JP7447695B2 - Column-shaped floating body and method for manufacturing column-shaped floating body - Google Patents

Column-shaped floating body and method for manufacturing column-shaped floating body Download PDF

Info

Publication number
JP7447695B2
JP7447695B2 JP2020107012A JP2020107012A JP7447695B2 JP 7447695 B2 JP7447695 B2 JP 7447695B2 JP 2020107012 A JP2020107012 A JP 2020107012A JP 2020107012 A JP2020107012 A JP 2020107012A JP 7447695 B2 JP7447695 B2 JP 7447695B2
Authority
JP
Japan
Prior art keywords
column
floating body
columnar
divided
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020107012A
Other languages
Japanese (ja)
Other versions
JP2022001474A (en
Inventor
智彦 高橋
誠 前田
一雅 西郡
理紗 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Co Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Tokyo Electric Power Co Holdings Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Tokyo Electric Power Co Holdings Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP2020107012A priority Critical patent/JP7447695B2/en
Publication of JP2022001474A publication Critical patent/JP2022001474A/en
Application granted granted Critical
Publication of JP7447695B2 publication Critical patent/JP7447695B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/30Wind power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/727Offshore wind turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本願発明は、浮体式洋上風力発電施設を構成する柱状型浮体に関するものであり、より具体的には、断面形状が多角形である柱本体を備えた柱状型浮体とその製造方法に関するものである。 The present invention relates to a columnar floating body constituting a floating offshore wind power generation facility, and more specifically relates to a columnar floating body having a column body having a polygonal cross-sectional shape and a method for manufacturing the same. .

我が国における電力消費量は、2008年の世界的金融危機の影響により一旦は減少に転じたものの、オイルショックがあった1973年以降継続的に増加しており、1973年度から2007年度の間には2.6倍にまで拡大している。その背景には、生活水準の向上に伴うエアコンや電気カーペットといったいわゆる家電製品の普及、あるいはオフィスビルの増加に伴うOA(Office Automation)機器や通信機器の普及などが挙げられる。 Although electricity consumption in Japan temporarily began to decline due to the effects of the global financial crisis in 2008, it has continued to increase since the oil crisis in 1973, and between 1973 and 2007, It has expanded to 2.6 times. The reasons behind this include the spread of so-called home appliances such as air conditioners and electric carpets as living standards improve, and the spread of office automation (OA) equipment and communication equipment as the number of office buildings increases.

これまで、このような莫大な量の電力需要を主に支えてきたのは、石油、石炭等いわゆる化石燃料による発電であった。ところが近年、化石燃料の枯渇化問題や、地球温暖化に伴う環境問題が注目されるようになり、これに応じて発電方式も次第に変化してきた。その結果、先に説明した1973年頃には、石油、石炭による発電が全体の約90%を占めていたのに対し、2010年にその割合は66%まで減少している。代わりに増加したのが全体の約10%強(2010年)を占めている原子力発電である。原子力発電は、従来の発電方式に比べ温室効果ガスの削減効果が顕著であるうえ、低コストで電力を提供できることから、我が国の電力需要にも大きく貢献してきた。 Until now, this huge demand for electricity has been mainly supported by power generation using so-called fossil fuels such as oil and coal. However, in recent years, the depletion of fossil fuels and environmental problems associated with global warming have attracted attention, and power generation methods have gradually changed in response. As a result, while around 1973, as mentioned earlier, oil and coal-based power generation accounted for approximately 90% of the total power generation, by 2010 that proportion had decreased to 66%. Instead, nuclear power generation, which accounted for just over 10% of the total (in 2010), has increased. Nuclear power generation has a significant effect on reducing greenhouse gas emissions compared to conventional power generation methods, and because it can provide electricity at low cost, it has greatly contributed to Japan's electricity demand.

また、温室効果ガスの排出を抑制することができるという点において、再生可能エネルギーによる発電方式も採用されるようになっている。この再生可能エネルギーは、太陽光や風力、地熱、中小水力、木質バイオマスといった文字どおり再生することができるエネルギーであり、温室効果ガスの排出を抑え、また国内で生産できることから、有望な低炭素エネルギーとして期待されている。 Furthermore, power generation methods using renewable energy are increasingly being adopted because they can reduce greenhouse gas emissions. This renewable energy is energy that can literally be regenerated, such as sunlight, wind, geothermal, small and medium-sized hydropower, and woody biomass.It is a promising low-carbon energy source because it reduces greenhouse gas emissions and can be produced domestically. It is expected.

再生可能エネルギーのうち特に風力を利用した発電方式は、電気エネルギーの変換効率が高いという特長を備えている。一般に、太陽光発電の変換効率は約20%、木質バイオマス発電は約20%、地熱発電は10~20%とされているのに対して、風力発電は20~40%とされているように、他の発電方法よりも高効率でエネルギーを電気に変換できる。また、太陽光発電とは異なり昼夜問わず発電することができることも風力発電の特長である。このような特徴を備えていることもあって、風力発電は既にヨーロッパで主要な発電方法として多用され、我が国でも「エネルギーミックス」の取り組みにおいて2030年には電源構成のうち1.7%を担うことを目指している。 Among renewable energies, power generation methods that use wind power in particular have the advantage of high conversion efficiency of electrical energy. In general, the conversion efficiency of solar power generation is said to be about 20%, woody biomass power generation is about 20%, geothermal power generation is 10-20%, while wind power generation is said to be 20-40%. , can convert energy into electricity with higher efficiency than other power generation methods. Another feature of wind power generation is that, unlike solar power generation, it can generate electricity day and night. Due to these characteristics, wind power generation is already widely used as a main power generation method in Europe, and in Japan, it is expected to account for 1.7% of the power source mix in 2030 in the "energy mix" initiative. That's what I'm aiming for.

風力発電はその設置場所によって陸上風力発電と洋上風力発電に大別され、このうち陸上風力発電は洋上風力発電に比べ設置が容易であり、したがってそのコストも抑えることができるといった特長を備えている。一方、洋上風力発電は、陸上風力発電が抱える騒音問題が生ずることがなく、また転倒等による被害リスクも回避でき、なにより陸上に比して大きな風力を安定的に得ることができるという特長を備えている。世界第6位の排他的経済水域を持つ我が国は、浮体洋上風力発電にとって適地であり、将来的には再生可能エネルギーの有望な産出地となり得ると考えられる。 Wind power generation is broadly divided into onshore wind power generation and offshore wind power generation, depending on its installation location.Of these, onshore wind power generation has the advantage of being easier to install than offshore wind power generation, and therefore can reduce costs. . On the other hand, offshore wind power generation does not suffer from the noise problems that occur with onshore wind power generation, it also avoids the risk of damage caused by falls, and above all, it has the advantage of being able to stably obtain a large amount of wind power compared to onshore wind power generation. We are prepared. Japan, which has the world's sixth largest exclusive economic zone, is a suitable location for floating offshore wind power generation, and is thought to have the potential to become a promising source of renewable energy in the future.

また洋上風力発電は、その設置場所によって異なる形式が採用され、50m以浅の海域では着床式洋上風力発電が適しており、50m以深の海域では浮体式洋上風力発電が適しているとされている。このうち浮体式洋上風力発電は、海水に浮かべる浮体を利用するものであり、係留索で繋がれた浮体上に発電機構を設置し、この発電機構によって発電する方式である。なお浮体形式には、ポンツーン形式(バージ形式)、セミサブ形式、スパー形式(柱状型)、緊張係留形式(TLP:Tension Leg Platform)などが挙げられ、大きな風力が得られるとされる陸域から離れた沖合では、主に柱状形式が採用される傾向にある。 In addition, different types of offshore wind power generation are adopted depending on the installation location, with fixed offshore wind power generation being suitable for waters shallower than 50 meters, and floating offshore wind power generation being suitable for waters deeper than 50 meters. . Among these, floating offshore wind power generation uses floating bodies floating in seawater, and is a method in which a power generation mechanism is installed on the floating body connected with mooring ropes, and the power generation mechanism generates electricity. Floating structure types include pontoon type (barge type), semi-sub type, spar type (column type), tension mooring type (TLP), etc. In offshore areas, there is a tendency for the columnar type to be mainly adopted.

