EP3231057B1 - Method and device for detecting an overcharging of an accumulator of a battery - Google Patents
Method and device for detecting an overcharging of an accumulator of a battery Download PDFInfo
- Publication number
- EP3231057B1 EP3231057B1 EP15817099.3A EP15817099A EP3231057B1 EP 3231057 B1 EP3231057 B1 EP 3231057B1 EP 15817099 A EP15817099 A EP 15817099A EP 3231057 B1 EP3231057 B1 EP 3231057B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- branch
- current
- accumulator
- overcharging
- variation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 9
- 238000001514 detection method Methods 0.000 claims description 22
- 238000005259 measurement Methods 0.000 claims description 17
- 238000012360 testing method Methods 0.000 claims description 8
- 238000004590 computer program Methods 0.000 claims description 3
- 238000012806 monitoring device Methods 0.000 description 15
- 230000006870 function Effects 0.000 description 12
- 229910001416 lithium ion Inorganic materials 0.000 description 5
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 description 5
- 230000007257 malfunction Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 230000001960 triggered effect Effects 0.000 description 3
- 238000013022 venting Methods 0.000 description 3
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 2
- 241000897276 Termes Species 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 239000011449 brick Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 231100001261 hazardous Toxicity 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/382—Arrangements for monitoring battery or accumulator variables, e.g. SoC
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0029—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
- H02J7/00302—Overcharge protection
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R19/00—Arrangements for measuring currents or voltages or for indicating presence or sign thereof
- G01R19/165—Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
- G01R19/16533—Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application
- G01R19/16538—Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies
- G01R19/16542—Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies for batteries
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/385—Arrangements for measuring battery or accumulator variables
- G01R31/387—Determining ampere-hour charge capacity or SoC
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/44—Methods for charging or discharging
- H01M10/441—Methods for charging or discharging for several batteries or cells simultaneously or sequentially
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0013—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
- H02J7/0014—Circuits for equalisation of charge between batteries
- H02J7/0016—Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0029—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
- H02J7/00308—Overvoltage protection
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0047—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
- H02J7/0048—Detection of remaining charge capacity or state of charge [SOC]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to the detection of an overload of an accumulator of a battery comprising a set of parallel branches, each branch comprising accumulators arranged in series.
- a battery charging operation comprising such accumulators is carried out by applying a charging voltage across the terminals of the branches of the battery.
- Certain accumulators in particular those comprising Lithium, do not support overcharging. Indeed, a Lithium-ion accumulator subjected to an overcharge gives rise to a phenomenon called "venting" corresponding to a release of gas (outside the mechanical envelope of the accumulator, which can be accompanied by a fine cloud of electrolyte, and lead to degradation (heating, overpressure, even explosion).
- a battery charging operation comprising such accumulators must therefore be associated with monitoring the battery to detect possible overcharging and very quickly stop charging.
- BMS Battery Management System
- the present invention makes it possible to limit the erroneous overload detection cases identified with the solutions of the prior art.
- the present invention makes it possible to distinguish the differences in current between branches due to an overcharging of an accumulator in a branch and the differences in current due to branches of the battery having different storage capacities, thus avoiding the problems. , encountered in the prior art, untimely disconnections of such a branch when it does not include an overcharged accumulator.
- the present invention provides a computer program for the detection of an overcharge of an accumulator of a battery comprising a set of parallel branches each comprising accumulators arranged in series, said product computer program comprising software instructions which, when executed on calculation means, implement the steps of a method according to the first aspect of the invention.
- the present invention provides a device for detecting an overcharge of a battery accumulator comprising a set of parallel branches each branch comprising accumulators arranged in series, said device being characterized in that it is adapted to collect the measurements of the currents flowing in the branches of the battery, to identify at least one current difference in one branch of said set of branches relative to at least one other branch of said set of branches as a function of the collected current measurements, to determine a state of charge level of said branch; and for detecting an overload of an accumulator in said branch as a function of at least said identified current deviation and of the determined state of charge level.
- the figure 1 is a view of a battery system 10 in one embodiment of the invention.
- the battery system 10 comprises a battery comprising N packs, also called branches, B1, B2, ... BN, and arranged in parallel.
- N is an integer greater than or equal to 2.
- the voltage between the positive and negative terminals of the battery is equal to the voltage at the terminals of each branch.
- Each branch has accumulators 11 connected in series.
- the number of accumulators in a branch is equal to M, M is an integer greater than or equal to 2.
- an accumulator is an elementary energy brick suitable for storing energy.
- the battery system 10 includes an overload monitoring device 1.
- the battery 10 is of the Li-ion type and the accumulators are of LFP (Lithium Iron Phosphate) technology.
- LFP Lithium Iron Phosphate
- the battery 10 is for example intended for the electrical supply of a submarine.
- the battery system 10 further comprises devices for controlling the voltage of the accumulators, referenced 2 1 , 2 i , ..., 2 N.
- the device 2i for checking the voltage of the accumulators is suitable for balancing the operating voltages at the terminals of the accumulators in series in the branch Bi so that all the accumulators of the branch Bi terminate their charge synchronously. In fact, during charging, not all of the accumulators are charged at the same speed due to the disparities in intrinsic characteristics between accumulators. The device 2i for checking the voltage of the accumulators then discharges the most charged accumulators of the branch Bi, and as the charges of the accumulators within the branch Bi equalize.
- the device 2i for checking the voltage of the accumulators is further adapted for, when the voltage of an accumulator of the branch Bi reaches the upper limit voltage of the accumulator, initiating a charging stop of the branch Bi of the accumulator (in other embodiments, only a stop of charging of the accumulator is triggered) for example by actuation of switches (not shown).
- the battery system 10 further comprises current sensors CC1, CC2, ..., CCN.
- the figure 2 represents the curve of the evolution of the voltage V of an accumulator 11 as a function of the state of charge E ch of the accumulator.
- the state of charge indicates the quantity of energy stored in relation to the maximum quantity that can be stored by the accumulator and corresponding to a nominal operating voltage V2. (100% state of charge means that the maximum charging voltage of the accumulator fixed by the manufacturer has been reached and which must not be exceeded under penalty of entering a hazardous operating zone. Physically, when this maximum voltage is reached, for LFP, this means that all the lithium ion insertion sites are filled. If we go above, we start to deteriorate the accumulator and its electrodes)
- the state of charge of the accumulator is for example expressed as a percentage.
- the amount of energy, stored or storable, of a battery is for example measured in watt-hours (Wh) and it corresponds to a capacity of the battery, for example measured in ampere-hours (Ah).
- V1 represents the minimum operating voltage value of the accumulator
- V2 represents the maximum charging voltage value of the accumulator
- V3 represents the saturation voltage value of the accumulator during an overcharge.
- V1 2.5V
- V2 3.6 V
- V3 5V
- the curve shown in figure 2 has a voltage plateau, area in which the slope of the voltage as a function of the state of charge is very low, then the voltage rises abruptly in the last 5 percent of charge before reaching the maximum charge voltage V2.
- the accumulator reaches saturation at the high limit voltage V3, a voltage at which it may remain more or less long before going on “venting”, depending on the charge regime. The lower it is, the longer it will take for the overcharged accumulator before the “venting” phenomenon occurs.
- the space (V, Ech) of the accumulator is subdivided into distinct zones.
- Each zone corresponds to a charging phase.
- the charging phases are defined by one or more respective ranges of state of charge values.
- the state of charge of each branch of the battery is also considered, and similarly to what has been described above with reference to accumulators, charging phases of a battery branch are defined. by one or more respective ranges of state of charge values.
