EP3227404A1 - Composition d'ignifugation et son utilisation - Google Patents

Composition d'ignifugation et son utilisation

Info

Publication number
EP3227404A1
EP3227404A1 EP15801839.0A EP15801839A EP3227404A1 EP 3227404 A1 EP3227404 A1 EP 3227404A1 EP 15801839 A EP15801839 A EP 15801839A EP 3227404 A1 EP3227404 A1 EP 3227404A1
Authority
EP
European Patent Office
Prior art keywords
composition according
isocyanate
groups
reactive
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP15801839.0A
Other languages
German (de)
English (en)
Inventor
Martin Lang
Sebastian Simon
Juliane Marauska
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hilti AG
Original Assignee
Hilti AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hilti AG filed Critical Hilti AG
Publication of EP3227404A1 publication Critical patent/EP3227404A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/18Fireproof paints including high temperature resistant paints
    • C09D5/185Intumescent paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/18Fireproof paints including high temperature resistant paints
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/22Catalysts containing metal compounds
    • C08G18/24Catalysts containing metal compounds of tin
    • C08G18/244Catalysts containing metal compounds of tin tin salts of carboxylic acids
    • C08G18/246Catalysts containing metal compounds of tin tin salts of carboxylic acids containing also tin-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/2805Compounds having only one group containing active hydrogen
    • C08G18/2815Monohydroxy compounds
    • C08G18/282Alkanols, cycloalkanols or arylalkanols including terpenealcohols
    • C08G18/2825Alkanols, cycloalkanols or arylalkanols including terpenealcohols having at least 6 carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3225Polyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/38Low-molecular-weight compounds having heteroatoms other than oxygen
    • C08G18/3819Low-molecular-weight compounds having heteroatoms other than oxygen having nitrogen
    • C08G18/3821Carboxylic acids; Esters thereof with monohydroxyl compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4825Polyethers containing two hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6666Compounds of group C08G18/48 or C08G18/52
    • C08G18/667Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/6681Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/32 or C08G18/3271 and/or polyamines of C08G18/38
    • C08G18/6685Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/32 or C08G18/3271 and/or polyamines of C08G18/38 with compounds of group C08G18/3225 or polyamines of C08G18/38
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/73Polyisocyanates or polyisothiocyanates acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/79Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
    • C08G18/791Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups
    • C08G18/792Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups formed by oligomerisation of aliphatic and/or cycloaliphatic isocyanates or isothiocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/016Flame-proofing or flame-retarding additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/02Polyureas
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/02Polyureas
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/08Polyurethanes from polyethers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/12Polyurethanes from compounds containing nitrogen and active hydrogen, the nitrogen atom not being part of an isocyanate group
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K21/00Fireproofing materials
    • C09K21/02Inorganic materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • C08K2003/265Calcium, strontium or barium carbonate

