EP3215764B1 - Method for operating a motor vehicle comprising an all-wheel drive that can be enabled and disabled by determining an angular acceleration of components which are uncoupled when the all-wheel drive is disabled - Google Patents

Method for operating a motor vehicle comprising an all-wheel drive that can be enabled and disabled by determining an angular acceleration of components which are uncoupled when the all-wheel drive is disabled Download PDF

Info

Publication number
EP3215764B1
EP3215764B1 EP15793761.6A EP15793761A EP3215764B1 EP 3215764 B1 EP3215764 B1 EP 3215764B1 EP 15793761 A EP15793761 A EP 15793761A EP 3215764 B1 EP3215764 B1 EP 3215764B1
Authority
EP
European Patent Office
Prior art keywords
wheel drive
drag torque
components
torque
uncoupled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15793761.6A
Other languages
German (de)
French (fr)
Other versions
EP3215764A1 (en
Inventor
Dieter Weidemann
Heiko HANICKEL
Florian Kolb
Hans Jörg BRÜHL
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Audi AG
Original Assignee
Audi AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Audi AG filed Critical Audi AG
Publication of EP3215764A1 publication Critical patent/EP3215764A1/en
Application granted granted Critical
Publication of EP3215764B1 publication Critical patent/EP3215764B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K23/00Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for
    • B60K23/08Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles
    • B60K23/0808Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles for varying torque distribution between driven axles, e.g. by transfer clutch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K23/00Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for
    • B60K23/08Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K23/00Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for
    • B60K23/08Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles
    • B60K23/0808Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles for varying torque distribution between driven axles, e.g. by transfer clutch
    • B60K2023/0816Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles for varying torque distribution between driven axles, e.g. by transfer clutch for varying front-rear torque distribution with a central differential
    • B60K2023/0825Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles for varying torque distribution between driven axles, e.g. by transfer clutch for varying front-rear torque distribution with a central differential for adding torque to the front wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K23/00Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for
    • B60K23/08Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles
    • B60K23/0808Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles for varying torque distribution between driven axles, e.g. by transfer clutch
    • B60K2023/0816Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles for varying torque distribution between driven axles, e.g. by transfer clutch for varying front-rear torque distribution with a central differential
    • B60K2023/0833Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles for varying torque distribution between driven axles, e.g. by transfer clutch for varying front-rear torque distribution with a central differential for adding torque to the rear wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/42Clutches or brakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/42Clutches or brakes
    • B60Y2400/421Dog type clutches or brakes

Definitions

  • the invention relates to a method for operating a motor vehicle with an on and off switchable four-wheel drive and a drive train comprising two controlled by a controller couplings for switching on and off of the four-wheel drive and between the clutches rotating components, which are driven with switched four-wheel drive and at switched off all-wheel drive from the rest of the powertrain are disconnected.
  • the drive train of the motor vehicle according to DE 10 2012 020 908 A1 includes a so-called four-wheel clutch in the form of a clutch that is closed when switched four-wheel drive and distributed by the engine torque distributed to both axles of the motor vehicle and is open when switched off all-wheel drive and provided by the engine torque only the permanently driven primary or front axle supplies.
  • the switchable secondary or rear axle comprises a second clutch in the form of a separating clutch, which is closed and opened together with the four-wheel clutch. Between the two clutches are several rotating components, including one of the four-wheel drive to the secondary or rear axle connecting shaft, the rotatably connected to the connecting shaft output side components of the all-wheel drive, and the axle of the secondary or rear axle together with differential compensation and their rotating components.
  • the drag torque includes braking torque components, which result inter alia from the ⁇ lpantschen a ring gear of the axle of the secondary or rear axle and the bearing friction of the connecting shaft in the pivot bearings, and accelerating torque components, among other things, a speed difference between the drive-side and the output-side components of the oil-filled Four-wheel clutch as well as from the friction in the differential compensation result.
  • the previously decoupled from the drive train components must be accelerated again or brought to speed, the necessary acceleration or necessary for acceleration torque of the internal combustion engine depends on the instantaneous speed of the decoupled components and the adjacent drag torque.
  • the knowledge of the applied when switched off four-wheel drive drag torque is important to adjust the speed of the decoupled and freely rotating or stopped components on the one hand as fast as possible to the speed of the other components of the powertrain when switching the secondary or rear axle on the other hand, without it on the other hand, a noticeable jerk in the drive train and thus in the motor vehicle.
  • the acceleration in order to achieve a comfort-optimal connection, the acceleration must be the slower, the greater the drag torque or the drag losses, which counteract acceleration.
  • the applied drag torque depends on several parameters, namely the speed of the components, the oil level in the clutches and the axle drive, the temperature of the lubricating oil in the axle drive and the inlet or wear of the bearings and seals.
  • the oil level in the clutches and in the axle drive is known, for example, while the speed and the lubricating oil temperature can be measured.
  • the running-in condition or wear of the bearings and seals are unknowns that need to be estimated.
  • the applied drag torque is determined immediately for different driving conditions depending on the parameters mentioned above on a test bench and stored permanently in the control unit of the motor vehicle.
  • sensors are increasingly being dispensed with, including a sensor for measuring the lubricating oil temperature in the axle drive of the deactivatable secondary or rear axle.
  • a sensor for measuring the lubricating oil temperature in the axle drive of the deactivatable secondary or rear axle if the unknown inlet or wear of the bearings and seals are added to other unknowns, such as the lubricating oil temperature or the oil level in the axle, a meaningful statement about the applied drag torque is hardly possible.
  • US 2007/193793 A discloses a method according to the preamble of claim 1. Based on this, the present invention seeks to improve a method of the type mentioned in that defects and especially bearing defects of the rotating components can be detected early and that the applied drag torque without the Knowledge of the lubricating oil temperature in the axle drive can be determined.
  • the speed of at least one of the decoupled components is measured at a time interval and from this is an angular acceleration ⁇ of the decoupled components, that is the derivative the angular velocity ⁇ , the decoupled components determined.
  • the rotational speed of one of the decoupled components can be measured expediently with the aid of a rotational speed sensor which determines, for example, the rotational speed of the connecting shaft or of a differential cage of the compensating differential. If the speed of other decoupled components differs from the measured speed, it can be easily calculated over the known gear ratio.
  • the determined angular acceleration ⁇ will be a negative angular acceleration, ie a deceleration.
  • the applied drag torque is calculated from the determined angular acceleration ⁇ , since this is the product of the angular acceleration ⁇ and the moment of inertia or moment of inertia J of the decoupled components depends.
  • the moment of inertia or mass moment of inertia J of the uncoupled components does not change over the lifetime of the components and can therefore be stored in the control unit as a constant.
  • the speed measurement is advantageously carried out several times at different speed reference points or in different speed ranges, so that the angular acceleration and the drag torque for several different, measured at a time interval speeds can be determined. As a result, the plausibility or accuracy of the determined angular acceleration and the calculated drag torque can be improved.
  • the precontrol of the torque and thus the acceleration of the decoupled components on the basis of the calculated drag torque takes place in the subsequent connection of the four-wheel drive, the precontrol of the torque and thus the acceleration of the decoupled components on the basis of the calculated drag torque to provide a comfort optimal jerk-free transition from two-wheel drive in the four-wheel drive.
  • the torque applied for acceleration is precontrolled as a function of the calculated drag torque.
  • the drag torque of the secondary axis is also temperature-dependent because of the temperature dependence of the viscosity of the lubricating oil in the axle drive, where neither a temperature sensor is to be installed nor in the control unit a model of the change in the drag torque depending on the temperature is stored, the calculated drag torque only then used for feedforward control of the torque in the subsequent connection of the four-wheel drive, when the measurement of the rotational speeds or the calculation of the drag torque on the one hand and the connection of the four-wheel drive On the other hand, they are close together in terms of time. In this case, it can be assumed that the temperature between the measurement and the precontrol has not changed or only insignificantly changed.
  • a wear-related or wear-compensated portion of the drag torque can be calculated by the from the moment of inertia or mass moment of inertia and the angular acceleration calculated drag torque is compared with a stored in the control unit reference drag torque, which was determined at the same temperature on the test bench.
  • the drag torque at the beginning of a drive cycle can be determined for this purpose, since the lubricating oil temperature and the temperature of the rotating components at this time correspond to the ambient temperature, assuming a sufficiently long service life.
  • the ambient temperature is normally measured in motor vehicles and is therefore known so that it can be used by the control unit.
  • the instantaneous lubricating oil temperature in the axle drive of the secondary axle can be calculated or at least estimated on the basis of the calculated wear-related or wear-compensated drag torque component.
  • FIG. 1 An illustrated output of the transmission 4 is connected to a permanently driven primary axle 5 of the motor vehicle 1, which is the front axle. Another output of the transmission 4 is connected via an all-wheel drive 6 with a switchable secondary axis 7, which is the rear axle.
  • the all-wheel drive clutch 6 When the all-wheel drive clutch 6 is open, the torque of the internal combustion engine 3 is completely applied to the primary axle 5.
  • the four-wheel clutch 6 When the four-wheel clutch 6 is closed, the torque of the internal combustion engine 3 is distributed both to the primary axis 5 and to the secondary axis 7.
  • the secondary axle 7 comprises an axle drive 8 with a differential compensation 9, which is connected by a connecting shaft 10 in the form of a propeller shaft to the output side of the four-wheel drive 6, two side drive shafts 11 which are connected to the wheels 12 of the secondary axle 7 and the differential compensation 9, as well a four-wheel clutch 13.
  • the four-wheel clutch 6 and the clutch 13 are opened and closed by a control unit 14 of the motor vehicle 1 to separate the connecting shaft 10 and the axle 8 together with differential compensation 9 for switching off the four-wheel drive from the gear 4 and the side hinge shafts 11 and when connecting the four-wheel drive to the transmission 4 and the side hinge shafts 11 to connect.
  • the four-wheel drive 6 is a friction or multi-plate clutch with two running in an oil bath disk sets 15, 16, of which the disk set 15 rotatably connected to an output shaft 17 of the transmission 4 and the disk set 16 rotatably connected to the connecting shaft 10.
  • the separating clutch 13 is designed as a dog clutch and comprises a switching element 18, which is connected by a control line 19 to the control unit 14.
  • the switching on and off of the four-wheel drive is carried out by the control unit 14 as a function of the respective driving situation.
  • the shutdown of the four-wheel drive serves the purpose of achieving consumption savings by minimizing the drag torque of the transaxle 8 of the secondary axle 7 when the four-wheel drive is not needed.
  • the closed four-wheel drive 6 and the closed clutch 13 are opened at time t1, as in Fig. 2 indicated by the two curves A and B.
  • the connecting shaft 10 are decoupled with the disk sets 16 of the four-wheel drive 6 and the axle 8 with the differential compensation 9 and their rotating components on the one hand by the transmission 4 and the other side of the side drive shafts 11 of the secondary axis 7 and rotate freely.
  • the rotational speed n of the connecting shaft 10 then gradually decreases to zero, as in FIG Fig. 2 indicated by the curve C.
  • the speed n of the differential carrier 22 of the differential compensation 9 decreases, which is measured by the speed sensor 20 in short time intervals .DELTA.t and transmitted through the signal line 21 to the control unit 14.
  • the calculated angular acceleration ⁇ exceeds a predetermined test value determined after a short debounce time, which depends on the speed and longitudinal acceleration of the motor vehicle 1 at time t1, indicating that the decoupled components 10, 16, 22, 23 are faster than expected can be slowed down, it can be concluded that there is a defect, which is likely to be a bearing defect in one of the pivot bearing of the connecting shaft 10.
  • MAkonst and MBkonst are determined in test bench tests and stored in the control unit 14.
  • the moment of inertia or mass moment of inertia J of the decoupled components 10, 16, 22, 23 is known and is likewise stored in the control unit 14.
  • the drag torque MS determined by the control unit 14 can be used to optimize the precontrol of the torques applied by the internal combustion engine 3 at the next activation of the four-wheel drive. If neither a temperature sensor installed in the axle 8 still in the control unit 14, a model of the dependence of the drag torque MS is deposited by the oil temperature in the axle 8, but because of this dependence, the time between the measurement of the inflowing into the calculation of the drag torque MS speeds n and the Shifting the four-wheel drive should not be too long to exclude intermediate temperature changes.
  • the wear-related portion of the drag torque does not change with temperature and the dependence of the non-wear-related portion of the drag torque MS is deposited by the oil temperature in the axle 8 in the controller 14, the wear-related portion of the drag torque MS can be used again to provide information about the to make instantaneous oil temperature in the axle 8.
  • FIG. 3 schematically illustrated motor vehicle 1 differs from the motor vehicle in Fig. 1 in that the permanently driven primary axle 5 is the rear axle and the secondary axle which can be engaged via the four-wheel drive coupling 6 is the front axle 7 of the motor vehicle 1.
  • the differential compensation 9 is formed there as an axle differential and separated from the axle 8.
  • Corresponding parts as in Fig. 1 are denoted by the same reference numerals.
  • the rotational speed of one of the decoupled components 10, 16, 22, 23 is also measured at a time interval and an angular acceleration ⁇ of the decoupled components 10, 16, 22, 23 is determined therefrom.
  • the other method steps described above are the same.

