EP3234244B1 - Fiberball batting and articles comprising the same - Google Patents
Fiberball batting and articles comprising the same Download PDFInfo
- Publication number
- EP3234244B1 EP3234244B1 EP15871047.5A EP15871047A EP3234244B1 EP 3234244 B1 EP3234244 B1 EP 3234244B1 EP 15871047 A EP15871047 A EP 15871047A EP 3234244 B1 EP3234244 B1 EP 3234244B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- fibers
- fiberballs
- batting
- nonwoven web
- binder fibers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000835 fiber Substances 0.000 claims description 141
- 239000011230 binding agent Substances 0.000 claims description 68
- 239000000203 mixture Substances 0.000 claims description 40
- 229920002994 synthetic fiber Polymers 0.000 claims description 39
- 239000012209 synthetic fiber Substances 0.000 claims description 39
- 238000000034 method Methods 0.000 claims description 17
- 229920000728 polyester Polymers 0.000 claims description 14
- 238000010438 heat treatment Methods 0.000 claims description 9
- 238000002844 melting Methods 0.000 claims description 9
- 230000008018 melting Effects 0.000 claims description 9
- 239000000463 material Substances 0.000 claims description 8
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 238000002156 mixing Methods 0.000 claims description 4
- -1 poly(ethylene terephthalate) Polymers 0.000 description 14
- 239000004971 Cross linker Substances 0.000 description 7
- 229920001296 polysiloxane Polymers 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000009960 carding Methods 0.000 description 4
- 238000009413 insulation Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 239000000839 emulsion Substances 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229920000433 Lyocell Polymers 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 229920000297 Rayon Polymers 0.000 description 2
- 238000007792 addition Methods 0.000 description 2
- 238000007664 blowing Methods 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 239000004205 dimethyl polysiloxane Substances 0.000 description 2
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- DNFVWCGSPMSVOO-UHFFFAOYSA-N 3,10-dioxatricyclo[10.2.2.25,8]octadeca-1(15),12(16),13-triene-2,11-dione Chemical group C1OC(=O)C(C=C2)=CC=C2C(=O)OCC2CCC1CC2 DNFVWCGSPMSVOO-UHFFFAOYSA-N 0.000 description 1
- LLLVZDVNHNWSDS-UHFFFAOYSA-N 4-methylidene-3,5-dioxabicyclo[5.2.2]undeca-1(9),7,10-triene-2,6-dione Chemical compound C1(C2=CC=C(C(=O)OC(=C)O1)C=C2)=O LLLVZDVNHNWSDS-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 229920001634 Copolyester Polymers 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 241000208202 Linaceae Species 0.000 description 1
- 235000004431 Linum usitatissimum Nutrition 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229920002334 Spandex Polymers 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical class [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 150000002148 esters Chemical group 0.000 description 1
- 238000011066 ex-situ storage Methods 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 210000004209 hair Anatomy 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 125000005609 naphthenate group Chemical group 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 125000005474 octanoate group Chemical class 0.000 description 1
- 125000005375 organosiloxane group Chemical group 0.000 description 1
- 229920000233 poly(alkylene oxides) Polymers 0.000 description 1
- 229920001281 polyalkylene Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 239000013557 residual solvent Substances 0.000 description 1
- 239000004447 silicone coating Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000004759 spandex Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- KKEYFWRCBNTPAC-UHFFFAOYSA-L terephthalate(2-) Chemical compound [O-]C(=O)C1=CC=C(C([O-])=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-L 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Classifications
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/54—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
- D04H1/541—Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres
- D04H1/5418—Mixed fibres, e.g. at least two chemically different fibres or fibre blends
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/02—Cotton wool; Wadding
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/42—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
- D04H1/4326—Condensation or reaction polymers
- D04H1/435—Polyesters
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/54—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
- D04H1/541—Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/54—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
- D04H1/541—Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres
- D04H1/5412—Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres sheath-core
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/70—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
Definitions
- the present invention generally relates to fiberball batting comprising synthetic fibers and binder fibers, the batting being useful as, for example, insulation.
- the invention also relates to articles comprising the batting, and to methods of making the batting.
- Fiberballs have been known for some time. While fiberballs have often been seen as undesirable manufacturing defects in, e.g., the carding of various continuous non-woven materials, in other applications, such as for blowable applications, fiberballs have proven useful.
- U.S. Patent No. 4,618,531 describes one such blowable fiberball invention. Specifically, U.S. 4,618,531 discloses polyester fiberfill having spiral crimp that is randomly arranged and entangled in the form of blowable fiberballs. The fiberballs are said to be easily transported, e.g., by blowing.
- U.S. Patent No. 4,794,038 discloses fiberballs that are formed of entangled spirally-crimped fiberfill and binder fibers, which are also preferably spirally-crimped.
- the fiberballs are said to be easily transported, e.g., by blowing, and can subsequently be compressed and bonded together.
- the reference explains that binder fiber blends are used on a large scale in furnishings, mattresses, and similar end-uses where strong support is desired.
- U.S. Patent No. 4,940,502 discloses bonded structures, which are provided in the form of molded fiberball blocks, which are made through a process that involves a compressing stage.
- the resultant molded fiberball blocks are relatively dense (with densities generally ranging from about 20 Kg/m 3 to 80 Kg/m 3 ), have improved resilience, durability, and conformability, and may be used in, e.g., mattresses
- European Patent Application 0 268 099 A1 discloses polyester fiberfill in the form of fiberballs with binder fibers. The resulting fiberfill is relatively dense.
- the invention provides batting that comprises a nonwoven web comprising a fiber mixture having:
- the invention provides an article comprising the inventive batting.
- articles include, for example, outerwear (e.g. outerwear garments such as jackets, etc.), clothing, sleeping bags, bedding (e.g., comforters), etc.
- the invention provides a method of making the inventive batting, said method comprising:
- the invention provides batting that comprises a nonwoven web comprising a fiber mixture having:
- the plurality of fiberballs and the plurality of portions of the nonwoven web that are adjacent to one or more fiberballs but that do not themselves comprise one or more fiberballs or any portion thereof, also necessarily comprise the fiber mixture of the nonwoven web.
- the inventive batting has typically been heat treated so as melt all or a portion of the binder fibers, thereby forming a bonded web-type batting. Accordingly, persons having ordinary skill in the art will understand that, in such embodiments, although "binder fibers" are recited in the fiber mixture of the nonwoven web, said fibers will be wholly or partially melted fibers, as opposed to binder fibers in their original, pre-heat treatment form. Nevertheless, as used herein, denier and length descriptions of the binder fibers describe characteristics of the binder fibers prior to thermal bonding treatment.
- FIG. 1 is a top-view photograph of one embodiment of the inventive batting 100.
- the batting includes a plurality of fiberballs 12, and a plurality of portions of the nonwoven web that are adjacent to one or more fiberballs but that do not themselves comprise one or more fiberballs or any portion thereof, which also necessarily comprise the fiber mixture of the nonwoven web 14 (for the sake of simplicity, these may be referred to as "spaces").
- the invention is distinguishable from prior art bonded materials formed from blowable fiberballs (for example, as disclosed in U.S. Patent No.
- FIG. 2 is a profile-view photograph of an embodiment of the inventive batting 200, which also shows fiberballs 12 and spaces 14.
- An advantage of the present invention over the state of the art includes the ability of the inventive batting to form rolled goods. While prior art blowable fiberballs have been bonded, bonding typically takes place only after the fiberballs have been introduced into their final destination (e.g., a cushion).
- the inventive batting is made so as to form a non-woven web (generally, in the form of a soft, pliable sheet), which can be subsequently subjected to heat treatment so as to melt the binder fibers and form the inventive batting ex situ (outside of the finished product).
