EP3227289A1 - Bicyclische verbindungen als schädlingsbekämpfungsmittel - Google Patents
Bicyclische verbindungen als schädlingsbekämpfungsmittelInfo
- Publication number
- EP3227289A1 EP3227289A1 EP15801850.7A EP15801850A EP3227289A1 EP 3227289 A1 EP3227289 A1 EP 3227289A1 EP 15801850 A EP15801850 A EP 15801850A EP 3227289 A1 EP3227289 A1 EP 3227289A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- alkyl
- spp
- radical
- optionally substituted
- alkoxy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D471/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
- C07D471/02—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
- C07D471/04—Ortho-condensed systems
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N43/00—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
- A01N43/34—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom
- A01N43/36—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom five-membered rings
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N43/00—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
- A01N43/34—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom
- A01N43/40—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom six-membered rings
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N43/00—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
- A01N43/72—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with nitrogen atoms and oxygen or sulfur atoms as ring hetero atoms
- A01N43/74—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with nitrogen atoms and oxygen or sulfur atoms as ring hetero atoms five-membered rings with one nitrogen atom and either one oxygen atom or one sulfur atom in positions 1,3
- A01N43/78—1,3-Thiazoles; Hydrogenated 1,3-thiazoles
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N43/00—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
- A01N43/72—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with nitrogen atoms and oxygen or sulfur atoms as ring hetero atoms
- A01N43/80—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with nitrogen atoms and oxygen or sulfur atoms as ring hetero atoms five-membered rings with one nitrogen atom and either one oxygen atom or one sulfur atom in positions 1,2
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N43/00—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
- A01N43/90—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having two or more relevant hetero rings, condensed among themselves or with a common carbocyclic ring system
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D487/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
- C07D487/02—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
- C07D487/04—Ortho-condensed systems
Definitions
- the present application relates to novel bicyclic compounds, agents containing these compounds, their use for combating animal pests and methods and intermediates for their preparation.
- bicyclic compounds have become known which possess insecticidal properties (WO 2015/038503 Al).
- WO 2010/078408 Al the presentation and pharmaceutical use of Raf kinase inhibitors and in WO 2013/259064 AI the synthesis of anti-HTV agents and their use for the treatment of HIV infections is described which u. a. contain an N-substituted 2H-pyrazolo [3,4-] pyridin-1-yl fragment.
- WO 2010/056999 describes the preparation of parasiticides containing an N-substituted 2H-pyrazolo [3,4-] pyridin-1-yl fragment.
- the object of the present invention was to provide compounds which broaden the spectrum of pesticides from various aspects.
- G 1 is N or CB 1 ,
- B 1 is a radical from the series consisting of hydrogen, halogen, cyano, nitro, alkyl, haloalkyl, alkoxy, haloalkoxy and in each case optionally substituted cycloalkyl and cycloalkenyl,
- B 2 is a radical from the series consisting of hydrogen, halogen, cyano, nitro, alkyl, haloalkyl, alkoxy, haloalkoxy and in each case optionally substituted cycloalkyl and cycloalkenyl,
- T oxygen or a pair of electrons
- R 2 f is a radical from the series haloalkyl, carboxyl and amino, wherein
- G 2 is hydrogen or a radical from the series halogen, nitro, amino, cyano, alkylamino, haloalkylamino, dialkylamino, alkyl, haloalkyl, alkoxycarbonylalkyl, optionally substituted and optionally interrupted by one or more heteroatoms saturated or unsaturated cycloalkyl, cycloalkylalkyl, alkoxy, haloalkoxy , Alkoxyalkyl, halogenated alkoxyalkyl, alkylthioalkyl, alkylsulfinylalkyl, alkylsulfonylalkyl, bis (alkoxy) alkyl, bis (haloalkoxy) alkyl, alkoxy (alkylsulfanyl) alkyl,
- X 1 is a radical from the group consisting of hydrogen, halogen, cyano, nitro, alkyl, haloalkyl, cycloalkyl, alkoxy and haloalkoxy,
- X 2 is oxygen, sulfur, NR 5 or NOH
- L is oxygen or sulfur
- R is NR 18 R 19 or an optionally substituted radical from the series alkyl, alkenyl, alkynyl, alkoxyalkyl, alkyl-S-alkyl, alkyl-S (0) -alkyl, alkyl-S (0) 2- alkyl, R 18 -CO-alkyl, NR 18 R 19 is -CO-alkyl, cycloalkyl, cycloalkenyl, cycloalkylalkyl, cycloalkenylalkyl, heterocyclyl, heterocyclylalkyl, phenyl, phenylalkyl, hetaryl and hetarylalkyl,
- R 3 is hydrogen or alkyl
- R 4 is a radical from the group consisting of hydrogen, alkyl, haloalkyl, cyanoalkyl, alkynyl, cycloalkyl, cycloalkylalkyl, alkoxyalkyl, alkoxycarbonyl, alkoxycarbonylalkyl, alkylthioalkyl, alkylsulfinylalkyl, alkylsulfonylalkyl, aryl, arylalkyl and hetarylalkyl,
- R 5 is a radical from the group consisting of hydrogen, alkyl, haloalkyl, cyanoalkyl, alkynyl, cycloalkyl, cycloalkylalkyl, alkoxyalkyl, alkoxycarbonyl, alkoxycarbonylalkyl, alkylthioalkyl, aryl, arylalkyl and hetarylalkyl, or
- R 3 and R 4 together with the nitrogen atom to which they are attached form a ring which may contain one or more further nitrogen, oxygen and sulfur heteroatoms, or
- R 3 and R 5 together with the nitrogen atoms to which they are attached form a ring
- R 6 is hydrogen or alkyl
- R 7 is a radical selected from hydrogen, alkyl, haloalkyl, cyanoalkyl, alkynyl, cycloalkyl, cycloalkylalkyl, alkoxy, haloalkoxy, alkoxyalkyl, alkylthioalkyl, alkylsulfinylalkyl, alkylsulfonylalkyl, alkoxycarbonyl, alkoxycarbonylalkyl, alkylthioalkyl, aryl, arylalkyl or hetarylalkyl, or
- R 6 and R 7 together with the nitrogen atom to which they are attached form a ring which may contain one or more further nitrogen, oxygen and sulfur heteroatoms
- R 8 is a radical from the group consisting of hydrogen, alkyl, haloalkyl, cyanoalkyl, alkoxy, haloalkoxy, alkenyl, alkoxyalkyl, in each case optionally halogen-substituted alkylcarbonyl and alkylsulfonyl, optionally halogen-substituted alkoxycarbonyl, if appropriate by halogen, alkyl, alkoxy, haloalkyl and cyano is substituted cycloalkylcarbonyl, or represents a cation or an optionally substituted by alkyl or arylalkyl ammonium ion,
- R 9 is a radical from the series in each case optionally substituted alkyl, alkenyl and alkynyl, in each case optionally substituted cycloalkyl, cycloalkylalkyl and cycloalkenyl, in which the rings at least one heteroatom selected from the group sulfur, oxygen (oxygen atoms may not be immediately adjacent) and nitrogen each optionally substituted aryl, heteroaryl, arylalkyl and heteroarylalkyl and an optionally substituted amino group,
- R and R in the radicals (Cl) and (Fl) may also together with the NS (0) n group to which they are attached form a saturated or unsaturated and optionally substituted 4- to 8-membered ring, the or a plurality of further heteroatoms from the group consisting of sulfur, oxygen (where oxygen atoms are not allowed to be immediately adjacent) and nitrogen and / or at least one carbonyl group,
- R 10 is hydrogen or alkyl
- R 8 and R 10 in the radicals (C-2) and (F-2) may also together with the N atoms to which they are bonded represent a saturated or unsaturated and optionally substituted 4- to 8-membered ring, the at least one further heteroatom from the series sulfur, oxygen (oxygen atoms may not be immediately adjacent) and contain nitrogen and / or at least one carbonyl group,
- R and R in the radicals (C-2) and (F-2) may also together with the NS (0) n group to which they are attached form a saturated or unsaturated and optionally substituted 4- to 8-membered ring which may contain one or more further heteroatoms from the group consisting of sulfur, oxygen (oxygen atoms may not be immediately adjacent) and nitrogen and / or at least one carbonyl group,
- R U is an optionally substituted radical from the series alkyl, alkenyl, alkynyl, alkoxy, alkenyloxy, alkynyloxy, cycloalkyl, cycloalkyloxy, cycloalkenyloxy, cycloalkylalkoxy, alkylthio, alkenylthio, phenoxy, phenylthio, benzyloxy, benzylthio, heteroaryloxy, heteroarylthio, heteroarylalkoxy and heteroarylalkylthio stands, 12
- R represents an optionally substituted radical from the group consisting of alkyl, alkenyl, alkynyl, alkoxy, alkenyloxy, alkynyloxy, cycloalkyl, cycloalkyloxy, cycloalkenyloxy, cycloalkylalkoxy, alkylthio, alkenylthio, phenoxy, phenylthio, benzyloxy, benzylthio, heteroaryloxy, heteroarylthio, heteroarylalkoxy and heteroarylalkylthio .
- R and R in the radicals (C-3) and (F-3) may also together with the phosphorus atom to which they are attached form a saturated or unsaturated and optionally substituted 5- to 7-membered ring, one or two Heteroatoms from the series oxygen (oxygen atoms may not be immediately adjacent) and may contain sulfur, represents an optionally substituted radical from the series alkyl, alkenyl, alkynyl, phenyl and phenylalkyl, represents an optionally substituted radical from the series alkyl, Alkenyl, alkynyl, phenyl and phenylalkyl, a radical from the series each optionally substituted alkyl, alkenyl and alkynyl, each optionally substituted cycloalkyl, cycloalkylalkyl and cycloalkenyl, in which the rings at least one heteroatom selected from the group sulfur, oxygen (where oxygen atoms not may be immediately adjacent) and contain nitrogen, each optionally subs substituted
- R 8 and R 15 in the radicals (C-6) and (F-6) also together with the NS (0) n group to which they are attached, a saturated or unsaturated and optionally substituted 4- to 8-membered
- Ring which may contain one or more other heteroatoms selected from the group consisting of sulfur, oxygen (oxygen atoms may not be immediately adjacent) and nitrogen and / or at least one carbonyl group,
- R 16 is a radical from the series hydrogen, in each case optionally substituted alkyl, alkoxy, alkenyl and alkynyl, in each case optionally substituted cycloalkyl, cycloalkylalkyl and
- R 17 is a radical from the series in each case optionally substituted alkyl, alkoxy, alkenyl and alkynyl, in each case optionally substituted cycloalkyl, cycloalkylalkyl and cycloalkenyl, in which the rings are at least one heteroatom from the series sulfur, oxygen (oxygen atoms may not be immediately adjacent) and each may contain nitrogen, each optionally substituted aryl, heteroaryl, arylalkyl and heteroarylalkyl and an optionally substituted amino group,
- R 8 and R 17 in the radicals (C-8) and (F-8) together with the NC (X) group to which they are attached form a saturated or unsaturated and optionally substituted 4- to 8-membered ring may contain one or more further heteroatoms selected from the group sulfur, oxygen (oxygen atoms may not be immediately adjacent) and nitrogen and / or at least one carbonyl group,
- R 18 is a radical selected from the group consisting of hydrogen, hydroxy, in each case optionally substituted alkyl, alkoxy, alkoxyalkyl, alkylthioalkyl, alkylsulfinylalkyl, alkylsulfonylalkyl, alkylcarbonyl, alkoxycarbonyl, alkenyl and alkynyl, in each case optionally substituted cycloalkyl, cycloalkylalkyl, cycloalkenyl and cycloalkenylalkyl, in which the rings at least one heteroatom from the group consisting of sulfur, oxygen (where oxygen atoms are not allowed to be immediately adjacent) and nitrogen, each optionally substituted aryl, arylalkyl, heteroaryl and heteroarylalkyl and an optionally substituted amino group,
- R 19 is a radical selected from the group consisting of hydrogen, an alkali metal or alkaline earth metal ion or an optionally monosubstituted to trisubstituted by C 1 -C 4 -alkyl-substituted ammonium ion or an optionally halogen or cyano-substituted radical alkyl, alkoxy, alkoxyalkyl, alkylthioalkyl , Alkylsulfinylalkyl, alkylsulfonylalkyl,
- Y 3 is a radical from the group consisting of hydrogen, halogen, cyano, alkyl, cycloalkyl, haloalkyl, alkoxy, haloalkoxy and NR 20 R 21 ,
- W is a radical from the series O, S, SO and SO2,
- R 22 is a radical from the series alkyl, optionally substituted by halogen, carbamoyl, thiocarbamoyl or cyano substituted cycloalkyl, haloalkyl, alkoxy, haloalkoxy, alkoxyalkyloxy, alkylthio, alkylsulfinyl, alkylsulfonyl, haloalkylthio, haloalkylsulfinyl, haloalkylsulfonyl, alkylthioalkyl, alkylsulfinylalkyl, alkylsulfonylalkyl, Alkylthioalkyloxy, Alkylsulfinylalkyloxy, Alkylsulfonylalkyloxy, haloalkylthioalkyl, Halogenalkylsulfinylalkyl, Halogenalkylsulfonylalkyl, alky
- alkyl is a radical selected from among hydrogen, halogen, cyano, nitro, amino, hydroxy and in each case optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, alkoxy, alkenyloxy, alkynyloxy, cycloalkyloxy, alkylcarbonyloxy, alkenylcarbonyloxy, alkynylcarbonyloxy, cycloalkylcarbonyloxy, alkoxycarbonyloxy , Alkylsulfonyloxy, alkylamino, alkenylamino, alkynylamino, cycloalkylamino, alkylthio, haloalkylthio, alkenylthio, alkynylthio, cycloalkylthio, alkylsulfinyl, alkylsulfonyl, alkylcarbonyl, alkoxyiminoalky
- R is hydrogen or an optionally substituted radical from the series alkyl, alkenyl, alkynyl, phenyl and phenylalkyl and
- R is hydrogen or an optionally substituted radical from the series alkyl, alkenyl, alkynyl, phenyl and phenylalkyl, is hydrogen or alkyl and
- R 26 is a radical selected from the group consisting of hydrogen, alkyl, haloalkyl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, alkoxyalkyl, alkylthioalkyl, alkylsulfinylalkyl, alkylsulfonylalkyl and cyanoalkyl.
- the compounds of the formula (I) have good activity as pesticides, for example against arthropods and in particular insects, and, moreover, are generally very well tolerated by crops, in particular, and / or via favorable toxicological and / or favorable environmental factors Features.
