EP3213055A4 - Determination of water treatment parameters based on absorbance and fluorescence - Google Patents
Determination of water treatment parameters based on absorbance and fluorescence Download PDFInfo
- Publication number
- EP3213055A4 EP3213055A4 EP15854992.3A EP15854992A EP3213055A4 EP 3213055 A4 EP3213055 A4 EP 3213055A4 EP 15854992 A EP15854992 A EP 15854992A EP 3213055 A4 EP3213055 A4 EP 3213055A4
- Authority
- EP
- European Patent Office
- Prior art keywords
- absorbance
- fluorescence
- determination
- water treatment
- parameters based
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002835 absorbance Methods 0.000 title 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/314—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/33—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using ultraviolet light
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/645—Specially adapted constructive features of fluorimeters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/85—Investigating moving fluids or granular solids
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/314—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths
- G01N2021/3155—Measuring in two spectral ranges, e.g. UV and visible
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/645—Specially adapted constructive features of fluorimeters
- G01N2021/6484—Optical fibres
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N2021/8411—Application to online plant, process monitoring
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2201/00—Features of devices classified in G01N21/00
- G01N2201/06—Illumination; Optics
- G01N2201/061—Sources
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/18—Water
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/527,753 US10184892B2 (en) | 2014-10-29 | 2014-10-29 | Determination of water treatment parameters based on absorbance and fluorescence |
PCT/US2015/055726 WO2016069279A1 (en) | 2014-10-29 | 2015-10-15 | Determination of water treatment parameters based on absorbance and fluorescence |
Publications (3)
Publication Number | Publication Date |
---|---|
EP3213055A1 EP3213055A1 (en) | 2017-09-06 |
EP3213055A4 true EP3213055A4 (en) | 2018-12-05 |
EP3213055B1 EP3213055B1 (en) | 2020-12-02 |
Family
ID=55852375
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15854992.3A Active EP3213055B1 (en) | 2014-10-29 | 2015-10-15 | Determination of water treatment parameters based on absorbance and fluorescence |
Country Status (6)
Country | Link |
---|---|
US (1) | US10184892B2 (en) |
EP (1) | EP3213055B1 (en) |
JP (1) | JP6643333B2 (en) |
CN (1) | CN107209112B (en) |
SG (1) | SG11201703259UA (en) |
WO (1) | WO2016069279A1 (en) |
Families Citing this family (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9670072B2 (en) | 2014-10-29 | 2017-06-06 | Horiba Instruments Incorporated | Determination of water treatment parameters based on absorbance and fluorescence |
US10184892B2 (en) * | 2014-10-29 | 2019-01-22 | Horiba Instruments Incorporated | Determination of water treatment parameters based on absorbance and fluorescence |
WO2016205944A1 (en) * | 2015-06-23 | 2016-12-29 | Trojan Technologies | Process and device for the treatment of a fluid containing a contaminant |
WO2017023925A1 (en) * | 2015-08-03 | 2017-02-09 | Ysi, Inc. | Multi excitation-multi emission fluorometer for multiparameter water quality monitoring |
US11656180B2 (en) | 2015-08-03 | 2023-05-23 | Ysi, Inc. | Multi excitation-multi emission fluorometer for multiparameter water quality monitoring |
SE539770C2 (en) * | 2016-06-10 | 2017-11-21 | Bomill Ab | A detector system comprising a plurality of light guides anda spectrometer comprising the detector system |
US20190265164A1 (en) * | 2016-11-03 | 2019-08-29 | British American Tobacco (Investments) Limited | A method for determining the level of a polycyclic compound of interest present on the surface of a tobacco leaf |
