EP3209442A1 - Twist drill and production method - Google Patents

Twist drill and production method

Info

Publication number
EP3209442A1
EP3209442A1 EP15781928.5A EP15781928A EP3209442A1 EP 3209442 A1 EP3209442 A1 EP 3209442A1 EP 15781928 A EP15781928 A EP 15781928A EP 3209442 A1 EP3209442 A1 EP 3209442A1
Authority
EP
European Patent Office
Prior art keywords
webs
drill
drill axis
helical
height
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP15781928.5A
Other languages
German (de)
French (fr)
Inventor
Corinna Achleitner
Mark Winkler
Guenter Domani
Carsten Peters
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hilti AG
Original Assignee
Hilti AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hilti AG filed Critical Hilti AG
Publication of EP3209442A1 publication Critical patent/EP3209442A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B51/00Tools for drilling machines
    • B23B51/02Twist drills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21HMAKING PARTICULAR METAL OBJECTS BY ROLLING, e.g. SCREWS, WHEELS, RINGS, BARRELS, BALLS
    • B21H3/00Making helical bodies or bodies having parts of helical shape
    • B21H3/10Making helical bodies or bodies having parts of helical shape twist-drills; screw-taps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D1/00Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor
    • B28D1/14Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor by boring or drilling
    • B28D1/146Tools therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2226/00Materials of tools or workpieces not comprising a metal
    • B23B2226/75Stone, rock or concrete
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2251/00Details of tools for drilling machines
    • B23B2251/20Number of cutting edges
    • B23B2251/204Four cutting edges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2251/00Details of tools for drilling machines
    • B23B2251/24Overall form of drilling tools
    • B23B2251/241Cross sections of the diameter of the drill
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2251/00Details of tools for drilling machines
    • B23B2251/40Flutes, i.e. chip conveying grooves
    • B23B2251/406Flutes, i.e. chip conveying grooves of special form not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2251/00Details of tools for drilling machines
    • B23B2251/40Flutes, i.e. chip conveying grooves
    • B23B2251/408Spiral grooves

