least two components, a liquid coolant and a gas. Preferably, the liquid coolant has water or is water, and preferably the gas has air or is air. In this case, the air can be used for water atomization and preferably for
Modeling and / or maintaining the opening angle of the cooling jet can be used or shared. The liquid coolant and the gas are mixed in at least one mixing chamber, which is part of the nozzle or fluidly connected to the nozzle, to the multi-fluid coolant. The apparatus further comprises a coolant distribution network, with at least one coolant line for transporting the liquid coolant to the mixing chamber and at least one control valve for controlling the volume flow of the liquid coolant to be supplied to the mixing chamber. Furthermore, the device has a gas distribution network with at least one gas line for transporting the gas to the mixing chamber. The terms "coolant distribution network" and "gas distribution network" each designate an arrangement of fluidic devices, such as lines, pipes, valves, branches, etc., which need not be arranged net like a net yet several different or a plurality of said devices must have. For the present invention, it is important that the coolant distribution network has one or more control valves for controlling the volume flow of the liquid coolant and that the two distribution networks communicate with one another at one or more mixing chambers in terms of flow. In the simplest case, the coolant distribution network has a control valve and a pipe, and the gas distribution network has a pipe.

Erfindungsgemäß weist die Vorrichtung ferner einen kühlmittelbetriebenen Kompressor auf, der eine Turbine und einen Gasverdichter hat. Die Turbine und der Gasverdichter sind miteinander verbunden, vorzugsweise mechanisch. Der Kompressor ist so eingerichtet, dass die Turbine von einem Teil des flüssigen Kühlmittels in Drehung versetzt wird, wodurch der Gasverdichter Gas ansaugt, verdichtet und dem Gasverteilernetz zuführt.According to the invention, the apparatus further comprises a refrigerant driven compressor having a turbine and a gas compressor. The turbine and the gas compressor are connected to each other, preferably mechanically. The compressor is configured to rotate the turbine of a portion of the liquid coolant, whereby the gas compressor sucks, compresses and supplies gas to the gas distribution network.

Durch den kühlmittelbetriebenen Kompressor wird Gas durch einen Teil der kinetischen Energie des flüssigen Kühlmittels angesaugt und verdichtet. Hierbei wird Energie genutzt, die in herkömmlichen Anlagen etwa am Volumenstromregelventil in Reibung umgewandelt wird oder über ein Überstromregelventil ungenutzt abfließt. Somit wird gemäß der Erfindung diese überschüssige Energie des Flüssigkühlmittelstroms genutzt, um die Gasverdichtung durchzuführen, d.h. energetisch vollständig oder teilweise zu unterstützen. Dadurch kann die Kühlung energieeffizienter durchgeführt werden. Neben einer verbesserten Kühlwirkung kann durch die Zerstäubung des flüssigen Kühlmittels mittels des Gases ein Zusetzen der Düsen durch Ablagerungen, wie etwa Kalk, vermindert werden. Das beschriebene Sekundärkühlsystem erlaubt einen großen Stellbereich und ein sicheres und dauerhaftes Spritzbild. Die Umrüstung einer herkömmlichen Zweistoff-Sekundärkühlung auf eine solche flüssigkühlmittelunterstützte Gasverdichtung ist auf einfache Weise möglich, denn die vorhandene Leitung/Ventil/Mischkammer/Düsen-Architektur kann in wesentlichen Teilen weitergenutzt werden. Wenn die Gasverdichtung herkömmlich mittels eines strombetriebenen Kompressors durchgeführt wurde, kann dieser mit dem oben beschriebenen flüssigkeitsbetriebenen Kompressor ersetzt oder ergänzt werden.The refrigerant-driven compressor draws and compresses gas through a portion of the kinetic energy of the liquid refrigerant. This energy is used, which is converted in conventional systems such as the volume flow control valve in friction or flows off unused via an overflow control valve. Thus, according to the invention, this excess energy of the Liquid coolant flow used to perform the gas compression, ie energetically fully or partially support. This makes cooling more energy efficient. In addition to an improved cooling effect, the atomization of the liquid coolant by means of the gas can reduce the clogging of the nozzles by deposits, such as lime. The described secondary cooling system allows a large adjustment range and a safe and durable spray pattern. The conversion of a conventional two-fluid secondary cooling to such a liquid coolant-assisted gas compression is possible in a simple manner, because the existing line / valve / mixing chamber / nozzle architecture can be used in substantial parts. If the gas compression has conventionally been carried out by means of a power-driven compressor, this can be replaced or supplemented with the liquid-operated compressor described above.

