EP3204825B1 - Optical system for producing lithographic structures - Google Patents

Optical system for producing lithographic structures Download PDF

Info

Publication number
EP3204825B1
EP3204825B1 EP15767470.6A EP15767470A EP3204825B1 EP 3204825 B1 EP3204825 B1 EP 3204825B1 EP 15767470 A EP15767470 A EP 15767470A EP 3204825 B1 EP3204825 B1 EP 3204825B1
Authority
EP
European Patent Office
Prior art keywords
field
writing
preview
test object
optical unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15767470.6A
Other languages
German (de)
French (fr)
Other versions
EP3204825A1 (en
Inventor
Philipp Hübner
Gerhard Krampert
Stefan Richter
Timo Mappes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carl Zeiss AG
Original Assignee
Carl Zeiss AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carl Zeiss AG filed Critical Carl Zeiss AG
Publication of EP3204825A1 publication Critical patent/EP3204825A1/en
Application granted granted Critical
Publication of EP3204825B1 publication Critical patent/EP3204825B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70383Direct write, i.e. pattern is written directly without the use of a mask by one or multiple beams
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70681Metrology strategies
    • G03F7/70683Mark designs
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7003Alignment type or strategy, e.g. leveling, global alignment
    • G03F9/7007Alignment other than original with workpiece
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7003Alignment type or strategy, e.g. leveling, global alignment
    • G03F9/7007Alignment other than original with workpiece
    • G03F9/7011Pre-exposure scan; original with original holder alignment; Prealignment, i.e. workpiece with workpiece holder

