EP3206788A1 - Photocatalytic carbon dioxide reduction method using a composite photocatalyst - Google Patents

Photocatalytic carbon dioxide reduction method using a composite photocatalyst

Info

Publication number
EP3206788A1
EP3206788A1 EP15775204.9A EP15775204A EP3206788A1 EP 3206788 A1 EP3206788 A1 EP 3206788A1 EP 15775204 A EP15775204 A EP 15775204A EP 3206788 A1 EP3206788 A1 EP 3206788A1
Authority
EP
European Patent Office
Prior art keywords
semiconductor
photocatalyst
particles
carbon dioxide
metallic state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP15775204.9A
Other languages
German (de)
French (fr)
Inventor
Dina LOFFICIAL
Antoine Fecant
Denis Uzio
Eric Puzenat
Christophe Geantet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Universite Claude Bernard Lyon 1 UCBL
IFP Energies Nouvelles IFPEN
Original Assignee
Centre National de la Recherche Scientifique CNRS
Universite Claude Bernard Lyon 1 UCBL
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, Universite Claude Bernard Lyon 1 UCBL, IFP Energies Nouvelles IFPEN filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP3206788A1 publication Critical patent/EP3206788A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/035Precipitation on carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/344Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy
    • B01J37/345Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy of ultraviolet wave energy
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/12Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon dioxide with hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of zinc, cadmium or mercury
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/08Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of gallium, indium or thallium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of rare earths
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals of the platinum group metals
    • C07C2523/42Platinum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/48Silver or gold
    • C07C2523/52Gold
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
    • C07C2523/56Platinum group metals
    • C07C2523/62Platinum group metals with gallium, indium, thallium, germanium, tin or lead
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
    • C07C2523/56Platinum group metals
    • C07C2523/63Platinum group metals with rare earths or actinides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/72Copper
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with noble metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock

