EP3230539B1 - Method for erecting a tubular tower construction and tubular tower construction - Google Patents
Method for erecting a tubular tower construction and tubular tower construction Download PDFInfo
- Publication number
- EP3230539B1 EP3230539B1 EP15791607.3A EP15791607A EP3230539B1 EP 3230539 B1 EP3230539 B1 EP 3230539B1 EP 15791607 A EP15791607 A EP 15791607A EP 3230539 B1 EP3230539 B1 EP 3230539B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- shells
- tubular
- flanges
- tower structure
- segment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 17
- 238000010276 construction Methods 0.000 title claims description 16
- 229910000831 Steel Inorganic materials 0.000 claims description 11
- 239000010959 steel Substances 0.000 claims description 11
- 238000005452 bending Methods 0.000 claims description 6
- 230000004323 axial length Effects 0.000 claims description 4
- 238000009434 installation Methods 0.000 claims description 3
- 230000006835 compression Effects 0.000 claims description 2
- 238000007906 compression Methods 0.000 claims description 2
- 230000002093 peripheral effect Effects 0.000 claims 5
- 239000004567 concrete Substances 0.000 description 12
- 238000004519 manufacturing process Methods 0.000 description 5
- 230000001419 dependent effect Effects 0.000 description 4
- 239000011150 reinforced concrete Substances 0.000 description 4
- 239000002131 composite material Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000004913 activation Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000007688 edging Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 239000011513 prestressed concrete Substances 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04H—BUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
- E04H12/00—Towers; Masts or poles; Chimney stacks; Water-towers; Methods of erecting such structures
- E04H12/02—Structures made of specified materials
- E04H12/08—Structures made of specified materials of metal
- E04H12/085—Details of flanges for tubular masts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D13/00—Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
- F03D13/20—Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04H—BUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
- E04H12/00—Towers; Masts or poles; Chimney stacks; Water-towers; Methods of erecting such structures
- E04H12/003—Access covers or locks therefor
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04H—BUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
- E04H12/00—Towers; Masts or poles; Chimney stacks; Water-towers; Methods of erecting such structures
- E04H12/02—Structures made of specified materials
- E04H12/08—Structures made of specified materials of metal
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D13/00—Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
- F03D13/10—Assembly of wind motors; Arrangements for erecting wind motors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/728—Onshore wind turbines
Definitions
- the invention relates to a method for erecting tubular tower structures.
- Tubular tower structures are known, in particular as supports for wind turbines.
- it is known in particular to manufacture tube sections from sheet steel and to assemble the tube sections one above the other with circumferential weld seams to form a tube tower which accommodates a wind energy nacelle at its upper end.
- it is known to either weld them or to provide them with circumferential flanges lying on top of one another in such a way that the flanges lying on top of one another can be screwed together.
- tower structures of this type from partial shells, the partial shells having flanges on their longitudinal edges, with which these partial shells are screwed to one another.
- a wind turbine tower segment which is also designed as a shell segment and consists of a reinforced concrete body, with two joints for attaching to joints of at least one other tower segment and in the reinforced concrete body in the area of each joint at least one connecting body is embedded and anchored therein for connection to a connecting body of a adjacent tower segment and the connecting body has a fastening wall arranged essentially parallel to the respective joint for receiving a transverse to the joint and transverse to the fastening wall directed tensile load.
- a disadvantage of such a device is that it is relatively expensive to cast concrete shells of this type and also to produce them with a precise fit and dimensions. Furthermore, the dismantling of such reinforced concrete towers is quite complex and expensive.
- WO 2010/121630 A2 discloses a tower for a wind turbine with a plurality of corner posts to form a customized construction, the corner posts each being composed of a plurality of partial profiles connected to one another.
- the corner posts are each composed of several partial profiles connected to one another in such a way that connection areas are formed on adjacent partial profiles, which, however, are bent out of the partial profiles.
- the disadvantage of this embodiment is that it makes precise and quick work more difficult.
- From the DE 10 2011 011 603 A1 is a lifting device for lifting heavy components or plant parts, especially known offshore plants.
- a wind turbine is known with a stationary vertical mast or tower on which the movable part of the wind turbine is arranged, the mast consisting at least partially of prefabricated wall parts, with several adjacent wall parts forming a substantially ring-shaped mast section.
- the wall parts or segments are constructed from reinforced concrete or another stone-like material and are already prefabricated. The concrete elements are fastened to one another with the start of tension.
- From the DE 10 2011 001 250 A1 discloses an apparatus and method for transitioning between a steel tower section and a prestressed concrete tower section.
- a wind turbine tower is known with a plurality of prefabricated tower segments, each of which has an upper and lower horizontal flange, one of the plurality of tower segments having at least two longitudinal flanges, each longitudinal flange having a first side for laying against a first side of another longitudinal flange and a second Has side, which is laterally welded to the lateral surface, wherein the second side of the first side is opposite.
- a wall section for a wind turbine tower comprising a first wall segment and a second wall segment, and a connecting element which has a first surface section which is attached to the first wall segment and turns into a first direction, a second surface portion attached to the second wall segment and extending in a second direction, and an intermediate portion having an intermediate surface portion extending transverse to the first direction and transverse to the second direction, the connecting member thereby T- is shaped and is placed on a corresponding wall or two abutting walls and is fastened thereto with bolts which protrude through the wall.
- From the EP 2 188 467 B1 discloses a tower, particularly for supporting telecommunications equipment, which tower consists of a plurality of planar sheets having outwardly facing flanges formed with reinforcing sheets.
- WO 2009/097858 A1 discloses a method of erecting a tubular tower structure according to the preamble of claim 1 and also a tubular tower structure according to the preamble of claim 9.
- WO 2010/055535 A1 , U.S. 7,464,512 B1 , KR 2012 0073785 A and EP 1 561 883 A1 reveal more tubular tower structures.
- the object of the invention is to create a method with which tower structures of this type can be erected inexpensively, quickly and with high precision and accuracy of fit, which are particularly stable and have a low natural frequency.
- Another object is to create a tubular tower structure for wind turbines that can be erected more quickly. This problem is solved with a tubular tower structure having the features of claim 9 .
- a tubular tower structure according to the invention serves in particular as a substructure tower in order to place a conventional tower for accommodating wind turbines and thereby achieve a greater height and thus better wind accessibility.
- Such towers are usually constructed from tower segments with a circular cross-section, placed one on top of the other and connected to one another. Due to the usual bridge height in Germany, very large tower cross-sections from one-piece pipe sections or pipe segments can no longer be realized.
- the tubular tower structure is made of tubular segments, which are made of longitudinally oriented shells, so that the tubular tower structure is erected in partial lengths that can still be transported or, if the length is still transportable, in its full length.
- corresponding webs or blanks are made from sheet steel, which are then formed into the curved shells in small folding steps, so that they form a tube segment when combined with other shells.
- a curved shell consists of 5 to 30, in particular 10 to 20, mutually beveled surfaces, the beveled surfaces corresponding to the shell width and thus the partial circumference that each shell has with respect to a tubular tower structure represents, between 1 ° and 8 ° and in particular between 3 ° and 6 ° are bent at an angle to each other.
- the material thicknesses used for the shells are between 20 mm and 100 mm, in particular between 40 mm and 100 mm.
- the longitudinal or high edges of the shells are oversized in relation to the width of the shell (or the partial circumference of a pipe segment caused by it). This interference becomes simple radially inward or radially outward, i. H. not deformed multiple times or in itself, folded and forms a flat, straight connecting flange for connecting to adjacent shells to create a tube or tube segment.
- the edging angle of the respective radially inwardly or radially outwardly pointing flange of the respective directly adjacent folded planar area of the outer shell wall naturally depends on the number of shells from which the entire circular tower cross section is created.
- radial means perpendicular to the circumference of the tubular body composed of the shells.
- a chamfer especially with panels of this thickness (20 mm to 100 mm), is particularly low-stress and stable, whereby the combination of panel thickness and chamfer means that the screw connections do not have to have very narrow tolerances and no high-strength screws are required.
- Annular flange segments are welded to the front of the pipe segment on the respective end edges of the shells, which serve as an adapter to a foundation, further pipe segments or a (structurally existing) pipe tower structure and in particular a wind turbine tower.
- the shells are then transported to the construction site and assembled there to form a tubular tower structure and connected to one another through the flanges.
- a lower tower is formed from a plurality of 7 m long pipe segments, these pipe segments each consisting of a plurality of 7 m long corresponding shells.
- the base diameter must be adjusted from 7 m to a head diameter of 4.3 m via the height of the substructure tower.
- a particularly stable substructure tower is also achieved if the substructure tower is erected from cylindrical tube segments with a height of, for example, 7 m and then a last adapter element or adapter tube segment is placed on the head side, which extends from 7 m Base diameter tapered to 4.3 m head diameter and in this respect results in a truncated cone on the otherwise cylindrical tubular tower structure.
- a torsion compensation ring is arranged between the pipe segments or the horizontal, L-shaped flanges of the pipe segments.
- the torsion compensation ring according to the invention ensures that when the tower is subject to torsional loads, the power flow passes from one L-flange to the other the respective screws runs optimally, in that all L-flanges of the respective shells are activated and thus an equalization takes place. This ensures the excellent stability and low natural frequency of the tower.
- the advantage of the invention is that the flanges and the edging of the flanges with the tubular tower structure wall is extremely precise and verifiably accurate. It is also advantageous that the bending, screwing, horizontal welding and subsequent separation of the tubular tower structure into the shell elements can be carried out under comprehensible conditions at the place of manufacture, with a corresponding verification being able to take place at the place of manufacture.
- a tubular tower structure 1 according to the invention is in particular a substructure tower for existing wind energy tower constructions and has a head area 2 on which another tubular tower structure and in particular a wind energy tower can be placed.
- tubular tower structure 1 has a foot area 3 with which the tubular tower structure can be arranged on a foundation.
- the possible diameters of the tubular tower structure in the foot area are 7 m to 8 m, but can also be significantly larger.
- the diameter of the tubular tower structure 1 in the head area 2 is determined by the diameter of a tubular tower structure to be attached, in particular a wind energy tower, and is usually 4.3 m, but can also be higher or lower if necessary.
- the tubular tower structure 1 is formed from at least one tubular segment 4 or from a plurality of axially consecutive tubular segments 4 .
- the pipe segments 4 are cylindrical, tubular and have a diameter which corresponds to the diameter of the tubular tower structure 1 .
- the uppermost tubular segment 4 is designed in the shape of a truncated cone, extending from a tubular segment foot region 5 to a tubular segment head region 6 from the diameter of the foot area 3 of the tubular tower structure 1 to the diameter in the head area 2 of the tubular tower structure 1 tapers.
- the uppermost pipe segment 4 is the only one of the pipe segments of the tubular tower structure 1 that is designed in the shape of a truncated cone, while the remaining pipe segments 4 are designed in a cylindrical manner.
- each tube segment 4 is formed from a plurality of shells 7 .
- a shell 7 extends over part of the circumference of the pipe segment 4 and over the axial length of the pipe segment 4, so that a pipe segment 4 is formed by arranging a plurality of shells 7 in the circumferential direction.
- the shells 7 are thus designed in cross-section as ring segments with a ring-segment-shaped curved lateral surface 8 and thus have axially running longitudinal edges 9 and horizontally running end edges 10 ( 2 ).
- the lateral surface 8 of the shells 7 is not bent into this shape in order to achieve a circular ring segment shape, but is correspondingly folded with a plurality of folding steps. This results in a plurality of flat surfaces 8a, which are formed at an angle to one another along folded edges 8b. Depending on the width of the shell, a number of 5 to 30 flat surfaces 8a is aimed for.