Auch wenn die strömungstechnischen Beziehungen zum Zweck der übersichtlichen Darstellung oft im Singular, etwa anhand eines Regelventils, einer Mischkammer, einer Düse, eines Kompressors usw. beschrieben werden, ist die Erfindung und deren bevorzugte Ausführungsformen darauf nicht beschränkt. Auf analoge und bevorzugte Weise können mehrere Regelventile und/oder mehrere Mischkammern und/oder mehrere Düsen und/oder mehrere Kompressoren und/oder mehrere Pumpen (siehe unten) usw. vorgesehen sein.Although fluidic relationships are often described singularly for purposes of clarity of illustration, such as with a control valve, mixing chamber, nozzle, compressor, etc., the invention and its preferred embodiments are not so limited. In an analogous and preferred manner, a plurality of control valves and / or a plurality of mixing chambers and / or a plurality of nozzles and / or a plurality of compressors and / or a plurality of pumps (see below), etc. may be provided.

Vorzugsweise weist die Vorrichtung ferner wenigstens eine Pumpe auf, die flüssiges Kühlmittel in das Kühlmittelverteilernetz pumpt, wobei das flüssige Kühlmittel zum Antreiben der Turbine aus einem Leitungsabschnitt zwischen der Pumpe und dem Regelventil abgezweigt wird. Damit sind die Flüssigkühlmittelkreisläufe für den Turbinenbetrieb und Düsenbetrieb gesplittet, wodurch es möglich ist, die Pumpe stets am optimalen Betriebspunkt mit der höchsten Leistung zu fahren.Preferably, the apparatus further comprises at least one pump that pumps liquid coolant into the coolant distribution network, wherein the liquid coolant for driving the turbine is branched from a conduit section between the pump and the control valve. This splits the liquid coolant circuits for turbine operation and nozzle operation, making it possible to always run the pump at the optimum operating point with the highest performance.

Vorzugsweise ist das wenigstens eine Regelventil ein Kolbenventil mit einem Ringdiffusor. Insbesondere bei einem niedrigen Flüssigkühlmittelverbrauch wird im Fall eines Kolbenventils eine große Menge an Energie des Flüssigkeitsstroms am Ringdiffusor in Reibung umgewandelt, die dadurch gewinnbringend zur Verdichtung des Gases mittels des Kompressors genutzt werden kann.Preferably, the at least one control valve is a piston valve with a ring diffuser. In particular, at a low liquid coolant consumption in the case of a piston valve, a large amount of energy of the liquid flow on Ring diffuser converted into friction, which can be profitably used for compression of the gas by means of the compressor.

Vorzugsweise sind die Turbine und der Gasverdichter über ein Getriebe miteinander verbunden, wodurch die Flexibilität der Vorrichtung im Hinblick auf die Verdichtung des Gases und damit auf die Herstellung des Zweistoffkühlmittels verbessert wird.Preferably, the turbine and the gas compressor are connected to each other via a transmission, whereby the flexibility of the device with regard to the compression of the gas and thus on the production of the two-fluid coolant is improved.

Vorzugsweise weist die Vorrichtung eine Gasaufbereitungseinheit auf, die einen Filter und/oder eine Entwässerungsvorrichtung hat, zur Behandlung des in das Gasverteilernetz zuzuführenden Gases, wobei die Gasaufbereitungseinheit in diesem Fall besonders bevorzugt in Strömungsrichtung vor dem Kompressor angeordnet ist. Die Gas- insbesondere Luftaufbereitung lässt sich mit relativ kleinem Aufwand realisieren, wodurch sich die Anlage vor Fremdkörpern schützen und deren Zuverlässigkeit damit erhöhen lässt.Preferably, the device has a gas treatment unit which has a filter and / or a dewatering device for the treatment of the gas to be supplied into the gas distribution network, wherein the gas treatment unit is in this case particularly preferably arranged in the flow direction in front of the compressor. The gas - in particular air treatment can be realized with relatively little effort, which protects the system from foreign bodies and thus increase their reliability.

Vorzugsweise weist die Vorrichtung wenigstens ein Bypass-Ventil in Strömungsrichtung vor dem Kompressor auf, zum Aufteilen des Kühlmittels zum Kompressor und zur Düse, wobei das Bypass-Ventil vorzugsweise ein selbstregelndes Ventil ist, das vom anliegenden Flüssigkühlmittelvordruck gesteuert wird und für ein vorgegebenes Gas/Kühlmittel-Verhältnis an der Düse voreingestellt ist. Auf diese Weise kann eine autonome Steuerung oder autonome Teilsteuerung der Vorrichtung realisiert werden, insbesondere lässt sich der Kompressor in diesem Fall als autonome Einheit unmittelbar in der Nähe der Stranggießanlage, z.B. an einem Stranggießsegment oder Segmenttragrahmen oder an der Kühlkammerwand, anordnen, wodurch eine herkömmliche Anlage auf noch einfachere Weise mit der vorliegenden Erfindung nachrüstbar ist.Preferably, the device comprises at least one bypass valve downstream of the compressor for dividing the refrigerant toward the compressor and the nozzle, the bypass valve preferably being a self-regulating valve controlled by the applied liquid refrigerant pilot pressure and for a given gas / refrigerant Ratio at the nozzle is preset. In this way, an autonomous control or autonomous partial control of the device can be realized, in particular the compressor in this case can be used as an autonomous unit immediately in the vicinity of the continuous casting plant, e.g. on a continuous casting segment or segment support frame or on the cooling chamber wall to arrange, whereby a conventional system in a still simpler manner can be retrofitted with the present invention.