Definitions

  • the present invention relates to a fire protection composition, in particular an ablative composition containing a polyurea-based binder, and their use for fire protection, in particular for the coating of components such as supports, beams, trusses, insulation systems, e.g. Soft bulkheads, cables, cable bundles or cable trays to increase the fire resistance time.
  • a fire protection composition in particular an ablative composition containing a polyurea-based binder
  • components such as supports, beams, trusses, insulation systems, e.g. Soft bulkheads, cables, cable bundles or cable trays to increase the fire resistance time.
  • cables have been applied to cables and cable supports which show an ablation effect, ie have a cooling effect under the action of heat and ceramize, as described, for example, in DE 196 49 749 A1.
  • a method for forming a fire protection for combustible or heat-vulnerable components is described, wherein the components are provided with a coating containing an inorganic material of finely ground hydraulic binders such as calcium silicate, aluminate or ferrite, the Ablativstoffe such as aluminum as a binder - Is added or magnesium hydroxide.
  • the invention has for its object to provide an ablative-acting coating system of the type mentioned, which avoids the disadvantages mentioned, which in particular is not solvent or water-based and has a fast curing, due to appropriately tuned viscosity is easy to apply and due to the achievable high Filling requires only a small layer thickness.
  • the invention accordingly provides a fire-resistant composition
  • a fire-resistant composition comprising an ingredient A containing an isocyanate compound and a constituent B containing an isocyanate-reactive reactive component selected from compounds having at least two amino groups, the amino groups being independently primary and / or or secondary amino groups and / or selected from compounds of polyols and with a component C, which contains an ablative fire protection additive.
  • compositions according to the invention By means of the composition according to the invention, coatings having the required layer thickness for the respective fire resistance duration can be applied in a simple and fast manner.
  • the advantages achieved by the invention are essentially to be seen in the fact that the curing times over other known Systems such as solvent- or water-based systems could be significantly shortened, which significantly reduces the working time.
  • the composition of the invention can have a high degree of filling with the fire protection additives, so that even with thin layers, a large insulating effect is achieved.
  • the possible high degree of filling of the composition can be achieved even without the use of volatile solvents. Accordingly, the cost of materials decreases, which has a favorable effect on material costs, especially in the case of large-area application.
  • This is achieved in particular by the use of a reactive system that does not dry physically, but hardens chemically via an addition reaction.
  • the compositions do not suffer from volume loss due to the drying of solvents or water-based systems of water.
  • a solvent content of about 25% is typical. This means that from a 10 mm wet film only 7.5 mm remain as the actual protective layer on the substrate to be protected. In the composition according to the invention more than 95% of the coating remain on the substrate to be protected.
  • the binder softens and the resulting fire protection additives decompose depending on the additives used in an endothermic physical or chemical reaction to form water and inert gases, which on the one hand to cool the cable and on the other to dilute the combustible gases or by forming a protective layer, which protects the substrate from heat and oxygen attack, and on the other hand prevents the spread of fire by the burning of the coating.
  • compositions of the invention show excellent adhesion to different substrates compared to solvent or water based systems when applied without primer so that they can be used universally and adhere not only to the lines to be protected but also to other substrates.
  • aliphatic compound comprises acyclic and cyclic, saturated or unsaturated hydrocarbon compounds which are not aromatic (PAC,
  • Polyamine means a saturated, open-chain or cyclic organic compound which, especially in the case of the open-chain compounds, is primary
  • polyamine also includes polyetheramines, also called alkoxylated polyamines or polyoxyalkylene polyamines, ie compounds having aliphatically bonded amino groups, the amino groups being attached to the ends of a polyether skeleton;
  • organic radical being a hydrocarbon radical which is saturated or unsaturated, substituted or unsubstituted, may be aliphatic, aromatic or araliphatic; wherein “araliphatic” means that both aromatic and aliphatic radicals are included;
  • abative' means that, when exposed to elevated temperatures, ie above 200 ° C, such as may occur in the event of fire, a series of chemical and physical reactions takes place, the energy in the form of
  • isocyanate compound it is possible to use all aliphatic and / or aromatic isocyanates known to those skilled in the art having an average NCO functionality of 2 or greater, individually or in any desired mixtures with one another.
  • aromatic polyisocyanates are 1, 4-phenylene diisocyanate, 2,4- and / or 2,6-toluene diisocyanate, xylylene diisocyanate, hydrogenated xylylene diisocyanate, tetramethylxylylene diisocyanate, 1,5-naphthylene diisocyanate, diphenylmethane 2,4'- and / or -4, 4'-diisocyanate, triphenylmethane-4,4 ', 4 "-triisocyanate and bis- and tris- (isocyanatoalkyl) -benzenes, -toluenes and -xylols.
  • isocyanates from the series of aliphatic representatives, these having a carbon skeleton (without the NCO groups contained) of 3 to 30, preferably 4 to 20 carbon atoms.
  • aliphatic polyisocyanates are bis (isocyanatoalkyl) ethers or alkane diisocyanates such as propane diisocyanates, butane diisocyanates, pentane diisocyanates, hexane diisocyanates (e.g.
  • TMDI trimethyl-HDI
  • MPDI 2-methylpentane-1,5-diisocyanate
  • MPDI 2-methylpentane-1,5-diisocyanate
  • nonane triisocyanates eg 4-isocyanatomethyl-1, 8-oct
  • IPDI isophorone diisocyanate
  • H 12 MDI bis (4-isocyanatocyclohexyl) methane
  • NBDI bis (isocyanatomethyl) norbornane
  • IMCI isocyanatomethyl-1-methylcyclohexyl isocyanate