Definitions

  • the present invention relates to a manufacturing method for a twist drill and a twist drill having a plurality of spiral webs.
  • the production method for a twist drill has the following steps.
  • a blank is transformed into a halfling.
  • the halfling is formed of a core having a radius coaxial with the drill axis and a number of ridges arranged on the core with a height.
  • the halfling has a constant cross section along the drill axis.
  • the webs have a first portion adjacent to the core and in which a width of the web in the circumferential direction remains the same or decreases with increasing radial distance to the drill axis.
  • the webs have a second portion adjacent to the first portion and in which the width of the web increases in the circumferential direction with increasing radial distance to the drill axis.
  • the webs of the halfling are formed into helical segments with a plurality of rolling molds surrounding the halfling and rolling on the webs along the drill axis.
  • the rolling tools have inclined teeth relative to the drill axis.
  • a height of the helical segments is less than the height of the webs.
  • Helical segments formed from adjacent lands contact one another in a closing fold.
  • the forming of the blank takes place in at least two stages.
  • a first stage the material of the preferably cylindrical blank is pushed together from an angular range to webs.
  • the resulting webs have a mushroom-shaped form whose outer head contains a large amount of material.
  • a second stage the web is longitudinally rolled.
  • the material from the head is guided by the rolling tools back into the previously disclosed Wnkel Scheme pushed back.
  • the inclined teeth push the material on the one hand and prevent material flow in the later spiral turns.
  • the material thereby accumulates in the helical segments.
  • Adjacent rolling tools push both parts of their material into a curved region lying between the webs to be formed.
  • the two helical segments collide in the circumferential direction and form a continuous helix. In the helix, a closing fold remains, at which the segments abut each other.
  • the closing folds can lie in planes which contain the drill axis and are arranged centrally between adjacent webs.
  • the material flow of both webs in and against a circumferential direction is approximately the same due to a symmetrical design of the rolling tools.
  • the head of the web preferably contains much material that can be redistributed during rolling of the helical segments.
  • An embodiment provides that in the cross section, a surface of the first portion is smaller than a surface of the second portion.
  • the head projects radially beyond the helix to be produced so that the rolling tools can redistribute material over the entire length of the web into the curved regions between the webs.
  • the height of the webs is preferably at least 20% greater and at most 100% greater than the height of the helical segments.
  • An embodiment provides that the number of webs is equal to or greater than the number of spiral spines. Preferably, the number is the same.
  • An inventive twist drill has a drill head and a helix.
  • the helix includes a cylindrical core defining a drill axis and a number of helical helix webs connected to the core.
  • the spiral webs are each formed of a plurality of segments which contact each other along parallel to the drill axis extending closing folds.
  • the closing folds may lie in a plane containing the drill axis.
  • the core is commonly understood to be a helix, the largest cylinder that can be inscribed in the helix.
  • An embodiment provides that a height of the closing fold is equal to the height of the spiral web. The closing fold begins at the cylindrical core.
  • One embodiment provides that segments of a first of two groups of the segments are delimited by an edge pointing in the direction of rotation of the helix drill and one of the closing folds, and segments of a second of the two groups of the segments by an edge facing in the direction of rotation and one of the closing folds are limited.
  • Fig. 1 a helical drill
  • FIG. 2 shows a cross section through a helix of the helical drill in the plane II-II.
  • FIG. 3 shows a cross section through a helix of the helix drill in the plane III-III.
  • FIG. 4 shows a cross section through a helix of the helical drill in the plane IV-IV FIG. 5, 6 a rolling stand
  • Fig. 7 shows a halfling in cross section Fig. 8, 9 a rolling stand Same or functionally identical elements are indicated by the same reference numerals in the figures, unless stated otherwise.
  • FIG. 1 schematically shows, in simplified form, an exemplary helical drill 1.
  • the helical drill 1 has, along a drill axis 2, successively a drill head 3, a helical coil 4 and an insertion end 5.
  • the illustrated twist drill 1 is designed for the processing of rock, in particular for a rotary movement superimposed M aceael founded.
  • the drill head 3 has four chisel edges 7 which point in the direction of impact 6.
  • the chisel edges 7 are each formed as a crossing line of a surface leading in the direction of rotation of the helical drill 1 and a trailing surface which are both inclined relative to the drill axis 2 and inclined relative to each other by at least 60 degrees.
  • the chisel edges 7 extend substantially in the radial direction, for example starting from a tip 8 of the drill head 3 to an edge of the drill head 3, where the chisel edges 7 are preferably set back in the direction of impact 6 with respect to the tip 8.
  • An inclination of the chisel edges 7 against the Drill axis 2 may be constant in the radial direction or lower in the region of the tip 8 than at the edge.
  • the chisel edge 7 can run perpendicular to the drill axis 2 at the edge.
  • a demolition edge 9 which is parallel to the drill axis 2.
  • the demolition edge 9 is preferably radially beyond the helix 4 addition.
  • the drill head 3 is provided at its periphery with parallel to the drill axis 2 extending discharge channels 10, along which the drill dust can be transported from the well.
  • the discharge channels 10 are arranged in the circumferential direction 11 between the chisel edges 7.
  • the drill head 3 is preferably a continuous sintered cemented carbide body containing, for example, tungsten carbide and a metallic binder.
  • the illustrated drill head 3 has two pairs of differently shaped chisel edges, of which the chisel edges forming the point 8 are referred to as main cutting edges and the other pair as secondary cutting edges.
  • the bit body may also have two, eg only the major cutting edges, or three or more than four cutting edges.
  • the helix 4 is composed of a massive cylindrical helical core 12 and four helix webs 13 that wind around the helix core 12.
  • the spiral core 12 and the spiral webs 13 are connected to each other without seam.
  • a division of the helix 4 in spiral core 12 and spiral webs 13 is based on their characteristic shapes.
  • the spiral webs 13 define the entire surface of the helix 4.
  • the spiral webs 13 have a rising from a helical base 14 to a helical spine 15 in the circumferential direction 11 rising edge 16 and circumferentially 11 falling edge 17.
  • the distance of the helical bottom 14 to the drill axis 2 is the Inner radius 18 of the helix 4 and the distance of the helical spine 15 to the drill axis 2 is the outer radius 19 of the helix 4.
  • the cylinder with the inner radius 18, ie the largest inscribable in the helix 4 cylinder is the helical core 12.
  • the volumes between the surface and the spiral core 12 are assigned to the spiral webs 13.
  • a height 20 of the spiral webs 13 is the difference of the outer radius 19 and the inner radius 18 of the helix.
  • the helix 4 has three, four, five or six spiral webs 13.
  • the helical webs 13 is preferably formed identically. For example, in the case of four spiral webs 13, two spiral webs may have a smaller height than the other two spiral webs 13.
  • the spiral webs 13 are preferably distributed uniformly around the drill axis 2.
  • the helix 4 has a ganzulent rotational symmetry, eg demo niethhelial symmetry.
  • a pitch 22 of the helix 4 is the axial distance two adjacent spiral webs 13, measured in a parallel to the drill axis 2 longitudinal section.
  • the pitch 22 is preferably constant.
  • the coil 4 is correspondingly along the drill axis 2 periodically.
  • Fig. 2 shows a first cross-section through the helix 4
  • Fig. 3 shows a second cross-section offset approximately one-eighth of the pitch 22 to the first cross-section
  • Fig. 4 shows a third cross-section about half the pitch 22 to the first Offset cross-section.
  • the exemplary coil 4 rotates about 12 degrees from the first cross section to the second cross section, 45 degrees from the first cross section to the third cross section.
  • the spiral webs 13 are divided several times into segments 23, 24, 25 both in the circumferential direction 11 and along the drill axis 2.
  • An exemplary segment 23 is hatched in Fig. 1 highlighted.
  • the segments 23, 24, 25 are identical in the exemplary drill.
  • the segments 23 adjoin one another in the circumferential direction 11 and along the drill axis 2 to each other.
  • the segments 23, 25 adjacent to the drill axis 2 are assigned to different spiral webs 13.
  • the segments 23 are delimited along the drill axis 2 by the helical base 14.
  • the division of the spiral webs 13 into the segments 23, 24 takes place in the circumferential direction 11 by closing folds 26, which extend over the entire length of the coil 4 and the entire height 20 of the coil webs 13.
  • the closing folds 26 are substantially planar and lie in four planes E.
  • the planes E are parallel to the drill axis 2 and may optionally contain or have a distance from the drill axis 2 which is significantly less than the inner radius 18, e.g. less than 10% of the inner radius 18.
  • the planes E are under the same curvature, e.g. perpendicular to each other.
  • the adjacent segments 23, 24 are in contact with each other in the closure fold 26.
  • the closure fold 26 represents an interruption in the material texture from one of the segments 23 to the adjacent segment 24. However, the two segments 23 are mechanically in contact, i. touch each other. There is no air gap between the segments 23, 24.
  • the closing fold 26 can be made visible, for example, in a cross-section transverse to the drill axis 2. For example, by etching the cut, the closing fold 26 can be emphasized.
  • twist drill 1 The manufacturing method described below for the twist drill 1 is mainly concerned with the production of the helix 4 Shanking 5 and the manufacture or attachment of the drill head 3 are only preferred examples.
  • Fig. 5, 6 show schematically a processing step of a blank 27 in longitudinal section V-V or cross-section Vl-Vl.
  • the blank 27 is, for example, a cylindrical wire having a radius 29 which is constant along the blank axis 28.
  • the cross section of the blank 27 is preferably circular for ease of procurement, but may also have another approximately circular shape, e.g. polygonal, oval.
  • the illustrated manufacturing method elongates the blank 27 to a desired length, e.g. the length of the helix 4 or the length of the helical drill 1 including the insertion end 5.
  • the helix 4 is first formed in the blank 27 and subsequently cut the helix 4 to the desired length.
  • a first forming stage forms a plurality of longitudinal grooves 30 in the blank 27.
  • the four longitudinal grooves 30 are rolled into the blank 27 by a rolling mill with four rotating rolling tools 31.
  • the rolling is preferably carried out with a longitudinal roller, in which the blank 27 is inserted in a driving direction 32 parallel to the blank axis 28 between the rolling tools 31.
  • the rolling tools 31 rotate about axes 33 which are perpendicular to the advancing direction 32.
  • the longitudinal grooves 30 have a length of the blank axis 28 constant cross-section.
  • the longitudinal grooves 30 preferably have an identical shape and are distributed uniformly around the blank axis 28.
  • the halfling 34 resulting from the blank 27 has a symmetry about the blank axis 28 corresponding to the cross-section of fourfold symmetry.
  • Fig. 7 shows a cross-section through the halfling 34.
  • the outline of the original blank 27 is shown dotted.
  • the longitudinal groove 30 is open in a direction 35 perpendicular to the drill axis 2 out.
  • the longitudinal groove 30 expands continuously with increasing distance from the drill axis 2.
  • the longitudinal groove 30 has a bottom 36 and two opposite walls 37.
  • the bottom 36 may be circular or elliptically curved as shown, or planar in a central region.
  • the walls 37 are largely flat.
  • the exemplary walls 37 are parallel to each other and to the direction 35.
  • the walls 37 may also be slightly inclined to each other, with the distance from the blank axis 28 from each other.
  • the halfling 34 consists of a cylindrical core 38 and four webs 39.
  • the radius 51 of the core 38 is equal to the distance of the bottom 36 of the longitudinal grooves 30 to the Blanksachse 28.
  • the webs 39 are formed by the forming.
  • a height 40 of the webs 39 is equal to the difference of the radius 51 to the outer radius 41 of the half ring 34th
  • the webs 39 preferably have the same shape, which forms between the longitudinal grooves 30.
  • the shape of the webs 39 is mushroom or trumpet-shaped.
  • the web 39 has an inner portion 42 which is adjacent to the core 38, and an outer portion 43 which is adjacent to the side facing away from the core 38 side of the inner portion 42.
  • the web 39 has a width 44 dependent on the distance to the blank axis 28.
  • the width 44 denotes the dimension in the circumferential direction 11 in a length dimension, i. the distance between two points lying on opposite surfaces, which are in a plane perpendicular to the blank axis 28 and at the same distance from the blank axis 28.
  • the width 44 decreases in the inner portion 42 with increasing distance to the blank axis 28 continuously.
  • the web 39 has a waist 45, i.
  • the inner portion 42 terminates at the waist 45.
  • the outer portion 43 is the remainder of the web 39 outside the waist 45, i. at a greater distance to the blank axis 28 as the waist 45.
  • the width 44 increases in the outer portion 43 adjacent to the waist 45.
  • the maximum width of the outer portion 43 is 150% to 250% of the width 44 of the waist 45.
  • the distance of the waist 45 to the blank axis 28 is between 80% and 125% of the outer radius 19 of the helix 4 to be produced.
  • the halfling 34 provided with the webs 39 is fed to a second stand with four second rolling tools 46 (FIGS. 8, 9).
  • the second frame rolls the webs 39 by longitudinal rollers in continuous, shown four, spiral webs 13 to.
  • the rotation or pivot axes of the rolling tools 46 are perpendicular to the feed direction and drill axis 2 of the half ring 34.
  • the second rolling tools 46 are preferably the same and arranged around the drill axis 2, preferably at equidistant angles.
  • Each of the rolling tools 46 processes a different angle section 47 of the halfling 34.
  • the rolling tools 46 adjacent in the circumferential direction 11 preferably contact one another such that the rolling surfaces form a closed ring around the drill axis 2 of the halfling 34.
  • An axial portion of the halfling 34 is simultaneously deformed from all sides and the axial portion shifts continuously along the drill axis 2.
  • the halfling 34 may be fed to the second framework with a defined orientation of curvature.
  • the second stand is rotated 45 degrees from the first stand.
  • the webs 39 are each centrally or approximately centrally to the rolling surfaces.
  • the second rolling tool 46 thus forms one of the webs 39. Accordingly, the number of second rolling tools 46 is equal to the number of lands 39.
  • the rolling tools 46 have a shape analogous to a helical gear with a plurality of teeth 48.
  • a head line 50 of the teeth 48 is inclined relative to the axis of rotation 49 of the rolling tools 46 by one an inclination angle.
  • the inclination angle is between 35 degrees and 60 degrees and is selected according to the desired spiral pitch.
  • the teeth 48 Deviating from a prismatic shape, have a circularly concave curved head line 50.
  • the curvature is approximately equal to the curvature of the spiral base 14 to be produced.
  • a height of the teeth 48 decreases monotonically along the axis of rotation from the edge towards the center and then until monotonically towards the edge.
  • the teeth 48 preferably contact the core 12 of the halfling 34 during rolling without being deformed.
  • the second rolling tool 46 mainly shapes the material in the outer portion 43 of the lands 39.