- the overload monitoring device 1 is adapted to implement the set of steps 100 described below with reference to the figure 3 .
- the overload monitoring device 1 comprises a memory and a microprocessor.
- the memory stores software instructions which, when executed by the microprocessor of the overload monitoring device 1, implement the set of steps 100.
- the overload monitoring device 1 is adapted to identify a current difference in a branch with respect to at least one other of said branches according to the current measurements collected in step 101 and for, according to the difference in current identified and the determined state of charge level (of the battery or of each Bi branch), detect the presence or absence of an overload of an accumulator in the Bi branch.
- the overload monitoring device 1 is adapted to trigger the stopping of the load in the branch Bi 0 .
- a charging stop in the Bi 0 branch is triggered for example by emitting an alarm or by actuating switches (not shown) disconnecting the Bi 0 branch from the terminals for applying the battery charging voltage.
- the accumulators are balanced before recharging so that they are in a state of charge assumed to be identical and known, the evaluation of the state of charge being carried out by means of the current sensors.
- the accumulators 11 of the battery are balanced at a fixed common low discharge level (for example corresponding to a voltage level V1) by the control devices 2 i of the battery voltage.
- the overload monitoring device 1 is adapted to determine the current state of charge in step 101 by taking it equal to the state of charge of the battery, calculated by counting the total of the amperes stored by the battery, according to the current measurements collected from T 0 .
- Such a method makes it possible to reduce the risk of detecting overloads when there is none.
- the following operations are carried out by the overload monitoring device 1 in step 102 at the time of iteration T n .
- the overload monitoring device 1 calculates the value of a reference current I ref_n equal to the sum of the currents commonly measured in the N branches divided by the number N of branches.
- the threshold value ⁇ threshold is a positive value fixed experimentally.
- ⁇ threshold1 threshold value for testing the condition cond (l) and a separate threshold value, ⁇ threshold2, to test the condition cond (II)) the crossing this threshold threshold2 ⁇ and its opposite - ⁇ threshold2.
- separate values are taken for the positive threshold ⁇ threshold2_1 and the negative threshold - ⁇ threshold2_2 whose successive crossings are detected by the condition cond (II).
- the overvoltage is generated at the Bi 0 branch by the accumulator 11 in overload (for example greater than 1.5V), which gives the illusion to other branches that the Bi 0 branch has a certain percentage. of charge more than they.
- the current in the Bi 0 branch will then decrease and the other branches will distribute an additional current, in total equivalent to the decrease in the current in this Bi 0 branch.
- the other branches compensate for their "delay" on the Bi 0 branch.
- Case B an accumulator 11 in a branch Bi 0 enters an overload in the zone ZII.
- the Bi 0 branch then takes a delay in its charge because the increase in voltage at its terminals, due to the overvoltage of the faulty accumulator, does not correspond to a real increase in the state of charge of the branch. Once the voltage of this accumulator reaches the saturation voltage, the branch Bi 0 must then make up for the accumulated state of charge delay by accepting a current increase.
- Case C In zone ZIII, the other branches imposing a maximum voltage on the branch Bi 0 , the accumulators of the branch Bi 0 have a sufficiently high voltage to prevent the branch Bi 0 from going beyond a voltage where an accumulator can saturate at 5V if the device 2i 0 for checking the voltage of the accumulators has not worked.
- condition to be tested relating to a current difference in a Bi branch comprises the calculation of the difference between the measurement of the current in the Bi branch and a reference current equal to the average of the currents circulating in the different branches, then comparing this difference with a threshold.
- condition to be tested relating to a current difference in a branch Bi takes different forms, for example the reference current is chosen equal to a current flowing in another branch.
- the present invention thus provides a solution for detecting overcharging problems within a battery and in particular for detecting and overcoming malfunctions of the devices for controlling the voltage of the accumulators of the battery.
- the invention thus makes it possible to carry out overload detection on the basis of current measurements alone, and independently of measurements of voltage of the accumulators.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Secondary Cells (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Tests Of Electric Status Of Batteries (AREA)
Description
La présente invention concerne la détection d'une surcharge d'un accumulateur d'une batterie comprenant un ensemble de branches parallèles, chaque branche comportant des accumulateurs disposés en série.The present invention relates to the detection of an overload of an accumulator of a battery comprising a set of parallel branches, each branch comprising accumulators arranged in series.
Une opération de charge des batteries comportant de tels accumulateurs s'effectue par application d'une tension de charge aux bornes des branches de la batterie.A battery charging operation comprising such accumulators is carried out by applying a charging voltage across the terminals of the branches of the battery.
Certains accumulateurs, notamment ceux comportant du Lithium, ne supportent pas la surcharge. En effet, un accumulateur Lithium-ion soumis à une surcharge donne lieu à un phénomène dit de « venting » correspondant à un dégagement de gaz (en-dehors de l'enveloppe mécanique de l'accumulateur, pouvant s'accompagner d'un fin nuage d'électrolyte, et conduire à des dégradations (échauffement, surpression, voire explosion).Certain accumulators, in particular those comprising Lithium, do not support overcharging. Indeed, a Lithium-ion accumulator subjected to an overcharge gives rise to a phenomenon called "venting" corresponding to a release of gas (outside the mechanical envelope of the accumulator, which can be accompanied by a fine cloud of electrolyte, and lead to degradation (heating, overpressure, even explosion).
Une opération de charge des batteries comportant de tels accumulateurs doit donc être associée à une surveillance de la batterie pour détecter d'éventuels cas de surcharge et stopper très vite la charge.A battery charging operation comprising such accumulators must therefore be associated with monitoring the battery to detect possible overcharging and very quickly stop charging.
Traditionnellement, la tension aux bornes des accumulateurs est surveillée, voire pilotée, par un système de gestion de batterie, nommé BMS (« Battery Management System » en anglais) qui peut déclencher une alarme ou une coupure de charge si la tension d'un accumulateur devient trop élevée. Toutefois, des dysfonctionnements ont lieu dans ces systèmes BMS, du fait du grand nombre de composants électroniques nécessaires et il est ainsi souhaitable de disposer de solutions variées de surveillance pour éviter les modes communs de défaillances.Traditionally, the voltage at the terminals of accumulators is monitored, or even controlled, by a battery management system, called BMS (“Battery Management System” in English) which can trigger an alarm or a charge cut if the voltage of an accumulator becomes too high. However, malfunctions occur in these BMS systems, due to the large number of electronic components required and it is therefore desirable to have various monitoring solutions to avoid common modes of failure.
D'autres solutions pour empêcher des dysfonctionnements dans les batteries, sont basées sur la mesure de courants circulant dans les branches, comme décrit par exemple dans le document
Toutefois, ces solutions de l'art antérieur donnent lieu à des coupures ou alarmes dans des cas où aucun accumulateur n'est en réalité en surcharge.However, these solutions of the prior art give rise to interruptions or alarms in cases where no accumulator is actually overcharged.
A cet effet, suivant un premier aspect, l'invention propose un procédé de détection d'une surcharge d'un accumulateur d'une batterie comprenant un ensemble de branches parallèles, chaque branche comportant des accumulateurs disposés en série, ledit procédé étant caractérisé en ce qu'il comprend les étapes suivantes :
- collecter les mesures des courants circulant dans les branches de la batterie ;
- identifier au moins un écart de courant dans une branche dudit ensemble de branches par rapport à au moins une autre branche dudit ensemble de branches en fonction des mesures de courant collectées ;
- déterminer un niveau d'état de charge de ladite branche ; et
- détecter une surcharge d'un accumulateur dans ladite branche en fonction d'au moins ledit écart de courant identifié et du niveau d'état de charge déterminé.
