EP3220025A1 - Vehicle tank pressurisation device - Google Patents

Vehicle tank pressurisation device Download PDF

Info

Publication number
EP3220025A1
EP3220025A1 EP16161287.4A EP16161287A EP3220025A1 EP 3220025 A1 EP3220025 A1 EP 3220025A1 EP 16161287 A EP16161287 A EP 16161287A EP 3220025 A1 EP3220025 A1 EP 3220025A1
Authority
EP
European Patent Office
Prior art keywords
shutter
opening
vertical axis
valve seat
pressurisation device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP16161287.4A
Other languages
German (de)
French (fr)
Other versions
EP3220025B1 (en
Inventor
Michele COPPOLA
Luigi Spada
Marco Riaudo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stellantis Europe SpA
Original Assignee
FCA Italy SpA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FCA Italy SpA filed Critical FCA Italy SpA
Priority to EP16161287.4A priority Critical patent/EP3220025B1/en
Priority to US15/463,171 priority patent/US10281051B2/en
Publication of EP3220025A1 publication Critical patent/EP3220025A1/en
Application granted granted Critical
Publication of EP3220025B1 publication Critical patent/EP3220025B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K17/00Safety valves; Equalising valves, e.g. pressure relief valves
    • F16K17/02Safety valves; Equalising valves, e.g. pressure relief valves opening on surplus pressure on one side; closing on insufficient pressure on one side
    • F16K17/12Safety valves; Equalising valves, e.g. pressure relief valves opening on surplus pressure on one side; closing on insufficient pressure on one side weight-loaded
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/0076Details of the fuel feeding system related to the fuel tank
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K24/00Devices, e.g. valves, for venting or aerating enclosures
    • F16K24/04Devices, e.g. valves, for venting or aerating enclosures for venting only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • B60K15/03006Gas tanks
    • B60K2015/03026Gas tanks comprising a valve
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • B60K2015/03256Fuel tanks characterised by special valves, the mounting thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • B60K2015/03256Fuel tanks characterised by special valves, the mounting thereof
    • B60K2015/03296Pressure regulating valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • B60K15/035Fuel tanks characterised by venting means
    • B60K2015/0358Fuel tanks characterised by venting means the venting is actuated by specific signals or positions of particular parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • B60K15/035Fuel tanks characterised by venting means
    • B60K2015/0358Fuel tanks characterised by venting means the venting is actuated by specific signals or positions of particular parts
    • B60K2015/03585Fuel tanks characterised by venting means the venting is actuated by specific signals or positions of particular parts by gas pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1406Storage means for substances, e.g. tanks or reservoirs
    • F01N2610/1413Inlet and filling arrangements therefore
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/7722Line condition change responsive valves
    • Y10T137/7837Direct response valves [i.e., check valve type]
    • Y10T137/7904Reciprocating valves
    • Y10T137/7908Weight biased
    • Y10T137/7909Valve body is the weight