- the number of surfaces 8a and thus also the edges 8b is determined by the number of shells 7 on the one hand and the circumference of the tower on the other hand, since a circular ring is to be approximated by the surface 8a.
- the stability of the shells, and thus of the tower, and the low natural frequency of the tower is positively influenced by a plurality of surfaces 8a and edges 8b, so that the entire tower does not just consist of a polygon with, for example, ten corners, or each individual shell does not just consist of a polygon with two or three bending edges.
- the width of the individual surfaces 8a is also dependent on the width of the entire shell 7, the individual surfaces 8a each being formed at an angle of between 1° and 8°, in particular 3° and 6° to one another.
- the respective folding angle of the surfaces 8a to each other depends on the number of surfaces 8a and the width of the shell 7 and of course the number of shells 7 and the circumference of the tower, since the surfaces divide the entire circumference of the shell 7 and thus the individual folding angles represent a corresponding fraction of the Total angle of the circumference of the shell 7 are.
- radially running longitudinal flanges 11 extend in one piece from the lateral surface 8 to the inside or outside of the pipe of the longitudinal flanges 11 of adjacent shells 7 with one another.
- the longitudinal flanges each have a respective axial front edge 11a that is spaced a little axially from the axial front edges 10 of the shell 7, for example with a step 11b.
- the longitudinal flanges 11 Due to the thickness of the material and the strong inward fold, the longitudinal flanges 11 have a fold radius 11c relative to the lateral surface 8 of the shell 7 .
- the shells 7 are preferably made of steel and have a thickness of more than 26 mm, in particular more than 40 mm to 100 mm, which is suitable for use as a substructure tower for existing wind energy tower constructions.
- the respective shells 7 of the pipe segments 4 have horizontal flanges 13 which are butt-jointed and in particular welded on along their end edges 10 and are L-shaped in cross-section a lower shell foot 30 in the assembled state and an upper shell head 31 in the assembled state are formed.
- the horizontal flanges 13 themselves each form a corresponding ring segment of a length which corresponds to the width of a shell 7 over its lateral surface 8 including the thickness of the longitudinal flanges 11 . This causes the horizontal flanges 13 of the respective shells 7 to form a closed ring after the pipe segment 4 has been assembled, with the abutting edges 14 of the horizontal flanges 13 abutting ( 4 ).
- the horizontal flanges 13 of the interconnected shells form a flange ring from the horizontal flanges 13.
- the tubular tower structure according to the invention has a particularly low natural frequency and high stability.
- the torsion ring 15 is a ring with an outer diameter which corresponds approximately to the outer diameter of the flange ring from the horizontal flanges 13 and with an inner diameter which also corresponds to the inner diameter of the flange ring from the horizontal flanges 13 approximately.
- the torsion ring 15 has a thickness that corresponds to approximately one third to two thirds of its width, ie the difference between the inside and outside diameters, although the thickness value essentially depends on static calculations and can also deviate therefrom.
- the torsion ring 15 can be designed in one piece; in the case of large diameters of the tubular tower structure 1, it can also be designed in several parts.
- the dividing lines 17 of the torsion ring 15 are arranged in such a way that they are not in the area of the abutting edges 14 of the horizontal flanges 13 .
- the torsion ring can be halved in terms of thickness in the region of its separations, so that a step 18 is formed ( 12 ), So that the torsion ring 15 or corresponding torsion ring segments 15 in this area z. B. are semi-tapered.
- a corresponding bridging element 19 can accordingly be present, which bridges the one central dividing line 17 and creates two dividing lines 20 spaced apart from the dividing line 17 ( 12 ).
- the corresponding bores for screw bolts 16 are also present in the bridging element.
- the torsion ring 15 can be formed from a plurality of torsion ring segments, wherein the number of torsion ring segments can correspond to the number of shells 7, but can also be higher or lower. It is essential that the longitudinal edges 9 of the shells 7 and the abutting edges 14 of the horizontal flanges 13 on the one hand and the dividing lines 17 of the torsion ring segments on the other hand are offset from one another, ie not aligned.
- the tubular tower structure is of essentially conical design overall (FIGS. 13 to 27).
- the individual tube segments 4 are also of conical design, so that their diameter decreases from a tube segment base region 5 to a tube segment head region 6, so that each tube segment 4 forms a truncated cone.
- the shells 7 are then designed as truncated cone segments.
- the shells 7 are also wider in a foot area 30 and narrower in a head area 31, so that the lateral surfaces 8 have conical tube segments 4 and an overall conical tower ( 19 ) result.
- tubular tower structure or different tube segments 4a, 4b of the tubular tower structure can be formed from differently designed partial shells 7a, 7b, 70, 71, 72.
- the shells 7 of the tube segments 4a which are installed in a base region 3 of the tubular tower structure, are designed differently from the shells 7, which are installed in the region of an upper tube segment 4b.
- the pipe segments 4a, 4b can each consist of shells 7 or z. B. two axially adjacent partial shells 7a, 7b can be formed, wherein the partial shells 7a, 7b along common abutting end edges 10 are welded together.
- the partial shells 7a, 7b which are installed in an upper tube segment 4b ( figures 15 , 16 ), are due to the taper of the Tower overall narrower, so that the partial shells 7a, 7b of the lower tube segment 4a differ from those of the tube segment 4b also by the number of flat surfaces 8a bent towards one another or their folded edges 8b.
- the partial shells 7a, 7b have, for example, ten folded flat surfaces 8a, while in the area of the upper tube segment 4b there are only five to six surfaces 8a, for example.
- the partial shells 7a, 7b of a respective pipe segment are welded directly to one another and are not connected to one another via flanges.
- these partial shells 7a, 7b can also be connected to one another via flanges (not shown).
- torsion rings 15 (not shown) can then also be arranged between these flanges.
- a corresponding tubular tower structure 1 is constructed in a modular manner, in particular as a substructure tower for existing wind turbine structures, with the structure being arranged with a flange ring 60 on a foundation in the foot area 3, from which the corresponding partial shells 7a, 7b are screwed along their longitudinal flanges 11 until to a torsion ring 15 extend axially.
- the partial shells 7a, 7b thus result in a shell 7.
- a modular construction is carried out, with a shell 7 being modularly formed in this area from a first narrow partial shell section 70, on which a door section 71 is placed axially, with the door section 71 in the Substantially has the cross section of a shell 7, but a door opening 71a is provided.
- a partial shell 72 is arranged axially adjoining this, the partial shell 72 extending axially by the length of a partial shell 7a, reduced by the height of section 70 and door section 71, and optionally a partial shell 7b adjoining axially.
- the narrow partial shell section 70 which spaced the door section 71 from the foot area 3 or the connection to a foundation, has a height which is approximately the internal height of a soil introduced into the tower and/or an embankment from the outside, so that the door or the door section 71 can initially be omitted when erecting the tower and access to the interior of the tower at ground level is made possible with a considerably larger entrance cross section, so that large installations (elevator, etc.) can be introduced.
- the bolted and flat, straight flanged construction allows a door section 71 to be removed or inserted at any time.
- a truncated cone 80 ( 20 ) is fitted, which has a base-side flange 81 and a head-side flange 82, the base-side flange 81 optionally being formed via a torsion ring with a head-side flange of the second pipe segment 4b and a conventional wind energy tower construction optionally via a further torsion ring (not shown) with the head-side flange 82 can be screwed.
- a complete shell 7 of a first tube segment ( 22 ) has a horizontal flange 13 welded to a lower partial shell 7a in the manner already described and a horizontal flange 13 welded to the front side of the upper partial shell 7b.
- the lower horizontal edge of the upper partial shell 7b is flush with an upper horizontal edge 10 of the lower partial shell 7a butt welded. Since the longitudinal flanges 11 are set back axially from the horizontal edges 10 with a step 11b, as already stated, free spaces 11d are created in these areas and in the area of the horizontal flanges 13, which are closed by plastic elements (not shown) after completion of the construction.
- the shells 7 of the upper tube segment 4b are designed in the same way (same parts are provided with the same reference numbers) ( 23 ).
- the number of axially consecutive pipe segments 4 is dependent on the planned height of the substructure tower and on the axial length of the pipe segments.
- the number is therefore not limited to two pipe segments, but can range from just one pipe segment to a large number of pipe segments, with the conicity of the individual segment(s) having to be adapted to the overall conicity of the substructure tower and thus also the respective head and base diameter.
- the number of partial shells is not fixed at two, nor is the axial length ratio of the partial shells to one another. It can be a one-piece shell or a shell that is formed from a large number of partial shells that follow one another in the axial direction.
- the advantage of the invention is that a tubular tower structure 1 from tubular sections 4, which are cylindrical and/or conical, is produced entirely in a corresponding fabrication facility. Under predetermined conditions, which allow the smallest tolerances, flanges that extend longitudinally or axially are bent outwards or inwards from the lateral surface and the tubular tower structure is thereby subdivided by at least two partial shells, preferably several partial shells, in particular four to fourteen partial shells, which are easy to transport, even on roads.
- the partial shells are (again) connected to one another at an erection site of the tubular tower structure, and this is done in a particularly simple manner, since the partial shells are matched to one another with an absolutely precise fit.
- the assembly of such a large tubular tower structure can take place in a fraction of the assembly time, with a tubular tower structure with a very large diameter, especially diameters at the base > 7 m, can be realized.
- the flat, straight flanges make assembly easy.
- the combination of relatively thick steel sheets curved by beveling on the one hand, beveled flanges on the other hand and flange connections with a torsion ring results in a tubular tower structure 1 with a very low natural frequency, which excellently dissipates the loads introduced by a tubular tower structure placed on top .
- the advantage of the torsion ring 15 according to the invention between the horizontal flanges 13 is that this enables all horizontal flanges 13 of all shells 7 and in particular all bolts 16 to be ideally activated.
- Both the longitudinal flanges and the horizontal flanges can be connected with screws or screw bolts, rivets, screws with compression sleeves or locking ring bolts.
- the number of shells 7 can be between two and fourteen shells or more, depending on the diameter of the tubular tower structure, with base diameters of 4 m to 14 m and head diameters of 2.5 m to 10 m being easily realizable.
- the height of a tubular tower structure 1 according to the invention can also depend on the required or desired hub height of the entire tubular tower structure, i. H. including an attached wind energy tower, vary, with heights of the tubular tower structure 1 according to the invention of 7 m to 30 m being customary, but heights above this also do not pose a problem.
- a single, in this case conical or truncated tube segment is used.
- tubular tower structure according to the invention is also advantageous in that it is considerably cheaper than concrete towers and can be dismantled particularly well when the planned period of use has expired.
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Combustion & Propulsion (AREA)
- Sustainable Energy (AREA)
- Mechanical Engineering (AREA)
- Sustainable Development (AREA)
- General Engineering & Computer Science (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Wind Motors (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Suspension Of Electric Lines Or Cables (AREA)
- Road Signs Or Road Markings (AREA)
Description
Die Erfindung betrifft ein Verfahren zum Errichten von Rohrturmbauwerken.The invention relates to a method for erecting tubular tower structures.
Rohrturmbauwerke sind bekannt, insbesondere als Träger von Windenergieanlagen. Hierbei ist es insbesondere bekannt, aus Stahlblech Rohrabschnitte zu fertigen und die Rohrabschnitte übereinander mit umlaufenden Schweißnähten zu einem Rohrturm zusammenzusetzen, welcher an seinem oberen Ende eine Windenergiegondel aufnimmt. Um die einzelnen Segmente miteinander zu verbinden ist es bekannt, diese entweder zu verschweißen oder mit aufeinanderliegenden, umlaufenden Flanschen so zu versehen, dass die aufeinander liegenden Flansche miteinander verschraubt werden können.Tubular tower structures are known, in particular as supports for wind turbines. In this context, it is known in particular to manufacture tube sections from sheet steel and to assemble the tube sections one above the other with circumferential weld seams to form a tube tower which accommodates a wind energy nacelle at its upper end. In order to connect the individual segments to one another, it is known to either weld them or to provide them with circumferential flanges lying on top of one another in such a way that the flanges lying on top of one another can be screwed together.