- A is a radical from the series (A-a), (A-b) and (A-f)
- T oxygen or a pair of electrons
- R 2 c is a radical of the formula
- R 2 d is a radical of the formula
- R is where the dotted line represents the bond to the carbon atom of the bicyclic moiety of formula (I), or
- R 2 e is a radical from the series (F-1), (F-8), (F-10) and (F-11)
- R 2 f is a radical from the series Ci-C6-haloalkyl, carboxyl and amino, wherein
- G 2 is hydrogen or a radical from the group halogen, nitro, amino, cyano, C 1 -C 4 -alkylamino, halogeno-C 1 -C 4 -alkylamino, C 1 -C 4 -dialkylamino, C 1 -C 4 -alkyl, halogeno-C 1 -C 4 -alkyl, C 1 -C 4 -alkoxycarbonyl-C 1 -C 4 -alkyl, C 3 -C 6 -cycloalkyl, C 3 -C 6 -cycloalkenyl, C 3 -C 6 -cycloalkyl-C 1 -C 4 -alkyl, C 1 -C 4 -alkoxy, halogeno-C 1 -C 4 -alkyl, C 1 -C 6 -cycloalkyl -C 4 -alkoxy, C 1 -C 4 -alkoxy-C 1 -C 4 -
- X represents oxygen or sulfur
- X1 represents a radical from the series consisting of hydrogen, halogen, cyano, nitro, C 1 -C 6 -alkyl , CI-COE haloalkyl, C3-C6-cycloalkyl, CI-C ⁇ - alkoxy and Ci-C6-haloalkoxy
- X 2 is oxygen, sulfur, NR 5 or NOH
- R 3 is hydrogen or C 1 -C 6 -alkyl
- R 4 is a radical selected from hydrogen, Ci-C 4 alkyl, halo-Ci-C4-alkyl, cyano-Ci-C 4 alkyl, C 2 -C 4 alkynyl, C 3 -C 6 cycloalkyl , C 3 -C 6 cycloalkyl-Ci-C4-alkyl, Ci-C4-alkoxy-Ci-C4-alkyl, Ci- C 4 alkoxycarbonyl, Ci-C 4 alkoxycarbonyl-Ci-C 4 alkyl , C 1 -C 4 -alkylthio-C 1 -C 4 -alkyl, aryl, aryl-C 1 -C 4 -alkyl and hetaryl-C 1 -C 4 -alkyl,
- R 5 is a radical from the group of hydrogen, Ci-C4 alkyl, halo Ci-C4 alkyl, cyano-Ci-C 4 alkyl, C 2 -C 4 alkynyl, C 3 -C 6 cycloalkyl , C 3 -C 6 cycloalkyl-Ci-C4-alkyl, Ci-C4-alkoxy-Ci-C4-alkyl, Ci- C 4 alkoxycarbonyl, Ci-C 4 alkoxycarbonyl-Ci-C 4 alkyl , C 1 -C 4 -alkylthio-C 1 -C 4 -alkyl, aryl, aryl-C 1 -C 4 -alkyl and hetaryl-C 1 -C 4 -alkyl, or
- R 3 and R 4 together with the nitrogen atom to which they are attached, form a 4- to 7-membered ring containing one or two further nitrogen, oxygen and sulfur heteroatoms (where oxygen and sulfur atoms are not immediately adjacent may contain)
- R 6 is hydrogen or C 1 -C 4 -alkyl
- R 7 is a radical from the group consisting of hydrogen, C 1 -C -alkyl, halogeno-C 1 -C 4 -alkyl, cyano-C 1 -C 6 -alkyl, C 2 -C 4 -alkynyl, C 3 -C 6 -cycloalkyl, C 3 -C 4 cycloalkyl-Ci-C4-alkyl, Ci-C 4 alkoxy, halogen-Ci-C 4 - alkoxy, Ci-C4-alkoxy-Ci-C4-alkyl, Ci-C 4 - alkoxycarbonyl, Ci-C 4 alkoxycarbonyl-Ci-C4-alkyl, Ci-C alkylthio-Ci-C alkyl, aryl, aryl-C alkyl or hetaryl-Ci-C -alkyl, or
- R 6 and R 7 together with the nitrogen atom to which they are attached, form a 4- to 7-membered ring containing one or two further nitrogen, oxygen and sulfur heteroatoms (with oxygen and sulfur atoms not being immediately adjacent may contain)
- R 8 is a radical selected from the group consisting of hydrogen, C 1 -C 6 -alkyl, C 1 -C 6 -haloalkyl, cyano-C 1 -C 6 -alkyl, C 1 -C 6 -alkoxy, C 1 -C 6 -haloalkoxy, C 2 -C 6 -alkenyl, ci C6-alkoxy-Ci-C6-alkyl, in each case optionally substituted by halogen Ci-Cö-alkylcarbonyl and Ci-Cö-alkylsulfonyl, optionally substituted by halogen Ci-C6-alkoxycarbonyl, optionally by halogen, Ci-Cö-alkyl, Ci-C6 Alkoxy, C 1 -C 6 -haloalkyl and cyano-substituted C 3 -C 6 -cycloalkylcarbonyl, or represents a cation or an ammonium ion which
- R 9 is a radical from the series in each case optionally substituted by halogen, C 1 -C 6 -alkoxy, C 1 -C 6 -haloalkoxy, C 1 -C 6 -alkylthio, C 1 -C 6 -haloalkylthio, C 1 -C 6 -alkylsulfinyl, C 1 -C 6 -haloalkylsulfinyl, C 1 -C 4 -alkyl -Cö-alkylsulfonyl, and Ci-C6-haloalkylsulfonyl substituted C1 -C6- alkyl, C 2 -C 6 alkenyl and C 2 -C 6 alkynyl, each optionally substituted by halogen, Ci-COE-alkyl, Ci Coe-haloalkyl, Ci -C6-alkoxy or Ci-C6-haloalkoxy-substituted C3-C6
- C6-cycloalkyl-Ci-C6-alkyl and C3-C6-cycloalkenyl in which a ring member by a heteroatom selected from the group sulfur, oxygen (oxygen atoms may not be immediately adjacent) and nitrogen may be replaced (and in particular for
- Haloalkoxy-Ci-Ce-alkyl C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, Cs-Ce-cycloalkyl-Ci-Ce-alkyl, Ci-C 6 - alkylcarbonyl, Ci-C6-alkoxycarbonyl or aminocarbonyl substituted aryl, heteroaryl, aryl Ci-Cö-alkyl, heteroaryl-Ci-C6-alkyl or NR'R ", wherein R 'and R" independently of one another from a number of hydrogen, Ci-C6-alkyl, Ci-C6-haloalkyl, C3 -C 6 -cycloalkyl, C 1 -C 6 -alkoxy, C 1 -C 6 -alkylcarbonyl and C 1 -C 6 -alkoxylcarbonyl, or
- R 8 and R 9 in the radical (Cl) and in the radical (Fl) can also be used together with the NS (0) n group to which they are attached, a saturated or unsaturated and optionally halogen, CI-C
- Form alkyl, C 1 -C 6 -haloalkyl, C 1 -C 6 -alkoxy, C 1 -C 6 -halogenoalkoxy-substituted 5 to 7-membered ring which has one or two heteroatoms selected from the group consisting of sulfur, oxygen (oxygen atoms may not be directly adjacent) and nitrogen and / or at least one and preferably a carbonyl group, in particular R 8 and R 9 may together with the NS (0) n group to which they are attached, stand for a residue from the series
- R 8 and R 15 in the radical (C-6) together with the NS (0) n group to which they are attached can form a saturated or unsaturated and optionally substituted 4- to 8-membered ring, the one or two further heteroatoms from the series sulfur, oxygen (where oxygen and sulfur atoms may not be immediately adjacent) and contain nitrogen and / or at least one carbonyl group
- R 16 is a radical selected from the group consisting of hydrogen, in each case optionally methyl, cyano, carbamoyl or carboxyl-substituted C 1 -C 6 -alkyl, C 1 -C 6 -alkoxy, C 2 -C 4 -alkenyl and C 2 -C 4 -alkynyl, in each case optionally by halogen, Cyano, nitro, C 1 -C 6 -alkyl, C 1 -C 6 -haloalkyl, C 3 -C 6 -cycloalkyl, C 1 -C 6 -al
- R 17 is a radical from the series in each case optionally substituted by halogen, Ci-C6-alkoxy, CI-C ⁇ -haloalkoxy, Ci-Cö-alkylthio, Ci-C6-haloalkylthio, Ci-C6-alkylsulfinyl, CI-C ⁇ -haloalkylsulfinyl, Ci C6-alkylsulfonyl or Ci-C6-haloalkylsulfonyl-substituted CI-C ⁇ - alkyl, Ci-C6-alkoxy, C2-C6-alkenyl and C2-C6 alkynyl, each optionally substituted by halogen, Ci-COE-alkyl, Ci-C6 Haloalkyl, Ci-C6-alkoxy or Ci-C6-haloalkoxy substituted C3-C6-cycloalkyl, C3-C6-cycloalkyl-Ci-C
- R 8 and R 17 in the radical (C-8) and in the radical (F-8) can also be used together with the NC (X) group to which they are attached, a saturated or unsaturated and optionally halogen, CI-C Form alkyl, C 1 -C 6 -haloalkyl, C 1 -C 6 -alkoxy, C 1 -C 6 -halogenoalkoxy-substituted 5 to 7-membered ring which contains one or two further heteroatoms from the series sulfur, oxygen (oxygen atoms may not be immediately adjacent) and may contain nitrogen and / or a carbonyl group, in particular R 8 and R 17 may be taken together with the NC (X) group to which they are attached, for a residue from the series
- R 18 is a radical from the group of hydrogen, hydroxy, optionally mono- or polysubstituted by halogen or monosubstituted or disubstituted by cyano substituted C ⁇ - alkyl, Ci-C6-alkoxy, Ci-C 6 alkoxy-Ci-C4- alkyl, Ci-C 6 alkyl-S-Ci-C4-alkyl, Ci-C 6 alkyl-S (0) -C C-4 alkyl, Ci-C 6 - alkyl-S (0) 2 -C-C 4 alkyl, Ci-C6 alkylcarbonyl, Ci-C 6 alkoxycarbonyl, C 3 -C 6 cycloalkyl, C 3 -C 6 - cycloalkenyl, C3-C6-cycloalkyl-Ci-C3-alkyl, C3-C6-cycloalkenyl-Ci-C3-alkyl, heterocyclyl, heterocycly
- R 19 represents hydrogen, an alkali metal or alkaline earth metal ion or an optionally monosubstituted to monosubstituted by C 1 -C 4 -alkyl-substituted ammonium ion or an optionally mono- or polysubstituted by halogen or mono- or di-cyano-substituted radical from the series C 1 -C 4 Alkyl, C 1 -C 4 -alkoxy, C 1 -C 4 -alkoxy-C 1 -C 4 -alkyl, C 1 -C 4 -alkyl-S-C 1 -C 4 -alkyl, C 1 -C 4 -alkyl-S (0) -C 1 -C 4 -alkyl and C 1 -C 4 -alkyl-S (O) 2 -C 1 -C 4 -alkyl,
- Y 3 is a radical from the series consisting of hydrogen, halogen, cyano, C 1 -C 6 -alkyl, C 1 -C 6 -haloalkyl, C 3 -C 6 -cycloalkyl, C 1 -C 6 -alkoxy, C 1 -C 6 -haloalkoxy and NR 20 R 21 , is a radical from the series O, S, SO and SO2, a radical from the series Ci-C6-alkyl, optionally substituted by halogen, carbamoyl, thiocarbamoyl or cyano substituted C3-C6-cycloalkyl, Ci-C6-haloalkyl, Ci -C 6 -alkoxy, C 1 -C -haloalkoxy, C 1 -C 6 -alkoxy-C 1 -C 6 -alkyloxy, C 1 -C 4 -alkylthio, C 1 -C 4 -alkyls
- E-48 E-49 E-50 E-51 stands for a radical from the series hydrogen, halogen, cyano, nitro, amino, hydroxy, Ci-C6-alkyl, Ci-Ce-haloalkyl, cyano-Ci-C 6 alkyl, C 2 -C 6 alkenyl, C C 2 -C 6 -alkynyl, C 3 -C 6 -cycloalkyl, C 3 -C 6 -cycloalkyl-C 1 -C 6 -alkyl, C 1 -C 6 -alkoxy, C 1 -C 6 -haloalkoxy, C 3 -C 6 -alkenyloxy, C 3 -C 6 Alkynyloxy, C 3 -C 6 -cycloalkyloxy, C 1 -C 6 -alkylcarbonyloxy, C 2 -C 6 -alkenylcarbonyloxy, C 2 -C 6 -alkynylcarbonyloxy
- Halogenalkenylcarbonyl, Ci-C 6 alkoxy-C 6 alkyl, Ci-C 6 alkoxycarbonyl, Ci-COE-alkylsulfonyl, and Ci-C is 6 -Halogengenalkylsulfonyl, a radical from the group of hydrogen, Ci-alkyl COE , C 2 -C 4 -alkenyl, C 2 -C 4 -alkynyl, C 3 -C 6 -cycloalkyl, C 3 -C 6 -cycloalkenyl, C 1 -C 6 -alkoxy, C 2 -C 6 -alkenyloxy, C 2 -C 6 -alkynyloxy, C 3 -C 6- Cycloalkyloxy, C 1 -C 4 -alkylthio-C 1 -C 4 -alkyl, C 2 -C 4 -alkenylthio-C 1 -C 4 -alkyl,
- A is a radical from the series (A-a), (A-b) and (A-f)
- G 1 is N or CB 1 ,
- B 1 is a radical selected from the group consisting of hydrogen, halogen, C 1 -C 6 -alkyl and C 1 -C -haloalkyl,
- B 2 is a radical from the series consisting of hydrogen, halogen, C 1 -C 6 -alkyl and C 1 -C 1 -haloalkyl,
- T oxygen or a pair of electrons
- R is where the dotted line represents the bond to the carbon atom of the bicyclic moiety of formula (I), or
- R f is a radical from the series Ci-Cö-haloalkyl, carboxyl and amino, wherein
- G is hydrogen or a radical from the series halogen, nitro, amino, cyano, C 1 -C -alkylamino, halogeno-C 1 -C 4 -alkylamino, C 1 -C 4 -dialkylamino, C 1 -C 4 -alkyl, C 1 -C 4 -alkoxycarbonyl C 1 -C 4 -alkyl, halogeno-C 1 -C 4 -alkyl, C 1 -C 4 -alkoxy, halogeno-C 1 -C 4 -alkoxy, C 1 -C 4 -alkoxy-C 1 -C 4 -alkyl, halogenated C 1 -C 4 -alkoxy-C 1 -C 4 alkyl, bis (C 1 -C 4 -alkoxy) C 1 -C 4 -alkyl, bis (halogeno-C 1 -C 4 -alkoxy) C 1 -C 4
- X 1 is a radical from the series consisting of hydrogen, fluorine, chlorine, bromine, iodine, cyano, nitro, C 1 -C 4 -alkyl, C 1 -C 4 -haloalkyl, C 3 -C 6 -cycloalkyl, C 1 -C 4 -alkoxy and C4 haloalkoxy stands,
- X 2 is oxygen, sulfur, NR 5 or NOH, n is 2,
- C O
- C 1 -C 4 -alkyl, C 3 -C 6 -cycloalkyl, C 1 -C 4 -alkoxy and C 1 -C 4 -haloalkyl-substituted C 3 -C 6 -cycloalkyl, optionally substituted once or twice by oxygen (leads to C O)
- C 1 -C 4 -alkyl, C 3 -C 6 -cycloalkyl, C 1 -C 4 -alkoxy and C 1 -C 4 -haloalkyl-substituted C 3 -C 8 -cycloalkenyl, optionally substituted once or twice by oxygen (leads to C O)
- R 4 is a radical from the group consisting of hydrogen, C 1 -C 4 -alkyl, halogeno-C 1 -C 4 -alkyl, cyano-C 1 -C 4 -alkyl, C 2 -C 4 -alkynyl, C 3 -C 6 -cycloalkyl, C 3 -C 6 cycloalkyl-Ci-C4-alkyl, Ci-C4-alkoxy-Ci-C4-alkyl, Ci- C4-alkoxycarbonyl, Ci-C4-alkoxycarbonyl-Ci-C4-alkyl, Ci-C4-alkylthio -Ci-C4-alkyl,
- R 5 is a radical from the group consisting of hydrogen, C 1 -C 4 -alkyl, halogeno-C 1 -C 4 -alkyl, cyano-C 1 -C 4 -alkyl, C 2 -C 4 -alkynyl, C 3 -C 6 -cycloalkyl, C 3 C 6 -cycloalkyl-C 1 -C 4 -alkyl, C 1 -C 4 -alkoxy-C 1 -C 4 -alkyl,
- R 6 is hydrogen or C 1 -C 4 -alkyl
- R 7 is a radical from the group consisting of hydrogen, C 1 -C -alkyl, halogeno-C 1 -C 4 -alkyl, cyano-C 1 -C 4 -alkyl, C 2 -C 4 -alkynyl, C 1 -C 4 -alkoxy, halogeno-C 1 -C 4 -alkyl, C 4 -alkoxy, C 1 -C 4 -alkoxy-C 1 -C 4 -alkyl, C 1 -C 4 -alkoxycarbonyl, C 1 -C 4 -alkoxycarbonyl-C 1 -C 4 -alkyl, C 1 -C 4 -alkylthio-C 1 -C 4 -alkyl, arylcyclo C 4 alkyl or hetaryl C 1 -C 4 alkyl, or
- R 6 and R 7 together with the nitrogen atom to which they are attached, form a 4- to 7-membered ring containing one or two further nitrogen, oxygen and sulfur heteroatoms (with oxygen and sulfur atoms not being immediately adjacent may contain)
- R 8 is a radical selected from the group consisting of hydrogen, C 1 -C 6 -alkyl, C 1 -C 6 -haloalkyl, cyano-C 1 -C 6 -alkyl, C 1 -C 6 -alkoxy, C 1 -C 6 -haloalkoxy, C 2 -C 6 -alkenyl, ci C6-alkoxy-Ci-C6-alkyl, in each case optionally substituted by halogen Ci-Cö-alkylcarbonyl and Ci-Cö-alkylsulfonyl, optionally substituted by halogen Ci-C6-alkoxycarbonyl, optionally by halogen, Ci-Cö-alkyl, Ci-C6 Alkoxy, C 1 -C 6 -haloalkyl and cyano-substituted C 3 -C 6 -cycloalkylcarbonyl, or represents a cation or an ammonium ion which
- R is a radical from the group in each case optionally substituted by halogen, C 1 -C 4 -alkoxy, C 1 -C 4 -halogenoalkoxy, C 1 -C 4 -alkylthio, C 1 -C 4 -haloalkylthio, C 1 -C 4 -alkylsulfinyl, C 1 -C 4 -haloalkylsulfinyl, C 1 -C 4 -alkoxy C 4 -alkylsulfonyl and C 1 -C 4 -haloalkylsulfonyl-substituted C 1 -C 4 -alkyl, C 2 -C 4 -alkenyl and C 2 -C 4 -alkynyl, in each case optionally by halogen, C 1 -C 4 -alkyl, C 1 -C 4 -haloalkyl, C 1 -C 4 -alkyl Alkoxy
- R 8 and R 9 in the radical (Cl) and in the radical (Fl) can also be used together with the NS (0) n group to which they are attached, a saturated or unsaturated and optionally halogen, CI-C ⁇ -alkyl, Ci -Cö-haloalkyl, Ci-C6-alkoxy, Ci-C6-haloalkoxy-substituted 5- to 7-membered ring forming one or two heteroatoms selected from the group sulfur, oxygen (oxygen atoms may not be immediately adjacent) and nitrogen and / or at least one and preferably can contain exactly one carbonyl group, in particular R 8 and R 9 together with the NS (0) n group to which they are attached may be a member of the series
- R 15 is a radical selected from the group each optionally substituted by methyl C 1 -C 6 -alkyl, C 2 -C 6 -alkenyl and C 2 -C 6 -alkynyl, each optionally substituted by methyl, halogen, cyano or carbamoyl-substituted C 3 -C 6 -cycloalkyl, C3 -C 6 -cycloalkyl-C 1 -C 2 -alkyl and C 3 -C 6 -cycloalkenyl,
- R 8 and R 15 in the radical (C-6) together with the NS (0) n group to which they are attached can form a saturated or unsaturated and optionally substituted 4- to 8-membered ring, the one or two further heteroatoms from the series sulfur, oxygen (where oxygen and sulfur atoms may not be immediately adjacent) and contain nitrogen and / or at least one carbonyl group,
- R 17 is a radical from the series in each case optionally substituted by halogen, C 1 -C -alkoxy, C 1 -C 4 -halogenoalkoxy, C 1 -C 4 -alkylthio, C 1 -C 4 -haloalkylthio, C 1 -C 4 -alkylsulfinyl, C 1 -C 4 -haloalkylsulfinyl, Ci-C4-alkylsulfonyl and Ci-C4-haloalkylsulfonyl-substituted C 1 -C 4 - alkyl, C2-C4 alkenyl and C2-C4 alkynyl, each optionally substituted by halogen, C1-C4 alkyl, Ci- C4-haloalkyl , C 1 -C 4 -alkoxy, C 1 -C 4 -haloalkoxy-substituted C 3 -C 6 -cycl
- Ci-Ci-alkyl is hydrogen or Ci-Ci-alkyl and R Zb is hydrogen, C 1 -C 4 -alkyl, C 2 -C 4 -alkenyl, C 2 -C 4 -alkynyl, C 3 -C 6 -cycloalkyl, C 3 -C 6 -cycloalkyl-C 1 -C 4 -alkyl , Ci-C4-alkoxy-Ci-C 2 alkyl, Ci-C4-alkylthio-Ci-C 2 alkyl, Ci-C4-alkylsulfinyl-Ci-C 2 - alkyl, Ci-C4 alkylsulfonyl Ci-C 2 -alkyl or cyano-Ci-C 4 -alkyl.
