EP3213837A1 - Shock absorber tube and method for its production - Google Patents

Shock absorber tube and method for its production Download PDF

Info

Publication number
EP3213837A1
EP3213837A1 EP17158722.3A EP17158722A EP3213837A1 EP 3213837 A1 EP3213837 A1 EP 3213837A1 EP 17158722 A EP17158722 A EP 17158722A EP 3213837 A1 EP3213837 A1 EP 3213837A1
Authority
EP
European Patent Office
Prior art keywords
tube
pipe
shock absorber
wall
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP17158722.3A
Other languages
German (de)
French (fr)
Inventor
Günther FRIEDHELM
Ralf Dirscherl
Pasquale Daniele OTTOBRINO
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SchmitterGroup AG
Original Assignee
SchmitterGroup AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SchmitterGroup AG filed Critical SchmitterGroup AG
Publication of EP3213837A1 publication Critical patent/EP3213837A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • B21J5/06Methods for forging, hammering, or pressing; Special equipment or accessories therefor for performing particular operations
    • B21J5/08Upsetting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C1/00Manufacture of metal sheets, metal wire, metal rods, metal tubes by drawing
    • B21C1/16Metal drawing by machines or apparatus in which the drawing action is effected by other means than drums, e.g. by a longitudinally-moved carriage pulling or pushing the work or stock for making metal sheets, bars, or tubes
    • B21C1/22Metal drawing by machines or apparatus in which the drawing action is effected by other means than drums, e.g. by a longitudinally-moved carriage pulling or pushing the work or stock for making metal sheets, bars, or tubes specially adapted for making tubular articles
    • B21C1/24Metal drawing by machines or apparatus in which the drawing action is effected by other means than drums, e.g. by a longitudinally-moved carriage pulling or pushing the work or stock for making metal sheets, bars, or tubes specially adapted for making tubular articles by means of mandrels
    • B21C1/26Push-bench drawing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/15Making tubes of special shape; Making tube fittings
    • B21C37/16Making tubes with varying diameter in longitudinal direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D41/00Application of procedures in order to alter the diameter of tube ends
    • B21D41/02Enlarging
    • B21D41/026Enlarging by means of mandrels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D41/00Application of procedures in order to alter the diameter of tube ends
    • B21D41/04Reducing; Closing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D53/00Making other particular articles
    • B21D53/88Making other particular articles other parts for vehicles, e.g. cowlings, mudguards
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K21/00Making hollow articles not covered by a single preceding sub-group
    • B21K21/12Shaping end portions of hollow articles

Definitions

  • the invention relates to a cold forming method for producing a shock absorber tube and a shock absorber tube, which was produced in particular by the method according to the invention.
  • various tube regions of a precision tube blank are formed or formed into tube sections of the shock absorber tube in several cold forming process steps, the tube sections having mutually differing tube wall thicknesses and / or tube diameters.
  • Shock absorber tubes are known from various fields of application. Especially in the automotive sector, the demands made on precision and material properties are particularly high.
  • the shock absorber tube according to the invention and its production method are particularly suitable for use as or for producing an inner tube for a two-tube shock absorber / strut system for motor vehicles.
  • shock absorber pipes in the prior art are usually produced from precision tube blanks, in particular according to DIN EN 10305-2 (November 2002) or DIN EN 10305-3 (February 2003), by means of various production methods.
  • Particularly suitable for this purpose is a so-called axial cold forming process, wherein a plastic deformation of a metallic material below its recrystallization takes place, in particular by means of stretching, drawing, upsetting and / or expansion. Due to the applied forming forces, the material undergoes strain hardening, which leads to an increase in material strength within the formed material areas.
  • a disadvantage of the known cold forming methods is the formation of grooves or pores mostly on the surface of the pipe inner wall (for example when upsetting) but also the formation of cracks or similar material defects at excessive degrees of deformation. For the latter reason, cold-formed tube expansions are made only up to a maximum pipe diameter difference of 15%.
  • WO 2014/082666 A1 From the WO 2014/082666 A1 is a cold forming method for producing a cylinder tube for a shock absorber of a motor vehicle known. With the method described, specific pipe wall thicknesses and material strengths can be set in the cold-formed areas. In particular, starting from the blank, the wall thickness is reduced and / or the inner or outer diameter of the blank is changed. Such a reshaped cylinder tube can be used in particular as an outer tube for a two-tube shock absorber / strut system for motor vehicles.
  • Such a two-tube shock absorber or -Federerbeinsytem is from the DE 41 27 453 C1 known.
  • Such shock absorber systems include an outer tube and a coaxially disposed therein inner tube, the interior of which serves as a working space for the piston stroke.
  • the space between inner tube and outer tube serves as a compensation chamber and is sealed fluid-tight after filling with shock absorber liquid by means of seals.
  • Inner tube and outer tube are connected to each other in the upper area by an additional head and in the lower area via an additional floor.
  • a gas spring in similar twin-tube telescopic design is from the DE 37 08 978 A1 known.
  • Inner tube and outer tube are connected to each other here by means of a piston rod guide, which serves to guide the piston within the inner tube.
  • the piston rod guide has an annular groove for receiving a seal.
  • the cylinder (inner tube) and the jacket tube (outer tube) of a piston-cylinder unit are connected together in the lower area by means of a container bottom.
  • a cylinder holder In the upper area is a cylinder holder with piston rod guide for receiving the cylinder.
  • the piston rod guide has an angle ring into which a seal can be inserted.
  • shock absorber systems described above each have an inner tube of simple cylindrical design.
  • Other functionalities, such as the inclusion of seals or structural connections between the outer and inner tubes are realized by means of additional components or joining parts.
  • additional parts often lead to unwanted noise such as rattling, which is especially when used as a shock absorber system in a motor vehicle is extremely disturbing.
  • the invention task is solved by a cold forming method according to claim 1 and by a shock absorber tube according to claim 13.
  • An inventive cold forming method of the type described above is characterized in that a first tube portion is compressed to form a thick wall portion in a compression step.
  • the pipe wall thickness in the region of the thick wall section is in this case increased with respect to the pipe wall thickness of the precision tube blank.
  • compressing a compressive force in the axial direction is applied to the pipe region to be crushed such that the tube material is cold formed radially in the direction of the tube outer wall.
  • the formation of cracks or similar material defects, which would lead to loss of material quality is thereby avoided.
  • two adjacent tube regions are formed with a tube expansion, wherein the tube expansion is arranged between the tube regions.
  • a pipe expansion is to be understood as meaning a conically extending section of the pipe wall which connects a second pipe region to an adjacent pipe region.
  • the second tube region is formed with a first tube diameter and the adjacent tube region with a second tube diameter, wherein the difference between the first tube diameter and the second tube diameter is at least 20%, in particular at least 30%.
  • a pipe end portion has a pipe diameter which is at least 20% larger than the pipe diameter of an adjacent center pipe piece.
  • the pipe expansion can be cold formed eg by drawing and / or widening, the formation of cracks or the like Material defects that would lead to loss of material quality, is avoided within the pipe walls of the corresponding pipe sections.
  • an inner tube for a two-tube shock absorber When the method of manufacturing an inner tube for a two-tube shock absorber is used, it is advantageous to form the thick-wall portion and a tube end portion of the inner tube with a tube outside diameter substantially equal to the tube inner diameter of an outer tube for the same two-tube shock absorber. In this way, the inner tube and the outer tube connected to each other, for. B. are welded, and / or sealed against each other, without additional construction and / or joining parts are needed.
  • a surface structure of a tube inner wall in the area of the thick-wall section is not substantially changed during the upsetting.
  • a roughness of at most 5 ⁇ m can also be achieved on the surface of the tube inner wall of the thick-wall section.
  • pipe wall thickness and / or pipe diameter can vary within the thick wall section.
  • a tube inner diameter in the area of the thick-wall section is essentially not changed during the compression step.
  • the first tube region is compressed in such a way that the tube inner diameter is not changed along the entire thick-wall section or is held constant (within the usual tolerances of +/- 0.03 mm).
  • the pipe wall thickness is reduced in the region of the tube expansion with respect to the tube wall thickness of the precision tube blank or as a thin-wall section, ie formed in lightweight construction.
  • the cold forming process comprises a Einzieh Kunststoff, wherein by retracting once or more, the diameter of the Cruzisrohrrohlings is at least partially reduced.
  • the known per se reduction of the pipe diameter takes place by the action of an axial thrust.
  • the reduction of the outlet tube diameter to the required end tube diameter can be done either in one step or stepwise by multiple, successive retraction.
  • several Einziehmatrizen be switched with decreasing inner diameter to form a multiple train in series.
  • the pipe wall thickness is reduced at least in regions by stretching once or more times in an ironing step.
  • the forming force acts in the axial direction by means of a Einziehmatrize on the pipe wall.
  • this leads to a reduction of the pipe wall thickness, on the other hand to an extension of the blank in the thrust direction of the draw-in die.
  • the reduction of the pipe wall thickness can also be effected by one or more, successive ironing operations or by means of a multiple train along the respective desired pipe region.
  • the cold forming process includes a tube wall thickness reducing step for cutting the tube wall thickness in one or more of the tube sections.
  • the pipe wall thickness in the desired pipe sections can be reduced by turning. In contrast to stretching, the pipe material is not deformed but removed, so that no work hardening takes place, which leads to an increased material strength.
  • the pipe expansion is formed by means of an expansion step, wherein the second pipe region is widened by at least 20% with respect to an adjacent pipe region.
  • an expanding mandrel is introduced starting from a pipe end in the pipe interior. Similar to drawing in, the forming force also acts on the pipe wall during expansion in the axial direction. As a result, an increase in the pipe diameter is achieved while the tube wall thickness and consequently the overall length of the tube blank remain unchanged.
  • the compression step is combined with a widening step, wherein e.g. the first pipe section is widened and compressed to form the thick wall section.
  • the recuperzisrohrrohling is fixed during the Aufweit suitss such that an axially applied by means of a Aufweitdorns thrust force leads to an accumulation of the pipe material in the radial direction. That is, already during the expansion, a material accumulation in the region of the thick wall section can be generated and used for compression.
  • one or more tube regions are formed with a lower material strength.
  • an increase in material strength is obtained by work hardening. The higher the degree of deformation, the higher the resulting material strength.
  • one or both pipe end sections which can be formed with a pipe expansion and / or a pipe section which is compressed to form a thick wall section, are formed with a (initially) lower degree of deformation.
  • a Compression edge formed by machining, in particular by turning.
  • the compression edge is suitable as a contact surface for a compression tool, a so-called pressure sleeve, which applies a compressive force in the axial direction of the corresponding pipe wall.
  • a pipe end machining step one or both pipe ends of the precision pipe blank are shortened.
  • an axially outer region of the corresponding pipe end is tapped by means of a turning operation.
  • the cold forming method according to the invention can be used in addition to the production of shock absorber inner tubes for the production of other shock absorber tubes, such as shock absorber outer tubes, but also for the production of other tubes in other applications with high demands on material properties and precision.
  • shock absorber tube With regard to the shock absorber tube, the object of the invention is achieved by a shock absorber tube according to claim 13. Advantageous developments are mentioned in the accompanying subclaims.
  • the shock absorber tube and its embodiments and advantages have been largely explained already with reference to the method according to the invention. Therefore, only a part of the features and / or their advantages will be explained in more detail below.
  • a shock absorber tube in particular a surface structure of a tube inner wall in the region of the thick wall section has neither notches nor grooves, grooves, grooves, pores or similar unevennesses within the surface of the tube inner wall, which in conventional compression methods are a consequence of the material offset occurring radially from the inside to the outside ,
  • the shock absorber tube along the entire surface of the tube inner wall, a same surface quality, wherein the roughness is at most 5 microns.
  • the shock absorber tube is designed as a lightweight component. For example, all pipe sections (ie, the pipe expansion), with the exception of the thick wall section, formed thin-walled.
  • the ratio of the pipe wall thickness between a thick wall and a thin wall section is approximately 1: 4.
  • the thick wall section has a minimum pipe wall thickness of 7 mm and the thin wall sections a maximum pipe wall thickness of 1.7 mm.
  • the pipe walls are free of cracks or similar material defects.
  • the thick-wall section is provided with a circumferential groove or annular groove.
  • FIG. 1 shows a cylindrical precision steel tube blank 1 made of a material E 235 or E 195, normalized, according to DIN EN 10305-2: 2010-05, with a nominal outer diameter D N of, for example. 48 mm and a Pipe wall thickness S R of, for example, 4 mm.
  • the precision tube blank 1 serves as a starting blank for a first variant of the axial cold forming method according to the invention for producing an inner tube 2 (see FIG. Fig. 9 ) for a two-pipe shock absorber system, with an inner diameter of, for example, 32 mm.
  • the precision tube blank 1 has a first tube region 101 at a first tube end and a second tube region 102 at a second tube end.
  • FIG. 2 In a first Einzieh Colour the pipe diameter of the precision tube blank 1 is drawn or reduced by means of a Einziehmatrize 3.
  • the drawing-in step can be carried out by one or more pull-in processes carried out in succession.
  • a support mandrel 5 Within the first tube region 101 is a support mandrel 5, the outer diameter of which corresponds to the inner diameter of the already retracted, first tube region 101.
  • the mandrel 5 is axially movable along the double arrow A.
  • a push rod 7 is arranged, the thrust side 701 is supported on the end face of the second tube portion 102.
  • the push rod 7 is axially movable along the double arrow B.
  • a guide pin 702 is snugly inserted into the interior of the second tube portion 102 and serves the precise guidance of the push rod 7. During retraction of the push rod 7 exerts a thrust force on the tube end of the second tube portion 102, whereby the procurzisrohrrohling 1 axially towards the Einziehmatrize third is moved. The procurzisrohrrohling 1 is pushed between Einziehmatrize 3 and mandrel 5 through, whereby the pipe diameter is reduced.
  • An ejector 9 is axially movable along the double arrow C and provided for triggering the mandrel 5 from the already retracted, first tube portion 101.
  • a first ironing mandrel 11a is placed inside the precision tube blank 1.
  • the first ironing mandrel 11 a comprises a guide pin 111 a, whose diameter corresponds approximately to the pipe inner diameter of the retracted first pipe portion 101, a driving edge 112 a, which is supported on an inner transition edge 103 between the retracted, first pipe portion 101 and a non-retracted region of the precision tube blank 1 as well as a front Working portion 113a, whose diameter is, for example, 32 mm and a rear working portion 114a, whose diameter is, for example, 39.5 mm.
  • the first ironing mandrel 11a is moved axially in the direction of the arrow D.
  • the driver edge 112a is designed for positive engagement with the transition edge 103, so that the first ironing mandrel 11a "takes along" the precision tube blank 1 along its axial direction of movement and leads through a first ironing die 13a.
  • the precision tube blank 1 is stretched along the working sections 113a, 114a.
  • the precision tube blank 1 is formed in the region of the front working portion 113a with a higher pipe wall thickness, as in the region of the rear working portion 114a, wherein the precision tube blank 1 has a uniform pipe outside diameter along the stretched region.
  • a scraper 15 is radially movable to trigger the first Abstreckdorns 11 a from the precision tube blank 1 along the double arrow E.
  • a first end position EP 1 is marked within the second tube region 102, which represents the end of the tube region which has been drawn by means of the first ironing process.
  • a second ironing punch 17a comprises a guide pin 171a, a driving edge 172a, which engages positively in the transition edge 103 of the precision tube blank 1 and a working portion 173a whose diameter is, for example, 32 mm.
  • the precision tube blank 1 is moved in the direction of the arrow D by means of the second ironing mandrel 17a and is stretched by means of a second ironing die 19a.
  • the scraper 15 is radially movable along the double arrow E and serves to trigger the second Abstreckdorns 17 a from the recuperzisrohrrohling first
  • FIG. 5 finds a third ironing operation of the recuperzisrohrrohlings 1 with a third Abstreckdorn 21 a, which has a guide pin 211 a, a driving edge 212a for engaging in the transition edge 103 and a front working portion 213a and a rear working portion 214a.
  • the rear working portion 214a is conical and serves for the Auskalibri für or the wall thickness reduction of a conical pipe expansion 204 within the second tube portion 102.
  • the third The ironing die 23a has a conical inner surface 231a complementary thereto.
  • the tube wall thickness of the precision tube blank 1 is here only up to the first end position EP 1 within the second tube portion 102 strung to eg. 1.7 mm, so that an axially outer tube end portion 104 remains with less material strength.
  • FIG. 7 the precision tube blank 1 is shown after performing a pre-processing step.
  • the pipe wall thickness of the first pipe region 101 is partially reduced by turning, so that a compression edge 105 is created.
  • the outer pipe end portion 104 removed by turning or tapping.
  • FIG. 8 A compression / expansion step for compressing and expanding the first pipe portion 101 is shown in FIG FIG. 8 shown.
  • an expanding mandrel 29 a is pushed axially into the interior of the first pipe region 101, along the double arrow F.
  • a counter-holder 31 a which is axially movable along the double arrow G, locks the precision tube blank 1 in the axial direction.
  • For radial locking surrounds a 2-part die 33a the Rezisrohrrohling 1, the hinged along the double arrow H hinged or can be folded.
  • the 2-part die 33a is in turn fixed in the axial direction between a pressure plate 35a and a spring-supported die ring 37a, which is axially movable along the double arrow K ,.
  • the expanding mandrel 29 a comprises a conical working portion 291 a which radially transforms the tube material of the precision tube blank 1 in the direction of the tube outer wall, so that a tube expansion is formed in the first tube region 101.
  • a material thickening or -ausauung 106 between the conical working portion 291 a and an inner edge 331 a of the 2-part die 33 a generated.
  • a pressure sleeve 39 a is axially movable along the double arrow I and engages the compression edge 105 of the precision tube blank 1.
  • the first pipe region 101 is subjected to a pressure (up to 100 t), so that the pipe material is deformed or compressed in the radial direction.
  • the Aufweitdorn 29a prevents a material shift into the tube interior, the material is displaced radially outward until a stop 371 a of the spring-supported Matrizenrings 37a is reached.
  • the desired shape of the expanded / compressed first tube portion 101 is precisely determined by the geometry of the interengaging and / or complementary tool components, in particular the mandrel 29a, the 2-part die 33a, the pressure sleeve 39a and the die ring 37a.
  • the inner tube 2 comprises a thick-walled section 201, a tube-end section 202 whose inner tube diameter is, for example, 39.5 mm, a central tube 203 whose inner tube diameter is, for example, 32 mm and an interposed, conically extending tube expansion 204.
  • the thick-wall section 201 has a variable inner tube diameter and may be formed with a maximum pipe wall thickness of, for example. 7 mm.
  • annular groove 205 within the thick wall portion 201 is an annular groove 205, in particular formed by turning, which is suitable for receiving, for example. An O-ring seal.
  • the inner tube 2 is formed by lightweight construction with a tube wall thickness of, for example, 1.7 mm.
  • FIG. 10 shows a part of the inner tube 2 from FIG. 9 , in the pipe expansion 204 z. B. four through holes 206 are punched. According to the arrow L, the through holes 206 were punched from the inside of the tube in the direction of the tube outer.
  • the pipe end portion 202 of the inner pipe 2 is fluid-tightly connected to a corresponding pipe section of an outer pipe.
  • the through holes 206 serve to connect the working space with the compensation space.
  • FIG. 11 represents the cylinder-shaped precision steel tube blank 1 in a mirror-image along the central transverse axis with respect to the FIG. 1
  • the precision tube blank 1 serves as a starting blank for a second variant of the axial cold forming method according to the invention for producing an inner tube 2 (see FIG. FIG. 19 ) for a two-pipe shock absorber system, with an inner diameter of, for example, 36 mm.
  • the precision tube blank 1 has at its first pipe end a first pipe portion 101 and at its second pipe end a second pipe portion 102.
  • a second tube region 102 of the precision tube blank 1 is curled by means of a draw-in die 3, ie only the end face of the tube end region 102 is deformed radially into the interior of the tube.
  • a mandrel 5 according to FIG. 2 , can be omitted here.
  • the push rod 7 is analogous to the first method variant of the application of an axial thrust in the direction of Einziehmatrize 3, along the double-headed B on the precision tube blank 1 and is guided by means of the guide pin 702.
  • an optional tube wall thickness reduction step may be used to reduce the tube wall thickness of the second tube section 102 of the precision tube blank 1.
  • the precision tube blank 1 is stretched to a uniform tube wall thickness in a first ironing operation.
  • a first ironing mandrel 11b engages with a driving edge 112b on the crimp 106 of the second pipe region 102, so that the precision pipe blank 1 is "taken along" in the direction of the arrow D and guided through the first ironing die 13b.
  • the scraper 15 is radially movable along the double arrow E and serves to trigger the first Abstreckdorns 11 b from the recuperzisrohrrohling first
  • FIG. 15 represents a second ironing operation with a second ironing mandrel 17b, the Mit supportivekante 172b is supported on the Krümpelung 106 of the second pipe portion 102 and the precision tube blank 1 in the working direction (arrow D) through the second ironing die 19b.
  • the tube wall thickness of the precision tube blank 1 is reduced starting from the crimp 106 up to a second end position EP 2.
  • a third ironing process is the FIG. 16 refer to.
  • the precision tube blank 1 is stretched starting from its crimping 106 up to the second end position EP 2 to a tube wall thickness of, for example, 1.7 mm.
  • a twin die 41 comprises an ironing section 411 with a corresponding inner diameter.
  • Inner diameter of a stirrup portion 412 of the twin die 41 corresponds to the pipe outside diameter of the first pipe portion 101.
  • the stirrup portion 412 "irons" the first pipe portion 101, thereby exactly abutting the ironing mandrel 21b, but without changing the pipe wall thickness.
  • FIG. 17 represents the precision tube blank 1 in a mirrored along the median transverse axis view of the FIGS. 11 to 16 dar.
  • Analog to FIG. 7 the first method variant the implementation of a Vorbearbeitungs Republics is shown.
  • the tube wall thickness of the precision tube blank 1 is partially reduced by rotation within the first tube region 101, so that a compression edge 105 is formed.
  • the front side of the second tube portion 102 arranged Krümpelung 106 (s. Fig. 16 ) is also removed or tapped by means of a turning operation and is already no longer shown.
  • FIG. 18 shows a compression / expansion step of the second variant of the method.
  • a support pin 43 which is movable along the double arrow N in the axial direction, within the first tube portion 101 accurately arranged.
  • a pressure sleeve 39b engages against the compression edge 105 and exerts a high pressure (up to 100 t) on it.
  • a counter-holder 31 b and a 2-part die 33b lock the precision tube blank 1 in the axial direction, so that a radial compression of the tube material within the first tube portion 101 results.
  • the support mandrel 43 prevents material displacement in the tube interior.
  • the tube material is displaced radially outward until a stop 371b of a spring-supported die ring 37b is reached.
  • the desired shape of the compressed first pipe portion 101 is precisely determined by the geometry of the interlocking and / or complementary tool components, in particular the support mandrel 43, the 2-part die 33b, the pressure sleeve 39b and the die ring 37b.
  • the second tube section 102 is widened by means of an expanding mandrel 29 b, which comprises a conical working section 291 b.
  • the 2-part die 33b which is hingedly hinged along the double arrow H, points to this a complementarily arranged, also conical section 331 b.
  • a pressure plate 35b supports the 2-part die 33b in the axial direction.
  • the upsetting process precedes the expansion process.
  • the inner tube diameter of the first region 101 remains unchanged during the entire expansion / compression step.
  • an inner tube 2 is shown, which was cold-formed from a Rezisrohrrohling 1.
  • the inner tube 2 comprises a thick-walled section 201, a tube-end section 202 whose inner tube diameter is, for example, 39.5 mm, a center tube 203 and a conically extending tube expansion 204 arranged therebetween.
  • the tube inner diameter of the inner tube 2 is constant eg 36 mm.
  • an annular groove 205 is arranged, which is designed for receiving, for example, an O-ring seal, in particular by turning.
  • the tube wall thickness of the inner tube 2 is, for example, 1.7 mm within the thin-walled sections and, for example, 5 mm within the thick-wall section 201.
  • the inner tube 2 according to FIG. 19 can also be punched through-holes 206 (see FIG. Fig. 10 ) be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