Darüber hinaus ist es bekannt, derartige Turmbauwerke aus Teilschalen auszubilden, wobei die Teilschalen an ihren Längskanten Flansche besitzen, mit denen diese Teilschalen aneinander geschraubt werden.In addition, it is known to form tower structures of this type from partial shells, the partial shells having flanges on their longitudinal edges, with which these partial shells are screwed to one another.
Aus der
Aus der
Aus der
Aus der
Aus der
Aus der
Aus der
Aus der
Aus der
Aus der
Aus der
Aus der
Aus der
Aus der
Aus der
Aus der
Bei bekannten Unterbautürmen aus Beton ist von Nachteil, dass die Errichtung teuer und aufwendig ist und der Rückbau nach der Nutzungszeit aufwendig und teuer ist.
Aufgabe der Erfindung ist es ein Verfahren zu schaffen, mit dem derartige Turmbauwerke kostengünstig, schnell und mit hoher Präzision und Passgenauigkeit errichtet werden können, welche besonders stabil sind und eine geringe Eigenfrequenz haben.The object of the invention is to create a method with which tower structures of this type can be erected inexpensively, quickly and with high precision and accuracy of fit, which are particularly stable and have a low natural frequency.
Diese Aufgabe wird mit einem Verfahren mit den Merkmalen des Anspruchs 1 gelöst.This object is achieved with a method having the features of
Vorteilhafte Weiterbildungen sind in den hiervon abhängigen Unteransprüchen gekennzeichnet.Advantageous developments are characterized in the subclaims dependent thereon.
Es ist eine weitere Aufgabe ein Rohrturmbauwerk für Windenergieanlagen zu schaffen, der schneller errichtet werden kann. Diese Aufgabe wird mit einem Rohrturmbauwerk mit den Merkmalen des Anspruchs 9 gelöst.Another object is to create a tubular tower structure for wind turbines that can be erected more quickly. This problem is solved with a tubular tower structure having the features of
Vorteilhafte Weiterbildungen sind in den hiervon abhängigen Unteransprüchen gekennzeichnet.Advantageous developments are characterized in the subclaims dependent thereon.
Ein erfindungsgemäßes Rohrturmbauwerk dient insbesondere als Unterbauturm, um einen herkömmlichen Turm zur Aufnahme von Windenergieanlagen aufzusetzen und hierdurch eine größere Höhe und damit bessere Winderreichbarkeit zu erzielen.A tubular tower structure according to the invention serves in particular as a substructure tower in order to place a conventional tower for accommodating wind turbines and thereby achieve a greater height and thus better wind accessibility.
Für größere Höhen von derartigen Turmbauwerken ist es notwendig den Turmquerschnitt zu vergrößern, da nur dann die erforderliche Stand- und Knicksicherheit erzielt werden kann. Üblicherweise werden derartige Türme aus im Querschnitt kreisringförmigen Turmsegmenten erstellt, übereinander gesetzt und miteinander verbunden. Aufgrund der üblichen Brückenhöhe in Deutschland lassen sich sehr große Turmquerschnitte aus einteiligen Rohrabschnitten oder Rohrsegmenten nicht mehr realisieren.For greater heights of such tower structures, it is necessary to increase the tower cross section, since only then can the required stability and buckling safety be achieved. Such towers are usually constructed from tower segments with a circular cross-section, placed one on top of the other and connected to one another. Due to the usual bridge height in Germany, very large tower cross-sections from one-piece pipe sections or pipe segments can no longer be realized.
Hierdurch ist es notwendig, um die Durchfahrthöhe einzuhalten, derartige, sehr breite Türme mit mehr als 4,5 m Durchmesser am Fuß aus Teilschalen, d.h. Ringsegmenten zu einem vollständigen Ring zusammenzusetzen und - so notwendig - mehrere dieser Ringe übereinanderzusetzen.In order to maintain the passage height, it is necessary to assemble such very wide towers with a diameter of more than 4.5 m at the base from partial shells, i.e. ring segments, to form a complete ring and - if necessary - to stack several of these rings on top of each other.
Grundsätzlich ist es bekannt, derartige sogenannte längsorientierte Schalen zu erstellen und diese Schalen am Einbauort zu einem Rohr zusammenzusetzen. Es hat sich hierbei jedoch herausgestellt, dass die Präzision so schlecht und die Toleranzen derart groß sind, dass die Montage sehr oft verzögert wird und unnötig erschwert wird. Zudem sind bekannte Schalenkonstruktionen nicht so stabil, dass sie für Rohrturmbauwerke großer Höhe geeignet wären.In principle, it is known to create such so-called longitudinally oriented shells and to assemble these shells at the installation site to form a tube. However, it has been found here that the precision is so poor and the tolerances are so large that assembly is very often delayed and made unnecessarily difficult. In addition, known shell constructions are not so stable that they would be suitable for tubular tower structures of great height.
Zudem ist es bekannt, längs orientierte Schalen zu erstellen, bei denen mehrfach umgeformte und insbesondere tiefgezogene Flansche, welche zum Turminneren gerichtet sind und im Wesentlichen axial verlaufen, vorhanden sind. Diese Flansche sollen sowohl in radialer Richtung einen Formschluss zwischen den längsorientierten Schalen nach Art eines Nut-und-Feder-Prinzips ergeben, einen solchen aber auch in axialer Richtung gewährleisten. Hierzu müssen die Bleche in mehreren Achsen verformt werden, was nur durch ein Tiefziehen ermöglicht wird. Hierbei konnte als nachteilig festgestellt werden, dass die erforderliche Präzision, um diese Türme überhaupt noch zusammensetzen zu können, nur dann erzielt wird, wenn relativ dünne Bleche verwendet werden. Um hier eine Stabilisierung herbeizuführen, werden diese längs orientierten Schalen als Doppelwandschalen ausgebildet, was jedoch einen erheblich höheren Konstruktionsaufwand zur Folge hat und zudem nach Nacharbeiten erfordert.In addition, it is known to create longitudinally oriented shells in which multiple formed and in particular deep-drawn flanges are present, which are directed towards the inside of the tower and run essentially axially. These flanges should result in a form fit between the longitudinally oriented shells in the radial direction in the manner of a tongue and groove principle, but should also ensure such a fit in the axial direction. To do this, the sheets have to be deformed in several axes, which is only possible with deep drawing. The disadvantage here was that the precision required to be able to assemble these towers at all can only be achieved if relatively thin metal sheets are used. In order to bring about stabilization here, these longitudinally oriented shells are designed as double-walled shells, which, however, results in a significantly higher construction effort and also requires reworking.
Erfindungsgemäß wird das Rohrturmbauwerk aus Rohrsegmenten gefertigt, welche aus längsorientierten Schalen hergestellt sind, so dass das Rohrturmbauwerk in Teillängen, die noch transportierbar sind oder, bei einer noch transportierbaren Länge, in seiner vollen Länge errichtet wird. Hierzu werden aus Stahlblech entsprechende Bahnen beziehungsweise Platinen gefertigt, welche dann in kleinen Abkantschritten zu den gewölbten Schalen verformt werden, so dass sie mit weiteren Schalen zusammengesetzt ein Rohrsegment bilden.According to the invention, the tubular tower structure is made of tubular segments, which are made of longitudinally oriented shells, so that the tubular tower structure is erected in partial lengths that can still be transported or, if the length is still transportable, in its full length. For this purpose, corresponding webs or blanks are made from sheet steel, which are then formed into the curved shells in small folding steps, so that they form a tube segment when combined with other shells.
Diese längs orientierten Schalen sind somit aus einer Vielzahl von einzelnen zueinander abgekanteten Flächen ausgebildet. Beispielsweise besteht eine gewölbte Schale aus 5 bis 30, insbesondere 10 bis 20, zueinander abgekanteten Flächen, wobei die abgekanteten Flächen entsprechend der Schalenbreite und damit dem Teilumfang, den jede Schale bezüglich eines Rohrturmbauwerks darstellt, zwischen 1° und 8° und insbesondere zwischen 3° und 6° zueinander gewinkelt abgekantet sind.These longitudinally oriented shells are thus formed from a large number of individual surfaces which are folded over relative to one another. For example, a curved shell consists of 5 to 30, in particular 10 to 20, mutually beveled surfaces, the beveled surfaces corresponding to the shell width and thus the partial circumference that each shell has with respect to a tubular tower structure represents, between 1 ° and 8 ° and in particular between 3 ° and 6 ° are bent at an angle to each other.
Die verwendeten Materialstärken für die Schalen liegen zwischen 20 mm und 100 mm, insbesondere zwischen 40 mm und 100 mm.The material thicknesses used for the shells are between 20 mm and 100 mm, in particular between 40 mm and 100 mm.
Die Längs- bzw. Hochkanten der Schalen werden bezogen auf die Breite der Schale (bzw. den damit bewirkten Teilumfang eines Rohrsegments) mit einem Übermaß ausgebildet. Dieses Übermaß wird radial nach innen oder radial nach außen einfach, d. h. nicht mehrfach oder in sich verformt, abgekantet und bildet einen ebenen, geradlinigen Verbindungsflansch zur Verbindung mit benachbarten Schalen zur Erzeugung eines Rohrs oder Rohrsegments.The longitudinal or high edges of the shells are oversized in relation to the width of the shell (or the partial circumference of a pipe segment caused by it). This interference becomes simple radially inward or radially outward, i. H. not deformed multiple times or in itself, folded and forms a flat, straight connecting flange for connecting to adjacent shells to create a tube or tube segment.
Der Kantwinkel des jeweiligen radial nach innen oder radial nach außen weisenden Flansches von dem jeweils direkt benachbarten abgekanteten ebenen Bereich der Schalenaußenwandung richtet sich selbstverständlich nach der Anzahl der Schalen, aus denen der gesamte kreisförmige Turmquerschnitt erstellt wird.The edging angle of the respective radially inwardly or radially outwardly pointing flange of the respective directly adjacent folded planar area of the outer shell wall naturally depends on the number of shells from which the entire circular tower cross section is created.
Radial bedeutet hierbei senkrecht auf dem Umfang des aus den Schalen zusammengesetzten Rohrkörpers.In this context, radial means perpendicular to the circumference of the tubular body composed of the shells.
Weitere Rohrsegmente können hierauf aufgesetzt und an horizontalen Kanten verschweißt werden, bis ein Rohrabschnitt oder ein vollständiges Rohrturmbauwerk ausgebildet ist. Alternativ kann eine Verbindung über horizontale Ringflansche erfolgen. In die abgekanteten Flansche werden die erforderlichen Löcher zum Durchstecken von Schraubbolzen und Verschrauben der Flansche benachbarter Schalen eingebracht, beispielsweise durch Bohren oder Brennen, insbesondere mit Laser.Further pipe segments can be placed on top of this and welded at horizontal edges until a pipe section or a complete pipe tower structure is formed. Alternatively, a connection can be made via horizontal annular flanges. The necessary holes for inserting bolts and screwing the flanges of adjacent shells are made in the beveled flanges, for example by drilling or burning, in particular with a laser.
