EP3208515A1 - Dispositif d'éclairage - Google Patents

Dispositif d'éclairage Download PDF

Info

Publication number
EP3208515A1
EP3208515A1 EP16156534.6A EP16156534A EP3208515A1 EP 3208515 A1 EP3208515 A1 EP 3208515A1 EP 16156534 A EP16156534 A EP 16156534A EP 3208515 A1 EP3208515 A1 EP 3208515A1
Authority
EP
European Patent Office
Prior art keywords
lighting device
reflector
light source
light
lighting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP16156534.6A
Other languages
German (de)
English (en)
Inventor
Jussi Numminen
Kari Pihl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to EP16156534.6A priority Critical patent/EP3208515A1/fr
Publication of EP3208515A1 publication Critical patent/EP3208515A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V23/00Arrangement of electric circuit elements in or on lighting devices
    • F21V23/04Arrangement of electric circuit elements in or on lighting devices the elements being switches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/23Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings
    • F21K9/233Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings specially adapted for generating a spot light distribution, e.g. for substitution of reflector lamps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/62Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction using mixing chambers, e.g. housings with reflective walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/04Optical design
    • F21V7/048Optical design with facets structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/04Optical design
    • F21V7/06Optical design with parabolic curvature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2101/00Point-like light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2107/00Light sources with three-dimensionally disposed light-generating elements
    • F21Y2107/30Light sources with three-dimensionally disposed light-generating elements on the outer surface of cylindrical surfaces, e.g. rod-shaped supports having a circular or a polygonal cross section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2107/00Light sources with three-dimensionally disposed light-generating elements
    • F21Y2107/40Light sources with three-dimensionally disposed light-generating elements on the sides of polyhedrons, e.g. cubes or pyramids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the present invention relates to a lighting device according to the preamble of the appended independent claim.
  • Lighting devices having an adjustable beam angle are known in the prior art. In some known lighting devices the beam angle is adjusted by changing the distance between a light source and a reflector, whereas in other known lighting devices the beam angle is adjusted by changing the distance between a light source and a lens. A common feature of these known lighting devices is that the adjusting of the beam angle is done by changing the position of an optical element.
  • a problem associated with the known lighting devices is that their beam angle is mechanically adjustable.
  • a mechanism is required for moving an optical element, such as a light source, a reflector or a lens at different positions in order to adjust the beam angle.
  • Such moving mechanisms are complicated, expensive to manufacture, and they can easily be damaged.
  • Another problem is that in some of the known lighting devices the adjusting of the beam angle must be performed manually, making them difficult to use.
  • the lighting device according to the invention is characterised by what is presented in the characterising part of the appended independent claim.
  • Advantageous embodiments of the invention are described in the dependent claims.
  • a typical lighting device comprises a first and a second light source arranged at a distance from each other, and a reflector for reflecting light emitted by the first and the second light source.
  • a typical lighting device also comprises switching means for switching the first and the second light source on and off independently from each other.
  • the light sources can be switched on and off independently from each other using the switching means. This means that the light sources can be switched individually, so that the light sources can be on or off at the same time, or one of the light sources can be on when the other light source is off. Because the light sources are arranged at a distance from each other, i.e. at different positions relative to the reflector, the lighting device can produce different beam angles depending on whether the first light source or the second light source is turned on. The beam angle of the lighting device can thus be changed by simply switching the light sources on and off.
  • the distance between the light sources is typically in the range of 0.1 cm to 10 cm, but in some lighting applications the distance between the light sources can be greater, such as in the range of 10 cm to 25 cm, or in the range of 25 cm to 100 cm.