- Preferred Range (3) Very particular preference is given to compounds of the formula (I) in which, for a radical from the series (A-a), (A-b) and (A-f)
- G 1 is N or CB 1 ,
- B 1 is a radical selected from the group consisting of hydrogen and fluorine
- B 2 is hydrogen
- T oxygen or a pair of electrons
- R 2 d is a radical of the formula wherein the dashed line represents the bond to the carbon atom of the bicycle of formula (I), or
- R 2 f is a radical from the series Ci-C6-haloalkyl, carboxyl and amino, wherein
- G 2 is hydrogen or a radical selected from halogen, nitro, amino, cyano, C 1 -C 4 -alkylamino, halogeno C 1 -C 4 -alkylamino, C 1 -C 4 -dialkylamino, C 1 -C 4 -alkyl, C 1 -C 4 -alkoxycarbonyl-Ci- -C 4 alkyl, halo-C 1 -C 4 -alkyl, C 1 -C 4 -alkoxy, halogeno-C 1 -C 4 -alkoxy, C 1 -C 4 -alkoxy-C 1 -C 4 -alkyl, halogenated C 1 -C 4 -alkoxy -C-C4-alkyl, bis (Ci-C4-alkoxy) -C-C4-alkyl, bis (halo-Ci-C4-alkoxy) -C-C 4 alkyl, Ci-C4
- G 2 is a C-radical (C-1) or (C-9)
- X 1 is a radical from the series consisting of hydrogen, fluorine, chlorine, bromine, cyano, methyl, ethyl, trifluoromethyl, methoxy, ethoxy, difluoromethoxy and trifluoromethoxy,
- X 2 is oxygen, sulfur, NR 5 or NOH, n is 2,
- R is NR 18 R 19 or for an in each case optionally monosubstituted, disubstituted, trisubstituted, tetrasubstituted or pentasubstituted by fluorine, chlorine or mono- or disubstituted by cyano radical from the series Ci- C 4 alkyl, C 3 -C 4 alkenyl, C 3 -C 4 alkynyl, Ci-C 2 alkoxy-Ci-C 2 alkyl, and Ci-C2 alkyl-S-Ci-C 2 - alkyl, Ci-C2 alkyl-S (0) - C 1 -C 2 -alkyl, C 1 -C 2 -alkyl-S (O) 2 -C 1 -C 2 -alkyl, for R 18 -CO-C 1 -C 2 -alkyl, for NR 18 R 19 -CO-Ci- C 2 -alkyl, for optionally mono- or disubstit
- R 3 is C 1 -C 4 -alkyl
- R 4 is a radical from the series consisting of hydrogen, C 1 -C 4 -alkyl, halogeno-C 1 -C 4 -alkyl, cyano-C 1 -C 4 -alkyl, C 2 -C 4 alkynyl, C 3 -C 6 cycloalkyl, C 3 -C 6 cycloalkyl-Ci-C4-alkyl, Ci-C4-alkoxy-Ci-C4-alkyl, Ci- C4-alkoxycarbonyl, Ci- C 4 -alkoxycarbonyl-C 1 -C 4 -alkyl, C 1 -C 4 -alkylthio-C 1 -C 4 -alkyl,
- R 5 is a radical from the group of hydrogen, Ci-C 4 alkyl, halo-Ci-C4-alkyl, cyano-Ci-C 4 alkyl, C 2 -C 4 alkynyl, C 3 -C 6 cycloalkyl , C 3 -C 6 cycloalkyl-Ci-C4-alkyl, Ci-C4-alkoxy-Ci-C4-alkyl, Ci- C 4 alkoxycarbonyl, Ci-C 4 alkoxycarbonyl-Ci-C 4 alkyl , C 1 -C 4 -alkylthio-C 1 -C 4 -alkyl, is hydrogen or C 1 -C 4 -alkyl, R 7 is a radical from the group consisting of hydrogen, C 1 -C -alkyl, halogeno-C 1 -C 4 -alkyl, cyano-C 1 -C 4 -alkyl, C 2 -C 4 -
- R 6 and R 7 together with the nitrogen atom to which they are attached, form a 4- to 7-membered ring containing one or two further nitrogen, oxygen and sulfur heteroatoms (with oxygen and sulfur atoms not being immediately adjacent may contain)
- R 8 is a radical selected from the group consisting of hydrogen, C 1 -C 6 -alkyl, C 1 -C 6 -haloalkyl, cyano-C 1 -C 6 -alkyl, C 1 -C 6 -alkoxy, C 1 -C 6 -haloalkoxy, C 2 -C 6 -alkenyl, ci C6-alkoxy-Ci-C6-alkyl, in each case optionally substituted by halogen Ci-Cö-alkylcarbonyl and Ci-Cö-alkylsulfonyl, optionally substituted by halogen Ci-C6-alkoxycarbonyl, optionally by halogen, Ci-Cö-alkyl, Ci-C6 Alkoxy, C 1 -C 6 -haloalkyl and cyano-substituted C 3 -C 6 -cycloalkylcarbonyl, or represents a cation or an ammonium ion optional
- R is a radical from the group in each case optionally substituted by halogen, C 1 -C 4 -alkoxy, C 1 -C 4 -halogenoalkoxy, C 1 -C 4 -alkylthio, C 1 -C 4 -haloalkylthio, C 1 -C 4 -alkylsulfinyl, C 1 -C 4 -haloalkylsulfinyl, C 1 -C 4 -alkoxy C 4 -alkylsulfonyl and C 1 -C 4 -haloalkylsulfonyl-substituted C 1 -C 4 -alkyl, C 2 -C 4 -alkenyl and C 2 -C 4 -alkynyl, in each case optionally by halogen, C 1 -C 4 -alkyl, C 1 -C 4 -haloalkyl, C 1 -C 4 -alkyl Alkoxy
- R 8 and R 9 in the radical (Cl) and in the radical (Fl) can also be used together with the NS (0) n group to which they are attached, a saturated or unsaturated and optionally halogen, CI-C ⁇ -alkyl, Ci -Cö-haloalkyl, Ci-C6-alkoxy, Ci-C6-haloalkoxy-substituted 5- to 7-membered ring forming one or two heteroatoms selected from the group sulfur, oxygen (oxygen atoms may not be immediately adjacent) and nitrogen and / or at least one and preferably a carbonyl group may contain, in particular R 8 and R 9 may together with the NS (0) n group to which they are attached, stand for a residue from the series
- R 17 is a radical from the series in each case optionally substituted by halogen, C 1 -C -alkoxy, C 1 -C 4 -halogenoalkoxy, C 1 -C 4 -alkylthio, C 1 -C 4 -haloalkylthio, C 1 -C 4 -alkylsulfinyl, C 1 -C 4 -haloalkylsulfinyl, C 1 -C 4 -alkylsulfonyl and C 1 -C 4 -haloalkylsulfonyl-substituted C 1 -C 4 -alkyl, C 2 -C 4 -alkenyl and C 2 -C 4 -alkynyl, each optionally substituted by halogen, C 1 -C 4 -alkyl, C 1 -C 4 -haloalkyl, C 4 -alkoxy, C 1 -C 4 -haloalkoxy
- Y is a radical from the series consisting of hydrogen, fluorine, chlorine, bromine, cyano, methyl, ethyl, trifluoromethyl, methoxy, ethoxy, difluoromethoxy and trifluoromethoxy,
- R 18 is a radical selected from the group consisting of hydrogen and hydroxy, in each case optionally mono-, di-, tri-, tetra- or trisubstituted by fluorine, chlorine or mono- or disubstituted cyano-substituted C 1 -C 4 -alkyl, C 1 -C 4 -alkoxy, C 1 -C 4 alkoxy-Ci-C4-alkyl, Ci-C4-alkyl-S-Ci-C 2 alkyl, Ci-C 4 alkyl-S (0) -C-C 2 alkyl, Ci- C 4 -alkyl-S (O) 2 -C 1 -C 2 -alkyl, C 1 -C 4 -alkylcarbonyl, C 1 -C 4 -alkoxycarbonyl, C 3 -C 6 -cycloalkyl, C 3 -C 6 -cycloalkyl-C 1 -C 3 -alkyl, He
- R 19 is hydrogen, an alkali or alkaline earth metal ion, for an optionally mono- to quadruple by Ci-C 4 alkyl substituted ammonium ion or for each optionally single, double, triple, quadruple or five times by fluorine, chlorine or mono- or disubstituted by cyano substituted radical from the series Ci-C 4 -alkyl, Ci-C 4 -alkoxy, Ci-C 4 -alkoxy-Ci-C 2 -alkyl and Ci-C 4 -alkyl-S-Ci-C 2 -alkyl, Ci -C 4 alkyl-S (0) -C-C 2 alkyl, and Ci-C 4 alkyl-S (0) 2 -C-C 2 - alkyl,
- R 22 when R 2 is the radical c) is a radical from the series Ci-C6-alkyl, optionally substituted by cyano C3-C6-cycloalkyl, Ci-C6-haloalkyl, Ci-C6-alkoxy, C1-C4-haloalkoxy , Ci-Ce-alkoxy-Ci-Ce-alkyloxy, Ci-C 4 alkylthio, Ci-C 4 -Alkylsulfmyl, C1-C4 alkylsulfonyl, Ci-C4-haloalkylthio, Ci-C4-haloalkylsulfinyl, Ci-C 4 haloalkylsulfonyl, Ci-C4-alkylthio-Ci-C4-alkyl, Ci-C 4 -Alkylsulfmyl-Ci-C4-alkyl, Ci-C 4 alkylsulfonyl-Ci-C4
- R 23 when R 2 is the radical c) is a radical selected from the group consisting of hydrogen, C 1 -C 6 -alkyl, C 2 -C 4 -alkenyl, C 2 -C -alkynyl, C 1 -C 4 -alkylthio-C 1 -C 4 -alkyl- alkyl, C 2 -C alkenylthio-Ci-C alkyl, cyano, Ci-C4-alkyl, Ci-C 4 -alkoxy-Ci-C 4 alkyl, when R 2 is the radical d) is a radical from the series Ci-C i-alkyl, optionally substituted by cyano C3-C6-cycloalkyl, Ci-C i -haloalkyl, Ci-C 4 -alkylthio-Ci-C 4 alkyl, Ci- C4 -Alkylsulfmyl-Ci-C4-alkyl, Ci-C 4
- a preferred group of compounds of the formula (I) are those in which
- A is a radical from the series (A-a), (A-b) and (A-f)
- G 1 is N or CB 1 ,
- B 1 is a radical selected from the group consisting of hydrogen and fluorine
- B 2 is hydrogen
- T is an electron pair
- R is a radical selected from C 1 -C 6 -alkyl, C 3 -C 6 -cycloalkyl, C 1 -C 6 -haloalkyl, C 1 -C 6 -alkoxy, C 1 -C -alkylsulfonyl and di (C 1 -C 4 -alkyl) -aminosulfonyl and R 23 is hydrogen or C 1 -C 6 -alkyl.
- the combination of which forms the preferred range (1) unless otherwise specified
- Cation an alkali metal ion selected from the series lithium, sodium, potassium, rubidium, cesium, preferably from the series lithium, sodium, potassium or a
- Alkaline earth ion selected from the series beryllium, magnesium, calcium, strontium, barium, preferably from the series magnesium, calcium,
- Halogen selected from the group fluorine, chlorine, bromine and iodine, preferably again from the series fluorine, chlorine and bromine,
- Aryl also as part of a larger unit, such as arylalkyl selected from the group phenyl, naphthyl, anthryl, phenanthrenyl and in turn preferably represents phenyl, hetaryl (equivalent to heteroaryl, also as part of a larger unit, such as hetarylalkyl) selected from the series furyl, thienyl, pyrrolyl, pyrazolyl, imidazolyl, 1,2,3-triazolyl, 1, 2,4-triazolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, 1,2,3-oxadiazolyl, 1, 2,4- Oxadiazolyl, 1,3,4-oxadiazolyl, 1,2,5-oxadiazolyl, 1,2,3-thiadiazolyl, 1, 2,4-thiadiazolyl, 1,3,4-thiadiazolyl, 1,2,5-thiadiazolyl, Pyridyl,
- Heterocyclyl a saturated 4-, 5- or 6-membered ring containing 1 or 2 nitrogen atoms and / or an oxygen atom and / or a sulfur atom, for example azetidinyl, azolidinyl, azinanyl, oxetanyl, oxolanyl, oxanyl, dioxanyl, thiethanyl, thiolanyl, thianyl , Tetrahydrofuryl, piperazinyl, morpholinyl.
- the combination of which forms the preferred range (2) unless otherwise stated,
- Halogen selected from the group fluorine, chlorine, bromine and iodine, preferably again from the series fluorine, chlorine and bromine,
- Aryl also as part of a larger unit, such as, for example, arylalkyl selected from the group consisting of phenyl, naphthyl, anthryl, phenanthrenyl and in turn preferably represents phenyl,
- Hetaryl (synonymous with heteroaryl, also as part of a larger unit, such as hetarylalkyl) selected from the series pyrazolyl, imidazolyl, 1,2,3-triazolyl, 1, 2,4-triazolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, pyridyl , Pyrimidinyl, pyridazinyl, pyrazinyl, 1,2,3-triazinyl, 1, 2,4-triazinyl, 1,3,5-triazinyl, heterocyclyl selected from the series azetidinyl, azolidinyl, azinanyl, oxetanyl, oxolanyl, oxanyl, dioxanyl, Thiethanyl, thiolanyl, thianyl, tetrahydrofuryl, piperazinyl, morpholinyl.