- the inventive batting may then optionally be rolled and shipping to be used as a rolled good. For example, rolls of the batting may be later cut to a desired dimension, depending on intended application, then used as filling and/or insulation in an article.
- the fiber mixture of the batting comprises 40 to 95 wt % of the synthetic fibers, including any and all ranges and subranges therein.
- the batting comprises 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, or 95 wt% of the synthetic fibers, including any and all ranges and subranges therein (e.g., 75 to 90 wt %).
- the synthetic fibers are selected from the group consisting of polyamide, polyester, acrylic, acetate, polyolefin, nylon, rayon, lyocell, aramid, spandex, viscose, and modal fibers, and combinations thereof.
- the synthetic fibers comprise polyester fibers.
- such polyester fibers comprise one or more of poly(ethylene terephthalate), poly(hexahydro-p-xylylene terephthalate), poly(butylene terephthalate), poly-1,4-cyclohexylene dimethylene terephthalate (PCDT) and terephthalate copolyesters in which at least 85 mole percent of the ester units are ethylene terephthalate or hexahydro-p-xylylene terephthalate units.
- the synthetic fibers are polyethylene terephthalate fibers.
- Denier is a unit of measure defined as the weight in grams of 9000 meters of a fiber or yarn. It is a common way to specify the weight (or size) of the fiber or yarn.
- polyester fibers that are 1.0 denier typically have a diameter of approximately 10 micrometers.
- Micro-denier fibers are those having a denier of 1.0 or less, while macro-denier fibers have a denier greater than 1.0.
- the synthetic fibers have a denier of 0.5 to 6.5, including any and all ranges and subranges therein.
- the denier is 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 4.0, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 5.0, 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 6.0, 6.1, 6.2, 6.3, 6.4 or 6.5, including any and all ranges and subranges therein (e.g., 1.0 to 4.0 denier, 1.0 to 2.0 denier, etc.
- the synthetic fibers have a length of 18 mm to 51 mm, including any and all ranges and subranges therein.
- the length is 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, or 51 mm, including all ranges/subranges therein (e.g., 20 to 30 mm).
- the synthetic fibers are siliconized.
- the term "siliconized" means that the fiber is coated with a silicon-comprising composition (e.g., a silicone). Siliconization techniques are well known in the art, and are described, for example, in U.S. Patent No. 3,454,422 .
- the silicon-comprising composition may be applied using any method known in the art, e.g., spraying, mixing, dipping, padding, etc.
- the silicon-comprising (e.g., silicone) composition which may include an organosiloxane or polysiloxane, bonds to an exterior portion of the fiber.
- the silicone coating is a polysiloxane such as a methylhydrogenpolysiloxane, modified methylhydrogenpolysiloxane, polydimethylsiloxane, or amino modified dimethylpolysiloxane.
- the silicon-comprising composition may be applied directly to the fiber, or may be diluted with a solvent as a solution or emulsion, e.g. an aqueous emulsion of a polysiloxane, prior to application. Following treatment, the coating may be dried and/or cured.
- a catalyst may be used to accelerate the curing of the silicon-comprising composition (e.g., polysiloxane containing Si-H bonds) and, for convenience, may be added to a silicon-comprising composition emulsion, with the resultant combination being used to treat the synthetic fiber.
- Suitable catalysts include iron, cobalt, manganese, lead, zinc, and tin salts of carboxylic acids such as acetates, octanoates, naphthenates and oleates.
- the fiber may be dried to remove residual solvent and then optionally heated to between 65° and 200° C to cure.
- the synthetic fibers are slickened with another slickening agent, e.g., segmented copolymers of polyalkyleneoxide and other polymers, such as polyester, or polyethylene or polyalkylene polymers as is mentioned in U.S. Patent No. 6,492,020 B1 .
- another slickening agent e.g., segmented copolymers of polyalkyleneoxide and other polymers, such as polyester, or polyethylene or polyalkylene polymers as is mentioned in U.S. Patent No. 6,492,020 B1 .
- Binder fibers are well known in the art, and an array of binder fibers are commercially available.
- the binder fibers used in the present invention may be conventional binder fibers (e.g., low-melt polyester binder fibers), or other binder fibers, provided that whatever binder fiber is used, the binder fiber has a bonding temperature lower than the softening temperature of the synthetic fibers.
- Binder fibers are discussed, for example, in U.S. Patent No. 4,794,038 , and general protocols for certain embodiments of binder fibers are set forth in U.S. Patent No. 4,281,042 and in U.S. Patent No. 4,304,817 .
- the binder fibers are monocomponent fibers.
- the binder fibers are multicomponent fibers (e.g., bicomponent fibers, for example, sheath-core fibers, where the core comprises a higher melting component than the sheath).
- the binder fibers comprise blends of one or more different types of binder fibers.
- the fiber mixture of the batting comprises 5 to 40 wt % of the binder fibers, including any and all ranges and subranges therein.
- the batting comprises 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, or 40 wt% of the binder fibers, including any and all ranges and subranges therein (e.g., 10 to 25 wt %).
- the binder fibers have a denier of 1.0 to 5.0, including any and all ranges and subranges therein.
- the denier is 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 4.0, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, or 5.0 denier, including any ranges/subranges therein (e.g., 1.5 to 3.5 denier, 1.9 to 2.5 denier, etc.).
- the binder fibers have a length of 18 mm to 71 mm, including any and all ranges and subranges therein.
- the length is 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62 ,63, 64, 65, 66, 67, 68, 69, 70, or 71 mm, including all ranges/subranges therein (e.g., 18 to 51 mm, 40 to 60 mm, etc.).
- the binder fibers have a bonding temperature lower than the softening temperature of the synthetic fibers.
- the binder fibers have a bonding temperature of less than or equal to 200 °C.
- the binder fibers have a bonding temperature of 50 to 200, including any and all ranges and subranges therein.
- the binder fibers have a bonding temperature of 80 °C to 150 °C.
- the binder fibers have a bonding temperature of 100 °C to 125 °C.
- the binder fibers have a melting temperature that is 15 to 170 °C less than the melting temperature of the synthetic fibers.
- the binder fibers have a melting temperature that is 15-170 °C less than the melting temperature of the synthetic fibers (e.g., 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96,
- the binder fibers comprise low-melt polyester fibers.
- the binder fibers are bicomponent fibers comprising a sheath and a core, wherein the sheath comprises a material having a lower melting point than the core.
- the binder fibers are polyethylene/polypropylene bicomponent fibers.
- the synthetic fibers and/or the binder fibers are crimped fibers.
- Various crimps, including spiral and standard crimp, are known in the art.
- the fibers may typically have any crimp.
- the fibers are not spirally or helically crimped fibers.
- synthetic and/or binder fibers are not crimped.
- the fiber mixture additionally comprises one or more types of natural fibers in addition to the synthetic fibers and binder fibers.
- the fiber mixture additionally comprises one or more members selected from wool, cotton, tencel, flax, animal hair, silk, and down.
- the nonwoven web comprises 50 to 90 wt% of fiberballs, including any and all ranges and subranges therein; and 10 to 50 wt% of the spaces, including any and all ranges and subranges therein.
- the batting/nonwoven web comprises 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, or 90 wt % fiberballs, including any and all ranges/subranges therein (e.g., 70 to 90 wt %).
- the batting/nonwoven web comprises 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50 wt% spaces, including ranges/subranges therein (e.g., 10 to 30 wt%).
- the fiberballs have an average diameter of 3.0 to 8.0 mm (e.g., 3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 4.0, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 5.0, 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 6.0, 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9, 7.0, 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.8, 7.9, or 8 mm), including any and all ranges and subranges therein (e.g., 4 to 6 mm, 5 to 6 mm, etc.).