Kaltumformverfahren zur Herstellung eines Stoßdämpferrohres (2), insbesondere eines Stoßdämpfer-Innenrohrs für ein Zweirohr-Stoßdämpfer-/Federbeinsystem für Kraftfahrzeuge, wobei in mehreren Kaltumform-Verfahrensschritten verschiedene Rohrbereiche (101, 102) eines Präzisrohrrohlings (1) zu Rohrabschnitten (201, 202, 203, 204) des Stoßdämpferrohres (2) mit voneinander abweichenden Rohrwandstärken und/oder Rohrdurchmessern ausgebildet werden, wobei ein erster Rohrbereich (101) zur Ausbildung eines Dickwandabschnitts (201) in einem Stauchungsschritt gestaucht wird, wobei die Rohrwandstärke im Bereich des Dickwandabschnitts (201) erhöht wird, und/oder ein zweiter Rohrbereich (102) zur Ausbildung einer Rohraufweitung (204) mit einem ersten Rohrdurchmesser versehen wird und ein benachbarter Rohrbereich (203) mit einem zweiten Rohrdurchmesser versehen wird, wobei eine Differenz zwischen dem ersten Rohrdurchmesser und dem zweiten Rohrdurchmesser mindestens 20 % beträgt. Die Erfindung betrifft auch ein Stoßdämpferrohr.Cold forming method for producing a shock absorber tube (2), in particular a shock absorber inner tube for a two-pipe shock absorber / suspension strut system for motor vehicles, wherein in several cold forming process steps different tube regions (101, 102) of a precision tube blank (1) to tube sections (201, 202, 203, 204) of the shock absorber tube (2) are formed with mutually differing pipe wall thicknesses and / or pipe diameters, wherein a first tube section (101) is compressed in a compression step to form a thick-wall section (201), whereby the tube wall thickness in the region of the thick-wall section (201) is increased, and / or a second pipe section (102) is provided with a first pipe diameter to form a pipe extension (204) and an adjacent pipe section (203) is provided with a second pipe diameter, wherein a difference between the first pipe diameter and the second pipe diameter is at least 20%. The invention also relates to a shock absorber tube.

Description

Die Erfindung betrifft ein Kaltumformverfahren zur Herstellung eines Stoßdämpferrohres sowie ein Stoßdämpferrohr, das insbesondere nach dem erfindungsgemäßen Verfahren hergestellt wurde. Hierbei werden in mehreren Kaltumform-Verfahrensschritten verschiedene Rohrbereiche eines Präzisrohrrohlings zu Rohrabschnitten des Stoßdämpferrohres ausgebildet bzw. umgeformt, wobei die Rohrabschnitte voneinander abweichende Rohrwandstärken und/oder Rohrdurchmesser aufweisen. Stoßdämpferrohre sind aus verschiedenen Anwendungsbereichen bekannt. Gerade jedoch im Kfz-Bereich sind die gestellten Anforderungen an Präzision und Materialeigenschaften besonders hoch. Das erfindungsgemäße Stoßdämpferrohr und dessen Herstellungsverfahren eignen sich insbesondere zur Verwendung als bzw. zur Herstellung eines Innenrohrs für ein Zweirohr-Stoßdämpfer-/Federbeinsystem für Kraftfahrzeuge.The invention relates to a cold forming method for producing a shock absorber tube and a shock absorber tube, which was produced in particular by the method according to the invention. In this case, various tube regions of a precision tube blank are formed or formed into tube sections of the shock absorber tube in several cold forming process steps, the tube sections having mutually differing tube wall thicknesses and / or tube diameters. Shock absorber tubes are known from various fields of application. Especially in the automotive sector, the demands made on precision and material properties are particularly high. The shock absorber tube according to the invention and its production method are particularly suitable for use as or for producing an inner tube for a two-tube shock absorber / strut system for motor vehicles.