- Cation for an alkali metal ion from the series lithium, sodium, potassium, rubidium, cesium, preferably from the series lithium, sodium, potassium or a
- Heterocyclyl for oxetanyl, thiethanyl, tetrahydrofuryl and morpholinyl Aryl for phenyl, hetaryl (equivalent to heteroaryl, also as part of a larger moiety, such as hetarylalkyl) for a radical from the series pyridyl, pyrimidyl, pyrazinyl, pyridazinyl, thiazolyl and pyrazolyl.
- Halogen for fluorine, chlorine, bromine and iodine preferably again fluorine, chlorine and bromine.
- Halogen is fluorine, chlorine, bromine or iodine, in particular fluorine, chlorine or bromine.
- Saturated or unsaturated hydrocarbon radicals such as alkyl or alkenyl, in each case also in combination with heteroatoms, for example in alkoxy, may be straight-chain or branched as far as possible.
- optionally substituted radicals may be monosubstituted or polysubstituted, with multiple substituents the substituents being the same or different.
- (A-a) is an electron pair, the remainder is as a pyridine derivative of the formula
- (Aa) is oxygen, the remainder is a pyridine-N-oxide derivative of the formula in front.
- the representation of the formal charges (+ on the nitrogen and - on the oxygen) was omitted here.
- Preference according to the invention is given to compounds of the formula (I) which contain a combination of the meanings listed above as being preferred (preferred range (1)). Particular preference according to the invention is given to compounds of the formula (I) which contain a combination of the meanings listed above as being particularly preferred (preferred range (2)).
- a preferred embodiment of the invention relates to compounds of the formula (I) in which A represents the radical of the formula (A-a)
- a further preferred embodiment of the invention relates to compounds of the formula (I) in which A represents the radical of the formula (Ab)
- a further preferred embodiment of the invention relates to compounds of the formula (I) in which A represents the radical of the F
- a further preferred embodiment of the invention relates to compounds of the formula (I) in which A is pyridin-3-yl.
- a further preferred embodiment of the invention relates to compounds of the formula (I) in which A is 5-fluoropyridin-3-yl.
- a further preferred embodiment of the invention relates to compounds of the formula (I) in which A is pyrimidin-5-yl.
- a further preferred embodiment of the invention relates to compounds of the formula (I) in which A is pyridazin-4-yl.
- a further preferred embodiment of the invention relates to compounds of the formula (I) in which R 2 has the meanings listed under a).
- a further preferred embodiment of the invention relates to compounds of the formula (I) in which R 2 has the meanings listed under b).
- a further preferred embodiment of the invention relates to compounds of the formula (I) in which R 2 has the meanings listed under c).
- a further preferred embodiment of the invention relates to compounds of the formula (I) in which R 2 has the meanings listed under d).
- a further preferred embodiment of the invention relates to compounds of the formula (I) in which R 2 has the meanings listed under e).
- a further preferred embodiment of the invention relates to compounds of the formula (I) in which R 2 has the meanings listed under f).
- a further preferred embodiment of the invention relates to compounds of the formula (I) in which R 2 is the radical (D-2)
- radical definitions or explanations given above apply to the end products (also for the compounds of the formulas (IA) to (IN) listed below and correspondingly to the starting materials and intermediates.) These radical definitions can be used among one another, ie also between the respective Preferred areas, can be combined arbitrarily.
- the invention relates to compounds of the formula (I-A)
- the invention relates to compounds of the formula (I-B)
- the invention relates to compounds of the formula (IC)
- the invention relates to compounds of the formula (ID)
- the invention relates to compounds of the formula (IE)
- the invention relates to compounds of the formula (IF)
- the invention relates to compounds of the formula (IG)
- the invention relates to compounds of the formula (IH)
- the invention relates to compounds of the formula (II)
- the invention relates to compounds of the formula (IJ)
- the invention relates to compounds of the formula (IK)
- the invention relates to compounds of the formula (II)
- the invention relates to compounds of the formula (I-M)
- the invention relates to compounds of the formula (I-N)
- the compounds of the formula (I) according to the invention and their acid addition salts and metal salt complexes have good activity, in particular for controlling animal pests, which include arthropods and in particular insects.
- the compounds of formula (I) may also be optionally substituted as stereoisomers, i.e., depending on the nature of the substituents. as geometric and / or as optical isomers or mixtures of isomers are present in different compositions. Both the pure stereoisomers and any mixtures of these isomers are the subject of this invention, although in general only compounds of the formula (I) are mentioned here.
- the invention therefore relates to both the pure enantiomers and diastereomers, as well as their mixtures for controlling animal pests, which include arthropods and in particular insects.
- animal pests which include arthropods and in particular insects.
- the optically active stereoisomeric forms of the compounds of the formula (I) and salts thereof are used according to the invention.
- Suitable salts of the compounds of general formula (I) may be conventional non-toxic salts, i. H. Salts with corresponding bases and salts with added acids.
- salts with inorganic bases such as alkali metal salts, for example sodium, potassium or cesium salts, alkaline earth metal salts, for example calcium or magnesium salts, ammonium salts, salts with organic bases and with inorganic amines, for example triethylammonium, dicyclohexylammonium, ⁇ , ⁇ '- Dibenzylethylenediammonium, pyridinium, picolinium or ethanolammonium salts, salts with inorganic acids, for example hydrochlorides, hydrobromides, dihydrosulfates, trihydrosulfates, or phosphates, salts with organic carboxylic acids or organic sulfonic acid, for example formates, acetates, trifluoroacetates, maleates, tartrates, methanesul
- Azomethine derivatives or so-called "Schiff bases” of amino-substituted heterocycles have various applications (for example, form metal complexes or are biologically active) and can be synthesized by conventional methods (see also V. Shama, et al, Internal J. Univ Bio Science 2013, 2, 241-57 and literature cited therein.)
- A 5-fluoropyridin-3-yl
- G 1 CF
- T electron pair
- A 5-fluoropyridin-3-yl
- T electron pair
- A 5-fluoropyridin-3-yl
- T electron pair
- A2 5-fluoropyridin-3-yl
- T electron pair
- B 2 H
- Ac WO 2012/151567 Al
- the compounds of the formula (A-3) can be obtained by the synthesis method known in step 1 of the said preparation process or according to the principle known, cf. for example, the preparation of 4-methyl-N - [(3-nitro-4-pyridinyl) methylene] -benzamine (Baumgarten, H.E., et al., J. Amer. Chem. Soc., 77, 2438-2440, 1955).
- the compounds of the formula (I) can be obtained in accordance with step 2 of the stated preparation process by means of a reductive cyclization of the 4-imino-5-nitropyridines of the formula (A-3), for example in accordance with the Candogan indazole synthesis in the presence of triethyl phosphite ( See JIG Candogan et al., J.Chem.Soc., 1965, 4831; NE Genung et al., Org. Lett. 16, 3114-3117, 2014, and Synthesis of Azaindazoles: WO 2008/147822 A1 and WO 2010/056999). ,
- reaction conditions of the reductive cyclization according to Candogan et al. or corresponding alternative reaction conditions are used, such as the transition metal-catalyzed reductive cyclization of imino-nitroaromatics and the thermal transition metal-catalyzed cyclization of 2-azido-imines (see NE Genung et al., Org. Lett., 2014, 16 , 3114-3117 and references cited therein).
- R represents a radical (B1), (B-2), (B-10), (B-29) or (B-30)
- R represents a radical (B1), (B-2), (B-10), (B-29) or (B-30)
- R represents a radical (B1), (B-2), (B-10), (B-29) or (B-30)
- R represents a radical (B1), (B-2), (B-10), (B-29) or (B-30)
- copper (I) iodide and basic reaction auxiliaries such as iraft -N, N'-dimethylcyclohexane-l, 2-diamine and potassium carbonate
- Suitable solvents or diluents are all inert organic solvents, for example aliphatic or aromatic hydrocarbons. Preference is given to using aromatic hydrocarbons, for example toluene.
- the compounds of the formula (Ia) can first be converted by means of methods known from the literature into compounds of the formula (Ie) which are then subsequently reacted with halogen-activated heterocycles according to Reaction Scheme III according to Method C (see T. Ishiyama et al, J. Org. Chem., 1995, 60, 7508-7510, WO 2010/151601).
- R 2 is a radical (B-21) or (B-23)
- R 2 is a radical (B-21) or (B-23)
- suitable coupling catalysts preferably in the presence of suitable coupling catalysts , basic reaction auxiliaries, and in a suitable solvent or diluent.
- suitable solvents or diluents are all inert organic solvents, for example aliphatic or aromatic hydrocarbons. Preference is given to using aromatic hydrocarbons, for example toluene.
- Suitable coupling catalysts are palladium catalysts such as [1,1'-bis (diphenylphosphino) ferrocene] dichloropalladium (II) or tetrakis (triphenylphosphine) palladium.
- Suitable basic reaction auxiliaries for carrying out the processes according to Reaction Scheme III are preferably carbonates of sodium or potassium.
- nitriles such as acetonitrile, benzonitrile, in particular acetonitrile, or ethers such as diethyl ether, dioxane, tetrahydrofuran, 1, 2-dimethoxyethane, in particular 1, 2-dimethoxyethane used in combination with water.
- Compounds of the formula (I) in which R 2 is a radical from the series (Cl) to (C-9) or CX-NR 22 R 23 may be prepared, for example, from compounds of the formula (I) in which R 2 is a carboxyl group, after appropriate activation (ie LG is an optionally generated in situ nucleofuge leaving group) can be prepared by known methods.
- Suitable condensing agents for activating the carboxylic acids of the formula (Ib) are all condensing agents customarily used for such amidation reactions.
- acid halide formers such as phosgene, phosgene derivatives such as carbonyldiimidazole (CDI), phosphorus trichloride, oxalyl chloride or thionyl chloride;
- Carbodiimides such as NN-dicyclohexylcarbodiimide (DCC) and 1- (3-dimethylaminopropyl) -3-ethyl-carbodiimide (EDCI) or other conventional condensing agents such as phosphorus pentoxide, polyphosphoric acid, NN-carbonyldiimidazole, 2-chloropyridine 1-methiodide (Mukaiyamas reagent ), 2-ethoxy-N-ethoxycarbonyl-l, 2-dihydroquinoline (EEDQ), tripheny
- Suitable reaction auxiliaries are basic reaction auxiliaries for carrying out the processes according to Reaction Scheme IV.
- Examples include the hydroxides, hydrides, oxides and carbonates of lithium, sodium, potassium, magnesium, calcium and barium, further basic compounds such as amidine bases or guanidine bases such as 7-methyl-l, 5,7-triaza-bicyclo (4.4.0 ) dec-5-ene (MTBD); Diazabicyclo (4.3.0) nonene (DBN), diazabicyclo (2.2.2) octane (DABCO), 1,8-diazabicyclo (5.4.0) undecene (DBU), cyclohexyltetrabutyl-guanidine (CyTBG), cyclohexyltetramethylguanidine (CyTMG), ⁇ , ⁇ , ⁇ , ⁇ -tetramethyl-l, 8-naphthalenediamine, pentamethylpiperidine, tertiary amines such as triethylamine, trimethylamine, tribenzylamine, triisopropylamine, tributyl
- reaction auxiliaries for carrying out the processes according to Reaction Scheme IV it is possible to use all suitable acid binders, for example amines, in particular tertiary amines, and also alkali metal and alkaline earth metal compounds.
- suitable acid binders for example amines, in particular tertiary amines, and also alkali metal and alkaline earth metal compounds.
- tertiary amines such as N-propyldiisopropylamine or N-ethyldiisopropylamine (DIEA; Hünig's base).
- Suitable solvents or diluents are all inert organic solvents, for example aliphatic or aromatic hydrocarbons (such as petroleum ether, toluene), halogenated hydrocarbons (such as chlorotoluene, dichloromethane, chloroform, 1,2-dichloroethane), ethers (such as diethyl ether, dioxane, Tetrahydrofuran, 1,2-dimethoxyethane), esters (such as ethyl acetate or methyl ester), nitrohydrocarbons (such as nitromethane, nitroethane, nitrobenzene), nitriles (such as acetonitrile, benzonitrile), amides (such as N, N-dimethylformamide, N, N-dimethylacetamide, N -Methylformanilid, N-methylpyrrolidone, hexamethylphosphoric triamide) and dimethyl sulfoxide or water or mixture
- Amides for example N, N-dimethylformamide, are preferably used as solvent.
- Compounds of the formula (I) in which R 2 is a radical from the series (D-1) to (D-3) can be prepared, for example, from compounds of the formula (I) in which R 2 is halogen from the series bromine and iodine, are prepared by methods known in principle.
- Suitable coupling catalysts are palladium catalysts such as [1,1'-bis (diphenylphosphino) ferrocene] dichloropalladium (II) or tetrakis (triphenylphosphine) palladium.
- Suitable basic reaction auxiliaries for carrying out the processes according to Reaction Scheme III are preferably carbonates of sodium or potassium.
- nitriles such as acetonitrile, benzonitrile, in particular acetonitrile, or ethers such as diethyl ether, dioxane, tetrahydrofuran, 1, 2-dimethoxyethane, in particular 1, 2-dimethoxyethane used in combination with water.
- ethers such as diethyl ether, dioxane, tetrahydrofuran, 1, 2-dimethoxyethane, in particular 1, 2-dimethoxyethane used in combination with water.
- Compounds of the formula (I) in which W is SO (sulfoxides) or SO 2 (sulfones) can be prepared by oxidation by methods known from the literature from compounds of the formula (I) in which W is S (thioethers), for example by an oxidizing agent in a suitable solution. Diluent.
- an oxidizing agent for example, dilute nitric acid, hydrogen peroxide, Oxone ® and peroxycarboxylic acids such as WEFA-chloroperbenzoic own.
- solvents or diluents are inert organic solvent, typically acetonitrile, halogenated solvents such as dichloromethane, chloroform or dichloroethane, as well as water and alcohols such as methanol for reaction with Oxone ® suitable.
- Enantiomerically enriched sulfoxides can be prepared by a variety of methods as described by GE O'Mahony et al in ARKIVOC (Gainesville, FL, United states), 2011, 1, 1-110: metal-catalyzed asymmetric oxidations of thioethers, for example, with titanium or vanadium as the most commonly used catalyst sources, in the form of Ti (0'Pr4) or VO (acac) 2, together with a chiral ligand and an oxidizing agent such as tert-butyl hydrogen peroxide (TB HP), 2-phenylpropan-2-yl hydroperoxide ( CHP) or hydrogen peroxide; non-metal catalyzed asymmetric oxidations by using chiral oxidants or chiral catalysts; electrochemical or biological asymmetric oxidation as well as kinetic Resolution of sulfoxides and nucleophilic displacement (according to Andersen's method).
- TB HP tert-butyl hydrogen peroxid
- LG Leaving group, z. B. halogen
- compounds of the formula (I-f) can be obtained by Curtius degradation, as described, for example, in Houben-Weyl, Methoden der Organischen Chemie, Volume XI / 1 (Georg Thieme Verlag Stuttgart), page 865.
- the compounds of the formula (I-b) can react, for example, with diphenylphosphoryl azide (DPPA) in the presence of tert-butanol directly to compounds of the formula (I-f).
- DPPA diphenylphosphoryl azide
- the compounds of the formulas (Ig) can be obtained by N-alkylation in a first reaction step, N-deblocking (ie cleavage of the Boc group) in a second reaction step and subsequent N-acylation in a third reaction step receive.
- the compounds of the formula (Ih) can be prepared by N-deblocking (ie cleavage of the Boc group) in a first reaction step and subsequent N-acylation in a second reaction step.
- acidic or basic reaction auxiliaries can be used according to the literature procedure for the removal of the protective group.
- carbamate-type protecting groups preference is given to using acidic reaction auxiliaries.
- the tert-butylcarbamate protecting group for example, mixtures of mineral acids such as hydrochloric, hydrobromic, nitric, sulfuric, phosphoric or organic acids such as benzoic, formic, acetic, trifluoroacetic, methanesulfonic, benzenesulfonic or toluenesulfonic in a suitable diluent such as water and / or an organic solvent such as tetrahydrofuran, dioxane, dichloromethane, chloroform, ethyl acetate, ethanol or methanol.
- a suitable diluent such as water and / or an organic solvent
- tetrahydrofuran dioxane
- dichloromethane chloroform
- the compounds of the formula (I) can be present as geometrical and / or as optically active isomers or corresponding isomer mixtures in different compositions.
- These stereoisomers are, for example, enantiomers, diastereomers, atropisomers or geometric isomers.
- the invention thus comprises pure stereoisomers as well as any mixtures of these isomers.
- the invention also relates to methods for controlling animal pests, in which compounds of the formula (I) are allowed to act on animal pests and / or their habitat. Preference is given to the control of animal pests in agriculture and forestry and in the protection of materials. Excluded therefor are preferably methods for the surgical or therapeutic treatment of the human or animal body and diagnostic methods that are performed on the human or animal body.
- the invention further relates to the use of the compounds of the formula (I) as pesticides, in particular pesticides.