  • isocyanates are hexamethylene diisocyanate (HDI), trimethyl-HDI (TMDI), 2-methylpentane-1, 5-diisocyanate (MPDI), isophorone diisocyanate (IPDI), 1, 3- and 1, 4-bis (isocyanatomethyl) cyclohexane (H 6 XDI), bis (isocyanatomethyl) norbornane (NBDI), 3 (4) isocyanatomethyl-1-methylcyclohexyl isocyanate (IMCI) and / or 4,4'-bis (isocyanatocyclohexyl) methane (H 12 MDI) or mixtures these isocyanates.
  • HDI hexamethylene diisocyanate
  • TMDI trimethyl-HDI
  • MPDI 2-methylpentane-1, 5-diisocyanate
  • IPDI isophorone diisocyanate
  • H 6 XDI bis (isocyanatomethyl) norbornan
  • the polyisocyanates are as prepolymers, biurets, isocyanurates, Iminooxadiazindione, uretdiones and / or allophanates, prepared by reaction with polyols or polyamines, individually or as a mixture and have an average functionality of 2 or greater
  • suitable, commercially available isocyanates are Desmodur® N 3900, Desmodur® N 100, Desmodur® N 3200, Desmodur® N 3300, Desmodur® N 3600, Desmodur® N 3800, Desmodur® XP 2675, Desmodur® 2714, Desmodur® 2731, Desmodur® N 3400, Desmodur® XP 2580, Desmodur® XP 2679, Desmodur® XP 2731, Desmodur® XP 2489, Desmodur® E 305, Desmodur® E 3370, Desmodur® XP 2599, Desmodur® XP 2617, Desmodur® X
  • the amines useful as isocyanate reactive reactive moiety include all compounds having at least two amino groups wherein the amino groups are primary and / or secondary amino groups capable of reacting with isocyanate groups to form a urea group (-NC (O) -N-) react, these compounds are known in the art.
  • the isocyanate reactive reactive component is a polyamine, such as. B. 1, 2-diaminocyclohexane, 4,4'-diaminodiphenylsulfone, 1, 5-diamino-2-methylpentane, diethylenetriamine,
  • polyether polyamines are highly reactive towards isocyanate groups such that the reaction between the amino group and the isocyanate group occurs within a few seconds. Preference is therefore given to compounds which react less rapidly with the isocyanate groups, such as the so-called polyether polyamines.
  • the polyether polyamines also called alkoxylated polyamines or Polyoxyalkenpolyamine include compounds having aliphatically bonded amino groups, ie, the amino groups are attached to the ends of a polyether skeleton.
  • the polyether backbone is based on pure or mixed polyalkylene oxide units such as polyethylene glycol (PEG), polypropylene glycol (PPG).
  • the polyether skeleton is prepared by reacting a di- or trialcohol initiator with ethylene oxide (EO) and / or propylene oxide (PO) and subsequent conversion of the terminal hydroxyl groups to amino groups available.
  • Suitable polyether polyamines are represented by the following general formula (I)
  • R is the radical of an initiator for the oxyalkylation having 2 to 12 carbon atoms and 2 to 8 groups with active hydrogen atoms,
  • T represents hydrogen or a C 1 -C 4 -alkyl group
  • V and U are independently hydrogen or T,
  • n is a value between 0 and 100
  • n is an integer between 2 and 8, where m is the number of active hydrogen groups originally contained in the oxyalkylation initiator.
  • n has a value between 35 and 100 or less than 90, less than 80 and less than 70 or less than 60.
  • R has 2 to 6 or 2 to 4 or 3 groups with active hydrogen atoms, in particular hydroxyl groups ,
  • R is an aliphatic initiator having a plurality of active hydrogen atoms.
  • T, U and V are each methyl groups.
  • polyetheramines examples include the polyetheramines of the D, ED, EDR and T series sold by Huntsman Corporation under the JEFFAMINE® brand, the D series diamines and the T series comprising triamines comprising E series compounds, which have a skeleton consisting essentially of polyethylene glycol and the R series comprise highly reactive amines.
  • the products of D series include amino-terminated polypropylene glycols of general formula (II),
  • x is a number with a mean between 2 and 70.
  • the products of the ED series include amino-terminated polyethers based on a substantially polyethylene glycol skeleton having the general formula (III),
  • y is a number with a mean between 2 and 40 and x + z is a number with a mean between 1 and 6.
  • the products of the EDR series include amino-terminated polyethers having the general formula (IV)
  • x is an integer between 1 and 3.
  • the products of the T series include triamines obtained by the reaction of propylene oxide with a triol initiator and subsequent amination of the terminal hydroxyl groups and having the general formula (V) or isomers thereof
  • R is hydrogen or a C 1 -C 4 alkyl group, preferably hydrogen or ethyl, n is 0 or 1 and x + y + z is the number of moles of propylene oxide units, where x + y + z is an integer between about 4 and about 100, in particular between about 5 and about 85.
  • the secondary amines of the SD and ST series comprising secondary diamines and the ST series secondary triamines obtained from the above series by reductive alkylation of the amino groups in which the amino end groups be reacted with a ketone, for example acetone and then reduced to give sterically hindered secondary amino end groups having the general formula (VI)
  • JEFFAMINE® SD-231 starting product D230 / Mw 315)
  • JEFFAMINE® SD-401 starting product D-400 / Mw 515
  • JEFFAMINE® SD-2001 starting product D-2000 / Mw 2050
  • JEFFAMINE ST-404 starting product T ⁇ 103 / Mw 565
  • polyaspartic esters the so-called polyaspartics
  • polyaspartic esters are used as the reactive component reactive toward isocyanate compounds, since their reactivity toward isocyanate groups is markedly reduced as compared with the other polyamines described above. This leads to the advantage that the processing time of a composition with an isocyanate component and a polyaspartic ester component is prolonged, which leads to better handling by the user.
  • Suitable polyaspartic esters are selected from compounds of general formula (VII),
  • R and R 2 may be identical or different and are organic radicals which are inert toward isocyanate groups
  • R 3 and R 4 may be identical or different and represent hydrogen or organic radicals which are inert toward isocyanate groups
  • X is a is n-valent organic radical which is inert toward isocyanate groups
  • n is an integer of at least 2, preferably from 2 to 6, more preferably from 2 to 4 and most preferably 2.
  • R and R 2 are preferably each independently an optionally substituted hydrocarbon group, preferably a Ci-C 9 hydrocarbon group and more preferably a methyl, ethyl or butyl group and R 3 and R 4 are each preferably hydrogen.