Um die hohen Anforderungen an Materialeigenschaften und Präzision einzuhalten, werden Stoßdämpferrohre im Stand der Technik zumeist aus Präzisrohrrohlingen, insbesondere gemäß DIN EN 10305-2 (November 2002) oder DIN EN 10305-3 (Februar 2003), mittels verschiedener Herstellungsverfahren hergestellt. Besonders eignet sich hierzu ein sogenanntes axiales Kaltumformverfahren, wobei eine plastische Umformung eines metallischen Werkstoffs unterhalb dessen Rekristallisationstemperatur, insbesondere mittels Abstrecken, Einziehen, Stauchen und/oder Aufweiten, stattfindet. Aufgrund der einwirkenden Umformkräfte unterliegt der Werkstoff einer Kaltverfestigung, die zu einer Erhöhung der Werkstofffestigkeit innerhalb der umgeformten Werkstoffbereiche führt. Ein Nachteil der bekannten Kaltumformverfahren ist die Ausbildung von Riefen oder Poren zumeist an der Oberfläche der Rohrinnenwand (z.B. beim Stauchen) aber auch die Entstehung von Rissen oder ähnlichen Materialfehlern bei zu hohen Umformgraden. Aus letzterem Grund werden kaltumgeformte Rohraufweitungen nur bis zu einer Rohrdurchmesserdifferenz von maximal 15 % vorgenommen.In order to meet the high demands on material properties and precision, shock absorber pipes in the prior art are usually produced from precision tube blanks, in particular according to DIN EN 10305-2 (November 2002) or DIN EN 10305-3 (February 2003), by means of various production methods. Particularly suitable for this purpose is a so-called axial cold forming process, wherein a plastic deformation of a metallic material below its recrystallization takes place, in particular by means of stretching, drawing, upsetting and / or expansion. Due to the applied forming forces, the material undergoes strain hardening, which leads to an increase in material strength within the formed material areas. A disadvantage of the known cold forming methods is the formation of grooves or pores mostly on the surface of the pipe inner wall (for example when upsetting) but also the formation of cracks or similar material defects at excessive degrees of deformation. For the latter reason, cold-formed tube expansions are made only up to a maximum pipe diameter difference of 15%.

Aus der WO 2014/082666 A1 ist ein Kaltumformverfahren zur Herstellung eines Zylinderrohres für einen Stoßdämpfer eines Kraftfahrzeugs bekannt. Mit dem beschriebenen Verfahren können in den kalt umgeformten Bereichen jeweils gezielte Rohrwandstärken und Werkstofffestigkeiten eingestellt werden. Insbesondere wird ausgehend vom Rohling die Wandstärke reduziert und/oder der Innen- bzw. Außendurchmesser des Rohlings verändert. Ein derart umgeformtes Zylinderrohr lässt sich insbesondere als Außenrohr für ein Zweirohr-Stoßdämpfer-/Federbeinsystem für Kraftfahrzeuge verwenden.From the WO 2014/082666 A1 is a cold forming method for producing a cylinder tube for a shock absorber of a motor vehicle known. With the method described, specific pipe wall thicknesses and material strengths can be set in the cold-formed areas. In particular, starting from the blank, the wall thickness is reduced and / or the inner or outer diameter of the blank is changed. Such a reshaped cylinder tube can be used in particular as an outer tube for a two-tube shock absorber / strut system for motor vehicles.

Ein derartiges Zweirohr-Stoßdämpfer oder -Federbeinsytem ist aus der DE 41 27 453 C1 bekannt. Solche Stoßdämpfersysteme umfassen ein Außenrohr sowie ein koaxial darin angeordnetes Innenrohr, dessen Inneres als Arbeitsraum für den Kolbenhub dient. Der Zwischenraum zwischen Innenrohr und Außenrohr dient als Ausgleichsraum und wird nach einer Befüllung mit Stoßdämpferflüssigkeit mittels Dichtungen fluiddicht verschlossen. Innenrohr und Außenrohr sind im oberen Bereich durch ein zusätzliches Kopfteil und im unteren Bereich über einen zusätzlichen Boden miteinander verbunden.Such a two-tube shock absorber or -Federerbeinsytem is from the DE 41 27 453 C1 known. Such shock absorber systems include an outer tube and a coaxially disposed therein inner tube, the interior of which serves as a working space for the piston stroke. The space between inner tube and outer tube serves as a compensation chamber and is sealed fluid-tight after filling with shock absorber liquid by means of seals. Inner tube and outer tube are connected to each other in the upper area by an additional head and in the lower area via an additional floor.

Ein Gasdruckdämpfer in ähnlicher Zweirohr-Teleskop-Bauart ist aus der DE 37 08 978 A1 bekannt. Innenrohr und Außenrohr sind hier mittels einer Kolbenstangenführung, die zur Führung des Kolbens innerhalb des Innenrohrs dient, miteinander verbunden. Die Kolbenstangenführung weist eine ringförmig verlaufende Nut zur Aufnahme einer Dichtung auf.A gas spring in similar twin-tube telescopic design is from the DE 37 08 978 A1 known. Inner tube and outer tube are connected to each other here by means of a piston rod guide, which serves to guide the piston within the inner tube. The piston rod guide has an annular groove for receiving a seal.

Gemäß DE 10 2004 022 409 B4 sind der Zylinder (Innenrohr) und das Mantelrohr (Außenrohr) eines Kolben-Zylinder-Aggregats im unteren Bereich mittels eines Behälterbodens miteinander verbunden. Im oberen Bereich dient eine Zylinderaufnahme mit Kolbenstangenführung zur Aufnahme des Zylinders. Die Kolbenstangenführung weist einen Winkelring auf, in den eine Dichtung einlegbar ist.According to DE 10 2004 022 409 B4 the cylinder (inner tube) and the jacket tube (outer tube) of a piston-cylinder unit are connected together in the lower area by means of a container bottom. In the upper area is a cylinder holder with piston rod guide for receiving the cylinder. The piston rod guide has an angle ring into which a seal can be inserted.

Die zuvor beschriebenen Stoßdämpfer-Systeme weisen jeweils ein Innenrohr einfacher zylindrischer Bauart auf. Weitere Funktionalitäten, z.B. die Aufnahme von Dichtungen oder auch bauliche Verbindungen zwischen Außen- und Innenrohr werden mittels zusätzlicher Bauteile bzw. Fügeteile realisiert. Derlei Zusatzteile führen oftmals zu unerwünschter Geräuschentwicklung wie Klappern, was gerade bei Verwendung als Stoßdämpfersystem in einem Kraftfahrzeug als äußerst störend empfunden wird.The shock absorber systems described above each have an inner tube of simple cylindrical design. Other functionalities, such as the inclusion of seals or structural connections between the outer and inner tubes are realized by means of additional components or joining parts. Such additional parts often lead to unwanted noise such as rattling, which is especially when used as a shock absorber system in a motor vehicle is extremely disturbing.

Daher ist es Aufgabe der vorliegenden Erfindung ein verbessertes Stoßdämpferdämpferrohr sowie ein Verfahren zu dessen Herstellung anzugeben.It is therefore an object of the present invention to provide an improved shock absorber tube and a method for its production.

Die Erfindungsaufgabe wird durch ein Kaltumformverfahren gemäß Anspruch 1 sowie durch ein Stoßdämpferrohr gemäß Anspruch 13 gelöst.The invention task is solved by a cold forming method according to claim 1 and by a shock absorber tube according to claim 13.

Ein erfindungsgemäßes Kaltumformverfahren der eingangs beschriebenen Art kennzeichnet sich dadurch, dass ein erster Rohrbereich zur Ausbildung eines Dickwandabschnitts in einem Stauchungsschritt gestaucht wird. Die Rohrwandstärke im Bereich des Dickwandabschnitts wird hierbei gegenüber der Rohrwandstärke des Präzisrohrrohlings erhöht. Insbesondere wird beim Stauchen eine Druckkraft in axialer Richtung auf den zu stauchenden Rohrbereich derart aufgebracht, dass das Rohrmaterial radial in Richtung der Rohraußenwand kalt umgeformt wird. Die Entstehung von Rissen oder ähnlichen Materialfehlern, die zu Einbußen der Materialqualität führen würden, wird hierbei vermieden. Zusätzlich oder alternativ werden zwei einander benachbarte Rohrbereiche mit einer Rohraufweitung ausgebildet, wobei die Rohraufweitung zwischen den Rohrbereichen angeordnet ist. Unter einer Rohraufweitung ist ein konisch verlaufender Abschnitt der Rohrwandung zu verstehen, der einen zweiten Rohrbereich mit einem benachbarten Rohrbereich verbindet. Der zweite Rohrbereich, wird hierzu mit einem ersten Rohrdurchmesser ausgebildet und der benachbarte Rohrbereich mit einem zweiten Rohrdurchmesser, wobei die Differenz zwischen dem ersten Rohrdurchmesser und dem zweiten Rohrdurchmesser mindestens 20%, insbesondere mindestens 30% beträgt. Vorzugsweise weist ein Rohrendenabschnitt einen Rohrdurchmesser auf, der um mind. 20% größer ist als der Rohrdurchmesser eines benachbarten Rohrmittelstücks. Zur Ermittlung der Rohrdurchmesserdifferenz werden entweder die jeweiligen Rohraußendurchmesser oder die jeweiligen Rohrinnendurchmesser zueinander ins Verhältnis gesetzt. Die Rohraufweitung kann z.B. mittels Einziehen und/oder Aufweiten kalt umgeformt werden, wobei die Entstehung von Rissen oder ähnlichen Materialfehlern, die zu Einbußen der Materialqualität führen würden, innerhalb der Rohrwandungen der entsprechenden Rohrbereiche vermieden wird.An inventive cold forming method of the type described above is characterized in that a first tube portion is compressed to form a thick wall portion in a compression step. The pipe wall thickness in the region of the thick wall section is in this case increased with respect to the pipe wall thickness of the precision tube blank. In particular, when compressing a compressive force in the axial direction is applied to the pipe region to be crushed such that the tube material is cold formed radially in the direction of the tube outer wall. The formation of cracks or similar material defects, which would lead to loss of material quality, is thereby avoided. Additionally or alternatively, two adjacent tube regions are formed with a tube expansion, wherein the tube expansion is arranged between the tube regions. A pipe expansion is to be understood as meaning a conically extending section of the pipe wall which connects a second pipe region to an adjacent pipe region. For this purpose, the second tube region is formed with a first tube diameter and the adjacent tube region with a second tube diameter, wherein the difference between the first tube diameter and the second tube diameter is at least 20%, in particular at least 30%. Preferably, a pipe end portion has a pipe diameter which is at least 20% larger than the pipe diameter of an adjacent center pipe piece. To determine the pipe diameter difference either the respective pipe outside diameter or the respective inner pipe diameter are set in relation to each other. The pipe expansion can be cold formed eg by drawing and / or widening, the formation of cracks or the like Material defects that would lead to loss of material quality, is avoided within the pipe walls of the corresponding pipe sections.

Wird das Verfahren zur Herstellung eines Innenrohrs für einen Zweirohr-Stoßdämpfer verwendet, ist es vorteilhaft den Dickwandabschnitts sowie einen Rohrendenabschnitt des Innenrohrs mit einem Rohraußendurchmesser auszubilden, der im Wesentlichen dem Rohrinnendurchmesser eines Außenrohrs für denselben Zweirohr-Stoßdämpfer entspricht. Auf diese Weise können das Innenrohr und das Außenrohr miteinander verbunden, z. B. verschweißt werden, und/oder gegeneinander abgedichtet werden, ohne dass zusätzliche Bau- und/oder Fügeteile benötigt werden.When the method of manufacturing an inner tube for a two-tube shock absorber is used, it is advantageous to form the thick-wall portion and a tube end portion of the inner tube with a tube outside diameter substantially equal to the tube inner diameter of an outer tube for the same two-tube shock absorber. In this way, the inner tube and the outer tube connected to each other, for. B. are welded, and / or sealed against each other, without additional construction and / or joining parts are needed.

Nach einer vorteilhaften Verfahrensausgestaltung wird eine Oberflächenstruktur einer Rohrinnenwandung im Bereich des Dickwandabschnitts während des Stauchens im Wesentlichen nicht verändert. Insbesondere entstehen weder Kerben, noch Nuten, Rillen, Riefen, Poren oder ähnliche Unebenheiten innerhalb der Oberfläche der Rohrinnenwand, die bei herkömmlichen Stauchverfahren eine Folge des radial von innen nach außen stattfindenden Materialversatzes sind. Je nach Ausgangsmaterial des Präzisrohrrohlings lässt sich bspw. eine Rauheit von höchstens 5 µm auch an der Oberfläche der Rohrinnenwand des Dickwandabschnitts erzielen. Unabhängig von der Oberflächenstruktur der Rohrinnenwand können Rohrwandstärke und/oder Rohrdurchmesser innerhalb des Dickwandabschnitts variieren.According to an advantageous embodiment of the method, a surface structure of a tube inner wall in the area of the thick-wall section is not substantially changed during the upsetting. In particular, there are no notches, notches, grooves, grooves, pores or similar unevenness within the surface of the pipe inner wall, which in conventional upsetting processes are a consequence of the radially outwardly occurring material offset. Depending on the starting material of the precision tube blank, for example, a roughness of at most 5 μm can also be achieved on the surface of the tube inner wall of the thick-wall section. Regardless of the surface structure of the pipe inner wall, pipe wall thickness and / or pipe diameter can vary within the thick wall section.