Vorzugsweise weist die Vorrichtung einen Verteilerraum und ein davon getrenntes Stranggießsegment auf, wobei das wenigstens eine Regelventil und der Kompressor im Verteilerraum angeordnet sind und die wenigstens eine Düse im Stranggießsegment angeordnet ist. Die Trennung ist hierbei beispielsweise bezüglich der Temperatur und/oder Reinheit der Atmosphäre und/oder Feuchtigkeit zu verstehen. Somit befinden sich gemäß dieser bevorzugten Ausführungsform drehende oder auf andere Weise empfindlichere Teile in einer weniger rauen Umgebung, d.h. dem Verteilerraum, im Vergleich zum Stranggießsegment. Dadurch lässt sich die Zuverlässigkeit der Anlage erhöhen und der Wartungsaufwand verringern.Preferably, the device has a distributor space and a continuous casting segment separated therefrom, wherein the at least one control valve and the compressor are arranged in the distributor space and the at least one nozzle is arranged in the continuous casting segment. The separation is in this case, for example, with respect to the temperature and / or purity of the atmosphere and / or moisture understand. Thus, according to this preferred embodiment, rotating or otherwise more sensitive parts are in a less harsh environment, ie, the manifold space, as compared to the continuous casting segment. This can increase the reliability of the system and reduce maintenance.

Andererseits kann es, wie oben dargelegt, gerade im Hinblick auf die Modularität oder Nachrüstbarkeit sinnvoll sein, den Kompressor in der Nähe des zu kühlenden Strangs anzuordnen, wobei es in diesem Fall besonders bevorzugt ist, das wenigstens eine Regelventil im Verteilerraum und den Kompressor und die wenigstens eine Düse im Stranggießsegment anzuordnen.On the other hand, it may be useful, as stated above, just in terms of modularity or retrofitting, to arrange the compressor in the vicinity of the strand to be cooled, in which case it is particularly preferred that at least one control valve in the distribution chamber and the compressor and the to arrange at least one nozzle in the continuous casting segment.

Die oben beschriebene Aufgabe der Erfindung wird ferner mit einem Verfahren gelöst, das aufweist: Transportieren eines flüssigen Kühlmittels, vorzugsweise Wasser, mittels wenigstens einer Kühlmittelleitung durch wenigstens ein Regelventil zur Regelung des Volumenstroms des flüssigen Kühlmittels in wenigstens eine Mischkammer; Transportieren eines Gases mittels wenigstens einer Gasleitung in die wenigstens eine Mischkammer, in der das flüssige Kühlmittel und das Gas zu einem Mehrstoffkühlmittel vermischt werden; Abgeben des Mehrstoffkühlmittels durch wenigstens eine Düse auf Oberflächen des gegossenen Strangs. Erfindungsgemäß wird das Gas mittels eines Kompressors komprimiert, der von einem Teil des flüssigen Kühlmittels angetrieben wird. Die technischen Wirkungen und Vorteile des Verfahrens entsprechen denen, die oben mit Bezug auf die Vorrichtung beschrieben sind.The above-described object of the invention is further achieved by a method comprising: transporting a liquid coolant, preferably water, by means of at least one coolant line through at least one control valve for controlling the volume flow of the liquid coolant into at least one mixing chamber; Transporting a gas by means of at least one gas line into the at least one mixing chamber, in which the liquid coolant and the gas are mixed to form a multi-substance coolant; Dispensing the multi-fluid coolant through at least one nozzle onto surfaces of the cast strand. According to the invention, the gas is compressed by means of a compressor which is driven by a part of the liquid coolant. The technical effects and advantages of the method correspond to those described above with respect to the device.

Besonders bevorzugt wird das Verfahren mittels der erfindungsgemäßen Vorrichtung oder einer der beschriebenen bevorzugten Ausführungsvarianten durchgeführt.The method is particularly preferably carried out by means of the device according to the invention or one of the described preferred embodiments.

Die beschriebenen Vorrichtungen und Verfahren dienen in erster Linie der Mehrstoff-Sekundärkühlung, insbesondere Zweistoff-Sekundärkühlung, in einer Stranggießanlage. Doch die Erfindung kann gegebenenfalls auch in anderen Anlagen eingesetzt werden, soweit eine Mehrstoffkühlung durchgeführt wird.The described devices and methods primarily serve the multi-material secondary cooling, in particular two-component secondary cooling, in a continuous casting plant. However, if appropriate, the invention can also be used in other systems, as far as multicomponent cooling is carried out.