- the batting has a thickness of less than or equal to 40 mm, for example, 5 to 40 mm (e.g., 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, or 40 mm), including all ranges and subranges therein.
- 5 to 40 mm e.g., 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, or 40 mm
- the batting has a density of 2 to 12 kg/m 3 (e.g., 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 4.0, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 5.0, 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 6.0, 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9, 7.0, 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.8, 7.9, 8.0, 8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.7, 8.8, 8.9, 9.0, 9.1, 9.2, 9.3, 9.4, 9.5, 9.6, 9.7, 9.8, 9.9, 10.0, 10.1, 10.2, 10.3, 10.
- the density of the batting is thus relatively low compared to prior art that utilizes compacted fiberballs.
- embodiments of the inventive batting unlike prior art, provide a lofty, soft, and pliable insulation.
- inventive batting having a density of 2 to 12 kg/m 3 , may not have sufficient structural integrity to remain intact following handling and use (and thus would not be fit as insulation), would not have sufficient insulating properties, and/or would not be readily producible, Applicant has found that embodiments of the invention surprisingly achieve all of these objectives.
- the inventive batting comprises a first surface and second surface, the second surface being parallel to first surface.
- the first surface and/or the second surface of the batting comprises a cross-linked resin.
- a cross-linker solution comprising a cross-linker compound has been applied to the first and/or second surface.
- the resin is a cross-linked (e.g., via heat treatment) version of the cross-linker solution.
- the cross-linked resin comprises a cross-linker that is a cross-linked acrylate (co)polymer.
- the cross-linker solution and/or the cross-linker compound display softness and hydrophobicity.
- the cross-linker compound has a glass transition temperature (Tg) of less than 0 °C.
- At least one of the first surface and second surface comprises a scrim layer.
- Scrim is well known in the art. Use of scrim can help to mitigate fiber migration in the inventive batting (e.g., during handling of the product).
- the inventive batting comprises the nonwoven web, which comprises the fiber mixture.
- the fiber content of the nonwoven web consists of the fiber mixture.
- the batting comprises a single nonwoven web. In other embodiments, the batting comprises a plurality of nonwoven web layers, wherein one or more of said layers is a nonwoven web according to the invention (i.e., containing the fiber mixture and specified weight percentages of fiberballs and spaces). In some embodiments, the batting comprises a plurality of nonwoven webs, all of which are nonwoven webs according to the invention.
- the invention provides an article comprising the inventive batting.
- articles include, for example, outerwear (e.g. outerwear garments such as jackets, etc.), clothing, sleeping bags, bedding (e.g., comforters), etc.
- the invention provides a method of making the inventive batting, said method comprising:
- any known fiberball formation process that is conducive to forming fiberballs from the fiber mixture (knowledge well within the purview of a skilled artisan in the field) may be used.
- methods of forming fiberballs are described, for example in U.S. Patent Nos. 4,794,038 and 6,613,431 .
- the fiberballs are formed by air-tumbling small tufts of the synthetic and binder fibers repeatedly against a wall of a vessel so as to densify the bodies and make them rounder, thereby forming fiberballs.
- a fiber ball machine is used to form fiberballs.
- the fiberballs are formed using a ball card (i.e., a carding machine modified for production of fiberballs).
- the synthetic fibers, and/or the binder fibers are opened prior to fiberball formation.
- opening entails separating the fibers to some extent (e.g., using an opener, such as a bale opening system) prior to further processing.
- the forming a nonwoven web from the fiber mixture may utilize any acceptable web-forming technology (e.g., an airlaid system, or a carding machine).
- the fiber mixture namely, in the form of fiberballs, which have been formed from the mixture
- the spaces may be formed, for example, from "fallout" fiber that has separated from a mixture of fiberballs that are processed through the airlaid system.
- forming the nonwoven web comprises depositing the fiber mixture (e.g., the formed fiberballs and any loose fibers remaining following fiber ball formation) onto a forming wire. In some embodiments, this may be done with vacuum assistance (e.g., the vaccum system being located below the forming wire). In particular embodiments, loose fiberballs are fed into an air lay system. The air lay system meters out the fiberballs via an airflow over a given width and specified thickness.
- the nonwoven web After the nonwoven web is formed, it is heated to or in excess of the bonding temperature of the binder fibers, thereby forming the inventive batting.
- the nonwoven fiberball web After the nonwoven fiberball web is created by the air lay system, it can be carried by an apron into a thermal bonding oven where the binder fibers are activated by heat, thus resulting in a bonded batting.
- the intermediate nonwoven web Prior to thermal bonding (heating the non-woven web to or in excess of the bonding temperature of the binder fibers), the intermediate nonwoven web may optionally be subjected to machining (e.g., rollers) to provide a degree of integrity to the web, if desired (provided, of course, that such machining does not result in a batting that would have a density in excess of 12 kg/m 3 ).
- machining e.g., rollers
- the nonwoven web may serve as the batting, or it may be layered with one or more additional layers (according to the invention or otherwise) to form a layered batting.
- a sample batting is made according to the above method.
- the fiber mix for the sample is 90% 1.4 denier polyester fibers having a staple length of 28 mm, and 10% low-melt bi-component polyester/polyester binder fibers.
- the fiber mix is processed through a carding machine to obtain a non-woven web batting pre-cursor, which is heated at 110 °C to form an embodiment of the inventive batting.
- the final batting structure consists of 80% fiberballs having a diameter of 6 mm, and 20% plurality of portions of the nonwoven web that are adjacent to one or more fiberballs but that do not themselves comprise one or more fiberballs or any portion thereof.
- the batting has a weight of 175 gsm (grams per square meter), a thickness of 17.5 mm, and a density of 10 kg/m 3 .
- a method or article that "comprises”, “has”, “includes” or “contains” one or more steps or elements possesses those one or more steps or elements, but is not limited to possessing only those one or more steps or elements.
- a step of a method or an element of an article that "comprises”, “has”, “includes” or “contains” one or more features possesses those one or more features, but is not limited to possessing only those one or more features.
- each range is intended to be a shorthand format for presenting information, where the range is understood to encompass each discrete point within the range as if the same were fully set forth herein.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nonwoven Fabrics (AREA)
- Bedding Items (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
- Multicomponent Fibers (AREA)
Description
- The present invention generally relates to fiberball batting comprising synthetic fibers and binder fibers, the batting being useful as, for example, insulation. The invention also relates to articles comprising the batting, and to methods of making the batting.
- Fiberballs have been known for some time. While fiberballs have often been seen as undesirable manufacturing defects in, e.g., the carding of various continuous non-woven materials, in other applications, such as for blowable applications, fiberballs have proven useful.
-
U.S. Patent No. 4,618,531 describes one such blowable fiberball invention. Specifically,U.S. 4,618,531 discloses polyester fiberfill having spiral crimp that is randomly arranged and entangled in the form of blowable fiberballs. The fiberballs are said to be easily transported, e.g., by blowing. -
U.S. Patent No. 4,794,038 discloses fiberballs that are formed of entangled spirally-crimped fiberfill and binder fibers, which are also preferably spirally-crimped. The fiberballs are said to be easily transported, e.g., by blowing, and can subsequently be compressed and bonded together. The reference explains that binder fiber blends are used on a large scale in furnishings, mattresses, and similar end-uses where strong support is desired. However, they are seldom used as the only filling material in these end-uses, e.g., in furnishing seat cushions, where the common practice is to use the fiberfill batts as a "rapping" for a foam core, likely because, to obtain the desired resilience and performance in 100% fiberfill cushions, it would be necessary to provide such relatively high density as would be unfeasible or too cost-prohibitive, and may not provide for desirable performance.U.S. 4,794,038 offers a solution, in that its blowable fiberballs may be compressed/molded and bonded to form a strong support as an alternative to layered structures for use in, e.g., furnishings, mattresses, and similar end uses. Consistent with this object, the reference discloses strong, relatively dense (20 Kg/m3 to 50 Kg/m3) bonded structures, the most dense of which (50 Kg/m3) exhibited the best resilience and support bulk. -
U.S. Patent No. 4,940,502 discloses bonded structures, which are provided in the form of molded fiberball blocks, which are made through a process that involves a compressing stage. The resultant molded fiberball blocks are relatively dense (with densities generally ranging from about 20 Kg/m3 to 80 Kg/m3), have improved resilience, durability, and conformability, and may be used in, e.g., mattresses - European Patent Application
0 268 099 A1 discloses polyester fiberfill in the form of fiberballs with binder fibers. The resulting fiberfill is relatively dense. - While previous efforts relating to fiber filling materials have been directed to, e.g., conventional batts, blowable fiberballs, and dense resilient bonded structures containing fiberballs, a need continues to exist for improved fill materials.