  • X is an n-valent hydrocarbon group obtained by removing the amino groups from an aliphatic or araliphatic polyamine, preferably by removing the primary amino groups from an aliphatic polyamine, more preferably diamine.
  • polyamine in this context comprises compounds having two or more primary and optionally additional secondary amino groups, wherein the primary amino groups are preferably terminal.
  • X is a radical, such as by removing the primary amino groups from 1, 4-diaminobutane, 1, 6-diaminohexane, 2,2,4- or 2,4,4-trimethyl-1, 6-diaminohexane , 1-amino-3,3,5-trimethyl-5-amionomethyl-cyclohexane, 4,4'-diamino-dicyclohexylmethane or 3,3'-dimethyl-4,4'-diamino-dicyclohexylmethane, diethylenetriamine and triethylenetetramine, and where n in formula (VII) is the number 2.
  • polyaspartic esters can also be used.
  • suitable polyaspartic esters are sold by Bayer MaterialScience AG under the trademark DESMOPHEN®.
  • Commercially available products include: DESMOPHEN® NH 1220, DESMOPHEN® NH 1420 and DESMOPHEN® NH 1520.
  • the reactive components which are reactive toward isocyanate compounds can be used individually or as a mixture, depending on the desired reactivity.
  • the polyamines may serve as bridging compounds when used in addition to the polyether polyamines or the polyaspartic esters.
  • the proportions of the constituents A and B are preferably selected such that the equivalent ratio of isocyanate groups of the isocyanate compound to isocyanate-reactive groups of the isocyanate-reactive reactive component is between 0.3 and 1.7, preferably between 0.5 and 1.5 and more preferably between 0.7 and 1.3.
  • the polyol with the polyamine, polyetheramine or polyaspartic acid ester in the ratio OH: NH 0.05 eq: 0.95 eq to 0.6 eq: 0.4 eq, more preferably in the ratio 0.1 eq: 0.9 eq to 0.5 eq: 0.5 eq, and most preferably 0.2 eq: 0.8 eq to 0.4 eq: 0.6 eq.
  • the polyol is composed of a backbone of polyester, polyether, polyurethane and / or alkanes or mixtures thereof with one or more hydroxyl groups.
  • the backbone may be linear or branched and contain the functional hydroxyl groups terminal and / or along the chain.
  • the polyester polyols are selected from condensation products of di- and polycarboxylic acids, for example aromatic acids such as phthalic acid and isophthalic acid, aliphatic acids such as adipic acid and maleic acid, cycloaliphatic acids such as tetrahydrophthalic acid and hexahydrophthalic acid, and / or their derivatives, such as Anhydrides, esters or chlorides, and an excess amount of polyhydric alcohols, for example aliphatic alcohols such as ethanediol, 1, 2-propanediol, 1, 6-hexanediol, neopentyl glycol, glycerol, trimethylolpropane and cycloaliphatic alcohols such as 1, 4-cyclohexanedimethanol.
  • aromatic acids such as phthalic acid and isophthalic acid
  • aliphatic acids such as adipic acid and maleic acid
  • cycloaliphatic acids such as tetrahydrophthal
  • the polyester polyols are selected from polyacrylate polyols, such as copolymers of esters of acrylic and / or methacrylic acid, such as e.g. Ethyl acrylate, butyl acrylate, methyl methacrylate with additional hydroxyl groups, and styrene, vinyl esters and maleic acid esters.
  • the hydroxyl groups in these polymers are over functionalized esters of acrylic and methacrylic acid, e.g. Hydroxyethyl acrylate, hydroxyethyl methacrylate and / or hydroxypropyl methacrylate introduced.
  • polyester polyols are selected from polycarbonate polyols.
  • Useful polycarbonate polyols are hydroxylated polycarbonates, for example polycarbonate diols. These are obtainable by reaction of carbonic acid or carbonic acid derivatives with polyols or by the copolymerization of alkylene oxides, such as propylene oxide, with C0 2 . Additionally or alternatively, the polycarbonates used are composed of linear aliphatic chains.
  • Suitable carbonic acid derivatives are, for example, carbonic acid diesters, for example diphenyl carbonate, dimethyl carbonate or phosgene.
  • Suitable polyols are, for example, diols, such as ethylene glycol, 1, 2 and 1, 3-propanediol, 1, 3- and 1, 4-butanediol, 1, 6-hexanediol, 1, 8-octanediol, neopentyl glycol, 1, 4-bishydroxymethylcyclohexane , 2-methyl-1, 3-propanediol, 2,2,4-trimethylpentanediol-1, 3, dipropylene glycol, polypropylene glycols, dibutylene glycol, polybutylene glycols, bisphenol A and lactone-modified diols of the type mentioned above.
  • diols such as ethylene glycol, 1, 2 and 1, 3-propanediol, 1, 3- and 1, 4-butanediol, 1, 6-hexanediol, 1, 8-octanediol, neopentyl glycol, 1, 4-bishydroxymethylcycl
  • polyether-polycarbonate diols are selected from polycaprolactone, prepared by ring-opening polymerization of ⁇ -caprolactone with polyfunctional alcohols such as ethylene glycol, 1, 2-propanediol, glycerol and trimethylolpropane.
  • polyether polyols selected from addition products of, for example, ethylene oxide and / or propylene oxide and polyfunctional alcohols such as ethylene glycol, 1, 2-propanediol, glycerol and / or trimethylolpropane.
  • polyurethane polyols prepared from polyaddition of diisocyanates with excess amounts of di- and / or polyols.
  • di- or polyhydric alcohols selected from C 2 -C 10 alcohols having the hydroxyl groups at the ends and / or along the chain.
  • polyester polyols Most preferred are the above-mentioned polyester polyols, polyether polyols, and C 2 -C 10 alcohols which are di- and / or trifunctional.
  • suitable polyester polyols include DESMOPHEN® 1 100, DESMOPHEN® 1652, DESMOPHEN® 1700, DESMOPHEN® 1800, DESMOPHEN® 670, DESMOPHEN® 800, DESMOPHEN® 850, DESMOPHEN® VP LS 2089, DESMOPHEN® VP LS 2249/1, DESMOPHEN® VP LS 2328, DESMOPHEN® VP LS 2388, DESMOPHEN® XP 2488 (Bayer), K-FLEX XM-360, K-FLEX 188, K-FLEX XM-359, K-FLEX A308 and K-FLEX XM-332 (King Industries ).
  • Suitable commercially available polyether polyols include: ACCLAIM® POLYOL 12200N, ACCLAIM® POLYOL 18200N, ACCLAIM® POLYOL 4200, ACCLAIM® POLYOL 6300, ACCLAIM® POLYOL 8200N, ARCOL® POLYOL 1070, ARCOL® POLYOL 1 105S, DESMOPHEN® 1 1 10 BD, DESMOPHEN® 1 11 1 BD, DESMOPHEN® 1262 BD, DESMOPHEN® 1380 BT, DESMOPHEN® 1381 BT, DESMOPHEN® 1400 BT, DESMOPHEN® 2060 BD, DESMOPHEN® 2061 BD, DESMOPHEN® 2062 BD, DESMOPHEN® 3061 BT , DESMOPHEN® 401 1 T, DESMOPHEN® 4028 BD, DESMOPHEN® 4050 E, DESMOPHEN® 5031 BT, DESMOPHEN® 5034 BT and DESMOPHEN® 5035 BT (B