Abstract

A method for producing a twist drill 1 has the following steps. A blank 27 is shaped to form a semi-finished product 34. The semi-finished product 34 is formed from a core 38, coaxial with the drill axis 2, having a radius 51 and a number of webs 39, arranged on the core 38, having a height 40. The semi-finished product 34 has a constant cross section along the drill axis 2. The webs 39 have a first portion 42 which adjoins the core 38 and in which a width 44 of the web 39 remains constant or decreases in the circumferential direction 11 with increasing radial distance from the drill axis 2. The webs 39 have a second portion 43 which adjoins the first portion 42 and in which the width 44 of the web increases in the circumferential direction 11 with increasing radial distance from the drill axis 2. The webs 39 of the semi-finished product are shaped into helical segments using a plurality of rolling tools that annularly enclose the semi-finished product 34 and roll on the webs 39 along the drill axis 2. The rolling tools 31 have teeth 48 that are inclined with respect to the drill axis 2. A height 20 of the helical segments is less than the height 40 of the webs 39. Helical segments formed from adjacent webs 39 are in contact with one another in a closing fold 26. The invention also relates to a twist drill.

Description

Wendelbohrer und Herstellungsverfahren  Helical drill and manufacturing process
GEBIET DER ERFINDUNG FIELD OF THE INVENTION
Die vorliegende Erfindung betrifft ein Herstellungsverfahren für einen Wendelbohrer und einen Wendelbohrer, der mehrere Wendelstege aufweist. The present invention relates to a manufacturing method for a twist drill and a twist drill having a plurality of spiral webs.
OFFENBARUNG DER ERFINDUNG DISCLOSURE OF THE INVENTION
Das erfindungsgemäße Herstellungsverfahren für einen Wendelbohrer hat folgende Schritte. Ein Rohling wird zu einem Halbling umgeformt. Der Halbling ist aus einem zur Bohrerachse koaxialen Kern mit einem Radius und eine Anzahl von auf dem Kern angeordneten Stegen mit einer Höhe gebildet. Der Halbling hat einen längs der Bohrerachse gleichbleibenden Querschnitt. Die Stege haben einen ersten Abschnitt, der an den Kern angrenzt und in welchem eine Breite des Stegs in Umfangsrichtung mit zunehmendem radialen Abstand zu der Bohrerachse gleichbleibt oder abnimmt. Die Stege haben einen zweiten Abschnitt, der an den ersten Abschnitt angrenzt und in welchem die Breite des Stegs in Umfangsrichtung mit zunehmendem radialen Abstand zu der Bohrerachse zunimmt. Die Stege des Halblings werden in helixförmige Segmente mit mehreren den Halbling ringförmig umschließenden und längs der Bohrerachse auf den Stegen rollenden Walzwerkzeugen umgeformt. Die Walzwerkzeuge haben gegenüber der Bohrerachse geneigte Zähne. Eine Höhe der helixförmigen Segmente ist geringer als die Höhe der Stege. Aus benachbarten Stegen gebildete helixförmige Segmente berühren einander in einer Schließfalte. The production method for a twist drill according to the invention has the following steps. A blank is transformed into a halfling. The halfling is formed of a core having a radius coaxial with the drill axis and a number of ridges arranged on the core with a height. The halfling has a constant cross section along the drill axis. The webs have a first portion adjacent to the core and in which a width of the web in the circumferential direction remains the same or decreases with increasing radial distance to the drill axis. The webs have a second portion adjacent to the first portion and in which the width of the web increases in the circumferential direction with increasing radial distance to the drill axis. The webs of the halfling are formed into helical segments with a plurality of rolling molds surrounding the halfling and rolling on the webs along the drill axis. The rolling tools have inclined teeth relative to the drill axis. A height of the helical segments is less than the height of the webs. Helical segments formed from adjacent lands contact one another in a closing fold.
Das Umformen des Rohlings erfolgt in wenigstens zwei Stufen. Während einer ersten Stufe wird das Material des vorzugsweise zylindrischen Rohlings aus einem Winkelbereich zu Stegen zusammengeschoben. Die entstehenden Stege haben eine pilzförmige Gestalt, deren äußeren Kopf eine große Materialmenge enthält. Während einer zweiten Stufe wird der Steg längsgewalzt. Das Material aus dem Kopf wird gelenkt durch die Walzwerkzeuge wieder in den zuvor freigelegten Wnkelbereich zurückgeschoben. Die geneigten Zähne schieben einerseits das Material und unterbinden einen Materialfluss in die späteren Wendelgänge. Das Material häuft sich dadurch in den helixförmigen Segmenten. Benachbarte Walzwerkzeuge schieben beide Teile ihres Materials in einen zwischen den umzuformenden Stegen liegenden Wnkelbereich. Die beiden helixförmigen Segmente stoßen in Umfangsrichtung aufeinander und bilden eine durchgehende Wendel. In der Wendel bleibt eine Schließfalte zurück, an welcher die Segmente aufeinander stoßen. The forming of the blank takes place in at least two stages. During a first stage, the material of the preferably cylindrical blank is pushed together from an angular range to webs. The resulting webs have a mushroom-shaped form whose outer head contains a large amount of material. During a second stage, the web is longitudinally rolled. The material from the head is guided by the rolling tools back into the previously disclosed Wnkelbereich pushed back. The inclined teeth push the material on the one hand and prevent material flow in the later spiral turns. The material thereby accumulates in the helical segments. Adjacent rolling tools push both parts of their material into a curved region lying between the webs to be formed. The two helical segments collide in the circumferential direction and form a continuous helix. In the helix, a closing fold remains, at which the segments abut each other.
Die Schließfalten können in Ebenen liegen, die die Bohrerachse enthalten und mittig zwischen benachbarten Stegen angeordnet sind. Der Materialfluss von beiden Stegen in und gegen eine Umlaufsrichtung ist durch eine symmetrische Auslegung der Walzwerkzeuge in etwa gleich. The closing folds can lie in planes which contain the drill axis and are arranged centrally between adjacent webs. The material flow of both webs in and against a circumferential direction is approximately the same due to a symmetrical design of the rolling tools.
Der Kopf des Stegs enthält vorzugsweise viel Material, welches während des Walzens der helixförmigen Segmente umverteilt werden kann. Eine Ausgestaltung sieht vor, dass in dem Querschnitt eine Fläche des ersten Abschnitts geringer als eine Fläche des zweiten Abschnitts ist. The head of the web preferably contains much material that can be redistributed during rolling of the helical segments. An embodiment provides that in the cross section, a surface of the first portion is smaller than a surface of the second portion.
Der Kopf überragt in radialer Richtung die herzustellende Wendel, damit die Walzwerkzeuge Material über die gesamte Länge des Stegs in die Wnkelbereiche zwischen den Stegen umverteilen können. Die Höhe der Stege ist vorzugsweise wenigstens 20 % größer und höchstens 100 % größer als die Höhe der helixförmigen Segmente. The head projects radially beyond the helix to be produced so that the rolling tools can redistribute material over the entire length of the web into the curved regions between the webs. The height of the webs is preferably at least 20% greater and at most 100% greater than the height of the helical segments.
Eine Ausgestaltung sieht vor, dass die Anzahl der Stege gleich oder größer der Anzahl der Wendelrücken ist. Vorzugsweise ist die Anzahl gleich. An embodiment provides that the number of webs is equal to or greater than the number of spiral spines. Preferably, the number is the same.
Ein erfindungsgemäßer Wendelbohrer hat einen Bohrkopf und eine Wendel. Die Wendel beinhaltet einen eine Bohrerachse definierenden zylindrischen Kern und eine Anzahl mit dem Kern verbundener helixförmiger Wendelstege. Die Wendelstege sind jeweils aus mehreren Segmenten gebildet, die einander entlang parallel zu der Bohrerachse verlaufender Schließfalten berühren. Die Schließfalten können in einer die Bohrerachse enthaltenden Ebene liegen. Der Kern entspricht in üblichem Verständnis bei einer Wendel, dem größten Zylinder, der in die Wendel eingeschrieben werden kann. Eine Ausgestaltung sieht vor, dass eine Höhe der Schließfalte gleich der Höhe des Wendelstegs ist. Die Schließfalte beginnt bei dem zylindrischen Kern. An inventive twist drill has a drill head and a helix. The helix includes a cylindrical core defining a drill axis and a number of helical helix webs connected to the core. The spiral webs are each formed of a plurality of segments which contact each other along parallel to the drill axis extending closing folds. The closing folds may lie in a plane containing the drill axis. The core is commonly understood to be a helix, the largest cylinder that can be inscribed in the helix. An embodiment provides that a height of the closing fold is equal to the height of the spiral web. The closing fold begins at the cylindrical core.