Weitere Vorteile und Merkmale der vorliegenden Erfindung sind aus der folgenden Beschreibung bevorzugter Ausführungsbeispiele ersichtlich. Die dort beschriebenen Merkmale können alleinstehend oder in Kombination mit einem oder mehreren der oben dargelegten Merkmale umgesetzt werden, insofern sich die Merkmale nicht widersprechen. Die folgende Beschreibung der bevorzugten Ausführungsbeispiele erfolgt dabei unter Bezugnahme auf die begleitenden Zeichnungen.Further advantages and features of the present invention will be apparent from the following description of preferred embodiments. The features described therein may be implemented alone or in combination with one or more of the features set forth above insofar as the features do not conflict. The following description of the preferred embodiments is made with reference to the accompanying drawings.

Kurze Beschreibung der FigurenBrief description of the figures

  • Die Figur 1 zeigt ein Schema einer herkömmlichen Wasser-Sekundärkühlung für eine Stranggießanlage.The FIG. 1 shows a schematic of a conventional water-secondary cooling for a continuous casting plant.
  • Die Figur 2 zeigt ein Schema einer herkömmlichen Zweistoff-Sekundärkühlung für eine Stranggießanlage.The FIG. 2 shows a schematic of a conventional dual-fluid secondary cooling for a continuous casting plant.
  • Die Figur 3 zeigt ein Schema einer Zweistoff-Sekundärkühlung für eine Stranggießanlage gemäß einem Ausführungsbeispiel der Erfindung.The FIG. 3 shows a schematic of a two-fluid secondary cooling for a continuous casting plant according to an embodiment of the invention.
  • Die Figur 4 zeigt einen wasserbetriebenen Luftkompressor, der zur Anwendung bei einer Zweistoff-Sekundärkühlung geeignet ist.The FIG. 4 shows a water-driven air compressor suitable for use in dual-fluid secondary cooling.
  • Die Figur 5 zeigt ein Schema einer Zweistoff-Sekundärkühlung für eine Stranggießanlage gemäß einem weiteren Ausführungsbeispiel der Erfindung.The FIG. 5 shows a schematic of a two-fluid secondary cooling for a continuous casting plant according to another embodiment of the invention.
  • Die Figur 6 ist eine perspektivische Ansicht auf ein Stranggießsegment, an dessen Seite ein wasserbetriebener Luftkompressor angebracht ist.The FIG. 6 is a perspective view of a continuous casting segment, on its side a water-powered air compressor is mounted.
Detaillierte Beschreibung bevorzugter AusführungsbeispieleDetailed description of preferred embodiments

Im Folgenden werden bevorzugte Ausführungsbeispiele anhand der Figuren beschrieben. Dabei sind gleiche, ähnliche oder gleichwirkende Elemente mit identischen Bezugszeichen versehen, und auf eine wiederholende Beschreibung dieser Elemente wird teilweise verzichtet, um Redundanzen zu vermeiden. Dies gilt auch mit Bezug auf die oben, im Abschnitt "Hintergrund der Erfindung" beschriebenen Figuren 1 und 2.In the following, preferred embodiments will be described with reference to the figures. Here are the same, similar or equivalent elements with provided with identical reference numerals, and a repetitive description of these elements is partially omitted in order to avoid redundancies. This also applies with reference to the above, described in the section "Background of the Invention" Figures 1 and 2 ,

Die Figur 3 zeigt ein Schema einer Zweistoff-Sekundärkühlung für eine Stranggießanlage gemäß einem Ausführungsbeispiel.The FIG. 3 shows a schematic of a dual-fluid secondary cooling for a continuous casting plant according to an embodiment.

Im Unterschied zu dem in der Figur 2 dargestellten herkömmlichen Zweistoff-Sekundärkühlsystem wird überschüssige Wasserenergie, die beispielsweise an den Überstromregelventilen 34 abgefallen ist, dazu genutzt, einen wasserbetriebenen Luftkompressor 60, genauer gesagt eine Turbine 61 des Kompressors 60, anzutreiben. Der Kompressor 60 kann dazu beispielsweise eine Turbine 61, die nach dem Grundprinzip einer Francis-Turbine ausgeführt ist, aufweisen.Unlike the one in the FIG. 2 shown conventional dual-fluid secondary cooling system excess water energy, which has dropped, for example, the overflow control valves 34, used to drive a water-driven air compressor 60, more precisely, a turbine 61 of the compressor 60. The compressor 60 may, for example, a turbine 61, which is designed according to the basic principle of a Francis turbine.