図11は、柱状形式の洋上風力発電施設を模式的に示す側面図である。この図に示すように柱状形式の洋上風力発電施設は、海中に浮かべる柱状型浮体(スパー型浮体)と、その上に設置されるタワーやローター、ナセルなどを含んで構成される。タワーはローターやナセルを支持する構造体であり、さらに柱状型浮体がタワーの基礎として機能している。そしてブレード(羽根)とハブからなるローターによって風を動力に変換し、増速機や発電機、変圧器などを含むナセルによって動力を電気に変換して、海底ケーブルを通じて陸域まで送電するわけである。なお柱状型浮体は、カテナリー(懸垂線)形状とされた係留索の自重によって係留されるのが一般的である。 FIG. 11 is a side view schematically showing a columnar offshore wind power generation facility. As shown in this figure, a column-shaped offshore wind power generation facility consists of a column-shaped floating body (spar-type floating body) that floats in the sea, and a tower, rotor, nacelle, etc. installed on top of the column-shaped floating body. The tower is a structure that supports the rotor and nacelle, and the pillar-shaped floating body functions as the base of the tower. The rotor, which is made up of blades and a hub, converts the wind into power, and the nacelle, which includes a speed increaser, generator, and transformer, converts the power into electricity, which is then transmitted to land via a submarine cable. be. Note that columnar floating bodies are generally moored by the weight of catenary-shaped mooring lines.

ところで従来の柱状型浮体は、特許文献1に示すようにその断面が円形の管形状(つまり円柱管)とされ、しかも鋼板を加工して製造するのが主流であった。 By the way, as shown in Patent Document 1, conventional columnar floating bodies have a tube shape with a circular cross section (that is, a cylindrical tube), and are mainly manufactured by processing a steel plate.

特開2013-141857号公報Japanese Patent Application Publication No. 2013-141857

鋼製の円柱管(つまり、鋼管)は、その製法によって継目無鋼管(シームレス)や溶接鋼管などに分けられるが、柱状型浮体のように大口径(例えばφ10m以上)のものは鋼板を曲面状に成形したうえで溶接して形成する溶接鋼管を用いることになる。ここで、図12を参照しながら柱状型浮体の製造工程について説明する。 Steel cylindrical pipes (in other words, steel pipes) can be divided into seamless steel pipes (seamless steel pipes), welded steel pipes, etc. depending on the manufacturing method, but for large diameter (for example, φ10 m or more) such as columnar floating bodies, steel plates are made into curved steel pipes. Welded steel pipes will be used, which are formed by forming and welding them. Here, the manufacturing process of the columnar floating body will be explained with reference to FIG.

まず図12(a)に示すように、母材となる大型の鋼板から所定の大きさの板片(以下、便宜上「切出部材」という。)を切り出す。この切出部材は、柱状型浮体を構成するいわばパーツであり、そのため柱状型浮体を構成する必要な数(一般的には1,000を超える)だけ繰り返し切り出される。なお、図12(a)で切り出された状態の切出部材は、板面が「平面」の板材である。ここでいう「平面」とは、曲面でないという意味であって、3次元空間における平面の一般式で表されるか、あるいはそれに近似した形状を指す。便宜上ここでは、板面が平面である板材のことを特に「直面材」ということとする。 First, as shown in FIG. 12(a), a plate piece of a predetermined size (hereinafter referred to as a "cutout member" for convenience) is cut out from a large steel plate serving as a base material. This cutout member is a so-called part that constitutes a columnar floating body, and is therefore repeatedly cut out as many times as necessary (generally more than 1,000) to constitute a columnar floating body. Note that the cutout member shown in FIG. 12(a) is a plate material with a "flat" plate surface. The term "plane" used herein means that it is not a curved surface, and refers to a shape that is expressed by a general formula of a plane in three-dimensional space or approximated thereto. For convenience, herein, a plate material having a flat surface will be particularly referred to as a "face material."

切出部材を切り出すと、図12(b)に示すように「鋼板曲げ加工」や「ローラー曲げ加工」といった手法を利用し、切出部材に対して曲げ加工を施していく。上記したとおり従来の柱状型浮体はその断面が円形であり、直面材である切出部材は円形の一部を構成するように曲げ加工が施されるわけである。もちろん、この曲げ加工は切り出されたすべての切出部材に対して行われる。なお便宜上ここでは、板面が曲面である板材のことを特に「曲面材」ということとする。 Once the cutout member is cut out, the cutout member is bent using a method such as "steel plate bending" or "roller bending" as shown in FIG. 12(b). As described above, the conventional columnar floating body has a circular cross section, and the cut-out member serving as the face material is bent so as to constitute a part of the circle. Of course, this bending process is performed on all cut-out members. For convenience, here, a plate material having a curved surface is particularly referred to as a "curved surface material."

切出部材に対する曲げ加工が施されると、図12(c)に示すように型治具の上に曲面材である切出部材を配置し、溶接によって隣接する切出部材どうしを接合していく。そして、ひとまず所定長さの半断面の構造体(以下、「半断面分割体」という。)を形成する。また図12(d)に示すように、別途用意した小組(リブ)を、半断面分割体の内周面に所定間隔で設置する。 Once the cut-out member is bent, the cut-out member, which is a curved material, is placed on a mold jig as shown in Fig. 12(c), and adjacent cut-out members are joined together by welding. go. First, a half-section structure having a predetermined length (hereinafter referred to as a "half-section divided body") is formed. Further, as shown in FIG. 12(d), separately prepared subassemblies (ribs) are installed at predetermined intervals on the inner peripheral surface of the half-section divided body.

半断面分割体が形成されると、図12(e)に示すように2つの半断面分割体を溶接によって接合し、円形断面の「分割体」を形成する。そして図12(f)に示すように、複数の分割体を軸方向に連結することによって、柱状型浮体が完成する。 Once the half-section divided body is formed, the two half-section divided bodies are joined by welding to form a “divided body” with a circular cross-section, as shown in FIG. 12(e). Then, as shown in FIG. 12(f), a columnar floating body is completed by connecting the plurality of divided bodies in the axial direction.

このように柱状型浮体を製造するにあたっては、大量の鋼材を利用する必要があり、しかも多種多様な工程を行わなければならない。特に図12(b)に示す曲げ加工は、板長が5mほどの大型材料(切出部材)に対して行われることから1日に1材料(1枚)程度しか加工できず、そのうえ大量の(例えば1,000を超える)切出部材に対して加工しなければならない。したがって曲げ加工には人件費や加工機の損料、燃料費など多額の費用が掛かり、すなわち曲げ加工が柱状型浮体の製造費用を押し上げる大きな要因となっていた。 In manufacturing such a columnar floating body, it is necessary to use a large amount of steel material, and moreover, a wide variety of processes must be performed. In particular, the bending process shown in Fig. 12(b) is performed on a large material (cut out member) with a board length of about 5 m, so only about one material (one piece) can be processed per day, and a large amount of (e.g. more than 1,000) cut-out parts must be processed. Therefore, bending costs a large amount of money, including labor costs, processing machine costs, and fuel costs, which is a major factor in pushing up the manufacturing cost of columnar floating bodies.