In einer optionalen Variante des Verfahrens wird ein Rohrinnendurchmesser im Bereich des Dickwandabschnitts während des Stauchungsschritts im Wesentlichen nicht verändert. Insbesondere wird der erste Rohrbereich derart gestaucht, dass der Rohrinnendurchmesser entlang des gesamten Dickwandabschnitts nicht verändert wird bzw. konstant (innerhalb der üblichen Toleranzen von +/- 0,03 mm) gehalten wird.In an optional variant of the method, a tube inner diameter in the area of the thick-wall section is essentially not changed during the compression step. In particular, the first tube region is compressed in such a way that the tube inner diameter is not changed along the entire thick-wall section or is held constant (within the usual tolerances of +/- 0.03 mm).

Vorteilhafterweise wird die Rohrwandstärke im Bereich der Rohraufweitung gegenüber der Rohrwandstärke des Präzisrohrrohlings reduziert bzw. als Dünnwandabschnitt, d.h. in Leichtbauweise ausgebildet. Durch eine Reduzierung der Rohrwandstärke um mindestens 50 % lassen sich erhebliche Gewichtseinsparungen erreichen.Advantageously, the pipe wall thickness is reduced in the region of the tube expansion with respect to the tube wall thickness of the precision tube blank or as a thin-wall section, ie formed in lightweight construction. By a Reducing the pipe wall thickness by at least 50% can achieve significant weight savings.

Vorzugsweise umfasst das Kaltumformverfahren einen Einziehschritt, wobei durch einmaliges oder mehrmaliges Einziehen, der Durchmesser des Präzisrohrrohlings zumindest bereichsweise reduziert wird. Beim an sich bekannten Einziehen findet die Reduzierung des Rohrdurchmessers durch die Einwirkung eines axialen Schubs statt. Beispielsweise erfolgt das Einziehen ausgehend von einem Rohrendbereich in axialer Richtung entlang des gewünschten Rohrbereichs. Die Reduzierung des Ausgangs-Rohrdurchmessers auf den erforderlichen End-Rohrdurchmesser kann entweder in einem Schritt oder schrittweise durch mehrmaliges, aufeinander folgendes Einziehen erfolgen. Insbesondere werden hierzu mehrere Einziehmatrizen mit abnehmendem Innendurchmesser zu einem Mehrfachzug hintereinander geschaltet.Preferably, the cold forming process comprises a Einziehschritt, wherein by retracting once or more, the diameter of the Präzisrohrrohlings is at least partially reduced. In the known per se reduction of the pipe diameter takes place by the action of an axial thrust. For example, starting from a pipe end region takes place in the axial direction along the desired pipe region. The reduction of the outlet tube diameter to the required end tube diameter can be done either in one step or stepwise by multiple, successive retraction. In particular, several Einziehmatrizen be switched with decreasing inner diameter to form a multiple train in series.

In einer bevorzugten Ausführungsform des Verfahrens wird in einem Abstreckschritt die Rohrwandstärke durch einmaliges oder mehrmaliges Abstrecken zumindest bereichsweise reduziert. Beim an sich bekannten Abstrecken wirkt die Umformkraft in axialer Richtung mittels einer Einziehmatrize auf die Rohrwandung ein. Dies führt einerseits zu einer Reduzierung der Rohrwandstärke, andererseits zu einer Verlängerung des Rohlings in Schubrichtung der Einziehmatrize. Auch die Reduzierung der Rohrwandstärke kann durch einen oder mehrere, aufeinander folgende Abstreckvorgänge bzw. mittels eines Mehrfachzugs entlang des jeweils gewünschten Rohrbereichs erfolgen.In a preferred embodiment of the method, the pipe wall thickness is reduced at least in regions by stretching once or more times in an ironing step. In the known stretching the forming force acts in the axial direction by means of a Einziehmatrize on the pipe wall. On the one hand, this leads to a reduction of the pipe wall thickness, on the other hand to an extension of the blank in the thrust direction of the draw-in die. The reduction of the pipe wall thickness can also be effected by one or more, successive ironing operations or by means of a multiple train along the respective desired pipe region.

Optional umfasst das Kaltumformverfahren einen Rohrwandstärken-Reduzierungschritt zur spanabhebenden Reduzierung der Rohrwandstärke in einem oder mehreren der Rohrbereiche. Beispielsweise lässt sich die Rohrwandstärke in den gewünschten Rohrbereichen durch Drehen reduzieren. Im Gegensatz zum Abstrecken wird das Rohrmaterial hierbei nicht umgeformt sondern abgetragen, sodass keine Kaltverfestigung, die zu einer erhöhten Werkstofffestigkeit führt stattfindet. Vorzugsweise eignet sich die Reduzierung der Rohrwandstärke durch spanabhebende Bearbeitung für einen oder beide Rohrendabschnitte.Optionally, the cold forming process includes a tube wall thickness reducing step for cutting the tube wall thickness in one or more of the tube sections. For example, the pipe wall thickness in the desired pipe sections can be reduced by turning. In contrast to stretching, the pipe material is not deformed but removed, so that no work hardening takes place, which leads to an increased material strength. Preferably, the Reduction of pipe wall thickness by machining for one or both pipe end sections.

Gemäß einer Verfahrensvariante wird die Rohraufweitung mittels eines Aufweitschritts ausgebildet, wobei der zweite Rohrbereich gegenüber einem benachbarten Rohrbereich um mindestens 20 % aufgeweitet wird. Hierzu wird ein Aufweitdorn ausgehend von einem Rohrendabschnitt in das Rohrinnere eingeführt. Ähnlich wie beim Einziehen wirkt die Umformkraft auch beim Aufweiten in axialer Richtung auf die Rohrwandung ein. Hierdurch wird eine Vergrößerung des Rohrdurchmessers erzielt, während die Rohrwandstärke und folglich die Gesamtlänge des Rohrrohlings unverändert bleiben.According to a variant of the method, the pipe expansion is formed by means of an expansion step, wherein the second pipe region is widened by at least 20% with respect to an adjacent pipe region. For this purpose, an expanding mandrel is introduced starting from a pipe end in the pipe interior. Similar to drawing in, the forming force also acts on the pipe wall during expansion in the axial direction. As a result, an increase in the pipe diameter is achieved while the tube wall thickness and consequently the overall length of the tube blank remain unchanged.

Nach einer weiteren Verfahrensvariante wird der Stauchungsschritt mit einem Aufweitschritt kombiniert, wobei z.B. der erste Rohrbereich aufgeweitet und zur Ausbildung des Dickwandabschnitts gestaucht wird. Vorzugsweise wird der Präzisrohrrohling während des Aufweitschritts derart fixiert, dass eine mittels eines Aufweitdorns axial aufgebrachte Schubkraft zu einer Anstauung des Rohrmaterials in radialer Richtung führt. D.h., bereits während des Aufweitens kann eine Materialanstauung im Bereich des Dickwandabschnitts erzeugt und zur Stauchung genutzt werden.According to a further variant of the method, the compression step is combined with a widening step, wherein e.g. the first pipe section is widened and compressed to form the thick wall section. Preferably, the Präzisrohrrohling is fixed during the Aufweitschritts such that an axially applied by means of a Aufweitdorns thrust force leads to an accumulation of the pipe material in the radial direction. That is, already during the expansion, a material accumulation in the region of the thick wall section can be generated and used for compression.

In einer bevorzugten Verfahrensausgestaltung werden einer oder mehrere Rohrbereiche mit einer geringeren Werkstofffestigkeit ausgebildet. Im Kaltumformverfahren wird eine Erhöhung der Werkstofffestigkeit durch Kaltverfestigung erlangt. Je höher der Umformgrad, desto höher die resultierende Werkstofffestigkeit. Insbesondere werden einer oder beide Rohrendabschnitte, die mit einer Rohraufweitung ausbildbar sind und/oder ein Rohrbereich der zur Ausbildung eines Dickwandabschnitts gestaucht wird, mit einem (zunächst) geringeren Umformgrad ausgebildet. Durch spätere Kaltumformverfahrensschritte, wie Stauchen, Aufweiten, Abstrecken und/oder Einziehen lässt sich die Werkstofffestigkeit in den entsprechenden Rohrbereichen weiter erhöhen.In a preferred embodiment of the method, one or more tube regions are formed with a lower material strength. In the cold forming process, an increase in material strength is obtained by work hardening. The higher the degree of deformation, the higher the resulting material strength. In particular, one or both pipe end sections, which can be formed with a pipe expansion and / or a pipe section which is compressed to form a thick wall section, are formed with a (initially) lower degree of deformation. By subsequent cold forming process steps, such as upsetting, expansion, stretching and / or retraction, the material strength in the corresponding pipe sections can be further increased.

Nach einer optionalen Verfahrensvariante wird in einem Vorbearbeitungsschritt, der dem Stauchungsschritt vorausgeht, eine Stauchungskante mittels spanabhebender Bearbeitung, insbesondere durch Drehen ausgebildet. Die Stauchungskante eignet sich als Angriffsfläche für ein Stauchungswerkzeug, eine sogenannte Druckhülse, die eine Druckkraft in axialer Richtung auf die entsprechende Rohrwandung aufbringt.According to an optional process variant, in a pre-processing step preceding the compression step, a Compression edge formed by machining, in particular by turning. The compression edge is suitable as a contact surface for a compression tool, a so-called pressure sleeve, which applies a compressive force in the axial direction of the corresponding pipe wall.

In einem optionalen Verfahrensschritt, einem Rohrenden-Bearbeitungsschritt, werden eines oder beide Rohrenden des Präzisrohrrohlings gekürzt. Insbesondere wird ein axial außen liegender Bereich des entsprechenden Rohrendes mittels eines Drehvorgangs abgestochen.In an optional process step, a pipe end machining step, one or both pipe ends of the precision pipe blank are shortened. In particular, an axially outer region of the corresponding pipe end is tapped by means of a turning operation.

Das erfindungsgemäße Kaltumformverfahren kann neben der Herstellung von Stoßdämpferinnenrohren auch zur Herstellung anderer Stoßdämpferrohre, wie beispielsweise von Stoßdämpferaußenrohren, aber auch zur Herstellung sonstiger Rohre in anderen Anwendungsgebieten mit hohen Anforderungen an Materialeigenschaften und Präzision Verwendung finden.The cold forming method according to the invention can be used in addition to the production of shock absorber inner tubes for the production of other shock absorber tubes, such as shock absorber outer tubes, but also for the production of other tubes in other applications with high demands on material properties and precision.

Hinsichtlich des Stoßdämpferrohres wird die Erfindungsaufgabe durch ein Stoßdämpferrohr gemäß Anspruch 13 gelöst. Vorteilhafte Weiterbildungen sind in den zugehörigen Unteransprüchen genannt. Das Stoßdämpferrohr sowie dessen Ausgestaltungen und Vorteile wurden zum Großteil bereits anhand des erfindungsgemäßen Verfahrens erläutert. Nachfolgend werden daher lediglich ein Teil der Merkmale und/oder deren Vorteile näher erläutert.With regard to the shock absorber tube, the object of the invention is achieved by a shock absorber tube according to claim 13. Advantageous developments are mentioned in the accompanying subclaims. The shock absorber tube and its embodiments and advantages have been largely explained already with reference to the method according to the invention. Therefore, only a part of the features and / or their advantages will be explained in more detail below.

Bezüglich eines erfindungsgemäßen Stoßdämpferrrohres weist insbesondere eine Oberflächenstruktur einer Rohrinnenwandung im Bereich des Dickwandabschnitts weder Kerben, noch Nuten, Rillen, Riefen, Poren oder ähnliche Unebenheiten innerhalb der Oberfläche der Rohrinnenwand auf, die bei herkömmlichen Stauchungsverfahren eine Folge des radial von innen nach außen stattfindenden Materialversatzes sind. In vorteilhafter Ausgestaltung weist das Stoßdämpferrohr entlang der gesamten Oberfläche der Rohrinnenwandung, eine selbe Oberflächenqualität auf, wobei die Rauhheit höchstens 5 µm beträgt. In einer weiteren vorteilhaften Ausgestaltung ist das Stoßdämpferrohr als Leichtbauteil ausgeführt. Beispielsweise sind alle Rohrabschnitte (d.h., auch die Rohraufweitung), mit Ausnahme des Dickwandabschnitts, dünnwandig ausgebildet. Das Verhältnis der Rohrwandstärke zwischen einem Dickwand- und einem Dünnwandabschnitt beträgt hierbei in etwa 1:4. Insbesondere weist der Dickwandabschnitt eine minimale Rohrwandstärke von 7 mm auf und die Dünnwandabschnitte eine maximale Rohrwandstärke von 1,7 mm. Die Rohrwandungen sind frei von Rissen oder ähnlichen Materialfehlern. Zur Aufnahme einer Dichtung, insbesondere eines O-Rings ist der Dickwandabschnitt mit einer umlaufenden Nut bzw. Ringnut versehen.With regard to a shock absorber tube according to the invention, in particular a surface structure of a tube inner wall in the region of the thick wall section has neither notches nor grooves, grooves, grooves, pores or similar unevennesses within the surface of the tube inner wall, which in conventional compression methods are a consequence of the material offset occurring radially from the inside to the outside , In an advantageous embodiment, the shock absorber tube along the entire surface of the tube inner wall, a same surface quality, wherein the roughness is at most 5 microns. In a further advantageous embodiment, the shock absorber tube is designed as a lightweight component. For example, all pipe sections (ie, the pipe expansion), with the exception of the thick wall section, formed thin-walled. The ratio of the pipe wall thickness between a thick wall and a thin wall section is approximately 1: 4. In particular, the thick wall section has a minimum pipe wall thickness of 7 mm and the thin wall sections a maximum pipe wall thickness of 1.7 mm. The pipe walls are free of cracks or similar material defects. To accommodate a seal, in particular an O-ring, the thick-wall section is provided with a circumferential groove or annular groove.