Eine Ausgestaltung sieht vor, dass Segmente einer ersten von zwei Gruppen der Segmente durch eine in den Drehsinn des Wendelbohrers weisende Flanke und eine der Schließfalten begrenzt sind und Segmente einer zweiten der zwei Gruppen der Segmente durch eine in entgegen dem Drehsinn weisende Flanke und eine der Schließfalten begrenzt sind. KURZE BESCHREIBUNG DER FIGUREN One embodiment provides that segments of a first of two groups of the segments are delimited by an edge pointing in the direction of rotation of the helix drill and one of the closing folds, and segments of a second of the two groups of the segments by an edge facing in the direction of rotation and one of the closing folds are limited. BRIEF DESCRIPTION OF THE FIGURES
Die nachfolgende Beschreibung erläutert die Erfindung anhand von exemplarischen Ausführungsformen und Figuren. In den Figuren zeigen: The following description explains the invention with reference to exemplary embodiments and figures. In the figures show:
Fig. 1 einen Wendelbohrer Fig. 1 a helical drill
Fig. 2 einen Querschnitt durch eine Wendel des Wendelbohrers in der Ebene II-II Fig. 3 einen Querschnitt durch eine Wendel des Wendelbohrers in der Ebene III-III Fig. 4 einen Querschnitt durch eine Wendel des Wendelbohrers in der Ebene IV-IV Fig. 5, 6 ein Walzgerüst 2 shows a cross section through a helix of the helical drill in the plane II-II. FIG. 3 shows a cross section through a helix of the helix drill in the plane III-III. FIG. 4 shows a cross section through a helix of the helical drill in the plane IV-IV FIG. 5, 6 a rolling stand
Fig. 7 ein Halbling im Querschnitt Fig. 8, 9 ein Walzgerüst Gleiche oder funktionsgleiche Elemente werden durch gleiche Bezugszeichen in den Figuren indiziert, soweit nicht anders angegeben. Fig. 7 shows a halfling in cross section Fig. 8, 9 a rolling stand Same or functionally identical elements are indicated by the same reference numerals in the figures, unless stated otherwise.
AUSFÜHRUNGSFORMEN DER ERFINDUNG Fig. 1 zeigt schematisch vereinfacht einen beispielhaften Wendelbohrer 1. Der Wendelbohrer 1 hat längs einer Bohrerachse 2 aufeinanderfolgend einen Bohrkopf 3, eine spiralförmige Wendel 4 und ein Einsteckende 5. EMBODIMENTS OF THE INVENTION FIG. 1 schematically shows, in simplified form, an exemplary helical drill 1. The helical drill 1 has, along a drill axis 2, successively a drill head 3, a helical coil 4 and an insertion end 5.
Der dargestellte Wendelbohrer 1 ist für die Bearbeitung von Gestein ausgelegt, insbesondere für eine der Drehbewegung überlagerte Meißeltätigkeit. Der Bohrkopf 3 hat vier in Schlagrichtung 6 weisende Meißelkanten 7. Die Meißelkanten 7 sind jeweils als Kreuzungslinie einer im Drehsinn des Wendelbohrers 1 vorauslaufenden Fläche und einer nachlaufenden Fläche gebildet, die beide gegenüber der Bohrerachse 2 geneigt und zueinander um wenigstens 60 Grad geneigt sind. Die Meißelkanten 7 verlaufen im Wesentlichen in radialer Richtung, z.B. ausgehend von einer Spitze 8 des Bohrkopfs 3 bis zu einem Rand des Bohrkopfs 3, wo die Meißelkanten 7 vorzugsweise gegenüber der Spitze 8 in Schlagrichtung 6 zurückgesetzt sind. Eine Neigung der Meißelkanten 7 gegenüber der Bohrerachse 2 kann in radialer Richtung konstant sein oder im Bereich der Spitze 8 geringer als am Rand sein. Insbesondere kann die Meißelkante 7 am Rand senkrecht zu der Bohrerachse 2 verlaufen. An die in Schlagrichtung 6 weisenden Meißelkanten 7 schließt sich am Rand des Bohrkopfs 3 eine Abbruchkante 9 an, welche parallel zu der der Bohrerachse 2 verläuft. Die Abbruchkante 9 steht vorzugsweise radial über die Wendel 4 hinaus. Der Bohrkopf 3 ist an seinem Umfang mit parallel zur Bohrerachse 2 verlaufenden Abfuhrrinnen 10 versehen, entlang welchen das Bohrmehl aus dem Bohrloch transportiert werden kann. Die Abfuhrrinnen 10 sind in Umfangsrichtung 11 zwischen den Meißelkanten 7 angeordnet. Der Bohrkopf 3 ist vorzugsweise ein zusammenhängender Körper aus gesintertem Hartmetall, das z.B. Wolframkarbid und einen metallischen Binder enthält. Der dargestellte Bohrkopf 3 hat zwei Paare unterschiedlich ausgebildeter Meißelkanten, von denen die die Spitze 8 bildenden Meißelkanten als Hauptschneiden und das andere Paar als Nebenschneiden bezeichnet werden. Anstelle von vier kann der Meißelkörper auch zwei, z.B. nur die Hauptschneiden, oder drei oder mehr als vier Meißelkanten aufweisen. The illustrated twist drill 1 is designed for the processing of rock, in particular for a rotary movement superimposed Meißeltätigkeit. The drill head 3 has four chisel edges 7 which point in the direction of impact 6. The chisel edges 7 are each formed as a crossing line of a surface leading in the direction of rotation of the helical drill 1 and a trailing surface which are both inclined relative to the drill axis 2 and inclined relative to each other by at least 60 degrees. The chisel edges 7 extend substantially in the radial direction, for example starting from a tip 8 of the drill head 3 to an edge of the drill head 3, where the chisel edges 7 are preferably set back in the direction of impact 6 with respect to the tip 8. An inclination of the chisel edges 7 against the Drill axis 2 may be constant in the radial direction or lower in the region of the tip 8 than at the edge. In particular, the chisel edge 7 can run perpendicular to the drill axis 2 at the edge. To the pointing in the direction of impact 6 chisel edges 7 is followed at the edge of the drill head 3, a demolition edge 9, which is parallel to the drill axis 2. The demolition edge 9 is preferably radially beyond the helix 4 addition. The drill head 3 is provided at its periphery with parallel to the drill axis 2 extending discharge channels 10, along which the drill dust can be transported from the well. The discharge channels 10 are arranged in the circumferential direction 11 between the chisel edges 7. The drill head 3 is preferably a continuous sintered cemented carbide body containing, for example, tungsten carbide and a metallic binder. The illustrated drill head 3 has two pairs of differently shaped chisel edges, of which the chisel edges forming the point 8 are referred to as main cutting edges and the other pair as secondary cutting edges. Instead of four, the bit body may also have two, eg only the major cutting edges, or three or more than four cutting edges.
Die Wendel 4 setzt sich aus einem massiven zylindrischen Wendelkern 12 und vier sich um den Wendelkern 12 windende Wendelstege 13 zusammen. Der Wendelkern 12 und die Wendelstege 13 sind ohne Naht miteinander verbunden. Eine Aufteilung der Wendel 4 in Wendelkern 12 und Wendelstegen 13 erfolgt basierend auf deren charakteristischen Formen. Die Wendelstege 13 definieren die gesamte Oberfläche der Wendel 4. Die Wendelstege 13 haben eine von einem Wendelboden 14 bis zu einem Wendelrücken 15 in Umfangsrichtung 11 ansteigende Flanke 16 und in Umfangsrichtung 11 fallende Flanke 17. Der Abstand des Wendelboden 14 zu der Bohrerachse 2 ist der Innenradius 18 der Wendel 4 und der Abstand des Wendelrückens 15 zu der Bohrerachse 2 ist der Außenradius 19 der Wendel 4. Der Zylinder mit dem Innenradius 18, d.h. der größte in die Wendel 4 einschreibbare Zylinders, ist der Wendelkern 12. Die Volumina zwischen der Oberfläche und dem Wendelkern 12 werden den Wendelstegen 13 zugeordnet. Eine Höhe 20 der Wendelstege 13 ist die Differenz des Außenradius 19 und des Innenradius 18 der Wendel. Die Wendel 4 hat drei, vier, fünf oder sechs Wendelstege 13. Die Wendelstege 13 ist vorzugsweise identisch ausgebildet. Bei vier Wendelstegen 13 können beispielsweise zwei Wendelstege eine geringere Höhe als die anderen zwei Wendelstege 13 aufweisen. Die Wendelstege 13 sind vorzugsweise gleichmäßig um die Bohrerachse 2 verteilt angeordnet. Eine Wnkelabstand 21 der Wendelstege 13, gemessen in einem zu der Bohrerachse 2 senkrechten Querschnitt (Fig. 2), ist der der Anzahl der Wendelstege 13 entsprechende Bruchteil des Vollkreises, z.B. 90 Grad. Die Wendel 4 hat eine ganzzählige Drehsymmetrie, z.B. vierzählige Drehsymmetrie. Eine Ganghöhe 22 der Wendel 4 ist der axiale Abstand zweier benachbarter Wendelstege 13, gemessen in einem zur Bohrerachse 2 parallelen Längsschnitt. Die Ganghöhe 22 ist vorzugsweise konstant. Die Wendel 4 ist entsprechend längs der Bohrerachse 2 periodisch. Fig. 2 zeigt einen ersten Querschnitt durch die Wendel 4, Fig. 3 zeigt einen zweiten Querschnitt etwa um ein Achtel der Ganghöhe 22 zu dem ersten Querschnitt versetzt, und Fig. 4 zeigt einen dritten Querschnitt etwa um die Hälfte der Ganghöhe 22 zu dem ersten Querschnitt versetzt. Die beispielhafte Wendel 4 dreht sich von dem ersten Querschnitt zu dem zweiten Querschnitt um etwa 12 Grad, von dem ersten Querschnitt zu dem dritten Querschnitt um 45 Grad. The helix 4 is composed of a massive cylindrical helical core 12 and four helix webs 13 that wind around the helix core 12. The spiral core 12 and the spiral webs 13 are connected to