本願発明の課題は、従来技術が抱える問題を解決することであり、すなわち、従来に比して低コストかつ短期間で製造することができる柱状型浮体と、その製造方法を提供することである。 An object of the present invention is to solve the problems faced by the prior art, that is, to provide a columnar floating body that can be manufactured at a lower cost and in a shorter period of time than in the past, and a method for manufacturing the same. .

本願発明は、切出部材に対して曲げ加工を行うことなく、直面材のまま中空管体の柱本体を形成する、という点に着目してなされたものであり、これまでにない発想に基づいて行われたものである。 The present invention was made by focusing on the fact that the column main body of the hollow tube body is formed using the face material without bending the cut-out member, and it is based on an unprecedented idea. This was done based on the following.

本願発明の柱状型浮体は、浮体式洋上風力発電施設を構成するものであって、中空の柱状である柱本体を備えたものである。この柱本体は、板面が平面である直面材を周方向に複数連結することで形成され、断面形状が多角形となるものである。 The column-shaped floating body of the present invention constitutes a floating offshore wind power generation facility, and includes a column body that is hollow and column-shaped. This pillar body is formed by connecting a plurality of face members each having a flat plate surface in the circumferential direction, and has a polygonal cross-sectional shape.

本願発明の柱状型浮体は、複数の屈折材(直面材を所定の屈折角で折り曲げた部材)が周方向に連結された柱本体を備えたものとすることもできる。さらにこの場合の柱本体は、分割体(複数の屈折材が周方向に連結された部品)を柱軸方向に複数連結されたものとし、しかも柱軸方向に隣接する分割体の連結位置どうしが不連続であるものとすることもできる。 The column-shaped floating body of the present invention may also include a column main body in which a plurality of refraction members (members formed by bending face members at a predetermined refraction angle) are connected in the circumferential direction. Furthermore, the column main body in this case is made up of a plurality of divided bodies (components in which a plurality of refracting members are connected in the circumferential direction) connected in the column axis direction, and the connecting positions of adjacent divided bodies in the column axis direction are different from each other. It can also be discontinuous.

本願発明の柱状型浮体は、柱本体の一端に設けられる縮径体をさらに備えたものとすることもできる。この縮径体は、複数の直面材あるいは屈折材を周方向に連結することで形成されるとともに、柱本体から外方に向かって断面積が縮小する錐台形状であって、断面形状が柱本体の断面形状と相似形となるものである。 The columnar floating body of the present invention may further include a diameter reducing body provided at one end of the column body. This diameter-reducing body is formed by connecting a plurality of face members or refracting members in the circumferential direction, and has a truncated cone shape whose cross-sectional area decreases outward from the column body, and the cross-sectional shape is a columnar shape. It has a cross-sectional shape similar to that of the main body.

本願発明の柱状型浮体製造方法は、本願発明の柱状型浮体を製造する方法であって、切断工程と配置工程、連結工程を備えた方法である。このうち切断工程では、母材から直面材を切り出し、配置工程では、曲げ加工されていない複数の直面材を所定の交差角で突き合せて配置する。また連結工程では、配置工程によって配置された直面材どうしを溶接によって連結(接合)する。 The columnar floating body manufacturing method of the present invention is a method for manufacturing the columnar floating body of the present invention, and is a method comprising a cutting step, a placement step, and a connecting step. In the cutting step, the facing materials are cut out from the base material, and in the arranging step, a plurality of unbent facing materials are butted against each other at a predetermined intersection angle and arranged. In the connection step, the facing materials arranged in the arrangement step are connected (joined) by welding.

本願発明の柱状型浮体製造方法は、屈折工程をさらに備えた方法とすることもできる。この屈折工程では、直面材を所定の屈折角に折り曲げて屈折材を得る。この場合、配置工程では、複数の屈折材を所定の交差角で突き合せて配置し、連結工程では、配置工程によって配置された屈折材どうしを溶接によって連結する。さらにこの場合、連結工程が分割体形成工程と分割体連結工程を含んだ方法とすることもできる。分割体形成工程では、分割体を形成し、分割体連結工程では、複数の分割体を柱軸方向に連結する。このとき、柱軸方向に隣接する分割体の連結位置どうしが不連続となるように連結するとよい。 The columnar floating body manufacturing method of the present invention can also be a method that further includes a bending step. In this refraction step, the facing material is bent to a predetermined refraction angle to obtain a refraction material. In this case, in the arranging step, the plurality of refractive materials are arranged abutting each other at a predetermined intersection angle, and in the connecting step, the refractive materials arranged in the arranging step are connected by welding. Furthermore, in this case, the connecting step may include a divided body forming step and a divided body connecting step. In the divided body forming step, divided bodies are formed, and in the divided body connecting step, a plurality of divided bodies are connected in the column axis direction. At this time, it is preferable to connect the divided bodies adjacent to each other in the column axis direction so that the connecting positions thereof are discontinuous.

本願発明の柱状型浮体製造方法は、所定の交差角で形成される配置用治具を用いる方法とすることもできる。この場合、配置工程では直面材あるいは屈折材の内周面側に配置用治具を当接しながら直面材あるいは屈折材を配置する。 The columnar floating body manufacturing method of the present invention can also be a method using a placement jig formed at a predetermined intersection angle. In this case, in the placement step, the facing material or refractive material is placed while the placement jig is in contact with the inner peripheral surface of the facing material or refractive material.

本願発明の柱状型浮体、及び柱状型浮体製造方法には、次のような効果がある。
(1)曲げ加工を省略できることから、従来に比して柱状型浮体の製造コストが大幅に低減される。その結果、柱状型浮体を調達しやすくなり、柱状型浮体の採用が拡大していくことが期待できる。
(2)曲げ加工にかかる作業者の負担を軽減することができることから、近年の慢性的な人材不足の問題の解決に貢献することができる。
(3)また曲げ加工に必要な燃料や電力など各種エネルギーの消費を低減することができことから、従来に比して環境に与える負荷を抑制することができる。
The columnar floating body and method for manufacturing a columnar floating body of the present invention have the following effects.
(1) Since the bending process can be omitted, the manufacturing cost of the columnar floating body is significantly reduced compared to the conventional method. As a result, it will become easier to procure columnar floating bodies, and we can expect their adoption to expand.
(2) Since it is possible to reduce the burden on workers involved in bending, it can contribute to solving the problem of chronic shortage of human resources in recent years.
(3) Furthermore, since the consumption of various types of energy such as fuel and electric power required for bending can be reduced, the burden on the environment can be suppressed compared to conventional methods.

本願発明の柱状型浮体を模式的に示す斜視図。FIG. 1 is a perspective view schematically showing a columnar floating body of the present invention. (a)は直面材を説明する平面図、(b)は直面材を説明する側面図。(a) is a top view explaining a facing material, (b) is a side view explaining a facing material. 柱本体の断面形状を模式的に示す断面図。FIG. 3 is a cross-sectional view schematically showing the cross-sectional shape of a pillar body. 直面材を千鳥配置とした本願発明の柱状型浮体を模式的に示す斜視図。FIG. 1 is a perspective view schematically showing a columnar floating body of the present invention in which facing materials are arranged in a staggered manner. (a)は屈折材を説明する平面図、(b)は屈折材を説明する側面図。(a) is a plan view explaining a refraction material, (b) is a side view explaining a refraction material. 本願発明の柱状型浮体を模式的に示す斜視図。FIG. 1 is a perspective view schematically showing a columnar floating body of the present invention. 第1の実施形態における本願発明の柱状型浮体製造方法の主な工程を示すフロー図。FIG. 2 is a flow diagram showing the main steps of the columnar floating body manufacturing method of the present invention in the first embodiment. 第1の実施形態における本願発明の柱状型浮体製造方法の主な工程を示すステップ図。FIG. 3 is a step diagram showing the main steps of the columnar floating body manufacturing method of the present invention in the first embodiment. (a)は配置用治具を内周面側に当接しながら配置した2つの直面材を上方から見た平面図、(b)は交差角を調整する機能と従来の型治具の機能をあわせ持つ配置用治具に載置した直面材を示す側面図。(a) is a plan view from above of two facing materials placed with the placement jig in contact with the inner peripheral surface, and (b) shows the function of adjusting the intersection angle and the function of the conventional mold jig. FIG. 3 is a side view showing the facing material placed on the placement jig. 第2の実施形態における本願発明の柱状型浮体製造方法の主な工程を示すフロー図。FIG. 7 is a flow diagram showing the main steps of the columnar floating body manufacturing method of the present invention in a second embodiment. スパー形式の洋上風力発電施設を模式的に示す側面図。A side view schematically showing a spar-type offshore wind power generation facility. 柱状型浮体の製造工程を模式的に示すステップ図。A step diagram schematically showing the manufacturing process of a columnar floating body.