WO2018098260A1 (en) * | 2016-11-23 | 2018-05-31 | Ysi, Inc. | Dual function fluorometer-absorbance sensor |
CN106596436B (en) * | 2016-12-30 | 2023-04-11 | 中国科学院西安光学精密机械研究所 | Multi-parameter water quality real-time online monitoring device based on spectrum method |
CN107941719B (en) * | 2017-11-26 | 2023-08-18 | 桂林电子科技大学 | Solution surface reflection absorbance measuring device and application thereof |
CN108303555B (en) * | 2017-12-26 | 2019-12-20 | 中国农业大学 | Device and method for instantly detecting lead, cadmium and mercury in aquaculture water |
CN108226116A (en) * | 2017-12-30 | 2018-06-29 | 北方工业大学 | Intelligent sensor for chlorophyll parameter detection based on interference compensation |
WO2019169295A1 (en) | 2018-03-02 | 2019-09-06 | Ecolab Usa Inc. | Ultralow range fluorometer calibration |
JP7074507B2 (en) * | 2018-03-06 | 2022-05-24 | オルガノ株式会社 | Pollution risk assessment method for water treatment system |
US12092568B2 (en) * | 2018-04-23 | 2024-09-17 | Meon Medical Solutions Gmbh & Co Kg | Optical measuring unit and optical measuring method for obtaining measurement signals of fluid media |
WO2020005823A1 (en) * | 2018-06-28 | 2020-01-02 | Becton, Dickinson And Company | Systems and methods for normalizing signals in blood culture measurement systems |
US11906426B2 (en) * | 2018-06-29 | 2024-02-20 | Hach Company | Suspended solids measurement of wastewater |
WO2020031448A1 (en) * | 2018-08-10 | 2020-02-13 | 日本たばこ産業株式会社 | Method for creating reference for determining classification of plant-derived material containing chlorophyll and at least one of polyphenols and terpenoids, program, and device |
JP2020034545A (en) * | 2018-08-28 | 2020-03-05 | パナソニックIpマネジメント株式会社 | Component analysis device and component analysis method |
EP3897929A1 (en) | 2018-12-21 | 2021-10-27 | Ecolab USA Inc. | Quick tracer injection for monitoring osmosis membrane integrity |
CN109738393B (en) * | 2019-01-10 | 2021-03-05 | 上海奥普生物医药股份有限公司 | Optical detection device and specific protein analyzer |
WO2020186078A1 (en) * | 2019-03-12 | 2020-09-17 | Hattingh Paul | Testing method for residual organic compounds in a liquid sample |
AU2021275061B2 (en) * | 2020-05-20 | 2023-01-19 | Ysi, Inc. | Spatial gradient-based fluorometer |
CN111650141B (en) * | 2020-07-06 | 2021-06-22 | 湖南大学 | Water quality monitoring method, apparatus and system based on multi-wavelength absorbance |
CN112683861B (en) * | 2020-11-23 | 2023-04-11 | 郑州大学 | Application of short-wave fluorescence internal filtering technology in cysteine detection |
IL281018B (en) * | 2021-02-22 | 2022-01-01 | Maytronics Ltd | Systems, subsystems and methods for measuring water characteristics in a water facility |
CN113720803A (en) * | 2021-07-15 | 2021-11-30 | 常州罗盘星检测科技有限公司 | Method and system for online simultaneous detection of low-concentration and high-concentration floating water at low temperature and high temperature |
SE545520C2 (en) * | 2022-02-23 | 2023-10-10 | Chalmers Ventures Ab | Method and system for determining at least one of the character, composition and reactivity of dissolved organic matter in water |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3917406A (en) * | 1974-09-16 | 1975-11-04 | Perkin Elmer Corp | Optical beam splitter |
WO1996014569A2 (en) * | 1994-11-05 | 1996-05-17 | Cognitive Solutions Ltd. | Detector for chemical analysis |
US20020104787A1 (en) * | 2000-11-30 | 2002-08-08 | Seiichi Murayama | Water treatment control system using fluorescence analyzer |
CN101275905A (en) * | 2008-04-18 | 2008-10-01 | 浙江大学 | Multi-source optical spectrum syncretizing portable water quality analysis meter |
US20130020480A1 (en) * | 2009-11-06 | 2013-01-24 | Ford Jess V | Multi-channel source assembly for downhole spectroscopy |
CN103630523A (en) * | 2012-08-21 | 2014-03-12 | 杭州希玛诺光电技术有限公司 | Laser induction spectrum generating device used for water quality optical analyzer |