- While certain aspects of conventional technologies have been discussed to facilitate disclosure of the invention, Applicants in no way disclaim these technical aspects, and it is contemplated that the claimed invention may encompass one or more of the conventional technical aspects discussed herein.
- In one aspect, the invention provides batting that comprises a nonwoven web comprising a fiber mixture having:
- 40 to 95 wt % synthetic fibers having a denier of 0.5 to 6.5, and a length of 18 mm to 51 mm; and
- 5 to 40 wt % binder fibers having a denier of 1.0 to 5.0 and a length of 18 mm to 71 mm, said binder fibers have a bonding temperature lower than the softening temperature of the synthetic fibers.
- 50 to 95 wt% of a plurality of fiberballs having an average diameter of 3.0 to 8.0 mm; and
- 5 to 50 wt% of a plurality of portions of the nonwoven web that are adjacent to one or more fiberballs but that do not themselves comprise one or more fiberballs or any portion thereof.
- In a second aspect, the invention provides an article comprising the inventive batting. Non-limiting examples of such articles include, for example, outerwear (e.g. outerwear garments such as jackets, etc.), clothing, sleeping bags, bedding (e.g., comforters), etc.
- In a third aspect, the invention provides a method of making the inventive batting, said method comprising:
- mixing fibers comprising:
- 40 to 95 wt % synthetic fibers having a denier of 0.5 to 6.5, and a length of 18 mm to 51 mm; and
- 5 to 40 wt % binder fibers having a denier of 1.0 to 5.0 and a length of 18 mm to 71 mm, said binder fibers have a bonding temperature lower than the softening temperature of the synthetic fibers,
- forming a plurality of fiberballs from the fiber mixture;
- forming a nonwoven web from the fiber mixture, wherein said nonwoven web comprises:
- 50 to 95 wt% of a plurality of fiberballs having an average diameter of 3.0 to 8.0 mm; and
- 5 to 50 wt% of a plurality of portions of the nonwoven web that are adjacent to one or more fiberballs but that do not themselves comprise one or more fiberballs or any portion thereof; and
- heating the non-woven web to or in excess of the bonding temperature of the binder fibers, thereby forming the batting.
- These and other features and advantages of this invention will become apparent from the following detailed description of the various aspects of the invention taken in conjunction with the appended claims and the accompanying drawings.
- The present invention will hereinafter be described in conjunction with the following drawing figures, wherein like numerals denote like elements, and:
-
FIG. 1 is a top-view photograph of one embodiment of the inventive batting. -
FIG. 2 is a profile-view photograph of one embodiment of the inventive batting. - Aspects of the present invention and certain features, advantages, and details thereof, are explained more fully below with reference to the non-limiting embodiments illustrated in the accompanying drawings. Descriptions of well-known materials, fabrication tools, processing techniques, etc., are omitted so as to not unnecessarily obscure the invention in detail. It should be understood, however, that the detailed description and the specific example(s), while indicating embodiments of the invention, are given by way of illustration only, and are not by way of limitation. Various substitutions, modifications, additions and/or arrangements within the scope of the underlying inventive concepts will be apparent to those skilled in the art from this disclosure.
- In one aspect, the invention provides batting that comprises a nonwoven web comprising a fiber mixture having:
- 40 to 95 wt % synthetic fibers having a denier of 0.5 to 6.5, and a length of 18 mm to 51 mm; and
- 5 to 40 wt % binder fibers having a denier of 1.0 to 5.0 and a length of 18 mm to 71 mm, said binder fibers have a bonding temperature lower than the softening temperature of the synthetic fibers.
- 50 to 95 wt% of a plurality of fiberballs having an average diameter of 3.0 to 8.0 mm; and
- 5 to 50 wt% of a plurality of portions of the nonwoven web that are adjacent to one or more fiberballs but that do not themselves comprise one or more fiberballs or any portion thereof.
- The plurality of fiberballs and the plurality of portions of the nonwoven web that are adjacent to one or more fiberballs but that do not themselves comprise one or more fiberballs or any portion thereof, also necessarily comprise the fiber mixture of the nonwoven web.
- The inventive batting has typically been heat treated so as melt all or a portion of the binder fibers, thereby forming a bonded web-type batting. Accordingly, persons having ordinary skill in the art will understand that, in such embodiments, although "binder fibers" are recited in the fiber mixture of the nonwoven web, said fibers will be wholly or partially melted fibers, as opposed to binder fibers in their original, pre-heat treatment form. Nevertheless, as used herein, denier and length descriptions of the binder fibers describe characteristics of the binder fibers prior to thermal bonding treatment.
-
FIG. 1 is a top-view photograph of one embodiment of theinventive batting 100. As shown, the batting includes a plurality offiberballs 12, and a plurality of portions of the nonwoven web that are adjacent to one or more fiberballs but that do not themselves comprise one or more fiberballs or any portion thereof, which also necessarily comprise the fiber mixture of the nonwoven web 14 (for the sake of simplicity, these may be referred to as "spaces"). The invention is distinguishable from prior art bonded materials formed from blowable fiberballs (for example, as disclosed inU.S. Patent No. 4,794,038 ), because, e.g., when blowable fiberballs are bonded to one another using compression and heat treatment as described in the art, the result lacks thespaces 14, which are present in the instant invention by virtue of the nonwoven web that is formed prior to heat treatment.FIG. 2 is a profile-view photograph of an embodiment of theinventive batting 200, which also showsfiberballs 12 andspaces 14. - An advantage of the present invention over the state of the art includes the ability of the inventive batting to form rolled goods. While prior art blowable fiberballs have been bonded, bonding typically takes place only after the fiberballs have been introduced into their final destination (e.g., a cushion). On the other hand, the inventive batting is made so as to form a non-woven web (generally, in the form of a soft, pliable sheet), which can be subsequently subjected to heat treatment so as to melt the binder fibers and form the inventive batting ex situ (outside of the finished product). The inventive batting may then optionally be rolled and shipping to be used as a rolled good. For example, rolls of the batting may be later cut to a desired dimension, depending on intended application, then used as filling and/or insulation in an article.
- The fiber mixture of the batting comprises 40 to 95 wt % of the synthetic fibers, including any and all ranges and subranges therein. For example, in some embodiments, the batting comprises 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, or 95 wt% of the synthetic fibers, including any and all ranges and subranges therein (e.g., 75 to 90 wt %).
- Many synthetic fibers are known in the art, and any desired synthetic fibers may be used in the invention. Indeed, different fibers have different properties, and lend themselves toward advantageous uses in different applications. This information is well within the purview of persons having ordinary skill in the art. While a wide array of synthetic fibers may be used in the invention, in some embodiments, the synthetic fibers are selected from the group consisting of polyamide, polyester, acrylic, acetate, polyolefin, nylon, rayon, lyocell, aramid, spandex, viscose, and modal fibers, and combinations thereof.