本願発明の柱状型浮体(スパー型浮体)、及び柱状型浮体製造方法の実施形態の一例を、図に基づいて説明する。なお本願発明の柱状型浮体は、浮体式洋上風力発電施設を構成するものとして利用する場合に特に好適に実施することができ、本願発明の柱状型浮体製造方法は、本願発明の柱状型浮体を製造する場合に特に好適に実施することができる。 An example of an embodiment of a columnar floating body (spar type floating body) and a method for manufacturing a columnar floating body of the present invention will be described based on the drawings. Note that the columnar floating body of the present invention can be particularly suitably implemented when used as a component of a floating offshore wind power generation facility, and the method for manufacturing a columnar floating body of the present invention can be carried out particularly when the columnar floating body of the present invention is used as a component of a floating offshore wind power generation facility. This can be particularly suitably carried out in the case of manufacturing.

1.柱状型浮体
はじめに本願発明の柱状型浮体について図を参照しながら詳しく説明する。なお、本願発明の柱状型浮体製造方法は、本願発明の柱状型浮体を製造する方法であり、したがってまずは本願発明の柱状型浮体について説明し、その後に本願発明の柱状型浮体製造方法について詳しく説明することとする。
1. Column-shaped Floating Body First, the column-shaped floating body of the present invention will be explained in detail with reference to the drawings. The method for manufacturing a columnar floating body of the present invention is a method for manufacturing a columnar floating body of the present invention, therefore, the columnar floating body of the present invention will be explained first, and then the method for manufacturing a columnar floating body of the present invention will be explained in detail. I decided to.

図1は、本願発明の柱状型浮体100を模式的に示す斜視図である。この図に示すように本願発明の柱状型浮体100は、柱本体110を含んで構成され、さらに縮径体120や底板130を含んで構成することもできる。以下、柱状型浮体100を構成する主な要素ごとに説明する。 FIG. 1 is a perspective view schematically showing a columnar floating body 100 of the present invention. As shown in this figure, the columnar floating body 100 of the present invention includes a column main body 110, and can also include a diameter reducing body 120 and a bottom plate 130. Each of the main elements constituting the columnar floating body 100 will be explained below.

(柱本体)
柱本体110は、図1に示すように断面寸法に比して軸(以下、「柱軸」という。)方向寸法の方が大きい長尺体であって内部は中空とされ、つまり外形は概ね管状を呈している。そして柱本体110は、複数の直面材FPによって形成されることを一つの特徴としている。
(Column body)
As shown in FIG. 1, the column main body 110 is an elongated body whose axis (hereinafter referred to as "column axis") dimension is larger than its cross-sectional dimension and is hollow inside, that is, its outer shape is approximately It has a tubular shape. One feature of the pillar body 110 is that it is formed of a plurality of facing materials FP.

図2は、直面材FPを説明する図であり、(a)はその平面図、(b)はその側面図である。この図に示すように直面材FPは、平面寸法に比して肉厚寸法が小さい板状の部材であって、その板面は概ね平面(平面含む)とされる。既述したとおりここでいう「平面」とは、曲面でないという意味であって、3次元空間における平面の一般式(ax+by+cz+d=0)で表される形状を指す。 FIG. 2 is a diagram illustrating the facing material FP, in which (a) is a plan view thereof, and (b) is a side view thereof. As shown in this figure, the facing material FP is a plate-shaped member whose wall thickness is smaller than its plane dimension, and its plate surface is generally plane (including planes). As mentioned above, the term "plane" here means that it is not a curved surface, and refers to a shape expressed by the general formula (ax+by+cz+d=0) for a plane in three-dimensional space.

柱本体110は、例えば溶接接合によって複数の直面材FRを断面の周方向に連結することで形成される。そのため柱本体110の断面形状は、図3に示すように多角形となる。なお図3では、同じ幅を有する12の直面材FRによって正12角形が形成されているが、もちろんこれに限らず任意数のn角形(nは自然数)とすることができ、また正多角形(全辺長が等しい多角形)ではない多角形(各辺長が異なる)とすることもできる。また図1からも分かるように柱本体110の柱軸長によっては、複数の直面材FRを断面周方向に連結した「分割体」(つまり1リング)を、柱軸方向に複数(図では12段)連結して形成するとよい。あるいは図4に示すように、周方向に隣接する直面材FRの柱軸方向における配置高さが同じにならいないように(いわゆる千鳥配置としたうえで)、柱軸方向に複数連結して形成することもできる。 The column main body 110 is formed by connecting a plurality of face members FR in the circumferential direction of the cross section by, for example, welding. Therefore, the cross-sectional shape of the pillar body 110 becomes a polygon as shown in FIG. In Fig. 3, a regular dodecagon is formed by 12 facing materials FR having the same width, but of course, the shape is not limited to this, and any number of n-gons (n is a natural number) can be formed, and regular polygons can also be formed. It is also possible to use a polygon (each side length is different) instead of (a polygon with all side lengths equal). Furthermore, as can be seen from FIG. 1, depending on the column axis length of the column body 110, a plurality of "divided bodies" (that is, one ring) in which a plurality of facing materials FR are connected in the cross-sectional circumferential direction (12 Steps) It is best to form them by connecting them. Alternatively, as shown in Fig. 4, a plurality of facing members FR adjacent in the circumferential direction are connected in the column axis direction so that the heights in the column axis direction are not the same (so-called staggered arrangement). You can also.

柱本体110は、直面材FRに代えて屈折材RPによって形成することもできる。図5は、屈折材RPを説明する図であり、(a)はその平面図、(b)はその側面図である。この図に示すように屈折材RPは、直面材FPを所定の屈折角で折り曲げた板材である。ここで所定の屈折角とは、複数の屈折材RPによって目的とする柱状型浮体100の断面形状(多角形)が完成するための角度(つまり多角形の内角)であって、例えば図3に示す正12角形であれば、屈折材RPの屈折角は150°となる。なお屈折材RPは、図5に示すように折り曲げ箇所(以下、「屈折線」という。)が1個所のもの(つまり、2面の直面材FPからなるもの)に限らず、屈折線が2個所以上のもの(つまり、3面以上の直面材FPからなるもの)とすることもできる。 The pillar body 110 can also be formed of a refractive material RP instead of the facing material FR. FIG. 5 is a diagram illustrating the refractive material RP, in which (a) is a plan view thereof, and (b) is a side view thereof. As shown in this figure, the refractive material RP is a plate material obtained by bending the facing material FP at a predetermined refraction angle. Here, the predetermined refraction angle is an angle (in other words, an interior angle of the polygon) for completing the desired cross-sectional shape (polygon) of the columnar floating body 100 by the plurality of refraction materials RP, and for example, as shown in FIG. In the case of the regular dodecagon shown, the refraction angle of the refraction material RP is 150°. Note that the refractive material RP is not limited to one with one bending point (hereinafter referred to as a "refraction line") as shown in FIG. It is also possible to have more than one surface (that is, one made of three or more facing materials FP).