- collect the measurements of the currents flowing in the branches of the battery;
- identifying at least one current deviation in a branch of said set of branches relative to at least one other branch of said set of branches according to the collected current measurements;
- determining a state of charge level of said branch; and
- detecting an overload of an accumulator in said branch as a function of at least said identified current difference and of the determined state of charge level.
La présente invention permet de limiter les cas erronés de détection de surcharge identifiés avec les solutions de l'art antérieur.The present invention makes it possible to limit the erroneous overload detection cases identified with the solutions of the prior art.
En particulier, la présente invention permet de distinguer les écarts de courant entre branches dus à une surcharge d'un accumulateur d'une branche et les écarts de courant dus à des branches de la batterie ayant des capacités de stockage différentes, évitant ainsi les problèmes, rencontrés dans l'art antérieur, de déconnexions intempestives d'une telle branche lorsqu'elle ne comporte pas d'accumulateur en surcharge.In particular, the present invention makes it possible to distinguish the differences in current between branches due to an overcharging of an accumulator in a branch and the differences in current due to branches of the battery having different storage capacities, thus avoiding the problems. , encountered in the prior art, untimely disconnections of such a branch when it does not include an overcharged accumulator.
Dans des modes de réalisation, le procédé de détection d'une surcharge d'un accumulateur d'une batterie suivant l'invention comporte en outre une ou plusieurs des caractéristiques suivantes :
- la détection d'une surcharge comprend le test d'au moins une condition relative à l'écart de courant identifié, ladite condition à tester relative à l'écart de courant identifié étant fonction du niveau d'état de charge déterminé ;
- on calcule une différence entre le courant mesuré dans ladite branche (B1,..., BN) et un courant de référence déterminé en fonction d'au moins le courant mesuré dans l'autre branche ;
- ladite différence est comparée à un seuil ;
- une surcharge d'un accumulateur dans ladite branche est détectée en fonction du résultat de ladite comparaison et du niveau de charge déterminé ;
- on identifie un premier écart de courant dans ladite branche à un premier temps en fonction d'un premier seuil d'écart de courant, on identifie un deuxième écart de courant dans ladite branche à un deuxième temps en fonction d'un deuxième seuil d'écart de courant distinct du premier seuil d'écart de courant, et une surcharge d'un accumulateur dans ladite branche est détectée en fonction dudit premier écart de courant, dudit deuxième écart de courant et du niveau d'état de charge déterminé ;
- on distingue au moins une première plage de niveaux d'état de charge et une deuxième plage, postérieure à ladite première plage, de niveaux d'état de charge, et si un niveau d'état de charge de la branche est déterminé dans la deuxième plage, une surcharge d'un accumulateur dans ladite branche est détectée si l'écart de courant identifié dans ladite branche franchit d'abord un premier seuil et ultérieurement franchit un deuxième seuil, le signe des premier et deuxième seuil étant opposés ;
- le premier seuil est égal à l'opposé du deuxième seuil ;
- une surcharge d'un accumulateur dans ladite branche est détectée, pour un niveau d'état de charge déterminé dans la première plage, dès que l'écart de courant identifié dans ladite branche franchit le premier seuil.
- detecting an overload comprises testing at least one condition relating to the identified current deviation, said condition to be tested relating to the identified current deviation being a function of the determined state of charge level;
- a difference is calculated between the current measured in said branch (B1, ..., BN) and a reference current determined as a function of at least the current measured in the other branch;
- said difference is compared to a threshold;
- an overload of an accumulator in said branch is detected as a function of the result of said comparison and of the determined charge level;
- a first current difference in said branch is identified at a first time as a function of a first threshold of current difference, a second current difference is identified in said branch at a second time as a function of a second threshold of current difference distinct from the first current difference threshold, and an overload of an accumulator in said branch is detected as a function of said first current difference, said second current difference and the determined state of charge level;
- at least a first range of state of charge levels and a second range, subsequent to said first range, of state of charge levels are distinguished, and if a state of charge level of the branch is determined in the second range, an overload of an accumulator in said branch is detected if the current deviation identified in said branch first crosses a first threshold and subsequently crosses a second threshold, the sign of the first and second threshold being opposite;
- the first threshold is equal to the opposite of the second threshold;
- an overload of an accumulator in said branch is detected, for a state of charge level determined in the first range, as soon as the current difference identified in said branch crosses the first threshold.
Suivant un deuxième aspect, la présente invention propose un programme d'ordinateur pour la détection d'une surcharge d'un accumulateur d'une batterie comprenant un ensemble de branches parallèles comportant chacune des accumulateurs disposés en série, ledit produit programme d'ordinateur comportant des instructions logicielles qui, lorsqu'elles sont exécutées sur des moyens de calcul, mettent en œuvre les étapes d'un procédé selon le premier aspect de l'invention.According to a second aspect, the present invention provides a computer program for the detection of an overcharge of an accumulator of a battery comprising a set of parallel branches each comprising accumulators arranged in series, said product computer program comprising software instructions which, when executed on calculation means, implement the steps of a method according to the first aspect of the invention.
Suivant un troisième aspect, la présente invention propose un dispositif de détection d'une surcharge d'un accumulateur d'une batterie comprenant un ensemble de branches parallèles chaque branche comportant des accumulateurs disposés en série, ledit dispositif étant caractérisé en ce qu'il est adapté pour collecter les mesures des courants circulant dans les branches de la batterie, pour identifier au moins un écart de courant dans une branche dudit ensemble de branches par rapport à au moins une autre branche dudit ensemble de branches en fonction des mesures de courant collectées, pour déterminer un niveau d'état de charge de ladite branche ; et pour détecter une surcharge d'un accumulateur dans ladite branche en fonction d'au moins ledit écart de courant identifié et du niveau d'état de charge déterminé.According to a third aspect, the present invention provides a device for detecting an overcharge of a battery accumulator comprising a set of parallel branches each branch comprising accumulators arranged in series, said device being characterized in that it is adapted to collect the measurements of the currents flowing in the branches of the battery, to identify at least one current difference in one branch of said set of branches relative to at least one other branch of said set of branches as a function of the collected current measurements, to determine a state of charge level of said branch; and for detecting an overload of an accumulator in said branch as a function of at least said identified current deviation and of the determined state of charge level.
Ces caractéristiques et avantages de l'invention apparaîtront à la lecture de la description qui va suivre, donnée uniquement à titre d'exemple, et faite en référence aux dessins annexés, sur lesquels :
- la
figure 1 représente une vue d'un système de batterie dans un mode de réalisation de l'invention ; - la
figure 2 est une vue d'un graphe représentant l'évolution de la tension d'un accumulateur d'une batterie en fonction de l'état de charge de l'accumulateur dans un mode de réalisation de l'invention ; - la
figure 3 est un organigramme d'étapes d'un procédé dans un mode de réalisation de l'invention.
- the
figure 1 shows a view of a battery system in an embodiment of the invention; - the
figure 2 is a view of a graph representing the evolution of the voltage of an accumulator of a battery as a function of the state of charge of the accumulator in an embodiment of the invention; - the
figure 3 is a flow diagram of steps of a method in an embodiment of the invention.
La
Le système de batterie 10 comporte une batterie comprenant N packs, encore appelées branches, B1, B2, ... BN, et disposés en parallèle.The
N est un nombre entier supérieur ou égal à 2.N is an integer greater than or equal to 2.