  • the switching means may comprise switches that are configured to control the electrical current supplied to the light sources.
  • the switches are analog switches, such as MOSFETs.
  • the switching means may comprise, for example, a first switch that is electrically connected to the first light source, and a second switch that is electrically connected to the second light source. The first and the second switch are configured to turn on and off the first and the second light source, respectively.
  • the switching means may comprise a control unit, such as a microcontroller, for controlling the switches.
  • the control unit is controlled by a control signal.
  • the control signal can be communicated to the lighting device using wireless or power-line communication (PLC) techniques. In PLC, the control signal is transmitted over power lines to the lighting device.
  • PLC power-line communication
  • the electronic components of the switching means may be mounted on a circuit board that is arranged inside the lighting device.
  • the lighting device may comprise more than two light sources, which can be switched on and off independently from each other using the switching means.
  • the number of the light sources in the lighting device can be, for example, two, three, four, five, or more than five.
  • Each of the light sources of the lighting device may consist of one or more lighting elements.
  • the number of the lighting elements can vary, for example, based on the optical characteristics of the lighting elements, such as their brightness, beam angle and/or colour.
  • the lighting element(s) can have different beam angles, such as 30-60 degrees, 60-90 degrees, 90-120 degrees or 120-150 degrees.
  • the lighting elements are preferably light emitting diode (LED) elements.
  • the light sources can be arranged inside the reflector.
  • the reflector can have different shapes and sizes for different applications.
  • the reflector is preferably concave, such as parabolic or elliptical.
  • the reflector can be essentially dome-shaped or hyperbolic.
  • the reflector may be integrated into a light bulb, for example by being attached to a base of the light bulb.
  • the lighting device according to the invention is a reflector-type lighting device, wherein the reflector is used to produce a desired beam spread of the light emitted by the light sources.
  • the reflector may be integrated to the lighting device.
  • the lighting device according to the invention can be a light bulb or spotlight with an integrated reflector, or it can be a lighting fixture wherein the reflector is integrated to the lighting fixture and the light sources are interchangeable.
  • the lighting device may comprise a base to which the reflector is attached or integrated.
  • the base is provided with electrical contact means through which electrical current can be supplied to the lighting device.
  • the electrical contact means may comprise a threaded screw cap that can be screwed into a correspondingly threaded socket of a lighting fixture.
  • the screw cap can be, for example, an Edison screw cap, such as an E27 or E14 type screw cap having a diameter of 27 mm or 14 mm, respectively.
  • the screw cap comprises a threaded sleeve contact and a middle contact that are separated from each other by an electrically non-conductive part.
  • the electrical contact means may alternatively comprise a bi-pin connector, such as GU10, that can be twist-locked into position in a bi-pin socket.
  • the lighting device can be intended to be connected to the mains supply, whereby the lighting device comprises a power supply circuit that is configured to convert an AC mains voltage to a DC voltage in order to drive the light sources.
  • the lighting device may comprise a circuit board on which electronic components of the power supply circuit are mounted. The circuit board is arranged inside the base and it is electrically connected to the electrical contact means and the light sources.
  • the lighting device may comprise a transparent cover that is attached to the opening of the reflector.
  • the transparent cover protects the light sources and the reflector against damages.
  • the lighting device may also comprise a heat sink to dissipate heat produced by the light sources.
  • the heat sink can be attached to the reflector.
  • An advantage of a lighting device according to the invention is that the beam angle of the lighting device can be changed easily, without moving any optical elements such as a light source, a reflector or a lens. Another advantage of a lighting device according to the invention is that the beam angle of the lighting device can be controlled remotely. Still another advantage of a lighting device according to the invention is that the lighting device is robust and easy to manufacture.
  • the first and the second light source are fixed relative to the reflector.
  • the light sources are immovable with respect to the reflector.
  • the light sources may, for example, be mounted on a support element, which is attached to the same base than the reflector or which is attached directly to the reflector.