Description

Die Erfindung betrifft ein Verfahren zum Betreiben eines Kraftfahrzeugs mit einem zu- und abschaltbarem Allradantrieb und einem Antriebsstrang, der zwei von einem Steuergerät angesteuerte Kupplungen zum Zu- und Abschalten des Allradantriebs und zwischen den Kupplungen rotierende Bauteile umfasst, die bei zugeschaltetem Allradantrieb angetrieben werden und bei abgeschaltetem Allradantrieb vom übrigen Antriebsstrang abgekoppelt sind.The invention relates to a method for operating a motor vehicle with an on and off switchable four-wheel drive and a drive train comprising two controlled by a controller couplings for switching on and off of the four-wheel drive and between the clutches rotating components, which are driven with switched four-wheel drive and at switched off all-wheel drive from the rest of the powertrain are disconnected.

Aus der DE 10 2012 020 908 A1 der Anmelderin ist bereits ein Verfahren der eingangs genannten Art zum Betreiben eines Kraftfahrzeugs mit Allradantrieb bekannt, das eine permanent angetriebene Primär- oder Vorderachse und eine zu- und abschaltbare Sekundär- oder Hinterachse aufweist, deren Antrieb von einem Steuergerät in Abhängigkeit von einer momentanen Fahrsituation zu bzw. abgeschaltet wird. Einer der wesentlichen Vorteile eines solchen zu- und abschaltbaren Allradantriebs besteht darin, dass der Kraftstoffverbrauch des Kraftfahrzeugs minimiert werden kann, indem der Allradantrieb abgeschaltet wird, wenn er nicht benötigt wird, um dadurch insbesondere die Leistungsverluste oder das Schleppmoment des Achsgetriebes der abschaltbaren Sekundär- oder Hinterachse zu minimieren.From the DE 10 2012 020 908 A1 the applicant is already known a method of the type mentioned for operating a motor vehicle with four-wheel drive, having a permanently driven primary or front axle and an on and off secondary or rear axle whose drive from a control device in response to a current driving situation or is switched off. One of the main advantages of such a switched on and off all-wheel drive is that the fuel consumption of the motor vehicle can be minimized by the four-wheel drive is switched off when it is not needed, thereby in particular the power losses or the drag torque of the axle of the disconnectable secondary or Minimize rear axle.