Family Cites Families (49)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3666362A (en) | 1970-12-22 | 1972-05-30 | Johnson Research Foundation Me | Dual wavelength spectrophotometry |
DE2651086B2 (en) | 1976-11-09 | 1978-11-09 | Hewlett-Packard Gmbh, 7030 Boeblingen | Photometer |
US4305660A (en) | 1980-06-27 | 1981-12-15 | Farrand Optical Co., Inc. | Recording transmission and emission spectra |
US4475813A (en) | 1982-08-30 | 1984-10-09 | Milton Roy Company | Divergent light optical systems for liquid chromatography |
US4867559A (en) | 1988-01-06 | 1989-09-19 | Amoco Corporation | Liquid/liquid fiber-optic fluorescence detector and absorbance analyzer |
US4927265A (en) | 1988-04-29 | 1990-05-22 | 501 Microphoretic Systems, Inc. | Detector for fluorescence and absorption spectroscopy |
US5285254A (en) | 1991-03-25 | 1994-02-08 | Richard J De Sa | Rapid-scanning monochromator with moving intermediate slit |
JPH05240774A (en) | 1992-03-02 | 1993-09-17 | Hitachi Ltd | Optical cell and optical detecting device and sample separating/detecting device using them |
DE69323060T2 (en) | 1993-03-18 | 1999-06-10 | Novartis Ag, Basel | Optical detector device for the chemical analysis of small fluid sample volumes |
JP3602661B2 (en) * | 1996-08-08 | 2004-12-15 | 株式会社東芝 | Ozone injection device control system |
DE19817738C2 (en) * | 1998-04-21 | 2003-02-06 | Karl-Friedrich Klein | Hollow optical waveguide for trace analysis in aqueous solutions |
US6236456B1 (en) | 1998-08-18 | 2001-05-22 | Molecular Devices Corporation | Optical system for a scanning fluorometer |
US6496260B1 (en) * | 1998-12-23 | 2002-12-17 | Molecular Devices Corp. | Vertical-beam photometer for determination of light absorption pathlength |
CN1357104A (en) | 1999-04-21 | 2002-07-03 | 克罗马根公司 | Scanning spectrophotometer for high throughput fluorescence detection |
JP3842492B2 (en) * | 1999-09-13 | 2006-11-08 | 株式会社東芝 | Algae concentration measurement system |
US20040011965A1 (en) * | 2000-08-18 | 2004-01-22 | Hodgkinson Elizabeth Jane | Method and apparatus for detecting chemical contamination |
JP2002340787A (en) | 2001-05-18 | 2002-11-27 | Fuji Electric Co Ltd | Apparatus for measuring absorbance |
US6995841B2 (en) * | 2001-08-28 | 2006-02-07 | Rice University | Pulsed-multiline excitation for color-blind fluorescence detection |
US7265827B2 (en) | 2001-09-07 | 2007-09-04 | Horiba Jobin Yvon, Inc. | Double grating three dimensional spectrograph with multi-directional diffraction |
US6836332B2 (en) | 2001-09-25 | 2004-12-28 | Tennessee Scientific, Inc. | Instrument and method for testing fluid characteristics |
US7507579B2 (en) * | 2002-05-01 | 2009-03-24 | Massachusetts Institute Of Technology | Apparatus and methods for simultaneous operation of miniaturized reactors |
GB0216934D0 (en) | 2002-07-20 | 2002-08-28 | Council Cent Lab Res Councils | Optical apparatus |
JP2004354068A (en) * | 2003-05-27 | 2004-12-16 | Hitachi Ltd | Chemical substance measuring instrument using light waveguide |
EP1751523B1 (en) | 2004-05-13 | 2017-10-04 | NarTest AS | A portable device and method for on-site detection and quantification of drugs |
US6970241B1 (en) | 2004-08-24 | 2005-11-29 | Desa Richard J | Device for enabling slow and direct measurement of fluorescence polarization |
US7209223B1 (en) | 2004-11-15 | 2007-04-24 | Luna Innovations Incorporated | Optical device for measuring optical properties of a sample and method relating thereto |
US7324202B2 (en) | 2004-12-07 | 2008-01-29 | Novx Systems Inc. | Optical system |
US7569839B2 (en) | 2005-04-25 | 2009-08-04 | Jobin Yvon, Inc. | Method for classification of carbon nanotubes and other materials |
US20070037135A1 (en) | 2005-08-08 | 2007-02-15 | Barnes Russell H | System and method for the identification and quantification of a biological sample suspended in a liquid |