La tension entre les bornes positive et négative de la batterie est égale à la tension aux bornes de chaque branche.The voltage between the positive and negative terminals of the battery is equal to the voltage at the terminals of each branch.
Chaque branche comporte des accumulateurs 11 raccordés en série.Each branch has
Par exemple, le nombre d'accumulateurs dans une branche est égal à M, M est un nombre entier supérieur ou égal à 2.For example, the number of accumulators in a branch is equal to M, M is an integer greater than or equal to 2.
De manière connue, un accumulateur est une brique énergétique élémentaire adaptée pour stocker de l'énergie.In known manner, an accumulator is an elementary energy brick suitable for storing energy.
Le système de batterie 10 comporte un dispositif de surveillance de surcharge 1.The
Dans un mode de réalisation, la batterie 10 est de type Li-ion et les accumulateurs sont de technologie LFP (Lithium Fer Phosphate).In one embodiment, the
La batterie 10 est par exemple destinée à l'alimentation électrique d'un sous-marin.The
Dans le mode de réalisation considéré, le système de batterie 10 comporte en outre des dispositifs de contrôle de la tension des accumulateurs, référencés 21, 2i, ..., 2N.In the embodiment considered, the
Chaque dispositif 2i, de contrôle de la tension des accumulateurs est associé à une branche respective Bi et est adapté pour mesurer et piloter la tension aux bornes de chaque accumulateur 11 de la branche Bi, i = 1 à N.Each device 2 i , for controlling the voltage of the accumulators is associated with a respective branch Bi and is adapted to measure and control the voltage across each
Par exemple, le dispositif 2i de contrôle de la tension des accumulateurs est adapté pour procéder à un équilibrage des tensions de fonctionnement aux bornes des accumulateurs en série dans la branche Bi afin que tous les accumulateurs de la branche Bi terminent leur charge de manière synchrone. En effet, au cours de la charge, tous les accumulateurs ne se chargent pas à la même vitesse du fait des disparités de caractéristiques intrinsèques entre accumulateurs. Le dispositif 2i de contrôle de la tension des accumulateurs décharge alors les accumulateurs les plus chargés de la branche Bi, et au fur et à mesure les charges des accumulateurs au sein de la branche Bi s'égalisent.For example, the device 2i for checking the voltage of the accumulators is suitable for balancing the operating voltages at the terminals of the accumulators in series in the branch Bi so that all the accumulators of the branch Bi terminate their charge synchronously. In fact, during charging, not all of the accumulators are charged at the same speed due to the disparities in intrinsic characteristics between accumulators. The device 2i for checking the voltage of the accumulators then discharges the most charged accumulators of the branch Bi, and as the charges of the accumulators within the branch Bi equalize.
Le dispositif 2i de contrôle de la tension des accumulateurs est en outre adapté pour, lorsque la tension d'un accumulateur de la branche Bi atteint la tension limite haute de l'accumulateur, déclencher un arrêt de charge de la branche Bi de l'accumulateur (dans d'autres modes de réalisation, seul un arrêt de charge de l'accumulateur est déclenché) par exemple par actionnement d'interrupteurs (non représentés).The device 2i for checking the voltage of the accumulators is further adapted for, when the voltage of an accumulator of the branch Bi reaches the upper limit voltage of the accumulator, initiating a charging stop of the branch Bi of the accumulator (in other embodiments, only a stop of charging of the accumulator is triggered) for example by actuation of switches (not shown).
Le système de batterie 10 comporte en outre des capteurs de courant CC1, CC2, ..., CCN.The
Le capteur de courant CCi est adapté pour mesurer régulièrement le courant circulant dans la branche Bi du système de batterie 10, i = 1 à N.The current sensor CCi is suitable for regularly measuring the current flowing in the branch Bi of the
La
L'état de charge indique la quantité d'énergie stockée par rapport à la quantité maximale stockable par l'accumulateur et correspondant à une tension de fonctionnement nominale V2. (100% d'état de charge signifie que l'on a atteint la tension maximum de charge de l'accumulateur fixée par le constructeur et qui ne doit pas être dépassée sous peine de rentrer dans une zone de fonctionnement dangereux. Physiquement, lorsque cette tension maximum est atteinte, pour du LFP, cela veut dire que tous les sites d'insertions des ions lithium sont remplis. Si l'on va au-dessus, on commence à détériorer l'accumulateur et ses électrodes)The state of charge indicates the quantity of energy stored in relation to the maximum quantity that can be stored by the accumulator and corresponding to a nominal operating voltage V2. (100% state of charge means that the maximum charging voltage of the accumulator fixed by the manufacturer has been reached and which must not be exceeded under penalty of entering a hazardous operating zone. Physically, when this maximum voltage is reached, for LFP, this means that all the lithium ion insertion sites are filled. If we go above, we start to deteriorate the accumulator and its electrodes)
L'état de charge de l'accumulateur est par exemple exprimé en pourcentage.The state of charge of the accumulator is for example expressed as a percentage.
La quantité d'énergie, stockée ou stockable, d'une batterie est par exemple mesurée en watt-heure (Wh) et elle correspond à une capacité de la batterie, par exemple mesurée en ampère-heure (Ah).The amount of energy, stored or storable, of a battery is for example measured in watt-hours (Wh) and it corresponds to a capacity of the battery, for example measured in ampere-hours (Ah).
La valeur V1 représente la valeur de tension minimale de fonctionnement de l'accumulateur, V2 représente la valeur de tension maximale de charge de l'accumulateur, tandis que V3 représente la valeur de tension de saturation de l'accumulateur lors d'une surcharge.The value V1 represents the minimum operating voltage value of the accumulator, V2 represents the maximum charging voltage value of the accumulator, while V3 represents the saturation voltage value of the accumulator during an overcharge.
Dans le cas d'un accumulateur Li-ion de technologie LFP, typiquement :V1 = 2,5V, V2 = 3,6 V et V3 = 5V.In the case of a Li-ion battery of LFP technology, typically: V1 = 2.5V, V2 = 3.6 V and V3 = 5V.
La courbe représentée en
Si la charge se poursuit au-delà, l'accumulateur arrive en saturation à tension limite haute V3, tension à laquelle il peut rester plus ou moins longtemps avant de partir en « venting », suivant le régime de charge. Plus celui-ci est bas et plus l'accumulateur surchargé mettra de temps avant que le phénomène de « venting » ne survienne.If the charge continues beyond this, the accumulator reaches saturation at the high limit voltage V3, a voltage at which it may remain more or less long before going on "venting", depending on the charge regime. The lower it is, the longer it will take for the overcharged accumulator before the “venting” phenomenon occurs.
Pour qu'il y ait surcharge sur un accumulateur 11 en série au sein d'une branche Bi, cet accumulateur 11 doit se trouver dans les conditions suivantes :
- il sature à la tension V3 ; et
- il continue de voir un courant de charge, i.e. les autres accumulateurs en série avec lui présentent des tensions inférieures aux tensions des accumulateurs des autres branches du fait de la mise en parallèle des packs.
- it saturates at voltage V3; and
- it continues to see a charging current, ie the other accumulators in series with it have voltages lower than the voltages of the accumulators of the other branches due to the paralleling of the packs.
On notera que si un accumulateur 11 dans une branche Bi est en surcharge, cela signifie que le dispositif 2i, de contrôle de la tension des accumulateurs dans la branche Bi de l'accumulateur 11 n'a pas correctement fonctionné et n'a pas procédé à un équilibrage, ni déclenché d'arrêt de charge lorsque la tension de l'accumulateur a atteint la tension limite haute V3.It will be noted that if an
Dans un mode de réalisation de l'invention, l'espace (V, Ech) de l'accumulateur est subdivisé en zones distinctes.In one embodiment of the invention, the space (V, Ech) of the accumulator is subdivided into distinct zones.