- pest control always includes the term pesticides.
- the compounds of formula (I) are suitable with good plant tolerance, favorable toxicity to warm-blooded animals and good environmental compatibility for the protection of plants and plant organs from biotic and abiotic stress factors, to increase crop yields, to improve crop yields Quality of the crop and for controlling animal pests, in particular insects, arachnids, helminths, nematodes and mollusks, used in agriculture, horticulture, livestock, aquaculture, forests, gardens and recreational facilities, in the protection of stored products and materials, and occur in the hygiene sector. They can preferably be used as pesticides. They are effective against normally sensitive and resistant species as well as against all or individual stages of development.
- the above mentioned pests include:
- Pests of the genus Arthropoda in particular of the class Arachnida eg Acarus spp., Eg Acarus siro, Aceria kuko, Aceria sheldoni, Aculops spp., Aculus spp., Eg Aculus fockeui, Aculus badendali, Amblyomma spp., Amphitetranychus viennensis, Argas spp., Boophilus spp., Brevipalpus spp., Eg Brevipalpus phoenicis, Bryobia graminum, Bryobia praetiosa, Centruroides spp., Chorioptes spp., Dermanyssus gallinae, Dermatophagoides pteronyssinus, Dermatophagoides farinae, Dermacentor spp., Eotetranychus spp., Eg Eotetranychus hi
- Nephotettix spp. Eg Nephotettix cinetieeps, Nephotettix nigropictus, Nettigoniclla spectra, Nilaparvata lugens, Oncometopia spp., Orthezia praelonga, Oxya chinensis, Pachypsylla spp., Parabemisia myricae, Paratrioza spp., Eg Paratrioza cockerelli, Parlatoria spp., Pemphigus spp., Eg Pemphigus bursarius, Pemphigus populivenae, Peregrinus maidis, Perkinsiella spp., Phenacoccus spp., Eg Phenacoccus madeirensis, Phloeomyzus passerinii, Phorodon
- Toxoptera spp. Eg Toxoptera aurantii, Toxoptera citricidus, Trialeurodes vaporariorum, Trioza spp., Eg Trioza diospyri, Typhlocyba spp., Unaspis spp., Viteus vitifolii, Zygina spp .; from the suborder of the Heteroptera eg Aelia spp., Anasa tristis, Antestiopsis spp., Boisea spp., Blissus spp., Calocoris spp., Campylomma livida, Cavelerius spp., Cimex spp., eg Cimex adjunetus, Cimex hemipterus, Cimex lectularius, Cimex pilosellus, Collaria spp., Creontiades dilutus, Dasynus piperis, Dichelops, Tri
- Cydia spp. Eg Cydia nigricana, Cydia pomonella, Dalaca noctuides, Diaphania spp., Diparopsis spp., Diatraea saccharalis, Earias spp., Ecdytolopha aurantium, Elasmopalpus lignosellus, Egg dana saccharina, Ephestia spp., eg, Ephestia elutella, Ephestia kuehniella, Epinotia spp., Epiphyas postvittana, Erannis spp., Erschoviella musculana, Etiella spp., Eudocima spp., Eulia spp., Eupoecilia ambiguella, Euproctis spp., eg Euproctis chrysorrhoea , Euxoa spp., Felt
- Stomopteryx subsecivella Synanthedon spp., Tecia solanivora, Thaumetopoea spp., Thermesia gemmatalis, Tinea cloacella, Tinea pellionella, Tineola bisselliella, Tortrix spp., Trichophaga tapetzella, Trichoplusia spp., Eg Trichoplusia ni, Tryporyza incertulas, Tuta absoluta, Virachola spp.
- Ctenolepisma spp. Lepisma saccharina, Lepismodes inquilinus, Thermobia domestica; from the class of Symphyla eg Scutigerella spp., eg Scutigerella immaculata; Pests from the strain of Mollusca, in particular from the class of bivalvia, for example Dreissena spp .; and from the class of Gastropoda eg Arion spp., eg Arion ater rufus, Biomphalaria spp., Bulinus spp., Deroceras spp., eg Deroceras laeve, Galba spp., Lymnaea spp., Oncomelania spp., Pomacea spp., Succinea spp .
- Animal and human parasites from the strains of Platyhelminthes and Nematoda eg Aelurostrongylus spp., Amidostomum spp., Ancylostoma spp, eg Ancylostoma duodenale, Ancylostoma ceylanicum, Acylostoma braziliensis, Angiostrongylus spp., Anisakis spp., Anoplocephala spp., Ascaris spp. Ascaridia spp., Baylisascaris spp., Brugia spp., E.g.
- Trichinella spiralis Trichinella nativa, Trichinella britovi, Trichinella nelsoni, Trichinella pseudopsiralis, Trichobilharzia spp., Trichostrongylus spp., Trichuris spp., eg Trichuris trichuria, Uncinaria spp., Wuchereria spp., eg Wuchereria bancrofti;
- Plant pests from the Nematoda strain ie plant parasitic nematodes, in particular Aglenchus spp., Eg Aglenchus agricola, Anguina spp., Eg Anguina tritici, Aphelenchoides spp., Eg Aphelenchoides arachidis, Aphelenchoides fragariae, Belonolaimus spp., Eg Belonolaimus gracilis, Belonolaimus longicaudatus, Belonolaimus nortoni, Bursaphelenchus spp., Eg Bursaphelenchus cocophilus, Bursaphelenchus eremus, Bursaphelenchus xylophilus, Cacopaurus spp., Eg Cacopaurus pestis, Criconemella spp., Eg Criconemella curvata, Criconemella onoensis, Criconemella ornata
- Hemicycliophora spp. Heterodera spp., Eg Heterodera avenae, Heterodera glycines, Heterodera schachtii, Hirschmanieila spp., Hoplolaimus spp., Longidorus spp., Eg Longidorus africanus, Meloidogyne spp., Eg Meloidogyne chitwoodi, Meloidogyne fallax, Meloidogyne hapla, Meloidogyne incognita , Meloinema spp., Nacobbus spp., Neotylenchus spp., Paralongidorus spp., Paraphelenchus spp., Paratrichodorus spp., Eg Paratrichodorus minor, Paratylenchus spp., Pratylenchus spp., Eg Pra
- the order of coccidia can be determined, e.g. Eimeria spp. fight.
- the compounds of the formula (I) may optionally also be used in certain concentrations or application rates as herbicides, safeners, growth regulators or agents for improving plant properties, as microbicides or gametocides, for example as fungicides, antimycotics, bactericides, viricides (including anti-viral agents) or as a remedy for MLO (Mycoplasma-like-organism) and RLO (Rickettsia-like-organism). If appropriate, they can also be used as intermediates or precursors for the synthesis of further active ingredients.
- Formulations The present invention furthermore relates to formulations and use forms prepared therefrom as pesticides, such as, for example, pesticides.
- B. drench, drip and spray liquors comprising at least one compound of formula (I).
- the use forms contain other pesticides and / or the effect of improving adjuvants such as Penetrationsforderer, z.
- vegetative oils such as rapeseed oil, sunflower oil, mineral oils such as paraffin oils, alkyl esters of vegetal fatty acids such as rapeseed oil or soybean oil methyl ester or alkanol alkoxylates and / or spreading agents such as alkyl siloxanes and / or salts, e.g.
- organic or inorganic ammonium or phosphonium salts such as ammonium sulfate or diammonium hydrogen phosphate and / or retention-demanding agents such.
- Typical formulations are, for example, water-soluble liquids (SL), emulsion concentrates (EC), emulsions in water (EW), suspension concentrates (SC, SE, FS, OD), water-dispersible granules (WG), granules (GR) and capsule concentrates (CS). ; these and other possible formulation types are described, for example, by Crop Life International and in Pesticide Specifications, Manual on development and use of FAO and WHO speci fi cations for pesticides, FAO Plant Production and Protection Papers - 173, prepared by the FAO / WHO Joint Meeting on Pesticide Speci fi cations, 2004, ISBN: 9251048576.
- the formulations contain, in addition to one or more compounds of the formula (I), further agrochemical active substances.
- they are formulations or application forms which contain adjuvants such as extenders, solvents, spontaneity promoters, carriers, emulsifiers, dispersants, antifreeze agents, biocides, thickeners and / or further adjuvants such as adjuvants.
- adjuvant in this context is a component that enhances the biological effect of the formulation without the component itself having a biological effect. Examples of adjuvants are agents that promote retention, spreading behavior, adherence to the leaf surface, or penetration.
- formulations are prepared in a known manner, e.g. by mixing the compounds of the formula (I) with auxiliaries, such as, for example, extenders, solvents and / or solid carriers and / or further auxiliaries, for example surface-active substances.
- auxiliaries such as, for example, extenders, solvents and / or solid carriers and / or further auxiliaries, for example surface-active substances.
- the preparation of the formulations is carried out either in suitable systems or before or during use.
- Excipients which can be used are those which are suitable for the formulation of the compounds of the formula (I) or the use forms prepared from these formulations (such as, for example, ready-to-use pesticides such as spray liquors or seed dressings), such as certain physical, technical and / or biological properties To give properties.
- polar and non-polar organic chemical liquids e.g. from the classes of aromatic and non-aromatic hydrocarbons (such as paraffins, alkylbenzenes, alkylnaphthalenes, chlorobenzenes), alcohols and polyols (which may also be substituted, etherified and / or esterified), ketones (such as acetone, cyclohexanone), Esters (including fats and oils) and (poly) ethers, simple and substituted amines, amides, lactams (such as N-alkylpyrrolidones) and lactones, sulfones and sulfoxides (such as dimethylsulfoxide).
- aromatic and non-aromatic hydrocarbons such as paraffins, alkylbenzenes, alkylnaphthalenes, chlorobenzenes
- alcohols and polyols which may also be substituted, etherified and / or esterified
- ketones such as
- organic solvents can also be used as auxiliary solvents.
- Suitable liquid solvents are essentially: aromatics such as xylene, toluene or alkylnaphthalenes, chlorinated aromatics or chlorinated aliphatic hydrocarbons such as chlorobenzenes, chloroethylenes or methylene chloride, aliphatic hydrocarbons such as cyclohexane or paraffins, eg petroleum fractions, mineral and vegetable oils, alcohols such as butanol or glycol and their ethers and esters, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone or cyclohexanone, strongly polar solvents such as dimethylformamide and dimethyl sulfoxide and water.
- Suitable solvents are, for example, aromatic hydrocarbons such as xylene, toluene or alkylnaphthalenes, chlorinated aromatic or aliphatic hydrocarbons such as chlorobenzene, chloroethylene, or methylene chloride, aliphatic hydrocarbons such as cyclohexane, paraffins, petroleum fractions, mineral and vegetable oils, alcohols such as methanol, ethanol, Isopropanol, butanol or glycol and their ethers and esters, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone or cyclohexanone, strongly polar solvents such as dimethyl sulfoxide and water.
- aromatic hydrocarbons such as xylene, toluene or alkylnaphthalenes
- chlorinated aromatic or aliphatic hydrocarbons such as chlorobenzene, chloroethylene, or methylene chloride
- Suitable carriers are, in particular: Ammonium salts and ground natural minerals such as kaolins, clays, talc, chalk, quartz, attapulgite, montmorillonite or diatomaceous earth and synthetic rock flour, such as finely divided silica, alumina and natural or synthetic silicates, resins, waxes and / or solid fertilizers. Mixtures of such carriers can also be used.
- Suitable carriers for granules are: e.g.
- Cracked and fractionated natural rocks such as calcite, marble, pumice, sepiolite, dolomite and synthetic granules of inorganic and organic flours and granules of organic material such as sawdust, paper, coconut shells, corn cobs and tobacco stems.
- liquefied gaseous diluents or solvents can be used.
- Examples of emulsifying and / or foaming agents, dispersants or wetting agents having ionic or non-ionic properties or mixtures of these surfactants are salts of polyacrylic acid, salts of lignosulphonic acid, salts of phenolsulphonic acid or naphthalenesulphonic acid, polycondensates of ethylene oxide with fatty alcohols or with fatty acids or with fatty amines, with substituted phenols (preferably alkylphenols or arylphenols), salts of sulphosuccinic acid esters, taurine derivatives (preferably alkyl taurates), phosphoric acid esters of polyethoxylated alcohols or phenols, fatty acid esters of polyols and derivatives of the compounds containing sulphates, sulphonates and phosphates, eg Alkylaryl polyglycol ethers, alkylsulfonates, alkyl sulfates, arylsulfonates, protein hydroly
- auxiliaries can in the formulations and the applications derived therefrom dyes such as inorganic pigments, such as iron oxide, titanium oxide, Ferrocyanblau and organic Dyes such as alizarin, azo and Metallphthalocyaninfarbstoffe and nutrient and trace nutrients such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc may be present.
- dyes such as inorganic pigments, such as iron oxide, titanium oxide, Ferrocyanblau and organic Dyes such as alizarin, azo and Metallphthalocyaninfarbstoffe and nutrient and trace nutrients such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc may be present.
- Stabilizers such as cold stabilizers, preservatives, antioxidants, light stabilizers or other chemical and / or physical stability-improving agents may also be present. It may also contain foam-forming agents or defoamers.
- formulations and the use forms derived therefrom may also contain, as additional auxiliaries, adhesives such as carboxymethylcellulose, natural and synthetic powdery, granular or latex-containing polymers such as gum arabic, polyvinyl alcohol, polyvinyl acetate and natural phospholipids such as cephalins and lecithins and synthetic phospholipids.
- additional auxiliaries may be mineral and vegetable oils.
- auxiliaries may be present in the formulations and in the use forms derived therefrom.
- additives are, for example, fragrances, protective colloids, binders, adhesives, thickeners, thixotropic substances, penetration promoters, retention promoters, stabilizers, sequestrants, complexing agents, humectants, spreading agents.
- the compounds of formula (I) may be combined with any solid or liquid additive commonly used for formulation purposes.
- retention promoters are all those substances which reduce the dynamic surface tension such as dioctylsulfosuccinate or increase the visco-elasticity such as hydroxypropyl guar polymers.
- Suitable penetration promoters in the present context are all those substances which are usually used to improve the penetration of agrochemical active substances into plants.
- Penetration promoters are in this context defined by the fact that they can penetrate from the (usually aqueous) application broth and / or from the spray coating into the cuticle of the plant and thereby increase the material mobility (mobility) of the active ingredients in the cuticle.
- the method described in the literature can be used to determine this property.
- Examples include alcohol alkoxylates such as coconut oil ethoxylate (10) or isotridecyl ethoxylate (12), fatty acid esters such as rapeseed oil or soybean oil, fatty amine alkoxylates such as tallowamine ethoxylate (15) or ammonium and / or phosphonium salts such as ammonium sulfate or diammonium hydrogen phosphate ,
- the formulations preferably contain between 0.00000001 and 98 wt .-% of the compound of formula (I), more preferably between 0.01 and 95 wt .-% of the compound of formula (I), most preferably between 0.5 and 90% by weight of the compound of formula (I), based on the weight of the formulation.
- the content of the compound of the formula (I) in the forms of application prepared from the formulations (in particular pesticides) can vary within wide ranges.
- the concentration of the compound of the formula (I) in the use forms may usually be between 0.00000001 and 95% by weight of the compound of the formula (I), preferably between 0.00001 and 1% by weight, based on the weight of the application form , lie.
- the application is done in a custom forms adapted to the application.
- the compounds of formula (I) may also be used in admixture with one or more suitable fungicides, bactericides, acaricides, molluscicides, nematicides, insecticides, microbiologicals, beneficials, herbicides, fertilizers, avian repellents, phytotonics, sterilants, safeners, semiochemicals and / or plant growth regulators be, for example to widen the spectrum of action, to extend the duration of action, to increase the speed of action, to prevent re-exposure or to prevent the development of resistance. Furthermore, such drug combinations plant growth and / or tolerance to abiotic factors such. As high or low temperatures, improve against dryness or increased water or Bodensalzgehalt.
- the compounds of the formula (I) may be present in admixture with other active substances or semiochemicals such as attractants and / or avian repellents and / or plant activators and / or growth regulators and / or fertilizers.
- the compounds of the formula (I) can be used in mixtures with agents for improving plant properties such as, for example, growth, yield and quality of the crop.
- the compounds of the formula (I) are present in formulations or in the formulations prepared from these formulations in admixture with other compounds, preferably those as described below.
- Insecticides / acaricides / nematicides The active substances mentioned here with their "common name” are known and described, for example, in the Pesticide Handbook ("The Pesticide Manual” 16th ed., British Crop Protection Council 2012) or searchable on the Internet (eg http://www.alanwood.net/pesticides ).