Definitions

  • the field of the invention is that of the photocatalytic reduction of carbon dioxide (CO 2 ) under irradiation by the use of a particular photocatalyst, preferably containing a supported core-layer type architecture.
  • Fossil fuels such as coal, oil and natural gas
  • combustion produces carbon dioxide emissions which are considered to be the main cause of global warming.
  • C0 2 emissions there is a growing need to mitigate C0 2 emissions, either by capturing it or by transforming it.
  • CCS carbon capture and sequestration
  • Such a strategy is the reduction of carbon dioxide into valuable products.
  • the reduction of carbon dioxide can be carried out biologically, thermally, electrochemically or photocatalytically.
  • photocatalytic C0 2 reduction is gaining increased attention as it can potentially consume alternative forms of energy by exploiting solar energy, which is abundant, cheap, and ecologically clean and safe.
  • C1 carbonaceous molecules or more such as CO, methane, methanol, ethanol, formaldehyde, formic acid or other molecules such as carboxylic acids, aldehydes, ketones or different alcohols.
  • CO carbonaceous molecules
  • methane methane
  • methanol ethanol
  • formaldehyde formic acid or other molecules
  • carboxylic acids aldehydes, ketones or different alcohols.
  • These molecules can find an energy utility directly, such as methanol, ethanol, formic acid or even methane and all hydrocarbons Ci + .
  • the CO carbon monoxide can also be valorized energetically in a mixture with hydrogen for the formation of Fischer-Tropsch synthesis fuels.
  • the molecules of carboxylic acids, aldehydes, ketones or different alcohols can be used in chemical or petrochemical processes. All these molecules are therefore of great interest from an industrial point of view.
  • Halmann et al. (Solar Energy, 31, 4, 429-431, 1983) evaluated the performances of three semiconductors (Ti0 2 , SrTi0 3 and CaTiO 3 ) for the photocatalytic reduction of CO 2 in an aqueous medium. They notice the production of formaldehyde, formic acid and methanol.
  • Photocatalysts based on TiO 2 on which platinum nanoparticles are deposited are known to convert a mixture of CO 2 and H 2 O in the gas phase to methane (QH, Zhang et al., Catal, Today, 148, p. 335-340, 2009).
  • Photocatalysts based on TiO 2 loaded with gold nanoparticles are also known from the literature for the photocatalytic reduction of CO 2 in the gas phase (SC Roy et al., ACS Nano, 4, 3, pp. 1259-1278, 2010) and in the aqueous phase (W. Hou et al., ACS Catal., 1, pp. 929-936, 201 1).
  • Liou et al. (Energy Sci., 4, pp. 1487-1494, 201 1) used NiO-doped InaO 4 photocatalysts to reduce CO 2 to CH 3 OH.
  • the object of the invention is to propose a new, sustainable and more efficient way of producing carbon molecules that are valorized by photocatalytic conversion of carbon dioxide using an electromagnetic energy, implementing a photocatalyst containing a first semi -conductor SC1 in direct contact with particles comprising one or more element (s) M in the metal state selected from an element of groups IVB, VB, VIB, VIIB, VIIIB, IB, MB, NIA, IVA and VA of the periodic classification of the elements, said particles being in direct contact with a second semiconductor SC2 so that the second semiconductor SC2 covers at least 50% of the surface of the particles comprising one or more element (s) M to the metallic state.
  • photocatalysts containing semiconductors especially photocatalysts composed of core-layer particles on the surface of a semiconductor substrate are known in the state of the art.
  • C. Li et al J. Hydrogen Energy, 37, pp. 6431-6437, 2012
  • H. Tada (Nature Materials, 5, pp. 782-786, 2006) proposes a solid based on hemispherical particles having a layer of CdS around an Au core, which particles are deposited on the semiconductor Ti0 2 . It is also known from the open literature (L. Ding et al., Int.J. Hydrogen Energy, 38, pp. 8244-8253, 2013) to implement in photocatalytic conversion of H 2 0 in H 2 a a solid having the CdS-Au-TiO 2 structure , CdS and Au being constitutive of nanoparticles such that the CdS is in the form of a layer around an Au core, these nanoparticles being deposited on a TiO 2 support.
  • the invention describes a process for photocatalytic reduction of carbon dioxide carried out in the liquid phase and / or in the gas phase under irradiation using a photocatalyst containing a first semiconductor SC1, particles comprising one or more element (s) M in the metallic state selected from an element of groups IVB, VB, VIB, VIIB, VIIIB, IB, MB, NIA, IVA and VA of the periodic table of elements, and a second semiconductor SC2, said first semiconductor SC1 being in direct contact with said particles comprising one or more element (s) M in the metallic state, said particles being in direct contact with said second semiconductor SC2 so that the second semiconductor SC2 covers at least 50% of the surface of the particles comprising one or more element (s) M in the metallic state, said method comprising the following steps: a) a filler containing carbon dioxide and at least one sacrificial compound is contacted with said photocatalyst, b) the photocatalyst is irradiated with at least one irradiation
  • the sacrificial compound is a gaseous compound chosen from water, ammonia, hydrogen, methane and an alcohol.
  • the sacrificial compound is a soluble liquid or solid compound chosen from water, ammonia, an alcohol, an aldehyde or an amine.
  • a diluent fluid is present in steps a) and / or b).
  • the irradiation source is a source of artificial or natural irradiation.
  • the first semiconductor SC1 is in direct contact with the second semiconductor SC2.
  • said first semiconductor SC1 forms a support, said support contains at its surface core-layer type particles, said layer being formed by said semiconductor SC2, said core being formed by said particles comprising one or several element (s) M in the metallic state.
  • the respective content of semiconductors SC1 or SC2 is between 0.01 and 50% by weight relative to the total weight of the photocatalyst.
  • the content of element (s) M in the metallic state is between 0.001% and 20% by weight relative to the total weight of the photocatalyst.
  • the element M in the metallic state is chosen from platinum, palladium, gold, nickel, cobalt, ruthenium, silver, copper, rhenium or rhodium.
  • the semiconductors SC1 and SC2 are independently chosen from an inorganic, organic or organic-inorganic semiconductor.
  • the semiconductor SC1 is chosen from TiO 2 , ZnO, WO 3 , Fe 2 O 3 , and ZnFe 2 O 4 .
  • the semiconductor SC2 is selected from Cu 2 0, Ce 2 0 3 , In 2 0 3 , SiC, ZnS, and In 2 S 3 .
  • the photocatalyst comprises a support composed of a SC1 semiconductor chosen from TiO 2 , ZnO, WO 3 , Fe 2 O 3 and ZnFe 2 O 4 containing, on its surface, core-layer particles, said core being composed of one or more element (s) M in the metallic state selected from platinum, palladium, gold, nickel, cobalt, ruthenium, silver, copper, rhenium or rhodium, said layer consisting of a semiconductor SC2, selected from Cu 2 O, Ce 2 O 3 , In 2 O 3 .
  • SC1 semiconductor chosen from TiO 2 , ZnO, WO 3 , Fe 2 O 3 and ZnFe 2 O 4 containing, on its surface, core-layer particles, said core being composed of one or more element (s) M in the metallic state selected from platinum, palladium, gold, nickel, cobalt, ruthenium, silver, copper, rhenium or rhodium, said layer consisting of a semiconductor SC2, selected from Cu 2 O, Ce
  • group VIII according to the CAS classification corresponds to the metals of columns 8, 9 and 10 according to the new IUPAC classification.
  • the invention describes a method for photocatalytic reduction of carbon dioxide carried out in the liquid phase and / or in the gas phase under irradiation using a photocatalyst containing a first semiconductor SC1, particles comprising one or more element (s) M to the metallic state selected from an element of groups IVB, VB, VIB, VIIB, VIIIB, IB, MB, NIA, IVA and VA of the periodic table of elements, and a second semiconductor SC2, said first semiconductor SC1 being direct contact with said particles comprising one or more element (s) M in the metallic state, said particles being in direct contact with said second semiconductor SC2 so that the second semiconductor SC2 covers at least 50% of the surface of the particles having one or more element (s) M in the metallic state, said method comprising the following steps: a) contacts a filler containing carbon dioxide and at least one sacrificial compound with said photocatalyst, b) the photocatalyst is irradiated with at least one irradiation source producing at least one wavelength
  • step a) of the process according to the invention a feedstock containing said carbon dioxide and at least one sacrificial compound is contacted with said photocatalyst.
  • sacrificial compound an oxidizable compound.
  • the sacrificial compound may be in gaseous or liquid form.
  • C1 carbonaceous molecules or more means molecules resulting from the reduction of CO 2 containing one or more carbon atoms, with the exception of CO 2 .
  • Such molecules are, for example, CO, methane, methanol, ethanol, formaldehyde, formic acid or other molecules such as carboxylic acids, aldehydes, ketones or different alcohols.
  • the process according to the invention can be carried out in the liquid phase and / or in the gas phase.
  • the filler treated according to the process is in gaseous, liquid or biphasic gas and liquid form.
  • the CO 2 When the filler is in gaseous form, the CO 2 is present in its gaseous form in the presence of any gaseous sacrificial compounds alone or as a mixture.
  • the gaseous sacrificial compounds are oxidizable compounds such as water (H 2 O) , ammonia (NH 3 ), hydrogen (H 2 ), methane (CH 4 ) or alcohols.
  • the gaseous sacrificial compounds are water or hydrogen.
  • the CO 2 and the sacrificial compound may be diluted by a gaseous diluent fluid such as N 2 or Ar.
  • a gaseous diluent fluid such as N 2 or Ar.
  • the feedstock When the feedstock is in the liquid form, this can be in the form of an ionic liquid, organic or aqueous.
  • the charge in liquid form is preferably aqueous.
  • the CO 2 is then solubilized in the form of aqueous CO 2 , hydrogen carbonate or carbonate.
  • the sacrificial compounds are liquid or solid oxidizable compounds soluble in the liquid charge, such as water (H 2 0) , ammonia (NH 3 ), alcohols, aldehydes, amines. In a preferred manner, the sacrificial compound is water.
  • the pH is generally between 2 and 12, preferably between 3 and 10.
  • a basic or acidic agent may be added to the charge.
  • a basic agent When a basic agent is introduced it is preferably selected from alkali or alkaline earth hydroxides, organic bases such as amines or ammonia.
  • an acidic agent When an acidic agent is introduced, it is preferably selected from inorganic acids such as nitric, sulfuric, phosphoric, hydrochloric or hydrobromic acid or organic acids such as carboxylic or sulphonic acids.
  • the liquid charge when it is aqueous, it can contain in any quantity any solvated ion, such as for example K + , Li + , Na + , Ca 2+ , Mg 2+ , S0 4 2 “ , CI “ , F “ , NO 3 2” .
  • any solvated ion such as for example K + , Li + , Na + , Ca 2+ , Mg 2+ , S0 4 2 “ , CI “ , F “ , NO 3 2” .
  • a diluent fluid which may be liquid or gaseous, may be present in the reaction medium.
  • a diluent fluid is not required for the realization of the invention, however it may be useful to add to the charge to ensure the dispersion of the charge in the medium, the dispersion of the photocatalyst, a control the adsorption of the reagents / products on the surface of the photocatalyst, a control of the absorption of photons by the photocatalyst, the dilution of the products to limit their recombination and other similar parasitic reactions.
  • a diluent fluid also makes it possible to control the temperature of the reaction medium, thus being able to compensate for the possible exo / endothermicity of the photocatalyzed reaction.
  • the nature of the diluent fluid is chosen in such a way that its influence is neutral on the reaction medium or that its possible reaction does not affect the achievement of the desired reduction of carbon dioxide.
  • nitrogen can be selected as the gaseous diluent fluid.
  • the contacting of the charge containing the carbon dioxide and the photocatalyst can be done by any means known to those skilled in the art.
  • the contacting of the carbon dioxide feedstock and the photocatalyst is in fixed bed crossed, fixed bed licking or suspension (also called "slurry" in the English terminology).
  • the photocatalyst can also be deposited directly on optical fibers.
  • the photocatalyst is preferably deposited in a layer on a porous support, for example of ceramic or metallic sintered type, and the charge containing the carbon dioxide to be converted into gaseous and / or liquid form is sent through the photocatalytic bed.
  • the photocatalyst is preferably layered on a support and the feedstock containing the carbon dioxide to be converted into gaseous and / or liquid form is sent to the photocatalytic bed.
  • the photocatalyst is preferably in the form of particles suspended in a liquid or liquid-gas feed containing carbon dioxide.
  • the implementation can be done in batch and continuously.
  • the photocatalyst comprises a first semiconductor SC1 in direct contact with particles comprising one or more element (s) M in the metallic state chosen from an element of groups IVB, VB, VIB, VIIB, VIIIB, IB, MB, NIA. , IVA and VA of the periodic table of the elements, said particles being in direct contact with a second semiconductor SC2.
  • the photocatalyst consists of a first semiconductor SC1, particles comprising one or more element (s) M in the metallic state chosen from an element of groups IVB, VB, VIB, VIIB, VIIIB, IB , MB, NIA, IVA and VA of the periodic table of elements, and a second semiconductor SC2.
  • the first semiconductor SC1 is in direct contact with particles comprising one or more element (s) M in the metallic state, said particles being in direct contact with a second semiconductor SC2 of such so that the second semiconductor SC2 covers at least 50% of the surface of the particles comprising one or more element (s) M in the metallic state.
  • the first semiconductor SC1 is also in direct contact with the second semiconductor SC2.
  • the photocatalyst used in the process according to the invention has a supported core-layer architecture. More particularly, said first semiconductor SC1 forms a support, said support contains on its surface core-layer type particles, said layer being formed by said semiconductor SC2, said core being formed by said particles comprising one or more element (s) M in the metallic state.
  • the photocatalyst thus comprises a support containing a semiconductor SC1 containing at its surface core-layer type particles, said core comprising one or more of said element (s) M in the metallic state, said layer comprising a semiconductor SC2, said the core being in direct contact with said semiconductor SC1 of the support and the layer covers said core so that the layer covers at least 50% of the surface of the particles comprising one or more element (s) M in the metallic state.
  • the layer covers an area greater than 50% of the metal core, and preferably greater than 60% and most preferably greater than 75%.
  • the recovery rate is measured by XPS (X-ray photoelectron spectrometry or X-ray photoelectron spectrometry according to the English terminology), for example on an ESCA KRATOS® Axis Ultra device with a monochromatic Al source at 1486.6 eV, and an energy passing 40 eV, and expresses the covering of the total surface of the particles comprising one or more element (s) M in the metallic state.
  • the layer has a thickness of 1 nm to 1000 nm, preferably 1 nm to 500 nm, and particularly preferably 2 to 50 nm.
  • the semiconductors SC1 and SC2 are independently selected from inorganic, organic or organic-inorganic semiconductors.
  • the bandgap of inorganic, organic or hybrid organic-inorganic semiconductors is generally between 0.1 and 5.5 eV.
  • the semiconductors SC1 and SC2 may be identical or different in the photocatalyst used in the process according to the invention.
  • the semiconductor SC1 is different from the semiconductor SC2 in the photocatalyst used in the method according to the invention.
  • the semiconductors SC1 and SC2 are independently selected from inorganic semiconductors.
  • the inorganic semiconductors may be selected from one or more Group IVA elements, such as silicon, germanium, silicon carbide or silicon germanium. They may also be composed of elements of the NIA and VA groups, such as GaP, GaN, InP and InGaAs, or elements of groups MB and VIA, such as CdS, ZnO and ZnS, or elements of groups IB and VIIA, such as CuCl and AgBr, or elements of groups IVA and VIA, such as PbS, PbO, SnS and PbSnTe, or elements of groups VA and VIA, such as Bi 2 Te 3 and Bi 2 0 3 , or elements of groups MB and VA, such as Cd 3 P2, Zn 3 P 2 and Zn 3 As 2 , or elements of groups IB and VIA, such as CuO, Cu 2 O and Ag 2 S, or of elements of groups VIIIB and VIA, such as CoO
  • the semiconductors SC1 and SC2 are independently selected from TiO 2 , SiC, Bi 2 S 3 , Bi 2 O 3 , CdO, Ce 2 O 3 , CeO 2, CoO, Cu 2 O, Fe 2 O 3 , FeTiO 3 , In 2 O 3 , In (OH) 3 , NiO, PbO, ZnO, Ag 2 S, CdS, Ce 2 S 3 , Cu 2 S, CulnS 2 , In 2 S 3 , ZnFe 2 O 3 , ZnS, ZnO, WO 3 , ZnFe 2 O 4 and ZrS 2 .
  • the semiconductor SC1 is selected from TiO 2 , ZnO, WO 3 , Fe 2 O 3 , and ZnFe 2 O 4 .
  • the semiconductor SC2 is chosen from Ce 2 0 3 , ⁇ 2 0 3 , Cu 2 0, SiC, ZnS, and In 2 S 3 .
  • the semiconductors SC1 and SC2 are chosen from organic semiconductors.
  • Said organic semiconductors may be tetracene, anthracene, polythiophene, polystyrene sulphonate, phosphyrenes and fullerenes.
  • the semiconductors SC1 and SC2 are chosen from organic-inorganic semiconductors.
  • organic-inorganic semiconductors mention may be made of crystalline solids of the MOF type (for Metal Organic Frameworks according to the English terminology).
  • the MOFs consist of inorganic subunits (transition metals, lanthanides, etc.) connected to each other by organic ligands (carboxylates, phosphonates, imidazolates, etc.), thus defining crystallized hybrid networks, sometimes porous.
  • the semiconductors SC1 and SC2 may optionally be doped with one or more ions chosen from metal ions, such as, for example, ions of V, Ni, Cr, Mo, Fe, Sn, Mn, Co, Re, Nb, Sb. , La, Ce, Ta, Ti, non-metallic ions, such as, for example, C, N, S, F, P, or a mixture of metallic and non-metallic ions.
  • metal ions such as, for example, ions of V, Ni, Cr, Mo, Fe, Sn, Mn, Co, Re, Nb, Sb. , La, Ce, Ta, Ti
  • non-metallic ions such as, for example, C, N, S, F, P, or a mixture of metallic and non-metallic ions.
  • the semiconductors SC1 and SC2 may be surface-sensitized with any organic molecules capable of absorbing photons.
  • the semiconductors SC1 and SC2 can be respectively in different forms (nanometric powder, nanoobjects with or without cavities, ...) or shaped (films, monolith, beads of micrometric or millimeter size, ).
  • the respective content of semiconductors SC1 or SC2 is generally between 0.01 and 50% by weight, preferably between 0.5 and 20% by weight relative to the total weight of the photocatalyst, it being understood that the sum of the contents respective semiconductors SC1 or SC2 and particles having one or several element (s) M in the metallic state has 100% of photocatalysts when it consists of these 3 components.
  • the photocatalyst also comprises particles comprising one or more element (s) M in the metallic state chosen from an element of groups IVB, VB, VIB, VIIB, VIIIB, IB, MB, NIA, IVA and VA of the periodic table. elements. Said particles comprising one or more element (s) M are in direct contact with said semiconductor SC1 and SC2 respectively. Said particles can be composed of a single element in the metallic state or of several elements in the metallic state that can form an alloy.
  • element in the metallic state means an element belonging to the family of metals, said element being at the zero oxidation state (and therefore in the form of metal).
  • the element or elements M in the metallic state are chosen from a metal element of groups VIIB, VIIIB, IB and MB of the periodic table of elements, and particularly preferably from platinum, palladium, gold, nickel, cobalt, ruthenium, silver, copper, rhenium or rhodium.
  • Said particles comprising one or more element (s) M in the metallic state are preferably in the form of particles of sizes between 0.5 nm and 1000 nm, very preferably between 0.5 nm and 100 nm.
  • the content of element (s) M in the metallic state is between 0.001 and 20% by weight, preferably between 0.01 and 10% by weight relative to the total weight of the phtocatalyst.
  • the photocatalyst used in the process according to the invention may be in various forms (nanometric powder, nanoobjects with or without cavities, etc.) or shaped (films, monolith, beads of micrometric or millimetric size, etc. ).
  • the photocatalyst is advantageously in the form of a nanometric powder.
  • the photocatalyst comprises a support composed of a semiconductor SC1 containing on its surface core-layer type particles, said core consisting of one or more of said element (s) M in the metallic state, said layer being consisting of a semiconductor SC2.
  • the photocatalyst consists of a support composed of a semiconductor SC1 containing on its surface core-layer type particles, said core consisting of one or more of said element (s) M to metallic state, said layer consisting of a semiconductor SC2.
  • the photocatalyst used in the method of the invention comprises, and preferably consists of a support made of a semiconductor selected from the SC1 ⁇ 2, ZnO, WO 3, Fe 2 O 3 and ZnFe 2 O 4 , containing on its surface core-layer type particles, said core consisting of one or more element (s) M in the metallic state chosen from platinum, palladium, gold , nickel, cobalt, ruthenium, silver, copper, rhenium or rhodium, said layer consisting of a semiconductor SC2 selected from Cu 2 O, Ce 2 O 3 , ln 2 O 3 , SiC. ZnS and ln 2 S 3 .
  • a semiconductor SC2 selected from Cu 2 O, Ce 2 O 3 , ln 2 O 3 , SiC. ZnS and ln 2 S 3 .
  • the process for preparing the photocatalyst can be any preparation method known to those skilled in the art and adapted to the desired photocatalyst.
  • the photocatalyst is prepared by successive photodepositions or by deposition-precipitation under irradiation. These preparation methods are known in the state of the art.
  • the photocatalyst is irradiated with at least one irradiation source producing at least one wavelength less than the band gap width of said photocatalyst so as to reduce carbon dioxide. and oxidizing the sacrificial compound in the presence of said photocatalyst activated by said irradiation source, so as to produce an effluent containing at least in part carbonaceous C1 molecules or more, different from CO 2 .
  • Photocatalysis is based on the principle of activating a semiconductor or a set of semiconductors such as the photocatalyst used in the process according to the invention, using the energy provided by the irradiation .
  • Photocatalysis can be defined as the absorption of a photon whose energy is greater than the forbidden bandgap or "bandgap" according to the English terminology between the valence band and the conduction band, which induces the forming an electron-hole pair in the semiconductor.
  • This electron-hole pair will allow the formation of free radicals that will either react with compounds present in the medium or then recombine according to various mechanisms.
  • Each semiconductor has a difference in energy between its conduction band and its valence band, or "bandgap", which is its own.
  • a photocatalyst composed of one or more semiconductors can be activated by the absorption of at least one photon.
  • Absorbable photons are those whose energy is greater than bandgap, semiconductor.
  • the photocatalysts can be activated by at least one photon of a wavelength corresponding to the energy associated with the bandgap widths of the semiconductors constituting the photocatalyst or of a lower wavelength.
  • the maximum wavelength absorbable by a semiconductor is calculated using the following equation:
  • a max the maximum wavelength absorbable by a semiconductor (in m), h the Planck constant (4,13433559.10 “15 eV.s), c the speed of light in a vacuum (299,792,458 m. "1 ) and Eg the bandgap or bandgap of the semiconductor (in eV).
  • any irradiation source emitting at least one wavelength suitable for activating said photocatalyst, that is to say absorbable by the photocatalyst can be used according to the invention.
  • irradiation source emitting at least one wavelength suitable for activating said photocatalyst, that is to say absorbable by the photocatalyst
  • the irradiation source is solar irradiation.
  • the irradiation source produces a radiation of which at least a portion of the wavelengths is less than the maximum absorbable wavelength (A max ) by the constituent semiconductors of the photocatalyst according to the invention.
  • the irradiation source is solar irradiation, it generally emits in the ultraviolet spectrum, visible and infra-red, that is to say it emits a wavelength range of 280 nm to 2500 nm about (according to ASTM G173-03).
  • the source emits at least one wavelength range greater than 280 nm, very preferably 315 nm to 800 nm, which includes the UV spectrum and / or the visible spectrum.
  • the irradiation source provides a photon flux that irradiates the reaction medium containing the photocatalyst.
  • the interface between the reaction medium and the light source varies depending on the applications and the nature of the light source.
  • the irradiation source is located outside the reactor and the interface between the two may be an optical window pyrex, quartz, organic glass or any other interface allowing photons absorbable by the photocatalyst according to the invention to diffuse external medium within the reactor.
  • the realization of the photocatalytic reduction of carbon dioxide is conditioned by the provision of photons adapted to the photocatalytic system for the reaction envisaged and therefore is not limited to a specific pressure or temperature range apart from those allowing ensure the stability of the product (s).
  • the temperature range employed for the photocatalytic reduction of the carbon dioxide containing feedstock is generally -10 ° C to + 200 ° C, more preferably 0 to 150 ° C, and most preferably 0 to 50 ° C. vs.
  • the pressure range employed for the photocatalytic reduction of the carbon dioxide containing feedstock is generally from 0.01 MPa to 70 MPa (0.1 to 700 bar), more preferably from 0.1 MPa to 2 MPa (1 to 20 bar).
  • the effluent obtained after the photocatalytic reduction reaction of the carbon dioxide contains on the one hand at least one molecule at C1 or more, different from the carbon dioxide resulting from the reaction and secondly from the unreacted charge, as well as the possible diluent fluid, but also products of parallel reactions such as for example the dihydrogen resulting from the photocatalytic reduction of H 2 0 when this compound is used as a sacrificial compound.
  • Example 1 Solid A (not in accordance with the invention) TiO 2
  • a photocatalyst is a semiconductor-based shopping Ti0 2 (Aeroxide ® P25, Aldrich TM, purity> 99.5%).
  • the particle size of the photocatalyst is 21 nm and the specific surface area measured by BET method is equal to 52 m 2 / g.
  • Example 2 Solid B (not in accordance with the invention) Pt / TiO 2
  • H 2 PtCl 6 , 6H 2 O (37.5% by weight of metal) is added to 500 ml of distilled water. 50 ml of this solution are taken and inserted into a double jacketed glass reactor. 3 ml of methanol then 250 mg of TiO 2 (P25, Degussa TM) are then added with stirring to form a suspension.
  • the mixture is then left stirring and under UV radiation for two hours.
  • the lamp used to provide UV radiation is a 125W mercury vapor HPK TM lamp.
  • the mixture is then centrifuged for 10 minutes at 3000 rpm to recover the solid. Two washings with water are then carried out, each washing being followed by centrifugation. The recovered powder is finally placed in an oven at 70 ° C. for 24 hours.
  • the solid B Pt / TiO 2 is then obtained.
  • the content of Pt element is measured by plasma emission atomic emission spectrometry (or inductively coupled plasma atomic emission spectroscopy "ICP-AES" according to the English terminology) at 0.93% by mass.
  • Example 3 Solid C (in accordance with the invention) Cu 2 O / Pt / TiO 2
  • H 2 PtCl 6 , 6H 2 O (37.5% by weight of metal, Aldrich TM) is inserted into 500 ml of distilled water. 50 ml of this solution are taken and inserted into a double jacketed glass reactor. 3 ml of methanol then 250 mg of TiO 2 (P25, Degussa TM) are then added with stirring to form a suspension.
  • the mixture is then left stirring and under UV radiation for two hours.
  • the lamp used to provide UV radiation is a 125W mercury vapor HPK TM lamp.
  • the mixture is then centrifuged for 10 minutes at 3000 rpm to recover the solid.
  • Two washes with water are then carried out, each of the washes followed by centrifugation.
  • the recovered powder is finally placed in an oven at 70 ° C. for 24 hours.
  • a solid C Pt / TiO 2 is then obtained.
  • the content of Pt element is measured by ICP-AES 0.93% by mass.
  • a solution of Cu (NO 3 ) 2 is prepared by dissolving 0.125 g of Cu (NO 3 ) 2, 3H 2 O (Sigma-Aldrich TM, 98%) in 50 ml of a 50/50 isopropanol / H 2 O mixture. a concentration of Cu 2+ of 10.4 mmol / L.
  • the solid C Cu 2 O / Pt / TiO 2 is then obtained.
  • the content of Cu element is measured by ICP-AES at 2.2% by mass.
  • XPS X-Ray Photoelectron Spectrometry according to the English terminology
  • a platinum particle coating greater than 77% and copper oxide phases were measured at 67% Cu 2 O and 33% CuO.
  • Transmission electron microscopy measured a 5 nm thick copper oxide layer thickness around the metal particles.
  • Example 4 Solid D (in accordance with the invention) Cu 2 O / Au / TiO 2
  • 0.0470 g of HAuCl 4 , xH 2 O (52% by mass of metal, Aldrich TM) is inserted into 500 ml of distilled water. 50 ml of this solution are taken and inserted into a double jacketed glass reactor. 3 ml of methanol then 250 mg of TiO 2 (P25, Degussa TM) are then added with stirring to form a suspension.
  • the mixture is then left stirring and under UV radiation for two hours.
  • the lamp used to provide UV radiation is a 125W mercury vapor HPK TM lamp.
  • the mixture is then centrifuged for 10 minutes at 3000 rpm to recover the solid. Two washings with water are then carried out, each washing being followed by centrifugation.
  • the recovered powder is finally placed in an oven at 70 ° C. for 24 hours.
  • a solution of Cu (NO 3 ) 2 is prepared by dissolving 0.125 g of Cu (NO 3 ) 2, 3H 2 O (Sigma-Aldrich TM, 98%) in 50 ml of a 50/50 isopropanol / H 2 O mixture. a concentration of Cu 2+ of 10.4 mmol / L.
  • the solid D Cu 2 O / Au / TiO 2 is then obtained.
  • the content of Cu element is measured by ICP-AES at 2.3% by weight.
  • XPS measurement an overlap of platinum particles greater than 79% and phases of copper oxides at 76% Cu 2 O and 24% CuO are measured.
  • Transmission electron microscopy measured a mean copper oxide layer thickness of 7 nm around the metal particles.
  • Example 5 Solid E (in accordance with the invention) Cu 2 O / Pt / ZnO
  • H 2 PtCl 6 , 6H 2 O (37.5% by weight of metal, Aldrich TM) is inserted into 500 ml of distilled water. 50 ml of this solution are taken and inserted into a double jacketed glass reactor. 3 ml of methanol then 250 mg of ZnO (Lotus Synthesis TM, surface area 50 m 2 / g) are then added with stirring to form a suspension. The mixture is then left stirring and under UV radiation for six hours.
  • the lamp used to provide UV radiation is a 125W mercury vapor HPK TM lamp.
  • the mixture is then centrifuged for 10 minutes at 3000 rpm to recover the solid. Two washings with water are then carried out, each washing being followed by centrifugation. The recovered powder is finally placed in an oven at 70 ° C. for 24 hours.
  • An E 'Pt / ZnO solid is then obtained.
  • the content of Pt element is measured by ICP-AES at 0.77% by weight.
  • a solution of Cu (NO 3 ) 2 is prepared by dissolving 0.125 g of Cu (NO 3 ) 2, 3H 2 O (Sigma-Aldrich TM, 98%) in 50 ml of a 50/50 isopropanol / H 2 O mixture. a concentration of Cu 2+ of 10.4 mmol / L.
  • the solid E Cu 2 O / Pt / ZnO is then obtained.
  • the content of Cu element is measured by ICP-AES at 1, 9% by mass.
  • XPS measurement a recovery of platinum particles greater than 83% and copper oxide phases 79% Cu 2 O and 21% CuO.
  • Transmission electron microscopy measured an average copper oxide layer thickness of 4 nm around the metal particles.
  • Example 6 Solid F (in accordance with the invention) Ce 2 O 3 / Pt / TiO 2
  • H 2 PtCl 6 , 6H 2 O (37.5% by weight of metal) is added to 500 ml of distilled water. 50 ml of this solution are taken and inserted in a double reactor glass envelope. 3 ml of methanol then 250 mg of TiO 2 (P25, Degussa TM) are then added with stirring to form a suspension.
  • the mixture is then left stirring and under UV radiation for two hours.
  • the lamp used to provide UV radiation is a 125W mercury vapor HPK TM lamp.
  • the mixture is then centrifuged for 10 minutes at 3000 rpm to recover the solid. Two washings with water are then carried out, each washing being followed by centrifugation. The recovered powder is finally placed in an oven at 70 ° C. for 24 hours.
  • the solid F 'Pt / TiO 2 is then obtained.
  • the content of Pt element is measured by ICP-AES at 0.93% by mass.
  • a solution of Ce (NO 3 ) 3 is prepared by dissolving 0.05 g of Ce (NO 3 ) 3, 6H 2 O (Sigma-Aldrich TM, 99%) in 50 ml of H 2 O.
  • the argon flow is then slowed down to 30 ml / min and the irradiation of the reaction mixture starts.
  • the lamp used to provide the UV radiation is a 125 W mercury vapor lamp HPK TM.
  • 5 ml of the cerium nitrate solution is added to the mixture.
  • the mixture is left for 1 hour with stirring and irradiation.
  • 1 ml of a 30% solution of NH 3 is then added.
  • the mixture is again left for 1 hour with stirring and irradiation.
  • the mixture is then centrifuged for 10 minutes at 3000 rpm to recover the solid. Two washings with water are then carried out, each washing being followed by centrifugation. The recovered powder is finally placed in an oven at 70 ° C. for 24 hours.
  • Example 7 Solid G (in accordance with the invention) In 2 O 3 / Pt / TiO 2
  • H 2 PtCl 6 , 6H 2 O (37.5% by weight of metal) is added to 500 ml of distilled water. 50 ml of this solution are taken and inserted into a double jacketed glass reactor. 3 ml of methanol then 250 mg of TiO 2 (P25, Degussa TM) are then added with stirring to form a suspension.
  • the mixture is then left stirring and under UV radiation for two hours.
  • the lamp used to provide UV radiation is a 125W mercury vapor HPK TM lamp.
  • the mixture is then centrifuged for 10 minutes at 3000 rpm to recover the solid. Two washings with water are then carried out, each washing being followed by centrifugation. The recovered powder is finally placed in an oven at 70 ° C. for 24 hours.
  • the solid G 'Pt / TiO 2 is then obtained.
  • the content of Pt element is measured by ICP-AES at 0.93% by mass.
  • a solution of In (NO 3 ) 3 is prepared by dissolving 0.05 g of ln (NO 3 ) 3, xH 2 O (Sigma-Aldrich TM, 99.9%) in 50 ml of H 2 O.
  • the mixture is then centrifuged for 10 minutes at 3000 rpm to recover the solid. Two washings with water are then carried out, each washing being followed by centrifugation. The recovered powder is finally placed in an oven at 70 ° C. for 24 hours.
  • the solid G ln 2 O 3 / Pt / TiO 2 is then obtained.
  • the content of element In is measured by ICP-AES at 1, 9% by mass.
  • XPS measurement a recovery of platinum particles greater than 79% is measured.
  • transmission electron microscopy an average layer thickness of 5 nm indium oxide is measured around the metal particles.
  • Example 8 Implementation of solids in photocatalytic reduction of C0 2 in the liquid phase
  • the solids A, B, C, D, E, F and G are subjected to a photocatalytic reduction test of C0 2 in the liquid phase in a semi-open stirred Pyrex reactor provided with a quartz optical window and a double jacket to regulate the test temperature.
  • the photocatalytic activities are expressed in ⁇ of dihydrogen and formic acid produced per hour and per gram of photocatalyst. The results are reported in Table 1. The activity values show that the implementation of the solids according to the invention systematically has the best photocatalytic performance and particularly better selectivities towards the photocatalytic reduction of CO 2 .
  • Example 9 Implementation of solids in photocatalytic reduction of C0 2 in the gas phase
  • the solids A, B, C, D, E, F and G are subjected to a photocatalytic CO 2 gas phase reduction test in a continuous steel through-bed reactor equipped with a quartz optical window and a sintered in front of the optical window on which the photocatalytic solid is deposited.
  • the tests are carried out at ambient temperature under atmospheric pressure.
  • An argon flow rate of 300 ml / h and CO 2 of 10 ml / hr passes through a water saturator before being dispensed into the reactor.
  • the production of dihydrogen gas produced from the undesirable photocatalytic reduction of the water entrained in the saturator and of CH 4 resulting from the reduction of carbon dioxide is followed by an analysis of the effluent every 6 minutes by micro-chromatography. gas phase.
  • the UV-Visible irradiation source is provided by an Xe-Hg lamp (Asahi TM, MAX302 TM). The irradiation power is always maintained at 100%. The duration of the test is 20 hours.
  • the photocatalytic activities are expressed in ⁇ of dihydrogen and methane produced per hour and per gram of photocatalyst. The results are reported in Table 2. The activity values show that the implementation of the solids according to the invention systematically has the best photocatalytic performance and particularly better selectivities towards the photocatalytic reduction of C0 2 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)

Abstract

The invention relates to a photocatalytic carbon dioxide reduction method carried out in liquid and/or gas phase under irradiation, using a photocatalyst containing a first semiconductor SC1, particles comprising one or more metallic-state elements M, and a second semiconductor SC2, wherein the method is carried out by contacting a feedstock containing the CO2 and at least one sacrificial compound with the photocatalyst, then irradiating the photocatalyst such that the CO2 is reduced, and oxidising the sacrificial compound in order to produce an effluent containing at least in part C1 or above carbon molecules other than CO2.