In dem vorliegenden Ausführungsbeispiel ist der Kompressor 60 im Verteilerraum oder Medienraum A angeordnet, um die Energie des überschüssigen Wassers zur Verdichtung von Luft zu nutzen, die anschließend über das Luftverteilernetz 50 den Mischkammern 51 der Düsen 33 zugeführt wird. Dazu setzt das überschüssige Wasser ein Wasserrad in der Turbine 61 des Kompressors 60 in Drehbewegung. Ein möglicher Bestandteil des Kompressors 60 kann dabei ein Drehmomentumsetzer für das stoßarme Anfahren sein. Die Drehbewegung des Wasserrads wird direkt oder mit Hilfe eines Getriebes 62 an einen Luftverdichter 63 weitergeleitet. Der Luftverdichter 63 ist Teil des Kompressors 60 und kann beispielsweise als Axialverdichter oder Radialverdichter oder Seitenkanalverdichter ausgeführt sein. Der Luftverdichter 63 saugt die Luft über eine Luftaufbereitungseinheit 64 an, die beispielsweise einen Filter und/oder eine Entwässerungsvorrichtung hat, und stellt die Luft ins Luftverteilernetz 50.In the present embodiment, the compressor 60 is disposed in the distribution room or media room A to utilize the energy of the excess water to compress air, which is then supplied via the air distribution network 50 to the mixing chambers 51 of the nozzles 33. For this purpose, the excess water sets a water wheel in the turbine 61 of the compressor 60 in rotary motion. A possible component of the compressor 60 may be a torque converter for the low-impact starting. The rotational movement of the water wheel is forwarded directly or with the aid of a gear 62 to an air compressor 63. The air compressor 63 is part of the compressor 60 and may be designed, for example, as an axial or radial compressor or side channel compressor. The air compressor 63 sucks in the air via an air conditioning unit 64 having, for example, a filter and / or a dewatering device and places the air in the air distribution network 50.

Die Figur 4 zeigt einen beispielhaften wasserbetriebenen Luftkompressor 60, der zur Anwendung der beschriebenen Zweistoff-Sekundärkühlung geeignet ist. Neben den genannten Bestandteilen, d.h. der Turbine 61, dem Luftverdichter 63 und der direkten Verbindung oder dem Getriebe 62 dazwischen, zeigt die Figur 4 einen Wasserzufuhranschluss 65 und einen Wasserabflussanschluss 66, sowie einen Luftansauganschluss 67 und einen Luftabgabeanschluss 68, durch den die vom Luftverdichter 63 komprimierte Luft in das Luftverteilernetz 50 abgegeben wird.The FIG. 4 FIG. 12 shows an exemplary water powered air compressor 60 suitable for use with the dual-fluid secondary cooling described. In addition to the components mentioned, ie the turbine 61, the air compressor 63 and the direct Connection or the gear 62 in between, shows the FIG. 4 a water supply port 65 and a water drain port 66, and an air suction port 67 and an air discharge port 68, through which the air compressed by the air compressor 63 is discharged into the air distribution net 50.

Durch den wasserbetriebenen (oder allgemein kühlmittelbetriebenen) Kompressor 60 wird Luft durch überschüssige Wasserenergie angesaugt und verdichtet. Somit kann die Energie des Wasserstroms, die in herkömmlichen Anlagen am Volumenstromregelventil 31 in Reibung umgewandelt wurde oder über das Überstromregelventil 34 ungenutzt abfloss, genutzt werden, um die Luftverdichtung energetisch vollständig oder zumindest teilweise zu unterstützen. Dadurch dass die Wasserkreisläufe für den Turbinenbetrieb und Düsenbetrieb gesplittet sind, ist es möglich, die Wasserpumpe(n) 20 immer am optimalen Betriebspunkt mit der höchsten Leistung zu fahren, d.h. am Maximum der Pumpenkennlinie, die den Zusammenhang zwischen dem von der Pumpe geförderten Volumenstrom und dem dabei von der Pumpe aufgebauten Druck beschreibt. Gemäß dem dargestellten Ausführungsbeispiel befinden sich die drehenden Teile in der unproblematischen Umgebung des Verteilerraums, unproblematisch etwa hinsichtlich Luftsauberkeit, Feuchtigkeit und/oder Temperatur. Die Luftaufbereitung und/oder Filterung mittels der Luftaufbereitungseinheit 64 lässt sich mit relativ kleinem Aufwand realisieren.By the water-driven (or generally coolant-driven) compressor 60, air is sucked in and compressed by excess water energy. Thus, the energy of the water flow, which has been converted into friction in conventional systems on the volume flow control valve 31 or flowed off via the overflow control valve 34 unused, can be used to energetically fully or at least partially support the air compression. By splitting the water circuits for turbine operation and nozzle operation, it is possible to always drive the water pump (s) 20 at the optimum operating point with the highest power, i. at the maximum of the pump characteristic curve, which describes the relationship between the volume flow delivered by the pump and the pressure built up by the pump. According to the illustrated embodiment, the rotating parts are in the unproblematic environment of the distribution chamber, unproblematic in terms of air cleanliness, humidity and / or temperature. The air treatment and / or filtering by means of the air treatment unit 64 can be realized with relatively little effort.