US20070121196A1 (en) * | 2005-09-29 | 2007-05-31 | The General Hospital Corporation | Method and apparatus for method for viewing and analyzing of one or more biological samples with progressively increasing resolutions |
US8119066B2 (en) * | 2006-02-08 | 2012-02-21 | Molecular Devices, Llc | Multimode reader |
US7846391B2 (en) * | 2006-05-22 | 2010-12-07 | Lumencor, Inc. | Bioanalytical instrumentation using a light source subsystem |
WO2007143047A1 (en) * | 2006-06-01 | 2007-12-13 | Ecolab Inc. | Uv fluorometric sensor and method for using the same |
US9557217B2 (en) * | 2007-02-13 | 2017-01-31 | Bti Holdings, Inc. | Universal multidetection system for microplates |
US20080272312A1 (en) | 2007-05-04 | 2008-11-06 | Chemimage Corporation | Hyperspectral fluorescence and absorption bioimaging |
FI20085062A0 (en) | 2008-01-25 | 2008-01-25 | Wallac Oy | Improved measurement system and method |
GB0901658D0 (en) | 2009-02-03 | 2009-03-11 | Johnson Matthey Plc | Methods of measuring fluorescence in liquids |
US9645010B2 (en) * | 2009-03-10 | 2017-05-09 | The Regents Of The University Of California | Fluidic flow cytometry devices and methods |
FR2971337B1 (en) * | 2011-02-04 | 2013-03-01 | Horiba Abx Sas | DEVICE AND METHOD FOR MULTIPARAMETRIC MEASUREMENTS OF MICROPARTICLES IN A FLUID |
US8981314B2 (en) * | 2011-02-10 | 2015-03-17 | Zaps Technologies, Inc | Method and apparatus for the optical determination of total organic carbon in aqueous streams |
US8901513B2 (en) * | 2011-03-08 | 2014-12-02 | Horiba Instruments, Incorporated | System and method for fluorescence and absorbance analysis |
JP5618874B2 (en) * | 2011-03-15 | 2014-11-05 | 株式会社東芝 | Fouling generation prediction method and membrane filtration system |
US9347882B2 (en) * | 2011-06-22 | 2016-05-24 | Molecular Devices, Llc | Dynamic signal extension in optical detection systems |
FR2999288B1 (en) | 2012-12-11 | 2016-01-08 | Envolure | MICROPLATE READER DEVICE |
US9188527B2 (en) * | 2013-01-09 | 2015-11-17 | Molecular Devices, Llc | Monochromator-based and filter-based detection system |
US20150041682A1 (en) * | 2013-08-10 | 2015-02-12 | Benchmark Instrumentation & Analytical Services Inc. | Systems and Methods for Monitoring Phenanthrene Equivalent Concentrations |
KR102240166B1 (en) * | 2013-11-17 | 2021-04-14 | 퀀텀-에스아이 인코포레이티드 | Integrated device with external light source for probing detecting and analyzing molecules |
US9670072B2 (en) * | 2014-10-29 | 2017-06-06 | Horiba Instruments Incorporated | Determination of water treatment parameters based on absorbance and fluorescence |
US10184892B2 (en) * | 2014-10-29 | 2019-01-22 | Horiba Instruments Incorporated | Determination of water treatment parameters based on absorbance and fluorescence |
-
2014
- 2014-10-29 US US14/527,753 patent/US10184892B2/en active Active
-
2015
- 2015-10-15 EP EP15854992.3A patent/EP3213055B1/en active Active
- 2015-10-15 CN CN201580059490.5A patent/CN107209112B/en active Active
- 2015-10-15 JP JP2017523339A patent/JP6643333B2/en active Active
- 2015-10-15 SG SG11201703259UA patent/SG11201703259UA/en unknown
- 2015-10-15 WO PCT/US2015/055726 patent/WO2016069279A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3917406A (en) * | 1974-09-16 | 1975-11-04 | Perkin Elmer Corp | Optical beam splitter |
WO1996014569A2 (en) * | 1994-11-05 | 1996-05-17 | Cognitive Solutions Ltd. | Detector for chemical analysis |
US20020104787A1 (en) * | 2000-11-30 | 2002-08-08 | Seiichi Murayama | Water treatment control system using fluorescence analyzer |
CN101275905A (en) * | 2008-04-18 | 2008-10-01 | 浙江大学 | Multi-source optical spectrum syncretizing portable water quality analysis meter |
US20130020480A1 (en) * | 2009-11-06 | 2013-01-24 | Ford Jess V | Multi-channel source assembly for downhole spectroscopy |
CN103630523A (en) * | 2012-08-21 | 2014-03-12 | 杭州希玛诺光电技术有限公司 | Laser induction spectrum generating device used for water quality optical analyzer |