  • the reflector is symmetrical about an axis, and the first and the second light source are located essentially on said axis.
  • the axis about which the reflector is symmetrical is called an axis of symmetry.
  • the light sources are preferably arranged on the axis of symmetry in such a manner that the central beam of each light source is essentially perpendicular to the axis of symmetry.
  • the reflector can be rotationally symmetrical about the axis of symmetry. Rotationally symmetrical means symmetrical in the sense of a rotational symmetry of order n (i.e. n -fold rotational symmetry), where n is an integer value greater than 1.
  • a reflector has a rotational symmetry of order n if its transforms are identical when it is rotated about the axis of symmetry by an angle of 360°/ n .
  • a rotational symmetry is the rotational symmetry of an infinite order.
  • a reflector having a rotational symmetry of an infinite order means that the reflector is symmetrical about the axis of symmetry with respect to any angle.
  • the reflector is a parabolic reflector.
  • a parabolic reflector is rotationally symmetrical about its central axis, i.e. the axis of symmetry.
  • a parabolic reflector has a shape that is part of a circular paraboloid, i.e. the surface generated by a parabola revolving around its axis of symmetry.
  • a spherical wave generated by a light source placed in the focal point is reflected into a plane wave propagating as a collimated beam along the axis of symmetry through the opening of the parabolic reflector.
  • the light sources of the lighting device are preferably located essentially on the axis of symmetry of the parabolic reflector.
  • the light sources can be arranged inside the parabolic reflector.
  • the reflector comprises a piecewise linear surface.
  • the reflector comprises a plurality of concentric truncated cone sections arranged in series from a first such section nearest a central axis of the reflector to a last such section defining an outer perimeter of the reflector, each section having an outer perimeter and an inner perimeter relative to the central axis, the outer perimeter of each section except the last section being connected with the inner perimeter of the succeeding section, and the sections being located with respect to each other along the central axis.
  • Each of the truncated cone sections may consist of a plurality of planar segments.
  • the first light source is located on a focal point of the reflector.
  • the focal point is situated on a central axis of the reflector, which central axis passes from the vertex of the reflector through the center of the opening of the reflector.
  • the second light source is preferably located on the central axis of the reflector and farther from the vertex of the reflector than the first light source.
  • the lighting device comprises a support element arranged to extend along the axis of symmetry of the reflector, on which support element the first and the second light source are mounted.
  • the support element is preferably a rod having a first end and a second end.
  • the first end of the rod is arranged at the vertex of the reflector, and the second end extends towards or through the center of the opening of the reflector.
  • the light sources are mounted on the side of the rod and preferably in such a manner that the central beam of each light source is essentially perpendicular to the central axis of the reflector.
  • the rod can have, for example, a circular cross section or an N-sided regular polygonal cross section.
  • a lighting element of a light source can be mounted on each side of the rod having an N-sided regular polygonal cross section.
  • the surface of the rod can be made of a PCB material.
  • the rod can comprise a PCB formed in a roll. The inside of the rolled PCB can be filled with a heat conductive material so that heat produced by the light sources can be efficiently dissipated.
  • the lighting device comprises a first and a second reflector element mounted on the support element to change the beam angles of the first and the second light source, the first reflector element being arranged in connection with the first light source and the second reflector element being arranged in connection with the second light source.
  • Each of the reflector elements is preferably mounted on the support element in such a manner that the reflecting surface of the reflector element can reflect the light from the light source towards the reflector.
  • the reflector elements may comprise one or a plurality of reflecting parts. If the light sources comprise a plurality of lighting elements, each of the lighting elements can be provided with a reflecting part.
  • the support element is a rod, the diameter of which increases from one end to the other.
  • the diameter of the rod that is arranged to extend along the axis of symmetry of the reflector increases either towards the vertex or towards the opening of the reflector.
  • the first and the second light source are light emitting diodes.