Die Bezeichnungen "Wasserverteilernetz" bzw. "Kühlmittelverteilernetz" und "Luftverteilernetz" bzw. "Gasverteilernetz" bezeichnen jeweils eine Anordnung strömungstechnischer Einrichtungen, wie etwa Leitungen, Rohre, Ventile, Abzweigungen usw., wobei diese weder im strengen Sinne netzartig angeordnet sein müssen noch mehrere unterschiedliche oder eine Vielzahl der genannten Einrichtungen aufweisen müssen. Die Leitungen zum Transport des Wassers und der Luft gemäß den detailliert dargestellten Ausführungsbeispielen gehen aus den Figuren 1, 2, 3 und 5 schematisch hervor, auch wenn sie der Übersichtlichkeit halber keine Bezugszeichen tragen.The terms "water distribution network" or "coolant distribution network" and "air distribution network" or "gas distribution network" each designate an arrangement of fluidic devices, such as pipes, pipes, valves, branches, etc., which need not be arranged in the strict sense net or more must have different or a plurality of said facilities. The lines for transporting the water and the air according to the embodiments shown in detail go from the FIGS. 1, 2 . 3 and 5 schematically, even if they do not bear the reference numerals for clarity.

Die Figur 5 zeigt ein Schema einer Zweistoff-Sekundärkühlung für eine Stranggießanlage gemäß einem weiteren Ausführungsbeispiel.The FIG. 5 shows a schematic of a two-fluid secondary cooling for a continuous casting plant according to another embodiment.

Gemäß diesem Ausführungsbeispiel ist der Kompressor 60 als autonome Einheit unmittelbar in der Nähe der Stranggießanlage, z.B. im Stranggießsegment C oder am Segmenttragrahmen oder an der Kühlkammerwand, angeordnet. Die Einheit weist eine Turbine 61, einen Luftverdichter 63, ein optionales Getriebe 62, einen optionalen Drehmomentumsetzer (ohne Bezugszeichen), eine Luftaufbereitungseinheit 64 und ein Bypass-Ventil 69 auf. Das Bypass-Ventil 69 kann selbstregelnd ausgeführt sein, indem es beispielsweise vom anliegenden Wasservordruck gesteuert wird. Das Bypass-Ventil 69 kann für ein vorgegebenes Luft/Wasser-Verhältnis an der Düse 33 voreingestellt sein. Um die Varianz des anstehenden Wasservordrucks am Bypass-Ventil 69 gewährleisten zu können, ist es bevorzugt, einen Teil des originalen bzw. ursprünglichen Stellbereichs zu verwenden, beispielsweise 80 bis 100% des Hubs.According to this embodiment, the compressor 60 as an autonomous unit is immediately adjacent to the continuous caster, e.g. in the continuous casting segment C or on the segment support frame or on the cooling chamber wall. The unit includes a turbine 61, an air compressor 63, an optional transmission 62, an optional torque converter (not numbered), an air conditioning unit 64, and a bypass valve 69. The bypass valve 69 may be self-regulating, for example by being controlled by the applied water pressure. The bypass valve 69 may be preset at the nozzle 33 for a given air / water ratio. In order to be able to ensure the variance of the pending water pre-pressure at the bypass valve 69, it is preferable to use a part of the original setting range, for example 80 to 100% of the stroke.

Gegenüber dem Ausführungsbeispiel der Figur 3 kann in dem autonomen Ausführungsbeispiel der Figur 5 der Verrohrungsaufwand geringer gehalten werden. Beispielsweise sind der Materialaufwand, Montageaufwand und die Stillstanddauer für die Montage der Luftleitungen geringer. Das geht auch aus der Figur 6 hervor, die ein Stranggießsegment zeigt, an dessen Seite ein wasserbetriebener Luftkompressor 60 angebracht ist. Demgegenüber befinden sich drehende oder empfindliche mechanische Teile im Vergleich zum Ausführungsbeispiel der Figur 3 in einer raueren Umgebung (möglicherweise Gießpulver und/oder Dampf in der Atmosphäre, strahlender Strang, hohe Temperaturen), da sie im Stranggießsegment C angeordnet sind.Compared to the embodiment of FIG. 3 can in the autonomous embodiment of the FIG. 5 the piping costs are kept lower. For example, the cost of materials, assembly costs and the downtime for the assembly of the air lines are lower. That goes also from the FIG. 6 showing a continuous casting segment on the side of which a water driven air compressor 60 is mounted. In contrast, there are rotating or sensitive mechanical parts compared to the embodiment of FIG. 3 in a harsher environment (possibly casting powder and / or vapor in the atmosphere, radiating strand, high temperatures) since they are arranged in the continuous casting segment C.