- In particular embodiments, the synthetic fibers comprise polyester fibers. In some embodiments, such polyester fibers comprise one or more of poly(ethylene terephthalate), poly(hexahydro-p-xylylene terephthalate), poly(butylene terephthalate), poly-1,4-cyclohexylene dimethylene terephthalate (PCDT) and terephthalate copolyesters in which at least 85 mole percent of the ester units are ethylene terephthalate or hexahydro-p-xylylene terephthalate units. In a particular embodiment, the synthetic fibers are polyethylene terephthalate fibers.
- Denier is a unit of measure defined as the weight in grams of 9000 meters of a fiber or yarn. It is a common way to specify the weight (or size) of the fiber or yarn. For example, polyester fibers that are 1.0 denier typically have a diameter of approximately 10 micrometers. Micro-denier fibers are those having a denier of 1.0 or less, while macro-denier fibers have a denier greater than 1.0.
- The synthetic fibers have a denier of 0.5 to 6.5, including any and all ranges and subranges therein. For example, in some embodiments, the denier is 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 4.0, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 5.0, 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 6.0, 6.1, 6.2, 6.3, 6.4 or 6.5, including any and all ranges and subranges therein (e.g., 1.0 to 4.0 denier, 1.0 to 2.0 denier, etc.).
- The synthetic fibers have a length of 18 mm to 51 mm, including any and all ranges and subranges therein. For example, in some embodiments, the length is 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, or 51 mm, including all ranges/subranges therein (e.g., 20 to 30 mm).
- In some embodiments, the synthetic fibers are siliconized. The term "siliconized" means that the fiber is coated with a silicon-comprising composition (e.g., a silicone). Siliconization techniques are well known in the art, and are described, for example, in
U.S. Patent No. 3,454,422 . The silicon-comprising composition may be applied using any method known in the art, e.g., spraying, mixing, dipping, padding, etc. The silicon-comprising (e.g., silicone) composition, which may include an organosiloxane or polysiloxane, bonds to an exterior portion of the fiber. In some embodiments, the silicone coating is a polysiloxane such as a methylhydrogenpolysiloxane, modified methylhydrogenpolysiloxane, polydimethylsiloxane, or amino modified dimethylpolysiloxane. As is known in the art, the silicon-comprising composition may be applied directly to the fiber, or may be diluted with a solvent as a solution or emulsion, e.g. an aqueous emulsion of a polysiloxane, prior to application. Following treatment, the coating may be dried and/or cured. As is known in the art, a catalyst may be used to accelerate the curing of the silicon-comprising composition (e.g., polysiloxane containing Si-H bonds) and, for convenience, may be added to a silicon-comprising composition emulsion, with the resultant combination being used to treat the synthetic fiber. Suitable catalysts include iron, cobalt, manganese, lead, zinc, and tin salts of carboxylic acids such as acetates, octanoates, naphthenates and oleates. In some embodiments, following siliconization, the fiber may be dried to remove residual solvent and then optionally heated to between 65° and 200° C to cure. - In some embodiments, the synthetic fibers are slickened with another slickening agent, e.g., segmented copolymers of polyalkyleneoxide and other polymers, such as polyester, or polyethylene or polyalkylene polymers as is mentioned in
U.S. Patent No. 6,492,020 B1 . - Binder fibers are well known in the art, and an array of binder fibers are commercially available. The binder fibers used in the present invention may be conventional binder fibers (e.g., low-melt polyester binder fibers), or other binder fibers, provided that whatever binder fiber is used, the binder fiber has a bonding temperature lower than the softening temperature of the synthetic fibers. Binder fibers are discussed, for example, in
U.S. Patent No. 4,794,038 , and general protocols for certain embodiments of binder fibers are set forth inU.S. Patent No. 4,281,042 and inU.S. Patent No. 4,304,817 . In some embodiments, the binder fibers are monocomponent fibers. In some components, the binder fibers are multicomponent fibers (e.g., bicomponent fibers, for example, sheath-core fibers, where the core comprises a higher melting component than the sheath). In some embodiments, the binder fibers comprise blends of one or more different types of binder fibers. - The fiber mixture of the batting comprises 5 to 40 wt % of the binder fibers, including any and all ranges and subranges therein. For example, in some embodiments, the batting comprises 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, or 40 wt% of the binder fibers, including any and all ranges and subranges therein (e.g., 10 to 25 wt %).
- The binder fibers have a denier of 1.0 to 5.0, including any and all ranges and subranges therein. For example, in some embodiments, the denier is 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 4.0, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, or 5.0 denier, including any ranges/subranges therein (e.g., 1.5 to 3.5 denier, 1.9 to 2.5 denier, etc.).
- The binder fibers have a length of 18 mm to 71 mm, including any and all ranges and subranges therein. For example, in some embodiments, the length is 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62 ,63, 64, 65, 66, 67, 68, 69, 70, or 71 mm, including all ranges/subranges therein (e.g., 18 to 51 mm, 40 to 60 mm, etc.).
- As indicated above, the binder fibers have a bonding temperature lower than the softening temperature of the synthetic fibers. In some embodiments, the binder fibers have a bonding temperature of less than or equal to 200 °C. In some embodiments, the binder fibers have a bonding temperature of 50 to 200, including any and all ranges and subranges therein. In some embodiments, the binder fibers have a bonding temperature of 80 °C to 150 °C. In some embodiments, the binder fibers have a bonding temperature of 100 °C to 125 °C.
- In some embodiments, the binder fibers have a melting temperature that is 15 to 170 °C less than the melting temperature of the synthetic fibers. For example, in some embodiments, the binder fibers have a melting temperature that is 15-170 °C less than the melting temperature of the synthetic fibers (e.g., 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, or 170 °C_, including any and all ranges and subranges therein. For example, in some embodiments, the synthetic fibers are polyester fibers having a melting point of about 250 °C, and the binder fiber has a melting point of 80 to 180 °C (e.g., about 110 °C).
- In some embodiments, the binder fibers comprise low-melt polyester fibers.
- In some embodiments, the binder fibers are bicomponent fibers comprising a sheath and a core, wherein the sheath comprises a material having a lower melting point than the core. In some embodiments, the binder fibers are polyethylene/polypropylene bicomponent fibers.
- In some embodiments, the synthetic fibers and/or the binder fibers are crimped fibers. Various crimps, including spiral and standard crimp, are known in the art. The fibers may typically have any crimp. However, in some embodiments, the fibers are not spirally or helically crimped fibers. In some embodiments, synthetic and/or binder fibers are not crimped.
- In some embodiments, the fiber mixture additionally comprises one or more types of natural fibers in addition to the synthetic fibers and binder fibers. For example, in some embodiments, the fiber mixture additionally comprises one or more members selected from wool, cotton, tencel, flax, animal hair, silk, and down.
- The nonwoven web comprises 50 to 90 wt% of fiberballs, including any and all ranges and subranges therein; and 10 to 50 wt% of the spaces, including any and all ranges and subranges therein. For example, in some embodiments, the batting/nonwoven web comprises 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, or 90 wt % fiberballs, including any and all ranges/subranges therein (e.g., 70 to 90 wt %). In some embodiments, the batting/nonwoven web comprises 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50 wt% spaces, including ranges/subranges therein (e.g., 10 to 30 wt%).
- The fiberballs have an average diameter of 3.0 to 8.0 mm (e.g., 3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 4.0, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 5.0, 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 6.0, 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9, 7.0, 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.8, 7.9, or 8 mm), including any and all ranges and subranges therein (e.g., 4 to 6 mm, 5 to 6 mm, etc.).
- In some embodiments, the batting has a thickness of less than or equal to 40 mm, for example, 5 to 40 mm (e.g., 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, or 40 mm), including all ranges and subranges therein.