Chaque zone correspond à une phase de charge.Each zone corresponds to a charging phase.
Les phases de charges sont définies par une ou des plages respectives de valeurs d'état de charge.The charging phases are defined by one or more respective ranges of state of charge values.
Dans le cas présent, trois zones I, Il et III sont considérées et sont repérées sur la
- la zone I associée à un état de charge de l'accumulateur compris entre [0, Ech1] correspond à un début de charge ;
- la zone II associée à un état de charge de l'accumulateur compris entre [Ech1, Ech3] correspond à une fin de charge ;
- la zone III associée à un état de charge de l'accumulateur supérieur à Ech3 correspond à une surtension, et donc à terme à une surcharge ; sur la
figure 2 , la zone de surcharge, correspondant à l'atteinte par la tension de l'accumulateur de la saturation en tension V3 est indiquée par des rayures.
- zone I associated with a state of charge of the accumulator comprised between [0, Ech 1 ] corresponds to a start of charge;
- zone II associated with a state of charge of the accumulator comprised between [Ech 1 , Ech 3 ] corresponds to an end of charge;
- zone III associated with a state of charge of the accumulator greater than Ech 3 corresponds to an overvoltage, and therefore ultimately to an overload; on the
figure 2 , the overload zone, corresponding to the reaching by the voltage of the accumulator of the saturation in voltage V3 is indicated by stripes.
Dans le cas d'un accumulateur Li-ion de technologie LFP, Ech1 = 90%, Ech3 = 100%.In the case of a Li-ion battery with LFP technology, Ech 1 = 90%, Ech 3 = 100%.
Dans un mode de réalisation, on considère en outre l'état de charge de chaque branche de la batterie, et similairement à ce qui a été décrit ci-dessus en référence aux accumulateurs, des phases de charge d'une branche de batterie sont définies par une ou des plages respectives des valeurs d'état de charge.In one embodiment, the state of charge of each branch of the battery is also considered, and similarly to what has been described above with reference to accumulators, charging phases of a battery branch are defined. by one or more respective ranges of state of charge values.
Dans le mode de réalisation, trois zones ZI, ZII et ZIII sont considérées :
- la zone ZI associée à un état de charge d'une branche compris entre [0, Ech1] correspond à un début de charge ;
- la zone ZII associée à un état de charge d'une branche compris entre [Ech1, Ech3] correspond à une fin de charge ;
- la zone III associée à un état de charge d'une branche, supérieur à Ech3 correspond à une surtension, et donc à terme à une surcharge.
- zone ZI associated with a state of charge of a branch comprised between [0, Ech 1 ] corresponds to a start of charge;
- zone ZII associated with a state of charge of a branch comprised between [Ech 1 , Ech 3 ] corresponds to an end of charge;
- zone III associated with a state of charge of a branch, greater than Ech 3 corresponds to an overvoltage, and therefore ultimately to an overload.
Dans le mode de réalisation considéré, le dispositif de surveillance de surcharge 1 est adapté pour mettre en œuvre l'ensemble d'étapes 100 décrit ci-dessous en référence à la
Dans un mode de réalisation, le dispositif de surveillance de surcharge 1 comprend une mémoire et un microprocesseur. La mémoire stocke des instructions logicielles, qui lorsqu'elles sont exécutées par le microprocesseur du dispositif de surveillance de surcharge 1, mettent en œuvre l'ensemble d'étapes 100.In one embodiment, the overload monitoring device 1 comprises a memory and a microprocessor. The memory stores software instructions which, when executed by the microprocessor of the overload monitoring device 1, implement the set of
L'ensemble d'étapes 100 est par exemple réitéré par le dispositif de surveillance de surcharge 1 à chaque instant d'itération Tn = T0 + n/F0 pendant la charge de la batterie, où T0 est l'instant de début de charge de la batterie.The set of
Dans une étape 101, le dispositif de surveillance de surcharge 1 est adapté pour collecter en temps réel les mesures, réalisées par les capteurs de courant CCi, i = 1 à N, des courants dans les branches Bi et le dispositif de surveillance de surcharge 1 est en outre adapté pour déterminer l'état de charge courant de la batterie ou de chaque branche Bi.In a
Dans une étape 102, le dispositif de surveillance de surcharge 1 est adapté pour identifier un écart de courant dans une branche par rapport à au moins une autre desdites branches en fonction des mesures de courant collectées à l'étape 101 et pour, en fonction de l'écart de courant identifié et du niveau d'état de charge déterminé (de la batterie ou de chaque branche Bi), détecter la présence ou l'absence d'une surcharge d'un accumulateur dans la branche Bi.In a
Dans une étape 103, dans le cas où une branche Bi0 a été détectée comme étant en surcharge à l'étape 102, le dispositif de surveillance de surcharge 1 est adapté pour déclencher l'arrêt de la charge dans la branche Bi0. Un tel arrêt de la charge dans la branche Bi0 est déclenché par exemple en émettant une alarme ou en actionnant des interrupteurs (non représentés) déconnectant la branche Bi0 des bornes d'application de la tension de charge de la batterie.In a
Dans un mode de réalisation, les accumulateurs sont équilibrés avant la recharge de sorte qu'ils soient dans un état de charge supposé identique et connu, l'évaluation de l'état de charge se faisant par le biais des capteurs de courant. Par exemple, dans une étape préliminaire, avant la recharge de la batterie, les accumulateurs 11 de la batterie sont équilibrés à un niveau commun fixé de décharge bas (par exemple correspondant à un niveau de tension V1) par les dispositifs 2i, de contrôle de la tension des accumulateurs. Ainsi dans un mode de réalisation, le dispositif de surveillance de surcharge 1 est adapté pour déterminer l'état de charge courant à l'étape 101 en le prenant égal à l'état de charge de la batterie, calculé par le comptage du total des ampères stockés par la batterie, en fonction des mesures de courant collectés depuis T0.In one embodiment, the accumulators are balanced before recharging so that they are in a state of charge assumed to be identical and known, the evaluation of the state of charge being carried out by means of the current sensors. For example, in a preliminary step, before recharging the battery, the
Un tel procédé permet de réduire le risque de détecter des surcharges alors qu'il n'y en a pas.Such a method makes it possible to reduce the risk of detecting overloads when there is none.
Dans un mode de réalisation, les opérations suivantes sont réalisées par le dispositif de surveillance de surcharge 1 à l'étape 102 à l'instant d'itération Tn.In one embodiment, the following operations are carried out by the overload monitoring device 1 in
Pour identifier une différente de répartition du courant entre les branches, le dispositif de surveillance de surcharge 1 calcule la valeur d'un courant de référence Iref_n égal à la somme des courants couramment mesurées dans les N branches divisée par le nombre N de branches.To identify a different distribution of current between the branches, the overload monitoring device 1 calculates the value of a reference current I ref_n equal to the sum of the currents commonly measured in the N branches divided by the number N of branches.