Soweit anwendbar, können alle einzelnen Merkmale, die in den Ausführungsbeispielen dargestellt sind, miteinander kombiniert und/oder ausgetauscht werden, ohne den Bereich der Erfindung zu verlassen.Where applicable, all individual features illustrated in the embodiments may be combined and / or interchanged without departing from the scope of the invention.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

1010
Reservoirreservoir
2020
Pumpe/WasserpumpePump / water pump
3030
Wasserverteilernetz/KühlmittelverteilernetzWater distribution system / coolant distribution system
3131
Regelventilcontrol valve
3232
Ventilsteuerung/VolumenstrommessgerätValve control / flow meter
3333
Düsejet
3434
ÜberstromregelventileAbout flow control valves
3535
Sinterrinnescale flume
4040
strombetriebener KompressorElectric compressor
5050
Luftverteilernetz/GasverteilernetzAir distribution grid / gas distribution network
5151
Mischkammermixing chamber
6060
kühlmittelbetriebener Kompressorcoolant driven compressor
6161
Turbineturbine
6262
Getriebetransmission
6363
Luftverdichter/GasverdichterAir compressor / gas compressor
6464
Luftaufbereitungseinheit/GasaufbereitungseinheitAir conditioning unit / gas processing unit
6565
WasserzufuhranschlussWater supply port
6666
WasserabflussanschlussWater drain port
6767
Luftansauganschlussair intake port
6868
LuftabgabeanschlussAir discharge port
6969
Bypass-VentilBypass valve
AA
Verteilerraum/MedienraumDistribution space / Media Room
BB
Verrohrungpiping
CC
Segment der Stranggießanlage, an dem eine Sekundärkühlung stattfindetSegment of the continuous casting plant where secondary cooling takes place

Claims (10)

  1. Device for multi-substance secondary cooling for a continuous casting plant, wherein the device comprises:
    at least one nozzle (33) for delivery of a multi-substance coolant to surfaces of the cast strip;
    at least one mixing chamber (51), which is part of the nozzle (33) or connected with the nozzle (33) in terms of flow and in which liquid coolant, preferably water, and a gas, preferably air, are mixed to form the multi-substance coolant;
    a coolant distributor network (30) with at least one coolant line for transport of the liquid coolant to the mixing chamber (51) and at least one regulating valve (31) for regulating the volume flow of the coolant to be fed to the mixing chamber (51); and
    a gas distributor network (50) with at least one gas line for transport of the gas to the mixing chamber;
    characterised in that
    the device comprises a coolant-operated compressor unit (60) with a turbine (61) and a gas compressor (63) connected therewith, wherein the compressor unit (60) is so arranged that the turbine (61) is set into rotation by a part of the liquid coolant whereby the gas compressor (63) inducts and compresses gas and feeds it to the gas distributor network (50).
  2. Device according to claim 1, characterised in that this comprises at least one pump (20) which pumps the liquid coolant into the coolant distributor network (30), wherein the liquid coolant for driving the turbine (61) is branched off from a line section between the pump (20) and the regulating valve (31).
  3. Device according to claim 1 or 2, characterised in that the at least one regulating valve (31) is a piston valve with a ring diffusor or a V-ball valve without a ring diffuser.
  4. Device according to any one of the preceding claims, characterised in that the turbine (61) and the gas compressor (63) are connected together by way of a transmission (62).
  5. Device according to any one of the preceding claims, characterised in that this comprises a gas preparation unit (64) which has a filter and/or a water removal device for treatment of the gas to be fed into the gas distributor network (50), wherein the gas preparation unit (64) is preferably arranged upstream of the compressor unit (60) in flow direction.
  6. Device according to any one of the preceding claims, characterised in that this comprises at least one bypass valve (69), which is upstream of the compressor unit (60) in flow direction, for apportioning the coolant to the compressor unit (60) and the nozzle (33), wherein the bypass valve (69) is preferably a self-regulating valve which is controlled by the adjacent liquid coolant entry pressure and is preset for a predetermined gas/coolant ratio at the nozzle (33).
  7. Device according to any one of the preceding claims, characterised in that this has a distributor chamber (A) and a continuous casting segment (C) separate therefrom, wherein the at least one regulating valve (31) and the compressor unit (60) are arranged in the distributor chamber (A) and the at least one nozzle (33) is arranged in the continuous casting segment (C).
  8. Device according to any one of claims 1 to 6, characterised in that this has a distributor chamber (A) and a continuous casting segment (C) separate therefrom, wherein the at least one regulating valve (31) is arranged in the distributor chamber (A) and the compressor unit (60) and the at least one nozzle (33) are arranged in the continuous casting segment (C).
  9. Method for multi-substance secondary cooling in a continuous casting plant, wherein the method comprises:
    transporting a liquid coolant, preferably water, by means of at least one coolant line through at least one regulating valve (31) for regulation of the volume flow of the liquid coolant into at least one mixing chamber (51);
    transporting a gas by means of at least one gas line into the at least one mixing chamber (51), in which the liquid coolant and the gas are mixed to form a multi-substance coolant; and
    delivering the multi-substance coolant through at least one nozzle (33) onto surfaces of the cast strip;
    characterised in that
    the gas is compressed by means of a compressor unit (60), which is driven by a part of the liquid coolant.
  10. Method according to claim 9, characterised in that this is realised with a device according to any one of claims 1 to 8.
EP17164822.3A 2016-04-29 2017-04-04 Two material secondary cooling for a continuous casting plant Active EP3238857B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016207403 2016-04-29
DE102016215209.2A DE102016215209A1 (en) 2016-04-29 2016-08-16 Dual-fluid secondary cooling for a continuous casting plant