Weitere Einzelheiten, Merkmale, Merkmals(unter) kombinationen, Vorteile und Wirkungen auf der Basis der Erfindung ergeben sich aus der nachfolgenden Beschreibung der bevorzugten Ausführungsbeispiele der Erfindung und den Zeichnungen. Es zeigen, jeweils in einer schematischen Prinzipskizze

  • Figur 1 bis 8 die Verfahrensschritte einer ersten Kaltumformverfahrensvariante zur Herstellung eines Innenrohrs aus einem Präzisrohrrohling,
  • Figur 9 ein Innenrohr, das gemäß einer ersten Kaltumformverfahrensvariante aus einem Präzisrohrrohling umgeformt wurde,
  • Figur 10 ein Innenrohr mit gestanzten Durchgangslöchern,
  • Figur 11 bis 18 die Verfahrensschritte einer zweiten Kaltumformverfahrensvariante zur Herstellung eines Innenrohrs aus einem Präzisrohrrohling,
  • Figur 19 ein Innenrohr, das gemäß einer zweiten Kaltumformverfahrensvariante aus einem Präzisrohrrohling umgeformt wurde.
Further details, features, feature (s) combinations, advantages and effects based on the invention will become apparent from the following description of the preferred embodiments of the invention and the drawings. They show, in each case in a schematic outline sketch
  • Figure 1 to 8 the method steps of a first cold forming process variant for producing an inner tube from a precision tube blank,
  • FIG. 9 an inner tube that has been formed from a precision tube blank according to a first cold forming process variant,
  • FIG. 10 an inner tube with punched through holes,
  • FIGS. 11 to 18 the method steps of a second cold forming process variant for producing an inner tube from a precision tube blank,
  • FIG. 19 an inner tube that has been reshaped from a precision tube blank according to a second cold forming process variant.

Figur 1 zeigt einen zylindrischen Präzisstahlrohr-Rohling 1 aus einem Werkstoff E 235 bzw. E 195, normalgeglüht, gemäß DIN EN 10305-2: 2010-05, mit einem Nennaußendurchmesser DN von bspw. 48 mm und einer Rohrwandstärke SR von bspw. 4 mm. Der Präzisrohrrohling 1 dient als Ausgangsrohling für eine erste Variante des erfindungsgemäßen axialen Kaltumformverfahrens zur Herstellung eines Innenrohrs 2 (s. Fig. 9) für ein Zweirohr-Stoßdämpfersystem, mit einem Innendurchmesser von bspw. 32 mm. Der Präzisrohrrohling 1 weist an einem ersten Rohrende einen ersten Rohrbereich 101 und an einem zweiten Rohrende einen zweiten Rohrbereich 102 auf. FIG. 1 shows a cylindrical precision steel tube blank 1 made of a material E 235 or E 195, normalized, according to DIN EN 10305-2: 2010-05, with a nominal outer diameter D N of, for example. 48 mm and a Pipe wall thickness S R of, for example, 4 mm. The precision tube blank 1 serves as a starting blank for a first variant of the axial cold forming method according to the invention for producing an inner tube 2 (see FIG. Fig. 9 ) for a two-pipe shock absorber system, with an inner diameter of, for example, 32 mm. The precision tube blank 1 has a first tube region 101 at a first tube end and a second tube region 102 at a second tube end.

Gemäß Figur 2 wird in einem ersten Einziehschritt der Rohrdurchmesser des Präzisrohrrohlings 1 mittels einer Einziehmatrize 3 eingezogen bzw. reduziert. Der Einziehschritt kann durch einen oder mehrere, hintereinander ausgeführte Einziehvorgänge erfolgen. Innerhalb des ersten Rohrbereichs 101 befindet sich ein Stützdorn 5, dessen Außendurchmesser dem Innendurchmesser des bereits eingezogenen, ersten Rohrbereichs 101 entspricht. Der Stützdorn 5 ist axial entlang des Doppelpfeils A bewegbar. Am axial gegenüberliegenden, zweiten Rohrbereich 102 ist ein Schubstößel 7 angeordnet, dessen Schubseite 701 sich an der Stirnseite des zweiten Rohrbereichs 102 abstützt. Der Schubstößel 7 ist axial entlang des Doppelpfeils B bewegbar. Ein Führungszapfen 702 ist passgenau in das Innere des zweiten Rohrbereichs 102 eingeschoben und dient der präzisen Führung des Schubstößels 7. Während des Einziehens übt der Schubstößel 7 eine Schubkraft auf das Rohrende des zweiten Rohrbereichs 102 aus, wodurch der Präzisrohrrohling 1 axial in Richtung der Einziehmatrize 3 bewegt wird. Der Präzisrohrrohling 1 wird zwischen Einziehmatrize 3 und Stützdorn 5 hindurch geschoben, wodurch der Rohrdurchmesser reduziert wird. Ein Ausstoßer 9 ist axial entlang des Doppelpfeils C bewegbar und zum Auslösen des Stützdorns 5 aus dem bereits eingezogenen, ersten Rohrbereich 101 vorgesehen.According to FIG. 2 In a first Einziehschritt the pipe diameter of the precision tube blank 1 is drawn or reduced by means of a Einziehmatrize 3. The drawing-in step can be carried out by one or more pull-in processes carried out in succession. Within the first tube region 101 is a support mandrel 5, the outer diameter of which corresponds to the inner diameter of the already retracted, first tube region 101. The mandrel 5 is axially movable along the double arrow A. At the axially opposite, second tube portion 102, a push rod 7 is arranged, the thrust side 701 is supported on the end face of the second tube portion 102. The push rod 7 is axially movable along the double arrow B. A guide pin 702 is snugly inserted into the interior of the second tube portion 102 and serves the precise guidance of the push rod 7. During retraction of the push rod 7 exerts a thrust force on the tube end of the second tube portion 102, whereby the Präzisrohrrohling 1 axially towards the Einziehmatrize third is moved. The Präzisrohrrohling 1 is pushed between Einziehmatrize 3 and mandrel 5 through, whereby the pipe diameter is reduced. An ejector 9 is axially movable along the double arrow C and provided for triggering the mandrel 5 from the already retracted, first tube portion 101.

In einem ersten Abstreckvorgang gemäß Figur 3 wird ein erster Abstreckdorn 11a im Inneren des Präzisrohrrohlings 1 platziert. Der erste Abstreckdorn 11a umfasst einen Führungszapfen 111 a, dessen Durchmesser in etwa dem Rohrinnendurchmesser des eingezogenen ersten Rohrbereichs 101 entspricht, eine Mitnehmerkante 112a, die sich an einer inneren Übergangskante 103 zwischen dem eingezogenen, ersten Rohrbereich 101 und einem nicht eingezogenen Bereich des Präzisrohrrohlings 1 abstützt sowie einen vorderen Arbeitsabschnitt 113a, dessen Durchmesser bspw. 32 mm beträgt und einen hinteren Arbeitsabschnitt 114a, dessen Durchmesser bspw. 39,5 mm beträgt. Während des Abstreckens wird der erste Abstreckdorn 11a axial in Richtung des Pfeils D bewegt. Die Mitnehmerkante 112a ist zum formschlüssigen Eingriff mit der Übergangskante 103 ausgebildet, sodass der erste Abstreckdorn 11a den Präzisrohrrohling 1 entlang seiner axialen Bewegungsrichtung "mitnimmt" und durch eine erste Abstreckmatrize 13a führt. Ausgehend von der Übergangskante 103 wird der Präzisrohrrohling 1 entlang der Arbeitsabschnitte 113a, 114a abgestreckt. Hierbei wird der Präzisrohrrohling 1 im Bereich des vorderen Arbeitsabschnitts 113a mit einer höheren Rohrwandstärke ausgebildet, als im Bereich des hinteren Arbeitsabschnitts 114a, wobei der Präzisrohrrohling 1 einen einheitlichen Rohraußendurchmesser entlang des abgestreckten Bereichs aufweist. Ein Abstreifer 15 ist zum Auslösen des ersten Abstreckdorns 11a aus dem Präzisrohrrohling 1 entlang des Doppelpfeils E radial bewegbar.In a first ironing operation according to FIG. 3 a first ironing mandrel 11a is placed inside the precision tube blank 1. The first ironing mandrel 11 a comprises a guide pin 111 a, whose diameter corresponds approximately to the pipe inner diameter of the retracted first pipe portion 101, a driving edge 112 a, which is supported on an inner transition edge 103 between the retracted, first pipe portion 101 and a non-retracted region of the precision tube blank 1 as well as a front Working portion 113a, whose diameter is, for example, 32 mm and a rear working portion 114a, whose diameter is, for example, 39.5 mm. During ironing, the first ironing mandrel 11a is moved axially in the direction of the arrow D. The driver edge 112a is designed for positive engagement with the transition edge 103, so that the first ironing mandrel 11a "takes along" the precision tube blank 1 along its axial direction of movement and leads through a first ironing die 13a. Starting from the transition edge 103, the precision tube blank 1 is stretched along the working sections 113a, 114a. Here, the precision tube blank 1 is formed in the region of the front working portion 113a with a higher pipe wall thickness, as in the region of the rear working portion 114a, wherein the precision tube blank 1 has a uniform pipe outside diameter along the stretched region. A scraper 15 is radially movable to trigger the first Abstreckdorns 11 a from the precision tube blank 1 along the double arrow E.

In Figur 4 ist eine erste Endposition EP 1 innerhalb des zweiten Rohrbereichs 102 markiert, die das Ende des mittels des ersten Abstreckvorgangs abgestreckten Rohrbereichs darstellt. Zur Durchführung eines zweiten Abstreckvorgangs umfasst ein zweiter Abstreckdorn 17a einen Führungszapfen 171 a, eine Mitnehmerkante 172a, die formschlüssig in die Übergangskante 103 des Präzisrohrrohlings 1 eingreift sowie einen Arbeitsabschnitt 173a, dessen Durchmesser bspw. 32 mm beträgt. Während des zweiten Abstreckvorgangs wird der Präzisrohrrohling 1 mit Hilfe des zweiten Abstreckdorns 17a in Richtung des Pfeils D bewegt und mittels einer zweiten Abstreckmatrize 19a abgestreckt. Der Abstreifer 15 ist entlang des Doppelpfeils E radial bewegbar und dient dem Auslösen des zweiten Abstreckdorns 17a aus dem Präzisrohrrohling 1.In FIG. 4 a first end position EP 1 is marked within the second tube region 102, which represents the end of the tube region which has been drawn by means of the first ironing process. To carry out a second ironing operation, a second ironing punch 17a comprises a guide pin 171a, a driving edge 172a, which engages positively in the transition edge 103 of the precision tube blank 1 and a working portion 173a whose diameter is, for example, 32 mm. During the second ironing operation, the precision tube blank 1 is moved in the direction of the arrow D by means of the second ironing mandrel 17a and is stretched by means of a second ironing die 19a. The scraper 15 is radially movable along the double arrow E and serves to trigger the second Abstreckdorns 17 a from the Präzisrohrrohling first

Gemäß Figur 5 findet ein dritter Abstreckvorgang des Präzisrohrrohlings 1 mit einem dritten Abstreckdorn 21 a, der einen Führungszapfen 211 a, eine Mitnehmerkante 212a zum Eingriff in die Übergangskante 103 sowie einen vorderen Arbeitsabschnitt 213a und einen hinteren Arbeitsabschnitt 214a aufweist. Der hintere Arbeitsabschnitt 214a ist konisch ausgebildet und dient der Auskalibrierung bzw. der Wandstärkenreduzierung einer konisch verlaufenden Rohraufweitung 204 innerhalb des zweiten Rohrbereichs 102. Die dritte Abstreckmatrize 23a weist eine hierzu komplementäre, konische Innenfläche 231 a auf. Ein vierter Abstreckvorgang gemäß Figur 6 wird mittels eines vierten Abstreckdorns 25a mit einem Führungszapfen 251 a, einer Mitnehmerkante 252a und einem Arbeitsabschnitt 253a sowie einer vierten Abstreckmatrize 27a durchgeführt. Die Rohrwandstärke des Präzisrohrrohlings 1 wird hierbei lediglich bis zur ersten Endposition EP 1 innerhalb des zweiten Rohrbereichs 102 auf bspw. 1,7 mm abgestreckt, sodass ein axial äußerer Rohrendabschnitt 104 mit geringerer Werkstofffestigkeit verbleibt.According to FIG. 5 finds a third ironing operation of the Präzisrohrrohlings 1 with a third Abstreckdorn 21 a, which has a guide pin 211 a, a driving edge 212a for engaging in the transition edge 103 and a front working portion 213a and a rear working portion 214a. The rear working portion 214a is conical and serves for the Auskalibrierung or the wall thickness reduction of a conical pipe expansion 204 within the second tube portion 102. The third The ironing die 23a has a conical inner surface 231a complementary thereto. A fourth ironing operation according to FIG. 6 is performed by means of a fourth ironing mandrel 25a with a guide pin 251a, a driving edge 252a and a working portion 253a and a fourth ironing die 27a. The tube wall thickness of the precision tube blank 1 is here only up to the first end position EP 1 within the second tube portion 102 strung to eg. 1.7 mm, so that an axially outer tube end portion 104 remains with less material strength.

In Figur 7 ist der Präzisrohrrohling 1 nach der Durchführung eines Vorbearbeitungsschritts dargestellt. Während des Vorbearbeitungsschritts wird einerseits die Rohrwandstärke des ersten Rohrbereichs 101 teilweise durch Drehen reduziert, sodass eine Stauchungskante 105 entsteht. Andererseits wird der äußere Rohrendenabschnitt 104 (s. Figur 6) durch Drehen entfernt bzw. abgestochen.In FIG. 7 the precision tube blank 1 is shown after performing a pre-processing step. During the pre-processing step, on the one hand, the pipe wall thickness of the first pipe region 101 is partially reduced by turning, so that a compression edge 105 is created. On the other hand, the outer pipe end portion 104 (see FIG. FIG. 6 ) removed by turning or tapping.