Puis le dispositif de surveillance de surcharge 1 calcule la différence ΔIBi_n entre la mesure du courant dans la branche Bi couramment collectée à l'étape 100, nommée IBi_n, et le courant de référence Iref_n, pour i = 1 à N, soit :
Puis le dispositif de surveillance de surcharge 1 teste les conditions suivantes cond(l) et cond(II) pour i = 1 à N et ainsi détecte la présence ou l'absence d'une surcharge d'un accumulateur dans une branche :
- cond(I) : si l'état de charge déterminé à l'étape 101 de l'instant d'itération Tn est égal à ZI et que ΔIBi_n > Δseuil, alors il existe un accumulateur 11 en surcharge dans la branche Bi ;
- cond(II) : s'il est détecté, au cours de la charge dans la zone ZII, le dépassement du seuil Δseuil, puis le passage en-dessous du seuil -Δseuil, alors il existe un accumulateur 11 en surcharge dans la branche Bi ; la mise en œuvre de la condition cond(II) est par exemple la suivante : si l'état de charge déterminé à l'étape 101 de l'instant d'itération Tn est égal à ZII, que ΔIBi_n, < - Δseuil et qu'il a été déterminé au cours de la charge dans la zone ZII et à un instant antérieur, par exemple nommé Tm(Tm<Tn) que ΔIBi_m > Δseuil, alors il existe un accumulateur 11 en surcharge dans la branche Bi.
- cond (I): if the state of charge determined in
step 101 of the iteration instant T n is equal to ZI and that ΔI Bi_n > Δ threshold , then there is anaccumulator 11 in overload in the branch Bi ; - cond (II): if it is detected, during the charging in zone ZII, the exceeding of the threshold Δ threshold , then the passage below the threshold -Δ threshold , then there is an
accumulator 11 in overload in the Bi branch; the implementation of the condition cond (II) is for example the following: if the state of charge determined instep 101 of the instant of iteration T n is equal to ZII, that ΔI Bi_n , <- Δ threshold and that it was determined during the charging in the zone ZII and at an earlier instant, for example named T m (T m <T n ) that ΔI Bi_m > Δ threshold , then there is anaccumulator 11 in overload in the Bi branch.
La valeur seuil Δseuil est une valeur positive fixée expérimentalement.The threshold value Δ threshold is a positive value fixed experimentally.
On notera d'ailleurs que dans des modes de réalisation, il pourra être utilisé une valeur de seuil Δseuil1 pour tester la condition cond(l) et une valeur de seuil distincte, Δseuil2, pour tester la condition cond(II)) le franchissement de ce seuil Δseuil2 et de son opposé - Δseuil2. Dans un mode de réalisation, des valeurs distinctes sont prises pour le seuil positif Δseuil2_1 et le seuil négatif - Δseuil2_2 dont les franchissements successifs sont détectés par la condition cond(II).Moreover it is noted that in embodiments, it may be used a Δ threshold1 threshold value for testing the condition cond (l) and a separate threshold value, Δ threshold2, to test the condition cond (II)) the crossing this threshold threshold2 Δ and its opposite - Δ threshold2. In one embodiment, separate values are taken for the positive threshold Δ threshold2_1 and the negative threshold - Δ threshold2_2 whose successive crossings are detected by the condition cond (II).
Si le test de ces conditions cond(l) et cond(II) pour chaque i, i = 1 à n, ne donne pas lieu à la détection de surcharge par le dispositif de surveillance de surcharge 1, ce dernier conclut à l'absence de surcharge au sein de la batterie à l'instant Tn.If the test of these conditions cond (l) and cond (II) for each i, i = 1 to n, does not give rise to overload detection by the overload monitoring device 1, the latter concludes that there is no overload within the battery at time T n .
Considérons les cas de figure suivants :
Cas A : un accumulateur 11 dans une branche Bi0 entre en surcharge dans la zone ZI.Consider the following scenarios:
Case A: an
Dans ce cas, la surtension est engendrée au niveau de la branche Bi0 par l'accumulateur 11 en surcharge (par exemple supérieure à 1,5V), ce qui donne l'illusion aux autres branches que la branche Bi0 a un certain pourcentage d'état de charge de plus qu'elles. Naturellement, le courant dans la branche Bi0 va alors diminuer et les autres branches vont se répartir un courant supplémentaire, au total équivalent à la diminution du courant dans cette branche Bi0. Ainsi, les autres branches compensent leur « retard » sur la branche Bi0.In this case, the overvoltage is generated at the Bi 0 branch by the
Cas B : un accumulateur 11 dans une branche Bi0 entre en surcharge dans la zone ZII. La branche Bi0 prend alors du retard dans sa charge car l'augmentation de tension à ses bornes, due à la surtension de l'accumulateur en défaut, ne correspond pas à une réelle augmentation de l'état de charge de la branche. Une fois que la tension de cet accumulateur atteint la tension de saturation, la branche Bi0 doit alors rattraper le retard d'état de charge accumulé en acceptant une élévation de courant.Case B: an
Cas C : Dans la zone ZIII, les autres branches imposant une tension maximale à la branche Bi0, les accumulateurs de la branche Bi0 ont une tension suffisamment élevée pour empêcher la branche Bi0 d'aller au-delà d'une tension où un accumulateur peut saturer à 5V si le dispositif 2i0 de contrôle de la tension des accumulateurs n'a pas fonctionné.Case C: In zone ZIII, the other branches imposing a maximum voltage on the branch Bi 0 , the accumulators of the branch Bi 0 have a sufficiently high voltage to prevent the branch Bi 0 from going beyond a voltage where an accumulator can saturate at 5V if the device 2i 0 for checking the voltage of the accumulators has not worked.
Ainsi, quand l'état de charge est ZI, le dépassement par ΔIBio_n de la valeur-seuil Δseuil est caractéristique de la présence d'un accumulateur en surcharge dans la branche Bi0, comme décrit par le cas A.Thus, when the state of charge is ZI, the exceeding by threshold ΔI Bio_n of the threshold value Δ threshold is characteristic of the presence of an overcharged accumulator in the branch Bi 0 , as described by case A.
Quand l'état de charge est ZII et que la différence entre la mesure du courant dans la branche Bi0 et le courant de référence Iref_n, devient tout d'abord supérieure au premier seuil égal à Δseuil, puis inférieure au deuxième seuil égal à -Δseuil, cela signifie qu'un accumulateur n'a pas correctement été équilibré et qu'il est en surcharge.When the state of charge is ZII and the difference between the measurement of the current in the branch Bi 0 and the reference current I ref_n , firstly becomes greater than the first threshold equal to Δ threshold , then less than the second threshold equal at -Δ threshold , this means that an accumulator has not been properly balanced and that it is overcharged.
Le franchissement du deuxième seuil après le premier permet de détecter qu'il y a eu dysfonctionnement de la gestion en tension d'au moins un accumulateur. Si la détection de surcharge ne prenait en compte que le franchissement du premier seuil avait été considéré, une surcharge aurait pu été signalée de façon erronée si la branche Bi0 était globalement plus faible que les autres branches, sans que cela signifie qu'il y ait surcharge d'un accumulateur dans la branche Bi0.Crossing the second threshold after the first makes it possible to detect that there has been a malfunction in the voltage management of at least one accumulator. If the overload detection only took into account the crossing of the first threshold had been considered, an overload could have been reported in error if the Bi 0 branch was overall weaker than the other branches, without this signifying that there has overcharge of an accumulator in the Bi 0 branch.
Dans le cas où la batterie comporte une branche de capacité plus faible que les autres branches, il y aura bien en zone ZII un franchissement de Δseuil, mais pas de franchissement ultérieur de -Δseuil, donc la présente invention évitera une détection erronée de surcharge dans un tel cas.In the case where the battery has a branch of lower capacity than the other branches, there will indeed be in zone ZII a crossing of Δ threshold , but no subsequent crossing of -Δ threshold , therefore the present invention will avoid an erroneous overload detection in such a case.