Der Antriebsstrang des Kraftfahrzeugs gemäß DE 10 2012 020 908 A1 umfasst eine sogenannte Allradkupplung in Form einer Kupplung, die bei zugeschaltetem Allradantrieb geschlossen ist und das von der Brennkraftmaschine bereitgestellte Moment auf beide Achsen des Kraftfahrzeugs verteilt und die bei abgeschaltetem Allradantrieb geöffnet ist und das von der Brennkraftmaschine bereitgestellte Moment nur der permanent angetriebenen Primär- oder Vorderachse zuführt. Die zuschaltbare Sekundär- oder Hinterachse umfasst eine zweite Kupplung in Form einer Trennkupplung, die zusammen mit der Allradkupplung geschlossen und geöffnet wird. Zwischen den beiden Kupplungen befinden sich mehrere rotierende Bauteile, darunter eine von der Allradkupplung zur Sekundär- oder Hinterachse führende Verbindungswelle, die drehfest mit der Verbindungswelle verbundenen abtriebsseitigen Bauteile der Allradkupplung, sowie das Achsgetriebe der Sekundär- oder Hinterachse nebst Ausgleichsdifferenzial bzw. deren rotierende Bauteile. In geschlossenem Zustand der beiden Kupplungen werden sämtliche dieser rotierenden Bauteile von der Brennkraftmaschine angetrieben. Wenn die Kupplungen während der Fahrt geöffnet werden, führt dies dazu, dass die genannten Bauteile vom Antriebsstrang abgekoppelt werden und sich frei drehen. Da die Bauteile durch ein anliegendes Schleppmoment abgebremst werden, nimmt ihre Drehzahl allmählich auf null ab. Das Schleppmoment umfasst bremsende Momentenanteile, die unter anderem aus dem Ölpantschen eines Tellerrades des Achsgetriebes der Sekundär- oder Hinterachse sowie der Lagerreibung der Verbindungswelle in deren Drehlagern resultieren, sowie beschleunigende Momentenanteile, die unter anderem aus einer Drehzahldifferenz zwischen den antriebsseitigen und den abtriebseitigen Bauteilen der ölgefüllten Allradkupplung sowie aus der Reibung im Ausgleichsdifferenzial resultieren.The drive train of the motor vehicle according to DE 10 2012 020 908 A1 includes a so-called four-wheel clutch in the form of a clutch that is closed when switched four-wheel drive and distributed by the engine torque distributed to both axles of the motor vehicle and is open when switched off all-wheel drive and provided by the engine torque only the permanently driven primary or front axle supplies. The switchable secondary or rear axle comprises a second clutch in the form of a separating clutch, which is closed and opened together with the four-wheel clutch. Between the two clutches are several rotating components, including one of the four-wheel drive to the secondary or rear axle connecting shaft, the rotatably connected to the connecting shaft output side components of the all-wheel drive, and the axle of the secondary or rear axle together with differential compensation and their rotating components. In the closed state of the two clutches all of these rotating components are driven by the internal combustion engine. When the clutches during open the drive, this leads to the fact that said components are disconnected from the drive train and rotate freely. Since the components are decelerated by an applied drag torque, their speed gradually decreases to zero. The drag torque includes braking torque components, which result inter alia from the Ölpantschen a ring gear of the axle of the secondary or rear axle and the bearing friction of the connecting shaft in the pivot bearings, and accelerating torque components, among other things, a speed difference between the drive-side and the output-side components of the oil-filled Four-wheel clutch as well as from the friction in the differential compensation result.

Bei der nächsten Zuschaltung des Allradantriebs müssen die zuvor vom Antriebsstrang abgekoppelten Bauteile wieder beschleunigt bzw. auf Drehzahl gebracht werden, wobei die notwendige Beschleunigung bzw. das zur Beschleunigung notwendige Drehmoment der Brennkraftmaschine von der momentanen Drehzahl der abgekoppelten Bauteile und dem anliegenden Schleppmoment abhängt.At the next connection of the four-wheel drive, the previously decoupled from the drive train components must be accelerated again or brought to speed, the necessary acceleration or necessary for acceleration torque of the internal combustion engine depends on the instantaneous speed of the decoupled components and the adjacent drag torque.

Aus diesem Grund ist die Kenntnis des bei abgeschaltetem Allradantrieb anliegenden Schleppmoments wichtig, um bei der Zuschaltung der abgeschalteten Sekundär- oder Hinterachse die Drehzahl der abgekoppelten und frei rotierenden oder im Stillstand befindlichen Bauteile einerseits so schnell wie möglich an die Drehzahl der übrigen Bauteile des Antriebsstrangs anpassen zu können, ohne dass es andererseits zu einem spürbaren Ruck im Antriebsstrang und damit im Kraftfahrzeug kommt. Um eine komfortoptimale Zuschaltung zu erzielen, muss mit anderen Worten die Beschleunigung umso langsamer erfolgen, je größer das Schleppmoment oder die Schleppverluste sind, die einer Beschleunigung entgegenwirken.For this reason, the knowledge of the applied when switched off four-wheel drive drag torque is important to adjust the speed of the decoupled and freely rotating or stopped components on the one hand as fast as possible to the speed of the other components of the powertrain when switching the secondary or rear axle on the other hand, without it on the other hand, a noticeable jerk in the drive train and thus in the motor vehicle. In other words, in order to achieve a comfort-optimal connection, the acceleration must be the slower, the greater the drag torque or the drag losses, which counteract acceleration.

Das anliegende Schleppmoment ist von mehreren Parametern abhängig, nämlich der Drehzahl der Bauteile, dem Ölstand in den Kupplungen und im Achsgetriebe, der Temperatur des Schmieröls im Achsgetriebe sowie vom Einlauf bzw. Verschleiß der Lager und Dichtungen. Der Ölstand in den Kupplungen und im Achsgetriebe ist beispielsweise bekannt, während die Drehzahl und die Schmieröltemperatur gemessen werden können. Beim Einlaufzustand bzw. beim Verschleiß der Lager und Dichtungen handelt es sich um Unbekannte, die geschätzt werden müssen. Das anliegende Schleppmoment wird augenblicklich für verschiedene Fahrzustände in Abhängigkeit von den oben genannten Parametern auf einem Prüfstand ermittelt und im Steuergerät des Kraftfahrzeugs fest hinterlegt.The applied drag torque depends on several parameters, namely the speed of the components, the oil level in the clutches and the axle drive, the temperature of the lubricating oil in the axle drive and the inlet or wear of the bearings and seals. The oil level in the clutches and in the axle drive is known, for example, while the speed and the lubricating oil temperature can be measured. The running-in condition or wear of the bearings and seals are unknowns that need to be estimated. The applied drag torque is determined immediately for different driving conditions depending on the parameters mentioned above on a test bench and stored permanently in the control unit of the motor vehicle.

Zur Kosteneinsparung soll jedoch zunehmend auf Sensoren verzichtet werden, darunter auch auf einen Sensor zur Messung der Schmieröltemperatur im Achsgetriebe der abschaltbaren Sekundär- oder Hinterachse. Wenn jedoch zu den Unbekannten Einlauf bzw. Verschleiß der Lager und Dichtungen noch weitere Unbekannte hinzu kommen, wie z.B. die Schmieröltemperatur oder der Ölstand im Achsgetriebe, ist eine sinnvolle Aussage über das anliegende Schleppmoment kaum mehr möglich. US 2007/193793 A offenbart ein Verfahren gemäß dem Oberbegriff des Anspruchs 1. Ausgehend hiervon liegt der Erfindung die Aufgabe zugrunde, ein Verfahren der eingangs genannten Art dahingehend zu verbessern, dass sich Defekte und insbesondere Lagerdefekte der rotierenden Bauteile frühzeitig feststellen lassen und dass sich das anliegende Schleppmoment auch ohne die Kenntnis der Schmieröltemperatur im Achsgetriebe ermitteln lässt.To save costs, however, sensors are increasingly being dispensed with, including a sensor for measuring the lubricating oil temperature in the axle drive of the deactivatable secondary or rear axle. However, if the unknown inlet or wear of the bearings and seals are added to other unknowns, such as the lubricating oil temperature or the oil level in the axle, a meaningful statement about the applied drag torque is hardly possible. US 2007/193793 A discloses a method according to the preamble of claim 1. Based on this, the present invention seeks to improve a method of the type mentioned in that defects and especially bearing defects of the rotating components can be detected early and that the applied drag torque without the Knowledge of the lubricating oil temperature in the axle drive can be determined.

Diese Aufgabe wird durch ein Verfahren gemäß Anspruch 1 gelöst.This object is achieved by a method according to claim 1.