屈折材RPによって形成される柱本体110は、屈折加工を要しない直面材FPによって形成されるケースに比べるとやや手間がかかるものの、従来の曲げ加工に比べると大幅にその手間は低減され、また溶接個所が少なくなるという利点もある。 Although the pillar body 110 formed from the refractive material RP requires a little more effort than the case where it is formed from the face material FP, which does not require refraction processing, the effort is significantly reduced compared to conventional bending processing, and Another advantage is that there are fewer welding locations.

図6に示すように、屈折材RPによって形成された柱本体110の柱軸長によっては、複数の屈折材RPを断面周方向に連結した「分割体」(つまり1リング)を、柱軸方向に複数(図では部分的に示す4段)連結して形成するとよい。このとき、柱軸方向に隣接する分割体の連結位置(つまり、溶接ラインWL)どうしが連続する(繋がる)いわゆる「いも継ぎ」は避け、図6に示すように柱軸方向(図では上下)に隣接する分割体の溶接ラインWLどうしが不連続となる(ずれた)いわゆる「千鳥配置」にするとよい。一般的に溶接個所は他の部分と比べて構造上の弱点となりやすく、図6に示すように溶接ラインWLを千鳥配置とすることで全体的な構造脆弱性を緩和することができるわけである。なお分割体は、屈折材RPのみによって形成することもできるし、屈折材RPと直面材FRを組み合わせて形成することもできる。 As shown in FIG. 6, depending on the length of the column axis of the column body 110 formed by the refractive material RP, a "divided body" (that is, one ring) in which a plurality of refractive materials RP are connected in the circumferential direction of the cross section may be connected in the column axis direction. It is preferable to form a plurality of (four stages partially shown in the figure) connected to each other. At this time, avoid so-called "pot joints" in which the connection positions (that is, welding lines WL) of adjacent divided bodies in the column axis direction are continuous (connected), and as shown in FIG. It is preferable to use a so-called "staggered arrangement" in which the welding lines WL of adjacent divided bodies are discontinuous (shifted). In general, welding points are more likely to become structural weaknesses than other parts, and by arranging welding lines WL in a staggered manner as shown in Figure 6, overall structural weakness can be alleviated. . Note that the divided body can be formed by only the refractive material RP, or can be formed by combining the refractive material RP and the facing material FR.

(縮径体)
縮径体120は、ローターやナセルを支持するタワー(図11)と連結されるもので、柱本体110の太径からタワーの細径に変更するためのいわば調整区間である。そのため縮径体120は、図1に示すように、使用時(海中設置時)における柱本体110の上端に設けられ、また柱本体110から柱軸方向の外側(図では上側)に向かって断面積が縮小する錐台形状(つまりテーパー形状)とされる。
(Reduced diameter body)
The diameter reducing body 120 is connected to the tower (FIG. 11) that supports the rotor and the nacelle, and is a so-called adjustment section for changing from the large diameter of the column body 110 to the small diameter of the tower. Therefore, as shown in FIG. 1, the diameter reducing body 120 is provided at the upper end of the column main body 110 during use (when installed underwater), and is also cut away from the column main body 110 toward the outside in the column axis direction (upper side in the figure). It has a frustum shape (that is, a tapered shape) whose area is reduced.

縮径体120は、柱本体110と同様、複数の直面材FRを断面周方向に連結することで形成される。より詳しくは、柱本体110から柱軸方向の外側(図では上側)に向かって内側(中心側)に傾斜するように直面材FRを配置したうえで周方向に連結された構成である。そのため縮径体120の断面形状は、多角形となり、しかも柱本体110の断面形状と相似形にするとよい。また図1からも分かるように縮径体120の柱軸長によっては、複数の直面材FRを周方向に連結した構造体(つまり1リング)を、柱軸方向に複数(図では2段)連結して形成するとよい。また縮径体120は、柱本体110と同様、直面材FRに代えて屈折材RPによって形成することもできるし、屈折材RPと直面材FRを組み合わせて形成することもできる。 The reduced diameter body 120 is formed by connecting a plurality of facing materials FR in the circumferential direction of the cross section, similarly to the column main body 110. More specifically, the facing material FR is arranged so as to be inclined inward (toward the center) toward the outside (upper side in the figure) in the pillar axis direction from the pillar body 110, and then connected in the circumferential direction. Therefore, the cross-sectional shape of the diameter-reducing body 120 is preferably polygonal and similar to the cross-sectional shape of the column main body 110. Also, as can be seen from FIG. 1, depending on the column axis length of the diameter reducing body 120, a structure (that is, one ring) in which a plurality of facing materials FR are connected in the circumferential direction may be formed in multiple stages (in two stages in the figure) in the column axis direction. It is best to form them by connecting them. Further, similarly to the pillar body 110, the diameter reducing body 120 can be formed of a refractive material RP instead of the facing material FR, or can be formed by combining the refractive material RP and the facing material FR.

(底板)
柱状型浮体110は、使用時に海面付近で浮かぶ必要があることから、浮力を受ける構造とされる。したがって、使用時における柱本体110の下端には底板130が設けられる。底板130で封鎖することによって、柱状型浮体110の内部への海水の進入を防ぎ、すなわち柱状型浮体110内部と海中との圧力差を生じさせるわけである。なお底板130は、平面視で多角形とし、さらに柱本体110の断面形状と相似形にするとよい。
(Bottom plate)
Since the columnar floating body 110 needs to float near the sea surface when in use, it has a structure that receives buoyancy. Therefore, a bottom plate 130 is provided at the lower end of the column main body 110 during use. The sealing with the bottom plate 130 prevents seawater from entering the inside of the columnar floating body 110, that is, creates a pressure difference between the inside of the columnar floating body 110 and the sea. Note that the bottom plate 130 is preferably polygonal in plan view, and further preferably has a cross-sectional shape similar to that of the column body 110.

2.柱状型浮体製造方法
続いて本願発明の柱状型浮体製造方法について図を参照しながら詳しく説明する。なお、本願発明の柱状型浮体製造方法は、ここまで説明した柱状型浮体100を製造する方法であり、したがって柱状型浮体100で説明した内容と重複する説明は避け、本願発明の柱状型浮体製造方法に特有の内容のみ説明することとする。すなわち、ここに記載されていない内容は、「1.柱状型浮体」で説明したものと同様である。
2. Column-shaped floating body manufacturing method Next, the column-shaped floating body manufacturing method of the present invention will be explained in detail with reference to the drawings. The columnar type floating body manufacturing method of the present invention is a method for manufacturing the columnar type floating body 100 described so far, so the description that overlaps with the content explained for the columnar type floating body 100 will be avoided, and the columnar type floating body manufacturing method of the present invention will be explained. Only the content specific to the method will be explained. That is, the contents not described here are the same as those explained in "1. Column-shaped floating body".

また本願発明の柱状型浮体製造方法は、直面材FRによって柱状型浮体110を形成する形態(以下、「第1の実施形態」という。)と、屈折材RPによって(あるいは屈折材RPと直面材FRを組み合わせて)柱状型浮体110を形成する形態(以下、「第2の実施形態」という。)に大別することができる。以下、それぞれ実施形態ごとに順に説明していく。 Further, the method for manufacturing a columnar floating body of the present invention has two modes in which the columnar floating body 110 is formed using the facing material FR (hereinafter referred to as the "first embodiment") and a form in which the columnar floating body 110 is formed using the refractive material RP (or the refractive material RP and the facing material). (hereinafter referred to as "second embodiment") in which a columnar floating body 110 is formed (by combining FRs). Each embodiment will be explained in order below.