  • the first and the second light source comprise a plurality of light emitting diodes.
  • the number of the light emitting diodes in each light source can be, for example, two, three, four five, or more than five.
  • the light emitting diodes of each light source are arranged in a circle at regular intervals from each other.
  • the light emitting diodes are preferably arranged in such a manner that the central axis of the reflector is essentially perpendicular to the plane of the circle, which the light emitting diodes constitute.
  • the lighting device comprises communication means for receiving a control signal to control the switching means.
  • the communication means may be configured to receive the control signal that is transmitted wirelessly and/or using power-line communication (PLC) techniques.
  • the communication means may comprise an antenna for receiving the control signal.
  • the antenna may be electrically connected to a control unit, such as a microcontroller, that is configured to control the operation of switches electrically connected to the light sources.
  • the antenna can be constituted, for example, by a wiring which electrically connects the light sources to the switching means. This wiring is preferably arranged on a surface of a support element, on which support element the light sources are mounted.
  • the communication means may be configured to receive and transmit data from and to a lighting control device.
  • the lighting control device is used to control one or more lighting devices in a lighting system.
  • the lighting device comprises power supplying means for supplying electric power to the first and the second light source.
  • the power supplying means may comprise a switched-mode power supply (SMPS) that is configured to convert an AC mains voltage to a DC voltage in order to drive the light sources.
  • SMPS switched-mode power supply
  • the electronic components of the power supplying means may be mounted on a circuit board that is arranged inside the lighting device.
  • the lighting device is a light bulb or a lighting fixture.
  • the reflector is integrated to the lighting fixture.
  • Fig. 1 illustrates a lighting device according to a first embodiment of the invention.
  • the lighting device is a light bulb that comprises a base 101 and a reflector 102 attached to the base 101.
  • the base 101 is provided with a bi-pin connector 103 through which electrical current can be supplied to the lighting device.
  • the lighting device of fig. 1 comprises three light sources 104, 105 and 106 arranged at a distance from each other.
  • Each of the light sources 104, 105 and 106 consists of four light emitting diode (LED) elements 107, which are mounted on a side of a rod 108 that extends along the axis of symmetry of the reflector 102.
  • the LED elements 107 of each light source 104, 105 and 106 are mounted on the rod 108 in such a manner that the four LED elements 107 are at the same distance from the vertex of the reflector 102 and arranged around the rod 108 at regular intervals from each other.
  • the central beam of each LED element 107 is essentially perpendicular to the axis of symmetry of the reflector 102.
  • the LED elements 107 of the first light source 104 are located essentially on a focal point of the reflector 102.
  • the LED elements 107 of the second light source 105 and the third light source 106 are located further from the vertex of the reflector 102 than the LED elements 107 of the first light source 104.
  • the reflector 102 is used for reflecting light emitted by the LED elements 107.
  • the reflector 102 has a curved inner surface 109 that is designed to produce a desired beam spread for each of the light sources 104, 105 and 106.
  • the light sources 104, 105 and 106 are arranged inside the reflector 102.
  • a transparent cover 110 made of glass is attached to the opening of the reflector 102. The transparent cover 110 protects the LED elements 107 and the reflector 102 against damages.
  • the light sources 104, 105 and 106 i.e. the sets of the four LED elements 107, can be switched on and off independently from each other using switching means (not shown in fig. 1 ) of the lighting device.
  • the LED elements 107 of the light source 104, 105 or 106 are always on or off at the same time.
  • the light sources 104, 105 and 106 can be switched individually on or off, so that one of the sets of the four LED elements 107 can be on when the other sets are off. Because the light sources 104, 105 and 106 are at different positions relative to the reflector 102, the lighting device can produce different beam angles depending on which light source 104, 105 or 106 is turned on. The beam angle of the lighting device can thus be changed by simply switching the light sources 104, 105 and 106 on and off.
  • the lighting device of fig. 1 comprises power supplying means (not shown in fig. 1 ) for supplying electric power to the light sources 104, 105 and 106.