Bei abgeschaltetem Allradantrieb wird die Drehzahl von mindestens einem der abgekoppelten Bauteile im zeitlichen Abstand gemessen und daraus wird eine Winkelbeschleunigung α der abgekoppelten Bauteile, das heißt die Ableitung

Figure imgb0001
der Winkelgeschwindigkeit ω, der abgekoppelten Bauteile ermittelt. Die Drehzahl von einem der abgekoppelten Bauteile kann zweckmäßig mit Hilfe eines Drehzahlsensors gemessen werden, der zum Beispiel die Drehzahl der Verbindungswelle oder eines Differenzialkorbs des Ausgleichsdifferenzials ermittelt. Sofern sich die Drehzahl von anderen abgekoppelten Bauteilen von der gemessenen Drehzahl unterscheidet, kann sie über das bekannte Übersetzungsverhältnis leicht berechnet werden.
In der Regel wird es sich bei der ermittelten Winkelbeschleunigung α um eine negative Winkelbeschleunigung handeln, das heißt um eine Abbremsung. Wenn der Betrag der negativen Winkelbeschleunigung oberhalb von einem zuvor durch Prüfstandversuche ermittelten vorgegebenen Schwellenwert oder Bereich liegt, wird eines der abgekoppelten Bauteile zu stark abgebremst, wodurch frühzeitig auf einen Lagerdefekt in einem Lager von einem der abgekoppelten Bauteile geschlossen und dieses entsprechend ausgetauscht werden kann, bevor es zu einem Lagerfressen kommt. Auch eine Unterschreitung eines vorgegebenen Schwellenwerts oder Bereichs kann auf einen Defekt hindeuten.When switched off all-wheel drive, the speed of at least one of the decoupled components is measured at a time interval and from this is an angular acceleration α of the decoupled components, that is the derivative
Figure imgb0001
the angular velocity ω, the decoupled components determined. The rotational speed of one of the decoupled components can be measured expediently with the aid of a rotational speed sensor which determines, for example, the rotational speed of the connecting shaft or of a differential cage of the compensating differential. If the speed of other decoupled components differs from the measured speed, it can be easily calculated over the known gear ratio.
As a rule, the determined angular acceleration α will be a negative angular acceleration, ie a deceleration. If the amount of negative angular acceleration is above a predetermined threshold or range previously determined by bench tests, one of the decoupled components is braked too strongly, allowing early detection of a bearing failure in a bearing of one of the decoupled components and replacement thereof it comes to a camp eater. Falling below a given threshold or range may also indicate a defect.

Darüber hinaus wird aus der ermittelten Winkelbeschleunigung α das anliegende Schleppmoment berechnet, da dieses vom Produkt aus der Winkelbeschleunigung α und dem Trägheitsmoment oder Massenträgheitsmoment J der abgekoppelten Bauteile abhängt. Das Trägheitsmoment oder Massenträgheitsmoment J der abgekoppelten Bauteile verändert sich über die Lebenszeit der Bauteile nicht und kann daher im Steuergerät als Konstante hinterlegt werden.In addition, the applied drag torque is calculated from the determined angular acceleration α, since this is the product of the angular acceleration α and the moment of inertia or moment of inertia J of the decoupled components depends. The moment of inertia or mass moment of inertia J of the uncoupled components does not change over the lifetime of the components and can therefore be stored in the control unit as a constant.

Da sich die abgekoppelten Bauteile während ihrer Abbremsung durch ein Drehzahlband bewegen, erfolgt die Drehzahlmessung vorteilhaft mehrere Male an unterschiedlichen Drehzahlstützstellen bzw. in unterschiedlichen Drehzahlbereichen, so dass die Winkelbeschleunigung und das Schleppmoment für mehrere unterschiedliche, im zeitlichen Abstand gemessene Drehzahlen ermittelt werden können. Dadurch lassen sich die Plausibilität oder Genauigkeit der ermittelten Winkelbeschleunigung und des berechneten Schleppmoments verbessern.Since the decoupled components move during their deceleration through a speed band, the speed measurement is advantageously carried out several times at different speed reference points or in different speed ranges, so that the angular acceleration and the drag torque for several different, measured at a time interval speeds can be determined. As a result, the plausibility or accuracy of the determined angular acceleration and the calculated drag torque can be improved.

Bevorzugt wird das Schleppmoment nach der Beziehung MS = J x α + MBkonst - MAkonst berechnet, wobei J das Trägheitsmoment oder Massenträgheitsmoment und α die Winkelbeschleunigung der rotierenden Bauteile sind, und wobei MBkonst ein konstantes beschleunigendes Moment und MAkonst ein konstantes abbremsenden Moment ist. Wenn MAkonst und MBkonst bekannt sind, ergibt sich ein linearer Zusammenhang zwischen der ermittelten Winkelbeschleunigung und dem daraus berechneten Schleppmoment. Sofern MAkonst und MBkonst konstant sind, können sie auf dem Prüfstand ermittelt und im Steuergerät abgelegt werden. Sofern die beiden Momente nicht ganz konstant sind, können die variablen Anteile adaptiert werden.Preferably, the drag torque is calculated according to the relationship MS = J x α + MBkonst - MAkonst, where J is the moment of inertia or moment of inertia and α is the angular acceleration of the rotating components, and where MBkonst is a constant accelerating moment and MAkonst is a constant decelerating torque. If MAkonst and MBkonst are known, there is a linear relationship between the determined angular acceleration and the drag torque calculated from it. If MAkonst and MBkonst are constant, they can be determined on the test bench and stored in the control unit. If the two moments are not completely constant, the variable proportions can be adapted.

Gemäß einer weiteren bevorzugten Ausgestaltung der Erfindung erfolgt beim nachfolgenden Zuschalten des Allradantriebs die Vorsteuerung des Drehmoments und damit die Beschleunigung der abgekoppelten Bauteile auf der Grundlage des berechneten Schleppmoments, um für einen komfortoptimalen ruckfreien Übergang vom Zweiradantrieb in den Allradantrieb zu sorgen. Mit anderen Worten wird beim aktiven Beschleunigen der abgekoppelten Bauteile das zum Beschleunigen aufgebrachte Drehmoment in Abhängigkeit vom berechneten Schleppmoment vorgesteuert. Da das Schleppmoment der Sekundärachse wegen der Temperaturabhängigkeit der Viskosität des Schmieröls im Achsgetriebe ebenfalls temperaturabhängig ist, wird dort, wo weder ein Temperatursensor verbaut werden soll noch im Steuergerät ein Modell der Veränderung des Schleppmoments in Abhängigkeit von der Temperatur hinterlegt ist, das berechnete Schleppmoment jeweils nur dann zur Vorsteuerung des Drehmoments beim nachfolgenden Zuschalten des Allradantriebs genutzt, wenn die Messung der Drehzahlen bzw. die Berechnung des Schleppmoments einerseits und die Zuschaltung des Allradantriebs andererseits zeitlich eng beieinander liegen. In diesem Fall kann davon ausgegangen werden, dass sich die Temperatur zwischen der Messung und der Vorsteuerung nicht oder nur unwesentlich verändert hat.According to a further preferred embodiment of the invention takes place in the subsequent connection of the four-wheel drive, the precontrol of the torque and thus the acceleration of the decoupled components on the basis of the calculated drag torque to provide a comfort optimal jerk-free transition from two-wheel drive in the four-wheel drive. In other words, during active acceleration of the decoupled components, the torque applied for acceleration is precontrolled as a function of the calculated drag torque. Since the drag torque of the secondary axis is also temperature-dependent because of the temperature dependence of the viscosity of the lubricating oil in the axle drive, where neither a temperature sensor is to be installed nor in the control unit a model of the change in the drag torque depending on the temperature is stored, the calculated drag torque only then used for feedforward control of the torque in the subsequent connection of the four-wheel drive, when the measurement of the rotational speeds or the calculation of the drag torque on the one hand and the connection of the four-wheel drive On the other hand, they are close together in terms of time. In this case, it can be assumed that the temperature between the measurement and the precontrol has not changed or only insignificantly changed.