- Acetylcholinesterase (AChE) inhibitors such as carbamates, e.g. Alanycarb, aldicarb, bendiocarb, benfuracarb, butocarboxime, butoxycarboxime, carbaryl, carbofuran, carbosulfan,
- GABA-controlled chloride channel antagonists such as cyclodiene organochlorines, e.g. Chlordanes and endosulfan or phenylpyrazoles (fiproles), e.g. Ethiprole and fipronil.
- sodium channel modulators / voltage dependent sodium channel blockers such as pyrethroids, e.g.
- nicotinergic acetylcholine receptor (nAChR) agonists such as neonicotinoids, e.g. Acetamiprid, clothianidin, dinotefuran, imidacloprid, nitenpyram, thiacloprid and thiamethoxam or nicotine or sulfoxaflor or flupyradifurone.
- nAChR nicotinergic acetylcholine receptor
- nicotinergic acetylcholine receptor (nAChR) allosteric activators such as spinosines, eg spinetoram and spinosad.
- Chloride channel activators such as avermectins / milbemycins, eg, abamectin, emamectin benzoate, lepimectin, and milbemectin.
- Juvenile hormone mimics such as juvenile hormone analogs, e.g. Hydroprene, Kinoprene and Methoprene or Fenoxycarb or Pyriproxyfen.
- Juvenile hormone mimics such as juvenile hormone analogs, e.g. Hydroprene, Kinoprene and Methoprene or Fenoxycarb or Pyriproxyfen.
- agents with unknown or non-specific mechanisms of action such as
- Alkyl halides e.g. Methyl bromide and other alkyl halides; or chloropicrin or sulfuryl fluoride or borax or tartar emetic.
- mite growth inhibitors e.g. Clofentezine, hexythiazox and diflovidazine or etoxazole.
- Insect intestinal membrane microbial disruptors e.g. Bacillus thuringiensis subspecies israelensis, Bacillus sphaericus, Bacillus thuringiensis subspecies aizawai, Bacillus thuringiensis subspecies kurstaki, Bacillus thuringiensis subspecies tenebrionis and BT plant proteins: CrylAb, CrylAc, CrylFa, Cry2Ab, mCry3A, Cry3Ab, Cry3Bb, Cry34 / 35Abl.
- oxidative phosphorylation inhibitors such as diafenthiuron or organotin compounds, e.g. Azocyclotin, Cyhexatin and fenbutatin oxide or propargite or
- Nicotinergic acetylcholine receptor antagonists such as Bensultap, Cartap hydrochloride, Thiocyclam and Thiosultap sodium.
- Type 0 inhibitors of chitin biosynthesis such as bistrifluron, chlorofluorazuron, diflubenzuron, flucycloxuron, flufenoxuron, hexaflumuron, lufenuron, novaluron, noviflumuron, teflubenzuron and triflumuron.
- inhibitors of chitin biosynthesis type 1, such as buprofezin.
- Anti-skinning agents especially in dipterans, i.e., two-toed, such as Cyromazine.
- ecdysone receptor agonists such as chromafenozides, halofenozides, methoxyfenozides, and tebufenozides.
- Octopaminergic agonists such as amitraz.
- Complex III electron transport inhibitors such as, for example, hydramethylnone or acequinocyl or fluacrypyrim.
- (21) complex I electron transport inhibitors for example, METI acaricides, e.g. Fenazaquin, Fenpyroximate, Pyrimidifen, Pyridaben, Tebufenpyrad and Tolfenpyrad or Rotenone (Derris).
- METI acaricides e.g. Fenazaquin, Fenpyroximate, Pyrimidifen, Pyridaben, Tebufenpyrad and Tolfenpyrad or Rotenone (Derris).
- voltage dependent sodium channel blockers e.g. Indoxacarb or metaflumizone.
- (23) inhibitors of acetyl-CoA carboxylase such as tetronic and tetramic acid derivatives, e.g. Spirodiclofen, spiromesifen and spirotetramat.
- complex IV electron transport inhibitors such as phosphines, e.g. Aluminum phosphide, calcium phosphide, phosphine and zinc phosphide or cyanide.
- Complex II electron transport inhibitors such as cyenopyrafen and cyflumetofen.
- ryanodine receptor effectors such as diamides, e.g. Chlorantraniliprole, Cyantraniliprole and Flubendiamide.
- drugs with unknown or ambiguous mechanism of action such as afidopyropene, afoxolaner, azadirachtin, benclothiaz, benzoximate, bifenazate, bromopropylate, quinomethionate, cryolites, cyclaniliprole, cycloxapride, cyhalodiamide dicloromezotiaz, dicofol, diflovidazine, flometoquine, fluensulfone, flufenerim, flufenoxystrobin, flufiprole, Flaxxafon, Fluopyram, Fluralaner, Fufenozide, Guadipyr, Heptafluthrin, Imidaclothiz, Iprodione, Meperfluthrin, Paichongding, Pyflubumide, Pyralidyl, Pyrifluquinazone, Pyriminostrobin, Tetramethylfluthrin
- Fungicides The active ingredients specified here with their "common name” are known, for example described in the "Pesticide Manual” or on the Internet (for example: http://www.alanwood.net/pesticides).
- All of the listed five-component mixed partners of classes (1) to (15) can optionally form salts with corresponding bases or acids, provided that suitable functional groups are present.
- tautomeric forms are also included for the listed ficcidial mixed partners of classes (1) to (15), provided that tautomerism is possible.
- inhibitors of ergosterol biosynthesis for example (1.01) aldimorph, (1.02) azaconazole, (1.03) bitertanol, (1.04) bromuconazole, (1.05) cyproconazole, (1.06) diclobutrazole, (1.07) difenoconazole, (1.08) diniconazole, (1.09 ) Dinemonazole-M, (1.10) dodemorph, (1.11) dodemorphoacetate, (1.12) epoxiconazole, (1.13) etaconazole, (1.14) fenarimol, (1.15) fenbuconazole, (1.16) fenhexamid, (1.17) fenpropidin, (1.18) fenpropimorph, (1.19) fluquinconazole, (1.20) flurprimidol, (1.21) flusilazole, (1.22) Flutriafol, (1.23) furconazole, (1.24) furconazole-cis,
- inhibitors of mitosis and cell division for example (4.01) benomyl, (4.02) carbendazim, (4.03) chlorfenazole, (4.04) diethofencarb, (4.05) ethaboxam, (4.06) fluopicolide, (4.07) fuberidazole, (4.08) pencycuron, (4.09) thiabendazole, (4.10) thiophanate-methyl, (4.11) thiophanate, (4.12) zoxamide, (4.13) 5-chloro-7- (4-methylpiperidin-1-yl) -6- (2,4,6-trifluoro ⁇ henyl) [l, 2,4] triazolo [l, 5-a] pyrimidine, (4.14) 3-chloro-5- (6-chloropyridin-3-yl) -6-methyl-4- (2,4, 6-trifluorophenyl) -pyridazine.
- inhibitors of amino acid and / or protein biosynthesis for example (7.01) andoprim, (7.02) blasticidin-S, (7.03) cyprodinil, (7.04) kasugamycin, (7.05) kasugamycin hydrochloride hydrate, (7.06)
- Mepanipyrim (7.07) pyrimethanil, (7.08) 3- (5-fluoro-3,3,4,4-tetramethyl-3,4-dihydroisoquinolin-1-yl) quinoline, (7.09) oxytetracycline, (7.10) streptomycin.
- inhibitors of ATP production for example (8.01) fentin acetate, (8.02) fentin chloride, (8.03) fentin hydroxide, (8.04) silthiofam.
- inhibitors of cell wall synthesis for example (9.01) benthi- avalicarb, (9.02) dimethomorph, (9.03) flumorph, (9.04) iprovalicarb, (9.05) mandipropamide, (9.06) polyoxines, (9.07) polyoxorim, (9.08) validamycin A, ( 9.09) Valifenalate, (9.10) Polyoxin B, (9.11) (2E) -3- (4-tert-butylphenyl) -3- (2-chloropyridin-4-yl) -1- (morpholin-4-yl) prop -2-en-1-one, (9.12) (2Z) -3- (4-tert-butylphenyl) -3- (2-chloropyridin-4
- inhibitors of lipid and membrane synthesis for example (10.01) biphenyl, (10.02) chloroneb, (10.03) diclorane, (10.04) edifenphos, (10.05) etridiazole, (10.06) iodocarb, (10.07) Iprobenfos, (10.08) isoprothiolane , (10.09) Propamocarb, (10.10) Propamocarb hydrochloride, (10.11) Prothiocarb, (10.12) Pyrazophos, (10.13) Quintozene, (10.14) Tecnazene, (10.15) Tolclofos-methyl.
- inhibitors of melanin biosynthesis for example (11.01) carpropamide, (11.02) diclocymet, (1.03) fenoxanil, (11.04) phthalide, (11.05) pyroquilone, (1.06) tricyclazole, (11.07) 2,2,2-trifluoroethyl ⁇ 3-methyl-l - [(4-methylbenzoyl) amino] butan-2-yl ⁇ carbamate.
- inhibitors of signal mediation for example (13.01) chlozolinate, (13.02) fenpiclonil, (13.03) fludioxonil, (13.04) iprodione, (13.05) procymidone, (13.06) quinoxyfen, (13.07) vinclozoline, (13.08) proquinazide.
- compounds which may act as decouplers for example (14.01) binapacryl, (14.02) dinocap, (14.03) ferimzone, (14.04) fluazinam, (14.05) meptyldinocap.
- the compounds of formula (I) may be combined with biological pesticides.
- biological pesticides include, in particular, bacteria, fungi, yeasts, plant extracts, and those products formed by microorganisms, including proteins and secondary metabolites.
- Biological pesticides include bacteria such as spore-forming bacteria, root-colonizing bacteria and bacteria that act as biological insecticides, fungicides or nematicides.
- Bacillus amyloliquefaciens strain FZB42 (DSM 231179), or Bacillus cereus, in particular B. cereus strain CNCM 1-1562 or Bacillus firmus, strain 1-1582 (Accession number CNCM 1-1582) or Bacillus pumilus, especially strain GB34 (Accession no. ATCC 700814) and strain QST2808 (Accession No. NRRL B-30087), or Bacillus subtilis, especially strain GB03 (Accession No. ATCC SD-1397), or Bacillus subtilis strain QST713 (Accession No. NRRL B-21661) or Bacillus subtilis Strain OST 30002 (Accession No.
- NRRL B-50421 Bacillus thuringiensis, in particular B. thuringiensis subspecies israelensis (serotype H-14), strain AM65-52 (Accession No. ATCC 1276), or B. thuringiensis subsp. aizawai, in particular strain ABTS-1857 (SD-1372), or B. thuringiensis subsp. kurstaki strain HD-1, or B. thuringiensis subsp. tenebrionis strain NB 176 (SD-5428), Pasteuria penetrans, Pasteuria spp.
- fungi and yeasts which can be used as biological pesticides are:
- Beauveria bassiana especially strain ATCC 74040, coniothyrium minitans, in particular strain CON / M / 91-8 (Accession No. DSM-9660), Lecanicillium spp., In particular strain HRO LEC 12, Lecanicillium lecanii, (formerly known as Verticillium lecanii), in particular strain KV01, Metarhizium anisopliae, in particular strain F52 (DSM3884 / ATCC 90448), Metschnikowia fructicola, in particular strain NRRL Y-30752, Paecilomyces fumosoroseus (new: Isaria fumosorosea), in particular strain IFPC 200613, or strain Apopka 97 (Accesion No.
- Paecilomyces lilacinus in particular P. lilacinus strain 251 (AGAL 89/030550), Talaromyces flavus, in particular strain VI 17b, Trichoderma atroviride, in particular strain SCI (Accession Number CBS 122089), Trichoderma harzianum, in particular T. harzianum rifai T39. (Accession Number CNCM 1-952).
- viruses that can be used or used as biological pesticides are:
- Adoxophyes orana Apple peel winder
- Granulosis virus GV
- Cydia pomonella codling moth
- Granulosis virus GV
- Helicoverpa armigera cotton bollworm
- Nuclear polyhedrosis virus NPV
- Spodoptera exigua mNPV
- Spodoptera frugiperda armyworm
- mNPV Spodoptera littoralis
- bacteria and fungi that are added as 'inoculant' plants or parts of plants or plant organs and promote by their special properties, plant growth and plant health. Examples are:
- Agrobacterium spp. Azorhizobium caulinodans, Azospirillum spp., Azotobacter spp., Bradyrhizobium spp., Burkholderia spp., In particular Burkholderia cepacia (formerly known as Pseudomonas cepacia), Gigaspora spp., Or Gigaspora monosporum, Glomus spp., Laccaria spp.
- plant extracts and those products formed by microorganisms, including proteins and secondary metabolites, which can be used as biological pesticides are: Allium sativum, Artemisia absinthium, Azadirachtin, Biokeeper WP, Cassia nigricans, Celastrus angulatus, Chenopodium anthelminticum, Chitin, Armor Zen, Dryopteris filix-mas, Equisetum arvense, Fortune Aza, Fungastop, Heads Up (Chenopodium quinoa saponin extract), Pyrethrum / Pyrethrins, Quassia amara, Quercus, Quillaja, Regalia, Requiem TM Insecticide, Rotenone, Ryania / Ryanodine, Symphytum officinale, Tanacetum vulgare, Thymol, Triact 70, TriCon, Tropaeulum majus, Urtica dioica, Veratrin, Viscum album, Brassicacaeen
- the compounds of the formula (I) can be combined with safeners, for example Benoxacor, Cloquintocet (-mexyl), Cyometrinil, Cyprosulfamide, Dichlormid, Fenchlorazole (-ethyl), Fenclorim, Flurazole, Fluxofenim, Furilazole, Isoxadifen (-ethyl), Mefenpyr (-diethyl), naphthalic anhydride, oxabetrinil, 2-methoxy-N - ( ⁇ 4 - [(methylcarbamoyl) amino] phenyl ⁇ sulfonyl) benzamide (CAS 129531-12-0), 4- (dichloroacetyl) -l-oxa 4-azaspiro [4.5] decane (CAS 71526-07-3), 2,2,5-trimethyl-3- (dichloroacetyl) -l, 3-oxazolidine (CAS 52836-31-4). Plants and plant
- Plants are understood to mean all plants and plant populations, such as desirable and unwanted wild plants or crops (including naturally occurring crops), for example cereals (wheat, rice, triticale, barley, rye, oats), corn, soybeans, potatoes, sugar beets, sugarcane, tomatoes , Peppers and chillies, cucumbers, melons, carrots, watermelons, onions, lettuce, spinach, leeks, beans, Brassica oleracea (eg cabbage), peas and other vegetables, cotton, tobacco, oilseed rape, as well as fruit plants (with the fruits apples, pears , Citrus fruits and grapes).
- cereals wheat, rice, triticale, barley, rye, oats
- corn soybeans
- potatoes sugar beets
- sugarcane tomatoes
- Peppers and chillies cucumbers, melons, carrots, watermelons, onions, lettuce, spinach, leeks, beans, Brassica oleracea (eg cabbage), peas and other vegetables, cotton, tobacco,
- Crop plants can be plants which can be obtained by conventional breeding and optimization methods or by biotechnological and genetic engineering methods or combinations of these methods, including the transgenic plants and including the plant varieties which can or can not be protected by plant breeders' rights.
- Plants are to be understood as meaning all stages of development of the plants, for example seeds, cuttings and young (immature) plants through to mature plants.
- Plant parts are understood to mean all aboveground and subterranean parts and organs of plants such as shoot, leaf, flower and root, examples of which include leaves, needles, stems, stems, flowers, fruiting bodies, fruits and seeds, and roots, tubers and rhizomes.
- the plant parts also include crops (harvested plants or plant parts) as well as vegetative and generative propagation material, for example cuttings, tubers, rhizomes, offshoots and seeds.
- the treatment according to the invention of the plants and plant parts with the compounds of the formula (I) takes place directly or by acting on their environment, habitat or storage space according to the conventional treatment methods, for example by dipping, spraying, vaporizing, atomizing, spreading, brushing, injecting and propagating material, in particular in seeds, further by single or multi-layer wrapping.
- plants and their parts can be treated according to the invention.
- wild-type or plant species and plant varieties obtained by conventional biological breeding methods such as crossing or protoplast fusion and parts thereof are treated.
- transgenic plants and plant cultivars obtained by genetic engineering, if appropriate in combination with conventional methods (Genetically Modified Organisms), and parts thereof are treated.
- the term "parts” or “parts of plants” or “parts of plants” has been explained above.
- Propes of the respective commercially available or in use plant varieties are particularly preferably treated according to the invention.
- PV plants are understood as meaning plants with new properties ("traits”) have been bred either by conventional breeding, by mutagenesis or by recombinant DNA techniques. These may be varieties, breeds, biotypes and genotypes.