Definitions

  • the invention relates to an optical system for lithographic structure production. Furthermore, the invention relates to a method for determining relative coordinates of a position of a writing field relative to a position of a Vorschaufeldes in such an optical system and a method for lithographic structure production with such an optical system.
  • An optical system of the type mentioned is known from the US 2013/0221550 A1 wherein a projection lens is disclosed with an objective lens for guiding a pattern-generating writing light beam onto a substrate carried by a substrate holder.
  • a scanning mirror is used as deflecting device for deflecting a writing focus of the writing light beam.
  • An optical system of the type mentioned is also known from the US 2013/0 223 788 A1 , From the DE 103 15 086 A1
  • a method and apparatus for aligning semiconductor wafers in semiconductor manufacturing are known.
  • the lithography system disclosed therein comprises an exposure unit, a first optical measuring device, comprising an alignment microscope, and a further scattered radiation measuring device.
  • a wafer holder is arranged on a positioning device in this lithography system.
  • the US 2008/0 112 609 A1 describes a positioning method and a positioning device using a substrate having alignment marks.
  • a positioning of a substrate, which is processed in the lithographic structure generation in particular can be achieved with good accuracy.
  • should be possible to find a position as accurate as possible for a structure to be generated on a relatively large to the structure size substrate surface since the writing field regularly only a very small section an entire substrate surface provides on the exact position a desired structure is to be generated.
  • the substrate to be patterned in such a way that the structure to be generated is generated in a write target position is improved with the aid of stored relative coordinates which specify the position of the write field relative to the position of a feedforward field.
  • the feed fence regularly covers only a small part of an entire substrate surface on which the structure is to be produced with exact position.
  • the writing field can then be optimized for the structure-generating process and, in particular, can be made very small.
  • a typical size of the feed fence is 10 x 10 mm 2 .
  • a typical size of the writing field is 400 x 400 ⁇ m 2 .
  • the feedforward field can be greater than the write field by a factor of 50, by a factor of 100, or by an even greater factor, for example by a factor of 1,000 or even 10,000.
  • the entire substrate surface has a typical size of 20 x 20 cm 2 . This value applies to a rectangular substrate.
  • a typical round substrate has an area that is about 75% of the area of the rectangular substrate.
  • the writing focus has a typical area of about 1 ⁇ m 2 .
  • the preview optics can image the preview field with a magnification in the range between 5 and 100, for example in the range between 30 and 40.
  • the optical system may comprise a digital camera, which may be formed as a CCD camera.
  • one-photon lithography or multi-photon lithography can be used.
  • a process camera can be used for determining the relative coordinates of the position of the write field relative to the position of the feedforward field.
  • the process camera can have a chip for spatially resolving the writing field. This may be a CCD chip or a CMOS camera.
  • the writing field can be illuminated by a writing field illumination, which is independent of the writing light beam.
  • the writing field can be illuminated by a wide-field illumination.
  • a light source for the writing field illumination can be designed as an LED.
  • the detection of both independent light for writing field illumination and the writing light on the process camera is advantageous because this observation of a writing process can be done and / or conclusions on a structure structure, in particular a successful polymerization can be drawn.
  • the writing light and / or independent light for writing field illumination can be coupled into the process camera via a beam splitter, in particular via a partially transmissive mirror.
  • an adaptation of focal planes of the projection optics on the one hand relative to the preview optics on the other hand can be made possible.
  • the displacement can be done by means of a corresponding displacement drive.
  • the preview optics and / or the projection optics can be designed to be displaceable in the direction perpendicular to the substrate plane.
  • an optimal focal position of the projection optics and / or the preview optics can be determined.
  • the autofocus device can have an illumination that is independent of the writing light or of the preview light.
  • Image-side numerical apertures according to claims 5 and 6 have proven to be particularly suitable for the function of the projection optics on the one hand and for the function of the preview optics on the other hand.
  • the image-side numerical aperture of the preview optics may be 0.05, for example.
  • the light source according to claim 7 may be a pulsed light source.
  • the writing light source may be an NIR laser.
  • the writing light source may be an ultrashort pulse laser light source.
  • a separate from the writing light source light source can be used, which may also be part of the optical system. In the event that the writing field on the one hand and the Vorschaufeld on the other hand do not overlap, is regularly used independent of the writing light source illumination for the preview optics.
  • test object can first be recorded in the preview field with the preview optics and then in the writing field with the projection optics. A reverse order of the shots is possible.
  • a fine positioning according to claim 9 increases the accuracy in determining the relative coordinates.
  • a rotation and / or a compression and / or a displacement of the test object can take place.
  • such a maximization of the correlation can also be used to check and, if necessary, correct a combination of the two optics. For example, the layers of focal planes of both optics to each other can be checked and corrected if necessary. Also, a predetermined magnification ratio of the two optics can be monitored.
  • An image stack recording according to claim 10 increases an accuracy of a determination of the relative coordinates also along the coordinate perpendicular to the substrate plane. This improves focus positioning in lithographic patterning.
  • a method of lithographic pattern generation according to claim 12 utilizes the advantages of relative coordinate determination using the illustrated optical system.
  • Aligning the write-destination position in the preview field according to claim 13 enables optimized use of positioning components in writing the predetermined structure in the writing field.
  • An optical system 1 whose main components in the Fig. 1 are shown, serves for lithographic structure generation.
  • a pattern forming method that can be performed with the optical system 1 is explained in more detail in FIG US 2013/0 221 550 A1 , Details of a product resulting as a result of the structure formation are described in U.S. Patent Nos. 5,236,355 US 2013/0 223 788 A1 ,
  • Part of the optical system 1 is a lithography system 2 with a light source 3 for generating a bundle of writing light 4.
  • An optical path of the writing light 4 is in the Fig. 1 shown very schematically dotted.
  • the light source 3 may be a pulsed NIR (near infrared) laser with a wavelength of 780 nm, for details also in the US 2003/0 221 550 A1 are indicated.
  • the deflection device 5 may have one or more tiltable scanning mirrors for deflecting the writing light beam.
  • the deflection device 5 may include at least one optical component, which is designed as a microelectromechanical system (microelectromechanical system, MEMS) component.
  • MEMS microelectromechanical system
  • the bundle of writing light 4 passes in its course after the light source 3, two output mirrors 6 and 7, which are successively arranged in the beam path of the writing light 4.
  • the writing light 4 passes through a projection optics 8 in the form of a microscope objective or in the form of a lithography objective.
  • the projection optics 8 serve to guide the structure-generating pencil of light beams into a writing focus 9 (cf. Fig. 2 ) in the region of a substrate surface 10 of a substrate 11 in a substrate plane 12.
  • a surface within which can be caused by the write focus 9 a used for structure generation polymerization of substrate material a lateral extent in the range between 1 and 100 microns 2 , for example between 2 and 10 ⁇ m 2 .
  • the writing focus 9 can be approximately round, but can also have an x / y aspect ratio that deviates significantly from 1 and can have, for example, a lateral extent in the range of 1 ⁇ m ⁇ 10 ⁇ m.
  • a structure is made by displacing the writing focus 9 relative to the substrate material.
  • the structure produced results as the sum of a plurality or a plurality of polymerized dot areas or polymerized lines.
  • a typical such structure may have a lateral extent in the range of 5 ⁇ m x 200 ⁇ m.
  • the dot area where the polymerization takes place is a volume pixel, So a voxel.
  • the projection optics 8 has a picture-side numerical aperture which is greater than 0.5 and which in the exemplary embodiment is greater than 1.0 and, for example, in the range between 1.2 and 1.4.
  • the deflection device 5 serves to deflect the writing focus 9 of the writing light beam within a writing field 13 in the substrate plane 12 in the region of the substrate surface 10.
  • structure can be generated with the aid of the writing focus 9.
  • the writing focus 9 can be moved in the writing field 13, in particular scanned.
  • a generated structure can thus be significantly larger than the extent of the writing focus 9.
  • the structure generation in the write focus 9 can be done via a one-photon process or via a multi-photon process.
  • the optical system 1 further includes a preview optics 14 for imaging a Vorschaufeldes 15 (see again Fig. 2 ) in the substrate plane 12 in the region of the substrate surface 10.
  • the preview field 15 has an area which is larger by at least a factor 10 than an area of the write field 13.
  • the preview field 15 can be at least a factor 100 larger than the area of the write field Writing field 13.
  • the fields 13, 15 are in the Fig. 1 not reproduced to scale.
  • a Cartesian xyz coordinate system is used below.
  • the xy-plane is perpendicular to the plane of the drawing and coincides with the substrate plane 12.
  • the z-direction is perpendicular to this and runs in the Fig. 1 up.
  • An extent of the fields 13, 15 and a position of the writing focus 9 can thus be specified by x, y coordinates.
  • the writing field 13 has an xy dimension with a typical edge length in the range between 100 ⁇ m and 1 mm, for example an extent of 400 ⁇ m ⁇ 400 ⁇ m.
  • a focus diameter of the writing focus 9 in a focal plane of the writing light beam is in a range between 0.25 ⁇ m and 50 ⁇ m.
  • a typical focus diameter of the writing focus 9 is 1 ⁇ m.
  • the writing field 13 is therefore typically greater than the diameter of the writing focus 9 by more than a factor 100 along each of the two coordinates x and y.
  • the Vorschaufeld 15 has an extension with a typical edge length between 1 mm and 50 mm, for example, a typical xy-dimension of 10 mm x 10 mm.
  • the Vorschaufeld 15 may be even larger and have a typical xy-expansion, for example, 50 mm x 50 mm.
  • the Vorschaufeld 15 is smaller than the entire substrate surface 10, which may have an area of, for example 20 x 20 cm 2 .
  • the substrate 11 may be rectangular or round. The area of the round substrate is typically a factor of 0.75 smaller than that of the rectangular substrate.
  • the preview optics 14 increases the preview field 15 with a magnification in the range between 5 and 100, typically between 30 and 40.
  • a working distance between a substrate-next component of the preview optics 14 and the substrate 10 is in the range between 1 mm and 30 mm and is typically 10 mm ,
  • the preview optics 14 has a picture-side numerical aperture which is smaller than 0.1 and which may be, for example, 0.05.
  • the projection optics 8 and the preview optics 14 are supported by a common frame 16, which in the Fig. 1 is indicated schematically and broken.
  • the projection optics 8 or the preview optics 14 are rigidly connected to one another via a frame carrier 17 with respect to the coordinates x and y.
  • the substrate 11 is supported by a substrate holder 18. This can be displaced in the xy plane in the two translational degrees of freedom x and y.
  • the substrate holder 18 is connected to an xy displacement drive 19.
  • the substrate holder 18 with the xy displacement drive 19 can be designed as xy table with a positioning repeatability better than 5 microns.
  • the preview optics 14 may include a tube for visual inspection via an operator.
  • An illumination of the Vorschaufeldes 15 via an integrated into the preview optics 14 preview light source 21, which is independent of the writing light source 3.
  • the preview light source 21 generates preview light 22 for illuminating the Vorschaufeldes 15.
  • the beam path of the preview light 22 is in the Fig. 1 also indicated very schematically dotted.
  • the preview light source 21 may be a light source in the visible wavelength range. Alternatively, it is possible in principle to use the writing light source 3 also for generating preview light for illuminating the preview field 15.
  • the preview light source may provide wide field illumination and / or structured illumination.
  • a speckle pattern or a stripe projection can be used.
  • the optical system 1 further comprises a process camera 23 for detecting the writing field 13. This is done using a separate illumination of the writing field, which is not shown in detail in the drawing. Alternatively or additionally, for detecting at least part of the writing field 13, the beam path of the writing light beam in the projection optics 8 can be used. From the writing pad 13 in the projection optics 8 retroreflected light, z. As the writing light 4 is coupled out of the partially transparent Auskoppelapt 7 in the process camera 23.
  • the process camera 23 has a CCD chip 24 for detecting the light coupled out via the output mirror 7 light 4a. If, for the detection of the writing field 13, a lighting independent of the writing light source is used, the writing light 4 can nevertheless be additionally detected via the process camera 23.
  • the optical system 1 comprises an autofocus device 25 for determining a focal plane of the projection optics 8 and / or the preview optics 14.
  • the autofocus device 25 detects a further light bundle 4b coupled out via the partially transparent output mirror 6.
  • the autofocus device 25 may have its own illumination, which is not shown in detail in the drawing.
  • the projection optics 8 can be displaced relative to the preview optics 14 in the z-direction, ie perpendicular to the substrate plane 12.
  • the projection optics 8 is equipped with a z-displacement drive 26.
  • the z-displacement drive 26 is in the Fig. 1 indicated schematically and is between the Frame carrier 17 and the projection optics 8 are arranged.
  • This z-displacement of the projection optics 8 relative to the preview optics 14 is a relative movement of the two optics 8, 14 guided to each other via a z-guide. This z-guide is part of the frame carrier 17th
  • An adjustment of the focal planes of the projection optics 8 and the preview optics 14 can take place with the aid of the z displacement drive 26.
  • the optical system 1 furthermore has a control unit 27.
  • the control unit 27 has a memory 28 in which relative coordinates (RK x , RK y ) of the position of the writing field 13 are stored relative to the position of the preview field 15.
  • the optical system 1 can be used to lithographically produce microstructures and / or nanostructures. This can be done maskless, ie without imaging an object structure on the substrate surface 10, but alternatively also mask-based.
  • RK y of the position of the writing field 13 relative to the position of the Vorschaufeldes 15 proceeds as follows: First, a test object, for example a rectangular structure with a predetermined x / y aspect ratio, is recorded with the preview optics 14. The position of the test object in the preview field 15 is detected by means of the CCD camera 20. Subsequently, the test object is positioned in the preview field 15 by means of the xy displacement drive 19, so that the test object in the preview field 15 has a defined position. This position can be selected, for example, such that a mark on the test object on the central coordinates x v , y v (cf. Fig. 2 ) of the Vorschaufeldes 15 comes to rest.
  • test object lies optimally in an image-side focal plane of the preview optics 14.
  • the test object is rough-shifted by means of the xy displacement drive 19 on the substrate holder 18 between the feed fence 15 and the writing pad 13.
  • the xy displacement drive 19 on the substrate holder 18 between the feed fence 15 and the writing pad 13.
  • RK x, raw ; RK y raw documented and stored in memory 28.
  • the aim of the raw relocation is to move the test object into the writing field 13.
  • the test object with the projection optics 8 and the process camera 23 is recorded. Subsequently, the test object is finely positioned in the writing field 13 until the test object in the writing field 13 has a defined position.
  • This defined position can, for example, be such that the marking of the test object after fine positioning in the writing field 13 has a center x s , y s (cf. Fig. 2 ) of the writing field 13 matches.
  • the changes in the raw relative coordinates of the test object during the fine positioning are also documented and stored in the memory 28. From the raw relative coordinates and the documented changes in the fine positioning, the desired relative coordinates of the position of the writing field 13 relative to the position of the preview field 15 can then be documented and stored in the memory 28. For example Fig.
  • the generated relative coordinates RK x , RK y are then stored in the memory 28 of the control unit 27 and are available for a subsequent retrieval when moving a substrate on the lithographically a structure to be generated in a write-destination position.
  • the preview optics 14 are calibrated relative to the position optics 8.
  • a displacement of the substrate holder 18 about the coordinates (RK x , RK y ) transfers an object carried by the substrate holder from the center of the preview field 15 into the center of the writing field 13.
  • a position selected by the user in the preview field 15 can also be transferred directly to a center in the writing field 13. This is done by the control unit 27 initially centered on this selected position in Vorschaufeld 15, which is done by appropriate positioning on the xy displacement drive 19 and documenting corresponding relative coordinates. Subsequently, the transfer transfer described above is performed. The centering and transfer relocation can also be combined within one step.
  • the determination method described above can also be carried out starting from a recording of the test object in the write field 13, wherein the test object is first positioned in the writing field 13 and then a raw displacement of the test object from the writing field 13 into the preview field 15 with corresponding fine positioning takes place within the Vorschaufeldes 15.
  • the documentation first of the raw relative coordinates and the generation thereof and the result of the fine positioning of the desired relative coordinates then takes place analogously to what has already been explained above in connection with the determination method, starting from the test object in the preview field 15.
  • the output field is thus either the preview field 15 or the writing field 13 and the target field is either the Schreifeld 13 or the Vorschaufeld 15th
  • a correlation maximization of the positions of the test object in the output field on the one hand and in the target field on the other hand takes place. This correlation is maximized by rotation of the test object and / or by compression of the test object and / or by displacement of the test object.
  • the rotation takes place about an axis parallel to the z-axis, which can be done by an additional pivot motor 29 of the substrate holder 18.
  • a rotation can also be done by an image rotation of the respective detection optics in the representation for the user.
  • a plurality of markings are applied to different x, y positions of the test object. After raw relocation or fine positioning, rotation of these test marks with target marks can be maximized by rotation.
  • a magnification ratio between the production optics 8 and the preview optics is produced via the z displacement drive 26 14 varies until a predetermined ratio coincides with a distance ratio of test marks on the test object during the recording on the one hand via the preview optics 14 and on the other hand via the projection optics 8.
  • an image stack can be obtained by recording different images of the test object with the respective imaging optics, ie with the projection optics 8 or the preview optics 14 in different z-displacement positions of this recording optics relative to the test object in the z-displacement direction perpendicular to xy substrate plane 12 are generated.
  • a relative coordinate in the z-direction can also be stored if there is a z-offset of the focal planes between focal planes of the projection optics 8 on the one hand and the preview optics 14 on the other hand.
  • a raw displacement of the test object between the fields 13, 15 can take place several times. The determination of the relative coordinates can then take place within the scope of an iterative process.
  • the relative coordinates of the position of the writing field 13 relative to the position of the advance field 15 are initially determined, as explained above.
  • the substrate 11 is provided on the substrate holder 18. It can then be driven on the entire substrate 11 under the Vorschaufeld 15 by means of the xy displacement drive 19 a provided for the structuring portion.
  • a write destination position on the substrate 11 in the preview field 15 is then identified and selected by the user. This write target position can then be aligned in the preview field 15.
  • the write target position is shifted from the preview field 15 into the write field 13 using the determined relative coordinates RK x , RK y .
  • a predetermined structure is written in the writing field 13 with the writing light beam, whereby the writing focus 9 is displaced according to the shape of the predetermined structure by means of the deflecting device 5 in the writing field 13.
  • a wafer having a diameter of, for example, about 15 cm (6 inches) or about 20 cm (8 inches) may be used. Even a wafer with an even larger diameter can be used.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Automatic Focus Adjustment (AREA)