Description

PROCEDE DE REDUCTION PHOTOCATALYTIQUE DU DIOXYDE DE CARBONE METTANT EN ŒUVRE UN PHOTOCATALYSEUR COMPOSITE  METHOD FOR PHOTOCATALYTIC REDUCTION OF CARBON DIOXIDE USING COMPOSITE PHOTOCATALYST
Le domaine de l'invention est celui de la réduction photocatalytique du dioxyde de carbone (C02) sous irradiation par l'emploi d'un photocatalyseur particulier, contenant de préférence une architecture de type cœur-couche supporté. The field of the invention is that of the photocatalytic reduction of carbon dioxide (CO 2 ) under irradiation by the use of a particular photocatalyst, preferably containing a supported core-layer type architecture.
Les combustibles fossiles, comme le charbon, le pétrole et le gaz naturel, sont les principales sources d'énergie conventionnelles dans le monde en raison de leur disponibilité, de leur stabilité et de leur densité d'énergie élevée. Cependant la combustion produit des émissions de dioxyde de carbone qui sont considérées comme la principale cause du réchauffement climatique. Ainsi, il existe un besoin croissant pour atténuer les émissions de C02, soit en le captant, soit en le transformant. Fossil fuels, such as coal, oil and natural gas, are the world's leading conventional sources of energy because of their availability, stability and high energy density. However, combustion produces carbon dioxide emissions which are considered to be the main cause of global warming. Thus, there is a growing need to mitigate C0 2 emissions, either by capturing it or by transforming it.
Bien que la capture et séquestration du carbone (CSC) soient généralement considérées comme un procédé efficace pour réduire les émissions de C02, d'autre stratégies doivent être envisagées, notamment des stratégies de conversion du C02 en produits ayant une valeur économique, tels que les carburants et produits chimiques industriels. Although carbon capture and sequestration (CCS) are generally regarded as an effective method for reducing C0 2 emissions, other strategies should be considered, including C0 2 conversion strategies into products of economic value, such as fuels and industrial chemicals.
Une telle stratégie est la réduction du dioxyde de carbone en produits valorisâmes. La réduction du dioxyde de carbone peut être réalisée par voie biologique, thermique, électrochimique ou encore photocatalytique.  Such a strategy is the reduction of carbon dioxide into valuable products. The reduction of carbon dioxide can be carried out biologically, thermally, electrochemically or photocatalytically.
Parmi ces options, la réduction photocatalytique du C02 gagne une attention accrue car elle peut potentiellement consommer des formes alternatives d'énergie en exploitant l'énergie solaire, qui est abondante, pas chère, et écologiquement propre et sûre. Among these options, photocatalytic C0 2 reduction is gaining increased attention as it can potentially consume alternative forms of energy by exploiting solar energy, which is abundant, cheap, and ecologically clean and safe.
La réduction photocatalytique du dioxyde de carbone permet d'obtenir des molécules carbonées en C1 ou plus, telles que le CO, le méthane, le méthanol, l'éthanol, le formaldéhyde, l'acide formique ou encore d'autre molécules telles que les acides carboxyliques, les aldéhydes, les cétones ou différents alcools. Ces molécules peuvent trouver une utilité énergétique directement, telles le méthanol, l'éthanol, l'acide formique ou encore le méthane et tous les hydrocarbures en Ci+. Le monoxyde de carbone CO peut également être valorisé énergétiquement en mélange avec de l'hydrogène pour la formation de carburants par synthèse Fischer- Tropsch. Les molécules d'acides carboxyliques, d'aldéhydes, de cétones ou de différents alcools quant à elles peuvent trouver des applications dans les procédés de chimie ou de pétrochimie. Toutes ces molécules présentent donc un grand intérêt d'un point de vue industriel. The photocatalytic reduction of carbon dioxide makes it possible to obtain C1 carbonaceous molecules or more, such as CO, methane, methanol, ethanol, formaldehyde, formic acid or other molecules such as carboxylic acids, aldehydes, ketones or different alcohols. These molecules can find an energy utility directly, such as methanol, ethanol, formic acid or even methane and all hydrocarbons Ci + . The CO carbon monoxide can also be valorized energetically in a mixture with hydrogen for the formation of Fischer-Tropsch synthesis fuels. The molecules of carboxylic acids, aldehydes, ketones or different alcohols can be used in chemical or petrochemical processes. All these molecules are therefore of great interest from an industrial point of view.
ART ANTERIEUR PRIOR ART
Des procédés de réduction photocatalytique du dioxyde de carbone en présence d'un composé sacrificiel sont connus dans l'état de l'art. Photocatalytic reduction processes of carbon dioxide in the presence of a sacrificial compound are known in the state of the art.
Halmann et al. (Solar Energy, 31 , 4, 429-431 , 1983) ont évalué les performances de trois semi-conducteurs (Ti02, SrTi03 et CaTi03) pour la réduction photocatalytique de C02 en milieu aqueux. Ils constatent la production de formaldéhyde, d'acide formique et de méthanol. Halmann et al. (Solar Energy, 31, 4, 429-431, 1983) evaluated the performances of three semiconductors (Ti0 2 , SrTi0 3 and CaTiO 3 ) for the photocatalytic reduction of CO 2 in an aqueous medium. They notice the production of formaldehyde, formic acid and methanol.
Anpo et al. (J. Phys. Chem. B, 101 , p. 2632-2636, 1997) ont étudié la réduction photocatalytique du C02 avec de la vapeur d'eau sur des photocatalyseurs à base de Ti02 ancrés dans des micropores de zéolithes. Ceux-ci présentèrent une très haute sélectivité en méthanol gazeux. Anpo et al. (J. Phys Chem B 101, pp. 2632-2636, 1997) have studied the photocatalytic reduction of CO 2 with water vapor on TiO 2 photocatalysts anchored in micropores of zeolites. These showed a very high selectivity in methanol gas.
Des photocatalyseurs à base de Ti02 sur lequel sont déposées des nanoparticules de platine sont connues pour convertir en méthane un mélange de C02 et d'H20 en phase gazeuse (Q-H. Zhang et al., Catal. Today, 148, p. 335-340, 2009). Photocatalysts based on TiO 2 on which platinum nanoparticles are deposited are known to convert a mixture of CO 2 and H 2 O in the gas phase to methane (QH, Zhang et al., Catal, Today, 148, p. 335-340, 2009).
Des photocatalyseurs à base de Ti02 chargés avec des nanoparticules d'or sont également connus de la littérature pour la réduction photocatalytique de C02 en phase gazeuse (S.C. Roy et al., ACS Nano, 4, 3, p. 1259-1278, 2010) et en phase aqueuse (W. Hou et al., ACS Catal., 1 , p. 929-936, 201 1 ). Photocatalysts based on TiO 2 loaded with gold nanoparticles are also known from the literature for the photocatalytic reduction of CO 2 in the gas phase (SC Roy et al., ACS Nano, 4, 3, pp. 1259-1278, 2010) and in the aqueous phase (W. Hou et al., ACS Catal., 1, pp. 929-936, 201 1).
Wang et al. (J. Phys. Lett., 1 , p. 48-53, 2010) ont mené une étude sur la photoréduction de C02 avec H20 en lumière visible catalysée par des matériaux hétérostructurés à base de CdSe déposé sur un solide composé de nanoparticules de platine en surface de Ti02. Ce type de mise en œuvre diffère cependant de l'invention par le fait que le métal platine n'est pas au cœur de nanoparticules de CdSe ou de Ti02. En effet, comme démontré dans la publication par les analyses en microscopie électronique en transmission et en XPS, le solide est composé de particules de CdSe d'une part et de particules de platine métallique d'autre part, les deux types de particules étant déposés sur un même support semi-conducteur Ti02. Il est également connu que la réduction photocatalytique de C02 en méthanol, acide formique et formaldéhyde en solution aqueuse peut être réalisée à l'aide de différents semi-conducteurs tels que ZnO, CdS, GaP, SiC ou encore WO3 (T. Inoue et al., Nature, 277, p. 637-638, 1979). Wang et al. (J. Phys., Lett., 1, pp. 48-53, 2010) conducted a study on photoreduction of CO 2 with H 2 0 in visible light catalyzed by heterostructured materials based on CdSe deposited on a solid composed of platinum nanoparticles on TiO 2 surface. This type of implementation, however, differs from the invention in that the platinum metal is not at the heart of nanoparticles of CdSe or TiO 2 . Indeed, as demonstrated in the publication by transmission electron microscopy and XPS analyzes, the solid is composed of CdSe particles on the one hand and platinum metal particles on the other hand, the two types of particles being deposited on the same TiO 2 semiconductor substrate. It is also known that the photocatalytic reduction of C0 2 in methanol, formic acid and formaldehyde in aqueous solution can be carried out using different semiconductors such as ZnO, CdS, GaP, SiC or WO 3 (Inoue). et al., Nature, 277, 637-638, 1979).
Liou et al. (Energy Environ. Sci., 4, p. 1487-1494, 201 1 ) ont utilisé des photocatalyseurs lnTaO4 dopé avec du NiO pour réduire le CO2 en CH3OH. Liou et al. (Energy Sci., 4, pp. 1487-1494, 201 1) used NiO-doped InaO 4 photocatalysts to reduce CO 2 to CH 3 OH.
Sato et al. (JACS, 133, p. 15240-15243, 201 1 ) ont étudié un système hybride alliant un semi-conducteur de type p InP et un polymère complexé au ruthénium afin d'opérer une réduction sélective de CO2. Sato et al. (JACS, 133, pp. 15240-15243, 201 1) have studied a hybrid system combining a p-type InP semiconductor and a ruthenium-complexed polymer in order to achieve a selective reduction of CO 2 .
Enfin, une revue et un chapitre d'ouvrage issus de la littérature ouverte offrent un bilan exhaustif des photocatalyseurs employés en réduction photocatalytique du dioxyde de carbone : M. Tahir, N. S. Amin, Energy Conv. Manag., 76, p. 194-214, 2013 d'une part, et Photocatalysis, Topics in current chemistry 303C.A. Bignozzi Editor, Springer, p. 151 -184,201 1 d'autre part.  Finally, a review and a book chapter from the open literature provide a comprehensive review of photocatalysts used in photocatalytic reduction of carbon dioxide: M. Tahir, N. S. Amin, Energy Conv. Manag., 76, p. 194-214, 2013 on the one hand, and Photocatalysis, Topics in current chemistry 303C.A. Bignozzi Editor, Springer, p. 151 -184,201 1 on the other hand.
L'objet de l'invention est de proposer une voie nouvelle, durable et plus performante de production de molécules carbonées valorisâmes par conversion photocatalytique du dioxyde de carbone à l'aide d'une énergie électromagnétique, mettant en œuvre un photocatalyseur contenant un premier semi-conducteur SC1 en contact direct avec des particules comportant un ou plusieurs élément(s) M à l'état métallique choisis parmi un élément des groupes IVB, VB, VIB, VIIB, VIIIB, IB, MB, NIA, IVA et VA de la classification périodique des éléments, lesdites particules étant en contact direct avec un deuxième semi-conducteur SC2 de telle sorte que le deuxième semi- conducteur SC2 recouvre au moins 50 % de la surface des particules comportant un ou plusieurs élément(s) M à l'état métallique. La mise en œuvre de ce type de photocatalyseurs pour la réduction photocatalytique de CO2 permet d'atteindre des performances améliorées par rapport aux photocatalyseurs connus pour cette réaction. Des photocatalyseurs contenant des semi-conducteurs, notamment des photocatalyseurs composés de particules de type cœur-couche en surface d'un support semi-conducteur sont connus dans l'état de l'art. C. Li et al (J. Hydrogen Energy, 37, p. 6431 -6437, 2012) ont dévoilé la synthèse de solides à base de nanotubes de Ti02 sur lesquels sont déposées de manière photoassistée des particules de cuivre métallique oxydées en leur surface. The object of the invention is to propose a new, sustainable and more efficient way of producing carbon molecules that are valorized by photocatalytic conversion of carbon dioxide using an electromagnetic energy, implementing a photocatalyst containing a first semi -conductor SC1 in direct contact with particles comprising one or more element (s) M in the metal state selected from an element of groups IVB, VB, VIB, VIIB, VIIIB, IB, MB, NIA, IVA and VA of the periodic classification of the elements, said particles being in direct contact with a second semiconductor SC2 so that the second semiconductor SC2 covers at least 50% of the surface of the particles comprising one or more element (s) M to the metallic state. The implementation of this type of photocatalyst for the photocatalytic reduction of CO 2 makes it possible to achieve improved performances compared to photocatalysts known for this reaction. Photocatalysts containing semiconductors, especially photocatalysts composed of core-layer particles on the surface of a semiconductor substrate are known in the state of the art. C. Li et al (J. Hydrogen Energy, 37, pp. 6431-6437, 2012) have unveiled the synthesis of TiO 2 nanotube-based solids on which are deposited in a photoassisted manner metallic oxide copper particles on their surface. .
H. Lin et al. (Catal. Comm., 21 , p. 91 -95, 2012) proposent un composite préparé par coprécipitation composé de AgBr/Ag/Agl, AgBr et Agi étant tous deux semiconducteurs. H. Lin et al. (Comm.Comm., 21, pp. 91-95, 2012) propose a composite prepared by coprecipitation composed of AgBr / Ag / AgI, AgBr and Agi being both semiconductors.
C. Wang et al. (Chem. Eng. J., 237, p.29-37, 2014) ont préparé par imprégnations successives un matériau comportant des contacts entre W03 et Pt d'une part et Pt et Ti02 d'autre part. C. Wang et al. (Chem Eng J., 237, p.29-37, 2014) prepared by successive impregnations a material having contacts between W0 3 and Pt on the one hand and Pt and Ti0 2 on the other hand.
Enfin, H. Tada (Nature Materials, 5, p. 782-786, 2006) propose un solide à base de particules hémisphériques présentant une couche de CdS autour d'un cœur d'Au, lesquelles particules sont déposées sur le semi-conducteur Ti02. Il est par ailleurs connu de la littérature ouverte (L. Ding et al., Int. J. Hydrogen Energy, 38, p. 8244- 8253, 2013) de mettre en œuvre en conversion photocatalytique d'H20 en H2 un solide présentant la structure CdS-Au-Ti02, le CdS et l'Au étant constitutif de nanoparticules telles que le CdS est sous forme de couche autour d'un cœur d'Au, ces nanoparticules étant déposées sur un support Ti02. Finally, H. Tada (Nature Materials, 5, pp. 782-786, 2006) proposes a solid based on hemispherical particles having a layer of CdS around an Au core, which particles are deposited on the semiconductor Ti0 2 . It is also known from the open literature (L. Ding et al., Int.J. Hydrogen Energy, 38, pp. 8244-8253, 2013) to implement in photocatalytic conversion of H 2 0 in H 2 a a solid having the CdS-Au-TiO 2 structure , CdS and Au being constitutive of nanoparticles such that the CdS is in the form of a layer around an Au core, these nanoparticles being deposited on a TiO 2 support.
Cependant, aucun de ces documents ne divulgue l'utilisation d'un photocatalyseur contenant un premier semi-conducteur SC1 en contact direct avec des particules comportant un ou plusieurs élément(s) M à l'état métallique choisis parmi un élément des groupes IVB, VB, VIB, VIIB, VIIIB, IB, MB, NIA, IVA et VA de la classification périodique des éléments, lesdites particules étant en contact direct avec un deuxième semi-conducteur SC2 dans un procédé de réduction photocatalytique du dioxyde de carbone. Plus particulièrement, l'invention décrit un procédé de réduction photocatalytique du dioxyde de carbone effectué en phase liquide et/ou en phase gazeuse sous irradiation mettant en œuvre un photocatalyseur contenant un premier semiconducteur SC1 , des particules comportant un ou plusieurs élément(s) M à l'état métallique choisis parmi un élément des groupes IVB, VB, VIB, VIIB, VIIIB, IB, MB, NIA, IVA et VA de la classification périodique des éléments, et un deuxième semiconducteur SC2, ledit premier semi-conducteur SC1 étant en contact direct avec lesdites particules comportant un ou plusieurs élément(s) M à l'état métallique, lesdites particules étant en contact direct avec ledit deuxième semi-conducteur SC2 de telle sorte que le deuxième semi-conducteur SC2 recouvre au moins 50 % de la surface des particules comportant un ou plusieurs élément(s) M à l'état métallique, ledit procédé comprenant les étapes suivantes : a) on met en contact une charge contenant le dioxyde de carbone et au moins un composé sacrificiel avec ledit photocatalyseur, b) on irradie le photocatalyseur par au moins une source d'irradiation produisant au moins une longueur d'onde inférieure à la largeur de bande interdite dudit photocatalyseur de manière à réduire le dioxyde de carbone et oxyder le composé sacrificiel en présence dudit photocatalyseur activé par ladite source d'irradiation, de manière à produire un effluent contenant au moins en partie des molécules carbonées en C1 ou plus, différentes du C02. However, none of these documents discloses the use of a photocatalyst containing a first semiconductor SC1 in direct contact with particles comprising one or more element (s) M in the metallic state chosen from an element of groups IVB, VB, VIB, VIIB, VIIIB, IB, MB, NIA, IVA and VA of the Periodic Table of Elements, said particles being in direct contact with a second SC2 semiconductor in a photocatalytic carbon dioxide reduction process. More particularly, the invention describes a process for photocatalytic reduction of carbon dioxide carried out in the liquid phase and / or in the gas phase under irradiation using a photocatalyst containing a first semiconductor SC1, particles comprising one or more element (s) M in the metallic state selected from an element of groups IVB, VB, VIB, VIIB, VIIIB, IB, MB, NIA, IVA and VA of the periodic table of elements, and a second semiconductor SC2, said first semiconductor SC1 being in direct contact with said particles comprising one or more element (s) M in the metallic state, said particles being in direct contact with said second semiconductor SC2 so that the second semiconductor SC2 covers at least 50% of the surface of the particles comprising one or more element (s) M in the metallic state, said method comprising the following steps: a) a filler containing carbon dioxide and at least one sacrificial compound is contacted with said photocatalyst, b) the photocatalyst is irradiated with at least one irradiation source producing at least one wavelength less than the bandgap width of said photocatalyst so as to reduce the carbon dioxide and oxidize the sacrificial compound in the presence of said photocatalyst activated by said irradiation source, so as to produce an effluent containing at least partly C1 carbonaceous molecules or more, different from C0 2.
Selon une variante, et lorsque le procédé est effectué en phase gazeuse, le composé sacrificiel est un composé gazeux choisi parmi l'eau, l'ammoniaque, l'hydrogène, le méthane et un alcool. According to a variant, and when the process is carried out in the gas phase, the sacrificial compound is a gaseous compound chosen from water, ammonia, hydrogen, methane and an alcohol.
Selon une variante, et lorsque le procédé est effectué en phase liquide, le composé sacrificiel est un composé liquide ou solide soluble choisi parmi l'eau, l'ammoniaque, un alcool, un aldéhyde ou une aminé. According to a variant, and when the process is carried out in the liquid phase, the sacrificial compound is a soluble liquid or solid compound chosen from water, ammonia, an alcohol, an aldehyde or an amine.
Selon une variante, un fluide diluant est présent dans les étapes a) et/ou b). Selon une variante, la source d'irradiation est une source d'irradiation artificielle ou naturelle. Alternatively, a diluent fluid is present in steps a) and / or b). According to one variant, the irradiation source is a source of artificial or natural irradiation.
Selon une variante préférée, le premier semi-conducteur SC1 est en contact direct avec le deuxième semi-conducteur SC2.  According to a preferred variant, the first semiconductor SC1 is in direct contact with the second semiconductor SC2.
Selon une variante préférée, ledit premier semi-conducteur SC1 forme un support, ledit support contient à sa surface des particules de type cœur-couche, ladite couche étant formée par ledit semi-conducteur SC2, ledit cœur étant formé par lesdites particules comportant un ou plusieurs élément(s) M à l'état métallique.  According to a preferred variant, said first semiconductor SC1 forms a support, said support contains at its surface core-layer type particles, said layer being formed by said semiconductor SC2, said core being formed by said particles comprising one or several element (s) M in the metallic state.