Publications (2)

Publication Number Publication Date
EP3238857A1 EP3238857A1 (en) 2017-11-01
EP3238857B1 true EP3238857B1 (en) 2019-07-24

Family

ID=58489257

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17164822.3A Active EP3238857B1 (en) 2016-04-29 2017-04-04 Two material secondary cooling for a continuous casting plant

Country Status (1)

Country Link
EP (1) EP3238857B1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108080592A (en) * 2018-01-19 2018-05-29 山东钢铁集团日照有限公司 A kind of Rapid Cleaning continuous casting two cold filter, spray boom, the system and method for nozzle
CN108356241B (en) * 2018-03-30 2019-08-16 上海梅山钢铁股份有限公司 A kind of cooling accurate control method in the wide face of slab
CN109752624B (en) * 2018-12-24 2021-04-06 新华三信息技术有限公司 Liquid cooling flow path on-off detection method and device
AT523701B1 (en) * 2020-03-12 2024-04-15 Primetals Technologies Austria GmbH Two-component shaft nozzle with reduced tendency to clogging
CN111531144B (en) * 2020-05-15 2021-07-23 河钢乐亭钢铁有限公司 Continuous casting nozzle water flow control method with ultra-wide flow and pulling speed variation range

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH553608A (en) * 1972-12-05 1974-09-13 Concast Ag PROCESS FOR CONTINUOUS STEEL CASTING AND CONTINUOUS STEEL CASTING PLANT.
DE2444794A1 (en) * 1974-09-19 1976-04-01 Demag Ag Continuous casting of steel - using steam-cooling instead of water to increase prodn., or reduce size of casting machine
JP2598298B2 (en) * 1988-04-22 1997-04-09 新日本製鐵株式会社 Secondary cooling method in continuous casting
AT407619B (en) 1999-04-30 2001-05-25 Voest Alpine Ind Anlagen METHOD FOR DISTRIBUTING A FINE SPRAYED LIQUID, AND DEVICE THEREFOR
EP2527061A1 (en) 2011-05-27 2012-11-28 Siemens VAI Metals Technologies GmbH Method for cooling a metallic strand and switching valve for intermittent opening and closing of a volume flow of a coolant medium

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3238857A1 (en) 2017-11-01

Similar Documents

Publication Publication Date Title
EP3238857B1 (en) Two material secondary cooling for a continuous casting plant
DE102015114202A1 (en) Spray head for the cooling lubrication of at least one die of a forming machine and method for producing such a spray head
DE102009006704A1 (en) Method for operating a plant and a plant for producing fiber, MDF, HDF, wood-based or plastic slabs from fibers or fiber-like material
DE102007007090A1 (en) Gas turbine has cooling air transfer system with several tubular nozzles which are independently arranged in a circle inside a chamber, encompass the rotor and can discharge cooling air
WO2018108746A1 (en) Device for humidifying an air stream
DE102008039466A1 (en) Method for manufacturing dispersed material mat from free-flowing dispersed material, involves influencing side of carpet facing arrangement by airflow for adjusting weight-per-unit-area profile over breadth of form band
EP3300486A1 (en) Method and device for cooling extruded profiles
DE20221407U1 (en) Device for re-cooling of coolants or recooling media or for cooling
EP2583772B1 (en) Strand guiding device
DE602005003251T2 (en) Evaporation system for a liquid
EP3399264B1 (en) Cooling tower; spray field system for a cooling tower, use and method
DE102016215209A1 (en) Dual-fluid secondary cooling for a continuous casting plant
EP3271133B1 (en) Treatment fluid guidance in a film stretching plant
AT519015B1 (en) DEVICE FOR PRODUCING WATER DROPS OF SPECIFIC SIZE
DE102006033007B3 (en) Air-cooling equipment for profile leaving extrusion press, includes modular side nozzles with oval outlets set at different heights to suit extrusion dimensions
AT523701B1 (en) Two-component shaft nozzle with reduced tendency to clogging
WO2006060928A2 (en) Dropper plant
DE3439464A1 (en) DEVICE FOR INLETING A GAS IN A LIQUID
DE102021129749B4 (en) Flow device for drying and/or heating a workpiece
WO2002075228A1 (en) Snow cannon provided with a spraying device for liquids
EP2611513B1 (en) Fluid degassing device and method for degassing fluids
WO2011110665A1 (en) Device for precisely controlling negative pressure
DE102011105647B4 (en) Pneumatic device or pneumatic system with an oiler device
EP2377389B1 (en) Sprinkling device
DE69829395T2 (en) METHOD AND DEVICE FOR PRODUCING SNOW

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170404

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20171113

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190211

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017001813

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1157600

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190724

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191024

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191024

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191125

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191124

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017001813

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

26N No opposition filed

Effective date: 20200603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200404

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200404

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20210427

Year of fee payment: 5

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220404

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1157600

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220404

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230420

Year of fee payment: 7

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230707