each other without seam. A division of the helix 4 in spiral core 12 and spiral webs 13 is based on their characteristic shapes. The spiral webs 13 define the entire surface of the helix 4. The spiral webs 13 have a rising from a helical base 14 to a helical spine 15 in the circumferential direction 11 rising edge 16 and circumferentially 11 falling edge 17. The distance of the helical bottom 14 to the drill axis 2 is the Inner radius 18 of the helix 4 and the distance of the helical spine 15 to the drill axis 2 is the outer radius 19 of the helix 4. The cylinder with the inner radius 18, ie the largest inscribable in the helix 4 cylinder is the helical core 12. The volumes between the surface and the spiral core 12 are assigned to the spiral webs 13. A height 20 of the spiral webs 13 is the difference of the outer radius 19 and the inner radius 18 of the helix. The helix 4 has three, four, five or six spiral webs 13. The helical webs 13 is preferably formed identically. For example, in the case of four spiral webs 13, two spiral webs may have a smaller height than the other two spiral webs 13. The spiral webs 13 are preferably distributed uniformly around the drill axis 2. A Wnkelabstand 21 of the spiral webs 13, measured in a direction perpendicular to the drill axis 2 cross section (Fig. 2), the number of spiral webs 13 corresponding fraction of the full circle, for example, 90 degrees. The helix 4 has a ganzzählige rotational symmetry, eg vierzählige rotational symmetry. A pitch 22 of the helix 4 is the axial distance two adjacent spiral webs 13, measured in a parallel to the drill axis 2 longitudinal section. The pitch 22 is preferably constant. The coil 4 is correspondingly along the drill axis 2 periodically. Fig. 2 shows a first cross-section through the helix 4, Fig. 3 shows a second cross-section offset approximately one-eighth of the pitch 22 to the first cross-section, and Fig. 4 shows a third cross-section about half the pitch 22 to the first Offset cross-section. The exemplary coil 4 rotates about 12 degrees from the first cross section to the second cross section, 45 degrees from the first cross section to the third cross section.
Die Wendelstege 13 sind sowohl in Umfangsrichtung 11 als auch längs der Bohrerachse 2 mehrfach in Segmente 23, 24, 25 unterteilt. Ein beispielhaftes Segment 23 ist schraffiert in Fig. 1 hervorgehoben. Die Segmente 23, 24, 25 sind bei dem beispielhaften Bohrer identisch ausgebildet. Die Segmente 23 grenzen aneinander in Umfangsrichtung 11 und längs der Bohrerachse 2 aneinander an. Die längs der Bohrerachse 2 benachbarten Segmente 23, 25 sind verschiedenen Wendelstegen 13 zugeordnet. Die Segmente 23 sind längs der Bohrerachse 2 durch den Wendelboden 14 begrenzt. Die Unterteilung der Wendelstege 13 in die Segmente 23, 24 erfolgt in Umfangsrichtung 11 durch Schließfalten 26, die sich über die gesamte Länge der Wendel 4 und die gesamte Höhe 20 der Wendelstege 13 erstrecken. Die Schließfalten 26 sind weitgehend eben und liegen in vier Ebenen E. Die Ebenen E sind parallel zu der Bohrerachse 2 und können diese wahlweise enthalten oder haben einen Abstand zu der Bohrerachse 2, der deutlich geringer als der Innenradius 18 ist, z.B. geringer als 10 % des Innenradius 18. Die Ebenen E stehen unter gleichen Wnkeln, z.B. senkrecht aufeinander. The spiral webs 13 are divided several times into segments 23, 24, 25 both in the circumferential direction 11 and along the drill axis 2. An exemplary segment 23 is hatched in Fig. 1 highlighted. The segments 23, 24, 25 are identical in the exemplary drill. The segments 23 adjoin one another in the circumferential direction 11 and along the drill axis 2 to each other. The segments 23, 25 adjacent to the drill axis 2 are assigned to different spiral webs 13. The segments 23 are delimited along the drill axis 2 by the helical base 14. The division of the spiral webs 13 into the segments 23, 24 takes place in the circumferential direction 11 by closing folds 26, which extend over the entire length of the coil 4 and the entire height 20 of the coil webs 13. The closing folds 26 are substantially planar and lie in four planes E. The planes E are parallel to the drill axis 2 and may optionally contain or have a distance from the drill axis 2 which is significantly less than the inner radius 18, e.g. less than 10% of the inner radius 18. The planes E are under the same curvature, e.g. perpendicular to each other.
Die benachbarten Segmente 23, 24 berühren einander in der Schließfalte 26. Die Schließfalte 26 stellt eine Unterbrechung in dem Materialgefüge von dem einem der Segmente 23 zu dem benachbarten Segment 24 dar. Jedoch sind die beiden Segmente 23 mechanisch in Kontakt, d.h. berühren sich. Es gibt keinen Luftspalt zwischen den Segmenten 23, 24. Die Schließfalte 26 kann beispielsweise in einem Schliff quer zur Bohrerachse 2 sichtbar gemacht werden. Beispielsweise kann durch Ätzen des Schliffs die Schließfalte 26 hervorgehoben werden. The adjacent segments 23, 24 are in contact with each other in the closure fold 26. The closure fold 26 represents an interruption in the material texture from one of the segments 23 to the adjacent segment 24. However, the two segments 23 are mechanically in contact, i. touch each other. There is no air gap between the segments 23, 24. The closing fold 26 can be made visible, for example, in a cross-section transverse to the drill axis 2. For example, by etching the cut, the closing fold 26 can be emphasized.
Das nachfolgend beschriebene Herstellungsverfahren für den Wendelbohrer 1 befasst sich hauptsächlich mit der Herstellung der Wendel 4. Die beschriebene Fertigung des Einsteckendes 5 und die Herstellung oder das Anbringen des Bohrkopfs 3 sind nur bevorzugte Beispiele. The manufacturing method described below for the twist drill 1 is mainly concerned with the production of the helix 4 Shanking 5 and the manufacture or attachment of the drill head 3 are only preferred examples.
Fig. 5, 6 zeigen schematisch einen Bearbeitungsschritt eines Rohlings 27 in Längsschnitt V-V bzw. Querschnitt Vl-Vl. Der Rohling 27 ist beispielsweise ein zylindrischer Draht mit einem längs der Rohlingsachse 28 gleichbleibenden Radius 29. Der Querschnitt des Rohlings 27 ist zwecks einfacherer Beschaffung vorzugsweise kreisförmig, kann jedoch auch eine andere näherungsweise kreisförmige Gestalt, z.B. polygonal, oval aufweisen. Das dargestellte Herstellungsverfahren längt den Rohling 27 vor den nachfolgenden Umformungsschritten auf eine gewünschte Länge, z.B. die Länge der Wendel 4 oder die Länge des Wendelbohrers 1 einschließlich des Einsteckendes 5. Bei einer bevorzugten Variante wird die Wendel 4 zuerst in den Rohling 27 eingeformt und nachfolgend die Wendel 4 auf die gewünschte Länge zugeschnitten. Eine erste Umformungsstufe formt in den Rohling 27 mehrere Längsnuten 30 ein. Beispielsweise werden die vier Längsnuten 30 durch ein Walzgerüst mit vier rotierenden Walzwerkzeugen 31 in den Rohling 27 eingewalzt. Das Walzen erfolgt vorzugsweise mit einem Längswalzen, bei welchem der Rohling 27 in einer Vortriebsrichtung 32 parallel zu der Rohlingsachse 28 zwischen die Walzwerkzeuge 31 eingeführt wird. Die Walzwerkzeuge 31 rotieren um Achsen 33, welche senkrecht zu der Vortriebsrichtung 32 sind. Die Längsnuten 30 haben einen längs der Rohlingsachse 28 konstanten Querschnitt. Vorzugsweise haben die Längsnuten 30 eine identische Form und sind gleichmäßig um die Rohlingsachse 28 verteilt angeordnet. Der aus dem Rohling 27 entstehende Halbling 34 hat eine entsprechend dem Querschnitt vierzählige Symmetrie um die Rohlingsachse 28. Fig. 5, 6 show schematically a processing step of a blank 27 in longitudinal section V-V or cross-section Vl-Vl. The blank 27 is, for example, a cylindrical wire having a radius 29 which is constant along the blank axis 28. The cross section of the blank 27 is preferably circular for ease of procurement, but may also have another approximately circular shape, e.g. polygonal, oval. The illustrated manufacturing method elongates the blank 27 to a desired length, e.g. the length of the helix 4 or the length of the helical drill 1 including the insertion end 5. In a preferred variant, the helix 4 is first formed in the blank 27 and subsequently cut the helix 4 to the desired length. A first forming stage forms a plurality of longitudinal grooves 30 in the blank 27. For example, the four longitudinal grooves 30 are rolled into the blank 27 by a rolling mill with four rotating rolling tools 31. The rolling is preferably carried out with a longitudinal roller, in which the blank 27 is inserted in a driving direction 32 parallel to the blank axis 28 between the rolling tools 31. The rolling tools 31 rotate about axes 33 which are perpendicular to the advancing direction 32. The longitudinal grooves 30 have a length of the blank axis 28 constant cross-section. The longitudinal grooves 30 preferably have an identical shape and are distributed uniformly around the blank axis 28. The halfling 34 resulting from the blank 27 has a symmetry about the blank axis 28 corresponding to the cross-section of fourfold symmetry.