Selon une variante, la teneur respective des semi-conducteurs SC1 ou SC2 est comprise entre 0,01 et 50 % en poids par rapport au poids total du photocatalyseur. Selon une variante, la teneur en élément(s) M à l'état métallique est comprise entre 0,001 et 20% en poids par rapport au poids total du photocatalyseur. According to one variant, the respective content of semiconductors SC1 or SC2 is between 0.01 and 50% by weight relative to the total weight of the photocatalyst. According to one variant, the content of element (s) M in the metallic state is between 0.001% and 20% by weight relative to the total weight of the photocatalyst.
Selon une variante, l'élément M à l'état métallique est choisi parmi le platine, le palladium, l'or, le nickel, le cobalt, le ruthénium, l'argent, le cuivre, le rhénium ou le rhodium. According to one variant, the element M in the metallic state is chosen from platinum, palladium, gold, nickel, cobalt, ruthenium, silver, copper, rhenium or rhodium.
Selon une variante, les semi-conducteurs SC1 et SC2 sont indépendamment choisis parmi un semi-conducteur inorganique, organique ou organique-inorganique.  According to one variant, the semiconductors SC1 and SC2 are independently chosen from an inorganic, organic or organic-inorganic semiconductor.
Selon une variante, le semi-conducteur SC1 est choisi parmi le Ti02, le ZnO, le W03, le Fe203, et le ZnFe204. According to one variant, the semiconductor SC1 is chosen from TiO 2 , ZnO, WO 3 , Fe 2 O 3 , and ZnFe 2 O 4 .
Selon une variante, le semi-conducteur SC2 est choisi parmi le Cu20, le Ce203, l'ln203, le SiC, le ZnS, et l'ln2S3. According to a variant, the semiconductor SC2 is selected from Cu 2 0, Ce 2 0 3 , In 2 0 3 , SiC, ZnS, and In 2 S 3 .
Selon une variante, le photocatalyseur comporte un support composé d'un semiconducteur SC1 choisi parmi le Ti02, ZnO, le WO3, le Fe2O3, le ZnFe2O4 contenant à sa surface des particules de type cœur-couche, ledit cœur étant constitué d'un ou plusieurs élément(s) M à l'état métallique choisi parmi le platine, le palladium, l'or, le nickel, le cobalt, le ruthénium, l'argent, le cuivre, le rhénium ou le rhodium, ladite couche étant constituée d'un semi-conducteur SC2, choisi parmi le Cu2O, le Ce2O3, l'ln2O3. According to one variant, the photocatalyst comprises a support composed of a SC1 semiconductor chosen from TiO 2 , ZnO, WO 3 , Fe 2 O 3 and ZnFe 2 O 4 containing, on its surface, core-layer particles, said core being composed of one or more element (s) M in the metallic state selected from platinum, palladium, gold, nickel, cobalt, ruthenium, silver, copper, rhenium or rhodium, said layer consisting of a semiconductor SC2, selected from Cu 2 O, Ce 2 O 3 , In 2 O 3 .
Dans la suite, les groupes d'éléments chimiques sont donnés selon la classification CAS (CRC Handbook of Chemistry and Physics, éditeur CRC press, rédacteur en chef D.R. Lide, 81 ème édition, 2000-2001 ). Par exemple, le groupe VIII selon la classification CAS correspond aux métaux des colonnes 8, 9 et 10 selon la nouvelle classification IUPAC.  In the following, the groups of chemical elements are given according to the classification CAS (CRC Handbook of Chemistry and Physics, publisher CRC press, editor-in-chief D. R. Lide, 81 st edition, 2000-2001). For example, group VIII according to the CAS classification corresponds to the metals of columns 8, 9 and 10 according to the new IUPAC classification.
DESCRIPTION DETAILLEE DE L'INVENTION DETAILED DESCRIPTION OF THE INVENTION
L'invention décrit un procédé de réduction photocatalytique du dioxyde de carbone effectué en phase liquide et/ou en phase gazeuse sous irradiation mettant en œuvre un photocatalyseur contenant un premier semi-conducteur SC1 , des particules comportant un ou plusieurs élément(s) M à l'état métallique choisis parmi un élément des groupes IVB, VB, VIB, VIIB, VIIIB, IB, MB, NIA, IVA et VA de la classification périodique des éléments, et un deuxième semi-conducteur SC2, ledit premier semiconducteur SC1 étant en contact direct avec lesdites particules comportant un ou plusieurs élément(s) M à l'état métallique, lesdites particules étant en contact direct avec ledit deuxième semi-conducteur SC2 de telle sorte que le deuxième semiconducteur SC2 recouvre au moins 50 % de la surface des particules comportant un ou plusieurs élément(s) M à l'état métallique, ledit procédé comprenant les étapes suivantes : a) on met en contact une charge contenant le dioxyde de carbone et au moins un composé sacrificiel avec ledit photocatalyseur, b) on irradie le photocatalyseur par au moins une source d'irradiation produisant au moins une longueur d'onde inférieure à la largeur de bande interdite dudit photocatalyseur de manière à réduire le dioxyde de carbone et oxyder le composé sacrificiel en présence dudit photocatalyseur activé par ladite source d'irradiation, de manière à produire un effluent contenant au moins en partie des molécules carbonées en C1 ou plus, différentes du C02. The invention describes a method for photocatalytic reduction of carbon dioxide carried out in the liquid phase and / or in the gas phase under irradiation using a photocatalyst containing a first semiconductor SC1, particles comprising one or more element (s) M to the metallic state selected from an element of groups IVB, VB, VIB, VIIB, VIIIB, IB, MB, NIA, IVA and VA of the periodic table of elements, and a second semiconductor SC2, said first semiconductor SC1 being direct contact with said particles comprising one or more element (s) M in the metallic state, said particles being in direct contact with said second semiconductor SC2 so that the second semiconductor SC2 covers at least 50% of the surface of the particles having one or more element (s) M in the metallic state, said method comprising the following steps: a) contacts a filler containing carbon dioxide and at least one sacrificial compound with said photocatalyst, b) the photocatalyst is irradiated with at least one irradiation source producing at least one wavelength less than the forbidden bandwidth of said photocatalyst; photocatalyst so as to reduce the carbon dioxide and oxidize the sacrificial compound in the presence of said photocatalyst activated by said irradiation source, so as to produce an effluent containing at least partly carbon molecules C1 or more, different from the C0 2.
Selon l'étape a) du procédé selon l'invention, on met en contact une charge contenant ledit dioxyde de carbone et au moins un composé sacrificiel avec ledit photocatalyseur. According to step a) of the process according to the invention, a feedstock containing said carbon dioxide and at least one sacrificial compound is contacted with said photocatalyst.
On entend par composé sacrificiel un composé oxydable. Le composé sacrificiel peut être sous forme gazeuse ou liquide. By sacrificial compound is meant an oxidizable compound. The sacrificial compound may be in gaseous or liquid form.
On entend par « molécules carbonées en C1 ou plus » des molécules issues de la réduction du CO2 contenant un ou plus d'atome de carbone, à l'exception du CO2. De telle molécules sont par exemple le CO, le méthane, le méthanol, l'éthanol, le formaldéhyde, l'acide formique ou encore d'autre molécules telles que les acides carboxyliques, les aldéhydes, les cétones ou différents alcools. The term "C1 carbonaceous molecules or more" means molecules resulting from the reduction of CO 2 containing one or more carbon atoms, with the exception of CO 2 . Such molecules are, for example, CO, methane, methanol, ethanol, formaldehyde, formic acid or other molecules such as carboxylic acids, aldehydes, ketones or different alcohols.
Le procédé selon l'invention peut être effectué en phase liquide et/ou en phase gazeuse. La charge traitée selon le procédé se présente sous forme gazeuse, liquide ou biphasique gazeuse et liquide. The process according to the invention can be carried out in the liquid phase and / or in the gas phase. The filler treated according to the process is in gaseous, liquid or biphasic gas and liquid form.
Lorsque la charge se présente sous forme gazeuse, le CO2 est présent sous sa forme gazeuse en présence de tout composés sacrificiels gazeux seuls ou en mélange. Les composés sacrificiels gazeux sont des composés oxydables tels que l'eau (H2O), l'ammoniaque (NH3), l'hydrogène (H2), le méthane (CH4) ou encore les alcools. De manière préférée, les composés sacrificiels gazeux sont l'eau ou l'hydrogène. Lorsque la charge se présente sous forme gazeuse, le C02 et le composé sacrificiel peuvent être dilués par un fluide diluant gazeux tels que N2 ou Ar. Lorsque la charge se trouve sous la forme liquide, celle-ci peut être sous forme d'un liquide ionique, organique ou aqueux. La charge sous forme liquide est préférentiellement aqueuse. En milieu aqueux, le C02 est alors solubilisé sous forme de C02 aqueux, d'hydrogénocarbonate ou de carbonate. Les composés sacrificiels sont des composés oxydables liquides ou solides solubles dans la charge liquide, tels que l'eau (H20), l'ammoniaque (NH3), les alcools, les aldéhydes, les aminés. De manière préférée, le composé sacrificiel est l'eau. Lorsque la charge liquide est une solution aqueuse, le pH est généralement compris entre 2 et 12, de préférence entre 3 et 10. Eventuellement, et afin de moduler le pH de la charge liquide aqueuse, un agent basique ou acide peut être ajouté à la charge. Lorsqu'un agent basique est introduit il est sélectionné de préférence parmi les hydroxydes d'alcalins ou d'alcalinoterreux, les bases organiques telles que des aminés ou de l'ammoniaque. Lorsqu'un agent acide est introduit il est sélectionné de préférence parmi les acides inorganiques tels que l'acide nitrique, sulfurique, phosphorique, chlorhydrique, bromhydrique ou les acides organiques tels que des acides carboxyliques ou sulfoniques. When the filler is in gaseous form, the CO 2 is present in its gaseous form in the presence of any gaseous sacrificial compounds alone or as a mixture. The gaseous sacrificial compounds are oxidizable compounds such as water (H 2 O) , ammonia (NH 3 ), hydrogen (H 2 ), methane (CH 4 ) or alcohols. Preferably, the gaseous sacrificial compounds are water or hydrogen. When the feedstock is in gaseous form, the CO 2 and the sacrificial compound may be diluted by a gaseous diluent fluid such as N 2 or Ar. When the feedstock is in the liquid form, this can be in the form of an ionic liquid, organic or aqueous. The charge in liquid form is preferably aqueous. In an aqueous medium, the CO 2 is then solubilized in the form of aqueous CO 2 , hydrogen carbonate or carbonate. The sacrificial compounds are liquid or solid oxidizable compounds soluble in the liquid charge, such as water (H 2 0) , ammonia (NH 3 ), alcohols, aldehydes, amines. In a preferred manner, the sacrificial compound is water. When the liquid charge is an aqueous solution, the pH is generally between 2 and 12, preferably between 3 and 10. Optionally, and in order to modulate the pH of the aqueous liquid charge, a basic or acidic agent may be added to the charge. When a basic agent is introduced it is preferably selected from alkali or alkaline earth hydroxides, organic bases such as amines or ammonia. When an acidic agent is introduced, it is preferably selected from inorganic acids such as nitric, sulfuric, phosphoric, hydrochloric or hydrobromic acid or organic acids such as carboxylic or sulphonic acids.
Eventuellement, lorsque la charge liquide est aqueuse, celle-ci peut contenir en toute quantité tout ion solvaté, tels que par exemple K+, Li+, Na+, Ca2+, Mg2+, S04 2", CI", F", N03 2". Optionally, when the liquid charge is aqueous, it can contain in any quantity any solvated ion, such as for example K + , Li + , Na + , Ca 2+ , Mg 2+ , S0 4 2 " , CI " , F " , NO 3 2" .
Lorsque le procédé est effectué en phase liquide ou en phase gazeuse, un fluide diluant, respectivement liquide ou gazeux, peut être présent dans le milieu réactionnel. La présence d'un fluide diluant n'est pas requis pour la réalisation de l'invention, cependant il peut être utile d'en adjoindre à la charge pour assurer la dispersion de la charge dans le milieu, la dispersion du photocatalyseur, un contrôle de l'adsorption des réactifs/produits à la surface du photocatalyseur, un contrôle de l'absorption des photons par le photocatalyseur, la dilution des produits pour limiter leur recombinaison et autres réactions parasites du même ordre. La présence d'un fluide diluant permet aussi le contrôle de la température du milieu réactionnel pouvant ainsi compenser l'éventuelle exo/endo-thermicité de la réaction photocatalysée. La nature du fluide diluant est choisie de telle façon que son influence soit neutre sur le milieu réactionnel ou que son éventuelle réaction ne nuise pas à la réalisation de la réduction souhaitée du dioxyde de carbone. A titre d'exemple, on peut choisir de l'azote en tant que fluide diluant gazeux. When the process is carried out in the liquid phase or in the gas phase, a diluent fluid, which may be liquid or gaseous, may be present in the reaction medium. The presence of a diluent fluid is not required for the realization of the invention, however it may be useful to add to the charge to ensure the dispersion of the charge in the medium, the dispersion of the photocatalyst, a control the adsorption of the reagents / products on the surface of the photocatalyst, a control of the absorption of photons by the photocatalyst, the dilution of the products to limit their recombination and other similar parasitic reactions. The presence of a diluent fluid also makes it possible to control the temperature of the reaction medium, thus being able to compensate for the possible exo / endothermicity of the photocatalyzed reaction. The nature of the diluent fluid is chosen in such a way that its influence is neutral on the reaction medium or that its possible reaction does not affect the achievement of the desired reduction of carbon dioxide. For example, nitrogen can be selected as the gaseous diluent fluid.
La mise en contact de la charge contenant le dioxyde de carbone et du photocatalyseur peut se faire par tout moyen connu de l'homme du métier. De manière préférée, la mise en contact de la charge de dioxyde de carbone et du photocatalyseur se fait en lit fixe traversé, en lit fixe léchant ou en suspension (aussi appelé "slurry" selon la terminologie anglo-saxonne). Le photocatalyseur peut également être déposé directement sur des fibres optiques.  The contacting of the charge containing the carbon dioxide and the photocatalyst can be done by any means known to those skilled in the art. Preferably, the contacting of the carbon dioxide feedstock and the photocatalyst is in fixed bed crossed, fixed bed licking or suspension (also called "slurry" in the English terminology). The photocatalyst can also be deposited directly on optical fibers.
Lorsque la mise en œuvre est en lit fixe traversé, le photocatalyseur est préférentiellement déposé en couche sur un support poreux, par exemple de type fritté céramique ou métallique, et la charge contenant le dioxyde de carbone à convertir sous forme gazeuse et/ou liquide est envoyée à travers le lit photocatalytique. When the implementation is in fixed bed traversed, the photocatalyst is preferably deposited in a layer on a porous support, for example of ceramic or metallic sintered type, and the charge containing the carbon dioxide to be converted into gaseous and / or liquid form is sent through the photocatalytic bed.
Lorsque la mise en œuvre est en lit fixe léchant, le photocatalyseur est préférentiellement déposé en couche sur un support et la charge contenant le dioxyde de carbone à convertir sous forme gazeuse et/ou liquide est envoyée sur le lit photocatalytique. When the implementation is in a fixed licking bed, the photocatalyst is preferably layered on a support and the feedstock containing the carbon dioxide to be converted into gaseous and / or liquid form is sent to the photocatalytic bed.
Lorsque que la mise en œuvre est en suspension, le photocatalyseur est préférentiellement sous forme de particules en suspension dans une charge liquide ou liquide-gaz contenant le dioxyde de carbone. En suspension, la mise en œuvre peut se faire en batch et en continu.  When the implementation is in suspension, the photocatalyst is preferably in the form of particles suspended in a liquid or liquid-gas feed containing carbon dioxide. In suspension, the implementation can be done in batch and continuously.
Le photocatalyseur comprend un premier semi-conducteur SC1 en contact direct avec des particules comportant un ou plusieurs élément(s) M à l'état métallique choisis parmi un élément des groupes IVB, VB, VIB, VIIB, VIIIB, IB, MB, NIA, IVA et VA de la classification périodique des éléments, lesdites particules étant en contact direct avec un deuxième semi-conducteur SC2. The photocatalyst comprises a first semiconductor SC1 in direct contact with particles comprising one or more element (s) M in the metallic state chosen from an element of groups IVB, VB, VIB, VIIB, VIIIB, IB, MB, NIA. , IVA and VA of the periodic table of the elements, said particles being in direct contact with a second semiconductor SC2.
De manière préférée, le photocatalyseur est constitué d'un premier semi-conducteur SC1 , de particules comportant un ou plusieurs élément(s) M à l'état métallique choisis parmi un élément des groupes IVB, VB, VIB, VIIB, VIIIB, IB, MB, NIA, IVA et VA de la classification périodique des éléments, et d'un deuxième semi-conducteur SC2. Selon un aspect important de l'invention, le premier semi-conducteur SC1 est en contact direct avec des particules comportant un ou plusieurs élément(s) M à l'état métallique, lesdites particules étant en contact direct avec un deuxième semiconducteur SC2 de telle sorte que le deuxième semi-conducteur SC2 recouvre au moins 50 % de la surface des particules comportant un ou plusieurs élément(s) M à l'état métallique. De préférence, le premier semi-conducteur SC1 est en outre en contact direct avec le deuxième semi-conducteur SC2. Preferably, the photocatalyst consists of a first semiconductor SC1, particles comprising one or more element (s) M in the metallic state chosen from an element of groups IVB, VB, VIB, VIIB, VIIIB, IB , MB, NIA, IVA and VA of the periodic table of elements, and a second semiconductor SC2. According to an important aspect of the invention, the first semiconductor SC1 is in direct contact with particles comprising one or more element (s) M in the metallic state, said particles being in direct contact with a second semiconductor SC2 of such so that the second semiconductor SC2 covers at least 50% of the surface of the particles comprising one or more element (s) M in the metallic state. Preferably, the first semiconductor SC1 is also in direct contact with the second semiconductor SC2.
Selon une variante préférée de l'invention, le photocatalyseur utilisé dans le procédé selon l'invention présente une architecture cœur-couche supporté. Plus particulièrement, ledit premier semi-conducteur SC1 forme un support, ledit support contient à sa surface des particules de type cœur-couche, ladite couche étant formée par ledit semi-conducteur SC2, ledit cœur étant formé par lesdites particules comportant un ou plusieurs élément(s) M à l'état métallique. Le photocatalyseur comporte ainsi un support contenant un semi-conducteur SC1 contenant à sa surface des particules de type cœur-couche, ledit cœur comportant un ou plusieurs desdits élément(s) M à l'état métallique, ladite couche comportant un semiconducteur SC2, ledit cœur étant en contact direct avec ledit semi-conducteur SC1 du support et la couche recouvre ledit cœur de telle sorte que la couche recouvre au moins 50 % de la surface des particules comportant un ou plusieurs élément(s) M à l'état métallique. According to a preferred variant of the invention, the photocatalyst used in the process according to the invention has a supported core-layer architecture. More particularly, said first semiconductor SC1 forms a support, said support contains on its surface core-layer type particles, said layer being formed by said semiconductor SC2, said core being formed by said particles comprising one or more element (s) M in the metallic state. The photocatalyst thus comprises a support containing a semiconductor SC1 containing at its surface core-layer type particles, said core comprising one or more of said element (s) M in the metallic state, said layer comprising a semiconductor SC2, said the core being in direct contact with said semiconductor SC1 of the support and the layer covers said core so that the layer covers at least 50% of the surface of the particles comprising one or more element (s) M in the metallic state.