Ein Stauchungs-/Aufweitschritt zur Stauchung und Aufweitung des ersten Rohrbereichs 101 ist in Figur 8 dargestellt. Ein Aufweitdorn 29a wird hierzu axial in das Innere des ersten Rohrbereichs 101, entlang des Doppelpfeils F geschoben. Ein Gegenhalter 31 a, der axial entlang des Doppelpfeils G bewegbar ist, arretiert den Präzisrohrrohling 1 in axialer Richtung. Zur radialen Arretierung umgibt eine 2-teilige Matrize 33a den Präzisrohrrohling 1, die entlang des Doppelpfeils H scharniergelenkig auf- bzw. zuklappbar ist. Die 2-teilige Matrize 33a wird wiederum in axialer Richtung zwischen einer Druckplatte 35a sowie einem federgestützten Matrizenring 37a, der axial entlang des Doppelpfeils K bewegbar ist, fixiert. Der Aufweitdorn 29a umfasst einen konischen Arbeitsabschnitt 291 a welcher das Rohrmaterial des Präzisrohrrohlings 1 radial in Richtung der Rohraußenwand umformt, sodass eine Rohraufweitung im ersten Rohrbereich 101 ausgebildet wird. Gleichzeitig wird eine Materialverdickung bzw. -anstauung 106 zwischen dem konischen Arbeitsabschnitt 291 a und einer Innenkante 331 a der 2-teiligen Matrize 33a erzeugt. Eine Druckhülse 39a ist axial entlang des Doppelpfeils I bewegbar und greift an der Stauchungskante 105 des Präzisrohrrohlings 1 an. Hierbei wird der erste Rohrbereich 101 mit einem Druck (bis zu 100 t) beaufschlagt, sodass das Rohrmaterial in radialer Richtung umgeformt bzw. gestaucht wird. Da der Aufweitdorn 29a eine Materialverlagerung in das Rohrinnere verhindert, wird das Material so lange radial nach außen verlagert, bis ein Anschlag 371 a des federgestützten Matrizenrings 37a erreicht ist. Die gewünschte Formgebung des aufgeweiteten/gestauchten ersten Rohrbereichs 101 wird präzise durch die Geometrie der ineinander greifenden und/oder zueinander komplementär angeordneten Werkzeugkomponenten, insbesondere des Aufweitdorns 29a, der 2-teiligen Matrize 33a, der Druckhülse 39a und des Matrizenrings 37a festgelegt.A compression / expansion step for compressing and expanding the first pipe portion 101 is shown in FIG FIG. 8 shown. For this purpose, an expanding mandrel 29 a is pushed axially into the interior of the first pipe region 101, along the double arrow F. A counter-holder 31 a, which is axially movable along the double arrow G, locks the precision tube blank 1 in the axial direction. For radial locking surrounds a 2-part die 33a the Präzisrohrrohling 1, the hinged along the double arrow H hinged or can be folded. The 2-part die 33a is in turn fixed in the axial direction between a pressure plate 35a and a spring-supported die ring 37a, which is axially movable along the double arrow K ,. The expanding mandrel 29 a comprises a conical working portion 291 a which radially transforms the tube material of the precision tube blank 1 in the direction of the tube outer wall, so that a tube expansion is formed in the first tube region 101. At the same time a material thickening or -ausauung 106 between the conical working portion 291 a and an inner edge 331 a of the 2-part die 33 a generated. A pressure sleeve 39 a is axially movable along the double arrow I and engages the compression edge 105 of the precision tube blank 1. In this case, the first pipe region 101 is subjected to a pressure (up to 100 t), so that the pipe material is deformed or compressed in the radial direction. There the Aufweitdorn 29a prevents a material shift into the tube interior, the material is displaced radially outward until a stop 371 a of the spring-supported Matrizenrings 37a is reached. The desired shape of the expanded / compressed first tube portion 101 is precisely determined by the geometry of the interengaging and / or complementary tool components, in particular the mandrel 29a, the 2-part die 33a, the pressure sleeve 39a and the die ring 37a.

In Figur 9 ist ein Innenrohr 2 dargestellt, das aus einem Präzisrohrrohling 1 kaltumgeformt wurde. Das Innenrohr 2 umfasst einen Dickwandabschnitt 201, einen Rohrendenabschnitt 202, dessen Rohrinnendurchmesser bspw. 39,5 mm beträgt, ein Rohrmittelstück 203 dessen Rohrinnendurchmesser bspw. 32 mm beträgt sowie eine dazwischen angeordnete, konisch verlaufenden Rohraufweitung 204. Der Dickwandabschnitt 201 weist einen variablen Rohrinnendurchmesser auf und kann mit einer maximalen Rohrwandstärke von bspw. 7 mm ausgebildet sein. Innerhalb des Dickwandabschnitts 201 ist eine Ringnut 205, insbesondere durch Drehen ausgebildet, die zur Aufnahme, bspw. einer O-Ring Dichtung geeignet ist. Mit Ausnahme des Dickwandabschnitts 201 ist das Innenrohr 2 nach Leichtbauweise mit einer Rohrwandstärke von bspw. 1,7 mm ausgebildet. Figur 10 zeigt einen Teil des Innenrohrs 2 aus Figur 9, in dessen Rohraufweitung 204 z. B. vier Durchgangslöcher 206 gestanzt sind. Gemäß dem Pfeil L wurden die Durchgangslöcher 206 ausgehend vom Rohrinneren in Richtung des Rohräußeren gestanzt. Zum Einbau in ein Zweirohr-Stoßdämpfersystem wird der Rohrendenabschnitt 202 des Innenrohrs 2 mit einem entsprechenden Rohrabschnitt eines Außenrohrs fluiddicht verbunden. Die Durchgangslöcher 206 dienen der Verbindung des Arbeitsraums mit dem Ausgleichsraum.In FIG. 9 an inner tube 2 is shown, which was cold-formed from a Präzisrohrrohling 1. The inner tube 2 comprises a thick-walled section 201, a tube-end section 202 whose inner tube diameter is, for example, 39.5 mm, a central tube 203 whose inner tube diameter is, for example, 32 mm and an interposed, conically extending tube expansion 204. The thick-wall section 201 has a variable inner tube diameter and may be formed with a maximum pipe wall thickness of, for example. 7 mm. Within the thick wall portion 201 is an annular groove 205, in particular formed by turning, which is suitable for receiving, for example. An O-ring seal. With the exception of the thick wall portion 201, the inner tube 2 is formed by lightweight construction with a tube wall thickness of, for example, 1.7 mm. FIG. 10 shows a part of the inner tube 2 from FIG. 9 , in the pipe expansion 204 z. B. four through holes 206 are punched. According to the arrow L, the through holes 206 were punched from the inside of the tube in the direction of the tube outer. For installation in a two-pipe shock absorber system, the pipe end portion 202 of the inner pipe 2 is fluid-tightly connected to a corresponding pipe section of an outer pipe. The through holes 206 serve to connect the working space with the compensation space.

Figur 11 stellt den zylinderförmigen Präzisstahlrohr-Rohling 1 in einer entlang der mittleren Querachse gespiegelten Ansicht gegenüber der Figur 1 dar. Der Präzisrohrrohling 1 dient als Ausgangsrohling für eine zweite Variante des erfindungsgemäßen axialen Kaltumformverfahrens zur Herstellung eines Innenrohrs 2 (s. Figur 19) für ein Zweirohr-Stoßdämpfersystem, mit einem Innendurchmesser von bspw. 36 mm. Der Präzisrohrrohling 1 weist an seinem ersten Rohrende einen ersten Rohrbereich 101 und an seinem zweiten Rohrende einen zweiten Rohrbereich 102 auf. FIG. 11 represents the cylinder-shaped precision steel tube blank 1 in a mirror-image along the central transverse axis with respect to the FIG. 1 The precision tube blank 1 serves as a starting blank for a second variant of the axial cold forming method according to the invention for producing an inner tube 2 (see FIG. FIG. 19 ) for a two-pipe shock absorber system, with an inner diameter of, for example, 36 mm. The precision tube blank 1 has at its first pipe end a first pipe portion 101 and at its second pipe end a second pipe portion 102.

Anders als in der ersten Variante wird gemäß Figur 12 in einem Einziehschritt ein zweiter Rohrbereich 102 des Präzisrohrrohlings 1 mittels einer Einziehmatrize 3 gekrümpelt, d.h. lediglich die Stirnseite des Rohrendbereichs 102 wird radial in das Rohrinnere weisend umgeformt. Auf einen Stützdorn 5, gemäß Figur 2, kann hierbei verzichtet werden. Der Schubstößel 7 dient analog der ersten Verfahrensvariante der Aufbringung eines axialen Schubs in Richtung der Einziehmatrize 3, entlang des Doppelfeils B auf den Präzisrohrrohling 1 und wird mittels des Führungszapfens 702 geführt.Unlike in the first variant is according to FIG. 12 in a drawing-in step, a second tube region 102 of the precision tube blank 1 is curled by means of a draw-in die 3, ie only the end face of the tube end region 102 is deformed radially into the interior of the tube. On a mandrel 5, according to FIG. 2 , can be omitted here. The push rod 7 is analogous to the first method variant of the application of an axial thrust in the direction of Einziehmatrize 3, along the double-headed B on the precision tube blank 1 and is guided by means of the guide pin 702.

Gemäß Figur 13 kann ein optionaler Rohrwandstärken-Reduzierungsschritt zur Reduzierung der Rohrwandstärke des zweiten Rohrbereichs 102 des Präzisrohrrohlings 1 erfolgen. In Figur 14 wird der Präzisrohrrohling 1 in einem ersten Abstreckvorgang auf eine einheitliche Rohrwandstärke abgestreckt. Hierzu greift ein erster Abstreckdorn 11 b mit einer Mitnehmerkante 112b an der Krümpelung 106 des zweiten Rohrbereichs 102 an, sodass der Präzisrohrrohling 1 in Richtung des Pfeils D "mitgenommen" und durch die erste Abstreckmatrize 13b geführt wird. Der Abstreifer 15 ist entlang des Doppelpfeils E radial bewegbar und dient dem Auslösen des ersten Abstreckdorns 11 b aus dem Präzisrohrrohling 1.According to FIG. 13 For example, an optional tube wall thickness reduction step may be used to reduce the tube wall thickness of the second tube section 102 of the precision tube blank 1. In FIG. 14 For example, the precision tube blank 1 is stretched to a uniform tube wall thickness in a first ironing operation. For this purpose, a first ironing mandrel 11b engages with a driving edge 112b on the crimp 106 of the second pipe region 102, so that the precision pipe blank 1 is "taken along" in the direction of the arrow D and guided through the first ironing die 13b. The scraper 15 is radially movable along the double arrow E and serves to trigger the first Abstreckdorns 11 b from the Präzisrohrrohling first

Figur 15 stellt einen zweiten Abstreckvorgang mit einem zweiten Abstreckdorn 17b dar, dessen Mitnehmerkante 172b sich an der Krümpelung 106 des zweiten Rohrbereichs 102 abstützt und den Präzisrohrrohling 1 in Arbeitsrichtung (Pfeil D) durch die zweite Abstreckmatrize 19b führt. Die Rohrwandstärke des Präzisrohrrohlings 1 wird ausgehend von der Krümpelung 106 bis hin zu einer zweiten Endposition EP 2 reduziert. Ein dritter Abstreckvorgang ist der Figur 16 zu entnehmen. Mithilfe eines dritten Abstreckdorns 21 b, der eine Mitnehmerkante 212b aufweist, wird der Präzisrohrrohling 1 ausgehend von dessen Krümpelung 106 bis hin zur zweiten Endposition EP 2 auf eine Rohrwandstärke von bspw. 1,7 mm abgestreckt. Hierzu umfasst eine Zwillingsmatrize 41 einen Abstreckabschnitt 411 mit entsprechendem Innendurchmesser. Der Innendurchmesser eines Bügelabschnitts 412 der Zwillingsmatrize 41 entspricht dem Rohraußendurchmesser des ersten Rohrbereichs 101. Während des Abstreckvorgangs "bügelt" der Bügelabschnitt 412 den ersten Rohrbereich 101, wodurch dieser exakt am Abstreckdorn 21 b zum Anliegen kommt, dessen Rohrwandstärke jedoch nicht verändert wird. FIG. 15 represents a second ironing operation with a second ironing mandrel 17b, the Mitnehmerkante 172b is supported on the Krümpelung 106 of the second pipe portion 102 and the precision tube blank 1 in the working direction (arrow D) through the second ironing die 19b. The tube wall thickness of the precision tube blank 1 is reduced starting from the crimp 106 up to a second end position EP 2. A third ironing process is the FIG. 16 refer to. With the aid of a third ironing mandrel 21 b, which has a driver edge 212 b, the precision tube blank 1 is stretched starting from its crimping 106 up to the second end position EP 2 to a tube wall thickness of, for example, 1.7 mm. For this purpose, a twin die 41 comprises an ironing section 411 with a corresponding inner diameter. Of the Inner diameter of a stirrup portion 412 of the twin die 41 corresponds to the pipe outside diameter of the first pipe portion 101. During the ironing operation, the stirrup portion 412 "irons" the first pipe portion 101, thereby exactly abutting the ironing mandrel 21b, but without changing the pipe wall thickness.

Figur 17 stellt den Präzisrohrrohling 1 in einer entlang der mittleren Querachse gespiegelten Ansicht gegenüber den Figuren 11 bis 16 dar. Analog zur Figur 7 der ersten Verfahrensvariante, ist die Durchführung eines Vorbearbeitungsschritts dargestellt. Hierbei wird die Rohrwandstärke des Präzisrohrrohlings 1 innerhalb des ersten Rohrbereichs 101 teilweise durch Drehen reduziert, sodass eine Stauchungskante 105 entsteht. Die stirnseitig am zweiten Rohrbereich 102 angeordnete Krümpelung 106 (s. Fig. 16) wird ebenfalls mittels einer Drehoperation entfernt bzw. abgestochen und ist bereits nicht mehr dargestellt. FIG. 17 represents the precision tube blank 1 in a mirrored along the median transverse axis view of the FIGS. 11 to 16 dar. Analog to FIG. 7 the first method variant, the implementation of a Vorbearbeitungsschritts is shown. Here, the tube wall thickness of the precision tube blank 1 is partially reduced by rotation within the first tube region 101, so that a compression edge 105 is formed. The front side of the second tube portion 102 arranged Krümpelung 106 (s. Fig. 16 ) is also removed or tapped by means of a turning operation and is already no longer shown.