  • the lighting device also comprises communication means (not shown in fig. 1 ) for receiving a control signal to control the switching means.
  • Figs. 2A-2C illustrate the operation of the lighting device according to fig. 1.
  • Fig. 2A shows a situation where the first light source 104 located essentially on the focal point of the reflector 102 is on, and the second 105 and the third 106 light source are off.
  • the lighting device produces a narrow beam angle, which makes the light focused and intense, like a spotlight. This kind of lighting is used when the main purpose of the light is to be directed, for example, on a specific object or person, not an area.
  • Fig. 2B shows a situation where the second light source 105 is on and the first 104 and the third 106 light source are off. In this case the light beam of the lighting device is wider and less intense, giving more general light. A wider beam angle distributes the light better.
  • Fig. 1 shows a situation where the first light source 104 located essentially on the focal point of the reflector 102 is on, and the second 105 and the third 106 light source are off.
  • the lighting device produces a narrow beam angle,
  • FIG. 2C shows a situation where the third light source 106, which is located furthest from the vertex of the reflector 102, is on, and the first 104 and the second 105 light source are off.
  • the beam angle of the lighting device is wide and thus the light covers a wide area.
  • An example of using this kind of light is when a large room needs to be lighted.
  • Fig. 3 illustrates a partial cross-sectional view of the lighting device according to fig. 1 .
  • the power supplying means comprise a switched-mode power supply 301 for converting an AC mains voltage to a DC voltage.
  • the input of the switched-mode power supply 301 is electrically coupled to the bi-pin connector 103 and the output of the switched-mode power supply 301 is electrically coupled to the light sources 104, 105 and 106.
  • the switching means comprise switches 302 that are electrically coupled to the light sources 104, 105 and 106. The purpose of the switches 302 is to control the electrical current supplied from the switched-mode power supply 301 to the light sources 104, 105 and 106.
  • the switches 302 are controlled by a control unit 303, the operation of which is controlled by a control signal.
  • the control signal is received with an antenna 304 of the communication means.
  • the antenna 304 is electrically connected to a control unit 305 of the communication means.
  • the control unit 305 conveys the control signal to the control unit 303 in order to control the operation of the switches 302.
  • Fig. 4 illustrates a cross-sectional view of a lighting device according to a second embodiment of the invention.
  • the lighting device of fig. 4 is similar to the lighting device of fig. 1 , except that it further comprises reflector elements 401 mounted on the rod 108.
  • One reflector element 401 is arranged in connection with each of the light sources 104, 105 and 106.
  • the purpose of the reflector elements 401 is to change the beam angles of the light sources 104, 105 and 106.
  • Fig. 5 illustrates a cross-sectional view of a lighting device according to a third embodiment of the invention.
  • the lighting device of fig. 5 is similar to the lighting device of fig. 1 , except that the reflector 102 comprises a piecewise linear surface.
  • the reflector 102 of fig. 5 comprises a plurality of concentric truncated cone sections 501 arranged in series from a first such section nearest a central axis of the reflector 102 to a last such section defining an outer perimeter of the reflector 102, each section having an outer perimeter and an inner perimeter relative to the central axis.
  • the outer perimeter of each section except the last section is connected with the inner perimeter of the succeeding section, and the sections are located with respect to each other along the central axis of the reflector 102.
  • Fig. 6 illustrates a lighting device according to a fourth embodiment of the invention.
  • the lighting device is a fixed luminaire with an integrated reflector 102.
  • the lighting device comprises three light sources 104, 105 and 106 which each consist of four LED elements 107 mounted on a rod 108.
  • the light sources 104, 105 and 106 are arranged at a distance from each other.
  • the LED elements 107 of the first light source 104 are located essentially on a focal point of the reflector 102.
  • the LED elements 107 of the second 105 and the third 106 light source are located further from the vertex than the LED elements 107 of the first light source 104.
  • the reflector 102 is attached to a base 101 of the lighting device.
  • the base 101 is attached to an adjustable shaft 601 that is attached to a coupling part 602.
  • the coupling part 602 allows the lighting device to be coupled to a track of a lighting system.
  • the beam angle of the lighting device can be changed by switching the light sources 104, 105 and 106 on and off using switching means (not shown in fig. 6 ).