L'emploi de ce type de photocatalyseur dans une réaction de réduction photocatalytique de C02 permet de manière surprenante d'obtenir des performances photocatalytiques améliorées par rapport aux photocatalyseurs connus de l'état de la technique ne contenant pas l'architecture de type cœur-couche supporté. The use of this type of photocatalyst in a photocatalytic reduction reaction of C0 2 surprisingly makes it possible to obtain improved photocatalytic performance compared to photocatalysts known from the state of the art which do not contain the core-type architecture. layer supported.
La couche recouvre une surface supérieure à 50% du cœur métallique, et de manière préférée supérieure à 60% et de manière très préférée supérieure à 75%. Le taux de recouvrement est mesuré par XPS (spectrométrie photoélectronique au rayon X ou X-ray photoelectron spectrometry selon la terminologie anglo-saxonne), par exemple sur un appareil ESCA KRATOS® Axis Ultra avec une source monochromatique Al à 1486.6 eV, et une énergie de passage de 40 eV, et exprime le recouvrement de la surface totale des particules comportant un ou plusieurs élément(s) M à l'état métallique. La couche possède une épaisseur de 1 nm à 1000 nm, de préférence de 1 nm à 500 nm, et de manière particulièrement préférée de 2 à 50 nm. The layer covers an area greater than 50% of the metal core, and preferably greater than 60% and most preferably greater than 75%. The recovery rate is measured by XPS (X-ray photoelectron spectrometry or X-ray photoelectron spectrometry according to the English terminology), for example on an ESCA KRATOS® Axis Ultra device with a monochromatic Al source at 1486.6 eV, and an energy passing 40 eV, and expresses the covering of the total surface of the particles comprising one or more element (s) M in the metallic state. The layer has a thickness of 1 nm to 1000 nm, preferably 1 nm to 500 nm, and particularly preferably 2 to 50 nm.
Les semi-conducteurs SC1 et SC2 sont indépendamment choisis parmi les semi- conducteurs inorganiques, organiques ou organique-inorganique. La largeur de bande interdite des semi-conducteurs inorganiques, organiques ou hybrides organiques-inorganiques est généralement entre 0,1 et 5,5 eV. The semiconductors SC1 and SC2 are independently selected from inorganic, organic or organic-inorganic semiconductors. The bandgap of inorganic, organic or hybrid organic-inorganic semiconductors is generally between 0.1 and 5.5 eV.
Les semi-conducteurs SC1 et SC2 peuvent être identiques ou différents dans le photocatalyseur utilisé dans le procédé selon l'invention. De préférence, le semi- conducteur SC1 est différent du semi-conducteur SC2 dans le photocatalyseur utilisé dans le procédé selon l'invention.  The semiconductors SC1 and SC2 may be identical or different in the photocatalyst used in the process according to the invention. Preferably, the semiconductor SC1 is different from the semiconductor SC2 in the photocatalyst used in the method according to the invention.
Selon une première variante, les semi-conducteurs SC1 et SC2 sont indépendamment choisis parmi les semi-conducteurs inorganiques. Les semiconducteurs inorganiques peuvent être choisis parmi un ou plusieurs éléments du groupe IVA, tels que le silicium, le germanium, le carbure de silicium ou le silicium- germanium. Ils peuvent être également composés d'éléments des groupes NIA et VA, tels que GaP, GaN, InP et InGaAs, ou d'éléments des groupes MB et VIA, tels que CdS, ZnO et ZnS, ou d'éléments des groupes IB et VIIA, tels que CuCI et AgBr, ou d'éléments des groupes IVA et VIA, tels que PbS, PbO, SnS et PbSnTe, ou d'éléments des groupes VA et VIA, tels que Bi2Te3 et Bi203, ou d'éléments des groupes MB et VA, tels que Cd3P2, Zn3P2 et Zn3As2, ou d'éléments des groupes IB et VIA, tels que CuO, Cu2O et Ag2S, ou d'éléments des groupes VIIIB et VIA, tels que CoO, PdO, Fe2O3 et NiO, ou d'éléments des groupes VIB et VIA, tels que MoS2 et WO3, ou d'éléments des groupes VB et VIA, tels que V2O5 et Nb2O5, ou d'éléments des groupes IVB et VIA, tels que TiO2 et HfS2, ou d'éléments des groupes NIA et VIA, tels que ln2O3 et ln2S3, ou d'éléments des groupes VIA et des lanthanides, tels que Ce2O3, Pr2O3, Sm2S3, Tb2S3 et La2S3, ou d'éléments des groupes VIA et des actinides, tels que UO2 et UO3. According to a first variant, the semiconductors SC1 and SC2 are independently selected from inorganic semiconductors. The inorganic semiconductors may be selected from one or more Group IVA elements, such as silicon, germanium, silicon carbide or silicon germanium. They may also be composed of elements of the NIA and VA groups, such as GaP, GaN, InP and InGaAs, or elements of groups MB and VIA, such as CdS, ZnO and ZnS, or elements of groups IB and VIIA, such as CuCl and AgBr, or elements of groups IVA and VIA, such as PbS, PbO, SnS and PbSnTe, or elements of groups VA and VIA, such as Bi 2 Te 3 and Bi 2 0 3 , or elements of groups MB and VA, such as Cd 3 P2, Zn 3 P 2 and Zn 3 As 2 , or elements of groups IB and VIA, such as CuO, Cu 2 O and Ag 2 S, or of elements of groups VIIIB and VIA, such as CoO, PdO, Fe 2 O 3 and NiO, or elements of groups VIB and VIA, such as MoS 2 and WO 3 , or elements of groups VB and VIA, such as V 2 O 5 and Nb 2 O 5 , or elements of groups IVB and VIA, such as TiO 2 and HfS 2 , or elements of groups NIA and VIA, such as In 2 O 3 and In 2 S 3 , or elements of groups VIA and lanthanides, such as Ce 2 O 3 , Pr 2 O 3 , Sm 2 S 3 , Tb 2 S 3 and La 2 S 3 , or elements of groups VIA and actinides, such as UO 2 and UO 3 .
De manière préférée, les semi-conducteurs SC1 et SC2 sont indépendamment choisis parmi le TiO2, le SiC, le Bi2S3, le Bi2O3, le CdO, le Ce2O3, le CeO2, le CoO, le Cu2O, le Fe2O3, le FeTiO3, l'ln2O3, l'ln(OH)3, le NiO, le PbO, le ZnO, l'Ag2S, le CdS, le Ce2S3, le Cu2S, le CulnS2, l'ln2S3, le ZnFe2O3, le ZnS, le ZnO, le WO3, le ZnFe2O4 et le ZrS2. De manière particulièrement préférée, le semi-conducteur SC1 est choisi parmi le Ti02, le ZnO, le W03, le Fe203, et le ZnFe204. Preferably, the semiconductors SC1 and SC2 are independently selected from TiO 2 , SiC, Bi 2 S 3 , Bi 2 O 3 , CdO, Ce 2 O 3 , CeO 2, CoO, Cu 2 O, Fe 2 O 3 , FeTiO 3 , In 2 O 3 , In (OH) 3 , NiO, PbO, ZnO, Ag 2 S, CdS, Ce 2 S 3 , Cu 2 S, CulnS 2 , In 2 S 3 , ZnFe 2 O 3 , ZnS, ZnO, WO 3 , ZnFe 2 O 4 and ZrS 2 . Particularly preferably, the semiconductor SC1 is selected from TiO 2 , ZnO, WO 3 , Fe 2 O 3 , and ZnFe 2 O 4 .
De manière particulièrement préférée, le semi-conducteur SC2 est choisi parmi le Ce203, ΓΙη203, le Cu20, le SiC, le ZnS, et l'ln2S3. In a particularly preferred manner, the semiconductor SC2 is chosen from Ce 2 0 3 , ΓΙη 2 0 3 , Cu 2 0, SiC, ZnS, and In 2 S 3 .
Selon une autre variante, les semi-conducteurs SC1 et SC2 sont choisis parmi les semi-conducteurs organiques. Lesdits semi-conducteurs organiques peuvent être le tétracène, l'anthracène, le polythiophène, le polystyrènesulfonate, les phosphyrènes et les fullerènes. According to another variant, the semiconductors SC1 and SC2 are chosen from organic semiconductors. Said organic semiconductors may be tetracene, anthracene, polythiophene, polystyrene sulphonate, phosphyrenes and fullerenes.
Selon une autre variante, les semi-conducteurs SC1 et SC2 sont choisis parmi les semi-conducteurs organiques-inorganiques. Parmi les semi-conducteurs organiques- inorganiques, on peut citer les solides cristallisés de type MOF (pour Métal Organic Frameworks selon la terminologie anglo-saxonne). Les MOFs sont constitués de sous-unités inorganiques (métaux de transition, lanthanides...) et connectées entre elles par des ligands organiques (carboxylates, phosphonates, imidazolates...), définissant ainsi des réseaux hybrides cristallisés, parfois poreux. According to another variant, the semiconductors SC1 and SC2 are chosen from organic-inorganic semiconductors. Among the organic-inorganic semiconductors, mention may be made of crystalline solids of the MOF type (for Metal Organic Frameworks according to the English terminology). The MOFs consist of inorganic subunits (transition metals, lanthanides, etc.) connected to each other by organic ligands (carboxylates, phosphonates, imidazolates, etc.), thus defining crystallized hybrid networks, sometimes porous.
Les semi-conducteurs SC1 et SC2 peuvent éventuellement être dopés avec un ou plusieurs ions choisis parmi des ions métalliques, tels que par exemple des ions de V, Ni, Cr, Mo, Fe, Sn, Mn, Co, Re, Nb, Sb, La, Ce, Ta, Ti, des ions non-métalliques, tels que par exemple C, N, S, F, P, ou par un mélange d'ions métalliques et non- métalliques. The semiconductors SC1 and SC2 may optionally be doped with one or more ions chosen from metal ions, such as, for example, ions of V, Ni, Cr, Mo, Fe, Sn, Mn, Co, Re, Nb, Sb. , La, Ce, Ta, Ti, non-metallic ions, such as, for example, C, N, S, F, P, or a mixture of metallic and non-metallic ions.
Selon une autre variante, les semi-conducteurs SC1 et SC2 peuvent être sensibilisés en surface avec toutes molécules organiques susceptibles d'absorber des photons. Les semi-conducteurs SC1 et SC2 peuvent se présenter respectivement sous différentes formes (poudre nanométrique, nanoobjets comportant ou non des cavités,...) ou mises en formes (films, monolithe, billes de taille micrométrique ou millimétrique, ...).  According to another variant, the semiconductors SC1 and SC2 may be surface-sensitized with any organic molecules capable of absorbing photons. The semiconductors SC1 and SC2 can be respectively in different forms (nanometric powder, nanoobjects with or without cavities, ...) or shaped (films, monolith, beads of micrometric or millimeter size, ...).
La teneur respective des semi-conducteurs SC1 ou SC2 est généralement comprise entre 0,01 et 50 % en poids, de préférence comprise entre 0,5 et 20% en poids par rapport au poids total du photocatalyseur, étant entendu que la somme des teneurs respectives des semi-conducteurs SC1 ou SC2 et des particules comportant un ou plusieurs élément(s) M à l'état métallique présente 100 % du photocatalyseurs lorsqu'il est constitué des ces 3 composantes. The respective content of semiconductors SC1 or SC2 is generally between 0.01 and 50% by weight, preferably between 0.5 and 20% by weight relative to the total weight of the photocatalyst, it being understood that the sum of the contents respective semiconductors SC1 or SC2 and particles having one or several element (s) M in the metallic state has 100% of photocatalysts when it consists of these 3 components.
Le photocatalyseur comporte également des particules comportant un ou plusieurs élément(s) M à l'état métallique choisis parmi un élément des groupes IVB, VB, VIB, VIIB, VIIIB, IB, MB, NIA, IVA et VA de la classification périodique des éléments. Lesdites particules comportant un ou plusieurs élément(s) M sont en contact direct avec ledit semi-conducteur SC1 et SC2 respectivement. Lesdites particules peuvent être composés d'un seul élément à l'état métallique ou de plusieurs éléments à l'état métallique pouvant formés un alliage. The photocatalyst also comprises particles comprising one or more element (s) M in the metallic state chosen from an element of groups IVB, VB, VIB, VIIB, VIIIB, IB, MB, NIA, IVA and VA of the periodic table. elements. Said particles comprising one or more element (s) M are in direct contact with said semiconductor SC1 and SC2 respectively. Said particles can be composed of a single element in the metallic state or of several elements in the metallic state that can form an alloy.
On entend par « élément à l'état métallique » un élément appartenant à la famille des métaux, ledit élément étant au degré d'oxydation zéro (et donc sous forme de métal). De préférence, le ou les éléments M à l'état métallique sont choisis parmi un élément métallique des groupes VIIB, VIIIB, IB et MB de la classification périodique des éléments, et de manière particulièrement préférée, parmi le platine, le palladium, l'or, le nickel, le cobalt, le ruthénium, l'argent, le cuivre, le rhénium ou le rhodium. Lesdites particules comportant un ou plusieurs élément(s) M à l'état métallique se présentent préférentiellement sous la forme de particules de tailles comprises entre 0,5 nm et 1000 nm, de manière très préférée entre 0,5 nm et 100 nm.  The term "element in the metallic state" means an element belonging to the family of metals, said element being at the zero oxidation state (and therefore in the form of metal). Preferably, the element or elements M in the metallic state are chosen from a metal element of groups VIIB, VIIIB, IB and MB of the periodic table of elements, and particularly preferably from platinum, palladium, gold, nickel, cobalt, ruthenium, silver, copper, rhenium or rhodium. Said particles comprising one or more element (s) M in the metallic state are preferably in the form of particles of sizes between 0.5 nm and 1000 nm, very preferably between 0.5 nm and 100 nm.
La teneur en élément(s) M à l'état métallique est comprise entre 0,001 et 20% en poids, de manière préférée comprise entre 0,01 et 10% en poids par rapport au poids total du phtocatalyseur. The content of element (s) M in the metallic state is between 0.001 and 20% by weight, preferably between 0.01 and 10% by weight relative to the total weight of the phtocatalyst.
Le photocatalyseur utilisé dans le procédé selon l'invention peut se présenter sous différentes formes (poudre nanométrique, nanoobjets comportant ou non des cavités,...) ou mises en formes (films, monolithe, billes de taille micrométrique ou millimétrique,...). Le photocatalyseur se présente avantageusement sous forme de poudre nanométrique. De préférence, le photocatalyseur comporte un support composé d'un semiconducteur SC1 contenant à sa surface des particules de type cœur-couche, ledit cœur étant constitué d'un ou plusieurs desdits élément(s) M à l'état métallique, ladite couche étant constituée d'un semi-conducteur SC2. De manière particulièrement préférée, le photocatalyseur est constitué d'un support composé d'un semi-conducteur SC1 contenant à sa surface des particules de type cœur-couche, ledit cœur étant constitué d'un ou plusieurs desdits élément(s) M à l'état métallique, ladite couche étant constituée d'un semi-conducteur SC2. The photocatalyst used in the process according to the invention may be in various forms (nanometric powder, nanoobjects with or without cavities, etc.) or shaped (films, monolith, beads of micrometric or millimetric size, etc. ). The photocatalyst is advantageously in the form of a nanometric powder. Preferably, the photocatalyst comprises a support composed of a semiconductor SC1 containing on its surface core-layer type particles, said core consisting of one or more of said element (s) M in the metallic state, said layer being consisting of a semiconductor SC2. Particularly preferably, the photocatalyst consists of a support composed of a semiconductor SC1 containing on its surface core-layer type particles, said core consisting of one or more of said element (s) M to metallic state, said layer consisting of a semiconductor SC2.
Selon un mode encore plus préféré, le photocatalyseur utilisé selon le procédé de l'invention comporte, et est de préférence constitué d'un support composé d'un semiconducteur SC1 choisi parmi le ΤΊΟ2, le ZnO, le WO3, le Fe2O3 et le ZnFe2O4, contenant à sa surface des particules de type cœur-couche, ledit cœur étant constitué d'un ou plusieurs élément(s) M à l'état métallique choisi parmi le platine, le palladium, l'or, le nickel, le cobalt, le ruthénium, l'argent, le cuivre, le rhénium ou le rhodium, ladite couche étant constituée d'un semi-conducteur SC2 choisi parmi le Cu2O, le Ce2O3, l'ln2O3, le SiC. le ZnS et l'ln2S3. According to an even more preferred embodiment, the photocatalyst used in the method of the invention comprises, and preferably consists of a support made of a semiconductor selected from the SC1 ΤΊΟ2, ZnO, WO 3, Fe 2 O 3 and ZnFe 2 O 4 , containing on its surface core-layer type particles, said core consisting of one or more element (s) M in the metallic state chosen from platinum, palladium, gold , nickel, cobalt, ruthenium, silver, copper, rhenium or rhodium, said layer consisting of a semiconductor SC2 selected from Cu 2 O, Ce 2 O 3 , ln 2 O 3 , SiC. ZnS and ln 2 S 3 .
Le procédé de préparation du photocatalyseur peut être n'importe quel procédé de préparation connu de l'homme du métier et adapté au photocatalyseur souhaité. De manière préférée, le photocatalyseur est préparé par photodépositions successives ou par dépôt-précipitation sous irradiation. Ces procédés de préparation sont connus dans l'état de la technique. The process for preparing the photocatalyst can be any preparation method known to those skilled in the art and adapted to the desired photocatalyst. In a preferred manner, the photocatalyst is prepared by successive photodepositions or by deposition-precipitation under irradiation. These preparation methods are known in the state of the art.
Selon l'étape b) du procédé selon l'invention, on irradie le photocatalyseur par au moins une source d'irradiation produisant au moins une longueur d'onde inférieure à la largeur de bande interdite dudit photocatalyseur de manière à réduire le dioxyde de carbone et oxyder le composé sacrificiel en présence dudit photocatalyseur activé par ladite source d'irradiation, de manière à produire un effluent contenant au moins en partie des molécules carbonées en C1 ou plus, différentes du CO2. According to step b) of the process according to the invention, the photocatalyst is irradiated with at least one irradiation source producing at least one wavelength less than the band gap width of said photocatalyst so as to reduce carbon dioxide. and oxidizing the sacrificial compound in the presence of said photocatalyst activated by said irradiation source, so as to produce an effluent containing at least in part carbonaceous C1 molecules or more, different from CO 2 .
La photocatalyse repose sur le principe d'activation d'un semi-conducteur ou d'un ensemble de semi-conducteurs tel que le photocatalyseur utilisé dans le procédé selon l'invention, à l'aide de l'énergie apportée par l'irradiation. La photocatalyse peut être définie comme l'absorption d'un photon, dont l'énergie est supérieure à la largeur de bande interdite ou "bandgap" selon la terminologie anglo-saxonne entre la bande de valence et la bande de conduction, qui induit la formation d'une paire électron-trou dans le semi-conducteur. On a donc l'excitation d'un électron au niveau de la bande de conduction et la formation d'un trou sur la bande de valence. Cette paire électron- trou va permettre la formation de radicaux libres qui vont soit réagir avec des composés présents dans le milieu ou alors se recombiner suivant divers mécanismes. Chaque semi-conducteur possède une différence d'énergie entre sa bande de conduction et sa bande de valence, ou "bandgap", qui lui est propre. Photocatalysis is based on the principle of activating a semiconductor or a set of semiconductors such as the photocatalyst used in the process according to the invention, using the energy provided by the irradiation . Photocatalysis can be defined as the absorption of a photon whose energy is greater than the forbidden bandgap or "bandgap" according to the English terminology between the valence band and the conduction band, which induces the forming an electron-hole pair in the semiconductor. We therefore have the excitation of an electron at the level of the conduction band and the formation of a hole on the valence band. This electron-hole pair will allow the formation of free radicals that will either react with compounds present in the medium or then recombine according to various mechanisms. Each semiconductor has a difference in energy between its conduction band and its valence band, or "bandgap", which is its own.