Definitions

  • the present invention relates to a vehicle tank pressurisation device, to contain liquid fuel or chemical reducing agents such as AUS32 (aqueous urea solution 32.5%), required for the operation of selective catalytic reduction devices in Diesel cycle engines.
  • AUS32 aqueous urea solution 32.5%
  • a pressurisation device is fitted to vehicle tanks in order to maintain a given level of pressure inside the tank itself.
  • Such a device is usually characterised by having a unidirectional valve which is normally closed and is configured to open when the pressure inside the tank reaches a specified threshold. When the valve opens, it allows the outflow of a certain volume of air and/or fuel vapours to the atmosphere, optionally passing through a canister to recover the vapours.
  • the valve has a valve seat and a shutter which can move towards and away from the valve seat and, in some solutions, has a weight whose magnitude determines the operation of closure and, therefore, the aforesaid pressure threshold. It may also be provided with a set point spring with a relatively low preload, in order to keep the shutter closed against the valve seat despite the vehicle's jolts and vibrations in normal driving condition, and/or in order to increase the value of the threshold pressure required to move the shutter.
  • the shutter has difficulty in fully lifting from the valve seat and in quickly bringing the internal conditions of the tank below the established threshold pressure, especially when the pressure in the tank slightly exceeds this threshold.
  • the purpose of the present invention is to provide a vehicle tank pressurisation device, designed to provide a straightforward, low-cost solution to the abovementioned problem.
  • the present invention provides a vehicle tank pressurisation device, as defined in claim 1.
  • the reference number 1 indicates, in its entirety, a vehicle fuel tank (partially illustrated).
  • the tank 1 comprises a shell 3 defining an inner chamber 4 consisting of a lower region 5 occupied by fuel and by an upper region 6 occupied by air and/or fuel vapours.
  • the shell 3 comprises a wall 7, which defines the top of region 6 and supports a pressurisation device 8 comprising a unidirectional valve, which is normally closed and configured so as to open when the pressure in region 6 exceeds a predetermined threshold value.
  • This unidirectional valve comprises a valve seat 10 defining a passage or opening 11 that has a vertical axis 12 and communicates directly and permanently with region 6.
  • the device 8 comprises a chamber 13 formed above the valve seat 10 and communicating directly or indirectly with the atmosphere; and a shutter 14 which is positioned in chamber 13, coaxially with the chamber 13 itself along a vertical axis 15.
  • Shutter 14 is defined, in the specific example shown, by a plate of substantially cylindrical shape, but other shapes and geometries may be provided as appropriate.
  • Shutter 14 moves within chamber 13 towards and away from valve seat 10 to open/close opening 11 in response to the pressure present in region 6.
  • Shutter 14 has a lower surface 16 facing valve seat 10 and comprising a middle area 17 which blocks opening 11 when the shutter 14 is completely lowered against the valve seat 10.
  • the pressure in region 6 acts on area 17 and tends to raise shutter 14 to open opening 11, thus putting the inside of the tank in communication with the outside atmosphere: as can be seen in figure 2b , axis 12 determines the direction along which the pressure applies its own opening force (Fa) upwards on area 17.
  • the weight of shutter 14 determines the downwards closing force (Fc) to balance this opening force and tends to keep opening 11 closed.
  • the weight of shutter 14 is set by design in a relatively precise manner so as to define the abovementioned threshold value, beyond which shutter 14 is lifted by the pressure acting on area 17, in such a way as to discharge air and/or fuel vapours through opening 11 and so to restore the pressure in tank 1 below the abovementioned threshold value.
  • the threshold value to produce venting through opening 11 is determined on the basis of the combination of the weight of shutter 14 and the thrust of the set point spring.
  • shutter 14 may be more easily moved by the pressure present in region 6 and, furthermore, a greater fluid flow vented through opening 11 is produced, at an equal pressure to that inside tank 1, especially when such pressure is only slightly greater than the predetermined set threshold value.
  • the centre of gravity of shutter 14 lies on axis 15, while the latter is offset from axis 12.
  • axis 12 is offset laterally with respect to the centre of chamber 13 and shutter 14.
  • Figure 2b shows the behaviour of shutter 14 when the pressure in region 6 slightly exceeds the threshold value. It can be seen that the offset of the centre of gravity of shutter 14 from axis 12 leads to a couple or tilting moment on shutter 14 and then to a tilting of shutter 14 itself into chamber 13.
  • Figure 2c shows the behaviour of shutter 14 when the pressure in region 6 of tank 1 exceeds the threshold value to a large extent: in this case, the discharge conditions are similar to those that occur in the operating conditions of the prior art.
  • FIGS 3a, 3b and 3c and figures 4a, 4b and 4c show two variants, in which the same reference numbers as in figures 2a, 2b and 2c have, where possible, been used.
  • shutter 14 is replaced, respectively, by shutter 14a and by shutter 14b, which have shapes that are asymmetrical with respect to axis 15, so as to have the centre of gravity displaced horizontally at one side with respect to axes 15 and 12, while preferably being made from materials having homogeneous density.
  • each of the shutters 14a and 14b consists of two portions, which are diametrically opposite and have different shapes.
  • shutter 14a consists of two portions 19 and 20, of which one has an average axial height smaller than the other.
  • shutter 14b has, instead, a cavity 21 set at an eccentric position with respect to axis 15, so as to displace the centre of gravity on the diametrically opposite side.
  • Figures 3b and 4b are similar to figure 2b and show the effectiveness of the behaviour of shutters 14b and 14c respectively, when the pressure in region 6 slightly exceeds the threshold value.
  • a shutter is provided that has a symmetrical shape with respect to axis 15, as in the case of figure 2a , but consisting of one or more materials in such a way as to have non-homogeneous density in order to make its centre of gravity eccentric.
  • the method by which to obtain the eccentricity of the centre of gravity may be different, as apparent from the abovementioned examples, and can be chosen on the basis of needs and benefits (dimensions, production techniques, etc.) depending on the specific practical case.
  • the shapes of the various components may be different and/or be defined by a combination of examples that have been indicated above by way of example.
  • tank 1 could be provided on the vehicle to contain chemical reducing agents needed for operating devices for selective catalytic reduction in Diesel cycle engines.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)