Description

Die vorliegende Patentanmeldung nimmt die Priorität der deutschen Patentanmeldung DE 10 2014 220 168.3 in Anspruch.The present patent application takes the priority of the German patent application DE 10 2014 220 168.3 to complete.

Die Erfindung betrifft ein optisches System zur lithografischen Strukturerzeugung. Ferner betrifft die Erfindung ein Verfahren zur Bestimmung von Relativkoordinaten einer Lage eines Schreibfeldes relativ zu einer Lage eines Vorschaufeldes in einem derartigen optischen System und ein Verfahren zur lithografischen Strukturerzeugung mit einem derartigen optischen System.The invention relates to an optical system for lithographic structure production. Furthermore, the invention relates to a method for determining relative coordinates of a position of a writing field relative to a position of a Vorschaufeldes in such an optical system and a method for lithographic structure production with such an optical system.

Ein optisches System der eingangs genannten Art ist bekannt aus der US 2013/0221550 A1 , wobei eine Projektionsoptik mit Objektivlinse zur Führung eines strukturerzeugenden Schreiblichtbündels auf ein Substrat offenbart wird, das von einem Substrathalter getragen ist. Als Ablenkeinrichtung zur Ablenkung eines Schreibfokus des Schreiblichtbündels dient ein Scanspiegel. Ein optisches System der eingangs genannten Art ist außerdem bekannt aus der US 2013/0 223 788 A1 . Aus der DE 103 15 086 A1 sind ein Verfahren und eine Vorrichtung zum Ausrichten von Halbleiterwafern bei der Halbleiterherstellung bekannt. Die dort offenbarte Lithographieanlage umfasst eine Belichtungseinheit, eine erste optische Messeinrichtung, aufweisend ein Ausrichtungsmikroskop, und eine weitere Streustrahlungsmesseinrichtung. Ein Waferhalter ist bei dieser Lithographieanlage auf einer Positionierungseinrichtung angeordnet. Die US 2008/0 112 609 A1 beschreibt ein Positionierverfahren sowie eine Positioniervorrichtung unter Nutzung eines Ausrichtmarken aufweisenden Substrats.An optical system of the type mentioned is known from the US 2013/0221550 A1 wherein a projection lens is disclosed with an objective lens for guiding a pattern-generating writing light beam onto a substrate carried by a substrate holder. As deflecting device for deflecting a writing focus of the writing light beam, a scanning mirror is used. An optical system of the type mentioned is also known from the US 2013/0 223 788 A1 , From the DE 103 15 086 A1 For example, a method and apparatus for aligning semiconductor wafers in semiconductor manufacturing are known. The lithography system disclosed therein comprises an exposure unit, a first optical measuring device, comprising an alignment microscope, and a further scattered radiation measuring device. A wafer holder is arranged on a positioning device in this lithography system. The US 2008/0 112 609 A1 describes a positioning method and a positioning device using a substrate having alignment marks.