Fig. 7 zeigt einen Querschnitt durch den Halbling 34. Der Umriss des ursprünglichen Rohlings 27 ist gepunktet dargestellt. Die Längsnut 30 ist in einer Richtung 35 senkrecht zur Bohrerachse 2 hin geöffnet. Die Längsnut 30 weitet sich mit zunehmendem Abstand von der Bohrerachse 2 kontinuierlich auf. Die Längsnut 30 hat einen Boden 36 und zwei gegenüberliegende Wände 37. Der Boden 36 kann wie dargestellt durchgehend kreisförmig oder elliptisch gekrümmt oder in einem mittleren Bereich eben sein. Die Wände 37 sind weitgehend eben. Die beispielhaften Wände 37 sind zueinander und zu der Richtung 35 parallel. Die Wände 37 können auch leicht zueinander geneigt, sich mit zunehmendem Abstand von der Rohlingsachse 28 voneinander entfernen. Fig. 7 shows a cross-section through the halfling 34. The outline of the original blank 27 is shown dotted. The longitudinal groove 30 is open in a direction 35 perpendicular to the drill axis 2 out. The longitudinal groove 30 expands continuously with increasing distance from the drill axis 2. The longitudinal groove 30 has a bottom 36 and two opposite walls 37. The bottom 36 may be circular or elliptically curved as shown, or planar in a central region. The walls 37 are largely flat. The exemplary walls 37 are parallel to each other and to the direction 35. The walls 37 may also be slightly inclined to each other, with the distance from the blank axis 28 from each other.
Der Halbling 34 besteht aus einem zylindrischen Kern 38 und vier Stegen 39. Der Radius 51 des Kerns 38 ist gleich dem Abstand des Bodens 36 der Längsnuten 30 zu der Rohlingsachse 28. Die Stege 39 sind durch das Umformen entstanden. Eine Höhe 40 der Stege 39 ist gleich der Differenz des Radius 51 zu dem Außenradius 41 des Halblings 34. The halfling 34 consists of a cylindrical core 38 and four webs 39. The radius 51 of the core 38 is equal to the distance of the bottom 36 of the longitudinal grooves 30 to the Blanksachse 28. The webs 39 are formed by the forming. A height 40 of the webs 39 is equal to the difference of the radius 51 to the outer radius 41 of the half ring 34th
Die Stege 39 haben vorzugsweise die gleiche Form, welche sich zwischen den Längsnuten 30 ausbildet. Die Form der Stege 39 ist pilz- oder trompetenförmig. Der Steg 39 hat einen inneren Abschnitt 42, der an den Kern 38 angrenzt, und einen äußeren Abschnitt 43, der an die von dem Kern 38 abgewandte Seite des inneren Abschnitts 42 angrenzt. Der Steg 39 hat eine von dem Abstand zu der Rohlingsachse 28 abhängige Breite 44. Die Breite 44 bezeichnet die Abmessung in Umfangsrichtung 11 in einem Längenmaß, d.h. den Abstand zweier auf gegenüberliegenden Oberflächen liegender Punkte, die in einer zu der Rohlingsachse 28 senkrechten Ebene und in gleichen Abstand zu der Rohlingsachse 28 sind. Die Breite 44 nimmt in dem inneren Abschnitt 42 mit zunehmendem Abstand zu der Rohlingsachse 28 kontinuierlich ab. Die Steg 39 hat eine Taille 45, d.h. dünnste Stelle. Der innere Abschnitt 42 endet an der Taille 45. Der äußere Abschnitt 43 ist der Rest des Stegs 39 außerhalb der Taille 45, d.h. in größerem Abstand zu der Rohlingsachse 28 wie die Taille 45. Die Breite 44 nimmt in dem äußeren Abschnitt 43 angrenzend an die Taille 45 zu. Die maximale Breite des äußeren Abschnitts 43 beträgt 150 % bis 250 % des Breite 44 der Taille 45. Der Abstand der Taille 45 zu der Rohlingsachse 28 liegt zwischen 80 % und 125 % des Außenradius 19 der herzustellenden Wendel 4. The webs 39 preferably have the same shape, which forms between the longitudinal grooves 30. The shape of the webs 39 is mushroom or trumpet-shaped. The web 39 has an inner portion 42 which is adjacent to the core 38, and an outer portion 43 which is adjacent to the side facing away from the core 38 side of the inner portion 42. The web 39 has a width 44 dependent on the distance to the blank axis 28. The width 44 denotes the dimension in the circumferential direction 11 in a length dimension, i. the distance between two points lying on opposite surfaces, which are in a plane perpendicular to the blank axis 28 and at the same distance from the blank axis 28. The width 44 decreases in the inner portion 42 with increasing distance to the blank axis 28 continuously. The web 39 has a waist 45, i. thinnest place. The inner portion 42 terminates at the waist 45. The outer portion 43 is the remainder of the web 39 outside the waist 45, i. at a greater distance to the blank axis 28 as the waist 45. The width 44 increases in the outer portion 43 adjacent to the waist 45. The maximum width of the outer portion 43 is 150% to 250% of the width 44 of the waist 45. The distance of the waist 45 to the blank axis 28 is between 80% and 125% of the outer radius 19 of the helix 4 to be produced.
Der mit den Stegen 39 versehene Halbling 34, wird einem zweiten Gerüst mit vier zweiten Walzwerkzeugen 46 zugeführt (Fig. 8, 9). Das zweite Gerüst walzt die Stege 39 per Längswalzen in durchgehende, dargestellt vier, Wendelstege 13 um. Die Dreh- oder Schwenkachsen der Walzwerkzeuge 46 sind senkrecht zu der Vorschubrichtung und Bohrerachse 2 des Halblings 34. Die zweiten Walzwerkzeuge 46 sind vorzugsweise gleich und um die Bohrerachse 2 vorzugsweise in äquidistanten Winkeln angeordnet. Jedes der Walzwerkzeuge 46 bearbeitet einen anderen Winkelabschnitt 47 des Halblings 34. Die in Umfangsrichtung 11 benachbarten Walzwerkzeuge 46 berühren einander vorzugsweise derart, dass die Walzflächen einen geschlossenen Ring um die Bohrerachse 2 des Halbling 34 bilden. Ein axialer Abschnitt des Halblings 34 wird von allen Seiten gleichzeitig umgeformt und der axiale Abschnitt verschiebt sich fortlaufend längs der Bohrerachse 2. The halfling 34 provided with the webs 39 is fed to a second stand with four second rolling tools 46 (FIGS. 8, 9). The second frame rolls the webs 39 by longitudinal rollers in continuous, shown four, spiral webs 13 to. The rotation or pivot axes of the rolling tools 46 are perpendicular to the feed direction and drill axis 2 of the half ring 34. The second rolling tools 46 are preferably the same and arranged around the drill axis 2, preferably at equidistant angles. Each of the rolling tools 46 processes a different angle section 47 of the halfling 34. The rolling tools 46 adjacent in the circumferential direction 11 preferably contact one another such that the rolling surfaces form a closed ring around the drill axis 2 of the halfling 34. An axial portion of the halfling 34 is simultaneously deformed from all sides and the axial portion shifts continuously along the drill axis 2.
Der Halbling 34 kann dem zweiten Gerüst mit einer definierten Wnkelorientierung zugeführt werden. Bei der dargestellten Ausführungsform ist das zweite Gerüst um 45 Grad gegenüber dem ersten Gerüst gedreht. Die Stege 39 sind jeweils mittig oder etwa mittig zu den Walzflächen. Das zweite Walzwerkzeug 46 formt somit einen der Stege 39 um. Entsprechend ist die Zahl der zweiten Walzwerkzeuge 46 gleich der Zahl der Stege 39. Die Walzwerkzeuge 46 haben eine Form analog einem schrägverzahnten Zahnrad mit mehreren Zähnen 48. Eine Kopflinie 50 der Zähne 48 ist gegenüber der Drehachse 49 der Walzwerkzeuge 46 um einen ein Neigungswinkel geneigt. Der Neigungswinkel liegt zwischen 35 Grad und 60 Grad und ist entsprechend der gewünschten Wendelsteigung gewählt. Die Zähne 48 haben, abweichend von einer prismatischen Gestalt, eine kreisförmig konkav gekrümmte Kopflinie 50. Die Krümmung ist etwa gleich der Krümmung des herzustellenden Wendelbodens 14. Eine Höhe der Zähne 48 nimmt längs der Drehachse vom Rand zu der Mitte hin monoton ab und danach bis zum Rand monoton zu. Die Zähne 48 berühren vorzugsweise beim Walzen den Kern 12 des Halblings 34 ohne diesen umzuformen. Das zweite Walzwerkzeug 46 formt hauptsächlich das Material in dem äußeren Abschnitt 43 der Stege 39 um. The halfling 34 may be fed to the second framework with a defined orientation of curvature. In the illustrated embodiment, the second stand is rotated 45 degrees from the first stand. The webs 39 are each centrally or approximately centrally to the rolling surfaces. The second rolling tool 46 thus forms one of the webs 39. Accordingly, the number of second rolling tools 46 is equal to the number of lands 39. The rolling tools 46 have a shape analogous to a helical gear with a plurality of teeth 48. A head line 50 of the teeth 48 is inclined relative to the axis of rotation 49 of the rolling tools 46 by one an inclination angle. The inclination angle is between 35 degrees and 60 degrees and is selected according to the desired spiral pitch. Deviating from a prismatic shape, the teeth 48 have a circularly concave curved head line 50. The curvature is approximately equal to the curvature of the spiral base 14 to be produced. A height of the teeth 48 decreases monotonically along the axis of rotation from the edge towards the center and then until monotonically towards the edge. The teeth 48 preferably contact the core 12 of the halfling 34 during rolling without being deformed. The second rolling tool 46 mainly shapes the material in the outer portion 43 of the lands 39.