Es hat sich herausgestellt, dass bei derart dicken Stahlplatten von 20 mm bis 100 mm, wie sie für Unterbautürme verwendet werden, eine Abkantung sehr präzise Verbindungen zulässt und sowohl durch das Abkanten an sich, aber auch durch das anschließende Erzeugen der Löcher die Verbindungen sehr wirtschaftlich erzeugt werden können. Insbesondere ergibt das Abkanten in kleinen Abkantwinkeln der Außenwand der Schalen sehr präzise Wölbungen mit einer hohen Eigensteifigkeit.It has been shown that with steel plates of the thickness of 20 mm to 100 mm, as used for substructure towers, a fold allows very precise connections and the connections are very economical both through the fold itself and through the subsequent creation of the holes can be generated. In particular, bending the outer wall of the shells at small bending angles results in very precise curvatures with a high degree of inherent rigidity.
Zudem hat sich herausgestellt, dass eine Abkantung gerade bei Platten dieser Stärke (20 mm bis 100 mm) besonders spannungsarm und stabil ist, wobei durch die Kombination aus Plattenstärke und Abkantung die Schraubverbindungen nicht sehr eng toleriert sein müssen und keiner hochfesten Schrauben bedürfen.In addition, it has been found that a chamfer, especially with panels of this thickness (20 mm to 100 mm), is particularly low-stress and stable, whereby the combination of panel thickness and chamfer means that the screw connections do not have to have very narrow tolerances and no high-strength screws are required.
An das Rohrsegment werden auf die jeweiligen Stirnkanten der Schalen Ringflanschsegmente stirnseitig angeschweißt, die als Adapter zu einem Fundament, weiteren Rohrsegmenten oder einem (konstruktiv bestehenden) Rohrturmbauwerk und insbesondere Windenergieanlagenturm dienen.Annular flange segments are welded to the front of the pipe segment on the respective end edges of the shells, which serve as an adapter to a foundation, further pipe segments or a (structurally existing) pipe tower structure and in particular a wind turbine tower.
Durch das Aufschweißen der Ringflanschsegmente und die abgekanteten Flansche ergibt sich praktischerweise ein gewisser Abstand zwischen den horizontalen Ringflanschen und den vertikalen abgekanteten Flanschen, da die Ringflanschsegmente auf die Stirnkanten der abgekanteten Schalen aufgeschweißt werden müssen. Diese sich ergebenden und bei vollständig zusammengesetzten Türmen nach außen weisenden Öffnungen werden mit speziellen, hierfür angeformten Kunststoffelementen verschlossen.The welding on of the annular flange segments and the folded flanges practically results in a certain distance between the horizontal annular flanges and the vertical folded flanges, since the annular flange segments have to be welded onto the end edges of the folded shells. These resulting openings, which point outwards when the towers are fully assembled, are sealed with special plastic elements that are molded on for this purpose.
Die Schalen werden anschließend zur Baustelle transportiert und dort entsprechend zu einem Rohrturmbauwerk zusammengestellt und durch die Flansche hindurch miteinander verbunden.The shells are then transported to the construction site and assembled there to form a tubular tower structure and connected to one another through the flanges.
Beispielsweise wird ein Unterturm aus einer Mehrzahl von 7 m langen Rohrsegmenten ausgebildet, wobei diese Rohrsegmente jeweils aus einer Mehrzahl von 7 m langen entsprechenden Schalen bestehen.For example, a lower tower is formed from a plurality of 7 m long pipe segments, these pipe segments each consisting of a plurality of 7 m long corresponding shells.
Da übliche Windenergieturmbauwerke einen Fußdurchmesser von 4,3 m, die Unterbautürme aus Stabilitätsgründen jedoch Durchmesser bis 7 m und darüber hinaus haben, muss über die Höhe des Unterbauturmes eine Anpassung des Fußdurchmessers von 7 m auf einen Kopfdurchmesser von 4,3 m erreicht werden.Since normal wind energy tower structures have a base diameter of 4.3 m, but the substructure towers have diameters of up to 7 m and more for reasons of stability, the base diameter must be adjusted from 7 m to a head diameter of 4.3 m via the height of the substructure tower.
Dies kann einerseits dadurch erreicht werden, dass die einzelnen Rohrsegmente konisch verlaufen, d. h. eine Kegelstumpfform haben, so dass eine einheitliche Verjüngung des Unterbauturmes von beispielsweise 7 m auf beispielsweise 4,3 m erfolgt.On the one hand, this can be achieved in that the individual tube segments run conically, i. H. have a truncated cone shape, so that the substructure tower tapers uniformly from, for example, 7 m to, for example, 4.3 m.
Erfindungsgemäß hat es sich jedoch herausgestellt, dass ein besonders stabiler Unterbauturm auch dann erreicht wird, wenn der Unterbauturm aus zylindrischen Rohrsegmenten mit einer Höhe von beispielsweise 7 m errichtet wird und kopfseitig dann ein letztes Adapterelement bzw. ein Adapterrohrsegment aufgesetzt wird, der sich von 7 m Fußdurchmesser auf 4,3 m Kopfdurchmesser verjüngt und insofern einen Kegelstumpf auf dem ansonsten zylindrischen Unterbaurohrturmbauwerk ergibt.According to the invention, however, it has been found that a particularly stable substructure tower is also achieved if the substructure tower is erected from cylindrical tube segments with a height of, for example, 7 m and then a last adapter element or adapter tube segment is placed on the head side, which extends from 7 m Base diameter tapered to 4.3 m head diameter and in this respect results in a truncated cone on the otherwise cylindrical tubular tower structure.
Erfindungsgemäß wird zwischen den Rohrsegmenten bzw. den horizontalen, L-förmigen Flanschen der Rohrsegmente ein Torsionsausgleichsring angeordnet. Der erfindungsgemäße Torsionsausgleichsring sorgt dafür, dass bei Torsionsbelastungen des Turmes der Kraftfluss von einem L-Flansch in den anderen durch die jeweiligen Schrauben optimal verläuft, indem alle L-Flansche der jeweiligen Schalen aktiviert werden und so eine Vergleichmäßigung stattfindet. Dies sorgt für die hervorragende Stabilität und geringe Eigenfrequenz des Turmes.According to the invention, a torsion compensation ring is arranged between the pipe segments or the horizontal, L-shaped flanges of the pipe segments. The torsion compensation ring according to the invention ensures that when the tower is subject to torsional loads, the power flow passes from one L-flange to the other the respective screws runs optimally, in that all L-flanges of the respective shells are activated and thus an equalization takes place. This ensures the excellent stability and low natural frequency of the tower.
Bei der Erfindung ist von Vorteil, dass die Flansche und die Abkantung der Flansche mit der Rohrturmbauwerkswandung außerordentlich präzise und nachvollziehbar genau ist. Ferner ist von Vorteil, dass die Abkantung, Verschraubung, horizontale Schweißungen und das anschließende Trennen des Rohrturmbauwerks in die Schalenelemente unter nachvollziehbaren Bedingungen am Herstellort erfolgen kann, wobei eine entsprechende Nachprüfung am Herstellort erfolgen kann.The advantage of the invention is that the flanges and the edging of the flanges with the tubular tower structure wall is extremely precise and verifiably accurate. It is also advantageous that the bending, screwing, horizontal welding and subsequent separation of the tubular tower structure into the shell elements can be carried out under comprehensible conditions at the place of manufacture, with a corresponding verification being able to take place at the place of manufacture.
Es hat sich herausgestellt, dass das Schwingungsverhalten bzw. Eigenschwingungsverhalten erfindungsgemäßer Rohrturmbauwerke mit 0,215 Hz und darunter alle Erwartungen übertrifft und besonders gut gedämpft ist.It has been found that the vibration behavior or natural vibration behavior of tubular tower structures according to the invention at 0.215 Hz and below exceeds all expectations and is particularly well damped.
Zudem hat sich herausgestellt, dass sich bei der erfindungsgemäßen Methode, wonach die Flansche nach innen oder nach außen von den Schalen abgekantet werden, eine höhere Stabilität ergibt als bei Längsflanschen, die an die Längsstoßfläche angeschweißt werden.In addition, it has been found that the method according to the invention, according to which the flanges are bent inwards or outwards from the shells, results in greater stability than with longitudinal flanges that are welded to the longitudinal joint surface.
Die Erfindung wird anhand einer Zeichnung beispielhaft erläutert. Es zeigen dabei:
- Figur 1:
- eine isometrische, schematische Ansicht eines erfindungsgemäßen Rohrturmbauwerks;
- Figur 2:
- eine Seitenansicht des Rohrturmbauwerks nach
Fig. 1 ; - Figur 3:
- ein Querschnitt durch ein erfindungsgemäßes Rohrturmbauwerk mit gedreht angeordnetem Adapterelement, so dass die Flansche fluchtend dargestellt sind;
- Figur 4:
- einen Schnitt B-B gemäß
Fig. 3 ; - Figur 5:
- einen Schnitt G-G gemäß
Fig. 3 ; - Figur 6:
- einen Schnitt C-C gemäß
Fig. 3 ; - Figur 7:
- einen Schnitt F-F gemäß
Fig. 6 ; - Figur 8:
- einen Schnitt E-E gemäß
Fig. 9 ; - Figur 9:
- einen Schnitt D-D gemäß
Fig. 6 ; - Figur 10:
- eine teilgeschnittene Ansicht im Stoßbereich zweier Rohrsegmente mit dem erfindungsgemäßen Torsionsausgleichsring;
- Figur 11:
- einen Schnitt durch den Stoßbereich zwischen zwei Rohrsegmenten mit dem zwischen den L-Flanschen angeordneten Torsionsausgleichsring;
- Figur 12:
- eine perspektivische Detailansicht der Anordnung von Torsionsausgleichsringsegmenten zwischen den L-Flanschen;
- Figur 13:
- eine weitere Ausführungsform eines erfindungsgemäßen Rohrturmbauwerk aus einem unteren und einem oberen Rohrsegment mit Schalen und einer Türschale zusammengesetzt;
- Figur 14:
- eine Teilschale aus einem unteren Rohrsegment eines Rohrturmbauwerks nach
Fig. 13 ; - Figur 15:
- eine weitere Teilschale aus einem unteren Rohrsegment des Rohrturmbauwerks nach
Fig. 13 ; - Figur 16:
- eine Teilschale aus einem oberen Rohrsegment des Rohrturmbauwerks nach
Fig. 13 ; - Figur 17:
- eine Teilschale aus einem oberen Rohrsegment des Rohrturmbauwerks nach
Fig. 13 ; - Figur 18:
- eine modular aufgebaute Türschale eines Rohrturmbauwerks nach
Fig. 13 ; - Figur 19:
- die schmale Teilschale aus dem Fußbereich der Türschale;
- Figur 20:
- eine weitere Teilschale aus der Türschale;
- Figur 21:
- ein Adapterstück;
- Figur 22:
- einen Torsionsring;
- Figur 23:
- eine zusammengesetzte Schale eines unteren Rohrsegments;
- Figur 24:
- eine zusammengesetzte Schale eines oberen Rohrsegments;
- Figur 25:
- die schmale Teilschale der Türschale mit Flanschen;
- Figur 26:
- die Türteilschale;
- Figur 27:
- eine zusammengesetzte Schale.