Wenn der Einfluss der Schmieröltemperatur auf das Schleppmoment bekannt und entsprechend ein Modell der Veränderung des Schleppmoments in Abhängigkeit von der Schmieröltemperatur im Steuergerät hinterlegt ist, kann gemäß einer weiteren vorteilhaften Ausgestaltung der Erfindung ein verschleißbedingter oder verschleißkompensierter Anteil des Schleppmoments berechnet werden, indem das aus dem Trägheitsmoment oder Massenträgheitsmoment und der Winkelbeschleunigung berechnete Schleppmoment mit einem im Steuergerät hinterlegten Referenz-Schleppmoment verglichen wird, das bei derselben Temperatur auf dem Prüfstand ermittelt wurde. Dort, wo kein Temperatursensor verbaut werden soll, kann zu diesem Zweck das Schleppmoment zu Beginn eines Fahrzyklus ermittelt werden, da die Schmieröltemperatur und die Temperatur der rotierenden Komponenten zu diesem Zeitpunkt der Umgebungstemperatur entsprechen, eine ausreichend lange Standzeit vorausgesetzt. Die Umgebungstemperatur wird normalerweise in Kraftfahrzeugen gemessen und ist daher bekannt, so dass sie vom Steuergerät genutzt werden kann.If the influence of the lubricating oil temperature on the drag torque is known and according to a model of the change in the drag torque depending on the lubricating oil temperature stored in the control unit, according to a further advantageous embodiment of the invention, a wear-related or wear-compensated portion of the drag torque can be calculated by the from the moment of inertia or mass moment of inertia and the angular acceleration calculated drag torque is compared with a stored in the control unit reference drag torque, which was determined at the same temperature on the test bench. Where no temperature sensor is to be installed, the drag torque at the beginning of a drive cycle can be determined for this purpose, since the lubricating oil temperature and the temperature of the rotating components at this time correspond to the ambient temperature, assuming a sufficiently long service life. The ambient temperature is normally measured in motor vehicles and is therefore known so that it can be used by the control unit.

Wenn gemäß einer weiteren vorteilhaften Ausgestaltung der Erfindung im Steuergerät ein Modell der Veränderung des Schleppmoments in Abhängigkeit von der Temperatur hinterlegt ist, kann auf der Grundlage des berechneten verschleißbedingten oder verschleißkompensierten Schleppmomentanteils die momentane Schmieröltemperatur im Achsgetriebe der Sekundärachse berechnet oder zumindest geschätzt werden.If, according to a further advantageous embodiment of the invention, a model of the change in the drag torque as a function of the temperature is stored, the instantaneous lubricating oil temperature in the axle drive of the secondary axle can be calculated or at least estimated on the basis of the calculated wear-related or wear-compensated drag torque component.

Im Folgenden wird die Erfindung anhand eines in der Zeichnung dargestellten Ausführungsbeispiels näher erläutert.

  • Fig. 1 zeigt eine schematische Darstellung eines Antriebsstrangs eines Kraftfahrzeugs mit einem abschaltbaren Allradantrieb, bei dem die Hinterachse zu- und abschaltbar ist;
  • Fig. 2 zeigt den zeitlichen Verlauf der Drehzahl einer Verbindungswelle des Antriebsstrangs nach dem Öffnen einer Allradkupplung und einer Trennkupplung im Antriebsstrang;
  • Fig. 3 zeigt eine schematische Darstellung eines Antriebsstrangs eines anderen Kraftfahrzeugs mit einem abschaltbaren Allradantrieb, bei dem die Vorderachse zu- und abschaltbar ist.
In the following the invention will be explained in more detail with reference to an embodiment shown in the drawing.
  • Fig. 1 shows a schematic representation of a drive train of a motor vehicle with a disengageable four-wheel drive, in which the rear axle is switched on and off;
  • Fig. 2 shows the time course of the rotational speed of a connecting shaft of the drive train after opening an all-wheel drive clutch and a clutch in the drive train;
  • Fig. 3 shows a schematic representation of a powertrain of another motor vehicle with a disengageable four-wheel drive, in which the front axle is switched on and off.

Das in Fig. 1 schematisch dargestellte Kraftfahrzeug 1 besitzt einen Antriebsstrang 2 mit einer Brennkraftmaschine 3 und einem der Brennkraftmaschine 3 nachgeschalteten Schaltgetriebe 4. Ein Ausgang des Getriebes 4 ist mit einer permanent angetriebenen Primärachse 5 des Kraftfahrzeugs 1 verbunden, bei der es sich um die Vorderachse handelt. Ein weiterer Ausgang des Getriebes 4 ist über eine Allradkupplung 6 mit einer zuschaltbaren Sekundärachse 7 verbindbar, bei der es sich um die Hinterachse handelt. Bei geöffneter Allradkupplung 6 liegt das Moment der Brennkraftmaschine 3 vollständig an der Primärachse 5 an. Bei geschlossener Allradkupplung 6 wird das Moment der Brennkraftmaschine 3 sowohl auf die Primärachse 5 und auf die Sekundärachse 7 verteilt.This in Fig. 1 An illustrated output of the transmission 4 is connected to a permanently driven primary axle 5 of the motor vehicle 1, which is the front axle. Another output of the transmission 4 is connected via an all-wheel drive 6 with a switchable secondary axis 7, which is the rear axle. When the all-wheel drive clutch 6 is open, the torque of the internal combustion engine 3 is completely applied to the primary axle 5. When the four-wheel clutch 6 is closed, the torque of the internal combustion engine 3 is distributed both to the primary axis 5 and to the secondary axis 7.

Die Sekundärachse 7 umfasst ein Achsgetriebe 8 mit einem Ausgleichsdifferenzial 9, das durch eine Verbindungswelle 10 in Form einer Kardanwelle mit der Abtriebsseite der Allradkupplung 6 verbunden ist, zwei Seitengelenkwellen 11, die mit den Rädern 12 der Sekundärachse 7 und dem Ausgleichsdifferenzial 9 verbunden sind, sowie eine Trennkupplung 13. Die Allradkupplung 6 und die Trennkupplung 13 werden von einem Steuergerät 14 des Kraftfahrzeugs 1 geöffnet und geschlossen, um die Verbindungswelle 10 und das Achsgetriebe 8 nebst Ausgleichsdifferenzial 9 zum Abschalten des Allradantriebs vom Getriebe 4 und von den Seitengelenkwellen 11 zu trennen bzw. beim Zuschalten des Allradantriebs mit dem Getriebe 4 und den Seitengelenkwellen 11 zu verbinden.The secondary axle 7 comprises an axle drive 8 with a differential compensation 9, which is connected by a connecting shaft 10 in the form of a propeller shaft to the output side of the four-wheel drive 6, two side drive shafts 11 which are connected to the wheels 12 of the secondary axle 7 and the differential compensation 9, as well a four-wheel clutch 13. The four-wheel clutch 6 and the clutch 13 are opened and closed by a control unit 14 of the motor vehicle 1 to separate the connecting shaft 10 and the axle 8 together with differential compensation 9 for switching off the four-wheel drive from the gear 4 and the side hinge shafts 11 and when connecting the four-wheel drive to the transmission 4 and the side hinge shafts 11 to connect.

Bei der Allradkupplung 6 handelt es sich um eine Reib- oder Lamellenkupplung mit zwei in einem Ölbad laufenden Lamellenpaketen 15, 16, von denen das Lamellenpaket 15 drehfest mit einer Ausgangswelle 17 des Getriebes 4 und das Lamellenpaket 16 drehfest mit der Verbindungswelle 10 verbunden ist. Die Trennkupplung 13 ist als Klauenkupplung ausgebildet und umfasst ein Schaltelement 18, das durch eine Steuerleitung 19 mit dem Steuergerät 14 verbunden ist. Am Achsgetriebe 8 ist ein Drehzahlsensor 20 angebracht, der die Drehzahl eines Differenzialkorbs 22 des Ausgleichsdifferenzials 9 misst und über eine Signalleitung 21 an das Steuergerät 14 übermittelt.When the four-wheel drive 6 is a friction or multi-plate clutch with two running in an oil bath disk sets 15, 16, of which the disk set 15 rotatably connected to an output shaft 17 of the transmission 4 and the disk set 16 rotatably connected to the connecting shaft 10. The separating clutch 13 is designed as a dog clutch and comprises a switching element 18, which is connected by a control line 19 to the control unit 14. A speed sensor 20, which measures the speed of a differential cage 22 of the differential compensation 9 and transmits it to the control unit 14 via a signal line 21, is mounted on the axle drive 8.