(第1の実施形態)
図7は、第1の実施形態における本願発明の柱状型浮体製造方法の主な工程を示すフロー図であり、図8は、第1の実施形態における本願発明の柱状型浮体製造方法の主な工程を示すステップ図である。
(First embodiment)
FIG. 7 is a flowchart showing the main steps of the columnar floating body manufacturing method of the present invention in the first embodiment, and FIG. 8 is a flowchart showing the main steps of the columnar floating body manufacturing method of the present invention in the first embodiment. It is a step diagram showing a process.

まず図8(a)に示すように、母材となる大型の鋼板から所定の大きさの板片(切出部材)を切り出す(図7のStep101)。この切断工程では、本願発明の柱状型浮体100を構成する必要な切出部材の数(一般的には1,000を超える)だけ繰り返し切り出される。なお、図8(a)で切り出された状態の切出部材は直面材FPであることから、以下では切出部材のことを直面材FPということとする。 First, as shown in FIG. 8A, a plate piece (cutout member) of a predetermined size is cut out from a large steel plate serving as a base material (Step 101 in FIG. 7). In this cutting process, the necessary number of cut-out members (generally more than 1,000) forming the columnar floating body 100 of the present invention are repeatedly cut out. In addition, since the cutout member in the state cut out in FIG. 8(a) is a facing material FP, the cutout member will be referred to as a facing material FP below.

直面材FPを切り出すと、図8(b)に示すように例えば型治具の上に直面材FPを配置していく(図7のStep102)。このとき、隣接する2つの直面材FPが所定の交差角となるように突き合せて配置する。ここで所定の交差角とは、複数の直面材FPによって目的とする柱状型浮体100の断面形状(多角形)が完成するための角度(つまり多角形の内角)であって、例えば図3に示す正12角形であれば、隣接する2つの直面材FPの交差角は150°となる。なお本願発明における配置工程では、直面材FPをそのまま配置していくことが肝要であり、すなわち従来技術のように直面材FPを曲げ加工(図12(b))することなく(つまり曲面材に加工することなく)直面材FPを配置していく。これにより柱状型浮体100の製造コストを、従来に比して大幅に低減することができるわけである。 Once the facing material FP is cut out, the facing material FP is placed, for example, on a mold jig as shown in FIG. 8(b) (Step 102 in FIG. 7). At this time, two adjacent facing materials FP are placed so as to butt against each other so as to form a predetermined intersection angle. Here, the predetermined intersection angle is an angle (that is, an interior angle of the polygon) for completing the desired cross-sectional shape (polygon) of the columnar floating body 100 by the plurality of facing materials FP, and for example, as shown in FIG. In the case of the regular dodecagon shown, the intersection angle of two adjacent facing materials FP is 150°. In the arrangement process of the present invention, it is important to arrange the facing material FP as it is, that is, without bending the facing material FP (FIG. 12(b)) as in the prior art (in other words, bending the facing material FP into a curved material). (without processing) the facing material FP is placed. As a result, the manufacturing cost of the columnar floating body 100 can be significantly reduced compared to the conventional method.

ところで、目視によって所定の交差角となるように直面材FPを配置することは容易ではない。そこで図9(a)に示すように、配置用治具ATを用いて隣接する2つの直面材FPを配置するとよい。この配置用治具ATは、所定の交差角(例えば図3の場合は150°)が形成されており、したがってこの配置用治具ATを直面材FPの内周面側に当接しながら配置すると、隣接する2つの直面材FPが所定の交差角で突き合せられるわけである。この場合、直面材FPを床面上に、しかもその板面が略鉛直(鉛直含む)姿勢となるように配置すると、配置用治具ATを当接した状態での位置調整が比較的容易となる。ただし、直面材FPが転倒しないようにクレーン等で吊上げた状態とし、かつ直面材FPの前面と背面からサポート材で支持しておくとよい。 By the way, it is not easy to visually arrange the facing material FP so that a predetermined intersection angle is achieved. Therefore, as shown in FIG. 9(a), it is preferable to arrange two adjacent facing materials FP using a placement jig AT. This placement jig AT has a predetermined intersection angle (for example, 150° in the case of FIG. 3), and therefore, when this placement jig AT is placed in contact with the inner peripheral surface of the facing material FP, , two adjacent facing materials FP are butted against each other at a predetermined intersection angle. In this case, if the facing material FP is placed on the floor so that its plate surface is in a substantially vertical (including vertical) position, it will be relatively easy to adjust the position with the placement jig AT in contact with it. Become. However, to prevent the facing material FP from falling over, it is preferable to lift it up using a crane or the like, and to support it from the front and back sides of the facing material FP with support materials.

あるいは図9(b)に示す配置用治具ATを用いて隣接する2つの直面材FPを配置することもできる。図9(b)に示す配置用治具ATにも、所定の交差角(例えば図3の場合は150°)が形成されており、この図に示すように複数(図では5つ)の直面材FPを配置用治具ATの上に載置するだけで、自動的に隣接する2つの直面材FPが所定の交差角で突き合せられるわけである。つまり図9(b)に示す配置用治具ATは、交差角を調整する機能と、従来の型治具の機能をあわせ持つ治具である。ただし、図12(c)に示すように従来の型治具は切出部材(曲面材)の内周面が上方となるように載置するものであるのに対して、図9(b)に示す配置用治具ATは直面材FPの外周面が上方となるように載置するものである。図9(a)からも分かるように、隣接する2つの直面材FPを突き合せるとその外周面側にいわば「開先」が設けられることとなり、したがって図9(b)に示す配置用治具ATに直面材FPを載置すると、その状態のまま次工程の連結(溶接接合)工程を行うことができるわけである。 Alternatively, it is also possible to arrange two adjacent facing materials FP using the arrangement jig AT shown in FIG. 9(b). The arrangement jig AT shown in FIG. 9(b) also has a predetermined intersection angle (for example, 150° in the case of FIG. 3), and has a plurality of (five in the figure) facing surfaces as shown in this figure. By simply placing the material FP on the placement jig AT, two adjacent facing materials FP are automatically butted against each other at a predetermined intersection angle. In other words, the placement jig AT shown in FIG. 9(b) is a jig that has both the function of adjusting the intersection angle and the function of a conventional mold jig. However, as shown in Fig. 12(c), in the conventional mold jig, the cutout member (curved material) is placed so that the inner circumferential surface faces upward, whereas in Fig. 9(b) The placement jig AT shown in FIG. 1 is used to place the facing material FP so that its outer circumferential surface faces upward. As can be seen from FIG. 9(a), when two adjacent facing materials FP are butted against each other, a so-called "groove" is provided on the outer circumferential surface thereof, so the arrangement jig shown in FIG. 9(b) is used. When the facing material FP is placed on the AT, the next process of connection (welding and joining) can be performed in that state.

直面材FPが配置されると、溶接等によって隣接する切出部材どうしを接合(連結)し(図7のStep103)、ひとまず半断面分割体(所定長さの半断面の構造体)を形成する。また図8(c)に示すように、別途用意した小組(リブ)を半断面分割体の内周面に所定間隔で設置する(図7のStep104)。半断面分割体が形成されると、図8(d)に示すように2つの半断面分割体を溶接等によって接合し、多角形断面の「分割体」(つまり1リング)を形成する(図7のStep105)。そして図8(e)に示すように、複数(図では4段)の分割体を軸方向に連結することによって柱本体110を形成する(図7のStep106)。 When the facing material FP is placed, adjacent cut-out members are joined (connected) by welding or the like (Step 103 in FIG. 7), and a half-section divided body (half-section structure with a predetermined length) is formed for the time being. . Further, as shown in FIG. 8C, separately prepared subassemblies (ribs) are installed at predetermined intervals on the inner peripheral surface of the half-section divided body (Step 104 in FIG. 7). Once the half-section divided body is formed, the two half-section divided bodies are joined by welding or the like, as shown in FIG. 7, Step 105). Then, as shown in FIG. 8E, the column main body 110 is formed by connecting a plurality of (four stages in the figure) divided bodies in the axial direction (Step 106 in FIG. 7).