- Figure 1:
- an isometric, schematic view of a tubular tower structure according to the invention;
- Figure 2:
- a side view of the
tubular tower structure 1 ; - Figure 3:
- a cross section through a tubular tower structure according to the invention with a rotated adapter element, so that the flanges are shown aligned;
- Figure 4:
- a cut according to
BB 3 ; - Figure 5:
- a cut according to
GG 3 ; - Figure 6:
- a cut according to
CC 3 ; - Figure 7:
- according to a
section FF 6 ; - Figure 8:
- a cut according to
EE 9 ; - Figure 9:
- a cut according to
DD 6 ; - Figure 10:
- a partially sectional view in the joint area of two pipe segments with the torsion compensation ring according to the invention;
- Figure 11:
- a section through the joint area between two pipe segments with the torsion compensation ring arranged between the L-flanges;
- Figure 12:
- a detailed perspective view of the arrangement of torsion compensation ring segments between the L-flanges;
- Figure 13:
- a further embodiment of a tubular tower structure according to the invention composed of a lower and an upper tube segment with shells and a door shell;
- Figure 14:
- a partial shell from a lower tubular segment of a
tubular tower structure 13 ; - Figure 15:
- another partial shell from a lower tubular segment of the
tubular tower structure 13 ; - Figure 16:
- a partial shell from an upper tubular segment of the
tubular tower structure 13 ; - Figure 17:
- a partial shell from an upper tubular segment of the
tubular tower structure 13 ; - Figure 18:
- a modular door shell of a
tubular tower structure 13 ; - Figure 19:
- the narrow partial shell from the foot area of the door shell;
- Figure 20:
- another partial shell from the door shell;
- Figure 21:
- an adapter piece;
- Figure 22:
- a torsion ring;
- Figure 23:
- a composite shell of a lower tubular segment;
- Figure 24:
- a composite shell of an upper tube segment;
- Figure 25:
- the narrow partial shell of the door shell with flanges;
- Figure 26:
- the door part shell;
- Figure 27:
- a composite shell.
Ein erfindungsgemäßes Rohrturmbauwerk 1 ist insbesondere ein Unterbauturm für bestehende Windenergieturmkonstruktionen und besitzt einen Kopfbereich 2, auf den ein weiteres Rohrturmbauwerk und insbesondere ein Windenergieturm aufgesetzt angeordnet werden kann.A
Zudem besitzt das erfindungsgemäße Rohrturmbauwerk 1 einen Fußbereich 3, mit dem das Rohrturmbauwerk an einem Fundament angeordnet werden kann.In addition, the
Die möglichen Durchmesser des Rohrturmbauwerkes im Fußbereich betragen 7 m bis 8 m, können jedoch auch deutlich darüber liegen.The possible diameters of the tubular tower structure in the foot area are 7 m to 8 m, but can also be significantly larger.
Der Durchmesser des Rohrturmbauwerkes 1 im Kopfbereich 2 wird durch den Durchmesser eines aufzusetzendes Rohrturmbauwerkes, insbesondere Windenergieturms, bestimmt und liegt üblicherweise bei 4,3 m, kann gegebenenfalls aber auch darüber oder darunter liegen.The diameter of the
Das erfindungsgemäße Rohrturmbauwerk 1 ist hierbei aus zumindest einem Rohrsegment 4 oder aus einer Mehrzahl von axial aufeinanderfolgenden Rohrsegmenten 4 ausgebildet.The
Bei einer Ausführungsform des Rohrturmbauwerks 1 (
Bei dieser Ausführungsform des Rohrturmbauwerks 1 ist das oberste Rohrsegment 4 kegelstumpfförmig ausgebildet, wobei es sich von einem Rohrsegmentfußbereich 5 zu einem Rohrsegmentkopfbereich 6 vom Durchmesser des Fußbereichs 3 des Rohrturmbauwerks 1 zum Durchmesser im Kopfbereich 2 des Rohrturmbauwerks 1 verjüngt.In this embodiment of the
Dies bedeutet, dass das oberste Rohrsegment 4 als einziges der Rohrsegmente des Rohrturmbauwerks 1 kegelstumpfförmig ausgebildet ist, während die übrigen Rohrsegmente 4 zylindrisch ausgebildet sind.This means that the
Da die einzelnen Rohrsegmente 4 einen Durchmesser besitzen, der größer ist als ein Rohrdurchmesser, der logistisch noch zu verkraften, also transportabel, wäre (Brückenhöhe, Straßenbreite), sind die Rohrsegmente 4 zerlegbar bzw. zusammensetzbar ausgebildet. Hierzu ist jedes Rohrsegment 4 aus einer Mehrzahl von Schalen 7 ausgebildet.Since the
Eine Schale 7 erstreckt sich über einen Teilumfang des Rohrsegments 4 und über die axiale Länge des Rohrsegments 4, so dass durch die Anordnung mehrerer Schalen 7 in Umfangsrichtung ein Rohrsegment 4 ausgebildet wird.A
Die Schalen 7 sind somit im Querschnitt als Ringsegmente mit einer ringsegmentförmig gewölbten Mantelfläche 8 ausgebildet und besitzen hierdurch axial verlaufende Längskanten 9 und horizontal verlaufende Stirnkanten 10 (
Die Mantelfläche 8 der Schalen 7 ist zur Erzielung einer Kreisringsegmentform nicht in diese Form gebogen, sondern mit einer Mehrzahl von Abkantschritten entsprechend abgekantet. Hierdurch ergibt sich eine Mehrzahl von ebenen Flächen 8a, welche entlang von Abkantungskanten 8b zueinander gewinkelt ausgebildet sind. Hierbei wird je nach Breite der Schale eine Anzahl von 5 bis 30 ebenen Flächen 8a angestrebt.The
Letztlich wird somit die Anzahl der Flächen 8a und damit auch der Kanten 8b durch die Zahl der Schalen 7 einerseits und dem Umfang des Turmes andererseits bestimmt, da durch die Fläche 8a ein Kreisring angenähert werden soll.Ultimately, the number of
Die Stabilität der Schalen, und damit des Turmes, und die geringe Eigenfrequenz des Turmes wird durch eine Mehrzahl von Flächen 8a und Kanten 8b positiv beeinflusst, so dass der gesamte Turm nicht nur aus einem Polygon mit beispielsweise zehn Ecken besteht, bzw. jede einzelne Schale nicht nur aus einem Polygon mit zwei oder drei Biegekanten besteht.The stability of the shells, and thus of the tower, and the low natural frequency of the tower is positively influenced by a plurality of
Die Breite der einzelnen Flächen 8a ist ebenfalls von der Breite der gesamten Schale 7 abhängig, wobei die einzelnen Flächen 8a jeweils mit einem Winkel zwischen 1° und 8°, insbesondere 3° und 6° zueinander gewinkelt ausgebildet sind. Der jeweilige Abkantwinkel der Flächen 8a zueinander hängt von der Anzahl der Flächen 8a und der Breite der Schale 7 und selbstverständlich der Anzahl der Schalen 7 und dem Turmumfang ab, da die Flächen den Gesamtumfang der Schale 7 unterteilen und damit die einzelnen Abkantwinkel einen entsprechenden Bruchteil des Gesamtwinkels des Umfangs der Schale 7 sind.The width of the
Von den Längskanten 9 erstrecken sich einstückig von der Mantelfläche 8 zum Rohrinneren bzw. Rohräußeren aus der Mantelfläche 8 nach innen oder nach außen abgekantete, radial verlaufende Längsflansche 11. Die Längsflansche 11 besitzen hierbei eine Mehrzahl von in Längsrichtung aufeinanderfolgende Bohrungen 12 oder Durchtrittsöffnungen 12 zum Verbinden der Längsflansche 11 benachbarter Schalen 7 miteinander.From the
Die Längsflansche sind mit einer jeweiligen axialen Stirnkante 11a jeweils ein Stück axial von den axialen Stirnkanten 10 der Schale 7 beabstandet, beispielsweise mit einer Stufe 11b.The longitudinal flanges each have a respective axial
Bedingt durch die Materialstärke und die starke Abkantung nach innen, besitzen die Längsflansche 11 zur Mantelfläche 8 der Schale 7 einen Abkantradius 11c.Due to the thickness of the material and the strong inward fold, the
Die Schalen 7 sind vorzugsweise aus Stahl ausgebildet und besitzen eine Dicke, die zur Verwendung als Unterbauturm für bestehende Windenergieturmkonstruktionen geeignet ist, von mehr als 26 mm, insbesondere mehr als 40 mm bis 100 mm.The
Um eine Mehrzahl von Rohrsegmenten 4 aufeinander anordnen zu können, bzw. das unterste Rohrsegment 4 an einem Fundament anzuordnen, besitzen die jeweiligen Schalen 7 der Rohrsegmente 4 entlang ihrer Stirnkanten 10 auf Stoß aufgesetzte und insbesondere aufgeschweißte, im Querschnitt L-förmige Horizontalflansche 13. Hierdurch wird je ein in montiertem Zustand unterer Schalenfuß 30 und ein in montiertem Zustand oberer Schalenkopf 31 gebildet.In order to be able to arrange a plurality of
Die Horizontalflansche 13 bilden selbst je ein entsprechendes Ringsegment einer Länge, die der Breite einer Schale 7 über ihre Mantelfläche 8 inklusive der Stärke der Längsflansche 11 entspricht. Dies verursacht, dass die Horizontalflansche 13 der jeweiligen Schalen 7 nach dem Zusammensetzen des Rohrsegments 4 einen geschlossenen Ring bilden, wobei die Stoßkanten 14 der Horizontalflansche 13 aneinanderstoßen (
Um ein Rohrsegment 4 auszubilden, wird dementsprechend eine Mehrzahl von Schalen 7, z. B. acht Schalen 7, mit einer gegebenen Breite über ihre Mantelfläche 8 und den entsprechenden Längsflanschen 11 aneinander angeordnet, wobei die Bohrungen 12 von entsprechenden Verbindungsmitteln durchgriffen und die Flansche miteinander verbunden werden.Accordingly, in order to form a
Dementsprechend bilden die Horizontalflansche 13 der miteinander verbundenen Schalen einen Flanschring aus den Horizontalflanschen 13.Accordingly, the
Um zwei Rohrsegmente 4 aneinander anzuordnen werden die Rohrsegmente 4 mit ihren Horizontalflanschen 13 und Bohrungen 12 in den Horizontalflanschen 13 fluchtend übereinandergesetzt.In order to arrange two
Erfindungsgemäß wurde herausgefunden, dass das direkte Aufeinandersetzen der Horizontalflansche 13 dazu führt, dass Torsionsspannungen innerhalb des Rohrturmbauwerks 1 nicht zuverlässig übertragen werden und der Kraftfluss an vielen Stellen nicht optimal ist oder unterbrochen wird.According to the invention, it was found that placing the
Erfindungsgemäß wurde erkannt, dass die Anordnung eines Torsionsringes 15 zwischen den Flanschringen aus den Horizontalflanschen 13 zu einer Aktivierung aller einzelnen Horizontalflansche 13 und zu einem gleichmäßigen Lasteintrag in die entsprechenden Schraubbolzen 16 führt. Dies führt dazu, dass das erfindungsgemäße Rohrturmbauwerk eine besonders niedrige Eigenfrequenz und hohe Stabilität besitzt.According to the invention, it was recognized that the arrangement of a
Der Torsionsring 15 ist ein Ring mit einem Außendurchmesser, der dem Außendurchmesser des Flanschringes aus den Horizontalflanschen 13 in etwa entspricht, und mit einem Innendurchmesser, der ebenfalls dem Innendurchmesser des Flanschringes aus den Horizontalflanschen 13 in etwa entspricht.The
Der Torsionsring 15 besitzt hierbei eine Dicke, die etwa ein Drittel bis zwei Drittel seiner Breite, d. h. des Unterschieds zwischen Innen- und Außendurchmesser entspricht, wobei der Dickenwert jedoch im Wesentlichen von statischen Berechnungen abhängt und auch hiervon abweichen kann.The
Der Torsionsring 15 kann hierbei abhängig vom Durchmesser des Rohrturmbauwerks 1 einstückig ausgebildet sein, bei großen Durchmessern des Rohrturmbauwerks 1 kann er auch mehrteilig ausgebildet sein.Depending on the diameter of the