Es ist eine Aufgabe der vorliegenden Erfindung, ein derartiges optisches System derart weiterzubilden, dass eine Positionierung eines Substrats, welches bei der lithografischen Strukturerzeugung bearbeitet wird, insbesondere mit guter Zielgenauigkeit erreicht werden kann. Insbesondere soll ermöglicht werden, eine möglichst exakte Position für eine zu erzeugende Struktur auf einer relativ zur Strukturgröße sehr großen Substratfläche aufzufinden, da das Schreibfeld regelmäßig nur einen sehr kleinen Ausschnitt einer gesamten Substratfläche bietet, auf der positionsgenau eine gewünschte Struktur erzeugt werden soll.It is an object of the present invention to develop such an optical system such that a positioning of a substrate, which is processed in the lithographic structure generation, in particular can be achieved with good accuracy. In particular, should be possible to find a position as accurate as possible for a structure to be generated on a relatively large to the structure size substrate surface, since the writing field regularly only a very small section an entire substrate surface provides on the exact position a desired structure is to be generated.

Diese Aufgabe ist erfindungsgemäß gelöst durch ein optisches System mit den im Anspruch 1 angegebenen Merkmalen.This object is achieved by an optical system with the features specified in claim 1.

Erfindungsgemäß wurde erkannt, dass eine Positionierung des zu strukturierenden Substrats so, dass die zu erzeugende Struktur in einer Schreib-Zielposition erzeugt wird, unter Zuhilfenahme abgelegter Relativkoordinaten, die die Lage des Schreibfeldes relativ zur Lage eines Vorschaufeldes spezifizieren, verbessert ist. Hierbei wird dem Umstand Rechnung getragen, dass das Schreibfeld regelmäßig sehr klein ist, wobei ein im Verhältnis hierzu viel größeres Vorschaufeld zum Einsatz kommt. Das Vorschaufeld wiederum deckt regelmäßig nur einen kleinen Teil einer gesamten Substrat-Oberfläche ab, auf der die Struktur positionsgenau erzeugt werden soll. Das Schreibfeld kann dann für den strukturerzeugenden Prozess optimiert werden und kann insbesondere sehr klein ausgeführt werden. Eine typische Größe des Vorschaufeldes ist 10 x 10 mm2. Eine typische Größe des Schreibfeldes ist 400 x 400 µm2. Das Vorschaufeld kann um einen Faktor 50, um einen Faktor 100 oder auch um einen noch größeren Faktor größer sein als das Schreibfeld, beispielsweise um einen Faktor 1.000 oder auch 10.000. Die gesamte Substrat-Oberfläche hat eine typische Größe von 20 x 20 cm2. Dieser Wert gilt für ein rechteckiges Substrat. Ein typisches rundes Substrat hat eine Fläche, die etwa 75 % der Fläche des rechteckigen Substrats entspricht. Der Schreibfokus hat eine typische Fläche von etwa 1 µm2.According to the invention, it has been recognized that positioning of the substrate to be patterned in such a way that the structure to be generated is generated in a write target position is improved with the aid of stored relative coordinates which specify the position of the write field relative to the position of a feedforward field. This takes into account the fact that the writing field is regularly very small, with a much larger Vorschaufeld is used in relation to this. In turn, the feed fence regularly covers only a small part of an entire substrate surface on which the structure is to be produced with exact position. The writing field can then be optimized for the structure-generating process and, in particular, can be made very small. A typical size of the feed fence is 10 x 10 mm 2 . A typical size of the writing field is 400 x 400 μm 2 . The feedforward field can be greater than the write field by a factor of 50, by a factor of 100, or by an even greater factor, for example by a factor of 1,000 or even 10,000. The entire substrate surface has a typical size of 20 x 20 cm 2 . This value applies to a rectangular substrate. A typical round substrate has an area that is about 75% of the area of the rectangular substrate. The writing focus has a typical area of about 1 μm 2 .

Es lässt sich durch Nutzung der Relativkoordinaten ein hoher Durchsatz bei der Strukturerzeugung gewährleisten. Es können Mikro- und/oder Nanostrukturen hergestellt werden. Bei der lithografischen Strukturerzeugung mit dem optischen System kann eine maskenlose oder eine maskenbasierende Lithografie zum Einsatz kommen. Die Vorschauoptik kann das Vorschaufeld mit einer Vergrößerung im Bereich zwischen 5 und 100, beispielsweise im Bereich zwischen 30 und 40, abbilden.By using the relative coordinates, a high throughput can be ensured in the structure production. There may be micro and / or nanostructures getting produced. In lithographic patterning with the optical system, maskless or mask based lithography may be used. The preview optics can image the preview field with a magnification in the range between 5 and 100, for example in the range between 30 and 40.

Zur Erfassung des Vorschaufeldes kann das optische System eine Digitalkamera aufweisen, die als CCD-Kamera ausgebildet sein kann.For detecting the Vorschaufeldes the optical system may comprise a digital camera, which may be formed as a CCD camera.

Zur Strukturerzeugung kann die Ein-Photonen-Lithografie oder die Mehr-Photonen-Lithografie zum Einsatz kommen.For the structure production one-photon lithography or multi-photon lithography can be used.

Eine Prozesskamera nach Anspruch 2 kann zur Bestimmung der Relativkoordinaten der Lage des Schreibfeldes relativ zur Lage des Vorschaufeldes zum Einsatz kommen. Die Prozesskamera kann einen Chip zur ortsauflösenden Erfassung des Schreibfeldes aufweisen. Hierbei kann es sich um einen CCD-Chip oder auch um eine CMOS-Kamera handeln. Das Schreibfeld kann durch eine Schreibfeldbeleuchtung ausgeleuchtet werden, die vom Schreiblichtbündel unabhängig ist. Das Schreibfeld kann durch eine Weitfeldbeleuchtung ausgeleuchtet werden. Eine Lichtquelle für die Schreibfeldbeleuchtung kann als LED ausgeführt sein. Die Erfassung sowohl unabhängigen Lichtes zur Schreibfeldbleuchtung als auch des Schreiblichts über die Prozesskamera ist vorteilhaft, da hierüber eine Beobachtung eines Schreibprozesses erfolgen kann und/oder Rückschlüsse auf eine erfolgte Strukturbildung, insbesondere auf eine erfolgte Polymerisation, gezogen werden können. Das Schreiblicht und/oder unabhängiges Licht zur Schreibfeldbeleuchtung kann in die Prozesskamera über einen Strahlteiler, insbesondere über einen teildurchlässigen Spiegel, eingekoppelt werden.A process camera according to claim 2 can be used for determining the relative coordinates of the position of the write field relative to the position of the feedforward field. The process camera can have a chip for spatially resolving the writing field. This may be a CCD chip or a CMOS camera. The writing field can be illuminated by a writing field illumination, which is independent of the writing light beam. The writing field can be illuminated by a wide-field illumination. A light source for the writing field illumination can be designed as an LED. The detection of both independent light for writing field illumination and the writing light on the process camera is advantageous because this observation of a writing process can be done and / or conclusions on a structure structure, in particular a successful polymerization can be drawn. The writing light and / or independent light for writing field illumination can be coupled into the process camera via a beam splitter, in particular via a partially transmissive mirror.