Abstract

A vehicle tank pressurisation device has a valve seat (10) establishing an opening (11) for fuel vapours and/or air; such opening (11) has a vertical axis (12) coincident with the direction of application of an opening force, that is directed upwards and is produced, in use, by the pressure in an internal upper region (6) of the tank (1); the device also has a movable shutter (14), placed on the valve seat (10), to open/close the valve seat (10), and having a weight set by design in such a way as to define the magnitude of a closing force directed downwards and with a centre of gravity positioned eccentrically with respect to the vertical axis (12) of the opening (11).

Description

  • The present invention relates to a vehicle tank pressurisation device, to contain liquid fuel or chemical reducing agents such as AUS32 (aqueous urea solution 32.5%), required for the operation of selective catalytic reduction devices in Diesel cycle engines.
  • A pressurisation device is fitted to vehicle tanks in order to maintain a given level of pressure inside the tank itself. Such a device is usually characterised by having a unidirectional valve which is normally closed and is configured to open when the pressure inside the tank reaches a specified threshold. When the valve opens, it allows the outflow of a certain volume of air and/or fuel vapours to the atmosphere, optionally passing through a canister to recover the vapours.
  • The valve has a valve seat and a shutter which can move towards and away from the valve seat and, in some solutions, has a weight whose magnitude determines the operation of closure and, therefore, the aforesaid pressure threshold. It may also be provided with a set point spring with a relatively low preload, in order to keep the shutter closed against the valve seat despite the vehicle's jolts and vibrations in normal driving condition, and/or in order to increase the value of the threshold pressure required to move the shutter.
  • In known solutions, the shutter has difficulty in fully lifting from the valve seat and in quickly bringing the internal conditions of the tank below the established threshold pressure, especially when the pressure in the tank slightly exceeds this threshold.
  • The purpose of the present invention is to provide a vehicle tank pressurisation device, designed to provide a straightforward, low-cost solution to the abovementioned problem.
  • The present invention provides a vehicle tank pressurisation device, as defined in claim 1.
  • For a better understanding of the present invention a preferred embodiment is now described, purely as a nonlimiting example, with reference to the accompanying drawings, wherein:
    • Figure 1 shows a vehicle tank pressurisation device according to the present invention, in simplified perspective view, with parts removed for clarity;
    • Figure 2a is a schematic sectional view of the pressurisation device of figure 1, shown in enlarged scale and in a closed state;
    • Figures 2b and 2c are similar to figure 2a and show the pressurisation device in two different opening states, depending on the pressure level present in the tank;
    • Figures 3a, 3b and 3c are similar to figures 2a, 2b and 2c respectively and show a first variant of the device of figure 1; and
    • figures 4a, 4b and 4c are similar to figures 2a, 2b and 2c respectively and show a second variant of the device of figure 1.
  • In Figure 1, the reference number 1 indicates, in its entirety, a vehicle fuel tank (partially illustrated). The tank 1 comprises a shell 3 defining an inner chamber 4 consisting of a lower region 5 occupied by fuel and by an upper region 6 occupied by air and/or fuel vapours.
  • The shell 3 comprises a wall 7, which defines the top of region 6 and supports a pressurisation device 8 comprising a unidirectional valve, which is normally closed and configured so as to open when the pressure in region 6 exceeds a predetermined threshold value.
  • This unidirectional valve comprises a valve seat 10 defining a passage or opening 11 that has a vertical axis 12 and communicates directly and permanently with region 6. With reference to figure 2a, the device 8 comprises a chamber 13 formed above the valve seat 10 and communicating directly or indirectly with the atmosphere; and a shutter 14 which is positioned in chamber 13, coaxially with the chamber 13 itself along a vertical axis 15.
  • Shutter 14 is defined, in the specific example shown, by a plate of substantially cylindrical shape, but other shapes and geometries may be provided as appropriate.
  • Shutter 14 moves within chamber 13 towards and away from valve seat 10 to open/close opening 11 in response to the pressure present in region 6. Shutter 14 has a lower surface 16 facing valve seat 10 and comprising a middle area 17 which blocks opening 11 when the shutter 14 is completely lowered against the valve seat 10. At the same time, the pressure in region 6 acts on area 17 and tends to raise shutter 14 to open opening 11, thus putting the inside of the tank in communication with the outside atmosphere: as can be seen in figure 2b, axis 12 determines the direction along which the pressure applies its own opening force (Fa) upwards on area 17. On the other hand, the weight of shutter 14 determines the downwards closing force (Fc) to balance this opening force and tends to keep opening 11 closed. The weight of shutter 14 is set by design in a relatively precise manner so as to define the abovementioned threshold value, beyond which shutter 14 is lifted by the pressure acting on area 17, in such a way as to discharge air and/or fuel vapours through opening 11 and so to restore the pressure in tank 1 below the abovementioned threshold value.