Um eine besonders gute Lastverteilung zu erzielen werden die Trennlinien 17 des Torsionsrings 15 so angeordnet, dass sie gerade nicht im Bereich der Stoßkanten 14 der Horizontalflansche 13 liegen.In order to achieve a particularly good load distribution, the
Zudem kann zum Erzielen einer besonders guten Lastverteilung und einer besonders guten Aktivierung der einzelnen Horizontalflansche 13 der Torsionsring im Bereich seiner Trennungen bezüglich der Dicke halbiert sein, so dass eine Stufe 18 entsteht (
Der Torsionsring 15 kann aus einer Mehrzahl von Torsionsringsegmenten ausgebildet sein, wobei die Anzahl der Torsionsringsegmente der Anzahl der Schalen 7 entsprechen kann, aber auch höher oder geringer sein kann. Wesentlich ist, dass die Längskanten 9 der Schalen 7 sowie die Stoßkanten 14 der Horizontalflansche 13 einerseits und die Trennlinien 17 der Torsionsringsegmente andererseits versetzt zueinander, d. h. nicht fluchtend, angeordnet sind.The
Bei einer weiteren vorteilhaften Ausführungsform ist das Rohrturmbauwerk insgesamt im Wesentlichen konisch ausgebildet (Figuren 13 bis 27). Bei einem sich vom Fußbereich 3 zum Kopfbereich 2 stetig verjüngenden und somit konischen Rohrturmbauwerk 1 sind dementsprechend auch die einzelnen Rohrsegmente 4 konisch ausgebildet, so dass sich deren Durchmesser von einem Rohrsegmentfußbereich 5 zu einem Rohrsegmentkopfbereich 6 verringert, so dass jedes Rohrsegment 4 einen Kegelstumpf ausbildet. Dementsprechend sind die Schalen 7 dann als Kegelstumpfsegmente ausgebildet.In a further advantageous embodiment, the tubular tower structure is of essentially conical design overall (FIGS. 13 to 27). In the case of a
Dementsprechend sind die Schalen 7 auch in einem Fußbereich 30 breiter und in einem Kopfbereich 31 schmaler, so dass die Mantelflächen 8 konische Rohrsegmente 4 und einen insgesamt konischen Turm (
Hierbei kann das Rohrturmbauwerk bzw. können unterschiedliche Rohrsegmente 4a, 4b des Rohrturmbauwerks aus unterschiedlich ausgebildeten Teilschalen 7a, 7b, 70, 71, 72 ausgebildet sein.In this case, the tubular tower structure or
Hierbei sind bei diesem Rohrturmbauwerk 1 die Schalen 7 der Rohrsegmente 4a, die in einem Fußbereich 3 des Rohrturmbauwerks verbaut werden, unterschiedlich zu den Schalen 7, die im Bereich eines oberen Rohrsegments 4b verbaut werden, ausgebildet.In this
Die Rohrsegmente 4a, 4b können dabei je aus sich über die axiale Länge erstreckenden Schalen 7 oder z. B. zwei axial aneinander angrenzenden Teilschalen 7a, 7b ausgebildet sein, wobei die Teilschalen 7a, 7b entlang gemeinsamer aneinander anliegender Stirnkanten 10 miteinander verschweißt sind.The
Die Teilschalen 7a, 7b, die in einem oberen Rohrsegment 4b verbaut werden (
Im Bereich des unteren Rohrsegments 4a haben die Teilschalen 7a, 7b beispielsweise zehn abgekantete, ebene Flächen 8a, während im Bereich des oberen Rohrsegments 4b beispielsweise nur fünf bis sechs Flächen 8a vorhanden sind.In the area of the
Wie bereits ausgeführt, sind die Teilschalen 7a, 7b eines jeweiligen Rohrsegments direkt miteinander verschweißt und nicht über Flansche miteinander verbunden.As already stated, the
Gleichwohl können auch diese Teilschalen 7a, 7b über Flansche miteinander verbunden sein (nicht gezeigt).Nevertheless, these
Zwischen diesen Flanschen können dann auch dementsprechend Torsionsringe 15 (nicht gezeigt) angeordnet sein.Correspondingly, torsion rings 15 (not shown) can then also be arranged between these flanges.
Erfindungsgemäß wird ein dementsprechendes Rohrturmbauwerk 1 insbesondere als Unterbauturm für bestehende Windenergieanlagenkonstruktionen modular aufgebaut, wobei im Fußbereich 3 das Bauwerk mit einem Flanschring 60 an einem Fundament angeordnet wird, von dem aus sich die entsprechenden Teilschalen 7a, 7b, entsprechend entlang ihrer Längsflansche 11 verschraubt, bis zu einem Torsionsring 15 axial erstrecken. Die Teilschalen 7a, 7b ergeben somit eine Schale 7.According to the invention, a corresponding
In einem Bereich, in dem eine Tür im Unterbau vorzusehen ist, wird eine modulare Konstruktion vorgenommen, wobei eine Schale 7 in diesem Bereich modular aus einem ersten schmalen Teilschalenabschnitt 70 ausgebildet wird, auf welchen ein Türabschnitt 71 axial aufgesetzt ist, wobei der Türabschnitt 71 im Wesentlichen dem Querschnitt einer Schale 7 besitzt, jedoch eine Türöffnung 71a vorgesehen ist.In an area in which a door is to be provided in the substructure, a modular construction is carried out, with a
Axial hieran anschließend ist eine Teilschale 72 angeordnet, wobei sich die Teilschale 72 axial um die Länge einer Teilschale 7a, vermindert um die Höhe des Abschnitts 70 und des Türabschnitts 71 erstreckt, und sich gegebenenfalls eine Teilschale 7b axial anschließt.A
Der schmale Teilschalenabschnitt 70, welcher den Türabschnitt 71 von dem Fußbereich 3 bzw. dem Anschluss an ein Fundament beabstandet, besitzt eine Höhe, die in etwa der Innenhöhe eines in den Turm eingebrachten Bodens und/oder einer Anschüttung von außen beträgt, so dass die Tür bzw. der Türabschnitt 71 bei der Errichtung des Turmes zunächst weggelassen werden kann und ein Betreten des Turminneren zu ebener Erde mit einem erheblich größeren Eingangsquerschnitt ermöglicht wird, so dass große Einbauten (Aufzug, etc.) eingebracht werden können.The narrow
Durch die geschraubte und mit ebenen, geraden Flanschen versehene Konstruktion kann ein Türabschnitt 71 jederzeit herausgenommen oder eingesetzt werden.The bolted and flat, straight flanged construction allows a
Auf das untere Rohrsegment 4a und das obere Rohrsegment 4b ist gegebenenfalls ein nicht aus Schalen sondern als Schweißkonstruktion ausgebildeter Kegelstumpf 80 (
Eine vollständige Schale 7 eines ersten Rohrsegments (
In gleicher Weise (gleiche Teile sind mit gleichen Bezugszeichen versehen) sind die Schalen 7 des oberen Rohrsegments 4b ausgebildet (
Die Zahl der axial aufeinanderfolgenden Rohrsegmente 4 ist dabei von der geplanten Höhe des Unterbauturmes und von der axialen Länge der Rohrsegmente abhängig. Somit ist die Zahl nicht auf zwei Rohrsegmente festgelegt, sondern kann von lediglich einem Rohrsegment bis zu einer Vielzahl von Rohrsegmenten reichen, wobei die Konizität des oder der einzelnen Segmente an die Gesamtkonizität des Unterbauturmes anzupassen ist und somit auch der jeweilige Kopf- und Fußdurchmesser.The number of axially
Ebenso ist die Zahl der Teilschalen nicht auf zwei festgelegt, ebensowenig wie das axiale Längenverhältnis der Teilschalen zueinander. Es kann sich um eine einstückige Schale handeln oder eine Schale, die aus einer Vielzahl von axial aufeinanderfolgenden Teilschalen ausgebildet ist.Likewise, the number of partial shells is not fixed at two, nor is the axial length ratio of the partial shells to one another. It can be a one-piece shell or a shell that is formed from a large number of partial shells that follow one another in the axial direction.
Bei der Erfindung ist von Vorteil, dass ein Rohrturmbauwerk 1 aus Rohrabschnitten 4, welche zylindrisch und/oder konisch sind, vollständig in einer entsprechenden Fabrikationseinrichtung hergestellt wird. Unter vorbestimmten Bedingungen, welche geringste Toleranzen zulassen, werden Flansche, welche sich längs beziehungsweise axial erstrecken, nach außen oder nach innen von der Mantelfläche abgekantet und das Rohrturmbauwerk hierdurch durch zumindest zwei Teilschalen, vorzugsweise mehrere Teilschalen, insbesondere vier bis vierzehn Teilschalen, untergliedert, welche gut, auch auf Straßen, zu transportieren sind.The advantage of the invention is that a
An einer Errichtungsstelle des Rohrturmbauwerks werden die Teilschalen (wieder) miteinander verbunden, wobei dies in besonders einfacher Weise geschieht, da die Teilschalen absolut passgenau aufeinander abgestimmt sind. Im Gegensatz zu herkömmlichen Errichtungskonzepten, bei denen ein solches Rohrturmwerk aus einzelnen fertig geschweißten Rohrsegmenten zusammengestellt und verschweißt wird, kann die Montage eines solchen großen Rohrturmbauwerks in einem Bruchteil der Montagezeit geschehen, wobei zusätzlich ein Rohrturmbauwerk mit sehr großem Durchmesser, insbesondere Durchmessern am Fuß > 7 m, realisiert werden kann. Zudem machen die ebenen, geradlinigen Flansche die Montage einfach.The partial shells are (again) connected to one another at an erection site of the tubular tower structure, and this is done in a particularly simple manner, since the partial shells are matched to one another with an absolutely precise fit. In contrast to conventional construction concepts, in which such a tubular tower is assembled and welded from individual, ready-welded pipe segments, the assembly of such a large tubular tower structure can take place in a fraction of the assembly time, with a tubular tower structure with a very large diameter, especially diameters at the base > 7 m, can be realized. In addition, the flat, straight flanges make assembly easy.
Insbesondere ist von Vorteil, dass mit einem solchen Rohrturmbauwerk in einfacher, kostengünstiger und schnell zu montierender Weise ein sehr hoher Unterbau für bekannte Rohrtürme, welche Windenergieanlagen tragen, erstellt werden kann, so dass übliche Windenergieanlagen höher in den Wind gebracht werden können und damit die Effektivität gesteigert werden kann.In particular, it is advantageous that with such a tubular tower structure, a very high substructure for known tubular towers that carry wind turbines can be created in a simple, inexpensive and quick-to-assemble manner, so that conventional wind turbines can be brought higher into the wind and thus improve their effectiveness can be increased.
Es ist darüber hinaus von Vorteil, dass die Kombination von relativ dicken, durch Abkanten gewölbten Stahlblechen einerseits, abgekanteten Flanschen andererseits und Flanschverbindungen mit einem Torsionsring ein Rohrturmbauwerk 1 mit einer sehr geringen Eigenfrequenz ergibt, welches in hervorragender Weise die durch ein aufgesetztes Rohrturmbauwerk eingetragenen Lasten ableitet. Bei dem erfindungsgemäßen Torsionsring 15 zwischen den Horizontalflanschen 13 ist von Vorteil, dass hierdurch eine ideale Aktivierung aller Horizontalflansche 13 aller Schalen 7 und insbesondere aller Bolzen 16 gelingt.It is also advantageous that the combination of relatively thick steel sheets curved by beveling on the one hand, beveled flanges on the other hand and flange connections with a torsion ring results in a
Die Verbindung sowohl der Längsflansche als auch der Horizontalflansche kann hierbei mit Schrauben bzw. Schraubbolzen, Nieten, Schrauben mit Presshülsen oder Schließringbolzen erfolgen.Both the longitudinal flanges and the horizontal flanges can be connected with screws or screw bolts, rivets, screws with compression sleeves or locking ring bolts.