Mithilfe einer Verlagerbarkeit nach Anspruch 3 kann eine Anpassung von Fokalebenen der Projektionsoptik einerseits relativ zur Vorschauoptik andererseits ermöglicht werden. Die Verlagerung kann mithilfe eines entsprechenden Verlagerungsantriebs erfolgen. Die Vorschauoptik und/oder die Projektionsoptik können in der Richtung senkrecht zur Substratebene verlagerbar ausgeführt sein.With the aid of a displaceability according to claim 3, an adaptation of focal planes of the projection optics on the one hand relative to the preview optics on the other hand can be made possible. The displacement can be done by means of a corresponding displacement drive. The preview optics and / or the projection optics can be designed to be displaceable in the direction perpendicular to the substrate plane.

Mithilfe einer Autofokuseinrichtung nach Anspruch 4 lässt sich eine optimale Fokalposition der Projektionsoptik und/oder der Vorschauoptik bestimmen. Die Autofokuseinrichtung kann eine vom Schreiblicht bzw. vom Vorschaulicht unabhängige Beleuchtung aufweisen.By means of an autofocus device according to claim 4, an optimal focal position of the projection optics and / or the preview optics can be determined. The autofocus device can have an illumination that is independent of the writing light or of the preview light.

Bildseitige numerische Aperturen nach den Ansprüchen 5 und 6 haben sich für die Funktion der Projektionsoptik einerseits sowie für die Funktion der Vorschauoptik andererseits als besonders geeignet herausgestellt. Die bildseitige numerische Apertur der Vorschauoptik kann beispielsweise 0.05 betragen.Image-side numerical apertures according to claims 5 and 6 have proven to be particularly suitable for the function of the projection optics on the one hand and for the function of the preview optics on the other hand. The image-side numerical aperture of the preview optics may be 0.05, for example.

Bei der Lichtquelle nach Anspruch 7 kann es sich um eine gepulste Lichtquelle handeln. Bei der Schreiblicht-Lichtquelle kann es sich um einen NIR-Laser handeln. Bei der Schreiblicht-Lichtquelle kann es sich um eine Ultrakurzpuls-Laserlichtquelle handeln. Für die Vorschauoptik kann eine zur Schreiblicht-Lichtquelle separate Lichtquelle genutzt werden, die ebenfalls Teil des optischen Systems sein kann. Für den Fall, dass das Schreibfeld einerseits und das Vorschaufeld andererseits nicht überlappen, kommt regelmäßig eine von der Schreiblicht-Lichtquelle unabhängige Beleuchtung für die Vorschauoptik zum Einsatz.The light source according to claim 7 may be a pulsed light source. The writing light source may be an NIR laser. The writing light source may be an ultrashort pulse laser light source. For the preview optics, a separate from the writing light source light source can be used, which may also be part of the optical system. In the event that the writing field on the one hand and the Vorschaufeld on the other hand do not overlap, is regularly used independent of the writing light source illumination for the preview optics.

Ein Verfahren zur Bestimmung der Relativkoordinaten nach Anspruch 8 hat sich als besonders effizient herausgestellt. Es kann zunächst das Testobjekt im Vorschaufeld mit der Vorschauoptik und anschließend im Schreibfeld mit der Projektionsoptik aufgenommen werden. Auch eine umgekehrte Reihenfolge der Aufnahmen ist möglich.A method for determining the relative coordinates according to claim 8 has been found to be particularly efficient. The test object can first be recorded in the preview field with the preview optics and then in the writing field with the projection optics. A reverse order of the shots is possible.

Eine Feinpositionierung nach Anspruch 9 erhöht die Genauigkeit bei der Bestimmung der Relativkoordinaten. Bei der Korrelationsmaximierung kann eine Drehung und/oder eine Stauchung und/oder eine Verschiebung des Testobjekts erfolgen. Zusätzlich zur Feinpositionierung kann bei einer derartigen Korrelationsmaximierung auch eine Überprüfung eines Zusammenspiels der beiden Optiken überprüft und ggf. korrigiert werden. Beispielsweise können die Lagen von Fokalebenen beider Optiken zueinander überprüft und ggf. korrigiert werden. Auch ein vorgegebenes Abbildungsmaßstab-Verhältnis der beiden Optiken kann überwacht werden.A fine positioning according to claim 9 increases the accuracy in determining the relative coordinates. In the correlation maximization, a rotation and / or a compression and / or a displacement of the test object can take place. In addition to the fine positioning, such a maximization of the correlation can also be used to check and, if necessary, correct a combination of the two optics. For example, the layers of focal planes of both optics to each other can be checked and corrected if necessary. Also, a predetermined magnification ratio of the two optics can be monitored.

Eine Bildstapel-Aufnahme nach Anspruch 10 erhöht eine Genauigkeit einer Bestimmung der Relativkoordinaten auch längs der Koordinate senkrecht zur Substratebene. Dies verbessert eine Fokuspositionierung bei der lithografischen Strukturerzeugung.An image stack recording according to claim 10 increases an accuracy of a determination of the relative coordinates also along the coordinate perpendicular to the substrate plane. This improves focus positioning in lithographic patterning.

Mit einer mehrfachen Roh-Verlagerung nach Anspruch 11 kann eine Bestimmung der Relativkoordinaten im Rahmen eines iterativen Prozesses erfolgen. Dies erhöht die Genauigkeit der Koordinatenbestimmung.With a multiple raw displacement according to claim 11, a determination of the relative coordinates can take place in the context of an iterative process. This increases the accuracy of the coordinate determination.

Ein Verfahren zur lithografischen Strukturerzeugung nach Anspruch 12 nutzt die Vorteile der Relativkoordinatenbestimmung mithilfe des erläuterten optischen Systems.A method of lithographic pattern generation according to claim 12 utilizes the advantages of relative coordinate determination using the illustrated optical system.

Ein Ausrichten der Schreib-Zielposition im Vorschaufeld nach Anspruch 13 ermöglicht eine optimierte Nutzung von Positionierungskomponenten beim Schreiben der vorgegebenen Struktur in das Schreibfeld.Aligning the write-destination position in the preview field according to claim 13 enables optimized use of positioning components in writing the predetermined structure in the writing field.

Ein Ausführungsbeispiel der Erfindung wird nachfolgend anhand der Zeichnung näher erläutert. In dieser zeigen:

Fig.1
in einer schematischen Seitenansicht Hauptkomponenten eines optischen Systems zur lithografischen Strukturerzeugung; und
Fig.2
ebenfalls schematisch in einer Aufsicht ein Vorschaufeld einer Vorschauoptik des optischen Systems und ein hiervon beabstandetes Schreibfeld, in dem ein Schreibfokus einer Projektionsoptik des optischen Systems angeordnet ist.
An embodiment of the invention will be explained in more detail with reference to the drawing. In this show:
Fig.1
in a schematic side view of main components of an optical system for lithographic structure production; and
Fig.2
also schematically in a plan view a preview field of a preview optics of the optical system and a spaced therefrom writing field in which a writing focus of a projection optics of the optical system is arranged.