Figur 18 zeigt einen Stauchungs-/Aufweitschritt der zweiten Verfahrensvariante. Zur Stauchung des ersten Rohrbereichs 101 ist ein Stützdorn 43, der entlang des Doppelpfeils N in axialer Richtung bewegbar ist, innerhalb des ersten Rohrbereichs 101 passgenau angeordnet. Analog zur ersten Verfahrensvariante greift eine Druckhülse 39b an der Stauchungskante 105 an und übt einen hohen Druck (bis zu 100t) auf diese aus. Ein Gegenhalter 31 b sowie eine 2-teilige Matrize 33b arretieren den Präzisrohrrohling 1 in axialer Richtung, sodass eine radiale Stauchung des Rohrmaterials innerhalb des ersten Rohrbereichs 101 resultiert. Der Stützdorn 43 verhindert eine Materialverlagerung in das Rohrinnere. Durch den aufgebrachten Druck wird das Rohrmaterial so lange radial nach außen verlagert, bis ein Anschlag 371 b eines federgestützten Matrizenrings 37b erreicht ist. Die gewünschte Formgebung des gestauchten ersten Rohrbereichs 101 wird präzise durch die Geometrie der ineinander greifenden und/oder zueinander komplementär angeordneten Werkzeugkomponenten, insbesondere des Stützdorns 43, der 2-teiligen Matrize 33b, der Druckhülse 39b und des Matrizenrings 37b festgelegt. Der zweite Rohrbereich 102 wird mittels eines Aufweitdorns 29b, der einen konischen Arbeitsabschnitt 291 b umfasst aufgeweitet. Die 2-teilige Matrize 33b, die entlang des Doppelpfeils H scharniergelenkig aufklappbar ist, weist hierzu einen komplementär angeordneten, ebenfalls konischen Abschnitt 331 b auf. Eine Druckplatte 35b stützt die 2-teilige Matrize 33b in axialer Richtung ab. Vorzugsweise geht der Stauchvorgang dem Aufweitvorgang voraus. Im Gegensatz zur ersten Verfahrensvariante bleibt der Rohrinnendurchmesser des ersten Bereichs 101 während des gesamten Aufweit-/Stauchschritts unverändert. FIG. 18 shows a compression / expansion step of the second variant of the method. For compression of the first tube portion 101, a support pin 43 which is movable along the double arrow N in the axial direction, within the first tube portion 101 accurately arranged. Analogous to the first variant of the method, a pressure sleeve 39b engages against the compression edge 105 and exerts a high pressure (up to 100 t) on it. A counter-holder 31 b and a 2-part die 33b lock the precision tube blank 1 in the axial direction, so that a radial compression of the tube material within the first tube portion 101 results. The support mandrel 43 prevents material displacement in the tube interior. Due to the applied pressure, the tube material is displaced radially outward until a stop 371b of a spring-supported die ring 37b is reached. The desired shape of the compressed first pipe portion 101 is precisely determined by the geometry of the interlocking and / or complementary tool components, in particular the support mandrel 43, the 2-part die 33b, the pressure sleeve 39b and the die ring 37b. The second tube section 102 is widened by means of an expanding mandrel 29 b, which comprises a conical working section 291 b. The 2-part die 33b, which is hingedly hinged along the double arrow H, points to this a complementarily arranged, also conical section 331 b. A pressure plate 35b supports the 2-part die 33b in the axial direction. Preferably, the upsetting process precedes the expansion process. In contrast to the first method variant, the inner tube diameter of the first region 101 remains unchanged during the entire expansion / compression step.

In Figur 19 ist ein Innenrohr 2 dargestellt, das aus einem Präzisrohrrohling 1 kaltumgeformt wurde. Das Innenrohr 2 umfasst einen Dickwandabschnitt 201, einen Rohrendenabschnitt 202 dessen Rohrinnendurchmesser bspw. 39,5 mm beträgt, ein Rohrmittelstück 203 sowie eine dazwischen angeordnete, konisch verlaufende Rohraufweitung 204. Mit Ausnahme des Rohrendenabschnitts 202 und der Rohraufweitung 204 beträgt der Rohrinnendurchmesser des Innenrohrs 2 konstant bspw. 36 mm. Innerhalb des Dickwandabschnitts 201 ist eine Ringnut 205 angeordnet, die zur Aufnahme, beispielsweise einer O-Ring Dichtung, insbesondere durch Drehen ausgebildet ist. Die Rohrwandstärke des Innenrohrs 2 beträgt bspw. 1,7 mm innerhalb der dünnwandigen Abschnitte und bspw. 5 mm innerhalb des Dickwandabschnitts 201. Das Innenrohr 2 gemäß Figur 19 kann ebenfalls mit gestanzten Durchgangslöchern 206 (s. Fig. 10) versehen sein.In FIG. 19 an inner tube 2 is shown, which was cold-formed from a Präzisrohrrohling 1. The inner tube 2 comprises a thick-walled section 201, a tube-end section 202 whose inner tube diameter is, for example, 39.5 mm, a center tube 203 and a conically extending tube expansion 204 arranged therebetween. With the exception of the tube-end section 202 and the tube expansion 204, the tube inner diameter of the inner tube 2 is constant eg 36 mm. Within the thick wall portion 201, an annular groove 205 is arranged, which is designed for receiving, for example, an O-ring seal, in particular by turning. The tube wall thickness of the inner tube 2 is, for example, 1.7 mm within the thin-walled sections and, for example, 5 mm within the thick-wall section 201. The inner tube 2 according to FIG FIG. 19 can also be punched through-holes 206 (see FIG. Fig. 10 ) be provided.

Die einzelnen Verfahrensschritte der beiden Verfahrensvarianten lassen sich beliebig miteinander kombinieren, wodurch einerseits die zuvor beschriebenen Varianten abgeändert werden können, aber auch neue Verfahrensvarianten entstehen.

1
Präzisrohrrohling
101
erster Rohrbereich
102
zweiter Rohrbereich
103
Übergangskante
104
äußeres Rohrendstück
105
Stauchungskante
106
Krümpelung
2
Innenrohr
201
Dickwandabschnitt
202
Rohrendenabschnitt
203
Rohrmittelstück
204
Rohraufweitung
205
Ringnut
206
Durchgangsloch
3
Einziehmatrize
5
Stützdorn
7
Schubstößel
701
Schubkante
702
Führungszapfen
9
Ausstoßer
11a, b
erster Abstreckdorn
111a
Führungszapfen
112a, b
Mitnehmerkante
113a
vorderer Arbeitsabschnitt
114a
hinterer Arbeitsabschnitt
13a, b
erste Abstreckmatrize
15
Abstreifer
17a, b
zweiter Abstreckdorn
171 a
Führungszapfen
172a, b
Mitnehmerkante
173a
Arbeitsabschnitt
19a, b
zweite Abstreckmatrize
21 a, b
dritter Abstreckdorn
211 a
Führungszapfen
212a, b
Mitnehmerkante
213a
vorderer Arbeitsabschnitt
214a
hinterer Arbeitsabschnitt
23a
dritte Abstreckmatrize
231 a
konische Innenfläche
25a
vierter Abstreckdorn
251 a
Führungszapfen
252a
Mitnehmerkante
253a
Arbeitsabschnitt
27a
vierte Abstreckmatrize
29a, b
Aufweitdorn
291 a, b
konischer Arbeitsabschnitt
31a, b
Gegenhalter
33a, b
2-teilige Matrize
331 a
Innenkante
35a, b
Druckplatte
37a, b
Matrizenring
371a, b
Anschlag
39a, b
Druckhülse
41
Zwillingsmatrize
411
Abstreckabschnitt
412
Bügelabschnitt
43
Stützdorn
A, B, C, E, F, G, H, I, K, N
Doppelpfeil
D, L
Pfeil
EP 1
erste Endposition
EP 2
zweite Endposition
DN
Nenndurchmesser des Präzisrohrrolings
SR
Rohrwandstärke des Präzisrohrrohlings
The individual method steps of the two variants of the method can be combined with one another as desired, whereby on the one hand the variants described above can be modified, but also new variants of the method are created.
1
Präzisrohr blank
101
first pipe area
102
second pipe section
103
Transition edge
104
outer pipe end piece
105
Upsetting edge
106
Krümpelung
2
inner tube
201
Thick wall section
202
Pipe end section
203
Pipe centerpiece
204
tube expansion
205
ring groove
206
Through Hole
3
swaging
5
mandrel
7
thrust ram
701
thrust edge
702
spigot
9
ejector
11a, b
first ironing punch
111
spigot
112a, b
entrainment
113a
front working section
114a
rear working section
13a, b
first ironing die
15
scraper
17a, b
second ironing mandrel
171 a
spigot
172a, b
entrainment
173a
working section
19a, b
second ironing die
21 a, b
third ironing mandrel
211 a
spigot
212a, b
entrainment
213a
front working section
214a
rear working section
23a
third ironing die
231 a
conical inner surface
25a
fourth ironing mandrel
251 a
spigot
252a
entrainment
253a
working section
27a
fourth ironing die
29a, b
mandrel
291 a, b
conical working section
31a, b
backstop
33a, b
2-part matrix
331 a
inner edge
35a, b
printing plate
37a, b
die ring
371a, b
attack
39a, b
pressure sleeve
41
Zwillingsmatrize
411
Abstreckabschnitt
412
bow section
43
mandrel
A, B, C, E, F, G, H, I, K, N
double arrow
D, L
arrow
EP 1
first end position
EP 2
second end position
D N
Nominal diameter of the precision tube roller blind
S R
Pipe wall thickness of the precision tube blank

Claims (17)