Vorteilhafterweise kann die Anzahl der Schalen 7 abhängig vom Durchmesser des Rohrturmbauwerks zwischen zwei und vierzehn Schalen oder auch darüber liegen, wobei Fußdurchmesser von 4 m bis 14 m und Kopfdurchmesser von 2,5 m bis 10 m ohne weiteres realisierbar sind.Advantageously, the number of
Auch die Höhe eines erfindungsgemäßen Rohrturmbauwerks 1 kann von der erforderlichen bzw. gewünschten Nabenhöhe des gesamten Rohrturmbauwerks, d. h. inklusive eines aufgesetzten Windenergieturms, variieren, wobei üblicherweise Höhen des erfindungsgemäßen Rohrturmbauwerks 1 von 7 m bis 30 m üblich sind, aber auch Höhen darüber kein Problem darstellen. Bei einer geringen Höhe, beispielsweise von 7 m, wird ein einzelnes, in diesem Fall konisches oder kegelstumpfförmiges Rohrsegment verwendet.The height of a
Die Kombination aus abgekanteten Mantelflächen, abgekanteten Längsflanschen, der Blechstärke, der Horizontalflansche und des zwischen den Horizontalflanschen angeordneten Torsionsringes ergibt insgesamt die hohe Stabilität des erfindungsgemäßen Rohrturmbauwerks.The combination of folded lateral surfaces, folded longitudinal flanges, sheet thickness, horizontal flanges and the torsion ring arranged between the horizontal flanges results overall in the high stability of the tubular tower structure according to the invention.
Bei dem erfindungsgemäßen Rohrturmbauwerk ist im Gegensatz zu Betonunterbautürmen zudem von Vorteil, dass es erheblich günstiger als Betontürme ist und in besonders guter Weise rückbaufähig ist, wenn die geplante Nutzungszeit abgelaufen ist.In contrast to concrete substructure towers, the tubular tower structure according to the invention is also advantageous in that it is considerably cheaper than concrete towers and can be dismantled particularly well when the planned period of use has expired.
- 11
- Rohrturmbauwerktubular tower structure
- 22
- Kopfbereichheader area
- 33
- Fußbereichfooter
- 44
- Rohrsegmentpipe segment
- 4a4a
- unteres Rohrsegmentlower pipe segment
- 4b4b
- oberes Rohrsegmentupper pipe segment
- 55
- Rohrsegmentfußbereichpipe segment footer
- 66
- RohrsegmentkopfbereichPipe Segment Header
- 77
- SchalePeel
- 7a7a
- Teilschalepartial shell
- 7b7b
- Teilschalepartial shell
- 88th
- Mantelflächelateral surface
- 8a8a
- ebene Flächeflat surface
- 8b8b
- Abkantungskantebevel edge
- 99
- Längskantelong edge
- 1010
- Stirnkantefront edge
- 1111
- Längsflanschlongitudinal flange
- 11a11a
- Stirnkantefront edge
- 11b11b
- StufeStep
- 11c11c
- Abkantradiusbend radius
- 11d11d
- Freiräumefree spaces
- 1212
- Bohrung/Durchtrittsöffnungbore/opening
- 1313
- Horizontalflanschhorizontal flange
- 1414
- Stoßkantebumper edge
- 1515
- Torsionsringtorsion ring
- 1616
- Schraubbolzenbolts
- 1717
- Trennlinieparting line
- 1818
- StufeStep
- 1919
- Überbrückungselementbridging element
- 2020
- Trennlinieparting line
- 3030
- Schalenfuß/FußbereichCup foot/foot area
- 3131
- Schalenkopf/Kopfbereichshell head/header
- 6060
- Flanschringflange ring
- 7070
- Teilschalenabschnittpartial shell section
- 7171
- Türabschnittdoor section
- 71a71a
- Türöffnungdoorway
- 7272
- Teilschalepartial shell
- 8080
- Kegelstumpftruncated cone
- 8181
- fußseitiger Flanschfoot flange
- 8282
- kopfseitiger Flanschhead flange
Claims (13)
- Method for erecting a tubular tower structure, in particular a substructure tower for existing wind energy tower structures, wherein- shells (7) which have a cross-section substantially in the shape of a circular arc are formed from steel plates, wherein - along each planned axial connecting line, an axial longitudinal flange (11) of the shell (7) is created by bending radially inwards or outwards from the shell (7), wherein- to erect the tubular tower structure (1), the shells (7) are arranged next to each other by means of the longitudinal flanges (11) of adjoining shells (7), and are connected by the longitudinal flanges (11) of adjoining shells (7) to form a tubular segment (4), wherein connecting means (16) engage through holes (12) of adjoining longitudinal flanges (11), wherein- the circular arc curvature of the shells (7) is created by a plurality of angular bends along the circumference, thereby forming a plurality of surfaces (8a) arranged sequentially one after the other in the circumferential direction, angled with respect to each other, characterised in that- for connecting a tubular segment (4) to a foundation or to a further tubular segment (4), or to a further tubular tower structure, in a tubular segment base region (5) and/or in a tubular segment top region (6), each of the shells (7) comprises, on a horizontal end face (10), a horizontal flange (13) which has at least one abutting edge (14),wherein
the surfaces (8a) are each bent at an angle of between 1° and 8°, in particular 3° and 6°, with respect to each other,wherein
the steel plates for producing the shells (7) have a thickness of 20 mm to 100 mm, in particular 40 mm to 100 mm. - Method according to claim 1, characterised in that the shells (7) are formed from a plurality of axially adjoining, axially sequentially arranged, partial shells (7a, 7b) which are welded to each other, wherein the horizontal flanges (13) of the shells (7) are connected to each other with connecting pieces to form a ring.
- Method according to any of the preceding claims, characterised in that, to form a tubular segment (4), four to sixteen shells (7), are arranged next to each with a given width via their peripheral surfaces (8) and the corresponding longitudinal flanges (11), wherein, for the purpose of arranging a plurality of tubular segments (4) next to each other, the horizontal flanges (13) and/or flange rings formed by the flanges (13) are arranged with their holes aligned with each other, wherein a torsion ring (15) which spaces the horizontal flanges (13) from each other is inserted between the horizontal flanges (13) to improve the load input into the connecting means (16), and the torsion ring (15) is a ring with an outer diameter which corresponds approximately to the outer diameter of the flange ring made up of the horizontal flanges (13), and is designed with an inner diameter which also corresponds approximately to the inner diameter of the flange ring made up of the horizontal flanges (13), wherein the torsion ring (15) has axial holes that correspond to the holes in the flange rings.
- Method according to claim 3, characterised in that the torsion ring has a thickness which corresponds to approximately from one third to two thirds of its width, wherein the torsion ring (15) is constructed as a single piece or in segments, and the torsion ring (15) - for a segmented construction - is arranged in such a way that the abutting edge and/or dividing line (17) of the torsion ring (15) is offset from the abutting edges (14) of the horizontal flanges (13).
- Method according to any of the preceding claims, characterised in that the flange pairs and/or the flanges of adjoining shells (7) are connected with screw bolts, rivets, screws with compression sleeves, or locking ring bolts.
- Method according to any of the preceding claims, characterised in that the tubular tower structure (1) has a first diameter at one axial end and a second diameter at an opposite axial end, the first diameter being larger than the second diameter, such that the tubular tower structure (1) has a conical structure, wherein a tower of a wind turbine generator can be placed onto and fastened to the region of the tubular tower structure with the lesser diameter, and has a base diameter of 4 m to 14 m and a top diameter of 2.5 m to 10 m, and the tubular tower structure (1) is formed from at least one cylindrical tubular segment (4) and one truncated cylindrical tubular segment (4) placed thereon, and the tubular tower structure (1) is formed from at least one conical tubular segment (4).
- Method according to any of the preceding claims, characterised in that a plurality of flat surfaces (8a) is formed by means of a plurality of bending steps, wherein a number of from 5 to 30 flat surfaces (8a) is formed, depending on the width of the shell (7), wherein each of the bend angles of the surfaces (8a) with respect to each other depends on the number of surfaces (8a) and the width of the shell (7), on the one hand, and the number of shells (7) and the total tower circumference, on the other hand, wherein the surfaces (8a) are subdivisions of the circumferential angle of the shell (7), and accordingly the individual bend angles form a corresponding fraction of the total angle of the circumference of the shell (7).
- Method according to any of the preceding claims, characterised in that, for the installation of a door in the tubular tower structure (1), a shell (7) is constructed in a modular manner in this region, the corresponding shell (7) having a door portion (71) which is inserted axially between partial shells (70, 72), and the door portion (71) has longitudinal flanges (11) with which it is detachably arranged on adjoining shells (7), wherein the door section (71) has a horizontal flange (13) in both its base region and in its top region, which can be detachably connected to corresponding horizontal flanges (13) of partial shells (70, 72) arranged axially above and below.
- Tubular tower structure erected using a method according to any of claims 1 to 8,
whereinthe tubular tower structure (1) has at least one tubular segment (4), the tubular segment (4) being formed from a plurality of shells (7) having the shape of a circular arc in cross-section, wherein the shells (7) have peripheral surfaces (8) formed in the shape of a circular arc, and have longitudinal edges (9) running longitudinally and/or axially, and end faces (10) running horizontally,wherein longitudinal flanges (11) extend radially from the longitudinal edges (9) as an integral, bent part from the peripheral surface (8) to the interior or exterior of the tubular tower structure (1) from the peripheral surface (8), whereinthe peripheral surface (8) is designed as a segment of a circle from a plurality of flat surfaces (8a) which are bent at an angle to each other and together form the segment of a circle, wherein the shells (7) are arranged with the longitudinal flanges (11) abutting each other, wherein connecting means (16) engage through holes (12) of adjoining longitudinal flanges (11), characterised in thateach of the surfaces (8a) is bent at an angle with respect to each other of between 1° and 8°, in particular 3° and 6°, wherein the steel plates for producing the shells (7) have a thickness of 20 mm to 100 mm, in particular 40 mm to 100 mm, and in thatfor connecting a plurality of tubular segments (4) and/or for arranging the lowest tubular segment (4) of the tubular tower structure (1) on a foundation, or for arranging a tubular tower structure on the uppermost tubular segment (4), the shells (7) of the tubular segments (4) are brought into abutment with each other along their end faces (10), and have horizontal flanges (13) which, in particular, are welded-on, and are L-shaped in cross-section. - Tubular tower structure according to claim 9, wherein the horizontal flanges (13) of each of the shells (7) connected to each other form a closed ring after the tubular segment (4) has been assembled from the shells (7).
- Tubular tower structure according to any of claims 9 or 10, characterised in that, for the connection of tubular segments (4) to each other or the uppermost tubular segment (4) to a tubular tower structure above, the tubular segments (4) are arranged one above the other with their flanges (13) and the corresponding holes (12) aligned, wherein the horizontal flanges (13) are spaced apart from each other by a torsion ring (15) which is arranged between the flange rings made of the horizontal flanges (13) and which has holes aligned with the holes (12), such that, for connecting the flanges to each other, the flanges and the torsion ring are connected to each other.
- Tubular tower structure according to any of claims 9 to 11, characterised in that the tubular segments (4) are conical and/or cylindrical, such that the shells (7) are designed in the manner of a cylinder jacket segment or a truncated cone jacket segment, wherein the tubular tower structure (1) and/or different tubular segments (4a, 4b) of the tubular tower structure (1) are formed from differently designed partial shells (7a, 7b, 70, 71, 72), and the shells (7) of the tubular segments (4a) which are installed in a base region (3) of the tubular tower structure (1) differ from the shells (7) that are installed in regions of an upper tubular segment (4b), wherein the partial shells (7a, 7b) that are installed in an upper tubular segment (4b) are narrower overall because of the narrowing of the tubular tower structure (1), such that the partial shells (7a, 7b) of the lower tubular segment (4a) differ from those of the upper tubular segment (4b) also due to the number of flat surfaces (8a) which are bent at an angle to each other and/or the number of the bent edges (8b), wherein, in the region of the lower tubular segment (4a), the partial shells (7a, 7b) have 10 to 20 bent, flat surfaces (8a), whereas, in the region of the upper tubular segment (4b), 3 to 10 surfaces (8a), in particular 5 to 6 surfaces (8a), are present.