- The batting has a density of 2 to 12 kg/m3 (e.g., 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 4.0, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 5.0, 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 6.0, 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9, 7.0, 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.8, 7.9, 8.0, 8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.7, 8.8, 8.9, 9.0, 9.1, 9.2, 9.3, 9.4, 9.5, 9.6, 9.7, 9.8, 9.9, 10.0, 10.1, 10.2, 10.3, 10.4, 10.5, 10.6, 10.7, 10.8, 10.9, 11.0, 11.1, 11.2, 11.3, 11.4, 11.5, 11.6, 11.7, 11.8, 11.9, or 12.0 kg/m3), including any and all ranges and subranges therein. The density of the batting is thus relatively low compared to prior art that utilizes compacted fiberballs. Indeed, embodiments of the inventive batting, unlike prior art, provide a lofty, soft, and pliable insulation. Despite conventional thought in the field, which would suggest that the inventive batting, having a density of 2 to 12 kg/m3, may not have sufficient structural integrity to remain intact following handling and use (and thus would not be fit as insulation), would not have sufficient insulating properties, and/or would not be readily producible, Applicant has found that embodiments of the invention surprisingly achieve all of these objectives.The inventive batting comprises a first surface and second surface, the second surface being parallel to first surface. In some embodiments, the first surface and/or the second surface of the batting comprises a cross-linked resin. This is the case where, for instance, a cross-linker solution comprising a cross-linker compound has been applied to the first and/or second surface. The resin is a cross-linked (e.g., via heat treatment) version of the cross-linker solution. In some embodiments, the cross-linked resin comprises a cross-linker that is a cross-linked acrylate (co)polymer. In some embodiments, the cross-linker solution and/or the cross-linker compound display softness and hydrophobicity. In some embodiments, the cross-linker compound has a glass transition temperature (Tg) of less than 0 °C.
- In some embodiments, at least one of the first surface and second surface comprises a scrim layer. Scrim is well known in the art. Use of scrim can help to mitigate fiber migration in the inventive batting (e.g., during handling of the product).
- As discussed above, the inventive batting comprises the nonwoven web, which comprises the fiber mixture. In some embodiments, the fiber content of the nonwoven web consists of the fiber mixture.
- In some embodiments, the batting comprises a single nonwoven web. In other embodiments, the batting comprises a plurality of nonwoven web layers, wherein one or more of said layers is a nonwoven web according to the invention (i.e., containing the fiber mixture and specified weight percentages of fiberballs and spaces). In some embodiments, the batting comprises a plurality of nonwoven webs, all of which are nonwoven webs according to the invention.
- In a second aspect, the invention provides an article comprising the inventive batting. Non-limiting examples of such articles include, for example, outerwear (e.g. outerwear garments such as jackets, etc.), clothing, sleeping bags, bedding (e.g., comforters), etc.
- In a third aspect, the invention provides a method of making the inventive batting, said method comprising:
- mixing fibers comprising:
- 40 to 95 wt % synthetic fibers having a denier of 0.5 to 6.5, and a length of 18 mm to 51 mm; and
- 5 to 40 wt % binder fibers having a denier of 1.0 to 5.0 and a length of 18 mm to 71 mm, said binder fibers have a bonding temperature lower than the softening temperature of the synthetic fibers,
- forming a plurality of fiberballs from the fiber mixture;
- forming a nonwoven web from the fiber mixture, wherein said nonwoven web comprises:
- 50 to 95 wt% of a plurality of fiberballs having an average diameter of 3.0 to 8.0 mm; and
- 5 to 50 wt% of a plurality of portions of the nonwoven web that are adjacent to one or more fiberballs but that do not themselves comprise one or more fiberballs or any portion thereof; and
- heating the non-woven web to or in excess of the bonding temperature of the binder fibers, thereby forming the batting.
- Methods of forming fiberballs are well known in the art, and any known fiberball formation process that is conducive to forming fiberballs from the fiber mixture (knowledge well within the purview of a skilled artisan in the field) may be used. For example, methods of forming fiberballs are described, for example in
U.S. Patent Nos. 4,794,038 and6,613,431 . While any fiberball formation techniques may be used, in some embodiments, the fiberballs are formed by air-tumbling small tufts of the synthetic and binder fibers repeatedly against a wall of a vessel so as to densify the bodies and make them rounder, thereby forming fiberballs. In other embodiments, a fiber ball machine is used to form fiberballs. In some embodiments, the fiberballs are formed using a ball card (i.e., a carding machine modified for production of fiberballs). - In some embodiments, prior to fiberball formation, the synthetic fibers, and/or the binder fibers are opened. As is well known in the art, opening entails separating the fibers to some extent (e.g., using an opener, such as a bale opening system) prior to further processing.
- The forming a nonwoven web from the fiber mixture may utilize any acceptable web-forming technology (e.g., an airlaid system, or a carding machine). For example, in some embodiments, the fiber mixture (namely, in the form of fiberballs, which have been formed from the mixture), is subjected to a flowing air stream to form a nonwoven web. In such embodiments, the spaces may be formed, for example, from "fallout" fiber that has separated from a mixture of fiberballs that are processed through the airlaid system.
- In some embodiments, forming the nonwoven web comprises depositing the fiber mixture (e.g., the formed fiberballs and any loose fibers remaining following fiber ball formation) onto a forming wire. In some embodiments, this may be done with vacuum assistance (e.g., the vaccum system being located below the forming wire). In particular embodiments, loose fiberballs are fed into an air lay system. The air lay system meters out the fiberballs via an airflow over a given width and specified thickness.
- After the nonwoven web is formed, it is heated to or in excess of the bonding temperature of the binder fibers, thereby forming the inventive batting. For example, after the nonwoven fiberball web is created by the air lay system, it can be carried by an apron into a thermal bonding oven where the binder fibers are activated by heat, thus resulting in a bonded batting.
- Prior to thermal bonding (heating the non-woven web to or in excess of the bonding temperature of the binder fibers), the intermediate nonwoven web may optionally be subjected to machining (e.g., rollers) to provide a degree of integrity to the web, if desired (provided, of course, that such machining does not result in a batting that would have a density in excess of 12 kg/m3).
- The nonwoven web may serve as the batting, or it may be layered with one or more additional layers (according to the invention or otherwise) to form a layered batting.
- The invention will now be illustrated, but not limited, by reference to the specific embodiment described in the following examples.
- A sample batting is made according to the above method. The fiber mix for the sample is 90% 1.4 denier polyester fibers having a staple length of 28 mm, and 10% low-melt bi-component polyester/polyester binder fibers. The fiber mix is processed through a carding machine to obtain a non-woven web batting pre-cursor, which is heated at 110 °C to form an embodiment of the inventive batting. The final batting structure consists of 80% fiberballs having a diameter of 6 mm, and 20% plurality of portions of the nonwoven web that are adjacent to one or more fiberballs but that do not themselves comprise one or more fiberballs or any portion thereof. The batting has a weight of 175 gsm (grams per square meter), a thickness of 17.5 mm, and a density of 10 kg/m3.
- The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms "a", "an" and "the" are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms "comprise" (and any form of comprise, such as "comprises" and "comprising"), "have" (and any form of have, such as "has" and "having"), "include" (and any form of include, such as "includes" and "including"), "contain" (and any form contain, such as "contains" and "containing"), and any other grammatical variant thereof, are open-ended linking verbs. As a result, a method or article that "comprises", "has", "includes" or "contains" one or more steps or elements possesses those one or more steps or elements, but is not limited to possessing only those one or more steps or elements. Likewise, a step of a method or an element of an article that "comprises", "has", "includes" or "contains" one or more features possesses those one or more features, but is not limited to possessing only those one or more features.