  • alkanols examples include ethanediol, propanediol, propanetriol, butanediol, butanetriol, pentanediol, pentanetriol, hexanediol, hexanetriol, heptanediol; Heptanetriol, octanediol, octanetriol, nonanediol, nonanetriol, decanediol and decanetriol.
  • a tertiary amine may also be added to the composition as a catalyst.
  • a catalyst may also be added to the composition selected from tin-containing compounds, bismuth-containing compounds, zirconium-containing compounds, aluminum-containing compounds or zinc-containing compounds.
  • this is tin octoate, tin oxalate, tin chloride, Dioctylzinndi- (2-ethylhexanoate), Dioctylzinndithioglykolat, dibutyltin dilaurate, monobutyltin tris (2-ethylhexanoate), Dioctylzinndineodecanoat, Dibutylzinndineodecanoat, dibutyltin diacetate, dibutyltin oxide, Monobutylzinndihydroxychlorid, organotin oxide, monobutyltin oxide, Dioctyltin, Dioctylzinnstannoxan, Bismuth carboxylate, bismuth oxide, bismuth neodecanoate, zinc neodecanoate, zinc octoate, zinc acetylacetonate, zinc oxalate, zinc
  • Suitable catalysts are Borchi® Kat 24, Borchi® Kat 320, Borchi® Kat 15 (Borchers), TIB KAT 129, TIB KAT P129, TIB KAT 160, TIB KAT 162, TIB KAT 214, TIB KAT 216, TIB KAT 218, TIB KAT 220, TIB KAT 232, TIB KAT 248, TIB KAT 248 LC, TIB KAT 250, TIB KAT 250, TIB KAT 256, TIB KAT 318, TIB Si 2000, TIB KAT 716, TIB KAT 718, TIB KAT 720, TIB KAT 616, TIB KAT 620, TIB KAT 634, TIB KAT 635, TIB KAT 815 (TIB Chemicals), K-KAT® XC-B221, K-KAT® 348, K-KAT® 4205, K-KAT® 5218
  • the mode of action of the ablative composition according to the invention is based on an endothermic physical and / or chemical reaction in which substances which, when decomposed, require large amounts of energy are contained in the composition.
  • a series of chemical and physical processes are initiated. These processes include the release of water vapor, changes in chemical composition, and the formation of non-combustible gases that keep the oxygen needed for combustion away from the surface of the cable. All of these processes require a large amount of energy that is removed from the fire. After the conversion of all organic components is completed, a stable insulating layer of inorganic constituents has formed, which has an additional insulating effect.
  • the constituent C therefore contains at least one ablative fire protection additive, it being possible to use as an additive both individual compounds and a mixture of several compounds.
  • ablative fire protection additives such materials that form energy-depleting layers by dehydration, which is embedded as in the form of water of crystallization, and water evaporation.
  • the heat energy that has to be used to split off the water is thereby removed from the fire.
  • those materials are used which chemically change or decompose, heat, sublime or melt on exposure to heat in an endothermic reaction. This cools the coated substrates. Often decomposition releases inert, ie non-flammable gases, such as carbon dioxide, which additionally dilute the oxygen in the immediate vicinity of the coated substrate.
  • Suitable gas-releasing components are hydroxides, such as aluminum hydroxide and magnesium hydroxide and their hydrates, which split off water, and carbonates, such as calcium carbonate, which split off carbon dioxide.
  • Basic carbonates can split off both water and C0 2 . Preference is given to a combination of components starting at different temperatures with the gas release. Thus, the elimination of water in aluminum hydroxide begins already at about 200 ° C, whereas the elimination of magnesium hydroxide starts at about 350 ° C, so that the gas separation takes place over a wider temperature range.
  • Suitable ablative materials when exposed to heat are water-releasing inorganic hydroxides or hydrates, such as those of sodium, potassium, lithium, barium, calcium, magnesium, boron, aluminum, zinc, nickel, furthermore boric acid and their partially dehydrated derivatives.
  • Example, the following compounds may be mentioned: LiN0 3 -3H 2 0, Na2C03H20 (thermonatrite), Na 2 C0 3 -7H 2 0, Na 2 CO 3 -10H 2 O (sodium carbonate), Na 2 Ca (C0 3) 2 -2H 2 0 (Pirssonit), Na 2 Ca (C0 3) 2 -5H 2 0 (Gaylussite), Na (HC0 3) of Na 2 C0 3 -2H 2 0 (Trona), Na 2 S 2 0 3 5H 2 0, Na 2 0 3 Si-5H 2 0, KF-2H 2 0, CaBr 2 -2H 2 0, CaBr 2 -6H 2 0, CaS0 4 .2H 2 0 (gypsum), Ca (S0 4) - 1/2 H 2 0 (bassanite), Ba (OH) 2 -8 H 2 0, Ni (N0 3) 2 -6H 2 0, Ni (N0 3) 2 -4H 2 0, Ni (N0 3) 2 -2H 2 0, ⁇
  • the hydrogenated salts are selected from the group consisting of Al 2 (SO 4 ) -16-18H 2 O, NH 4 Fe (SO 4 ) 2 -12H 2 O, Na 2 B 4 O 7 -10H 2 O , NaAl (S0 4) 2 -12H 2 0, AINH 4 (S0 4) 2 -12-24H 2 0, Na 2 SO 4 -10H 2 O, MgS0 4 -7H 2 0, (NH 4) 2 S0 4 - 12H 2 0; KAI (S0 4) 2 -12H 2 0, Na 2 Si0 3 -9H 2 0, Mg (N0 2) 2 -6H 2 0, Na 2 C0 3 -7H 2 0 and mixtures thereof (EP1069172A).
  • Aluminum hydroxide is aluminium, Aluminiumhydroxidhydrate, magnesium hydroxide and zinc borate, since they have an activation temperature below 180 ° C.
  • one or more reactive flame retardants may be added to the composition of the invention.
  • Such compounds are incorporated in the binder.
  • An example within the meaning of the invention are reactive organophosphorus compounds, such as 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) and its derivatives and adducts.
  • DOPO 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide
  • DOPO 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide
  • the ablative fire retardant additive can be used in an amount of from 5 to 99% by weight in the Composition, wherein the amount depends essentially on the application form of the composition (spraying, brushing and the like).
  • the proportion of ingredient C in the overall formulation is set as high as possible.
  • the proportion of constituent C in the overall formulation is preferably 5 to 85% by weight and more preferably 40 to 80% by weight.
  • the composition may optionally contain conventional auxiliaries, such as solvents, such as xylene or toluene, wetting agents, for example based on polyacrylates and / or polyphosphates, defoamers, such as silicone defoamers, thickeners, such as alginate thickeners, dyes, fungicides, plasticizers, such as chlorine-containing waxes , Binders, flame retardants or various fillers, such as vermiculite, inorganic Fibers, quartz sand, glass microspheres, mica, silica, mineral wool, and the like.
  • auxiliaries such as solvents, such as xylene or toluene, wetting agents, for example based on polyacrylates and / or polyphosphates, defoamers, such as silicone defoamers, thickeners, such as alginate thickeners, dyes, fungicides, plasticizers, such as chlorine-containing waxes , Binders, flame retardants or various fillers,