Un photocatalyseur composé d'un ou plusieurs semi-conducteurs peut être activé par l'absorption d'au moins un photon. Les photons absorbables sont ceux dont l'énergie est supérieure à la largeur de bande interdite, au "bandgap", des semi-conducteurs. Autrement dit, les photocatalyseurs sont activables par au moins un photon d'une longueur d'onde correspondant à l'énergie associée aux largeurs de bande interdite des semiconducteurs constituant le photocatalyseur ou d'une longueur d'onde inférieure. On calcule la longueur d'onde maximale absorbable par un semiconducteur à l'aide de l'équation suivante : A photocatalyst composed of one or more semiconductors can be activated by the absorption of at least one photon. Absorbable photons are those whose energy is greater than bandgap, semiconductor. In other words, the photocatalysts can be activated by at least one photon of a wavelength corresponding to the energy associated with the bandgap widths of the semiconductors constituting the photocatalyst or of a lower wavelength. The maximum wavelength absorbable by a semiconductor is calculated using the following equation:
- _ h x c - _ h x c
max , -,  max -
Avec Amax la longueur l'onde maximale absorbable par un semiconducteur (en m), h la constante de Planck (4,13433559.10"15 eV.s), c la vitesse de la lumière dans le vide (299 792 458 m. s"1) et Eg la largeur de bande interdite ou "bandgap" du semiconducteur (en eV). With A max, the maximum wavelength absorbable by a semiconductor (in m), h the Planck constant (4,13433559.10 "15 eV.s), c the speed of light in a vacuum (299,792,458 m. "1 ) and Eg the bandgap or bandgap of the semiconductor (in eV).
Toute source d'irradiation émettant au moins une longueur d'onde adaptée à l'activation dudit photocatalyseur c'est-à-dire absorbable par le photocatalyseur peut être utilisée selon l'invention. On peut par exemple utiliser l'irradiation solaire naturelle ou une source d'irradiation artificielle de type laser, Hg, lampe à incandescence, tube fluorescent, plasma ou diode électroluminescente (DEL, ou LED en anglais pour Light-Emitting Diode). De manière préférée, la source d'irradiation est l'irradiation solaire. Any irradiation source emitting at least one wavelength suitable for activating said photocatalyst, that is to say absorbable by the photocatalyst can be used according to the invention. For example, it is possible to use natural solar irradiation or an artificial irradiation source of the laser, Hg, incandescent lamp, fluorescent tube, plasma or light emitting diode (LED) type (LED or Light-Emitting Diode). Preferably, the irradiation source is solar irradiation.
La source d'irradiation produit un rayonnement dont au moins une partie des longueurs d'onde est inférieure à la longueur d'onde maximale absorbable (Amax) par les semi-conducteurs constitutifs du photocatalyseur selon l'invention. Lorsque la source d'irradiation est l'irradiation solaire, elle émet généralement dans le spectre ultra-violet, visible et infra-rouge, c'est-à-dire elle émet une gamme de longueur d'onde de 280 nm à 2500 nm environ (selon la norme ASTM G173-03). De préférence, la source émet à au moins une gamme de longueur d'onde supérieure à 280 nm, de manière très préférée de 315 nm à 800 nm, ce qui inclut le spectre UV et/ou le spectre visible. The irradiation source produces a radiation of which at least a portion of the wavelengths is less than the maximum absorbable wavelength (A max ) by the constituent semiconductors of the photocatalyst according to the invention. When the irradiation source is solar irradiation, it generally emits in the ultraviolet spectrum, visible and infra-red, that is to say it emits a wavelength range of 280 nm to 2500 nm about (according to ASTM G173-03). Preferably, the source emits at least one wavelength range greater than 280 nm, very preferably 315 nm to 800 nm, which includes the UV spectrum and / or the visible spectrum.
La source d'irradiation fournit un flux de photons qui irradie le milieu réactionnel contenant le photocatalyseur. L'interface entre le milieu réactionnel et la source lumineuse varie en fonction des applications et de la nature de la source lumineuse. Dans un mode préféré lorsqu'il s'agit d'irradiation solaire, la source d'irradiation est localisée à l'extérieur du réacteur et l'interface entre les deux peut être une fenêtre optique en pyrex, en quartz, en verre organique ou toute autre interface permettant aux photons absorbables par le photocatalyseur selon l'invention de diffuser du milieu extérieur au sein du réacteur.  The irradiation source provides a photon flux that irradiates the reaction medium containing the photocatalyst. The interface between the reaction medium and the light source varies depending on the applications and the nature of the light source. In a preferred mode when it is solar irradiation, the irradiation source is located outside the reactor and the interface between the two may be an optical window pyrex, quartz, organic glass or any other interface allowing photons absorbable by the photocatalyst according to the invention to diffuse external medium within the reactor.
La réalisation de la réduction photocatalytique du dioxyde de carbone est conditionnée par la fourniture de photons adaptés au système photocatalytique pour la réaction envisagée et de ce fait n'est pas limitée à une gamme de pression ou de température spécifique en dehors de celles permettant d'assurer la stabilité du ou des produit(s). La gamme de température employée pour la réduction photocatalytique de la charge contenant le dioxyde de carbone est généralement de -10°C à + 200°C, de manière préférée de 0 à 150°C, et de manière très préférée de 0 et 50 °C. La gamme de pression employée pour la réduction photocatalytique de la charge contenant le dioxyde de carbone est généralement de 0,01 MPa à 70 MPa (0,1 à 700 bar), de manière préférée de 0,1 MPa à 2 MPa (1 à 20 bar). The realization of the photocatalytic reduction of carbon dioxide is conditioned by the provision of photons adapted to the photocatalytic system for the reaction envisaged and therefore is not limited to a specific pressure or temperature range apart from those allowing ensure the stability of the product (s). The temperature range employed for the photocatalytic reduction of the carbon dioxide containing feedstock is generally -10 ° C to + 200 ° C, more preferably 0 to 150 ° C, and most preferably 0 to 50 ° C. vs. The pressure range employed for the photocatalytic reduction of the carbon dioxide containing feedstock is generally from 0.01 MPa to 70 MPa (0.1 to 700 bar), more preferably from 0.1 MPa to 2 MPa (1 to 20 bar).
L'effluent obtenu après la réaction de réduction photocatalytique du dioxyde de carbone contient d'une part au moins une molécule en C1 ou plus, différente du dioxyde de carbone issue de la réaction et d'autre part de la charge non réagie, ainsi que l'éventuel fluide diluant, mais aussi des produits de réactions parallèles tel que par exemple le dihydrogène résultant de la réduction photocatalytique d'H20 lorsque ce composé est utilisé en tant que composé sacrificiel. The effluent obtained after the photocatalytic reduction reaction of the carbon dioxide contains on the one hand at least one molecule at C1 or more, different from the carbon dioxide resulting from the reaction and secondly from the unreacted charge, as well as the possible diluent fluid, but also products of parallel reactions such as for example the dihydrogen resulting from the photocatalytic reduction of H 2 0 when this compound is used as a sacrificial compound.
Les exemples suivants illustrent l'invention sans en limiter la portée. EXEMPLES The following examples illustrate the invention without limiting its scope. EXAMPLES
Exemple 1 : Solide A (non-conforme à l'invention) Ti02 Example 1: Solid A (not in accordance with the invention) TiO 2
Le photocatalyseur A est un semi-conducteur à base de Ti02 commercial (Aeroxide® P25, Aldrich™, pureté > 99,5%). La granulométrie du photocatalyseur est de 21 nm et la surface spécifique mesurée par méthode BET est égale à 52 m2/g. A photocatalyst is a semiconductor-based shopping Ti0 2 (Aeroxide ® P25, Aldrich ™, purity> 99.5%). The particle size of the photocatalyst is 21 nm and the specific surface area measured by BET method is equal to 52 m 2 / g.
Exemple 2 : Solide B (non-conforme à l'invention) Pt/Ti02 Example 2: Solid B (not in accordance with the invention) Pt / TiO 2
0,0712 g de H2PtCI6,6H20 (37,5% en masse de métal) est inséré dans 500 ml d'eau distillée. 50 ml de cette solution sont prélevés et insérés dans un réacteur double enveloppe en verre. 3 ml de méthanol puis 250 mg de Ti02 (P25, Degussa™) sont alors ajoutés sous agitation pour former une suspension. 0.0712 g of H 2 PtCl 6 , 6H 2 O (37.5% by weight of metal) is added to 500 ml of distilled water. 50 ml of this solution are taken and inserted into a double jacketed glass reactor. 3 ml of methanol then 250 mg of TiO 2 (P25, Degussa ™) are then added with stirring to form a suspension.
Le mélange est alors laissé sous agitation et sous rayonnement UV pendant deux heures. La lampe utilisée pour fournir le rayonnement UV est une lampe HPK™ à vapeur de mercure de 125W.  The mixture is then left stirring and under UV radiation for two hours. The lamp used to provide UV radiation is a 125W mercury vapor HPK ™ lamp.
Le mélange est ensuite centrifugé pendant 10 minutes à 3000 tours par minute afin de récupérer le solide. Deux lavages à l'eau sont ensuite effectués, chacun des lavages étant suivi d'une centrifugation. La poudre récupérée est enfin placée dans une étuve à 70°C pendant 24 heures. The mixture is then centrifuged for 10 minutes at 3000 rpm to recover the solid. Two washings with water are then carried out, each washing being followed by centrifugation. The recovered powder is finally placed in an oven at 70 ° C. for 24 hours.
On obtient alors le solide B Pt/TiO2. La teneur en élément Pt est mesurée par spectrométrie d'émission atomique à source plasma (ou inductively coupled plasma atomic émission spectroscopy "ICP-AES " selon la terminologie anglo-saxonne) à 0,93 % en masse. The solid B Pt / TiO 2 is then obtained. The content of Pt element is measured by plasma emission atomic emission spectrometry (or inductively coupled plasma atomic emission spectroscopy "ICP-AES" according to the English terminology) at 0.93% by mass.
Exemple 3 : Solide C (conforme à l'invention) Cu20/Pt/Ti02 Example 3: Solid C (in accordance with the invention) Cu 2 O / Pt / TiO 2
0,0712 g de H2PtCI6,6H2O (37,5% en masse de métal, Aldrich™) est inséré dans 500 ml d'eau distillée. 50 ml de cette solution sont prélevés et insérés dans un réacteur double enveloppe en verre. 3 ml de méthanol puis 250 mg de TiO2 (P25, Degussa™) sont alors ajoutés sous agitation pour former une suspension. 0.0712 g of H 2 PtCl 6 , 6H 2 O (37.5% by weight of metal, Aldrich ™) is inserted into 500 ml of distilled water. 50 ml of this solution are taken and inserted into a double jacketed glass reactor. 3 ml of methanol then 250 mg of TiO 2 (P25, Degussa ™) are then added with stirring to form a suspension.
Le mélange est alors laissé sous agitation et sous rayonnement UV pendant deux heures. La lampe utilisée pour fournir le rayonnement UV est une lampe HPK™ à vapeur de mercure de 125 W. The mixture is then left stirring and under UV radiation for two hours. The lamp used to provide UV radiation is a 125W mercury vapor HPK ™ lamp.
Le mélange est ensuite centrifugé pendant 10 minutes à 3000 tours par minute afin de récupérer le solide. Deux lavages à l'eau sont ensuite effectués, chacun des lavages étant suivi d'une centrifugation. La poudre récupérée est enfin placée dans une étuve à 70°C pendant 24 heures. The mixture is then centrifuged for 10 minutes at 3000 rpm to recover the solid. Two washes with water are then carried out, each of the washes followed by centrifugation. The recovered powder is finally placed in an oven at 70 ° C. for 24 hours.
On obtient alors un solide C Pt/TiO2. La teneur en élément Pt est mesurée par ICP- AES 0,93 % en masse. Une solution de Cu(NO3)2 est préparée en dissolvant 0,125 g de Cu(NO3)2, 3H2O (Sigma-AIdrich™, 98%) dans 50 ml d'un mélange 50/50 isopropanol/H2O, soit une concentration en Cu2+ de 10,4 mmol/L. A solid C Pt / TiO 2 is then obtained. The content of Pt element is measured by ICP-AES 0.93% by mass. A solution of Cu (NO 3 ) 2 is prepared by dissolving 0.125 g of Cu (NO 3 ) 2, 3H 2 O (Sigma-Aldrich ™, 98%) in 50 ml of a 50/50 isopropanol / H 2 O mixture. a concentration of Cu 2+ of 10.4 mmol / L.
Dans le réacteur, ont été introduits : 0,20 g du solide C, 25 ml d'eau distillée et enfin 25 ml d'isopropanol. Le système est purgé à l'obscurité sous un flux d'argon (100 ml/min) durant 2h. Le réacteur est thermostaté à 25°C tout au long de la synthèse. Le flux d'argon est ensuite ralenti à 30 ml/min et l'irradiation du mélange réactionnel démarre. La lampe utilisée pour fournir le rayonnement UV est une lampe HPK™ à vapeur de mercure de 125 W. Puis, les 50 ml de solution de nitrate de cuivre sont ajoutées au mélange. Le mélange est laissé 10 heures sous agitation et irradiation. Le mélange est ensuite centrifugé pendant 10 minutes à 3000 tours par minute afin de récupérer le solide. Deux lavages à l'eau sont ensuite effectués, chacun des lavages étant suivi d'une centrifugation. La poudre récupérée est enfin placée dans une étuve à 70°C pendant 24 heures.  In the reactor were introduced: 0.20 g of solid C, 25 ml of distilled water and finally 25 ml of isopropanol. The system is purged in the dark under a stream of argon (100 ml / min) for 2 hours. The reactor is thermostated at 25 ° C. throughout the synthesis. The argon flow is then slowed down to 30 ml / min and the irradiation of the reaction mixture starts. The lamp used to provide the UV radiation is a 125 W mercury vapor lamp HPK ™. Then the 50 ml of copper nitrate solution is added to the mixture. The mixture is left stirring for 10 hours and irradiation. The mixture is then centrifuged for 10 minutes at 3000 rpm to recover the solid. Two washings with water are then carried out, each washing being followed by centrifugation. The recovered powder is finally placed in an oven at 70 ° C. for 24 hours.
On obtient alors le solide C Cu2O/Pt/TiO2. La teneur en élément Cu est mesurée par ICP-AES à 2,2 % en masse. Par mesure XPS (X-Ray Photoelectron Spectrometry selon la terminologie anglo-saxonne), on mesure un recouvrement des particules de platine supérieur à 77% et des phases d'oxydes de cuivre à 67% en Cu2O et 33% en CuO. Par microscopie électronique à transmission, on mesure une épaisseur de couche moyenne d'oxyde de cuivre de 5 nm autour des particules métalliques. The solid C Cu 2 O / Pt / TiO 2 is then obtained. The content of Cu element is measured by ICP-AES at 2.2% by mass. By measurement XPS (X-Ray Photoelectron Spectrometry according to the English terminology), a platinum particle coating greater than 77% and copper oxide phases were measured at 67% Cu 2 O and 33% CuO. Transmission electron microscopy measured a 5 nm thick copper oxide layer thickness around the metal particles.
Exemple 4 : Solide D (conforme à l'invention) Cu20/Au/Ti02 Example 4: Solid D (in accordance with the invention) Cu 2 O / Au / TiO 2
0,0470 g de HAuCI4,xH2O (52% en masse de métal, Aldrich™) est inséré dans 500 mL d'eau distillée. 50 mL de cette solution sont prélevés et insérés dans un réacteur double enveloppe en verre. 3 mL de méthanol puis 250 mg de TiO2 (P25, Degussa™) sont alors ajoutés sous agitation pour former une suspension. 0.0470 g of HAuCl 4 , xH 2 O (52% by mass of metal, Aldrich ™) is inserted into 500 ml of distilled water. 50 ml of this solution are taken and inserted into a double jacketed glass reactor. 3 ml of methanol then 250 mg of TiO 2 (P25, Degussa ™) are then added with stirring to form a suspension.
Le mélange est alors laissé sous agitation et sous rayonnement UV pendant deux heures. La lampe utilisée pour fournir le rayonnement UV est une lampe HPK™ à vapeur de mercure de 125W. Le mélange est ensuite centrifugé pendant 10 minutes à 3000 tours par minute afin de récupérer le solide. Deux lavages à l'eau sont ensuite effectués, chacun des lavages étant suivi d'une centrifugation. La poudre récupérée est enfin placée dans une étuve à 70°C pendant 24 heures. The mixture is then left stirring and under UV radiation for two hours. The lamp used to provide UV radiation is a 125W mercury vapor HPK ™ lamp. The mixture is then centrifuged for 10 minutes at 3000 rpm to recover the solid. Two washings with water are then carried out, each washing being followed by centrifugation. The recovered powder is finally placed in an oven at 70 ° C. for 24 hours.
On obtient alors un solide D' Au/TiO2. La teneur en élément Au est mesurée par ICP- AES à 0,96 % en masse. An Au / TiO 2 solid is then obtained. The content of element Au is measured by ICP-AES at 0.96% by mass.
Une solution de Cu(NO3)2 est préparée en dissolvant 0,125 g de Cu(NO3)2, 3H2O (Sigma-AIdrich™, 98%) dans 50 ml d'un mélange 50/50 isopropanol/H2O, soit une concentration en Cu2+ de 10,4 mmol/L. A solution of Cu (NO 3 ) 2 is prepared by dissolving 0.125 g of Cu (NO 3 ) 2, 3H 2 O (Sigma-Aldrich ™, 98%) in 50 ml of a 50/50 isopropanol / H 2 O mixture. a concentration of Cu 2+ of 10.4 mmol / L.
Dans le réacteur, ont été introduits : 0,20 g du solide D', 25 ml d'eau distillée et enfin 25 ml d'isopropanol. Le système est purgé à l'obscurité sous un flux d'argon (100 ml/min) durant 2h. Le réacteur est thermostaté à 25°C tout au long de la synthèse. Le flux d'argon est ensuite ralenti à 30 ml/min et l'irradiation du mélange réactionnel démarre. La lampe utilisée pour fournir le rayonnement UV est une lampe HPK™ à vapeur de mercure de 125W. Puis, les 50 ml de solution de nitrate de cuivre sont ajoutées au mélange. Le mélange est laissé 10 heures sous agitation et irradiation. Le mélange est ensuite centrifugé pendant 10 minutes à 3000 tours par minute afin de récupérer le solide. Deux lavages à l'eau sont ensuite effectués, chacun des lavages étant suivi d'une centrifugation. La poudre récupérée est enfin placée dans une étuve à 70°C pendant 24 heures. In the reactor were introduced: 0.20 g of the solid D ', 25 ml of distilled water and finally 25 ml of isopropanol. The system is purged in the dark under a stream of argon (100 ml / min) for 2 hours. The reactor is thermostated at 25 ° C. throughout the synthesis. The argon flow is then slowed down to 30 ml / min and the irradiation of the reaction mixture starts. The lamp used to provide UV radiation is a 125W mercury vapor HPK ™ lamp. Then, the 50 ml of copper nitrate solution is added to the mixture. The mixture is left stirring for 10 hours and irradiation. The mixture is then centrifuged for 10 minutes at 3000 rpm to recover the solid. Two washings with water are then carried out, each washing being followed by centrifugation. The recovered powder is finally placed in an oven at 70 ° C. for 24 hours.
On obtient alors le solide D Cu2O/Au/TiO2. La teneur en élément Cu est mesurée par ICP-AES à 2,3 % en masse. Par mesure XPS, on mesure un recouvrement des particules de platine supérieur à 79% et des phases d'oxydes de cuivre à 76% en Cu2O et 24% en CuO. Par microscopie électronique à transmission, on mesure une épaisseur de couche moyenne d'oxyde de cuivre de 7 nm autour des particules métalliques. The solid D Cu 2 O / Au / TiO 2 is then obtained. The content of Cu element is measured by ICP-AES at 2.3% by weight. By XPS measurement, an overlap of platinum particles greater than 79% and phases of copper oxides at 76% Cu 2 O and 24% CuO are measured. Transmission electron microscopy measured a mean copper oxide layer thickness of 7 nm around the metal particles.
Exemple 5 : Solide E (conforme à l'invention) Cu20/Pt/ZnO Example 5: Solid E (in accordance with the invention) Cu 2 O / Pt / ZnO
0,0714 g de H2PtCI6,6H2O (37,5% en masse de métal, Aldrich™) est inséré dans 500 ml d'eau distillée. 50 ml de cette solution sont prélevés et insérés dans un réacteur double enveloppe en verre. 3 ml de méthanol puis 250 mg de ZnO (Lotus Synthesis™, surface spécifique 50 m2/g) sont alors ajoutés sous agitation pour former une suspension. Le mélange est alors laissé sous agitation et sous rayonnement UV pendant six heures. La lampe utilisée pour fournir le rayonnement UV est une lampe HPK™ à vapeur de mercure de 125 W. 0.0714 g of H 2 PtCl 6 , 6H 2 O (37.5% by weight of metal, Aldrich ™) is inserted into 500 ml of distilled water. 50 ml of this solution are taken and inserted into a double jacketed glass reactor. 3 ml of methanol then 250 mg of ZnO (Lotus Synthesis ™, surface area 50 m 2 / g) are then added with stirring to form a suspension. The mixture is then left stirring and under UV radiation for six hours. The lamp used to provide UV radiation is a 125W mercury vapor HPK ™ lamp.