- As used herein, the terms "comprising," "has," "including," "containing," and other grammatical variants thereof encompass the terms "consisting of" and "consisting essentially of."
- The phrase "consisting essentially of" or grammatical variants thereof when used herein are to be taken as specifying the stated features, integers, steps or components but do not preclude the addition of one or more additional features, integers, steps, components or groups thereof but only if the additional features, integers, steps, components or groups thereof do not materially alter the basic and novel characteristics of the claimed compositions or methods.
- Where one or more ranges are referred to throughout this specification, each range is intended to be a shorthand format for presenting information, where the range is understood to encompass each discrete point within the range as if the same were fully set forth herein.
- While several aspects and embodiments of the present invention have been described and depicted herein, alternative aspects and embodiments may be affected by those skilled in the art to accomplish the same objectives. Accordingly, this disclosure and the appended claims are intended to cover all such further and alternative aspects and embodiments as fall within the scope of the invention.
Claims (15)
- Batting comprising a nonwoven web comprising a fiber mixture having:- 40 to 95 wt % synthetic fibers having a denier of 0.5 to 6.5, and a length of 18 mm to 51 mm; and- 5 to 40 wt % binder fibers having a denier of 1.0 to 5.0 and a length of 18 mm to 71 mm, said binder fibers have a bonding temperature lower than the softening temperature of the synthetic fibers,wherein, structurally, said nonwoven web comprises:- 50 to 95 wt% of a plurality of fiberballs having an average diameter of 3.0 to 8.0 mm; and- 5 to 50 wt% of a plurality of portions of the nonwoven web that are adjacent to one or more fiberballs but that do not themselves comprise one or more fiberballs or any portion thereof,and wherein the batting has a density of 2 to 12 kg/m3.
- Batting according to claim 1, wherein the synthetic fibers comprise polyester fibers.
- Batting according to claim 1, wherein the synthetic fibers have a denier of 1.0 to 2.0.
- Batting according to claim 1, wherein the synthetic fibers have a length of 20 mm to 30 mm.
- Batting according to claim 1, wherein the fiberballs have an average diameter of 4.0 mm to 6.0 mm, advantageously of 5.0 mm to 6.0 mm.
- Batting according to claim 1, wherein the binder fibers have a denier of 1.5 to 3.5, advantageously of 1.9 to 2.5.
- Batting according to claim 1, wherein the binder fibers have a length of 18 mm to 51 mm.
- Batting according to claim 1, wherein the binder fibers have a bonding temperature of less than or equal to 200 °C, advantageously of 80 °C to 150 °C, and more advantageously of 100 °C to 125 °C.
- Batting according to any one of the preceding claims, wherein the fiber mixture comprises:- 75 to 90 wt % of the synthetic fibers; and- 10 to 25 wt % of the binder fibers.
- Batting according to claim 9, wherein the nonwoven web comprises:- 70 to 90 wt% of the plurality of fiberballs; and- 10 to 30 wt% of the plurality of portions of the nonwoven web that are adjacent to one or more fiberballs but that do not themselves comprise one or more fiberballs or any portion thereof.
- Batting according to any one of claims 1 to 8, wherein the synthetic fibers are siliconized or crimped fibers having a spiral crimp or a standard crimp.
- Batting according to any one of claims 1 to 8, wherein the binder fibers are bicomponent fibers comprising a sheath and a core, wherein the sheath comprises a material having a lower melting point than the core.
- Article comprising a batting according to any one of claims 1 to 8 advantageously selected from the group consisting of an outerwear product, clothing, a sleeping bag, and bedding.
- Method of making a batting according to any one of claims 1 to 8, said method comprising:- mixing fibers comprising:thereby forming a fiber mixture;- 40 to 95 wt % synthetic fibers having a denier of 0.5 to 6.5, and a length of 18 mm to 51 mm; and- 5 to 40 wt % binder fibers having a denier of 1.0 to 5.0 and a length of 18 mm to 71 mm, said binder fibers have a bonding temperature lower than the softening temperature of the synthetic fibers,- forming a plurality of fiberballs from the fiber mixture;- forming a nonwoven web from the fiber mixture, wherein said nonwoven web comprises:- 50 to 95 wt% of a plurality of fiberballs having an average diameter of 3.0 to 8.0 mm; and- 5 to 50 wt% of a plurality of portions of the nonwoven web that are adjacent to one or more fiberballs but that do not themselves comprise one or more fiberballs or any portion thereof; and- heating the non-woven web to or in excess of the bonding temperature of the binder fibers, thereby forming the batting.
- Method according to claim 14, wherein the nonwoven web is formed using an airlaid system.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL15871047T PL3234244T3 (en) | 2014-12-17 | 2015-12-17 | Fiberball batting and articles comprising the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201462093293P | 2014-12-17 | 2014-12-17 | |
PCT/US2015/066284 WO2016100616A1 (en) | 2014-12-17 | 2015-12-17 | Fiberball batting and articles comprising the same |
Publications (3)
Publication Number | Publication Date |
---|---|
EP3234244A1 EP3234244A1 (en) | 2017-10-25 |
EP3234244A4 EP3234244A4 (en) | 2018-07-11 |
EP3234244B1 true EP3234244B1 (en) | 2020-02-05 |
Family
ID=56127577
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15871047.5A Active EP3234244B1 (en) | 2014-12-17 | 2015-12-17 | Fiberball batting and articles comprising the same |
Country Status (11)
Country | Link |
---|---|
US (1) | US20170362755A1 (en) |
EP (1) | EP3234244B1 (en) |
JP (1) | JP6669755B2 (en) |
KR (1) | KR20170097067A (en) |
CN (1) | CN107407027B (en) |
DK (1) | DK3234244T3 (en) |
ES (1) | ES2773473T3 (en) |
PL (1) | PL3234244T3 (en) |
RU (1) | RU2694282C2 (en) |
TW (1) | TWI711731B (en) |
WO (1) | WO2016100616A1 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016118614A1 (en) | 2015-01-21 | 2016-07-28 | Primaloft, Inc. | Migration resistant batting with stretch and methods of making and articles comprising the same |
WO2016191203A1 (en) | 2015-05-22 | 2016-12-01 | Primaloft, Inc. | Self-warming insulation |
EP3133196B1 (en) * | 2015-08-18 | 2020-10-14 | Carl Freudenberg KG | Volume nonwoven fabric |
RU2670531C1 (en) | 2015-09-29 | 2018-10-23 | Прималофт, Инк. | Floccule blown insulating material and method for manufacturing thereof |
CN106835493A (en) * | 2017-03-01 | 2017-06-13 | 杭州缔星纤维科技有限公司 | A kind of multifilament layer composite and preparation method thereof and application |
KR101965564B1 (en) | 2017-10-27 | 2019-04-04 | 김명섭 | packet type bedcloth skin and packet type bedcloth including thereof |
US20210348315A1 (en) * | 2018-10-15 | 2021-11-11 | Primaloft, Inc. | Thermal regulating three-dimensional insulative structures and articles comprising the same |
EP4124684B1 (en) | 2021-07-26 | 2024-04-03 | Carl Freudenberg KG | Fiberball padding with different fiberball shape for higher insulation |
TWI847822B (en) * | 2023-07-31 | 2024-07-01 | 遠東新世紀股份有限公司 | Fiber filling and fiber filling nonwoven using the same |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4281042A (en) * | 1979-08-30 | 1981-07-28 | E. I. Du Pont De Nemours And Company | Polyester fiberfill blends |
US5238612A (en) * | 1985-05-15 | 1993-08-24 | E. I. Du Pont De Nemours And Company | Fillings and other aspects of fibers |
US4794038A (en) * | 1985-05-15 | 1988-12-27 | E. I. Du Pont De Nemours And Company | Polyester fiberfill |
IN168824B (en) * | 1986-10-21 | 1991-06-15 | Du Pont | |
US4837067A (en) * | 1987-06-08 | 1989-06-06 | Minnesota Mining And Manufacturing Company | Nonwoven thermal insulating batts |
WO1991016485A1 (en) * | 1990-04-12 | 1991-10-31 | E.I. Du Pont De Nemours And Company | Fillings and other aspects of fibers |
US5458971A (en) * | 1994-09-30 | 1995-10-17 | E. I. Du Pont De Nemours And Company | Pillows and other filled articles and in their filling materials |
KR20040101994A (en) * | 2002-01-04 | 2004-12-03 | 인비스타 테크놀러지스 에스.에이.알.엘 | Bonded polyester fiberfill battings with a sealed outer surface having stretch capabilities |
US6613431B1 (en) * | 2002-02-22 | 2003-09-02 | Albany International Corp. | Micro denier fiber fill insulation |
CN100564641C (en) * | 2002-12-20 | 2009-12-02 | 宝洁公司 | The laminate web of bunch shape |
JP4791175B2 (en) * | 2005-12-26 | 2011-10-12 | 帝人ファイバー株式会社 | Molded product made of highly elastic fiber spheres |