Dans un mode de réalisation décrit ci-dessus, la condition à tester relative à un écart de courant dans une branche Bi comprend le calcul de la différence entre la mesure du courant dans la branche Bi et un courant de référence égal à la moyenne des courants circulant dans les différentes branches, puis à la comparaison de cette différence avec un seuil. Dans d'autres modes de réalisation, la condition à tester relative à un écart de courant dans une branche Bi prend des formes différentes, par exemple le courant de référence est choisi égal à un courant circulant dans une autre branche.In an embodiment described above, the condition to be tested relating to a current difference in a Bi branch comprises the calculation of the difference between the measurement of the current in the Bi branch and a reference current equal to the average of the currents circulating in the different branches, then comparing this difference with a threshold. In other embodiments, the condition to be tested relating to a current difference in a branch Bi takes different forms, for example the reference current is chosen equal to a current flowing in another branch.
La présente invention propose ainsi une solution pour détecter des problèmes de surcharges au sein d'une batterie et notamment pour détecter et pallier des dysfonctionnements des dispositifs de contrôle de la tension des accumulateurs de la batterie. Dans un mode de réalisation, l'invention permet ainsi de réaliser la détection de surcharge à partir des seules mesures de courant, et indépendamment de mesures de tension des accumulateurs.The present invention thus provides a solution for detecting overcharging problems within a battery and in particular for detecting and overcoming malfunctions of the devices for controlling the voltage of the accumulators of the battery. In one embodiment, the invention thus makes it possible to carry out overload detection on the basis of current measurements alone, and independently of measurements of voltage of the accumulators.
Claims (15)
- An overcharge detection method for detecting an overcharging of an accumulator (11) of a battery (10) comprising a set of parallel branches (B1, ..., BN), each branch comprising accumulators disposed in series, said method comprising the following steps:- (i) collecting the measurements of the currents flowing through the branches of the battery;- (ii) identifying at least one variation in current in one branch of the said set of branches with respect to at least one other branch of the said set of branches as a function of the measurements of current collected;- (iii) determining a level of state of charge of the said branch; and- (iv) detecting an overcharging of an accumulator in the said branch as a function of at least the said variation in current identified and of the level of state of charge determined.
- An overcharge detection method for detecting an overcharging of an accumulator (11) according to claim 1, in which the detection of an overcharging includes the testing of at least one condition relative to the variation in current identified, the said condition to be tested relative to the variation in current identified being a function of the level of state of charge determined.
- An overcharge detection method for detecting an overcharging of an accumulator (11) according to claim 1 or claim 2, based on which:- a difference between the current measured in the said branch (B1, ..., BN) and a reference current determined as a function of at least the current measured in the other branch is calculated;- the said difference is compared to a threshold value; and- an overcharging of an accumulator in the said branch is detected based on the result of the said comparison and the level of state of charge determined.
- An overcharge detection method for detecting an overcharging of an accumulator (11) according to any one of the preceding claims, in which a first variation in current identified in the said branch (B1,..., BN) at a first time instant is compared with a first threshold value of current variation, a second variation in current identified in the said branch at a second time instant is compared with a second current variation threshold value that is distinct from the first current variation threshold value, and an overcharging of an accumulator in the said branch is detected as a function of the said first variation in current, of the said second variation in current and of the level of state of charge determined.
- An overcharge detection method for detecting an overcharging of an accumulator (11) according to any one of the preceding claims, based on which one can distinguish at least a first range (ZI) of state of charge levels and a second range (ZII), subsequent to the said first range, of state of charge levels, and if a state of charge level of the branch is determined to be in the second range, an overcharging of an accumulator in the said branch is detected if the variation in current identified in the said branch firstly surpasses a first threshold and subsequently surpasses a second threshold, the first and second threshold values having opposite signs.
- An overcharge detection method for detecting an overcharging of an accumulator (11) according to claim 5, the first threshold value being equal to the opposite of the second threshold value.
- An overcharge detection method for detecting an overcharging of an accumulator according to any one of claims 5 or 6, based on which an overcharging of an accumulator (11) in the said branch (B1, ..., BN) is detected, for a level of charge state determined to be in the first range, as soon as the variation in current identified in the said branch surpasses the first threshold value.
- An overcharge detection device (1) for detecting an overcharging of an accumulator (11) of a battery (10) comprising a set of parallel branches (B1,..., BN), each branch comprising accumulators disposed in series, the said device being suitable for and capable of collecting the measurements of the currents flowing through the branches of the battery; of identifying at least one variation in current in one branch of the said set of branches with respect to at least one other branch of the said set of branches as a function of the measurements of current collected; of determining a level of state of charge of the said branch; and of detecting an overcharging of an accumulator in the said branch as a function of at least the said variation in current identified and of the level of state of charge determined.
- An overcharge detection device (1) for detecting an overcharging of an accumulator (11) according to claim 8, suitable for and capable of detecting the said overcharging at least by the testing of at least one condition relative to the variation in current identified, the said condition to be tested relative to the variation in current identified being a function of the level of state of charge determined.
- An overcharge detection device (1) for detecting an overcharging of an accumulator (11) according to claim 8 or 9, suitable for and capable of calculating a difference between the current measured in the said branch and a reference current determined as a function of at least the current measured in the other branch, of comparing the said difference to a threshold value; and of detecting an overcharging of an accumulator in the said branch (B1,..., BN) based on the result of the said comparison and the level of state of charge determined.
- An overcharge detection device (1) for detecting an overcharging of an accumulator (11) according to one any one of claims 8 to 10, suitable for and capable of identifying a first variation in current in the said branch at a first time instant and of comparing it with a first threshold value of variation in current, of identifying a second variation in current in the said branch at a second time instant and of comparing it with a second current variation threshold value that is distinct from the first current variation threshold value, and of detecting an overcharging of an accumulator in the said branch (B1,..., BN) as a function of the said first variation in current, of the said second variation in current, and of the level of state of charge determined.
- An overcharge detection device (1) for detecting an overcharging of an accumulator (11) according to any one of claims 8 to 11, suitable for and capable of, a first range of state of charge levels (ZI) and a second range (ZII), subsequent to the said first range, of state of charge levels of the branch, being defined, detecting an overcharging of an accumulator in the said branch if, the level of state of charge of the branch being in the second range, the variation in current identified in the said branch firstly surpasses a first threshold value and subsequently surpasses a second threshold value, the first and second threshold values having opposite signs.
- An overcharge detection device (1) for detecting an overcharging of an accumulator (11) according to claim 12, in which the first threshold value is equal to the opposite of the second threshold value.
- An overcharge detection device (1) for detecting an overcharging of an accumulator according to any one of claims 12 or 13, suitable for and capable of detecting an overcharging of an accumulator (11) in the said branch (B1,..., BN), as soon as the variation in current identified in the said branch surpasses the first threshold value, for a state of charge level determined in the first range.