Le mélange est ensuite centrifugé pendant 10 minutes à 3000 tours par minute afin de récupérer le solide. Deux lavages à l'eau sont ensuite effectués, chacun des lavages étant suivi d'une centrifugation. La poudre récupérée est enfin placée dans une étuve à 70°C pendant 24 heures.  The mixture is then centrifuged for 10 minutes at 3000 rpm to recover the solid. Two washings with water are then carried out, each washing being followed by centrifugation. The recovered powder is finally placed in an oven at 70 ° C. for 24 hours.
On obtient alors un solide E' Pt/ZnO. La teneur en élément Pt est mesurée par ICP- AES à 0,77 % en masse. Une solution de Cu(NO3)2 est préparée en dissolvant 0,125 g de Cu(NO3)2, 3H2O (Sigma-AIdrich™, 98%) dans 50 ml d'un mélange 50/50 isopropanol/H2O, soit une concentration en Cu2+ de 10,4 mmol/L. An E 'Pt / ZnO solid is then obtained. The content of Pt element is measured by ICP-AES at 0.77% by weight. A solution of Cu (NO 3 ) 2 is prepared by dissolving 0.125 g of Cu (NO 3 ) 2, 3H 2 O (Sigma-Aldrich ™, 98%) in 50 ml of a 50/50 isopropanol / H 2 O mixture. a concentration of Cu 2+ of 10.4 mmol / L.
Dans le réacteur, ont été introduits : 0,20 g du solide E', 25 ml d'eau distillée et enfin 25 ml d'isopropanol. Le système est purgé à l'obscurité sous un flux d'argon (100 ml/min) durant 2h. Le réacteur est thermostaté à 25°C tout au long de la synthèse. Le flux d'argon est ensuite ralenti à 30 ml/min et l'irradiation du mélange réactionnel démarre. La lampe utilisée pour fournir le rayonnement UV est une lampe HPK™ à vapeur de mercure de 125 W. Puis, les 50 ml de solution de nitrate de cuivre sont ajoutées au mélange. Le mélange est laissé 10 heures sous agitation et irradiation. Le mélange est ensuite centrifugé pendant 10 minutes à 3000 tours par minute afin de récupérer le solide. Deux lavages à l'eau sont ensuite effectués, chacun des lavages étant suivi d'une centrifugation. La poudre récupérée est enfin placée dans une étuve à 70°C pendant 24 heures.  In the reactor were introduced: 0.20 g of the solid E ', 25 ml of distilled water and finally 25 ml of isopropanol. The system is purged in the dark under a stream of argon (100 ml / min) for 2 hours. The reactor is thermostated at 25 ° C. throughout the synthesis. The argon flow is then slowed down to 30 ml / min and the irradiation of the reaction mixture starts. The lamp used to provide the UV radiation is a 125 W mercury vapor lamp HPK ™. Then the 50 ml of copper nitrate solution is added to the mixture. The mixture is left stirring for 10 hours and irradiation. The mixture is then centrifuged for 10 minutes at 3000 rpm to recover the solid. Two washings with water are then carried out, each washing being followed by centrifugation. The recovered powder is finally placed in an oven at 70 ° C. for 24 hours.
On obtient alors le solide E Cu2O/Pt/ZnO. La teneur en élément Cu est mesurée par ICP-AES à 1 ,9 % en masse. Par mesure XPS, on mesure un recouvrement des particules de platine supérieur à 83% et des phases d'oxydes de cuivre à 79% en Cu2O et 21 % en CuO. Par microscopie électronique à transmission, on mesure une épaisseur de couche moyenne d'oxyde de cuivre de 4 nm autour des particules métalliques. The solid E Cu 2 O / Pt / ZnO is then obtained. The content of Cu element is measured by ICP-AES at 1, 9% by mass. By XPS measurement, a recovery of platinum particles greater than 83% and copper oxide phases 79% Cu 2 O and 21% CuO. Transmission electron microscopy measured an average copper oxide layer thickness of 4 nm around the metal particles.
Exemple 6 : Solide F (conforme à l'invention) Ce203/Pt/Ti02 Example 6: Solid F (in accordance with the invention) Ce 2 O 3 / Pt / TiO 2
0,0712 g de H2PtCI6,6H2O (37,5% en masse de métal) est inséré dans 500 ml d'eau distillée. 50 ml de cette solution sont prélevés et insérés dans un réacteur double enveloppe en verre. 3 ml de méthanol puis 250 mg de Ti02 (P25, Degussa™) sont alors ajoutés sous agitation pour former une suspension. 0.0712 g of H 2 PtCl 6 , 6H 2 O (37.5% by weight of metal) is added to 500 ml of distilled water. 50 ml of this solution are taken and inserted in a double reactor glass envelope. 3 ml of methanol then 250 mg of TiO 2 (P25, Degussa ™) are then added with stirring to form a suspension.
Le mélange est alors laissé sous agitation et sous rayonnement UV pendant deux heures. La lampe utilisée pour fournir le rayonnement UV est une lampe HPK™ à vapeur de mercure de 125W.  The mixture is then left stirring and under UV radiation for two hours. The lamp used to provide UV radiation is a 125W mercury vapor HPK ™ lamp.
Le mélange est ensuite centrifugé pendant 10 minutes à 3000 tours par minute afin de récupérer le solide. Deux lavages à l'eau sont ensuite effectués, chacun des lavages étant suivi d'une centrifugation. La poudre récupérée est enfin placée dans une étuve à 70°C pendant 24 heures.  The mixture is then centrifuged for 10 minutes at 3000 rpm to recover the solid. Two washings with water are then carried out, each washing being followed by centrifugation. The recovered powder is finally placed in an oven at 70 ° C. for 24 hours.
On obtient alors le solide F' Pt/TiO2. La teneur en élément Pt est mesurée par ICP- AES à 0,93 % en masse. The solid F 'Pt / TiO 2 is then obtained. The content of Pt element is measured by ICP-AES at 0.93% by mass.
Une solution de Ce(NO3)3 est préparée en dissolvant 0,05 g de Ce(NO3)3, 6H2O (Sigma-AIdrich™, 99%) dans 50 ml d'H2O. A solution of Ce (NO 3 ) 3 is prepared by dissolving 0.05 g of Ce (NO 3 ) 3, 6H 2 O (Sigma-Aldrich ™, 99%) in 50 ml of H 2 O.
Dans le réacteur, ont été introduits : 0,10 g du solide F', 25 ml d'eau distillée et enfin 25 ml d'isopropanol. Le système est purgé à l'obscurité sous un flux d'argon (100 ml/min) durant 2h. Le réacteur est thermostaté à 25°C tout au long de la synthèse. In the reactor were introduced: 0.10 g of the solid F ', 25 ml of distilled water and finally 25 ml of isopropanol. The system is purged in the dark under a stream of argon (100 ml / min) for 2 hours. The reactor is thermostated at 25 ° C. throughout the synthesis.
Le flux d'argon est ensuite ralenti à 30 ml/min et l'irradiation du mélange réactionnel démarre. La lampe utilisée pour fournir le rayonnement UV est une lampe HPK™ à vapeur de mercure de 125 W. Puis, 5 ml de la solution de nitrate de cérium sont ajoutés au mélange. Le mélange est laissé 1 heure sous agitation et irradiation. On ajoute ensuite 1 ml d'une solution de NH3 à 30%. Le mélange est à nouveau laissé 1 heure sous agitation et irradiation. The argon flow is then slowed down to 30 ml / min and the irradiation of the reaction mixture starts. The lamp used to provide the UV radiation is a 125 W mercury vapor lamp HPK ™. Then, 5 ml of the cerium nitrate solution is added to the mixture. The mixture is left for 1 hour with stirring and irradiation. 1 ml of a 30% solution of NH 3 is then added. The mixture is again left for 1 hour with stirring and irradiation.
Le mélange est ensuite centrifugé pendant 10 minutes à 3000 tours par minute afin de récupérer le solide. Deux lavages à l'eau sont ensuite effectués, chacun des lavages étant suivi d'une centrifugation. La poudre récupérée est enfin placée dans une étuve à 70°C pendant 24 heures.  The mixture is then centrifuged for 10 minutes at 3000 rpm to recover the solid. Two washings with water are then carried out, each washing being followed by centrifugation. The recovered powder is finally placed in an oven at 70 ° C. for 24 hours.
On obtient alors le solide F Ce2O3/Pt/TiO2. La teneur en élément Ce est mesurée par ICP-AES à 1 ,7 % en masse. Par mesure XPS, on mesure un recouvrement des particules de platine supérieur à 83% et des phases d'oxydes de cérium à 74% en Ce2O3 et 26% en CeO2. Par microscopie électronique à transmission, on mesure une épaisseur de couche moyenne d'oxyde de cérium de 4 nm autour des particules métalliques. Exemple 7 : Solide G (conforme à l'invention) In203/Pt/Ti02 The solid F Ce 2 O 3 / Pt / TiO 2 is then obtained. The content of element Ce is measured by ICP-AES at 1.7% by mass. By XPS measurement, a recovery of platinum particles greater than 83% and cerium oxide phases are measured at 74% Ce 2 O 3 and 26% CeO 2 . By transmission electron microscopy, an average layer thickness of cerium oxide of 4 nm is measured around the metal particles. Example 7: Solid G (in accordance with the invention) In 2 O 3 / Pt / TiO 2
0,0712 g de H2PtCI6,6H20 (37,5% en masse de métal) est inséré dans 500 ml d'eau distillée. 50 ml de cette solution sont prélevés et insérés dans un réacteur double enveloppe en verre. 3 ml de méthanol puis 250 mg de Ti02 (P25, Degussa™) sont alors ajoutés sous agitation pour former une suspension. 0.0712 g of H 2 PtCl 6 , 6H 2 O (37.5% by weight of metal) is added to 500 ml of distilled water. 50 ml of this solution are taken and inserted into a double jacketed glass reactor. 3 ml of methanol then 250 mg of TiO 2 (P25, Degussa ™) are then added with stirring to form a suspension.
Le mélange est alors laissé sous agitation et sous rayonnement UV pendant deux heures. La lampe utilisée pour fournir le rayonnement UV est une lampe HPK™ à vapeur de mercure de 125W.  The mixture is then left stirring and under UV radiation for two hours. The lamp used to provide UV radiation is a 125W mercury vapor HPK ™ lamp.
Le mélange est ensuite centrifugé pendant 10 minutes à 3000 tours par minute afin de récupérer le solide. Deux lavages à l'eau sont ensuite effectués, chacun des lavages étant suivi d'une centrifugation. La poudre récupérée est enfin placée dans une étuve à 70°C pendant 24 heures.  The mixture is then centrifuged for 10 minutes at 3000 rpm to recover the solid. Two washings with water are then carried out, each washing being followed by centrifugation. The recovered powder is finally placed in an oven at 70 ° C. for 24 hours.
On obtient alors le solide G' Pt/TiO2. La teneur en élément Pt est mesurée par ICP- AES à 0,93 % en masse. Une solution d'ln(NO3)3 est préparée en dissolvant 0,05 g d'ln(NO3)3, xH2O (Sigma- Aldrich™, 99,9%) dans 50 ml d'H2O. The solid G 'Pt / TiO 2 is then obtained. The content of Pt element is measured by ICP-AES at 0.93% by mass. A solution of In (NO 3 ) 3 is prepared by dissolving 0.05 g of ln (NO 3 ) 3, xH 2 O (Sigma-Aldrich ™, 99.9%) in 50 ml of H 2 O.
Dans le réacteur, ont été introduits : 0,10 g du solide G', 25 ml d'eau distillée et enfin 25 ml d'isopropanol. Le système est purgé à l'obscurité sous un flux d'argon (100 ml/min) durant 2h. Le réacteur est thermostaté à 25°C tout au long de la synthèse. Le flux d'argon est ensuite ralenti à 30 ml/min et l'irradiation du mélange réactionnel démarre. La lampe utilisée pour fournir le rayonnement UV est une lampe HPK™ à vapeur de mercure de 125 W. Puis, 5 ml de la solution de nitrate d'indium sont ajoutés au mélange. Le mélange est laissé 1 heure sous agitation et irradiation. On ajoute ensuite 1 ml d'une solution de NH3 à 30%. Le mélange est à nouveau laissé 1 heure sous agitation et irradiation. In the reactor were introduced: 0.10 g of the solid G ', 25 ml of distilled water and finally 25 ml of isopropanol. The system is purged in the dark under a stream of argon (100 ml / min) for 2 hours. The reactor is thermostated at 25 ° C. throughout the synthesis. The argon flow is then slowed down to 30 ml / min and the irradiation of the reaction mixture starts. The lamp used to provide the UV radiation is a 125 W mercury vapor lamp HPK ™. Then, 5 ml of the indium nitrate solution is added to the mixture. The mixture is left for 1 hour with stirring and irradiation. 1 ml of a 30% solution of NH 3 is then added. The mixture is again left for 1 hour with stirring and irradiation.
Le mélange est ensuite centrifugé pendant 10 minutes à 3000 tours par minute afin de récupérer le solide. Deux lavages à l'eau sont ensuite effectués, chacun des lavages étant suivi d'une centrifugation. La poudre récupérée est enfin placée dans une étuve à 70°C pendant 24 heures.  The mixture is then centrifuged for 10 minutes at 3000 rpm to recover the solid. Two washings with water are then carried out, each washing being followed by centrifugation. The recovered powder is finally placed in an oven at 70 ° C. for 24 hours.
On obtient alors le solide G ln2O3/Pt/TiO2. La teneur en élément In est mesurée par ICP-AES à 1 ,9 % en masse. Par mesure XPS, on mesure un recouvrement des particules de platine supérieur à 79%. Par microscopie électronique à transmission, on mesure une épaisseur de couche moyenne d'oxyde d'indium de 5 nm autour des particules métalliques. The solid G ln 2 O 3 / Pt / TiO 2 is then obtained. The content of element In is measured by ICP-AES at 1, 9% by mass. By XPS measurement, a recovery of platinum particles greater than 79% is measured. By transmission electron microscopy, an average layer thickness of 5 nm indium oxide is measured around the metal particles.
Exemple 8 : Mise en œuvre des solides en réduction photocatalytique du C02 en phase liquide Example 8: Implementation of solids in photocatalytic reduction of C0 2 in the liquid phase
Les solides A, B ,C ,D, E, F et G sont soumis à un test de réduction photocatalytique du C02 en phase liquide dans un réacteur semi-ouvert agité en pyrex muni d'une fenêtre optique en quartz et d'une double enveloppe pour réguler la température de test. The solids A, B, C, D, E, F and G are subjected to a photocatalytic reduction test of C0 2 in the liquid phase in a semi-open stirred Pyrex reactor provided with a quartz optical window and a double jacket to regulate the test temperature.
100 mg de solide sont mis en suspension dans 60mL d'une solution aqueuse de carbonate de potassium à 0,15 mol/L. Le pH de la solution est à 9. Les tests sont réalisés à 25°C sous pression atmosphérique avec un débit d'argon de 300 ml/h pour entraîner les produits gazeux. On suit la production de gaz dihydrogène produit issu de la réduction photocatalytique indésirable de l'eau lequel est analysé toutes les 6 minutes par micro chromatographie en phase gazeuse. La réduction photocatalytique du CO2 est suivie par la production d'acide formique par prélèvements de liquide toutes les 30 minutes lesquels sont analysés par chromatographie HPLC munie d'un détecteur UV. La source d'irradiation UV-Visible est fournie par une lampe Xe-Hg (Asahi™ , MAX302™ ). La puissance d'irradiation est toujours maintenue à 100%. La durée du test est de 20 heures. 100 mg of solid are suspended in 60 ml of an aqueous solution of potassium carbonate at 0.15 mol / l. The pH of the solution is 9. The tests are carried out at 25 ° C. under atmospheric pressure with an argon flow rate of 300 ml / h to entrain the gaseous products. The production of dihydrogen gas produced from the undesirable photocatalytic reduction of water is monitored and analyzed every 6 minutes by gas chromatography. The photocatalytic reduction of CO 2 is followed by the production of formic acid by taking liquid samples every 30 minutes, which are analyzed by HPLC chromatography equipped with a UV detector. The UV-Visible irradiation source is provided by an Xe-Hg lamp (Asahi ™, MAX302 ™). The irradiation power is always maintained at 100%. The duration of the test is 20 hours.
Les activités photocatalytiques sont exprimées en μηιοΙ de dihydrogène et d'acide formique produits par heure et par gramme de photocatalyseur. Les résultats sont reportés dans le tableau 1 . Les valeurs d'activité montrent que la mise en œuvre des solides selon l'invention présente systématiquement les meilleures performances photocatalytiques et particulièrement de meilleures sélectivités vers la réduction photocatalytique de CO2. Activité Activité The photocatalytic activities are expressed in μηιοΙ of dihydrogen and formic acid produced per hour and per gram of photocatalyst. The results are reported in Table 1. The activity values show that the implementation of the solids according to the invention systematically has the best photocatalytic performance and particularly better selectivities towards the photocatalytic reduction of CO 2 . Activity Activity
Photocatalyseur  photocatalyst
initiale HCOOH initiale H2 SC1 /M/SC2 initial HCOOH initial H 2 SC1 / M / SC2
(μηΊθΙ/h/g) (μηΊθΙ/h/g) (μηΊθΙ / h / g) (μηΊθΙ / h / g)
Solide A (non-conforme) Ti02 n.d. 12 Solid A (non-compliant) Ti0 2 nd 12
Solide B (non-conforme) Pt/Ti02 n.d. 4230 Solid B (non-compliant) Pt / Ti0 2 nd 4230
Solide C (conforme) Cu20/Pt/ Ti02 207 5 Solid C (compliant) Cu 2 0 / Pt / Ti0 2 207 5
Solide D (conforme) Cu20/Au/Ti02 289 6 Solid D (compliant) Cu 2 0 / Au / Ti0 2 289 6
Solide E (conforme) Cu20/Pt/ZnO 146 2 Solid E (compliant) Cu 2 0 / Pt / ZnO 146 2
Solide F (conforme) Ce203/Pt/Ti02 102 n.d. Solid F (compliant) This 2 0 3 / Pt / Ti0 2 102 nd
Solide G (conforme) In203/Pt/Ti02 137 n.d. Solid G (compliant) In 2 0 3 / Pt / Ti0 2 137 nd
n.d. : non déterminé  n.d .: not determined
Tableau 1 : Performances des solides en activité initiale pour la production de dihydrogène ou d'acide formique à partir d'une solution aqueuse de carbonate de potassium  Table 1: Initial activity solids performances for the production of dihydrogen or formic acid from an aqueous solution of potassium carbonate
Exemple 9 : Mise en œuvre des solides en réduction photocatalytique du C02 en phase gazeuse Example 9: Implementation of solids in photocatalytic reduction of C0 2 in the gas phase
Les solides A, B, C, D, E, F et G sont soumis à un test de réduction photocatalytique du C02 en phase gazeuse dans un réacteur continu à lit traversé en acier muni d'une fenêtre optique en quartz et d'un fritté en face de la fenêtre optique sur lequel est déposé le solide photocatalytique. The solids A, B, C, D, E, F and G are subjected to a photocatalytic CO 2 gas phase reduction test in a continuous steel through-bed reactor equipped with a quartz optical window and a sintered in front of the optical window on which the photocatalytic solid is deposited.
100 mg de solide sont déposé sur le fritté. Les tests sont réalisés à température ambiante sous pression atmosphérique. Un débit d'argon de 300 ml/h et de C02 de 10 ml/h traverse un saturateur d'eau avant d'être distribué dans le réacteur. On suit la production de gaz dihydrogène produit issu de la réduction photocatalytique indésirable de l'eau entraînée dans le saturateur et de CH4 issu de la réduction du dioxyde de carbone, par une analyse de l'effluent toutes les 6 minutes par micro chromatographie en phase gazeuse. La source d'irradiation UV-Visible est fournie par une lampe Xe-Hg (Asahi™ , MAX302™ ). La puissance d'irradiation est toujours maintenue à 100%. La durée du test est de 20 heures. 100 mg of solid are deposited on the sinter. The tests are carried out at ambient temperature under atmospheric pressure. An argon flow rate of 300 ml / h and CO 2 of 10 ml / hr passes through a water saturator before being dispensed into the reactor. The production of dihydrogen gas produced from the undesirable photocatalytic reduction of the water entrained in the saturator and of CH 4 resulting from the reduction of carbon dioxide is followed by an analysis of the effluent every 6 minutes by micro-chromatography. gas phase. The UV-Visible irradiation source is provided by an Xe-Hg lamp (Asahi ™, MAX302 ™). The irradiation power is always maintained at 100%. The duration of the test is 20 hours.
Les activités photocatalytiques sont exprimées en μηιοΙ de dihydrogène et de méthane produits par heure et par gramme de photocatalyseur. Les résultats sont reportés dans le tableau 2. Les valeurs d'activité montrent que la mise en œuvre des solides selon l'invention présente systématiquement les meilleures performances photocatalytiques et particulièrement de meilleures sélectivités vers la réduction photocatalytique de C02. The photocatalytic activities are expressed in μηιοΙ of dihydrogen and methane produced per hour and per gram of photocatalyst. The results are reported in Table 2. The activity values show that the implementation of the solids according to the invention systematically has the best photocatalytic performance and particularly better selectivities towards the photocatalytic reduction of C0 2 .
n.d. : non déterminé  n.d .: not determined
Tableau 2 : Performances des solides en activité initiale pour la production de dihydrogène ou de méthane à partir d'un mélange C02 et H20 en phase gazeuse Table 2: Performances of the initial activity solids for the production of dihydrogen or methane from a CO 2 and H 2 O mixture in the gas phase