  • In the case shown, there is no coupling system or any constraint that limits or imposes a given movement to shutter 14. Alternatively, the only constraint is given by a set point spring not shown that exerts a relatively small additional closing force in accordance with the weight of shutter 14, to prevent shutter 14 from lifting in an undesirable manner due to vibrations or jolting during normal operation of the vehicle. In this case, the threshold value to produce venting through opening 11 is determined on the basis of the combination of the weight of shutter 14 and the thrust of the set point spring.
  • Under the present invention, the centre of gravity of shutter 14 is offset or eccentric with respect to axis 12. In this way, shutter 14 may be more easily moved by the pressure present in region 6 and, furthermore, a greater fluid flow vented through opening 11 is produced, at an equal pressure to that inside tank 1, especially when such pressure is only slightly greater than the predetermined set threshold value.
  • In the embodiment of Figures 2a, 2b and 2c, the centre of gravity of shutter 14 lies on axis 15, while the latter is offset from axis 12. In other words, axis 12 is offset laterally with respect to the centre of chamber 13 and shutter 14.
  • Figure 2b shows the behaviour of shutter 14 when the pressure in region 6 slightly exceeds the threshold value. It can be seen that the offset of the centre of gravity of shutter 14 from axis 12 leads to a couple or tilting moment on shutter 14 and then to a tilting of shutter 14 itself into chamber 13.
  • This tilting, in turn, leads to a larger space or section area for the outflow of air and/or of fuel vapours from opening 11 to chamber 13, on one side of valve seat 10, with respect to the operating conditions of the prior art where the centre of gravity of shutter 14 lies on axis 12 which therefore travels parallel to itself along axis 12 during the opening. In the opening operating condition under the present invention, the venting starts more readily and is completed more quickly than in the operating condition of the prior art, described above.
  • Figure 2c shows the behaviour of shutter 14 when the pressure in region 6 of tank 1 exceeds the threshold value to a large extent: in this case, the discharge conditions are similar to those that occur in the operating conditions of the prior art.
  • Figures 3a, 3b and 3c and figures 4a, 4b and 4c show two variants, in which the same reference numbers as in figures 2a, 2b and 2c have, where possible, been used. In these variants, shutter 14 is replaced, respectively, by shutter 14a and by shutter 14b, which have shapes that are asymmetrical with respect to axis 15, so as to have the centre of gravity displaced horizontally at one side with respect to axes 15 and 12, while preferably being made from materials having homogeneous density. In other words, each of the shutters 14a and 14b consists of two portions, which are diametrically opposite and have different shapes.
  • In particular, shutter 14a consists of two portions 19 and 20, of which one has an average axial height smaller than the other. In the case of shutter 14b, the latter has, instead, a cavity 21 set at an eccentric position with respect to axis 15, so as to displace the centre of gravity on the diametrically opposite side.
  • Figures 3b and 4b are similar to figure 2b and show the effectiveness of the behaviour of shutters 14b and 14c respectively, when the pressure in region 6 slightly exceeds the threshold value.
  • Under a variation not shown, a shutter is provided that has a symmetrical shape with respect to axis 15, as in the case of figure 2a, but consisting of one or more materials in such a way as to have non-homogeneous density in order to make its centre of gravity eccentric.
  • From the above description it is evident how, with a centre of gravity which is eccentric with respect to axis 12, the opening force exerted by the pressure causes the shutter not only to translate axially but also to rotate, whereby a readier opening and a greater outflow of air and/or fuel vapours is achieved.
  • The method by which to obtain the eccentricity of the centre of gravity may be different, as apparent from the abovementioned examples, and can be chosen on the basis of needs and benefits (dimensions, production techniques, etc.) depending on the specific practical case.
  • Finally, it is clear that the device 8 described and illustrated herein with reference to the appended schematic figures can be subject to modifications and variations without thereby departing from the protective scope of the present invention as defined in the appended claims.
  • In particular, the shapes of the various components may be different and/or be defined by a combination of examples that have been indicated above by way of example.
  • Furthermore, tank 1 could be provided on the vehicle to contain chemical reducing agents needed for operating devices for selective catalytic reduction in Diesel cycle engines.