- Tubular tower structure according to any of claims 9 to 12, characterised in that the tubular segments (4, 4a, 4b) are formed from the shells (7) extending over the axial length of the tubular segment (4, 4a, 4b) or from two or more axially adjoining partial shells (7a, 7b), wherein the partial shells (7a, 7b) are welded to each other along mutually adjoining end faces (10), wherein the complete shell (7) of a first tubular segment (4a) has a horizontal flange (13) welded to a lower partial shell (7a) and a horizontal flange (13) welded to the end face of the upper partial shell (7b), wherein the upper partial shell (7b) is welded with a lower, horizontally-running edge abutting flush with an upper, horizontally running edge (10) of the lower partial shell (7a), and the longitudinal flanges (11) of the shells (7) are designed to be set back a small amount axially from the horizontal edges (10), such that free spaces (11d) are formed between partial shells (7a, 7b) or shells (7) and horizontal flanges (13) which are welded to each other, or partial shells (7a, 7b) and horizontal flanges (13) which are welded to each other, wherein the free spaces (11d) are closed off by fitting elements made of plastic or the like.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102014118251.0A DE102014118251B4 (en) | 2014-12-09 | 2014-12-09 | Process for the production and erection of a tubular tower construction |
DE102015115645.8A DE102015115645A1 (en) | 2015-09-16 | 2015-09-16 | Process for the production and erection of a tubular tower construction |
PCT/EP2015/076045 WO2016091499A1 (en) | 2014-12-09 | 2015-11-09 | Method for producing and erecting a tubular tower construction |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3230539A1 EP3230539A1 (en) | 2017-10-18 |
EP3230539B1 true EP3230539B1 (en) | 2023-01-11 |
Family
ID=54478760
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15791607.3A Active EP3230539B1 (en) | 2014-12-09 | 2015-11-09 | Method for erecting a tubular tower construction and tubular tower construction |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP3230539B1 (en) |
ES (1) | ES2939837T3 (en) |
PL (1) | PL3230539T3 (en) |
WO (2) | WO2016091500A1 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102016114114A1 (en) * | 2016-07-29 | 2018-02-01 | Wobben Properties Gmbh | Connecting element for connecting tower sections, tower section, tower, wind turbine and method for producing a tower section and for connecting tower sections |
EP3315694A1 (en) * | 2016-10-27 | 2018-05-02 | Siemens Aktiengesellschaft | Tower structure |
DE102017106201A1 (en) | 2017-03-22 | 2018-09-27 | Wobben Properties Gmbh | Flange segment for a wind turbine steel tower ring segment and procedure |
CN110863955A (en) * | 2018-08-28 | 2020-03-06 | 中国船舶重工集团海装风电股份有限公司 | Butt splicing structure and method of hybrid tower for wind power |
CN110863954A (en) * | 2018-08-28 | 2020-03-06 | 中国船舶重工集团海装风电股份有限公司 | Hybrid tower for wind power |
JP7447695B2 (en) * | 2020-06-22 | 2024-03-12 | 東京電力ホールディングス株式会社 | Column-shaped floating body and method for manufacturing column-shaped floating body |
CN115143043A (en) * | 2022-05-11 | 2022-10-04 | 陈国强 | Shell ring of biological structure imitating cylindrical tower |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL1019953C2 (en) | 2002-02-12 | 2002-12-19 | Mecal Applied Mechanics B V | Prefabricated tower or mast, as well as a method for joining and / or re-tensioning segments that must form a single structure, as well as a method for building a tower or mast consisting of segments. |
DE60317372T2 (en) | 2003-03-19 | 2008-08-21 | Vestas Wind Systems A/S | LARGE DESIGNED TOWERS FOR WIND POWER PLANTS AND METHOD FOR BUILDING SUCH TOWERS |
BRPI0507467A (en) * | 2004-02-04 | 2007-07-10 | Corus Staal Bv | wind turbine tower, prefabricated metal wall part for use in a wind turbine tower and method for building a wind turbine tower |
US7464512B1 (en) * | 2004-03-10 | 2008-12-16 | Perina Mark J | Hollow structural member |
EP1856410B2 (en) * | 2004-11-10 | 2018-07-25 | Vestas Wind Systems A/S | A tower part for a wind turbine, a method for manufacturing a tower part and uses thereof |
EP2188467B1 (en) | 2007-09-07 | 2014-05-28 | Smitt Technology S.R.L. | Tower, in particular for supporting telecommunication appliances |
NZ587002A (en) * | 2008-02-06 | 2012-01-12 | Ib Andresen Ind As | Tower element with multiple stacked segments |
WO2010055535A1 (en) * | 2008-11-17 | 2010-05-20 | Tecnopali Group S.P.A. | Tubular tower and construction procedure |
US8474212B2 (en) | 2009-04-22 | 2013-07-02 | Rautaruukki Oyj | Tower for a wind power plant |
ES2378199B1 (en) | 2009-06-24 | 2013-06-05 | Acciona Windpower S.A. | SYSTEM OF UNION OF A GONDOLA WITH THE TOWER OF CONCRETE OF AN AEROGENERATOR. |
DE102009058124B4 (en) | 2009-12-12 | 2012-03-08 | Fondasolutions S.A.R.L. | Mounting device for the concrete foundation of a wind turbine and method for its production |
DE102010005991A1 (en) | 2010-01-27 | 2011-07-28 | Wobben, Aloys, Dipl.-Ing., 26607 | Wind turbine and wind turbine tower segment |
WO2011110235A2 (en) | 2010-03-12 | 2011-09-15 | Siemens Aktiengesellschaft | Wall portion for a wind turbine tower |
EP2388479A1 (en) | 2010-05-21 | 2011-11-23 | Siemens Aktiengesellschaft | Arrangement to connect a nacelle with a tower of a wind turbine |
DE102010039796A1 (en) | 2010-06-14 | 2011-12-15 | Max Bögl Bauunternehmung GmbH & Co. KG | Tower with an adapter piece and method of making a tower with an adapter piece |
US8171674B2 (en) * | 2010-12-16 | 2012-05-08 | General Electric Company | Doorway for a wind turbine tower |
KR101242505B1 (en) * | 2010-12-27 | 2013-03-12 | 재단법인 포항산업과학연구원 | Modular type wind power generation tower |
DE102011011603A1 (en) | 2011-02-17 | 2012-08-23 | Martin Bode | Lifting device for lifting e.g. tower section of offshore-wind turbine, has grippers moved through opening of front end limited by annular flange in retracted state and engaged behind flange at underside of device in extended state |
DE102011001250A1 (en) | 2011-03-14 | 2012-09-20 | Strabag Offshore Wind Gmbh | Apparatus and method for the transition between a steel tower section and a prestressed concrete tower section |
DE102011077428A1 (en) | 2011-06-10 | 2012-12-13 | Aloys Wobben | Wind turbine tower |
US8443557B2 (en) | 2011-09-16 | 2013-05-21 | General Electric Company | Tower base section of a wind turbine, a wind turbine and a system for mounting a tower |
DE102013002469A1 (en) | 2013-02-13 | 2014-09-18 | EcoEnterprises GmbH | Steel tube tower of a wind turbine as well as corresponding manufacturing processes for stiffening and forming the tower components |
-
2015
- 2015-11-09 EP EP15791607.3A patent/EP3230539B1/en active Active
- 2015-11-09 WO PCT/EP2015/076081 patent/WO2016091500A1/en active Application Filing
- 2015-11-09 PL PL15791607.3T patent/PL3230539T3/en unknown
- 2015-11-09 WO PCT/EP2015/076045 patent/WO2016091499A1/en active Application Filing
- 2015-11-09 ES ES15791607T patent/ES2939837T3/en active Active
Also Published As
Publication number | Publication date |
---|---|
WO2016091500A1 (en) | 2016-06-16 |
WO2016091499A1 (en) | 2016-06-16 |
EP3230539A1 (en) | 2017-10-18 |
ES2939837T3 (en) | 2023-04-27 |
PL3230539T3 (en) | 2023-04-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3230539B1 (en) | Method for erecting a tubular tower construction and tubular tower construction | |
EP2824257B2 (en) | Method for preparation and erection of a tubular tower structure | |
EP2932095B1 (en) | Transition body for arranging between differently designed sections of a wind power plant tower and wind power plant tower with such a transition body | |
DE602005002760T2 (en) | Wind turbine tower, prefabricated metallic wall section for use in this tower, and method of making this tower | |
EP1929109B1 (en) | Tower construction | |
EP1631722A2 (en) | Foundation for a wind energy plant | |
EP0960986A2 (en) | Process and device for the construction of tall, hollow, towerlike structures of two hundred meters height and more, specially wind generator towers | |
DE102015115645A1 (en) | Process for the production and erection of a tubular tower construction | |
EP3208405B1 (en) | Device and method for assembling tower-like structures from pre-fabricated elements | |
EP3208404B1 (en) | Method and apparatus for mounting a pipe tower segment | |
EP2333163A1 (en) | Offshore structure | |
WO2017067692A1 (en) | Wind turbine tower | |
DE102014118251B4 (en) | Process for the production and erection of a tubular tower construction | |
EP2692967A2 (en) | Method for erecting a steel tower of a wind energy plant and tower made of steel for a wind energy plant | |
EP3320161B1 (en) | Tower for a wind power plant | |
EP3491239A1 (en) | Connecting element for connecting tower portions, tower portion, tower, wind turbine, and method for producing a tower portion and for connecting tower portions | |
DE102017120487A1 (en) | Tower of a wind energy plant and method for producing a section segment for such a tower | |
WO2018172386A1 (en) | Flange segment for a wind turbine, steel tower ring segment, and method | |
EP2708659B1 (en) | Adjustable flange for a tower of a wind power system | |
EP3467236B1 (en) | Tower, in particular for a wind energy facility | |
EP3495589A1 (en) | Wind power plant, tower of a wind power plant and method for building a tower of a wind power plant | |
EP3467204A1 (en) | Transition piece for connecting an upper tower section with a lower tower section using connecting profiles | |
DE102015014458A1 (en) | Door construction for a tubular tower construction | |
WO2017045867A1 (en) | Door structure for a tubular tower structure | |
DE102013201072A1 (en) | Flange part for a tower of a wind turbine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20170531 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20210426 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: E04H 12/00 20060101ALI20220718BHEP Ipc: F03D 13/20 20160101ALI20220718BHEP Ipc: F03D 13/10 20160101ALI20220718BHEP Ipc: E04H 12/08 20060101AFI20220718BHEP |
|
INTG | Intention to grant announced |
Effective date: 20220805 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502015016241 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1543514 Country of ref document: AT Kind code of ref document: T Effective date: 20230215 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2939837 Country of ref document: ES Kind code of ref document: T3 Effective date: 20230427 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20230111 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230111 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230526 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230111 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230511 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230411 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230111 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230111 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230111 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230111 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230511 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230412 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230111 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502015016241 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230111 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230111 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230111 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230111 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230111 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230111 |
|
26N | No opposition filed |
Effective date: 20231012 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20231201 Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230111 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20231117 Year of fee payment: 9 Ref country code: DE Payment date: 20231117 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20231117 Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230111 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230111 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231109 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231130 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20231109 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230111 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231109 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231130 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20231130 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231109 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231109 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231130 |