Ein optisches System 1, dessen Hauptkomponenten in der Fig. 1 dargestellt sind, dient zur lithografischen Strukturerzeugung. Ein Strukturerzeugungsverfahren, welches mit dem optischen System 1 durchgeführt werden kann, ist stärker im Detail erläutert in der US 2013/0 221 550 A1 . Details eines Erzeugnisses, welches als Ergebnis der Strukturerzeugung resultiert, sind beschrieben in der US 2013/0 223 788 A1 .An optical system 1, whose main components in the Fig. 1 are shown, serves for lithographic structure generation. A pattern forming method that can be performed with the optical system 1 is explained in more detail in FIG US 2013/0 221 550 A1 , Details of a product resulting as a result of the structure formation are described in U.S. Patent Nos. 5,236,355 US 2013/0 223 788 A1 ,

Teil des optischen Systems 1 ist ein Lithografiesystem 2 mit einer Lichtquelle 3 zur Erzeugung eines Bündels von Schreiblicht 4. Ein Strahlengang des Schreiblichts 4 ist in der Fig. 1 äußerst schematisch gepunktet dargestellt. Bei der Lichtquelle 3 kann es sich um einen gepulsten NIR (Nahes Infrarot)-Laser mit einer Wellenlänge von 780 nm handeln, für den Details ebenfalls in der US 2003/0 221 550 A1 angegeben sind.Part of the optical system 1 is a lithography system 2 with a light source 3 for generating a bundle of writing light 4. An optical path of the writing light 4 is in the Fig. 1 shown very schematically dotted. The light source 3 may be a pulsed NIR (near infrared) laser with a wavelength of 780 nm, for details also in the US 2003/0 221 550 A1 are indicated.

Teil des Lithografiesystems 2 ist eine Ablenkeinrichtung 5 für das Schreiblichtbündel. Die Ablenkeinrichtung 5 kann einen oder mehrere verkippbare Scan-Spiegel zur Umlenkung des Schreiblichtbündels aufweisen. Die Ablenkeinrichtung 5 kann mindestens eine optische Komponente beinhalten, die als mikroelektromechanische System (micro electro mechanical system, MEMS)-Komponente ausgeführt ist.Part of the lithography system 2 is a deflection device 5 for the writing light beam. The deflection device 5 may have one or more tiltable scanning mirrors for deflecting the writing light beam. The deflection device 5 may include at least one optical component, which is designed as a microelectromechanical system (microelectromechanical system, MEMS) component.

Das Bündel des Schreiblichts 4 passiert in seinem Verlauf nach der Lichtquelle 3 zwei Auskoppelspiegel 6 und 7, die nacheinander im Strahlengang des Schreiblichts 4 angeordnet sind. Im weiteren Verlauf durchtritt das Schreiblicht 4 eine Projektionsoptik 8 in Form eines Mikroskopobjektivs oder in Form eines Lithografieobjektivs. Die Projektionsoptik 8 dient zur Führung des strukturerzeugenden Schreiblichtbündels in einen Schreibfokus 9 (vgl. Fig. 2) im Bereich einer Substrat-Oberfläche 10 eines Substrats 11 in einer Substratebene 12. Eine Fläche, innerhalb der durch den Schreibfokus 9 eine zur Strukturerzeugung genutzte Polymerisation von Substratmaterial herbeigeführt werden kann, kann eine laterale Ausdehnung im Bereich zwischen 1 und 100 µm2, beispielsweise zwischen 2 und 10 µm2, haben. Der Schreibfokus 9 kann angenähert rund sein, kann aber auch ein x-/y-Aspektverhältnis aufweisen, welches deutlich von 1 abweicht und kann beispielsweise eine laterale Ausdehnung im Bereich von 1 µm x 10 µm aufweisen.The bundle of writing light 4 passes in its course after the light source 3, two output mirrors 6 and 7, which are successively arranged in the beam path of the writing light 4. In the further course, the writing light 4 passes through a projection optics 8 in the form of a microscope objective or in the form of a lithography objective. The projection optics 8 serve to guide the structure-generating pencil of light beams into a writing focus 9 (cf. Fig. 2 ) in the region of a substrate surface 10 of a substrate 11 in a substrate plane 12. A surface within which can be caused by the write focus 9 a used for structure generation polymerization of substrate material, a lateral extent in the range between 1 and 100 microns 2 , for example between 2 and 10 μm 2 . The writing focus 9 can be approximately round, but can also have an x / y aspect ratio that deviates significantly from 1 and can have, for example, a lateral extent in the range of 1 μm × 10 μm.

Eine Struktur wird durch Verlagern des Schreibfokus 9 relativ zum Substratmaterial hergestellt. Die erzeugte Struktur ergibt sich als Summe einer Mehrzahl oder einer Vielzahl polymerisierter Punktbereiche bzw. polymerisierter Linien. Eine typische derartige Struktur kann beispielsweise eine laterale Ausdehnung im Bereich von 5 µm x 200 µm aufweisen. Bei dem Punktbereich, in dem die Polymerisation stattfindet, handelt es sich ein Volumen-Pixel, also um ein Voxel. Die Projektionsoptik 8 hat eine bildseitige numerische Apertur, die größer ist als 0,5 und die beim Ausführungsbeispiel größer ist als 1,0 und beispielsweise im Bereich zwischen 1,2 und 1,4 liegt.A structure is made by displacing the writing focus 9 relative to the substrate material. The structure produced results as the sum of a plurality or a plurality of polymerized dot areas or polymerized lines. For example, a typical such structure may have a lateral extent in the range of 5 μm x 200 μm. The dot area where the polymerization takes place is a volume pixel, So a voxel. The projection optics 8 has a picture-side numerical aperture which is greater than 0.5 and which in the exemplary embodiment is greater than 1.0 and, for example, in the range between 1.2 and 1.4.

Die Ablenkeinrichtung 5 dient zur Ablenkung des Schreibfokus 9 des Schreiblichtbündels innerhalb eines Schreibfeldes 13 in der Substratebene 12 im Bereich der Substrat-Oberfläche 10. Innerhalb des gesamten Schreibfeldes 13 kann eine Strukturerzeugung mit Hilfe des Schreibfokus 9 erfolgen. Hierzu kann der Schreibfokus 9 im Schreibfeld 13 bewegt, insbesondere gescannt, werden. Eine erzeugte Struktur kann also deutlich größer sein als die Ausdehnung des Schreibfokus 9.The deflection device 5 serves to deflect the writing focus 9 of the writing light beam within a writing field 13 in the substrate plane 12 in the region of the substrate surface 10. Within the entire writing field 13, structure can be generated with the aid of the writing focus 9. For this purpose, the writing focus 9 can be moved in the writing field 13, in particular scanned. A generated structure can thus be significantly larger than the extent of the writing focus 9.

Die Strukturerzeugung im Schreibfokus 9 kann über einen Ein-Photonen-Prozess oder auch über einen Mehr-Photonen-Prozess geschehen.The structure generation in the write focus 9 can be done via a one-photon process or via a multi-photon process.

Zum optischen System 1 gehört weiterhin eine Vorschauoptik 14 zur Abbildung eines Vorschaufeldes 15 (vgl. wiederum Fig. 2) in der Substratebene 12 im Bereich der Substrat-Oberfläche 10. Das Vorschaufeld 15 hat eine Fläche, die um mindestens einen Faktor 10 größer ist als eine Fläche des Schreibfeldes 13. Das Vorschaufeld 15 kann um mindestens einen Faktor 100 größer sein als die Fläche des Schreibfeldes 13.To the optical system 1 further includes a preview optics 14 for imaging a Vorschaufeldes 15 (see again Fig. 2 ) in the substrate plane 12 in the region of the substrate surface 10. The preview field 15 has an area which is larger by at least a factor 10 than an area of the write field 13. The preview field 15 can be at least a factor 100 larger than the area of the write field Writing field 13.

Die Felder 13, 15 sind in der Fig. 1 nicht maßstabsgetreu wiedergegeben.The fields 13, 15 are in the Fig. 1 not reproduced to scale.