Claims (6)

  1. Vehicle tank pressurisation device, comprising:
    - a valve seat (10) defining an opening (11) for fuel vapours and/or air; said opening (11) having a first vertical axis (12) coincident with the direction of application of an opening force (Fa) that is directed upwards and is defined, in use, by the pressure in an internal upper region (6) of the tank (1);
    - a shutter (14) positioned above said valve seat (10), movable towards and away from said valve seat (10) to open/close said opening (11) and having a weight set by design in such a way as to define the magnitude of a closing force (Fc) directed downwards;
    characterised in the fact that said shutter (14) has a centre of gravity positioned eccentrically with respect to said first vertical axis (12).
  2. Pressurisation device according to claim 1, characterised by comprising a chamber (13) engaged by said shutter (14) and coaxial with said shutter (14) along a second vertical axis (15), which is horizontally offset from said first vertical axis (12).
  3. Pressurisation device according to claim 1 or 2, characterised by comprising a chamber (13) engaged by said shutter (14) and coaxial with said shutter (14a; 14b) along a second vertical axis (15); said shutter (14a; 14b) having a shape that is asymmetrical with respect to said second vertical axis (15).
  4. Pressurisation device according to claim 3, characterised in that said shutter (14a) consists of two portions (19, 20) which are diametrically opposite and have different average axial heights.
  5. Pressurisation device according to claim 3, characterised in that said shutter (14b) comprises a cavity (21) formed in an eccentric position with respect to said second axis (15).
  6. Pressurisation device according to any one of the preceding claims, characterised in that said shutter is made in such a way as to have a homogeneous density.
EP16161287.4A 2016-03-18 2016-03-18 Vehicle tank pressurisation device Active EP3220025B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16161287.4A EP3220025B1 (en) 2016-03-18 2016-03-18 Vehicle tank pressurisation device
US15/463,171 US10281051B2 (en) 2016-03-18 2017-03-20 Vehicle tank pressurization device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP16161287.4A EP3220025B1 (en) 2016-03-18 2016-03-18 Vehicle tank pressurisation device

Publications (2)

Publication Number Publication Date
EP3220025A1 true EP3220025A1 (en) 2017-09-20
EP3220025B1 EP3220025B1 (en) 2019-12-18

Family

ID=55966986

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16161287.4A Active EP3220025B1 (en) 2016-03-18 2016-03-18 Vehicle tank pressurisation device

Country Status (2)

Country Link
US (1) US10281051B2 (en)
EP (1) EP3220025B1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB589068A (en) * 1944-12-22 1947-06-10 John Daniel Eldret Venning Improvements in or relating to automatic relief valves
US20070204918A1 (en) * 2006-03-02 2007-09-06 Neil Weaver Pressure relief valve
WO2007105020A1 (en) * 2006-03-13 2007-09-20 Bereznai Jozsef Control valve with profiled packing element
DE102010018962A1 (en) * 2010-04-23 2011-10-27 Wiesheu Gmbh Device for heat treatment of foods in furnace, has heatable furnace chamber with exhaust duct for ventilating furnace chamber which has exhaust valve
DE102011108380A1 (en) * 2011-07-22 2013-01-24 Audi Ag Device for aerating and deaerating fuel tank of internal combustion engine of motor car, has high and low pressure valves opened in case of high and low pressure, where one of block valve and pressure valves consists of micro valves