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
EP16156534.6A 2016-02-19 2016-02-19 Dispositif d'éclairage Withdrawn EP3208515A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP16156534.6A EP3208515A1 (fr) 2016-02-19 2016-02-19 Dispositif d'éclairage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP16156534.6A EP3208515A1 (fr) 2016-02-19 2016-02-19 Dispositif d'éclairage

Publications (1)

Publication Number Publication Date
EP3208515A1 true EP3208515A1 (fr) 2017-08-23

Family

ID=55405195

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16156534.6A Withdrawn EP3208515A1 (fr) 2016-02-19 2016-02-19 Dispositif d'éclairage

Country Status (1)

Country Link
EP (1) EP3208515A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3553373A1 (fr) * 2018-04-13 2019-10-16 NBCUniversal Media, LLC Système d'éclairage à faisceau focalisé numériquement réglable
US11047560B2 (en) 2019-05-29 2021-06-29 Nbcuniversal Media, Llc Light emitting diode cooling systems and methods
US11333342B2 (en) 2019-05-29 2022-05-17 Nbcuniversal Media, Llc Light emitting diode cooling systems and methods
US12025302B1 (en) 2023-04-28 2024-07-02 NBCUniversal Studios LLC Light emitting diode lighting systems and methods

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3215022A (en) * 1964-05-15 1965-11-02 Elden G Chapman Apparatus for projected light effects
DE19624087A1 (de) * 1996-06-17 1997-12-18 Wendelin Pimpl Beleuchtungsvorrichtung
US20030227774A1 (en) * 2002-06-10 2003-12-11 Martin Paul S. Axial LED source
US20130235601A1 (en) * 2012-03-12 2013-09-12 Sharp Kabushiki Kaisha Illumination device and vehicle headlamp
WO2015145855A1 (fr) * 2014-03-24 2015-10-01 三菱化学株式会社 Appareil d'éclairage d'éclairage ponctuel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3215022A (en) * 1964-05-15 1965-11-02 Elden G Chapman Apparatus for projected light effects
DE19624087A1 (de) * 1996-06-17 1997-12-18 Wendelin Pimpl Beleuchtungsvorrichtung
US20030227774A1 (en) * 2002-06-10 2003-12-11 Martin Paul S. Axial LED source
US20130235601A1 (en) * 2012-03-12 2013-09-12 Sharp Kabushiki Kaisha Illumination device and vehicle headlamp
WO2015145855A1 (fr) * 2014-03-24 2015-10-01 三菱化学株式会社 Appareil d'éclairage d'éclairage ponctuel

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3553373A1 (fr) * 2018-04-13 2019-10-16 NBCUniversal Media, LLC Système d'éclairage à faisceau focalisé numériquement réglable
US20190320514A1 (en) * 2018-04-13 2019-10-17 Nbcuniversal Media, Llc Digitally adjustable focused beam lighting system
US10694600B1 (en) * 2018-04-13 2020-06-23 Nbcuniversal Media, Llc Digitally adjustable focused beam lighting system
US10932340B2 (en) * 2018-04-13 2021-02-23 Nbcuniversal Media, Llc Digitally adjustable focused beam lighting system
US11754258B2 (en) 2018-04-13 2023-09-12 Nbcuniversal Media, Llc Digitally adjustable focused beam lighting system
US11047560B2 (en) 2019-05-29 2021-06-29 Nbcuniversal Media, Llc Light emitting diode cooling systems and methods
US11333342B2 (en) 2019-05-29 2022-05-17 Nbcuniversal Media, Llc Light emitting diode cooling systems and methods
US11946628B2 (en) 2019-05-29 2024-04-02 Nbcuniversal Media, Llc Light emitting diode cooling systems and methods
US12025302B1 (en) 2023-04-28 2024-07-02 NBCUniversal Studios LLC Light emitting diode lighting systems and methods

Similar Documents

Publication Publication Date Title
CN107110469B (zh) 具有电子可调整光束分布的固态照明设备
US9464772B2 (en) Ambient directional combination light fixture
US6322226B1 (en) Adjustable illumination apparatus having pre-focused led and magnification lens
US8388193B2 (en) Lens with TIR for off-axial light distribution
US9347655B2 (en) Rotatable lighting device
US8820963B2 (en) Solid state light fixture with a tunable angular distribution
US8092032B2 (en) LED lighting array assembly
US9028099B2 (en) LED light emitting group
EP3208515A1 (fr) Dispositif d'éclairage
US10443797B2 (en) Finite element and multi-distribution LED luminaire
CA2998172C (fr) Lampe a semi-conducteurs pour post-transformation
US20110170288A1 (en) Led retrofit unit having adjustable heads for street lighting
EP2655957B1 (fr) Ampoule à led dotée d'une structure optique de diffusion lumineuse
JP2007500933A (ja) 改良型led懐中電灯
US20130308307A1 (en) Multi-directional flashlight
JP2013542568A (ja) 均一モジュール光源
CN106716000B (zh) 具有用于改进方向性光分布的内部重定向元件的灯泡组件
US20150204520A1 (en) Indirect Dome Light
CN102301179A (zh) Led灯,灯座和运行led灯的方法
US10701772B2 (en) Lighting device with variable light distribution
CN107667246B (zh) 固态照明装置
US20190226646A1 (en) Remotely controlled electronic lighting apparatus with variable light direction and focus
CN104089208B (zh) Led照明灯
US9273856B2 (en) Opto-mechanically adjustable and expandable light boards
TW201621208A (zh) 雙類號角元件光準直組合

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20180224