Zur Verdeutlichung von Lagebeziehungen zwischen den Strukturelementen des optischen Systems 1 wird nachfolgend ein kartesisches xyz-Koordinatensystem verwendet. In der Seitenansicht nach Fig.1 steht die xy-Ebene senkrecht auf der Zeichenebene und fällt mit der Substratebene 12 zusammen. Die z-Richtung steht hierauf senkrecht und verläuft in der Fig. 1 nach oben. Eine Ausdehnung der Felder 13, 15 sowie eine Position des Schreibfokus 9 lassen sich also durch x,y-Koordinaten spezifizieren.To illustrate positional relationships between the structural elements of the optical system 1, a Cartesian xyz coordinate system is used below. In the side view Fig.1 the xy-plane is perpendicular to the plane of the drawing and coincides with the substrate plane 12. The z-direction is perpendicular to this and runs in the Fig. 1 up. An extent of the fields 13, 15 and a position of the writing focus 9 can thus be specified by x, y coordinates.

Das Schreibfeld 13 hat eine xy-Ausdehnung mit einer typischen Kantenlänge im Bereich zwischen 100 µm und 1 mm, beispielsweise eine Erstreckung von 400 µm x 400 µm. Ein Fokusdurchmesser des Schreibfokus 9 in einer Fokalebene des Schreiblichtbündels liegt in einem Bereich zwischen 0,25 µm und 50 µm. Ein typischer Fokusdurchmesser des Schreibfokus 9 liegt bei 1 µm. Das Schreibfeld 13 ist also typischerweise längs jeder der beiden Koordinaten x und y um mehr als einen Faktor 100 größer als der Durchmesser des Schreibfokus 9.The writing field 13 has an xy dimension with a typical edge length in the range between 100 μm and 1 mm, for example an extent of 400 μm × 400 μm. A focus diameter of the writing focus 9 in a focal plane of the writing light beam is in a range between 0.25 μm and 50 μm. A typical focus diameter of the writing focus 9 is 1 μm. The writing field 13 is therefore typically greater than the diameter of the writing focus 9 by more than a factor 100 along each of the two coordinates x and y.

Das Vorschaufeld 15 hat eine Erstreckung mit einer typischen Kantenlänge zwischen 1 mm und 50 mm, beispielsweise eine typische xy-Ausdehnung von 10 mm x 10 mm. Das Vorschaufeld 15 kann noch größer sein und eine typische xy-Ausdehnung beispielsweise von 50 mm x 50 mm haben. Das Vorschaufeld 15 ist kleiner als die gesamte Substrat-Oberfläche 10, die eine Fläche von beispielsweise 20 x 20 cm2 haben kann. Das Substrat 11 kann rechteckig oder rund sein. Die Fläche des runden Substrats ist typischerweise einen Faktor 0,75 kleiner als diejenige des reckteckigen Substrats.The Vorschaufeld 15 has an extension with a typical edge length between 1 mm and 50 mm, for example, a typical xy-dimension of 10 mm x 10 mm. The Vorschaufeld 15 may be even larger and have a typical xy-expansion, for example, 50 mm x 50 mm. The Vorschaufeld 15 is smaller than the entire substrate surface 10, which may have an area of, for example 20 x 20 cm 2 . The substrate 11 may be rectangular or round. The area of the round substrate is typically a factor of 0.75 smaller than that of the rectangular substrate.

Die Vorschauoptik 14 vergrößert das Vorschaufeld 15 mit einer Vergrößerung im Bereich zwischen 5 und 100, typischerweise zwischen 30 und 40. Ein Arbeitsabstand zwischen einer substratnächsten Komponente der Vorschauoptik 14 und dem Substrat 10 liegt im Bereich zwischen 1 mm und 30 mm und beträgt typischerweise 10 mm.The preview optics 14 increases the preview field 15 with a magnification in the range between 5 and 100, typically between 30 and 40. A working distance between a substrate-next component of the preview optics 14 and the substrate 10 is in the range between 1 mm and 30 mm and is typically 10 mm ,

Die Vorschauoptik 14 hat eine bildseitige numerische Apertur, die kleiner ist als 0,1 und die beispielsweise 0,05 betragen kann.The preview optics 14 has a picture-side numerical aperture which is smaller than 0.1 and which may be, for example, 0.05.

Die Projektionsoptik 8 und die Vorschauoptik 14 sind von einem gemeinsamen Rahmen 16 getragen, der in der Fig. 1 schematisch und gebrochen angedeutet ist. Die Projektionsoptik 8 oder die Vorschauoptik 14 sind über einen Rahmenträger 17 in Bezug auf die Koordinaten x und y starr miteinander verbunden.The projection optics 8 and the preview optics 14 are supported by a common frame 16, which in the Fig. 1 is indicated schematically and broken. The projection optics 8 or the preview optics 14 are rigidly connected to one another via a frame carrier 17 with respect to the coordinates x and y.

Das Substrat 11 wird von einem Substrathalter 18 getragen. Dieser ist in der xy-Ebene in den beiden Translationsfreiheitsgraden x und y verlagerbar. Hierzu ist der Substrathalter 18 mit einem xy-Verlagerungsantrieb 19 verbunden. Der Substrathalter 18 mit dem xy-Verlagerungsantrieb 19 kann als xy-Tisch mit einer Positionier-Wiederholgenauigkeit besser als 5 µm ausgeführt sein.The substrate 11 is supported by a substrate holder 18. This can be displaced in the xy plane in the two translational degrees of freedom x and y. For this purpose, the substrate holder 18 is connected to an xy displacement drive 19. The substrate holder 18 with the xy displacement drive 19 can be designed as xy table with a positioning repeatability better than 5 microns.

Zur Detektion des Vorschaufeldes 15 weist die Vorschauoptik 14 eine CCD-Kamera 20 auf. Alternativ oder zusätzlich kann die Vorschauoptik 14 einen Tubus zur Sichtkontrolle über eine Bedienperson aufweisen. Eine Ausleuchtung des Vorschaufeldes 15 erfolgt über eine in die Vorschauoptik 14 integrierte Vorschau-Lichtquelle 21, die von der Schreiblicht-Lichtquelle 3 unabhängig ist. Die Vorschau-Lichtquelle 21 erzeugt Vorschaulicht 22 zur Ausleuchtung des Vorschaufeldes 15. Der Strahlengang des Vorschaulichtes 22 ist in der Fig. 1 ebenfalls äußerst schematisch gepunktet angedeutet. Bei der Vorschau-Lichtquelle 21 kann es sich um eine Lichtquelle im sichtbaren Wellenlängenbereich handeln. Alternativ ist es prinzipiell möglich, die Schreiblicht-Lichtquelle 3 auch zur Erzeugung von Vorschaulicht zur Ausleuchtung des Vorschaufeldes 15 heranzuziehen.For the detection of the Vorschaufeldes 15, the preview optics 14 on a CCD camera 20. Alternatively or additionally, the preview optics 14 may include a tube for visual inspection via an operator. An illumination of the Vorschaufeldes 15 via an integrated into the preview optics 14 preview light source 21, which is independent of the writing light source 3. The preview light source 21 generates preview light 22 for illuminating the Vorschaufeldes 15. The beam path of the preview light 22 is in the Fig. 1 also indicated very schematically dotted. The preview light source 21 may be a light source in the visible wavelength range. Alternatively, it is possible in principle to use the writing light source 3 also for generating preview light for illuminating the preview field 15.

Die Vorschau-Lichtquelle kann eine Weitfeld-Beleuchtung und/oder eine strukturierte Beleuchtung herbeiführen. Hierbei kann ein Speckle-Muster oder auch eine Streifenprojektion genutzt werden.The preview light source may provide wide field illumination and / or structured illumination. Here, a speckle pattern or a stripe projection can be used.