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US675622A (en) * 1900-09-10 1901-06-04 William J Clinton Valve.
US2308829A (en) * 1939-11-07 1943-01-19 Richardson Co Electrolyte control device
US2532282A (en) * 1949-05-27 1950-12-05 Benson Jimmie Myron Inhaler
US2633113A (en) * 1952-05-13 1953-03-31 Herman C Gould Internal-combustion engine
US3019003A (en) * 1959-02-09 1962-01-30 Fritz W Glitsch & Sons Inc Closures for fluid contact apparatus
US5992442A (en) * 1997-05-29 1999-11-30 Urquhart; Edward F. Relief valve for use with hermetically sealed flexible container
US6457952B1 (en) * 2000-11-07 2002-10-01 Tecumseh Products Company Scroll compressor check valve assembly
US7047997B2 (en) * 2003-07-29 2006-05-23 Delphi Technologies, Inc. Fuel tank vent valve
JP2005083296A (en) * 2003-09-10 2005-03-31 Sanden Corp Compressor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB589068A (en) * 1944-12-22 1947-06-10 John Daniel Eldret Venning Improvements in or relating to automatic relief valves
US20070204918A1 (en) * 2006-03-02 2007-09-06 Neil Weaver Pressure relief valve
WO2007105020A1 (en) * 2006-03-13 2007-09-20 Bereznai Jozsef Control valve with profiled packing element
DE102010018962A1 (en) * 2010-04-23 2011-10-27 Wiesheu Gmbh Device for heat treatment of foods in furnace, has heatable furnace chamber with exhaust duct for ventilating furnace chamber which has exhaust valve
DE102011108380A1 (en) * 2011-07-22 2013-01-24 Audi Ag Device for aerating and deaerating fuel tank of internal combustion engine of motor car, has high and low pressure valves opened in case of high and low pressure, where one of block valve and pressure valves consists of micro valves

Also Published As

Publication number Publication date
US20170299076A1 (en) 2017-10-19
US10281051B2 (en) 2019-05-07
EP3220025B1 (en) 2019-12-18

Similar Documents

Publication Publication Date Title
US6591855B2 (en) Fuel cutoff valve
AU2011325498B2 (en) Control valve
PL194065B1 (en) Over filling interdiction, vent and roll over valve
JP5745001B2 (en) Variable valve timing device
US7886759B2 (en) Fuel cutoff valve
JP2018013087A (en) Ventilation control valve for fuel tank
KR20090098835A (en) Vent valve
EP2686190B1 (en) Pressure equalizing valve for a fuel tank or secondary fluid tank on a motor vehicle
EP3220025B1 (en) Vehicle tank pressurisation device
KR20100032818A (en) Valve device
US6840263B2 (en) Multifunctional valve for the fuel tank of a motor vehicle
US10220701B2 (en) Utility vehicle tank
US8397681B2 (en) Expansion tank for vehicle cooling system
EP2759436B1 (en) Ventilation valve
JP2019128001A5 (en)
CN211230663U (en) Valve device for fuel tank
CN209524117U (en) A kind of oil tank liquid level control valve of integrated check valve
KR102463411B1 (en) Device for preventing fuel overflow of vehicle fuel system
ITPD20080234A1 (en) DEVICE FOR PREVENTING THE OCCUPANCY OF CONTAINERS, IN PARTICULAR TANKS INTENDED TO CONTAIN LIQUEFIED GASES
JP6522443B2 (en) Fluid storage device
RU2410275C1 (en) Device to lift truck cabin
JPH0643436U (en) Check valve
EP4091852B1 (en) New cap with valve system provided with flow reducer
JPH06166333A (en) Vent opening/closing device for fuel tank
CN211420919U (en) Shock-free deceleration strip

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180319

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F16K 24/04 20060101ALI20190618BHEP

Ipc: B60K 15/03 20060101ALN20190618BHEP

Ipc: B60K 15/035 20060101ALN20190618BHEP

Ipc: F16K 17/12 20060101AFI20190618BHEP

INTG Intention to grant announced

Effective date: 20190715

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602016026231

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1214976

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200115

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20191218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200319

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200418

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602016026231

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1214976

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191218

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20200921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240220

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240220

Year of fee payment: 9

Ref country code: FR

Payment date: 20240220

Year of fee payment: 9