Non-Patent Citations (5)
Title |
---|
GUO W ET AL: "Characterization of dissolved organic matter in urban sewage using excitation emission matrix fluorescence spectroscopy and parallel factor analysis", JOURNAL OF ENVIRONMENTAL SCIENCES, ELSEVIER BV, NL, vol. 22, no. 11, 2010, pages 1728 - 1734, XP027493317, ISSN: 1001-0742, [retrieved on 20101101], DOI: 10.1016/S1001-0742(09)60312-0 * |
HUR J AND CHO J: "Prediction of BOD, COD, and Total Nitrogen Concentrations in a Typical Urban River Using a Fluorescence Excitation-Emission Matrix with PARAFAC and UV Absorption Indices", SENSORS, vol. 12, no. 12, 16 January 2012 (2012-01-16), pages 972 - 986, XP055454328, DOI: 10.3390/s120100972 * |
RUIXIA R ET AL: "Use of three-dimensional excitation and emission matrix fluorescence spectroscopy for predicting the disinfection by-product formation potential of reclaimed water", WATER RESEARCH, vol. 46, no. 17, 14 August 2012 (2012-08-14), pages 5765 - 5776, XP028936941, ISSN: 0043-1354, DOI: 10.1016/J.WATRES.2012.08.007 * |
See also references of WO2016069279A1 * |
YAPPERT M C ET AL: "Design and evaluation of a dual multichannel detector spectrometer for simultaneous molecular absorption and luminescence measurements", ANALYTICAL CHEMISTRY, AMERICAN CHEMICAL SOCIETY, US, vol. 61, no. 6, 15 March 1989 (1989-03-15), pages 593 - 600, XP000032382, ISSN: 0003-2700, DOI: 10.1021/AC00181A020 * |
Also Published As
Publication number | Publication date |
---|---|
JP2017536542A (en) | 2017-12-07 |
CN107209112B (en) | 2020-08-07 |
EP3213055B1 (en) | 2020-12-02 |
US10184892B2 (en) | 2019-01-22 |
JP6643333B2 (en) | 2020-02-12 |
CN107209112A (en) | 2017-09-26 |
US20160123882A1 (en) | 2016-05-05 |
WO2016069279A1 (en) | 2016-05-06 |
EP3213055A1 (en) | 2017-09-06 |
SG11201703259UA (en) | 2017-05-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3213054A4 (en) | Determination of water treatment parameters based on absorbance and fluorescence | |
EP3213055A4 (en) | Determination of water treatment parameters based on absorbance and fluorescence | |
EP3253387A4 (en) | Compounds and uses in treatment of senescence-associated conditons | |
EP3160498A4 (en) | Il-15-based molecules and methods of use thereof | |
EP3233089A4 (en) | Method of treating cancer with cgamp or cgasmp | |
EP3218005A4 (en) | Glycan-interacting compounds and methods of use | |
EP3157528A4 (en) | Oxysterols and methods of use thereof | |
EP3212192A4 (en) | Detection and treatment of excessive hair shedding | |
EP3234116A4 (en) | Methods of treating tissue calcification | |
EP3240762A4 (en) | Treating water | |
EP3117892A4 (en) | Water treatment apparatus | |
EP3265476A4 (en) | Protoxin-ii variants and methods of use | |
EP2905262B8 (en) | Assembly and method for treatment of raw water | |
EP3180292A4 (en) | Water treatment system and method | |
EP3209613A4 (en) | Water treatment system and method | |
EP3277304A4 (en) | Protoxin-ii variants and methods of use | |
EP3186394A4 (en) | Treatment and detection of melanoma | |
EP3134108A4 (en) | Agents and methods of treatment | |
EP3110902A4 (en) | Well treatment methods and fluids | |
EP3093055A4 (en) | Water treatment device and water treatment method | |
HK1249866A1 (en) | Methods of treatment with taselisib | |
EP3119199A4 (en) | Compounds and their methods of use | |
EP3191411A4 (en) | Measurement and treatment of fluid streams | |
EP3192577A4 (en) | Water treatment apparatus and water treatment method | |
EP3191413A4 (en) | Uses of melanin in water |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20170427 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
RIC1 | Information provided on ipc code assigned before grant |