Claims

PATENTANSPRÜCHE
1. Herstellungsverfahren für einen Wendelbohrer (1 ) mit einer Wendel (4), die eine Anzahl (N) von in einer Wendelsteigung um eine Bohrerachse (2) verlaufende Wendelstege (13) aufweist, mit den Schritten: Method for producing a helical drill (1) with a helix (4) which has a number (N) of spiral webs (13) running around a drill axis (2) in a spiral pitch, comprising the steps of:
Umformen eines Rohlings (27) zu einem Halbling (34), der, gebildet aus einem zur Bohrerachse (2) koaxialen Kern (38) mit einem Radius (51 ) und eine Anzahl von auf dem Kern (38) angeordneten Stegen (39) mit einer Höhe (40), einen längs der Bohrerachse (2) gleichbleibenden Querschnitt aufweist, wobei die Stege (39) angrenzend an den Kern (38) einen ersten Abschnitt (42), in welchem eine Breite (44) des Stegs (39) in Umfangsrichtung (11 ) mit zunehmenden radialen Abstand zu der Bohrerachse (2) gleichbleibt oder abnimmt, und angrenzend an den ersten Abschnitt (42) einen zweiten Abschnitt (43) aufweisen, in welchem die Breite (44) des Stegs in Umfangsrichtung (1 1 ) mit zunehmendem radialen Abstand zu der Bohrerachse (2) zunimmt,  Forming a blank (27) into a halfling (34) formed by a core (38) with a radius (51) coaxial with the drill axis (2) and a number of webs (39) arranged on the core (38) a height (40), along the drill axis (2) has a constant cross section, wherein the webs (39) adjacent to the core (38) has a first portion (42) in which a width (44) of the web (39) in Circumferential direction (11) with increasing radial distance to the drill axis (2) remains the same or decrease, and adjacent to the first portion (42) has a second portion (43) in which the width (44) of the web in the circumferential direction (1 1) increases with increasing radial distance to the drill axis (2),
Umformen der Stege (39) in helixförmige Segmente mit mehreren den Halbling (34) ringförmig umschließenden und längs der Bohrerachse (2) auf den Stegen (39) rollenden Walzwerkzeugen, welche gegenüber der Bohrerachse (2) geneigte Zähne (48) aufweisen, wobei eine Höhe (20) der helixförmigen Segmente geringer als die Höhe (40) der Stege (39) ist, und wobei aus benachbarten Stegen (39) gebildete helixförmige Forming of the webs (39) into helical segments with a plurality of halfling (34) annular and along the drill axis (2) rolling on the webs (39) rolling tools, which relative to the drill axis (2) inclined teeth (48), wherein a Height (20) of the helical segments is less than the height (40) of the webs (39), and wherein from adjacent webs (39) formed helical
Segmente einander in einer Schließfalte (26) berühren. Segments touching each other in a closing fold (26).
2. Herstellungsverfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Schließfalten (26) in Ebenen liegen, die die Bohrerachse (2) enthalten und mittig zwischen benachbarten Stegen (39) angeordnet sind. 2. A manufacturing method according to claim 1, characterized in that the closing folds (26) lie in planes containing the drill axis (2) and are arranged centrally between adjacent webs (39).
3. Herstellungsverfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass in dem Querschnitt eine Fläche des ersten Abschnitts (42) geringer als eine Fläche des zweiten Abschnitts (43) ist. 3. A manufacturing method according to claim 1 or 2, characterized in that in the cross section, a surface of the first portion (42) is smaller than a surface of the second portion (43).
4. Herstellungsverfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Höhe (40) der Stege (39) wenigstens 20 % größer und höchstens 100 % größer als die Höhe (20) der helixförmigen Segmente ist. 4. Manufacturing method according to one of the preceding claims, characterized in that the height (40) of the webs (39) is at least 20% larger and at most 100% greater than the height (20) of the helical segments.
5. Herstellungsverfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Anzahl der Stege (39) gleich oder größer der Anzahl der Wendelrücken (15) ist. Wendel bohrer (1 ) mit einem Bohrkopf (3) und einer Wendel (4), die einen eine Bohrerachse (2) definierenden zylindrischen Kern (38) und eine Anzahl mit dem Kern (38) verbundener helixförmiger Wendelstege (13) aufweist, wobei die Wendelstege (13) jeweils aus mehreren Segmenten gebildet sind, die einander entlang parallel zu der Bohrerachse (2) verlaufender Schließfalten (26) berühren. 5. Manufacturing method according to one of the preceding claims, characterized in that the number of webs (39) is equal to or greater than the number of helical spines (15). Helical drill bit (1) having a drill head (3) and a helix (4), which has a cylindrical core (38) defining a drill axis (2) and a number of helical helix webs (13) connected to the core (38) Spiral webs (13) are each formed of a plurality of segments which contact each other along parallel to the drill axis (2) extending closing folds (26).
Wendelbohrer (1 ) nach Anspruch 6, dadurch gekennzeichnet, dass jede der Schließfalten in einer die Bohrerachse (2) enthaltenden Ebene liegt. Helical drill (1) according to claim 6, characterized in that each of the closing folds lies in a plane containing the drill axis (2).
Wendelbohrer (1 ) nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass eine Höhe (40) der Schließfalte (26) gleich der Höhe (40) des Wendelstegs ist. Helical drill (1) according to claim 6 or 7, characterized in that a height (40) of the closing fold (26) is equal to the height (40) of the spiral web.
EP15781928.5A 2014-10-23 2015-10-20 Twist drill and production method Withdrawn EP3209442A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP14190033.2A EP3012039A1 (en) 2014-10-23 2014-10-23 Twist drill and method of manufacture
PCT/EP2015/074206 WO2016062683A1 (en) 2014-10-23 2015-10-20 Twist drill and production method