さらに、柱本体110と同様の工程で形成された縮径体120を柱本体110の一端(上端)に取り付け(図7のStep107)、柱本体110他端(下端)を封鎖するように底板130を固定して(図7のStep108)、本願発明の柱状型浮体100が完成する。 Further, a diameter reducing body 120 formed in the same process as the pillar body 110 is attached to one end (upper end) of the pillar body 110 (Step 107 in FIG. 7), and a bottom plate 130 is attached so as to close the other end (lower end) of the pillar body 110. is fixed (Step 108 in FIG. 7), and the columnar floating body 100 of the present invention is completed.

(第2の実施形態)
図10は、第2の実施形態における本願発明の柱状型浮体製造方法の主な工程を示すフロー図である。
(Second embodiment)
FIG. 10 is a flow diagram showing the main steps of the columnar floating body manufacturing method of the present invention in the second embodiment.

まず、第1の実施形態と同様、母材となる大型の鋼板から直面材FPを切り出す(図10のStep201)。直面材FPを切り出すと、この直面材FPを所定の屈折角で折り曲げて屈折材RPを得る(図10のStep202)。この折り曲げ工程は、切り出された直面材FPの数だけ繰り返し行われる。 First, as in the first embodiment, a facing material FP is cut out from a large steel plate serving as a base material (Step 201 in FIG. 10). After cutting out the facing material FP, the facing material FP is bent at a predetermined refraction angle to obtain a refractive material RP (Step 202 in FIG. 10). This bending process is repeated as many times as there are cut out facing materials FP.

屈折材RPが得られると、第1の実施形態と同様、屈折材RPを配置していき(図10のStep203)、溶接等によって隣接する屈折材RPどうしを接合(連結)する(図10のStep204)ことで、ひとまず半断面分割体を形成する。また、別途用意した小組(リブ)を半断面分割体の内周面に所定間隔で設置する(図10のStep205)。半断面分割体が形成されると、2つの半断面分割体を溶接等によって接合し、多角形断面の分割体を形成する(図10のStep206)。そして、複数(図では4段)の分割体を軸方向に連結することによって柱本体110を形成する(図10のStep207)。このとき、図6に示すように柱軸方向に隣接する分割体の溶接ラインWLどうしが不連続となる(千鳥配置となる)ように連結していくとよい。 Once the refractive materials RP are obtained, similar to the first embodiment, the refractive materials RP are arranged (Step 203 in FIG. 10), and adjacent refractive materials RP are joined (connected) by welding or the like (Step 203 in FIG. 10). In Step 204), a half-section divided body is first formed. In addition, separately prepared subassemblies (ribs) are installed at predetermined intervals on the inner peripheral surface of the half-section divided body (Step 205 in FIG. 10). When the half-section divided body is formed, the two half-section divided bodies are joined by welding or the like to form a divided body having a polygonal cross section (Step 206 in FIG. 10). Then, the column main body 110 is formed by connecting a plurality of (four stages in the figure) divided bodies in the axial direction (Step 207 in FIG. 10). At this time, as shown in FIG. 6, it is preferable to connect the welding lines WL of the divided bodies adjacent in the column axis direction so that they are discontinuous (staggered arrangement).

さらに、柱本体110と同様の工程で形成された縮径体120を柱本体110の一端(上端)に取り付け(図10のStep208)、柱本体110他端(下端)を封鎖するように底板130を固定して(図10のStep209)、本願発明の柱状型浮体100が完成する。 Further, a diameter reducing body 120 formed in the same process as the column body 110 is attached to one end (upper end) of the column body 110 (Step 208 in FIG. 10), and a bottom plate 130 is attached so as to close the other end (lower end) of the column body 110. is fixed (Step 209 in FIG. 10), and the columnar floating body 100 of the present invention is completed.

本願発明の柱状型浮体、及び柱状型浮体製造方法は、50m以深の海域における浮体式洋上風力発電に特に好適に利用することができる。本願発明によれば低コストで浮体式洋上風力発電施設を構築することができることから、洋上風力発電に対するより積極的な動機を期待することができ、ひいては温室効果ガスの排出を抑えたうえで安定的にエネルギーを供給することを考えれば、本願発明は産業上利用できるばかりでなく社会的にも大きな貢献を期待し得る発明といえる。 The columnar floating body and the method for manufacturing a columnar floating body of the present invention can be particularly suitably used for floating offshore wind power generation in sea areas deeper than 50 m. According to the present invention, it is possible to construct a floating offshore wind power generation facility at a low cost, so it is possible to expect more active motivation for offshore wind power generation, which in turn will reduce greenhouse gas emissions and provide stable Considering that the present invention can be used to supply energy for a long time, it can be said that the present invention is not only industrially applicable but also can be expected to make a significant contribution to society.

100 本願発明の柱状型浮体
110 (柱状型浮体の)柱本体
120 (柱状型浮体の)縮径体
130 (柱状型浮体の)底板
AT 配置用治具
FP 直面材
RP 屈折材
WL 溶接ライン
100 Column type floating body of the present invention 110 Column main body (of the column type floating body) 120 Diameter reducing body (of the column type floating body) 130 Bottom plate (of the column type floating body) AT Placement jig FP Face material RP Refraction material WL Welding line

Claims (4)