- A computer program product comprising instructions which cause the device according to claim 8 to perform the method steps according to claim 1.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1402794A FR3029639B1 (en) | 2014-12-08 | 2014-12-08 | METHOD AND DEVICE FOR DETECTING AN OVERLOAD OF A BATTERY BATTERY ACCUMULATOR |
PCT/EP2015/079033 WO2016091910A1 (en) | 2014-12-08 | 2015-12-08 | Method and device for detecting an overcharging of an accumulator of a battery |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3231057A1 EP3231057A1 (en) | 2017-10-18 |
EP3231057B1 true EP3231057B1 (en) | 2020-04-01 |
Family
ID=53008562
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15817099.3A Active EP3231057B1 (en) | 2014-12-08 | 2015-12-08 | Method and device for detecting an overcharging of an accumulator of a battery |
Country Status (8)
Country | Link |
---|---|
US (1) | US10481213B2 (en) |
EP (1) | EP3231057B1 (en) |
JP (1) | JP6927877B2 (en) |
KR (1) | KR102521752B1 (en) |
AU (1) | AU2015359509B2 (en) |
ES (1) | ES2784923T3 (en) |
FR (1) | FR3029639B1 (en) |
WO (1) | WO2016091910A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102347920B1 (en) * | 2018-10-12 | 2022-01-05 | 주식회사 엘지에너지솔루션 | Apparatus and method for battery management |
CN113078711B (en) * | 2021-04-01 | 2024-05-28 | 安徽华菱汽车有限公司 | Charging control method, system and device for power battery |
WO2024077519A1 (en) * | 2022-10-12 | 2024-04-18 | 宁德时代未来能源(上海)研究院有限公司 | Soc determination method and apparatus, device, storage medium, and energy storage system |
CN116315207B (en) * | 2023-05-18 | 2023-11-03 | 宁德时代新能源科技股份有限公司 | Overvoltage early warning method, overvoltage early warning device and readable storage medium |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001185228A (en) * | 1999-12-24 | 2001-07-06 | Sanyo Electric Co Ltd | Electric power supply equipped with battery |
JP2011025622A (en) | 2009-07-29 | 2011-02-10 | Seiko Epson Corp | Liquid jetting apparatus and liquid jetting type printer |
JP5385719B2 (en) * | 2009-07-29 | 2014-01-08 | プライムアースEvエナジー株式会社 | Battery management device |
EP2282392A1 (en) * | 2009-07-31 | 2011-02-09 | Nxp B.V. | A battery charger for a photovoltaic system, a controller therefor and a method of controlling the same |
JP5477778B2 (en) * | 2010-05-28 | 2014-04-23 | スズキ株式会社 | Control device for battery parallel connection circuit |
US8558712B2 (en) * | 2010-06-03 | 2013-10-15 | C&C Power, Inc. | Battery system and management method |
KR20120082876A (en) * | 2010-10-15 | 2012-07-24 | 산요덴키가부시키가이샤 | Electricity storage system and control device |
JP5773609B2 (en) * | 2010-10-18 | 2015-09-02 | 株式会社Nttファシリティーズ | Battery pack management apparatus, battery pack management method, and battery pack system |
JP5830971B2 (en) * | 2011-06-30 | 2015-12-09 | ソニー株式会社 | Battery monitor circuit, power storage device, electric vehicle, and power system |
JP5974914B2 (en) | 2013-01-29 | 2016-08-23 | 株式会社豊田自動織機 | Battery system and battery status judgment setting change method |
-
2014
- 2014-12-08 FR FR1402794A patent/FR3029639B1/en not_active Expired - Fee Related
-
2015
- 2015-12-08 EP EP15817099.3A patent/EP3231057B1/en active Active
- 2015-12-08 US US15/533,581 patent/US10481213B2/en active Active
- 2015-12-08 ES ES15817099T patent/ES2784923T3/en active Active
- 2015-12-08 KR KR1020177018027A patent/KR102521752B1/en active IP Right Grant
- 2015-12-08 AU AU2015359509A patent/AU2015359509B2/en active Active
- 2015-12-08 JP JP2017530146A patent/JP6927877B2/en active Active
- 2015-12-08 WO PCT/EP2015/079033 patent/WO2016091910A1/en active Application Filing
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
US10481213B2 (en) | 2019-11-19 |
FR3029639A1 (en) | 2016-06-10 |
EP3231057A1 (en) | 2017-10-18 |
WO2016091910A1 (en) | 2016-06-16 |
US20170336478A1 (en) | 2017-11-23 |
BR112017011948A2 (en) | 2017-12-26 |
KR102521752B1 (en) | 2023-04-13 |
AU2015359509B2 (en) | 2019-05-16 |
FR3029639B1 (en) | 2018-11-30 |
ES2784923T3 (en) | 2020-10-02 |
JP6927877B2 (en) | 2021-09-01 |
AU2015359509A1 (en) | 2017-06-22 |
JP2018501613A (en) | 2018-01-18 |
KR20170090471A (en) | 2017-08-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2397863B1 (en) | System for monitoring the status of a battery | |
EP1854165B1 (en) | Method for the balanced charging of a lithium-ion or lithium-polymer battery | |
EP2944970B1 (en) | Method for estimating the state of health of a battery cell | |
CA2546891C (en) | Equilibrated charging method for a lithium-ion or lithium-polymer battery | |
EP3231057B1 (en) | Method and device for detecting an overcharging of an accumulator of a battery | |
EP3276364B1 (en) | Method for determining the state of health of the cells of a battery | |
JP2018526955A (en) | Capacity monitoring and balancing of lithium-sulfur batteries arranged in series | |
KR101547004B1 (en) | Apparatus and method for estimating state of health of battery | |
EP3234622B1 (en) | Method and system for charging and balancing a battery module and/or pack comprising electrochemical elements | |
WO2017050945A1 (en) | Method for estimating an indicator of the state of health of a lithium battery and associated estimating device | |
WO2015107299A1 (en) | Method for managing a state of charge of a battery | |
EP2859636B1 (en) | Accumulator battery protected against external short-circuits | |
US9897658B2 (en) | System and method for detecting battery end of discharge | |
FR3046249A1 (en) | METHOD FOR EVALUATING THE CHARGING STATE OF A BATTERY | |
EP1566643B1 (en) | Method for checking-on-overload of the current output of an electrical equipment, and for checking such an equipment | |
FR2976677A1 (en) | Method for managing battery in battery management system, involves measuring electric quantity at terminal of control module, and estimating state of charge and/or state of health of battery is estimated from electrical magnitude | |
FR3100615A1 (en) | Method and system for managing an electrical energy storage element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20170608 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: NAVAL GROUP |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20181220 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20191104 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1252622 Country of ref document: AT Kind code of ref document: T Effective date: 20200415 Ref country code: CH Ref legal event code: NV Representative=s name: MICHELI AND CIE SA, CH Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602015049977 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: GR Ref legal event code: EP Ref document number: 20200401337 Country of ref document: GR Effective date: 20200716 |
|
REG | Reference to a national code |
Ref country code: NO Ref legal event code: T2 Effective date: 20200401 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200701 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2784923 Country of ref document: ES Kind code of ref document: T3 Effective date: 20201002 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200401 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200817 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200401 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200401 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200801 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1252622 Country of ref document: AT Kind code of ref document: T Effective date: 20200401 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200401 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200401 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200401 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200401 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602015049977 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200401 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200401 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200401 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200401 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200401 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200401 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200401 |
|
26N | No opposition filed |
Effective date: 20210112 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200401 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200401 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20201231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201208 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201208 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200401 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200401 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200401 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201231 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20231124 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GR Payment date: 20231122 Year of fee payment: 9 Ref country code: GB Payment date: 20231221 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20231124 Year of fee payment: 9 Ref country code: SE Payment date: 20231218 Year of fee payment: 9 Ref country code: NO Payment date: 20231128 Year of fee payment: 9 Ref country code: IT Payment date: 20231211 Year of fee payment: 9 Ref country code: FR Payment date: 20231109 Year of fee payment: 9 Ref country code: DE Payment date: 20231208 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240108 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20240101 Year of fee payment: 9 |