  • rheology additives such as anti-settling agents, anti-sagging agents and thixotropic agents.
  • Polyhydroxycarboxamides, urea derivatives, salts of unsaturated carboxylic acid esters, alkylammonium salts of acidic phosphoric acid derivatives, ketoximes, amine salts of p-toluenesulfonic acid, amine salts of sulfonic acid derivatives and aqueous or organic solutions or mixtures of the compounds used are used.
  • rheology additives based on pyrogenic or precipitated silicas or based on silanized pyrogenic or precipitated silicas can be used.
  • the rheology additive is preferably fumed silicas, modified and unmodified phyllosilicates, precipitated silicas, cellulose ethers, polysaccharides, PU and acrylate thickeners, urea derivatives, castor oil derivatives, polyamides and fatty acid amides and polyolefins, if they are in solid form, pulverized celluloses and / or Suspending agents such as Xanthan gum.
  • composition of the invention can be formulated as a two- or multi-component system.
  • the component A and the component B must be arranged to be reaction-inhibiting separately. In the presence of a catalyst, it may either be stored separately from constituents A and B or may be contained in one of these constituents or divided into both constituents. This ensures that the two components A and B of the binder are mixed together just prior to use and trigger the curing reaction. This makes the system easier to handle.
  • the composition according to the invention is packaged as a two-component system, wherein the component A and the component B are arranged reaction-inhibiting separately. Accordingly contains a first component, the component I, the component A and a second component, the component II, the component B. This ensures that the two components A and B of the binder are mixed together immediately prior to use and trigger the curing reaction , This makes the system easier to handle.
  • the constituent C can be contained as a total mixture or divided into individual components in a first component I and / or a second component II.
  • the breakdown of ingredient C is dependent on the compatibility of the compounds contained in the composition, so that neither a reaction of the compounds contained in the composition with each other or a mutual interference nor a reaction of these compounds can be carried out with the compounds of the other ingredients. This depends on the connections used. This ensures that the highest possible proportion of fillers can be achieved. This leads to high intumescence, even with low layer thicknesses of the composition.
  • the composition is applied to the substrate as a paste by brush, roller or by spraying.
  • the substrate may be metallic or consist of another, non-metallic material, such as plastic in the case of cables or mineral wool in the case of softschotts, or of a combination of materials, such as metallic and non-metallic materials, as in the case of cable trays.
  • the composition is applied by means of an airless spray process.
  • the composition according to the invention is characterized by a relatively rapid curing by an addition reaction and thus unnecessary physical drying compared to the solvent and water-based systems. This is particularly important when the coated components have to be loaded or further processed quickly, either by coating with a cover layer or by moving or transporting the components.
  • the coating is thus much less prone to external influences on the construction site, such as exposure to (rain) water or dust and dirt, which in solvent or water-based systems can lead to washing out of water-soluble constituents, or in the absorption of dust to a reduced ablative effect. Due to the low viscosity of the composition despite the high solids content, which can be up to 99 wt .-% in the composition without the addition of volatile solvents, the composition remains easy to process, in particular by conventional spraying.
  • the composition according to the invention is particularly suitable as a fire protection coating, in particular sprayable coating for components on a metallic and non-metallic basis.
  • the composition of the invention is mainly used in the construction sector as a coating, in particular fire protection coating for individual cables, cable bundles, cable trays and cable ducts or other lines use and as fire protection coating for steel construction elements, but also for construction elements of other materials, such as concrete or wood.
  • composition according to the invention is therefore the use of the composition according to the invention as a coating, in particular as a coating for construction elements or components made of steel, concrete, wood and other materials, such as plastics, in particular as fire protection coating for individual cables, cable bundles, cable trays and cable ducts or other Lines or Softschotts.
  • the present invention also relates to objects obtained when the composition of the invention has cured.
  • the objects have excellent ablative properties.
  • ablative compositions For the preparation of ablative compositions according to the invention, the constituents listed below are used. In each case, the individual components are mixed with the aid of a dissolver and homogenized. For application, these mixtures are then mixed or applied either before spraying or during spraying.
  • the cured composition was subjected to a test according to EN ISO 1 1925-2, whereby the flammability and the dripping behavior according to CEN / TS 45545-2 is determined (HTC SFS test).
  • the test is carried out in a draft-free Mitsubishi FR-D700SC Electric Inverter. During the test, a small burner flame is directed onto the surface of the sample at an angle of 45 ° for 30 s, which corresponds to surface flaming.
  • samples with the dimensions 1 1 cm x 29.5 cm and an application thickness of 1 mm are used. These samples cured at room temperature and were aged at 40 ° C for three days.
  • Cure time and cure history were determined. It was tested with a spatula when the curing of the coating starts.
  • Polyaspartic esters based on a cycloaliphatic amine (amine number 199-203 mg KOH / g (M129-AFAM 2011 -06054) Viscosity (25 ° C.) 900-2,000 mPas (M068-DIN 53019), equivalent weight 276 g / eq)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