浮体式洋上風力発電施設を構成する柱状型浮体において、
中空の柱状である柱本体を、備え、
前記柱本体は、板面が平面である直面材を所定の屈折角で折り曲げた屈折材を周方向に複数連結することで形成され、断面形状が多角形であ
また前記柱本体は、複数の前記屈折材が周方向に連結された分割体を、柱軸方向に複数連結することで形成され、
柱軸方向に隣接する前記分割体の連結位置どうしが不連続である、
ことを特徴とする柱状型浮体。
In column-shaped floating bodies that constitute floating offshore wind power generation facilities,
It includes a pillar body that is hollow and pillar-shaped,
The pillar body is formed by connecting a plurality of refracting materials in the circumferential direction, which are formed by bending a facing material with a flat plate surface at a predetermined refraction angle, and has a polygonal cross-sectional shape,
Further, the pillar main body is formed by connecting a plurality of divided bodies in which a plurality of the refractive materials are connected in the circumferential direction in the pillar axis direction,
connection positions of the divided bodies adjacent in the column axis direction are discontinuous;
A columnar floating body characterized by:
前記柱本体の一端に設けられる縮径体を、さらに備え、
前記縮径体は、前記直面材又は前記屈折材を、周方向に複数連結することで形成されるとともに、前記柱本体から外方に向かって断面積が縮小する錐台形状であって、断面形状が該柱本体の断面形状と相似形である、
ことを特徴とする請求項1記載の柱状型浮体。
further comprising a diameter reducing body provided at one end of the column main body,
The diameter-reducing body is formed by connecting a plurality of the facing materials or the refractive materials in the circumferential direction, and has a frustum shape whose cross-sectional area decreases outward from the column body, and has a cross-sectional area. The shape is similar to the cross-sectional shape of the column body,
The columnar floating body according to claim 1, characterized in that:
浮体式洋上風力発電施設を構成する柱状型浮体を製造する方法において、
母材から、板面が平面である直面材を切り出す切断工程と、
前記直面材を所定の屈折角に折り曲げて屈折材を得る屈折工程と、
複数の前記屈折材を、所定の交差角で突き合せて配置する配置工程と、
前記配置工程によって配置された前記屈折材どうしを溶接によって連結する連結工程と、を備え、
前記連結工程は、複数の前記屈折材が周方向に連結された分割体を形成する分割体形成工程と、複数の該分割体を柱軸方向に連結する分割体連結工程と、を含み、
前記分割体連結工程では、柱軸方向に隣接する前記分割体の連結位置どうしが不連続となるように連結し、
複数の前記分割体柱軸方向に連結していくことで、中空の柱状である柱本体を製造する、
ことを特徴とする柱状型浮体製造方法。
In a method of manufacturing a columnar floating body constituting a floating offshore wind power generation facility,
a cutting process of cutting out a facing material with a flat plate surface from the base material;
a refraction step of bending the face material to a predetermined refraction angle to obtain a refraction material;
an arrangement step of arranging a plurality of the refractive materials abutting each other at a predetermined intersection angle;
a connecting step of connecting the refractive materials arranged in the arranging step by welding,
The connecting step includes a divided body forming step of forming a divided body in which a plurality of the refractive materials are connected in the circumferential direction, and a divided body connecting step of connecting the plurality of divided bodies in the column axis direction,
In the divided body connecting step, the divided bodies adjacent in the column axis direction are connected so that the connecting positions thereof are discontinuous,
By connecting the plurality of divided bodies in the column axis direction , a hollow columnar column main body is manufactured.
A method for manufacturing a columnar floating body characterized by the following.
前記配置工程では、所定の交差角で形成される配置用治具を用い、前記屈折材の内周面側に該配置用治具を当接しながら該屈折材を配置する、
ことを特徴とする請求項3記載の柱状型浮体製造方法。
In the placement step, using a placement jig formed at a predetermined intersection angle, the refraction material is placed while the placement jig is in contact with the inner peripheral surface of the refraction material.
4. The method for manufacturing a columnar floating body according to claim 3.
JP2020107012A 2020-06-22 2020-06-22 Column-shaped floating body and method for manufacturing column-shaped floating body Active JP7447695B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020107012A JP7447695B2 (en) 2020-06-22 2020-06-22 Column-shaped floating body and method for manufacturing column-shaped floating body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020107012A JP7447695B2 (en) 2020-06-22 2020-06-22 Column-shaped floating body and method for manufacturing column-shaped floating body

Publications (2)

Publication Number Publication Date
JP2022001474A JP2022001474A (en) 2022-01-06
JP7447695B2 true JP7447695B2 (en) 2024-03-12

Family

ID=79244120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020107012A Active JP7447695B2 (en) 2020-06-22 2020-06-22 Column-shaped floating body and method for manufacturing column-shaped floating body

Country Status (1)

Country Link
JP (1) JP7447695B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090021019A1 (en) 2007-06-20 2009-01-22 Siemens Aktiengesellschaft Wind turbine tower and method for constructing a wind turbine tower
US20100319276A1 (en) 2008-02-06 2010-12-23 Arne Kryger Tower element
JP2011115829A (en) 2009-12-04 2011-06-16 Nippon Steel Corp Large-sized welded steel pipe having excellent fatigue resistance characteristic and method of highly efficiently manufacturing the same
JP2011207446A (en) 2010-03-30 2011-10-20 Mitsui Eng & Shipbuild Co Ltd Assistant floating body, method of towing floating body using the same, and method of installing floating body using the same
JP2013141857A (en) 2012-01-10 2013-07-22 Japan Marine United Corp Spar type floating body structure
JP2014055458A (en) 2012-09-13 2014-03-27 Nippon Steel & Sumitomo Metal Towering structure
WO2014163032A1 (en) 2013-04-01 2014-10-09 新日鐵住金株式会社 Floating structure
WO2016091499A1 (en) 2014-12-09 2016-06-16 SIAG Industrie GmbH Method for producing and erecting a tubular tower construction
CN107532570B (en) 2015-04-02 2019-07-05 安赛乐米塔尔公司 Wind turbine tower section, wind turbine tower and assemble method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090021019A1 (en) 2007-06-20 2009-01-22 Siemens Aktiengesellschaft Wind turbine tower and method for constructing a wind turbine tower
US20100319276A1 (en) 2008-02-06 2010-12-23 Arne Kryger Tower element
JP2011115829A (en) 2009-12-04 2011-06-16 Nippon Steel Corp Large-sized welded steel pipe having excellent fatigue resistance characteristic and method of highly efficiently manufacturing the same
JP2011207446A (en) 2010-03-30 2011-10-20 Mitsui Eng & Shipbuild Co Ltd Assistant floating body, method of towing floating body using the same, and method of installing floating body using the same
JP2013141857A (en) 2012-01-10 2013-07-22 Japan Marine United Corp Spar type floating body structure
JP2014055458A (en) 2012-09-13 2014-03-27 Nippon Steel & Sumitomo Metal Towering structure
WO2014163032A1 (en) 2013-04-01 2014-10-09 新日鐵住金株式会社 Floating structure
WO2016091499A1 (en) 2014-12-09 2016-06-16 SIAG Industrie GmbH Method for producing and erecting a tubular tower construction
CN107532570B (en) 2015-04-02 2019-07-05 安赛乐米塔尔公司 Wind turbine tower section, wind turbine tower and assemble method

Also Published As

Publication number Publication date
JP2022001474A (en) 2022-01-06

Similar Documents

Publication Publication Date Title
CN202295230U (en) Floating-type offshore wind power foundation
US8393853B2 (en) High efficiency turbine and method of generating power
CN103225315B (en) Offshore wind power foundation consisting of single pile, cylindrical foundations and anchor cable
US7849596B2 (en) High efficiency turbine and method of making the same
CN110525599A (en) A kind of novel more floating drum offshore wind turbines buoyant foundation
WO2020151160A1 (en) Floating platform-based multi-energy power generation system
CN111391987A (en) Floating type fan equipment in medium-depth water area
Yusop et al. Wave-Activated-Body Energy Converters Technologies: A Review
CN114483452A (en) Marine power generation device integrating ocean energy, photovoltaic energy and wind energy
CN108757332B (en) Photovoltaic and fan combined power generation offshore semi-submersible platform power generation system
JP7447695B2 (en) Column-shaped floating body and method for manufacturing column-shaped floating body
CN217115953U (en) Marine power generation device integrating ocean energy, photovoltaic energy and wind energy
CN216185899U (en) Pontoon connection structure for offshore wind turbine generator system
JP2023091355A (en) Columnar shape floating body and manufacturing method of columnar shape floating body
CN212373618U (en) Floating type fan equipment in medium-depth water area
CN113911273A (en) Deep sea power generation and cultivation system with net cages additionally arranged on offshore barge type wind turbine
DeGraaf et al. The potential of tidal in-stream energy conversion turbines
CN208328971U (en) A kind of dual anti-novel buoyant foundation structural system of offshore wind turbine for waving mechanism
CN219653750U (en) Outer sleeve type offshore wind power single pile foundation structure
Edwards et al. Supplementary information on early-stage floating offshore wind platform designs
CN218477611U (en) Single-upright-column semi-submersible offshore floating type fan foundation
EP2961979A2 (en) Modular floating pier and integrated multipurpose generator of energy from renewable sources
Salame et al. A point-absorber-based wave energy converter for power production in Lebanon: renewable energy
CN214035965U (en) Vertical column floating type fan foundation and wind generating set
CN103981892A (en) Four-cylindrical foundation combined foundation structure system with support

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240212

R150 Certificate of patent or registration of utility model

Ref document number: 7447695

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150