Kaltumformverfahren zur Herstellung eines Stoßdämpferrohres (2), insbesondere eines Stoßdämpfer-Innenrohrs für ein Zweirohr-Stoßdämpfer-/Federbeinsystem für Kraftfahrzeuge, wobei in mehreren Kaltumform-Verfahrensschritten wenigstens ein erster und ein zweiter Rohrbereich (101, 102) eines Präzisrohrrohlings (1) zu Rohrabschnitten (201, 202, 203, 204) des Stoßdämpferrohres (2) mit voneinander abweichenden Rohrwandstärken und/oder Rohrdurchmessern ausgebildet werden,
dadurch gekennzeichnet, dass - der erste Rohrbereich (101) zur Ausbildung eines Dickwandabschnitts (201) in einem Stauchungsschritt gestaucht wird, wobei die Rohrwandstärke im Bereich des Dickwandabschnitts (201) erhöht wird, und/oder - der zweite Rohrbereich (102) zur Ausbildung einer Rohraufweitung (204) mit einem ersten Rohrdurchmesser versehen wird und ein dem zweiten benachbarter Rohrbereich (203) mit einem zweiten Rohrdurchmesser versehen wird, wobei eine Differenz zwischen dem ersten Rohrdurchmesser und dem zweiten Rohrdurchmesser mindestens 20 % beträgt.
Cold forming method for producing a shock absorber tube (2), in particular a shock absorber inner tube for a two-tube shock absorber / strut system for motor vehicles, wherein in several cold forming process steps, at least a first and a second tube portion (101, 102) of a precision tube blank (1) to pipe sections (201, 202, 203, 204) of the shock absorber tube (2) are formed with diverging pipe wall thicknesses and / or pipe diameters,
characterized in that - The first tube portion (101) for forming a thick wall portion (201) is compressed in a compression step, wherein the tube wall thickness in the region of the thick wall portion (201) is increased, and / or the second tube region (102) is provided with a first tube diameter to form a tube expansion (204) and a second tube diameter is provided to the second adjacent tube region (203), wherein a difference between the first tube diameter and the second tube diameter amounts to at least 20% is.
Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass während des Stauchens des ersten Rohrbereichs (101) eine Oberflächenstruktur einer Rohrinnenwandung im Bereich des Dickwandabschnitts (201) nicht oder im Wesentlichen nicht verändert wird.A method according to claim 1, characterized in that during the compression of the first pipe portion (101), a surface structure of a pipe inner wall in the region of the thick wall portion (201) is not or substantially not changed. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein Rohrinnendurchmesser im Bereich des Dickwandabschnitts (201) während des Stauchens des ersten Rohrbereichs (101) nicht oder im Wesentlichen nicht verändert wird.Method according to one of the preceding claims, characterized in that a tube inner diameter in the region of the thick wall portion (201) during the compression of the first tube portion (101) is not or substantially not changed. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Rohrwandstärke im Bereich der Rohraufweitung (204) gegenüber der Rohrwandstärke des Präzisrohrrohlings (1) reduziert wird.Method according to one of the preceding claims, characterized in that the pipe wall thickness in the region of pipe expansion (204) is reduced with respect to the tube wall thickness of the precision tube blank (1). Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass in einem Einziehschritt durch einmaliges oder mehrmaliges Einziehen, der Durchmesser des Präzisrohrrohlings (1) zumindest bereichsweise reduziert wird.Method according to one of the preceding claims, characterized in that in a retraction step by retracting once or several times, the diameter of the precision tube blank (1) is at least partially reduced. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass in einem Abstreckschritt durch einen oder mehrere Abstreckvorgänge die Rohrwandstärke des Präzisrohrrohlings (1) zumindest bereichsweise reduziert wird.Method according to one of the preceding claims, characterized in that in an ironing step by one or more ironing operations, the tube wall thickness of the Präzisrohrrohlings (1) is at least partially reduced. Verfahren nach einem der vorhergehenden Ansprüche, gekennzeichnet durch einen Rohrwandstärken-Reduzierungschritt, wobei die Rohrwandstärke in einem oder mehreren der Rohrbereiche (101, 102) mittels spanabhebender Bearbeitung reduziert wird.Method according to one of the preceding claims, characterized by a tube wall thickness reduction step, wherein the tube wall thickness in one or more of the tube regions (101, 102) is reduced by machining. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Rohraufweitung (204) in einem Aufweitschritt durch Aufweiten ausgebildet wird, wobei der zweite Rohrbereich (102) gegenüber einem benachbarten Rohrbereich um mindestens 20 % aufgeweitet wird.Method according to one of the preceding claims, characterized in that the tube expansion (204) is formed by expansion in a widening step, wherein the second tube region (102) is widened by at least 20% with respect to an adjacent tube region. Verfahren nach einem der vorhergehenden Ansprüche, gekennzeichnet durch einen Stauchungs-/Aufweitschritt, wobei der Stauchungsschritt mit einem Aufweitschritt kombiniert wird, und ein selber Rohrbereich (101, 102) aufgeweitet und gestaucht wird.Method according to one of the preceding claims, characterized by a compression / expansion step, wherein the compression step is combined with a widening step, and a self-pipe portion (101, 102) is widened and compressed. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass einer oder mehrere Rohrbereiche (101, 102) mit einer geringeren Werkstofffestigkeit ausgebildet werden.Method according to one of the preceding claims, characterized in that one or more tube regions (101, 102) are formed with a lower material strength. Verfahren nach einem der vorhergehenden Ansprüche, gekennzeichnet durch einen Vorbearbeitungsschritt zur Ausbildung einer Stauchungskante (105), wobei die Stauchungskante (105) durch spanabhebende Bearbeitung ausgebildet wird.Method according to one of the preceding claims, characterized by a pre-processing step for forming a compression edge (105), wherein the compression edge (105) by machining is trained. Verfahren nach einem der vorhergehenden Ansprüche, gekennzeichnet durch einen Rohrenden-Bearbeitungsschritt, wobei eines oder beide Rohrenden (104) des Präzisrohrrohlings (1) gekürzt werden.Method according to one of the preceding claims, characterized by a tube end machining step, wherein one or both tube ends (104) of the precision tube blank (1) are shortened. Stoßdämpferrohr (2), insbesondere Innenrohr für ein Zweirohr-Stoßdämpfer-/Federbeinsystem für Kraftfahrzeuge, das mit Hilfe eines Kaltumformverfahrens miteinander einstückig ausgebildete Rohrabschnitte (201, 202, 203, 204) mit voneinander abweichenden Rohrdurchmessern und/oder Rohrwandstärken aufweist, wobei einer oder mehrere Rohrabschnitte (201, 202, 203, 204) eine durch Kaltverfestigung erhöhte Werkstofffestigkeit aufweisen,
dadurch gekennzeichnet, dass - ein erster Rohrabschnitt als Dickwandabschnitt (201) ausgebildet ist, wobei eine Oberflächenstruktur einer Rohrinnenwandung im Bereich des Dickwandabschnitts (201) keinerlei Riefen oder sonstige Unebenheiten aufweist, und/oder - zwischen zwei einander benachbarten Rohrabschnitten (202, 203) eine Rohraufweitung (204) angeordnet ist, wobei eine Differenz der Rohrdurchmesser der benachbarten Rohrabschnitte (202, 203) mindestens 20 % beträgt
Shock absorber tube (2), in particular inner tube for a two-tube shock absorber / suspension strut system for motor vehicles, comprising integrally formed pipe sections (201, 202, 203, 204) with differing pipe diameters and / or pipe wall thicknesses using a cold forming process, wherein one or more Pipe sections (201, 202, 203, 204) have a material strength which has been increased by work hardening,
characterized in that a first pipe section is designed as a thick-wall section (201), wherein a surface structure of a pipe inner wall in the region of the thick-wall section (201) has no grooves or other irregularities, and / or - Between two adjacent pipe sections (202, 203) a pipe expansion (204) is arranged, wherein a difference in the pipe diameter of the adjacent pipe sections (202, 203) is at least 20%
Stoßdämpferrohr (2) nach Anspruch 13, dadurch gekennzeichnet, dass das Stoßdämpferrohr als Leichtbauteil ausgeführt ist, wobei einer oder mehrere Rohrabschnitte (202, 203, 204) als Dünnwandabschnitte ausgebildet sind.Shock absorber tube (2) according to claim 13, characterized in that the shock absorber tube is designed as a lightweight component, wherein one or more pipe sections (202, 203, 204) are formed as thin-wall sections. Stoßdämpferrohr (2) nach einem der Ansprüche 13 oder 14, dadurch gekennzeichnet, dass die Rohraufweitung (204) sowie deren benachbarte Rohrabschnitte (202, 203) in Leichtbauweise dünnwandig ausgebildet sind.Shock absorber tube (2) according to any one of claims 13 or 14, characterized in that the tube extension (204) and the adjacent tube sections (202, 203) are formed thin-walled in lightweight construction. Stoßdämpferrohr (2) nach einem der Ansprüche 13 bis 15, dadurch gekennzeichnet, dass das Verhältnis zwischen der Rohrwandstärke des Dickwandabschnitts (201) und der Rohrwandstärke eines Dünnwandabschnitts (202, 203, 204) mindestens 4:1 beträgt.Shock absorber tube (2) according to one of claims 13 to 15, characterized in that the ratio between the tube wall thickness of the thick wall section (201) and the tube wall thickness of a Thin wall section (202, 203, 204) is at least 4: 1. Stoßdämpferrohr (2) nach einem der Ansprüche 13 bis 16, dadurch gekennzeichnet, dass der Dickwandabschnitt (201) zur Aufnahme einer Dichtung ausgebildet ist, insbesondere mit einer Ringnut (205) versehen ist.Shock absorber tube (2) according to any one of claims 13 to 16, characterized in that the thick wall section (201) is designed to receive a seal, in particular with an annular groove (205) is provided.
EP17158722.3A 2016-03-03 2017-03-01 Shock absorber tube and method for its production Withdrawn EP3213837A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102016103824.5A DE102016103824A1 (en) 2016-03-03 2016-03-03 Shock absorber tube and method for its production

Publications (1)

Publication Number Publication Date
EP3213837A1 true EP3213837A1 (en) 2017-09-06

Family

ID=58261499

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17158722.3A Withdrawn EP3213837A1 (en) 2016-03-03 2017-03-01 Shock absorber tube and method for its production

Country Status (2)

Country Link
EP (1) EP3213837A1 (en)
DE (1) DE102016103824A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107120380A (en) * 2016-06-07 2017-09-01 北京京西重工有限公司 Damper housing and the method for manufacturing damper housing
EP3575014A1 (en) 2018-05-28 2019-12-04 Vincenz Wiederholt GmbH Shock absorber tube and method for its production
CN116020950A (en) * 2023-03-16 2023-04-28 安溪藤铁家居工业设计研究院有限公司 Flaring device for hollow rattan iron pipe orifice

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2129921A1 (en) * 1971-03-22 1972-11-03 Besson Louis
DE3708978A1 (en) 1987-03-19 1988-09-29 Boge Ag Gas-pressure damper of twin-tube telescopic design
DE4127453C1 (en) 1991-08-20 1992-11-26 August Bilstein Gmbh & Co. Kg, 5828 Ennepetal, De Twin tube shock absorber - has piston running in tube with sheet metal end piece
DE4437395A1 (en) * 1994-10-19 1996-05-02 Werdau Fahrzeugwerk Method for upsetting pipe ends and device for carrying out the method
FR2782661A1 (en) * 1998-08-25 2000-03-03 Allevard Ressorts Automobile Method of making motor vehicle torsion bar involves cold swaging ends of blank to increase diameter and drawing middle section of blank
WO2005016570A1 (en) * 2003-08-14 2005-02-24 Willy Voit Gmbh & Co. Kg Method for producing hollow bodies, hollow body, and use of the same
DE102004022409B4 (en) 2004-05-06 2010-03-25 Zf Friedrichshafen Ag Piston-cylinder assembly
GB2486224A (en) * 2010-12-07 2012-06-13 Europ Technical Ct Nsk Tailored Thickness Steering Tube
EP2546005A1 (en) * 2010-12-20 2013-01-16 Hirotec Corporation Metal pipe, and method and device for processing metal pipe
WO2013127425A1 (en) * 2012-02-27 2013-09-06 Schmittergroup Ag Hollow drive shaft with flange and method for the production thereof
WO2014082666A1 (en) 2012-11-28 2014-06-05 Schmittergroup Ag Cylinder tube closed at the end so as to be fluid-tight and method for production thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19516412C2 (en) * 1995-05-04 2000-11-30 Krupp Bilstein Gmbh Damper cylinder for a vibration damper
JP2009142856A (en) * 2007-12-13 2009-07-02 Showa Corp Tube expanding method and apparatus of damper tube
WO2014067581A1 (en) * 2012-11-02 2014-05-08 Schmittergroup Ag Method for producing different wall thicknesses of a container tube

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2129921A1 (en) * 1971-03-22 1972-11-03 Besson Louis
DE3708978A1 (en) 1987-03-19 1988-09-29 Boge Ag Gas-pressure damper of twin-tube telescopic design
DE4127453C1 (en) 1991-08-20 1992-11-26 August Bilstein Gmbh & Co. Kg, 5828 Ennepetal, De Twin tube shock absorber - has piston running in tube with sheet metal end piece
DE4437395A1 (en) * 1994-10-19 1996-05-02 Werdau Fahrzeugwerk Method for upsetting pipe ends and device for carrying out the method
FR2782661A1 (en) * 1998-08-25 2000-03-03 Allevard Ressorts Automobile Method of making motor vehicle torsion bar involves cold swaging ends of blank to increase diameter and drawing middle section of blank
WO2005016570A1 (en) * 2003-08-14 2005-02-24 Willy Voit Gmbh & Co. Kg Method for producing hollow bodies, hollow body, and use of the same
DE102004022409B4 (en) 2004-05-06 2010-03-25 Zf Friedrichshafen Ag Piston-cylinder assembly
GB2486224A (en) * 2010-12-07 2012-06-13 Europ Technical Ct Nsk Tailored Thickness Steering Tube
EP2546005A1 (en) * 2010-12-20 2013-01-16 Hirotec Corporation Metal pipe, and method and device for processing metal pipe
WO2013127425A1 (en) * 2012-02-27 2013-09-06 Schmittergroup Ag Hollow drive shaft with flange and method for the production thereof
WO2014082666A1 (en) 2012-11-28 2014-06-05 Schmittergroup Ag Cylinder tube closed at the end so as to be fluid-tight and method for production thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DIN EN 10305-2, May 2010 (2010-05-01)
DIN EN 10305-2, November 2002 (2002-11-01)
DIN EN 10305-3, February 2003 (2003-02-01)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107120380A (en) * 2016-06-07 2017-09-01 北京京西重工有限公司 Damper housing and the method for manufacturing damper housing
EP3255301A1 (en) * 2016-06-07 2017-12-13 BeijingWest Industries Co. Ltd. A damper housing and a method for manufacturing the damper housing
CN107120380B (en) * 2016-06-07 2019-02-12 北京京西重工有限公司 Damper shell and the method for manufacturing damper shell
US10850584B2 (en) 2016-06-07 2020-12-01 Beijingwest Industries Co., Ltd. Damper housing and a method for manufacturing the damper housing
EP3575014A1 (en) 2018-05-28 2019-12-04 Vincenz Wiederholt GmbH Shock absorber tube and method for its production
CN116020950A (en) * 2023-03-16 2023-04-28 安溪藤铁家居工业设计研究院有限公司 Flaring device for hollow rattan iron pipe orifice

Also Published As

Publication number Publication date
DE102016103824A1 (en) 2017-09-07

Similar Documents

Publication Publication Date Title
DE2935086C2 (en) Method and device for the production of detached hollow bodies with widely differing cross-sectional shapes
WO1992013653A1 (en) Process for the hydrostatic shaping of hollow bodies of cold-workable metal and device for implementing it
EP2925464B1 (en) Cylinder tube closed at the end so as to be fluid-tight and method for production thereof
EP3213837A1 (en) Shock absorber tube and method for its production
DE19915383B4 (en) Hydroforming
EP2205371B1 (en) Method for producing pipe-in-pipe systems
EP2877298A1 (en) Direct or indirect metal pipe extrusion process, mandrel for extruding metal pipes, metal pipe extruder and extruded metal pipe
DE102005036419B4 (en) Device for producing bulged hollow profiles, in particular gas generator housings for airbag devices
EP1024913B1 (en) Method and device for producing a shaft from a tubular workpiece
DE3019592C2 (en) Device for processing steel pipes
DE10016025B4 (en) Process for producing hollow bodies
EP0907824A1 (en) Exhaust gas purification device for an internal combustion engine and method of producing the same
DE102006012625C5 (en) Method for producing profiles
WO2008003305A1 (en) Method for the production of a rotationally symmetrical part, and part produced according to said method
EP1611973B1 (en) Method for forming pipes and for manufacturing hollow shafts
EP0997210B1 (en) Method of manufacturing of disc-shaped objects with hub and pressure roll for realising this method
DE69322945T2 (en) Method and device for fixing a metallic piece provided with at least one cylindrical bore around a metallic tube
DE19751408A1 (en) Method and device for producing an integral housing for hydraulic steering
DE19727599B4 (en) Method for producing metal wheels
DE102011101664A1 (en) Method for inwardly/outwardly everting end of e.g. rectangular pipe, involves re-generating bulge by removing mold sleeve from pipe after calibration process, and supporting pipe end by mandrel, where shape of mandrel corresponds to contour
DE102008056988A1 (en) Seamless steel pipe producing method for rolling mill, involves providing inner tool in interior of pipe blank, where rotation movement opposite to rotary movement of pipe blank is imposed to piercer
EP1708832B1 (en) Method for producing a hollow profile
DE10148451C2 (en) Process for producing a hollow body and preform
EP4112200B1 (en) Method for reducing the cross section of a tubular hollow body by forming the hollow body
DE10151659B4 (en) Method for joining at least two components and device therefor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20180306

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

17Q First examination report despatched

Effective date: 20200123

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20200603