Das Zuschalten und Abschalten des Allradantriebs wird vom Steuergerät 14 in Abhängigkeit von der jeweiligen Fahrsituation vorgenommen. Das Abschalten des Allradantriebs dient dem Zweck, durch Minimierung des Schleppmoments des Achsgetriebes 8 der Sekundärachse 7 Verbrauchseinsparungen zu erzielen, wenn der Allradantrieb nicht benötigt wird.The switching on and off of the four-wheel drive is carried out by the control unit 14 as a function of the respective driving situation. The shutdown of the four-wheel drive serves the purpose of achieving consumption savings by minimizing the drag torque of the transaxle 8 of the secondary axle 7 when the four-wheel drive is not needed.

Beim Abschalten des Allradantriebs werden die geschlossene Allradkupplung 6 und die geschlossene Trennkupplung 13 im Zeitpunkt t1 geöffnet, wie in Fig. 2 durch die beiden Kurven A und B angezeigt. Sobald die Allradkupplung 6 vollständig gelüftet ist und die Trennkupplung 13 vollständig ausgerückt ist, wie in Fig. 2 im Zeitpunkt t2 dargestellt, sind die Verbindungswelle 10 mit den Lamellenpaketen 16 der Allradkupplung 6 sowie das Achsgetriebe 8 mit dem Ausgleichdifferenzial 9 bzw. deren rotierende Bauteile einerseits vom Getriebe 4 und andererseits von den Seitengelenkwellen 11 der Sekundärachse 7 abgekoppelt und drehen sich frei. Infolge des Schleppmoments, das auf die abgekoppelten Bauteile 8, 9, 10, 16 einwirkt, nimmt anschließend die Drehzahl n der Verbindungswelle 10 allmählich auf null ab, wie in Fig. 2 durch die Kurve C angezeigt.When switching off the four-wheel drive, the closed four-wheel drive 6 and the closed clutch 13 are opened at time t1, as in Fig. 2 indicated by the two curves A and B. Once the four-wheel clutch 6 is fully released and the clutch 13 is fully disengaged, as in Fig. 2 Shown at time t2, the connecting shaft 10 are decoupled with the disk sets 16 of the four-wheel drive 6 and the axle 8 with the differential compensation 9 and their rotating components on the one hand by the transmission 4 and the other side of the side drive shafts 11 of the secondary axis 7 and rotate freely. As a result of the drag torque acting on the uncoupled components 8, 9, 10, 16, the rotational speed n of the connecting shaft 10 then gradually decreases to zero, as in FIG Fig. 2 indicated by the curve C.

Mit der Drehzahl n der Verbindungswelle 10 nimmt auch die Drehzahl n des Differentialkorbs 22 des Ausgleichsdifferenzials 9 ab, die vom Drehzahlsensor 20 in kurzen Zeitabständen Δt gemessen und durch die Signalleitung 21 an das Steuergerät 14 übermittelt wird.With the speed n of the connecting shaft 10, the speed n of the differential carrier 22 of the differential compensation 9 decreases, which is measured by the speed sensor 20 in short time intervals .DELTA.t and transmitted through the signal line 21 to the control unit 14.

Aus den übermittelten Drehzahlen n und den Zeitabständen Δt wird im Steuergerät 14 die negative Winkelbeschleunigung α oder Abbremsung des Differentialkorbs 22 und damit auch der Verbindungswelle 10 sowie der übrigen abgekoppelten Bauteile, wie z. B. der Lamellenpakete 16 und eines Triebsatzes 23 im Achsgetriebe 8, nach folgender Beziehung berechnet: α = dt = ω . ,

Figure imgb0002
wobei ω die Winkelgeschwindigkeit der abgekoppelten Bauteile 10, 16, 22, 23 und
Figure imgb0003
die erste Ableitung der Winkelgeschwindigkeit ω über der Zeit t oder der Gradient der Winkelgeschwindigkeit ω ist.From the transmitted speeds n and the time intervals At in the control unit 14, the negative angular acceleration α or deceleration of the differential carrier 22 and thus also the connecting shaft 10 and the other decoupled components, such. B. the disk sets 16 and a drive train 23 in the axle 8, calculated according to the following relationship: α = dw dt = ω , .
Figure imgb0002
where ω the angular velocity of the decoupled components 10, 16, 22, 23 and
Figure imgb0003
is the first derivative of angular velocity ω over time t or the gradient of angular velocity ω.

Wenn die berechnete Winkelbeschleunigung α nach einer kurzen Entprellzeit, die von der Geschwindigkeit und von der Längsbeschleunigung des Kraftfahrzeugs 1 im Zeitpunkt t1 abhängt, einen in Prüfstandversuchen ermittelten vorbestimmten Wert übersteigt, der anzeigt, dass die abgekoppelten Bauteile 10, 16, 22, 23 schneller als erwartet abgebremst werden, kann auf einen Defekt geschlossen werden, bei dem es sich mit hoher Wahrscheinlichkeit um einen Lagerdefekt in einem der Drehlager der Verbindungswelle 10 handelt.If the calculated angular acceleration α exceeds a predetermined test value determined after a short debounce time, which depends on the speed and longitudinal acceleration of the motor vehicle 1 at time t1, indicating that the decoupled components 10, 16, 22, 23 are faster than expected can be slowed down, it can be concluded that there is a defect, which is likely to be a bearing defect in one of the pivot bearing of the connecting shaft 10.

Außerdem steht die berechnete Winkelbeschleunigung α nach der Entprellzeit in folgendem Zusammenhang mit einem Schleppmoment MS der Sekundärachse: α = MS + MAkonst + MBkonst J

Figure imgb0004
wobei MAkonst ein konstanter abbremsender Momentenanteil, MBkonst ein konstanter beschleunigender Momentenanteil und J das Trägheitsmoment oder Massenträgheitsmoment der abgekoppelten Bauteile 10, 16, 22, 23 ist.In addition, the calculated angular acceleration α after the debounce time is related to a drag torque MS of the secondary axis as follows: α = MS + MAkonst + MBkonst J
Figure imgb0004
where MAkonst is a constant decelerating torque component, MBkonst is a constant accelerating torque component and J is the moment of inertia or mass moment of inertia of the decoupled components 10, 16, 22, 23.

MAkonst und MBkonst werden in Prüfstandversuchen ermittelt und im Steuergerät 14 abgelegt. Das Trägheitsmoment oder Massenträgheitsmoment J der abgekoppelten Bauteile 10, 16, 22, 23 ist bekannt und wird ebenfalls im Steuergerät 14 abgelegt.MAkonst and MBkonst are determined in test bench tests and stored in the control unit 14. The moment of inertia or mass moment of inertia J of the decoupled components 10, 16, 22, 23 is known and is likewise stored in the control unit 14.

Damit kann im Steuergerät 14 das Schleppmoment MS der Sekundärachse 7 nach folgender Beziehung ermittelt werden: MS = J × α + MBkonst MAkonst

Figure imgb0005
Thus, in the control unit 14, the drag torque MS of the secondary axis 7 can be determined according to the following relationship: MS = J × α + MBkonst - MAkonst
Figure imgb0005

Das vom Steuergerät 14 ermittelte Schleppmoment MS kann zur Optimierung der Vorsteuerung der von der Brennkraftmaschine 3 aufgebrachten Drehmomente bei der nächsten Zuschaltung des Allradantriebs genutzt werden. Wenn weder ein Temperatursensor im Achsgetriebe 8 verbaut noch im Steuergerät 14 ein Modell der Abhängigkeit des Schleppmoments MS von der Öltemperatur im Achsgetriebe 8 hinterlegt ist, darf allerdings wegen dieser Abhängigkeit die Zeit zwischen der Messung der in die Berechnung des Schleppmoments MS einfließenden Drehzahlen n und der Zuschaltung des Allradantriebs nicht zu lang sein, um zwischenzeitliche Temperaturänderungen auszuschließen.The drag torque MS determined by the control unit 14 can be used to optimize the precontrol of the torques applied by the internal combustion engine 3 at the next activation of the four-wheel drive. If neither a temperature sensor installed in the axle 8 still in the control unit 14, a model of the dependence of the drag torque MS is deposited by the oil temperature in the axle 8, but because of this dependence, the time between the measurement of the inflowing into the calculation of the drag torque MS speeds n and the Shifting the four-wheel drive should not be too long to exclude intermediate temperature changes.