- the preferred plants or plant varieties to be treated according to the invention to be treated include all plants which, as a result of the genetic engineering modification, obtained genetic material which gives these plants particularly advantageous valuable properties ("traits"). Examples of such properties are better plant growth, increased tolerance to high or low temperatures, increased tolerance to drought or to bottoms salt, increased flowering efficiency, easier harvest, acceleration of ripeness, higher crop yields, higher quality and / or higher Nutritional value of the harvested products, higher shelf life and / or workability of the harvested products.
- Such properties are an increased resistance of the plants against animal and microbial pests, such as insects, arachnids, nematodes, mites, snails, caused for example by toxins formed in the plants, in particular those caused by the genetic material from Bacillus Thuringiensis (eg by the genes CrylA (a), CrylA (b), CrylA (c), CryllA, CrylllA, CryIIIB2, Cry9c Cry2Ab, Cry3Bb and CrylF and their combinations) are produced in the plants, also an increased resistance of the plants against Phytopathogenic fungi, bacteria and / or viruses, eg by systemically acquired resistance (SAR), systemin, phytoalexins, elicitors and resistance genes and correspondingly expressed proteins and toxins, and increased tolerance of the plants against certain herbicidal active ingredients, such as imidazolinones, sulfonylureas, glyphosate or phosphinotric
- transgenic plants are the important crops, such as cereals (Wheat, rice, triticale, barley, rye, oats), corn, soybeans, potatoes, sugar beets, sugar cane, tomatoes, peas and other vegetables, cotton, tobacco, oilseed rape and fruit plants (with the fruits apples, pears, citrus fruits and grapes ), with particular emphasis on corn, soy, wheat, rice, potato, cotton, sugarcane, tobacco and oilseed rape. Traits that are particularly emphasized are the increased resistance of the plants to insects, arachnids, nematodes and snails.
- the treatment of the plants and plant parts with the compounds of formula (I) is carried out directly or by acting on their environment, habitat or storage space according to the usual treatment methods, e.g. by dipping, spraying, spraying, sprinkling, evaporating, atomising, atomizing, sprinkling, foaming, brushing, spreading, injecting, pouring, drip irrigation and propagating material, in particular in the case of seeds further by dry pickling, wet pickling, slurry pickling, encrusting, single or multi-layer coating, etc. It is also possible to dispense the compounds of formula (I) by the ultra-low-volume method or the use form or the compound of formula ( I) inject myself into the soil.
- a preferred direct treatment of the plants is foliar application, i. Compounds of the formula (I) are applied to the foliage, wherein the treatment frequency and the application rate should be matched to the infestation pressure of the respective pest.
- the compounds of the formula (I) also enter the plants via the root system.
- the treatment of the plants is then carried out by the action of the compounds of formula (I) on the habitat of the plant. This may be, for example, by drenching, mixing into the soil or the nutrient solution, i. the location of the plant (e.g., soil or hydroponic systems) is soaked in a liquid form of the compounds of formula (I), or by the soil application, i.
- the compounds of formula (I) are incorporated in solid form (e.g., in the form of granules) at the plant site. In water rice crops, this may also be by metered addition of the compound of formula (I) in a solid form (e.g., as granules) into a flooded paddy field.
- Seed treatment The control of animal pests by the treatment of seed of plants has long been known and is subject to constant improvement. Nevertheless, there are a number of problems in the treatment of seeds that can not always be satisfactorily resolved. Thus, it is desirable to develop methods for the protection of the seed and the germinating plant, which will increase the additional application of pesticides during storage make the sowing or after emergence of the plants redundant or at least significantly reduce. It is also desirable to optimize the amount of the active ingredient used in such a way that the seed and the germinating plant are best protected against attack by animal pests, but without damaging the plant itself by the active ingredient used. In particular, seed treatment methods should also incorporate the intrinsic insecticidal properties of pest-resistant transgenic plants in order to achieve optimum protection of the seed and germinating plant with a minimum of pesticide cost.
- the present invention therefore more particularly relates to a method of protecting seed and germinating plants from attack by pests by treating the seed with one of the compounds of formula (I).
- the method according to the invention for the protection of seeds and germinating plants from infestation by pests further comprises a method in which the seed is treated simultaneously in one operation or sequentially with a compound of formula (I) and mixing partner. It also also includes a method in which the seed is treated at different times with a compound of formula (I) and mixing partner.
- the invention also relates to the use of the compounds of the formula (I) for the treatment of seed for the protection of the seed and the resulting plant from animal pests.
- the invention relates to seed which has been treated for protection against animal pests with a compound of formula (I).
- the invention also relates to seed treated at the same time with a compound of formula (I) and mixing partner.
- the invention further relates to seed which has been treated at different times with a compound of formula (I) and mixing partner.
- the individual substances may be contained in different layers on the seed.
- the layers which comprise a compound of the formula (I) and mixture partners may optionally be separated by an intermediate layer.
- the invention also relates to seed in which a compound of the formula (I) and mixing partner are applied as a constituent of a coating or as a further layer or further layers in addition to a coating. Furthermore, the invention relates to seed which, after treatment with a compound of the formula (I), is subjected to a film coating process in order to avoid dust abrasion on the seed.
- One of the advantages that occurs when one of the compounds of formula (I) acts systemically is that the treatment of the seed not only the seed itself, but also the resulting Protects plants after emergence from animal pests. In this way, the immediate treatment of the culture at the time of sowing or shortly afterwards can be omitted.
- Another advantage is the fact that by treating the seed with a compound of formula (I) germination and emergence of the treated seed can be promoted. Likewise, it is considered to be advantageous that compounds of the formula (I) can also be used in particular in the case of transgenic seed.
- Compounds of formula (I) may also be used in combination with signal technology agents whereby better colonization with symbionts such as rhizobia, mycorrhiza and / or endophytic bacteria or fungi takes place and / or optimized nitrogen fixation occurs.
- symbionts such as rhizobia, mycorrhiza and / or endophytic bacteria or fungi takes place and / or optimized nitrogen fixation occurs.
- the compounds of the formula (I) are suitable for the protection of seed of any plant variety used in agriculture, in the greenhouse, in forests or in horticulture.
- these are seeds of cereals (eg wheat, barley, rye, millet and oats), corn, cotton, soy, rice, potatoes, sunflower, coffee, tobacco, canola, rape, turnip (eg Sugar beet and fodder beet), peanut, vegetables (eg tomato, cucumber, bean, cabbage, onions and lettuce), fruit plants, turf and ornamental plants.
- cereals eg wheat, barley, rye and oats
- corn, soya, cotton, canola, oilseed rape and rice are examples of seeds of cereals (eg wheat, barley, rye and oats), corn, soya, cotton, canola, oilseed rape and rice.
- transgenic seed with a compound of the formula (I) is also of particular importance.
- the heterologous genes in transgenic seed can be derived from microorganisms such as Bacillus, Rhizobium, Pseudomonas, Serratia, Trichoderma, Clavibacter, Glomus or Gliocladium.
- the present invention is particularly useful for the treatment of transgenic seed containing at least one heterologous gene derived from Bacillus sp. comes. Most preferably, this is a heterologous gene derived from Bacillus thuringiensis.
- the compound of the formula (I) is applied to the seed.
- the seed is treated in a state where it is so stable that no damage occurs during the treatment.
- the treatment of the seed can be done at any time between harvesting and sowing.
- seed is used which has been separated from the plant and freed from flasks, shells, stems, hull, wool or pulp.
- seed may be used that has been harvested, cleaned and dried to a moisture content that is storable.
- seed can also be used, which after drying, for example, was treated with water and then dried again, for example Priming.
- the compounds of the formula (I) are generally applied to the seed in the form of a suitable formulation.
- suitable formulations and methods for seed treatment are known to those skilled in the art.
- the compounds of the formula (I) can be converted into the customary seed dressing formulations, such as solutions, emulsions, suspensions, powders, foams, slurries or other seed coating compositions, and also ULV formulations.
- These formulations are prepared in a known manner by mixing compounds of formula (I) with conventional additives, such as conventional extenders and solvents or diluents, dyes, wetting agents, dispersants, emulsifiers, defoamers, preservatives, secondary thickeners, adhesives, gibberellins and also water.
- Dyes which may be present in the seed dressing formulations which can be used according to the invention are all dyes customary for such purposes. Both water-insoluble pigments and water-soluble dyes are useful in this case. Examples which may be mentioned under the names rhodamine B, C.I. Pigment Red 112 and C.I. Solvent Red 1 known dyes.
- Suitable wetting agents which may be present in the seed dressing formulations which can be used according to the invention are all wetting-promoting substances customary for the formulation of agrochemical active compounds.
- Preferably used are alkylnaphthalene sulfonates, such as diisopropyl or diisobutyl naphthalene sulfonates.
- Suitable dispersants and / or emulsifiers which may be present in the seed dressing formulations which can be used according to the invention are all nonionic, anionic and cationic dispersants customary for the formulation of agrochemical active compounds. Preference is given to using nonionic or anionic dispersants or mixtures of nonionic or anionic dispersants.
- Particularly suitable nonionic dispersants are, in particular, ethylene oxide-propylene oxide, block polymers, alkylphenol polyglycol ethers and trimethylene glycols. Stryrylphenolpolyglykolether and their phosphated or sulfated derivatives.
- Suitable anionic dispersants are in particular lignosulfonates, polyacrylic acid salts and arylsulfonate-formaldehyde condensates.
- Defoamers which may be present in the seed dressing formulations which can be used according to the invention are all foam-inhibiting substances customary for the formulation of agrochemical active compounds.
- Defoamers which may be present in the seed dressing formulations which can be used according to the invention are all foam-inhibiting substances customary for the formulation of agrochemical active compounds.
- Preferably usable are silicone defoamers and magnesium stearate.
- Preservatives which may be present in the seed dressing formulations which can be used according to the invention are all substances which can be used for such purposes in agrochemical compositions. Examples include dichlorophen and Benzylalkoholhemiformal. Suitable secondary thickeners which may be present in the seed dressing formulations which can be used according to the invention are all substances which can be used for such purposes in agrochemical compositions. Preference is given to cellulose derivatives, acrylic acid derivatives, xanthan, modified clays and finely divided silica.
- Suitable adhesives which may be present in the seed dressing formulations which can be used according to the invention are all customary binders which can be used in pickling agents.
- Preferably mentioned are polyvinylpyrrolidone, polyvinyl acetate, polyvinyl alcohol and Tylose.
- the gibberellins are known (see R. Wegler "Chemie der convinced- und Swdlingsbekungsstoff", Vol. 2, Springer Verlag, 1970, pp. 401-412).
- the seed dressing formulations which can be used according to the invention can be used either directly or after prior dilution with water for the treatment of seed of various kinds.
- the concentrates or the preparations obtainable therefrom by dilution with water can be used for dressing the seeds of cereals such as wheat, barley, rye, oats and triticale, as well as the seeds of maize, rice, rapeseed, peas, beans, cotton , Sunflower, soy and beet or vegetable seed of various nature.
- the seed dressing formulations which can be used according to the invention or their dilute application forms can also be used for pickling seeds of transgenic plants.
- the procedure for pickling is to place the seed in a mixer in discontinuous or continuous operation, in each case the desired amount Mordant formulations added either as such or after prior dilution with water and mixed until uniform distribution of the formulation on the seed.
- a drying process follows.
- the application rate of the seed dressing formulations which can be used according to the invention can be varied within a relatively wide range. It depends on the particular content of the compounds of the formula (I) in the formulations and on the seed.
- the application rates for the compound of the formula (I) are generally between 0.001 and 50 g per kilogram of seed, preferably between 0.01 and 15 g per kilogram of seed.
- the compounds of formula (I) are active against animal parasites, in particular ectoparasites or endoparasites.
- the term endoparasite includes in particular helminths and protozoa such as coccidia.
- Ectoparasites are typically and preferably arthropods, especially insects and acarids.
- the compounds of formula (I) which are of low toxicity to warm-blooded animals are useful in the control of parasites found in livestock and livestock in livestock, breeding animals, zoo animals, laboratory animals, experimental animals and domestic animals. They are effective against all or individual stages of parasite development.
- Farm animals include, for example, mammals such as sheep, goats, horses, donkeys, camels, buffaloes, rabbits, reindeer, fallow deer, and especially cattle and pigs; Poultry such as turkeys, ducks, geese and, in particular, chickens; Fish and shellfish, e.g. in aquaculture and also insects like bees.
- the pets include, for example, mammals such as hamsters, guinea pigs, rats, mice, chinchillas, ferrets, and especially dogs, cats, caged birds, reptiles, amphibians, and aquarium fish.
- the compounds of formula (I) are administered to mammals.
- the compounds of the formula (I) are administered to birds, namely caged birds and in particular poultry.
- control means that the compounds of formula (I) effectively reduce the incidence of the particular parasite in an animal infected with such parasites to a harmless extent can.
- combating in the present context means that the compound of formula (I) can kill the respective parasite, prevent its growth or prevent its replication.
- the arthropods include: from the order Anoplurida, for example Haematopinus spp., Linognathus spp., Pediculus spp., Phtirus spp., Solenopotes spp .; from the order Mallophagida and the suborders Amblycerina and Ischnocerina, for example Trimenopon spp., Menopon spp., Trinoton spp., Bovicola spp., Werneckiella spp., Lepikentron spp., Damalina spp., Trichodectes spp., Felicola spp .; from the order Diptera and the suborders Nematocerina and Brachycerina, for example Aedes spp., Anopheles spp., Culex spp., Simulium spp., Eusimulium spp., Phlebotomus spp.,
- arthropods include:
- Metastigmata From the subclass Akari (Acarina) and the order Metastigmata, for example from the family Argasidae, such as Argas spp., Ornithodorus spp., Otobius spp., From the family Ixodidae, such as Ixodes spp., Amblyomma spp., Rhipicephalus (Boophilus) spp. Dermacentor spp., Haemophysalis spp., Hyalomma spp., Rhipicephalus spp.
- Argasidae such as Argas spp., Ornithodorus spp., Otobius spp.
- Ixodidae such as Ixodes spp., Amblyomma spp., Rhipicephalus (Boophilus) spp. Dermacentor spp., Haemophysalis spp
- Parasitic protozoa include: Mastigophora (Flagellata), such as Trypanosomatidae, for example Trypanosoma b. brucei, Tb gambiense, Tb rhodesiense, T. congolense, T. cruzi, T. evansi, T. equinum, T. lewisi, T. percae, T. simiae, T. vivax, Leishmania brasiliensis, L. donovani, L. tropica such as Trichomonadidae, for example Giardia lamblia, G.
- Mastigophora Flagellata
- Trypanosomatidae for example Trypanosoma b. brucei, Tb gambiense, Tb rhodesiense
- T. congolense T. cruzi
- T. evansi T. equinum
- T. lewisi T. per
- Sarcomastigophora such as Entamoebidae, for example Entamoeba histolytica, Hartmanellidae, for example Acanthamoeba sp., Harmanella sp .;
- Apicomplexa such as Eimeridae, for example Eimeria acervulina, E. adenoides, E. alabamensis, E. anatis, E. anserina, E. arloingi, E. ashata, E. auburnensis, E. bovis, E. brunetti, E canis, E. chinchillae, E. clupearum, E. columbae, E. contorta, E. crandalis, E. debliecki, E. dispersa, E. ellipsoidales, E. falciformis, E. faurei, E. flavescens, E.
- Eimeridae for example Eimeria acervulina, E. adenoides, E. alabamensis, E. anatis, E. anserina, E. arloingi, E. ashata, E. auburnensis, E. bovis, E.
- gallopavonis E. hagani, E. intestinalis, E. iroquoina, E. irresidua, E. labbeana, E. leucarti, E. magna, E. maxima, E.media, E. meleagridis, E. meleagrimitis, E. mitis, E necatrix, E. ninakohlyakimovae, E.ovis, E.parva, E.pavonis, E. perforans, E. phasani, E. piriformis, E. praecox, E. residua, E. scabra, E.spec, E. sitesdai E. suis, E. tenella, E.
- S. suihominis such as Leucozoidae, for example Leucocytozoon simondi, such as Plasmodiidae, for example Plasmodium berghei, P. falciparum, P. malariae, P. ovale, P.vivax, P.spec, such as piroplasmea, for example Babesia argentina, B.bovis, B.canis, B.spec, Theileriaparva, Theileria spec, such as Adeleina, for example Hepatozoon canis, H. spec.
- Pathogenic endoparasites which are helminths, include flatworms (e.g., Monogenea, Cestodes, and Trematodes), roundworms, Acanthocephala, and Pentastoma. These include:
- Monogenea e.g., Gyrodactylus spp., Dactylogyrus spp., Polystoma spp .; Cestodes: from the order Pseudophyllidea, for example: Diphyllobothrium spp., Spirometra spp., Schistocephalus spp., Ligula spp., Bothridium spp., Diplogonoporus spp .; from the order Cyclophyllida for example: Mesocestoides spp., Anoplocephala spp., Paranoplocephala spp., Moniezia spp., Thysanosoma spp., Thysaniezia spp., Avitellina spp., Stilesia spp., Cittotaenia spp., Andyra spp., Bertiella spp.