CN103031664B (en) * | 2011-10-09 | 2015-11-18 | 上海南方寝饰用品有限公司 | Filler and preparation method thereof spins in the family of a kind of polyester fiber and Lyocell fibers mixing |
DE102014002060B4 (en) * | 2014-02-18 | 2018-01-18 | Carl Freudenberg Kg | Bulk nonwovens, uses thereof, and methods of making same |
-
2015
- 2015-12-17 PL PL15871047T patent/PL3234244T3/en unknown
- 2015-12-17 RU RU2017125235A patent/RU2694282C2/en active
- 2015-12-17 JP JP2017532664A patent/JP6669755B2/en active Active
- 2015-12-17 CN CN201580069020.7A patent/CN107407027B/en active Active
- 2015-12-17 DK DK15871047.5T patent/DK3234244T3/en active
- 2015-12-17 WO PCT/US2015/066284 patent/WO2016100616A1/en active Application Filing
- 2015-12-17 ES ES15871047T patent/ES2773473T3/en active Active
- 2015-12-17 EP EP15871047.5A patent/EP3234244B1/en active Active
- 2015-12-17 KR KR1020177017946A patent/KR20170097067A/en unknown
- 2015-12-17 US US15/535,645 patent/US20170362755A1/en not_active Abandoned
-
2016
- 2016-01-14 TW TW105101020A patent/TWI711731B/en active
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
TW201723262A (en) | 2017-07-01 |
DK3234244T3 (en) | 2020-03-02 |
PL3234244T3 (en) | 2020-06-01 |
TWI711731B (en) | 2020-12-01 |
WO2016100616A1 (en) | 2016-06-23 |
US20170362755A1 (en) | 2017-12-21 |
CN107407027A (en) | 2017-11-28 |
RU2017125235A3 (en) | 2019-04-23 |
EP3234244A4 (en) | 2018-07-11 |
KR20170097067A (en) | 2017-08-25 |
EP3234244A1 (en) | 2017-10-25 |
RU2694282C2 (en) | 2019-07-11 |
CN107407027B (en) | 2020-04-21 |
JP2018500472A (en) | 2018-01-11 |
RU2017125235A (en) | 2019-01-17 |
JP6669755B2 (en) | 2020-03-18 |
ES2773473T3 (en) | 2020-07-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3234244B1 (en) | Fiberball batting and articles comprising the same | |
CA1336873C (en) | Densified thermo-bonded synthetic fiber batting | |
KR910002511B1 (en) | Improvements in polyester fiberfill | |
CN105992843B (en) | Bulk-providing nonwoven fabric | |
US20090101294A1 (en) | Process for making bamboo fiberfill and articles thereof | |
EP3247826B1 (en) | Migration resistant batting with stretch and methods of making and articles comprising the same | |
TWI694191B (en) | Nonwoven down batting, article comprising the batting, and method of making the batting | |
DK3164535T3 (en) | Nonwoven fabric for volume formation | |
KR102476962B1 (en) | air-cured batting insulation | |
TWI827160B (en) | Fiberballs having a core region and a shell region, follow-up products thereof, and their preparation process and use | |
WO2013181309A2 (en) | Nonwoven composite fabric and panel made therefrom | |
FI85033C (en) | VADDMATTA SAMT FOERFARANDE FOER TILLVERKNING AV DENSAMMA. | |
JP2010243831A (en) | Sound absorbing sheet material and sound absorbing interior material | |
KR101584503B1 (en) | Thermokeeping filler for quilt | |
CN112400044A (en) | Air-permeable anti-hydrostatic structure | |
EP3788195A1 (en) | Article of apparel including insulation | |
JP2001146668A (en) | Heat insulating material, method for producing heat insulating material and device used for its method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20170529 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
REG | Reference to a national code |
Ref country code: HK Ref legal event code: DE Ref document number: 1240630 Country of ref document: HK |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 20180608 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: D04H 1/435 20120101ALI20180604BHEP Ipc: D04H 1/70 20120101AFI20180604BHEP |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20190128 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 602015046572 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: D04H0001700000 Ipc: D04H0001020000 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: D04H 1/02 20060101AFI20190521BHEP Ipc: D04H 1/70 20120101ALI20190521BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20190702 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: RO Ref legal event code: EPE |
|
REG | Reference to a national code |
Ref country code: FI Ref legal event code: FGE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1229962 Country of ref document: AT Kind code of ref document: T Effective date: 20200215 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602015046572 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 Effective date: 20200226 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: NO Ref legal event code: T2 Effective date: 20200205 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2773473 Country of ref document: ES Kind code of ref document: T3 Effective date: 20200713 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200205 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200628 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200205 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200505 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200506 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200205 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200605 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200205 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200205 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200205 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200205 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200205 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602015046572 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20201106 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DK Payment date: 20201230 Year of fee payment: 6 Ref country code: GB Payment date: 20201228 Year of fee payment: 6 Ref country code: SE Payment date: 20201228 Year of fee payment: 6 Ref country code: FI Payment date: 20201228 Year of fee payment: 6 Ref country code: FR Payment date: 20201227 Year of fee payment: 6 Ref country code: RO Payment date: 20201204 Year of fee payment: 6 Ref country code: AT Payment date: 20201202 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200205 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20201202 Year of fee payment: 6 Ref country code: BE Payment date: 20201228 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20201226 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NO Payment date: 20201230 Year of fee payment: 6 Ref country code: CH Payment date: 20210106 Year of fee payment: 6 Ref country code: IT Payment date: 20201221 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20210104 Year of fee payment: 6 Ref country code: TR Payment date: 20201209 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200205 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201217 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201217 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: UEP Ref document number: 1229962 Country of ref document: AT Kind code of ref document: T Effective date: 20200205 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200205 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200205 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200205 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200205 |
|
REG | Reference to a national code |
Ref country code: FI Ref legal event code: MAE |
|
REG | Reference to a national code |
Ref country code: NO Ref legal event code: MMEP Ref country code: DK Ref legal event code: EBP Effective date: 20211231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211217 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20220101 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1229962 Country of ref document: AT Kind code of ref document: T Effective date: 20211217 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20211217 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211217 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20211231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211218 Ref country code: NO Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211231 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211217 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211217 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211231 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211231 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211217 Ref country code: DK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211231 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20230224 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211218 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211217 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230527 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20231121 Year of fee payment: 9 |
|
REG | Reference to a national code |
Ref country code: HK Ref legal event code: WD Ref document number: 1240630 Country of ref document: HK |