Wenn der Einfluss der Öltemperatur im Achsgetriebe 8 auf das Schleppmoment MS durch vorangehende Prüfstandversuche bekannt und die Temperaturabhängigkeit des Schleppmoments MS im Steuergerät 14 hinterlegt ist, können darüber hinaus Aussagen über einen durch Verschleiß bedingten oder verschleißkompensierten Anteil des Schleppmoments MS getroffen werden. Zu diesem Zweck erfolgen die Messung der Drehzahlen n sowie die Ermittlung der Winkelbeschleunigung α und die Berechnung des Schleppmoments MS zu Beginn eines Fahrzyklus, solange die Temperatur der abgekoppelten Bauteile 10, 16, 22, 23 und des Schmieröls im Achsgetriebe 8 noch der Umgebungstemperatur entsprechen und somit die Öltemperatur bekannt ist. Das berechnete Schleppmoment MS wird dann mit einem durch Prüfstandversuche für dieselbe Temperatur ermittelten und im Steuergerät 14 hinterlegten Referenz-Schleppmoment MSRef verglichen. Wenn das berechnete Schleppmoment MS das hinterlegte Schleppmoment MSRef um einen gewissen Betrag übersteigt, entspricht dieser Betrag dem verschleißbedingten Anteil des Schleppmoments MS.If the influence of the oil temperature in the axle transmission 8 on the drag torque MS known by previous test bench tests and the temperature dependence of the drag torque MS is stored in the control unit 14, statements can be made about a wear-related or wear-compensated portion of the drag torque MS beyond. For this purpose, the measurement of the Speed n and the determination of the angular acceleration α and the calculation of the drag torque MS at the beginning of a drive cycle, as long as the temperature of the decoupled components 10, 16, 22, 23 and the lubricating oil in the axle 8 still correspond to the ambient temperature and thus the oil temperature is known. The calculated drag torque MS is then compared with a reference drag torque MSRef determined by test bench tests for the same temperature and stored in the control unit 14. If the calculated drag torque MS exceeds the stored drag torque MSRef by a certain amount, this amount corresponds to the wear-related portion of the drag torque MS.

Sofern sich der verschleißbedingte Anteil des Schleppmoments nicht mit der Temperatur verändert und die Abhängigkeit des nicht-verschleißbedingten Anteils des Schleppmoments MS von der Öltemperatur im Achsgetriebe 8 im Steuergerät 14 hinterlegt ist, kann der verschleißbedingte Anteil des Schleppmoments MS wiederum genutzt werden, um Aussagen über die momentane Öltemperatur im Achsgetriebe 8 zu machen.If the wear-related portion of the drag torque does not change with temperature and the dependence of the non-wear-related portion of the drag torque MS is deposited by the oil temperature in the axle 8 in the controller 14, the wear-related portion of the drag torque MS can be used again to provide information about the to make instantaneous oil temperature in the axle 8.

Das in Fig. 3 schematisch dargestellte Kraftfahrzeug 1 unterscheidet sich von dem Kraftfahrzeug in Fig. 1 dadurch, dass es sich bei der permanent angetriebenen Primärachse 5 um die Hinterachse und bei der über die Allradkupplung 6 zuschaltbaren Sekundärachse um die Vorderachse 7 des Kraftfahrzeugs 1 handelt. Das Ausgleichsdifferenzial 9 ist dort als Achsdifferenzial ausgebildet und vom Achsgetriebe 8 getrennt. Entsprechende Teile wie in Fig. 1 sind mit denselben Bezugszeichen bezeichnet. Wie zuvor beschrieben wird auch hier die Drehzahl von einem der abgekoppelten Bauteile 10, 16, 22, 23 im zeitlichen Abstand gemessen und daraus eine Winkelbeschleunigung α der abgekoppelten Bauteile 10, 16, 22, 23 ermittelt. Auch die übrigen zuvor beschriebenen Verfahrensschritte sind dieselben.This in Fig. 3 schematically illustrated motor vehicle 1 differs from the motor vehicle in Fig. 1 in that the permanently driven primary axle 5 is the rear axle and the secondary axle which can be engaged via the four-wheel drive coupling 6 is the front axle 7 of the motor vehicle 1. The differential compensation 9 is formed there as an axle differential and separated from the axle 8. Corresponding parts as in Fig. 1 are denoted by the same reference numerals. As described above, the rotational speed of one of the decoupled components 10, 16, 22, 23 is also measured at a time interval and an angular acceleration α of the decoupled components 10, 16, 22, 23 is determined therefrom. The other method steps described above are the same.

Claims (8)

  1. Method for operating a vehicle (1) comprising an all-wheel drive that can be enabled and disabled and a drive train (2) which comprises two clutches (6, 13) actuated by a control unit (14) for enabling and disabling the all-wheel drive and components (10, 16, 22, 23) rotating between the two clutches (6,13), the components being driven when the all-wheel drive is enabled and are uncoupled from the remaining drive train (2) when the all-wheel drive is disabled, wherein when the all-wheel drive is disabled, the rotational speed (n) of at least one of the uncoupled components (10, 16, 22, 23) is measured in a time interval, characterised in that from the measured rotational speed an angular acceleration (a) of the uncoupled components (10, 16, 22, 23) is determined, wherein a drag torque (DT) is calculated on the basis of the determined angular acceleration (a) and a moment of inertia or mass moment of inertia (J) of the uncoupled components (10, 16, 22, 23).
  2. Method according to claim 1, characterised in that a defect is indicated when the determined angular acceleration (a) fails to meet or exceeds a predetermined critical threshold value.
  3. Method according to claim 1, characterised in that the drag torque (DT) is calculated for a plurality of different rotational speeds (n) measured in the time interval.
  4. Method according to any of the preceding claims, characterised in that the drag torque (DT) is calculated according to the relationship DT = J × α + DecTconst AccTconst
    Figure imgb0007
    where J is the moment of inertia or mass moment of inertia and α is the angular acceleration of the uncoupled components (10, 16, 22, 23), where DecTconst is a constant decelerating torque, and AccTconst is a constant accelerating torque.
  5. Method according to any of the preceding claims, characterised in that the torque for acceleration is pilot-controlled as a function of the calculated drag torque (DT) upon the next active acceleration of the uncoupled components (10, 16, 22, 23).
  6. Method according to claim 5, characterised in that the pilot control of the torque for accelerating the uncoupled components (10, 16, 22, 23) is only carried out as a function of the calculated drag torque (DT) when the time period between the measurements of the rotational speed (n) of at least one of the uncoupled components (10, 16, 22, 23) and the engagement of the all-wheel drive is less than a predetermined time period.
  7. Method according to any of the preceding claims, characterised in that the calculated drag torque (DT) is compared with a stored reference drag torque (DTref) and from the latter a conclusion is drawn about a wear-induced or wear-compensated component of the drag torque (DT).
  8. Method according to claim 7, characterised in that a current oil temperature is determined in an axle drive (8) from the wear-compensated component of the drag torque (DT).
EP15793761.6A 2014-11-06 2015-11-06 Method for operating a motor vehicle comprising an all-wheel drive that can be enabled and disabled by determining an angular acceleration of components which are uncoupled when the all-wheel drive is disabled Active EP3215764B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014016376.8A DE102014016376A1 (en) 2014-11-06 2014-11-06 Method for operating a motor vehicle with four-wheel drive that can be switched on and off while determining an angular acceleration of components that are decoupled when the four-wheel drive is switched off
PCT/EP2015/075901 WO2016071491A1 (en) 2014-11-06 2015-11-06 Method for operating a motor vehicle comprising an all-wheel drive that can be enabled and disabled by determining an angular acceleration of components which are uncoupled when the all-wheel drive is disabled