Claims

REVENDICATIONS
1 . Procédé de réduction photocatalytique du dioxyde de carbone effectué en phase liquide et/ou en phase gazeuse sous irradiation mettant en œuvre un photocatalyseur contenant un premier semi-conducteur SC1 , des particules comportant un ou plusieurs élément(s) M à l'état métallique choisis parmi un élément des groupes IVB, VB, VIB, VIIB, VIIIB, IB, MB, NIA, IVA et VA de la classification périodique des éléments, et un deuxième semi-conducteur SC2, ledit premier semi-conducteur SC1 étant en contact direct avec lesdites particules comportant un ou plusieurs élément(s) M à l'état métallique, lesdites particules étant en contact direct avec ledit deuxième semi-conducteur SC2 de telle sorte que le deuxième semi-conducteur SC2 recouvre au moins 50 % de la surface des particules comportant un ou plusieurs élément(s) M à l'état métallique, ledit procédé comprenant les étapes suivantes : a) on met en contact une charge contenant le dioxyde de carbone et au moins un composé sacrificiel avec ledit photocatalyseur, b) on irradie le photocatalyseur par au moins une source d'irradiation produisant au moins une longueur d'onde inférieure à la largeur de bande interdite dudit photocatalyseur de manière à réduire le dioxyde de carbone et oxyder le composé sacrificiel en présence dudit photocatalyseur activé par ladite source d'irradiation, de manière à produire un effluent contenant au moins en partie des molécules carbonées en C1 ou plus, différentes du C02. 1. Process for the photocatalytic reduction of carbon dioxide carried out in the liquid phase and / or in the gas phase under irradiation using a photocatalyst containing a first semiconductor SC1, particles comprising one or more selected metal element (s) M from an element of groups IVB, VB, VIB, VIIB, VIIIB, IB, MB, NIA, IVA and VA of the periodic table of elements, and a second semiconductor SC2, said first semiconductor SC1 being in direct contact with said particles comprising one or more elements M in the metallic state, said particles being in direct contact with said second semiconductor SC2 so that the second semiconductor SC2 covers at least 50% of the surface of the particles comprising one or more elements M in the metallic state, said process comprising the following steps: a) contacting a filler containing carbon dioxide and at least one sacrificial compound with said photocatalyst, b) the photocatalyst is irradiated with at least one irradiation source producing at least one wavelength less than the forbidden band width of said photocatalyst so as to reduce the carbon dioxide and oxidize the sacrificial compound in the presence of said photocatalyst activated by said irradiation source, so as to produce an effluent containing at least partly carbon molecules C1 or more, different from the C0 2.
2. Procédé selon la revendication 1 , dans lequel, lorsqu'il est effectué en phase gazeuse, le composé sacrificiel est un composé gazeux choisi parmi l'eau, l'ammoniaque, l'hydrogène, le méthane et un alcool. 2. The method of claim 1, wherein, when carried out in the gas phase, the sacrificial compound is a gaseous compound selected from water, ammonia, hydrogen, methane and an alcohol.
3. Procédé selon la revendication 1 , dans lequel, lorsqu'il est effectué en phase liquide, le composé sacrificiel est un composé liquide ou solide soluble choisi parmi l'eau, l'ammoniaque, un alcool, un aldéhyde et une aminé. The process according to claim 1, wherein when carried out in the liquid phase, the sacrificial compound is a soluble liquid or solid compound selected from water, ammonia, an alcohol, an aldehyde and an amine.
4. Procédé selon l'une des revendications 1 à 3, dans lequel un fluide diluant est présent dans les étapes a) et/ou b). 4. Method according to one of claims 1 to 3, wherein a diluent fluid is present in steps a) and / or b).
5. Procédé selon l'une des revendications 1 à 4, dans lequel la source d'irradiation est une source d'irradiation artificielle ou naturelle. 5. Method according to one of claims 1 to 4, wherein the source of irradiation is a source of artificial or natural irradiation.
6. Procédé selon l'une des revendications 1 à 5, dans lequel le premier semiconducteur SC1 est en contact direct avec le deuxième semi-conducteur SC2.6. Method according to one of claims 1 to 5, wherein the first semiconductor SC1 is in direct contact with the second semiconductor SC2.
7. Procédé selon l'une des revendications 1 à 6, dans lequel ledit premier semiconducteur SC1 forme un support, ledit support contient à sa surface des particules de type cœur-couche, ladite couche étant formée par ledit semiconducteur SC2, ledit cœur étant formé par lesdites particules comportant un ou plusieurs élément(s) M à l'état métallique. 7. Method according to one of claims 1 to 6, wherein said first semiconductor SC1 forms a support, said support contains on its surface core-layer type particles, said layer being formed by said semiconductor SC2, said core being formed by said particles having one or more element (s) M in the metallic state.
8. Procédé selon l'une des revendications 1 à 7, dans lequel la teneur respective des semi-conducteurs SC1 ou SC2 est comprise entre 0,01 et 50 % en poids par rapport au poids total du photocatalyseur.  8. Method according to one of claims 1 to 7, wherein the respective content of semiconductors SC1 or SC2 is between 0.01 and 50% by weight relative to the total weight of the photocatalyst.
9. Procédé selon l'une des revendications 1 à 8, dans lequel la teneur en élément(s) M à l'état métallique est comprise entre 0,001 et 20% en poids par rapport au poids total du photocatalyseur.  9. Method according to one of claims 1 to 8, wherein the content of element (s) M in the metallic state is between 0.001 and 20% by weight relative to the total weight of the photocatalyst.
10. Procédé selon l'une des revendications 1 à 9, dans lequel l'élément M à l'état métallique est choisi parmi le platine, le palladium, l'or, le nickel, le cobalt, le ruthénium, l'argent, le cuivre, le rhénium et le rhodium.  10. Method according to one of claims 1 to 9, wherein the element M in the metallic state is selected from platinum, palladium, gold, nickel, cobalt, ruthenium, silver, copper, rhenium and rhodium.
1 1 . Procédé selon l'une des revendications 1 à 10, dans lequel les semi-conducteurs SC1 et SC2 sont indépendamment choisis parmi un semi-conducteur inorganique, organique ou organiques-inorganiques.  1 1. Method according to one of claims 1 to 10, wherein the semiconductors SC1 and SC2 are independently selected from inorganic, organic or organic-inorganic semiconductors.
12. Procédé selon les revendications 1 à 1 1 , dans lequel le semi-conducteur SC1 est choisi parmi le Ti02, le ZnO, le W03, le Fe203, et le ZnFe204. 12. The method of claims 1 to 1 1, wherein the semiconductor SC1 is selected from Ti0 2 , ZnO, WO 3 , Fe 2 0 3 , and ZnFe 2 0 4 .
13. Procédé selon les revendications 1 à 12, dans lequel le semi-conducteur SC2 est choisi parmi le Cu20, le Ce203, l'ln203, le SiC, le ZnS, l'ln2S3. 13. The method of claims 1 to 12, wherein the semiconductor SC2 is selected from Cu 2 0, Ce 2 0 3 , ln 2 0 3 , SiC, ZnS, ln 2 S 3. .
14. Procédé selon l'une des revendications 1 à 13, dans lequel le photocatalyseur comporte un support composé d'un semi-conducteur SC1 choisi parmi le Ti02,14. Method according to one of claims 1 to 13, wherein the photocatalyst comprises a support composed of a semiconductor SC1 selected from Ti0 2 ,
ZnO, le WO3, le Fe2O3, et le ZnFe2O4, contenant à sa surface des particules de type cœur-couche, ledit cœur étant constitué d'un ou plusieurs élément(s) M à l'état métallique choisi parmi le platine, le palladium, l'or, le nickel, le cobalt, le ruthénium, l'argent, le cuivre, le rhénium ou le rhodium, ladite couche étant constituée d'un semi-conducteur SC2 choisi parmi le Cu2O, le Ce2O3 et Πη2Ο3. ZnO, WO 3 , Fe 2 O 3, and ZnFe 2 O 4 , containing on its surface core-layer type particles, said core consisting of one or more element (s) M in the metallic state selected from platinum, palladium, gold, nickel, cobalt, ruthenium, silver, copper, rhenium or rhodium, said layer consisting of a semiconductor SC2 selected from Cu 2 O, the Ce 2 O 3 and Πη 2 Ο 3 .
EP15775204.9A 2014-10-14 2015-10-06 Photocatalytic carbon dioxide reduction method using a composite photocatalyst Withdrawn EP3206788A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1459848A FR3026965B1 (en) 2014-10-14 2014-10-14 METHOD FOR PHOTOCATALYTIC REDUCTION OF CARBON DIOXIDE USING COMPOSITE PHOTOCATALYST.
PCT/EP2015/072996 WO2016058862A1 (en) 2014-10-14 2015-10-06 Photocatalytic carbon dioxide reduction method using a composite photocatalyst

Publications (1)

Publication Number Publication Date
EP3206788A1 true EP3206788A1 (en) 2017-08-23

Family

ID=52007155

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15775204.9A Withdrawn EP3206788A1 (en) 2014-10-14 2015-10-06 Photocatalytic carbon dioxide reduction method using a composite photocatalyst

Country Status (3)

Country Link
EP (1) EP3206788A1 (en)
FR (1) FR3026965B1 (en)
WO (1) WO2016058862A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110078579A (en) * 2019-04-29 2019-08-02 淮北师范大学 It is a kind of to use CO2The method for restoring difunctional photocatalysis coupled reaction preparation renewable carbon hydrogen compound

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3065650B1 (en) * 2017-04-28 2019-06-28 IFP Energies Nouvelles METHOD FOR PHOTOCATALYTIC REDUCTION OF CARBON DIOXIDE USING PHOTOCATALYST IN THE FORM OF POROUS MONOLITH
FR3073429B1 (en) * 2017-11-15 2022-01-07 Ifp Energies Now METHOD FOR THE PHOTOCATALYTIC REDUCTION OF CARBON DIOXIDE USING A PHOTOCATALYST BASED ON MOLYBDENUM SULPHIDE OR SUPPORTED TUNGSTEN SULPHIDE
US10696614B2 (en) * 2017-12-29 2020-06-30 Uchicago Argonne, Llc Photocatalytic reduction of carbon dioxide to methanol or carbon monoxide using cuprous oxide
CN108525677B (en) * 2018-03-29 2020-12-01 中南民族大学 Cerium dioxide/indium zinc sulfide nanosheet composite catalyst and application thereof in visible light catalysis of CO2Use in transformation
FR3095598B1 (en) * 2019-05-02 2021-12-17 Ifp Energies Now PHOTOCATALYTICAL REDUCTION PROCESS OF CARBON DIOXIDE IN THE PRESENCE OF AN EXTERNAL ELECTRIC FIELD
FR3097778B1 (en) * 2019-06-28 2022-01-07 Ifp Energies Now PROCESS FOR THE PHOTOCATALYTIC REDUCTION OF CO2 USING A PHOTOCATALYST OF THE MICROPOROUS CRYSTALLIZED METAL SULPHIDE TYPE
CN111420664B (en) * 2020-03-11 2022-11-11 惠州学院 Preparation method of flaky cuprous oxide/cobaltous oxide nanocomposite and application of flaky cuprous oxide/cobaltous oxide nanocomposite in catalyzing ammonia borane hydrolysis hydrogen production
US11458461B2 (en) * 2020-08-24 2022-10-04 Honda Motor Co., Ltd. Metal-semiconductor hybrid structures, syntheses thereof, and uses thereof
CN111939936A (en) * 2020-08-24 2020-11-17 安徽建筑大学 In2S3/TiO2Preparation method and application of photocatalyst
CN114570403B (en) * 2022-01-26 2024-03-26 浙江工业大学 High-temperature semiconductor catalyst and application thereof in carbon dioxide photo-reduction
CN114768804B (en) * 2022-04-10 2023-11-10 南京大学 Solid solution photo-thermal catalysis CO 2 Application of conversion reaction
CN116510748B (en) * 2023-07-04 2023-09-01 潍坊学院 Catalyst for preparing formic acid by photocatalytic reduction of carbon dioxide as well as preparation method and application thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110078579A (en) * 2019-04-29 2019-08-02 淮北师范大学 It is a kind of to use CO2The method for restoring difunctional photocatalysis coupled reaction preparation renewable carbon hydrogen compound
CN110078579B (en) * 2019-04-29 2022-01-11 淮北师范大学 By using CO2Method for preparing renewable hydrocarbon compound by reduction bifunctional photocatalytic coupling reaction

Also Published As

Publication number Publication date
WO2016058862A1 (en) 2016-04-21
FR3026965B1 (en) 2019-10-25
FR3026965A1 (en) 2016-04-15

Similar Documents

Publication Publication Date Title
FR3026965B1 (en) METHOD FOR PHOTOCATALYTIC REDUCTION OF CARBON DIOXIDE USING COMPOSITE PHOTOCATALYST.
Liu et al. Understanding the reaction mechanism of photocatalytic reduction of CO2 with H2O on TiO2-based photocatalysts: a review
Christoforidis et al. Photocatalysis for hydrogen production and CO2 reduction: the case of copper‐catalysts
EP3615211B1 (en) Photocatalytic carbon dioxide reduction method using a photocatalyst in the form of a porous monolith
FR3026964B1 (en) PHOTOCATALYTIC COMPOSITION COMPRISING METALLIC PARTICLES AND TWO SEMICONDUCTORS INCLUDING CERIUM OXIDE
WO2020221600A1 (en) Method for the photocatalytic reduction of carbon dioxide in the presence of an external electric field
FR3026966B1 (en) PHOTOCATALYTIC COMPOSITION COMPRISING METALLIC PARTICLES AND TWO SEMICONDUCTORS, INCLUDING ONE INDIUM OXIDE
WO2020221598A1 (en) Process for photocatalytic decontamination of a gaseous medium in the presence of an external electric field
WO2019096657A1 (en) Method for the photocatalytic reduction of carbon dioxide implementing a supported photocatalyst made from molybdenum sulfide or tungsten sulfide
WO2020221599A1 (en) Method for photocatalytic production of dihydrogen in the presence of an external electric field
WO2021121980A1 (en) Process for the photocatalytic reduction of carbon dioxide in the presence of a photocatalyst prepared by impregnation in a molten medium
FR3045409A1 (en) COMPACT PHOTOREACTOR
Segovia-Guzmán et al. Green Cu2O/TiO2 heterojunction for glycerol photoreforming
WO2021121978A1 (en) Process for the photocatalytic production of dihydrogen in the presence of a photocatalyst prepared by impregnation in a molten medium
EP3206786B1 (en) Method for synthesising a photocatalytic composition by photo-assisted condensation
FR3026963A1 (en) PHOTOCATALYTIC COMPOSITION COMPRISING METALLIC PARTICLES AND TWO SEMICONDUCTORS INCLUDING COPPER OXIDE
FR3053898A1 (en) PROCESS FOR PREPARING AN IRRADIATION-ASSISTED COBALT COMPOSITION
FR3045410A1 (en) SPIRAL PHOTOREACTEUR
WO2020260064A1 (en) Method for the photocatalytic reduction of co2 using a microporous crystalline metal sulfide photocatalyst
FR3041960A1 (en) PROCESS FOR THE SYNTHESIS OF ACRYLIC ACID BY PHOTOCATALYSIS
WO2020260065A1 (en) Method for the photocatalytic production of h2 using a microporous crystalline metal sulfide photocatalyst
Hu Photocatalytic methane conversion into chemicals and fuels under mild conditions
Chen Visible light photocatalysts for synthesis of fine organic chemicals on supported nanostructures
Kaur et al. Highly enhanced photocatalytic hydrogen production via GO-modified Cu-TiO2 system for dehydrogenation of alcohols under UV & sunlight irradiation

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170515

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: IFP ENERGIES NOUVELLES

Owner name: UNIVERSITE CLAUDE BERNARD LYON 1

Owner name: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20210501