L'invention concerne une composition d'ignifugation qui contient un liant à base de polyurée. La composition selon l'invention permet d'appliquer de manière plus simple et plus rapide des revêtements présentant une épaisseur de couche requise pour une durée de résistance au feu voulue, cette épaisseur de couche pouvant être réduite au minimum tout en offrant cependant un bon effet ignifugeant. La composition selon l'invention convient en particulier à la protection contre les incendies, et convient particulièrement en tant que revêtement de câbles et de chemins de câble, pour augmenter la durée de résistance au feu.
EP15801839.0A 2014-12-05 2015-11-30 Composition d'ignifugation et son utilisation Withdrawn EP3227404A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP14196427.0A EP3029128A1 (fr) 2014-12-05 2014-12-05 Composition ignifuge et son utilisation
PCT/EP2015/078024 WO2016087350A1 (fr) 2014-12-05 2015-11-30 Composition d'ignifugation et son utilisation

Publications (1)

Publication Number Publication Date
EP3227404A1 true EP3227404A1 (fr) 2017-10-11

Family

ID=52133828

Family Applications (2)

Application Number Title Priority Date Filing Date
EP14196427.0A Withdrawn EP3029128A1 (fr) 2014-12-05 2014-12-05 Composition ignifuge et son utilisation
EP15801839.0A Withdrawn EP3227404A1 (fr) 2014-12-05 2015-11-30 Composition d'ignifugation et son utilisation

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP14196427.0A Withdrawn EP3029128A1 (fr) 2014-12-05 2014-12-05 Composition ignifuge et son utilisation

Country Status (3)

Country Link
US (1) US20170355862A1 (fr)
EP (2) EP3029128A1 (fr)
WO (1) WO2016087350A1 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3130906A1 (fr) * 2015-08-12 2017-02-15 Heraeus Electro-Nite International N.V. Capuchon de laitier
DE102017003034A1 (de) 2017-03-29 2018-10-04 Mankiewicz Gebr. & Co. Gmbh & Co. Kg Beschichtungsstoffzusammensetzung, daraus hergestellte Beschichtungen und deren Verwendung als Erosionsschutz
CN107902976A (zh) * 2017-09-28 2018-04-13 公安部四川消防研究所 一种环保阻火模块及其制备方法
US11512163B2 (en) * 2017-12-01 2022-11-29 Sika Technology Ag Polyaspartics with long pot life and fast curing
CN109627528B (zh) * 2019-01-24 2021-06-08 广州澳通电线电缆有限公司 一种电缆防火层
US20220356369A1 (en) * 2021-04-29 2022-11-10 Covestro Llc Low-voc pigmented coating compositions for high humidity environments
CN113881328A (zh) * 2021-11-12 2022-01-04 周继贵 一种氟改性聚脲纳米阻燃抗爆涂料
CA3230263A1 (fr) 2022-02-02 2023-08-10 Burkhard Walther Durcissement d'isocyanate avec de l'eau liee
WO2023200914A1 (fr) * 2022-04-15 2023-10-19 Kisuma Americas, Inc. Procédé pour le prolongement de la durée de conservation d'un isocyanate polymère avec une composition contenant de l'hydrotalcite