Publications (1)

Publication Number Publication Date
EP3209442A1 true EP3209442A1 (en) 2017-08-30

Family

ID=51786864

Family Applications (2)

Application Number Title Priority Date Filing Date
EP14190033.2A Withdrawn EP3012039A1 (en) 2014-10-23 2014-10-23 Twist drill and method of manufacture
EP15781928.5A Withdrawn EP3209442A1 (en) 2014-10-23 2015-10-20 Twist drill and production method

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP14190033.2A Withdrawn EP3012039A1 (en) 2014-10-23 2014-10-23 Twist drill and method of manufacture

Country Status (5)

Country Link
US (1) US10252321B2 (en)
EP (2) EP3012039A1 (en)
CN (1) CN107073598A (en)
CA (1) CA2964814C (en)
WO (1) WO2016062683A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3012039A1 (en) * 2014-10-23 2016-04-27 HILTI Aktiengesellschaft Twist drill and method of manufacture
CN110842206B (en) * 2019-11-12 2021-08-31 丹阳市剑庐工具有限公司 Preparation method of hexagonal high-torque drill shank

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US302600A (en) * 1884-07-29 stetson
US320967A (en) * 1885-06-30 Manufacture of metal drills
US1151247A (en) * 1913-02-24 1915-08-24 Economic Twist Drill Company Rolls for simultaneously reducing and relief-ribbing twist-drills.
US1543608A (en) * 1924-08-28 1925-06-23 Leidecker Tool Company Method of making spiral auger stems, bits, and substitutes
US2533227A (en) * 1941-05-31 1950-12-12 Harry W Delaney Apparatus for the manufacture of twist drills
DE1104481B (en) * 1953-04-10 1961-04-13 Franz Erdelyi Method and device for hot rolling cutting tools having longitudinal grooves with a rotating working movement from a round bar
US2985041A (en) * 1953-05-11 1961-05-23 Hayden Twist Drill Company Method and machine for producing twist drills
US3610075A (en) * 1968-07-01 1971-10-05 Illinois Tool Works Method of producing a plurality of cutting tools from a single fluted bar
AU2269799A (en) * 1997-12-22 1999-07-12 Komet Prazisionswerkzeuge Robert Breuning Gmbh Drilling tool for machine tools and method for the production thereof
US6431962B1 (en) * 2000-10-05 2002-08-13 Kennametal Inc. Method and apparatus for making a cutting tool having a flute
DE10053343B4 (en) * 2000-10-27 2009-04-16 Hilti Aktiengesellschaft twist drill
CN1284643C (en) 2001-06-15 2006-11-15 孔祥清 Cold-pressing technology for making equistrength archor arm and its end
US7306411B2 (en) * 2002-09-03 2007-12-11 Mitsubishi Materials Corporation Drill with groove width variation along the drill and double margin with a thinning section at the tip
GB2404889A (en) * 2003-08-12 2005-02-16 Black & Decker Inc A cutting plate for a drill bit
DE102006000208A1 (en) * 2006-04-28 2007-10-31 Hilti Ag Rotary hammer drill with four-turn drill bit shank
DE102011085187B3 (en) * 2011-10-25 2012-12-13 Hilti Aktiengesellschaft Drill and manufacturing process for a drill
US9656331B2 (en) * 2011-11-15 2017-05-23 Kennametal Inc. System and method for simultaneously forming flutes in solid carbide tools
EP2801421A1 (en) * 2013-05-06 2014-11-12 HILTI Aktiengesellschaft Twist drill and method of manufacturing
EP3012039A1 (en) * 2014-10-23 2016-04-27 HILTI Aktiengesellschaft Twist drill and method of manufacture
EP3106253A1 (en) * 2015-06-17 2016-12-21 HILTI Aktiengesellschaft Driller and method for its manufacture

Also Published As

Publication number Publication date
CA2964814A1 (en) 2016-04-28
CA2964814C (en) 2019-02-19
WO2016062683A1 (en) 2016-04-28
US20170348760A1 (en) 2017-12-07
US10252321B2 (en) 2019-04-09
EP3012039A1 (en) 2016-04-27
CN107073598A (en) 2017-08-18

Similar Documents

Publication Publication Date Title
DE102015105216B4 (en) Milling cutter with improved chip removal capability and method for its production
EP2629917A1 (en) Tooth milling cutter and method for milling the teeth of toothed gear elements
EP2771143B1 (en) Drill and production method for a drill
EP2173510B1 (en) Method for milling ball races and side milling cutter for ball races
EP3106253A1 (en) Driller and method for its manufacture
EP1967307B1 (en) Method for manufacturing a rotor hub element with grooves
EP3209442A1 (en) Twist drill and production method
EP0559951B1 (en) Process and cutting tool for the production of fibres out of steel plates
WO2017198265A1 (en) End mill
EP2994255B1 (en) Twist drill and method of manufacturing
EP3512663A1 (en) Milling tool and production method for a milling tool
EP3380739B1 (en) Method for producing a solid component, and a solid component
CH709263B1 (en) Tool for making a thread.
EP3494317B1 (en) End ring for a multi-part rolling bearing cage, method of manufacturing the end ring and multi-part rolling bearing cage
EP4076808A1 (en) Tool and method for machining a workpiece
DE102015116444A1 (en) Nuterzeugungswerkzeug
EP2327491B1 (en) Method for manufacturing a drill and drill manufactured thereby
EP3389891B1 (en) Method of manufacturing a drill and tool scaffold
DE102016122701B4 (en) Thread former and method for producing a thread former
EP3380262B1 (en) Manufacturing device for manufacturing a solid component, and method for manufacturing the solid component with the manufacturing device
EP2961545A1 (en) Method for producing screws and concrete screw
DE102010018112A1 (en) Production of a tapered roller bearing cage
DE102013101003A1 (en) Thread former for female, has trailing portion which is provided with analog thread-forming profile whose radial depth is smaller than radial depth in region of screw cam
DE102015100615A1 (en) Tool and method for producing a groove in a core hole
DE202014001806U1 (en) Tool for making a thread

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20170523

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20200603