- Taenia spp. Echinococcus spp., Hydatigera spp., Davainea spp., Raillietina spp., Hymenolepis spp., Echinolepis spp., Echinocotyle spp., Diorchis spp., Dipylidium spp., Joyeuxiella spp., Diplopylidium spp .;
- Trematodes from the genus Digenea, for example: Diplostomum spp., Posthodiplostomum spp., Schistosoma spp., Trichobilharzia spp., Ornithobilharzia spp., Austrobilharzia spp., Gigantobilharzia spp., Leucochloridium spp., Brachylaima spp., Echinostoma spp., Echinoparyphium spp., Echinochasmus spp., Hypoderaeum spp., Fasciola spp., Fascioloides spp., Fasciolopsis spp., Cyclocoelum spp., Typhlocoelum spp., Paramphistomum spp.
- Calicophoron spp. Calicophoron spp., Cotylophoron spp., Gigantocotyle spp., Fischoederius spp., Gastrothylacus spp., Notocotylus spp., Catatropis spp., Plagiorchis spp., Prosthogonimus spp., Dicrocoelium spp., Eurytrema spp., Troglotrema spp., Paragonimus spp., Collyricum spp., Nanophyetus spp., Opisthorchis spp., Clonorchis spp. Metorchis spp., Heterophyes spp., Metagonimus spp .;
- Roundworms Trichinellida for example: Trichuris spp., Capillaria spp., Paracapillaria spp., Eucoleus spp., Trichomosoides spp., Trichinella spp .; from the order Tylenchida, for example: Micronema spp., Songyloides spp .; from the order Rhabditida, for example: S.
- rongylus spp. Triodontophorus spp., Oesophagodontus spp., Trichonema spp., Gyalocephalus spp., Cylindropharynx spp., Poteriostomum spp., Cyclococercus spp., Cylicostephanus spp., Oesophagostomum spp., Chabertia spp , Stephanurus spp., Ancylostoma spp., Uncinaria spp., Necator spp., Bunostomum spp., Globocephalus spp., Syngamus spp., Cyathostoma spp., Metastrongylus spp., Dictyocaulus spp., Muellerius spp., Protostrongylus spp.
- Neostrongylus spp. Cystocaulus spp., Pneumostrongylus spp., Spicocaulus spp., Elaphostrongylus spp. Parelaphostrongylus spp., Crenosoma spp., Paracrenosoma spp., Oslerus spp., Angiostrongylus spp., Aelurostrongylus spp., Filaroides spp., Parafilaroides spp., Trichostrongylus spp., Haemonchus spp., Ostertagia spp., Teladorsagia spp., Marshallagia spp , Cooperia spp., Nippostrongylus spp., Heligmosomoides spp., Nematodirus spp., Hyostrongylus spp., Obeliscoides spp., Amidostomum spp., O
- Acanthocephala from the order Oligacanthorhynchida, for example: Macracanthorhynchus spp., Prosthenorchis spp .; from the order Polymorphida for example: Filicollis spp .; from the order Moniliformida for example: Moniliformis spp .; from the order Echinorhynchida for example Acanthocephalus spp., Echinorhynchus spp., Leptorhynchoides spp .;
- Pentastoma from the order Porocephalida for example Linguatula spp.
- the compounds of the formula (I) are administered by methods well known in the art, such as enteral, parenteral, dermal or nasal in the form of suitable preparations.
- the administration can be prophylactic or therapeutic.
- one embodiment of the present invention relates to the use of a compound of formula (I) as a medicament.
- Another aspect relates to the use of a compound of formula (I) as an antiendoparasitic agent, in particular as a helminthicide or antiprotozoal agent.
- Compounds of the formula (I) are suitable for use as antiendoparasitic agents, in particular as a helminthicide or antiprotozoal agents, for example in animal breeding, animal husbandry, in stables and in the hygiene sector.
- a further aspect in turn relates to the use of a compound of the formula (I) as an antiectica, in particular an arthropodicide such as an insecticide or an acaricide.
- Another aspect relates to the use of a compound of the formula (I) as an antiectica, in particular an arthropodicide such as an insecticide or acaricide
- an arthropodicide such as an insecticide or acaricide
- a vector in the context of the present invention is an arthropod, in particular an insect or arachnid, which is able to attack pathogens such.
- pathogens such as viruses, worms, protozoa and bacteria from a reservoir (plant, animal, human, etc.) to a host to transfer.
- the pathogens may be transferred to a host either mechanically (e.g., trachoma by non-stabbing flies) on a host, or after injection (e.g., malaria parasites by mosquitoes).
- vectors and their transmitted diseases or pathogens are: 1) mosquitoes - anopheles: malaria, filariasis;
- Ticks Borellioses such as Borrelia duttoni, tick-borne encephalitis, Q fever (Coxiella burnetii), Babesia (Babesia canis canis).
- vectors in the context of the present invention are insects such as aphids, flies, cicadas or thrips, which can transmit plant viruses to plants.
- Other vectors that can transmit plant viruses are spider mites, lice, beetles and nematodes.
- vectors for the purposes of the present invention are insects and arachnids such as mosquitoes, in particular of the genera Aedes, Anopheles, e.g. A. gambiae, A. arabiensis, A. funestus, A. dirus (malaria) and Culex, lice, fleas, flies, mites and ticks that can transmit pathogens to animals and / or humans.
- insects and arachnids such as mosquitoes, in particular of the genera Aedes, Anopheles, e.g. A. gambiae, A. arabiensis, A. funestus, A. dirus (malaria) and Culex, lice, fleas, flies, mites and ticks that can transmit pathogens to animals and / or humans.
- Compounds of formula (I) are suitable for use in the prevention of disease or pathogens transmitted by vectors.
- another aspect of the present invention is the use of compounds of formula (I) for vector control, e.g. in agriculture, horticulture, forests, gardens and recreational facilities, as well as in the supply and protection of materials.
- the compounds of formula (I) are useful for protecting engineering materials against attack or destruction by insects, e.g. from the order Coleoptera, Hymenoptera, Isoptera, Lepidoptera, Psocoptera and Zygentoma.
- the compounds of the formula (I) are used together with at least one further insecticide and / or at least one fungicide.
- the compounds of the formula (I) are present as ready-to-use pesticides, ie they can be applied to the appropriate material can be applied. As further insecticides or as fungicides in particular the above-mentioned in question.
- the compounds of the formula (I) can be used to protect against the growth of objects, in particular hulls, sieves, nets, structures, quays and signal systems, which come into contact with seawater or brackish water.
- the compounds of the formula (I) can be used alone or in combination with other active substances as antifouling agents.
- the compounds of the formula (I) are suitable for controlling animal pests in the hygiene sector.
- the invention can be used in household, hygiene and storage protection, especially for controlling insects, arachnids and mites, which occur in enclosed spaces, such as apartments, factories, offices, vehicle cabins.
- the compounds of formula (I) are used alone or in combination with other active ingredients and / or excipients.
- they are used in household insecticide products.
- the compounds of formula (I) are active against sensitive and resistant species and against all stages of development.
- pests of the class Arachnida from the orders Scorpiones, Araneae and Opiliones, from the classes Chilopoda and Diplopoda, from the class Insecta the order Blattodea, from the orders Coleoptera, Dermaptera, Diptera, Heteroptera, Hymenoptera, Isoptera, Lepidoptera, Phthiraptera, Psocoptera, Saltatoria or Orthoptera, Siphonaptera and Zygentoma and from the class Malacostraca the order Isopoda.
- Application is for example in aerosols, non-pressurized sprays, e.g. Pump and atomizer sprays, fog machines, foggers, foams, gels, evaporator products with cellulose or plastic evaporator plates, liquid evaporators, gel and membrane evaporators, propeller-driven evaporators, energy-less or passive evaporation systems, moth papers, moth cushions and moth gels, as granules or dusts, in litter or bait stations.
- Pump and atomizer sprays e.g. Pump and atomizer sprays, fog machines, foggers, foams, gels, evaporator products with cellulose or plastic evaporator plates, liquid evaporators, gel and membrane evaporators, propeller-driven evaporators, energy-less or passive evaporation systems, moth papers, moth cushions and moth gels, as granules or dusts, in litter or bait stations.
- the NMR spectra were determined with an Avance 400 broker equipped with a 60 ⁇ volume flowhead probe. In individual cases, the NMR spectra were measured with a broker Avance II 600.
- reaction mixture was stirred for 10 minutes at room temperature and then treated with 1.2 equivalents of the amine component. After about 16 hours of stirring at room temperature, the reaction mixture was concentrated in vacuo and the remaining residue purified by preparative chromatography (HPLC).
- Emulsifier alkylaryl polyglycol ether
- active compound 1 part by weight of active compound is dissolved with the stated parts by weight of solvent and filled with water containing an emulsifier concentration of 1000 ppm until reaching the desired concentration. To prepare further test concentrations, dilute with emulsifier-containing water.
- Chinese cabbage leaf discs (Brassica pekinensis) infested with all stages of the green peach aphid ⁇ Myzus persicae) are sprayed with an active compound preparation of the desired concentration.
- Emulsifier alkylaryl polyglycol ether To prepare a suitable preparation of active compound, 1 part by weight of active compound is dissolved with the stated parts by weight of solvent and filled with water which contains an emulsifier concentration of 1000 ppm until the desired concentration is reached. To prepare further test concentrations, dilute with emulsifier-containing water.
- Bean leaf discs Phaseolus vulgaris infected by all stages of the common spider mite (Tetranychus urticae) are sprayed with an active compound preparation of the desired concentration.
- Vessels containing a sponge treated with sugar solution and the preparation of active compound of the desired concentration are populated with 10 adult house flies (Musca domestica).
- the kill is determined in%. 100% means that all flies have been killed; 0% means that none of the flies have been killed.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Dentistry (AREA)
- Wood Science & Technology (AREA)
- Plant Pathology (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Agronomy & Crop Science (AREA)
- General Health & Medical Sciences (AREA)
- Pest Control & Pesticides (AREA)
- Zoology (AREA)
- Environmental Sciences (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
- Nitrogen Condensed Heterocyclic Rings (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Plural Heterocyclic Compounds (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14195951 | 2014-12-02 | ||
PCT/EP2015/078051 WO2016087363A1 (de) | 2014-12-02 | 2015-11-30 | Bicyclische verbindungen als schädlingsbekämpfungsmittel |
Publications (1)
Publication Number | Publication Date |
---|---|
EP3227289A1 true EP3227289A1 (de) | 2017-10-11 |
Family
ID=52002810
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15801850.7A Withdrawn EP3227289A1 (de) | 2014-12-02 | 2015-11-30 | Bicyclische verbindungen als schädlingsbekämpfungsmittel |
Country Status (6)
Country | Link |
---|---|
US (1) | US9832999B1 (de) |
EP (1) | EP3227289A1 (de) |
JP (1) | JP2017537912A (de) |
CN (1) | CN107406443A (de) |
BR (1) | BR112017011416A2 (de) |
WO (1) | WO2016087363A1 (de) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI652014B (zh) | 2013-09-13 | 2019-03-01 | 美商艾佛艾姆希公司 | 雜環取代之雙環唑殺蟲劑 |
BR112017019326B1 (pt) | 2015-03-12 | 2022-04-26 | Fmc Corporation | Composto, composição e método para controlar uma praga invertebrada |
KR102545036B1 (ko) | 2015-04-09 | 2023-06-20 | 에프엠씨 코포레이션 | 이환 피라졸 살충제 |
EP3484877B1 (de) | 2016-07-12 | 2020-07-01 | Bayer CropScience Aktiengesellschaft | Bicyclische verbindungen als schädlingsbekämpfungsmittel |
CN109963860A (zh) * | 2016-09-19 | 2019-07-02 | 拜耳作物科学股份公司 | 吡唑并[1,5-a]吡啶衍生物及其作为农药的用途 |
CN110759913B (zh) * | 2018-07-26 | 2022-01-28 | 南开大学 | 吲哚酰腙衍生物及其制备方法和在防治植物病毒、杀菌、杀虫方面的应用 |
US20220227763A1 (en) * | 2019-05-29 | 2022-07-21 | Syngenta Crop Protection Ag | Microbiocidal derivatives |
WO2023218484A1 (en) | 2022-05-11 | 2023-11-16 | Pi Industries Ltd. | Bicyclic compounds and their use as pest control agents |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102272105B (zh) | 2008-11-14 | 2016-09-14 | 梅瑞尔公司 | 对映异构富集的芳基并唑-2-基氰基乙氨基杀寄生物化合物 |
CA2748274A1 (en) | 2008-12-30 | 2010-07-08 | Millennium Pharmaceuticals, Inc. | Heteroaryl compounds useful as raf kinase inhibitors |
WO2012000896A2 (de) | 2010-06-28 | 2012-01-05 | Bayer Cropscience Ag | Heterocyclische verbindungen als schädlingsbekämpfungsmittel |
SG11201401189WA (en) | 2012-04-20 | 2014-09-26 | Gilead Sciences Inc | Benzothiazol- 6 -yl acetic acid derivatives and their use for treating an hiv infection |
WO2014126580A1 (en) * | 2013-02-15 | 2014-08-21 | Dow Agrosciences Llc | Pesticidal compositions and processes related thereto |
TWI652014B (zh) | 2013-09-13 | 2019-03-01 | 美商艾佛艾姆希公司 | 雜環取代之雙環唑殺蟲劑 |
-
2015
- 2015-11-30 CN CN201580075085.2A patent/CN107406443A/zh active Pending
- 2015-11-30 EP EP15801850.7A patent/EP3227289A1/de not_active Withdrawn
- 2015-11-30 US US15/529,793 patent/US9832999B1/en not_active Expired - Fee Related
- 2015-11-30 WO PCT/EP2015/078051 patent/WO2016087363A1/de active Application Filing
- 2015-11-30 JP JP2017529020A patent/JP2017537912A/ja active Pending
- 2015-11-30 BR BR112017011416A patent/BR112017011416A2/pt not_active Application Discontinuation
Non-Patent Citations (2)
Title |
---|
None * |
See also references of WO2016087363A1 * |
Also Published As
Publication number | Publication date |
---|---|
BR112017011416A2 (pt) | 2018-02-27 |
JP2017537912A (ja) | 2017-12-21 |
WO2016087363A1 (de) | 2016-06-09 |
CN107406443A (zh) | 2017-11-28 |
US9832999B1 (en) | 2017-12-05 |
US20170325458A1 (en) | 2017-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3484877B1 (de) | Bicyclische verbindungen als schädlingsbekämpfungsmittel | |
EP3253210B1 (de) | 2-(het)aryl-substituierte kondensierte bicyclische heterocyclen-derivate als schädlings-bekämpfungsmittel | |
EP3227288B1 (de) | Bicyclische verbindungen als schädlingsbekämpfungsmittel | |
EP3356362B1 (de) | 2-(het)aryl-substituierte kondensierte heterocyclen-derivate als schädlingsbekämpfungsmittel | |
EP3280716A1 (de) | Kondensierte bicyclische heterocyclen-derivate als schädlingsbekämpfungsmittel und deren zwischenprodukte | |
EP3107912A1 (de) | 2-(het)aryl-substituierte kondensierte bicyclische heterocyclen-derivate als schädlingsbekämpfungsmittel | |
EP3227274B1 (de) | Bicyclische verbindungen als schädlingsbekämpfungsmittel | |
EP3227302B1 (de) | Bicyclische verbindungen als schädlingsbekämpfungsmittel | |
EP3319943A1 (de) | Stickstoffhaltige heterocyclen als schädlingsbekämpfungsmittel | |
EP3227290B1 (de) | 2h-pyrazolo[4,3-b]pyridine als pestizide | |
US9832999B1 (en) | Bicyclic compounds as pest control agents | |
EP3227303B1 (de) | Bicyclische verbindungen als schädlingsbekämpfungsmittel | |
WO2016087417A1 (de) | Bicyclische verbindungen als schädlingsbekämpfungsmittel | |
EP3152216A1 (de) | Bicyclische verbindungen als schädlingsbekämpfungsmittel | |
WO2015135843A1 (de) | Heterocylische verbindungen als schädlingsbekämpfungsmittel | |
WO2016087371A1 (de) | Bicyclische verbindungen als schädlingsbekämpfungsmittel | |
EP3601279A1 (de) | Trizyklische carboxamide zur bekämpfung von anthropoden | |
WO2015132313A1 (de) | Heterocyclische verbindungen als schädlingsbekämpfungsmittel | |
WO2015107133A1 (de) | Chinolinderivate als insektizide und akarizide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20170703 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20190627 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20191108 |