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4011281A (en) 1975-03-06 1977-03-08 Texaco Development Corporation Polyether thiourea epoxy curing agents
US4462831A (en) 1980-07-07 1984-07-31 Raspik Ltd. Fire and heat protection material of ablative type
US5104917A (en) 1988-08-05 1992-04-14 Ad-Va-Cote Tri-State Inc. Heat ablative compositions
US4940770A (en) 1988-11-14 1990-07-10 Texaco Chemical Co. Novel compositions from polyoxyalkylene amines and epoxides
DE59007601D1 (de) 1989-06-23 1994-12-08 Bayer Ag Verfahren zur Herstellung von Überzügen.
US5597930A (en) 1995-05-18 1997-01-28 Bayer Corporation Aspartate-functional polyhydantoin prepolymers and their use in coating compositions
DE19649749A1 (de) 1996-11-30 1998-06-04 Dunamenti Tuzvedelem Reszvenyt Verfahren zur Ausbildung eines Brandschutzes für brennbare oder hitzegefährdete Bauteile
IL120011A (en) 1997-01-15 2001-04-30 Kofler Gregory Ablative material for fire and heat protection and a method for preparation thereof
IL130883A0 (en) 1999-07-11 2001-01-28 Maoz Betzer Tsilevich An endothermic heat shield composition and a method for the preparation thereof
DE10007980B4 (de) * 2000-02-22 2007-07-12 Hilti Ag Zweikomponenten-Ortschaumsystem und dessen Verwendung zum Ausschäumen von Öffnungen zum Zwecke des Brandschutzes
US20110313084A1 (en) * 2006-07-27 2011-12-22 Ppg Industries Ohio, Inc. Coating compositions comprising polyurea and graphite
US8822594B2 (en) * 2008-04-21 2014-09-02 Ppg Industries Ohio, Inc. Low temperature application coating composition comprising polyurea and a phosphorus-containing polyol and footwear comprising polyurea
CN101577631B (zh) * 2008-05-07 2012-04-25 华为技术有限公司 评价用户体验质量的方法、系统及网络装置
WO2012030338A1 (fr) 2010-09-01 2012-03-08 Dow Global Technologies Llc Matériaux époxy élastomères et l'utilisation de ceux-ci
WO2012051135A1 (fr) * 2010-10-11 2012-04-19 Dow Global Technologies Llc Revêtements d'élastomère de polyuréthanne
EP2810970A1 (fr) * 2013-06-06 2014-12-10 HILTI Aktiengesellschaft Composition formant une couche isolante et son utilisation

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2016087350A1 *

Also Published As

Publication number Publication date
WO2016087350A1 (fr) 2016-06-09
US20170355862A1 (en) 2017-12-14
EP3029128A1 (fr) 2016-06-08

Similar Documents

Publication Publication Date Title
EP3227404A1 (fr) Composition d'ignifugation et son utilisation
EP3004197B1 (fr) Composition formant une couche isolante et son utilisation
EP0120253B1 (fr) Masses intumescentes éventuellement mousseuses et objets obtenus par moulage préparés à partir de celles-ci
WO2016087400A1 (fr) Composition de formation de couches isolantes et son utilisation
EP0274068A2 (fr) Masses intumescentes et leur utilisation
EP0043952A2 (fr) Masses intumescentes éventuellement mousseuses
WO2016185007A1 (fr) Composition moussante à plusieurs constituants formant une couche d'isolation et son utilisation
WO2018224317A1 (fr) Composition d'ignifugation, système multicomposant et leur utilisation
EP1603970B1 (fr) Mousse dure en polyurethanne sans halogenes, retardatrice de combustion, pour applications anti-incendie
EP3158012B1 (fr) Composition ignifuge et son utilisation
EP3158010A1 (fr) Composition d'ignifugation et son utilisation
WO2020164892A1 (fr) Composition expansible à plusieurs constituants formant une couche d'isolation et son utilisation
EP3158011A1 (fr) Composition d'ignifugation et son utilisation
EP2057233B1 (fr) Nouveau polyuréthanne à teneur élevée en eau, son procédé de fabrication et son utilisation
WO2015197744A1 (fr) Composition anti-incendie et son utilisation
WO2023148059A1 (fr) Composition expansible à constituants multiples, et profilé de protection contre l'incendie expansé ayant des charges de régulation de température
WO2015193345A1 (fr) Composition d'ignifugation et son utilisation
EP3161054B1 (fr) Composition ignifuge et son utilisation
DE3235571A1 (de) Gegebenenfalls geschaeumte intumeszenzmassen und ihre verwendung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20170705

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20180705

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20181116