Publications (2)

Publication Number Publication Date
EP3215764A1 EP3215764A1 (en) 2017-09-13
EP3215764B1 true EP3215764B1 (en) 2018-07-04

Family

ID=54540050

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15793761.6A Active EP3215764B1 (en) 2014-11-06 2015-11-06 Method for operating a motor vehicle comprising an all-wheel drive that can be enabled and disabled by determining an angular acceleration of components which are uncoupled when the all-wheel drive is disabled

Country Status (5)

Country Link
US (1) US10245949B2 (en)
EP (1) EP3215764B1 (en)
CN (1) CN107076298B (en)
DE (1) DE102014016376A1 (en)
WO (1) WO2016071491A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017211227B4 (en) * 2017-06-30 2019-01-24 Magna powertrain gmbh & co kg Method for correcting a drag torque curve of a rotatably mounted machine element
DE102017215700B4 (en) 2017-09-06 2022-09-29 Audi Ag Method for operating a motor vehicle, in particular a motor vehicle
DE102019220401A1 (en) * 2019-12-20 2021-06-24 Robert Bosch Gmbh Method for determining a drag torque of a motorized vehicle and a corresponding device
KR20220121284A (en) * 2021-02-24 2022-09-01 현대자동차주식회사 Apparatus for examining for damage of drivetrain of vehicle and method thereof

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3522062C2 (en) * 1985-06-20 1993-10-14 Man Nutzfahrzeuge Ag Hybrid vehicle
DE3542059C1 (en) * 1985-11-28 1987-06-04 Opel Adam Ag Motor vehicle with main drive axle and switchable drive axle
JPH04292250A (en) * 1991-03-20 1992-10-16 Hitachi Ltd Antiskid controller and method thereof
JP3350314B2 (en) 1995-09-29 2002-11-25 富士重工業株式会社 Hybrid vehicle drive system
JP3785672B2 (en) * 1996-03-31 2006-06-14 マツダ株式会社 Control device for automatic transmission
JP3687185B2 (en) * 1996-03-31 2005-08-24 マツダ株式会社 Control device for automatic transmission
JP3687184B2 (en) * 1996-03-31 2005-08-24 マツダ株式会社 Control device for automatic transmission
JP2003056438A (en) * 2001-08-10 2003-02-26 Moric Co Ltd Vehicular engine control method and system
GB0603452D0 (en) * 2006-02-22 2006-04-05 Ford Global Tech Llc Hybrid motor vehicle driveline
DE102009005378C5 (en) * 2008-10-13 2018-06-21 Magna powertrain gmbh & co kg Powertrain for a motor vehicle
DE202009007977U1 (en) * 2008-10-13 2010-02-25 Magna Powertrain Ag & Co Kg clutch
US8340850B2 (en) * 2009-03-12 2012-12-25 Toyota Jidosha Kabushiki Kaisha Mislocking preventing apparatus
DE102009053885B4 (en) * 2009-11-20 2015-10-29 Getrag Getriebe- Und Zahnradfabrik Hermann Hagenmeyer Gmbh & Cie Kg Method for kisspoint adaptation
CN101898560A (en) 2010-05-21 2010-12-01 北京理工大学 Novel adjusting parameters suitable for anti-slip control of all-wheel drive vehicle
DE102010042528B4 (en) * 2010-10-15 2021-07-01 Bayerische Motoren Werke Aktiengesellschaft Device and method for regulating a multiple torque load on a clutch of a motor vehicle on a roller dynamometer
WO2012053576A1 (en) * 2010-10-21 2012-04-26 日産自動車株式会社 Hybrid vehicle control device
EP2644950B1 (en) * 2010-11-22 2019-05-08 Yamaha Hatsudoki Kabushiki Kaisha Dual clutch transmission mechanism and start control method
JP2013035441A (en) * 2011-08-09 2013-02-21 Nissan Motor Co Ltd Hybrid vehicle control device
WO2013156247A1 (en) * 2012-04-16 2013-10-24 Schaeffler Technologies AG & Co. KG Method for controlling a wet-running friction clutch
DE102012020908A1 (en) 2012-10-24 2014-05-08 Audi Ag Method and system for operating a powertrain of a motor vehicle
JP5790669B2 (en) * 2013-01-08 2015-10-07 トヨタ自動車株式会社 Vehicle shift control device
US10384527B2 (en) * 2013-02-08 2019-08-20 Cummins Electrified Power Na Inc. Four wheel drive powertrain configurations for two-motor, two-clutch hybrid electric vehicles
KR101714248B1 (en) * 2015-10-28 2017-03-09 현대자동차주식회사 Shift control method for vehicle with dct

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
DE102014016376A1 (en) 2016-05-12
EP3215764A1 (en) 2017-09-13
US20170341511A1 (en) 2017-11-30
CN107076298A (en) 2017-08-18
US10245949B2 (en) 2019-04-02
CN107076298B (en) 2019-05-17
WO2016071491A1 (en) 2016-05-12

Similar Documents

Publication Publication Date Title
EP3215764B1 (en) Method for operating a motor vehicle comprising an all-wheel drive that can be enabled and disabled by determining an angular acceleration of components which are uncoupled when the all-wheel drive is disabled
DE102010036826B4 (en) Compensation unit of a drive train of a motor vehicle and its structure for loss minimization Demand lubrication
DE102008014067B4 (en) Control device and method for determining the remaining service life of gear oil
DE102007051064B4 (en) Error detection method for automated motor vehicle transmissions
EP1439087B1 (en) Method for adjusting and controlling engine and clutch torque during gear shifting of an automated or dual clutch transmission
DE102011084220A1 (en) AUTOMATIC CHECK OF DRIVE TRAVEL CONDITION
EP2752345B1 (en) Device and method for transferring a maximum drive torque without slip
WO2009065458A1 (en) Method for adapting the kiss point
EP1744934B1 (en) Process for controlling an automated motor vehicle drive train and drive train
WO2008058860A1 (en) Method for carrying out a shift of gears of an automatic transmission
DE102005001523A1 (en) Method for operating an automatically operable friction clutch and / or a transmission
EP1741950A1 (en) Method for measuring the touch point of a clutch
DE102019110766B4 (en) System for evaluating a torque converter clutch position based on the accumulated slip
DE19958075A1 (en) Operating motor vehicle with at least 1 drive unit esp. IC engine from which drive torque is producible and at least 1 wheel driven by drive axle also torque transmission including gear box
DE102010039172A1 (en) Method for determining a application actuating pressure value of a frictionally engaged switching element
DE102009054940A1 (en) Method for rapid filling of a hydraulically actuated multi-disk switching element of a motor vehicle transmission
DE102013108252A1 (en) Control device for a vehicle with four-wheel drive
DE10102773B4 (en) Drive train monitoring
DE102011011921B4 (en) Method for monitoring a clutch and transmission
EP3262313B1 (en) Method for operating a drive train for a motor vehicle and corresponding drive train
DE102011018887A1 (en) Method for controlling drive train of motor vehicle, involves determining and controlling coupling torque to be transmitted on friction clutch, and determining wheel slip of driven wheels against road corresponding to wheel speed
EP1632689A2 (en) Method for clutch control, specially for parallel shifting transmission with wet clutch or double wet clutch
DE102015218994B4 (en) Method for determining a point of application of a disconnect clutch, control device, computer program product and data carrier
DE102015012233B4 (en) Device and method for feedback regarding the use of a clutch by the driver, and vehicle with such a device
DE102013112967A1 (en) Method for controlling an internal combustion engine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20170606

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20180419

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1014870

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015004972

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180704

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181004

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181004

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181005

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181104

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015004972

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

26N No opposition filed

Effective date: 20190405

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181106

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180704

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20151106

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1014870

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201106

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231123

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231127

Year of fee payment: 9

Ref country code: DE

Payment date: 20231130

Year of fee payment: 9