Ipc: G01N 33/18 20060101ALI20180223BHEP Ipc: G01N 21/64 20060101AFI20180223BHEP Ipc: G01N 21/85 20060101ALI20180223BHEP Ipc: G01N 21/84 20060101ALN20180223BHEP Ipc: G01N 21/31 20060101ALI20180223BHEP |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 20181029 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: G01N 33/18 20060101ALI20181023BHEP Ipc: G01N 21/85 20060101ALI20181023BHEP Ipc: G01N 21/84 20060101ALN20181023BHEP Ipc: G01N 21/64 20060101AFI20181023BHEP Ipc: G01N 21/31 20060101ALI20181023BHEP |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20191010 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: G01N 33/18 20060101ALN20200714BHEP Ipc: G01N 21/84 20060101ALN20200714BHEP Ipc: G01N 21/31 20060101ALI20200714BHEP Ipc: G01N 21/85 20060101ALI20200714BHEP Ipc: G01N 21/64 20060101AFI20200714BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: G01N 33/18 20060101ALN20200728BHEP Ipc: G01N 21/84 20060101ALN20200728BHEP Ipc: G01N 21/31 20060101ALI20200728BHEP Ipc: G01N 21/64 20060101AFI20200728BHEP Ipc: G01N 21/85 20060101ALI20200728BHEP |
|
INTG | Intention to grant announced |
Effective date: 20200821 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1341460 Country of ref document: AT Kind code of ref document: T Effective date: 20201215 Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602015063055 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210303 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210302 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201202 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201202 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20201202 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1341460 Country of ref document: AT Kind code of ref document: T Effective date: 20201202 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201202 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201202 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201202 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210302 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201202 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201202 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201202 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201202 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201202 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201202 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201202 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201202 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210405 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201202 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602015063055 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210402 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201202 |
|
26N | No opposition filed |
Effective date: 20210903 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201202 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201202 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201202 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210402 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20211031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201202 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211015 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211031 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211015 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20151015 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201202 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230530 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20231027 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20231023 Year of fee payment: 9 Ref country code: FR Payment date: 20231025 Year of fee payment: 9 Ref country code: DE Payment date: 20231027 Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201202 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201202 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201202 |