Das optische System 1 umfasst weiterhin eine Prozesskamera 23 zur Erfassung des Schreibfeldes 13. Dies geschieht unter Nutzung einer separaten Beleuchtung des Schreibfeldes, was in der Zeichnung nicht näher dargestellt ist. Alternativ oder zusätzlich kann zur Erfassung jedenfalls eines Teils des Schreibfeldes 13 der Strahlengang des Schreiblichtbündels in der Projektionsoptik 8 genutzt werden. Vom Schreibfeld 13 in die Projektionsoptik 8 retroreflektiertes Licht, z. B. das Schreiblicht 4, wird vom teiltransparenten Auskoppelspiegel 7 in die Prozesskamera 23 ausgekoppelt. Die Prozesskamera 23 weist einen CCD-Chip 24 zur Erfassung des über den Auskoppelspiegel 7 ausgekoppelten Lichts 4a auf. Sofern zur Erfassung des Schreibfeldes 13 eine von der Schreiblicht-Lichtquelle unabhängige Beleuchtung zum Einsatz kommt, kann trotzdem zusätzlich auch das Schreiblicht 4 über die Prozesskamera 23 erfasst werden.The optical system 1 further comprises a process camera 23 for detecting the writing field 13. This is done using a separate illumination of the writing field, which is not shown in detail in the drawing. Alternatively or additionally, for detecting at least part of the writing field 13, the beam path of the writing light beam in the projection optics 8 can be used. From the writing pad 13 in the projection optics 8 retroreflected light, z. As the writing light 4 is coupled out of the partially transparent Auskoppelspiegel 7 in the process camera 23. The process camera 23 has a CCD chip 24 for detecting the light coupled out via the output mirror 7 light 4a. If, for the detection of the writing field 13, a lighting independent of the writing light source is used, the writing light 4 can nevertheless be additionally detected via the process camera 23.

Weiterhin umfasst das optische System 1 eine Autofokuseinrichtung 25 zur Bestimmung einer Fokusebene der Projektionsoptik 8 und/oder der Vorschauoptik 14. Die Autofokuseinrichtung 25 erfasst dabei ein weiteres, über den teiltransparenten Auskoppelspiegel 6 ausgekoppeltes Lichtbündel 4b. Die Autofokuseinrichtung 25 kann über eine eigene Beleuchtung verfügen, was in der Zeichnung nicht näher dargestellt ist.Furthermore, the optical system 1 comprises an autofocus device 25 for determining a focal plane of the projection optics 8 and / or the preview optics 14. The autofocus device 25 detects a further light bundle 4b coupled out via the partially transparent output mirror 6. The autofocus device 25 may have its own illumination, which is not shown in detail in the drawing.

Die Projektionsoptik 8 ist relativ zur Vorschauoptik 14 in z-Richtung, also senkrecht zur Substratebene 12, verlagerbar. Hierzu ist die Projektionsoptik 8 mit einem z-Verlagerungsantrieb 26 ausgerüstet. Der z-Verlagerungsantrieb 26 ist in der Fig. 1 schematisch angedeutet und ist zwischen dem Rahmenträger 17 und der Projektionsoptik 8 angeordnet. Bei dieser z-Verlagerung der Projektionsoptik 8 relativ zur Vorschauoptik 14 ist eine Relativbewegung der beiden Optiken 8, 14 zueinander geführt über eine z-Führung. Diese z-Führung ist Teil des Rahmenträgers 17.The projection optics 8 can be displaced relative to the preview optics 14 in the z-direction, ie perpendicular to the substrate plane 12. For this purpose, the projection optics 8 is equipped with a z-displacement drive 26. The z-displacement drive 26 is in the Fig. 1 indicated schematically and is between the Frame carrier 17 and the projection optics 8 are arranged. In this z-displacement of the projection optics 8 relative to the preview optics 14 is a relative movement of the two optics 8, 14 guided to each other via a z-guide. This z-guide is part of the frame carrier 17th

Mithilfe des z-Verlagerungsantriebs 26 kann eine Anpassung der Fokalebenen der Projektionsoptik 8 und der Vorschauoptik 14 erfolgen.An adjustment of the focal planes of the projection optics 8 and the preview optics 14 can take place with the aid of the z displacement drive 26.

Das optische System 1 hat weiterhin eine Steuereinheit 27. Die Steuereinheit 27 hat einen Speicher 28, in dem Relativkoordinaten (RKx, RKy) der Lage des Schreibfeldes 13 relativ zur Lage des Vorschaufeldes 15 abgelegt sind.The optical system 1 furthermore has a control unit 27. The control unit 27 has a memory 28 in which relative coordinates (RK x , RK y ) of the position of the writing field 13 are stored relative to the position of the preview field 15.

Mithilfe des optischen Systems 1 können lithografisch Mikro- und/oder Nanostrukturen erzeugt werden. Dies kann maskenlos, also ohne Abbildung einer Objektstruktur auf die Substrat-Oberfläche 10, alternativ aber auch maskenbasierend erfolgen.The optical system 1 can be used to lithographically produce microstructures and / or nanostructures. This can be done maskless, ie without imaging an object structure on the substrate surface 10, but alternatively also mask-based.

Zur Bestimmung der Relativkoordinaten RKx, RKy der Lage des Schreibfeldes 13 relativ zur Lage des Vorschaufeldes 15 wird folgendermaßen vorgegangen:
Zunächst wird ein Testobjekt, beispielsweise eine Rechteckstruktur mit vorgegebenem x/y-Aspektverhältnis, mit der Vorschauoptik 14 aufgenommen. Die Lage des Testobjekts im Vorschaufeld 15 wird mittels der CCD-Kamera 20 erfasst. Anschließend wird das Testobjekt in Vorschaufeld 15 mithilfe des xy-Verlagerungsantriebs 19 positioniert, so dass das Testobjekt im Vorschaufeld 15 eine definierte Lage hat. Diese Lage kann beispielsweise so gewählt werden, dass eine Markierung auf dem Testobjekt auf den zentralen Koordinaten xv, yv (vgl. Fig. 2) des Vorschaufeldes 15 zu liegen kommt.
To determine the relative coordinates RK x , RK y of the position of the writing field 13 relative to the position of the Vorschaufeldes 15 proceeds as follows:
First, a test object, for example a rectangular structure with a predetermined x / y aspect ratio, is recorded with the preview optics 14. The position of the test object in the preview field 15 is detected by means of the CCD camera 20. Subsequently, the test object is positioned in the preview field 15 by means of the xy displacement drive 19, so that the test object in the preview field 15 has a defined position. This position can be selected, for example, such that a mark on the test object on the central coordinates x v , y v (cf. Fig. 2 ) of the Vorschaufeldes 15 comes to rest.

Gleichzeitig kann durch geregelte Betätigung des z-Verlagerungsantriebs 26 sichergestellt werden, dass das Testobjekt optimal in einer bildseitigen Fokalebene der Vorschauoptik 14 liegt.At the same time, it can be ensured by controlled actuation of the z-displacement drive 26 that the test object lies optimally in an image-side focal plane of the preview optics 14.

Anschließend wird das Testobjekt mithilfe des xy-Verlagerungsantriebs 19 auf dem Substrathalter 18 zwischen dem Vorschaufeld 15 und dem Schreibfeld 13 roh-verlagert. Bei dieser Roh-Verlagerung werden Roh-Relativkoordinaten RKx,roh; RKy,roh dokumentiert und im Speicher 28 abgelegt. Ziel der Roh-Verlagerung ist es, das Testobjekt in das Schreibfeld 13 zu verlagern.Subsequently, the test object is rough-shifted by means of the xy displacement drive 19 on the substrate holder 18 between the feed fence 15 and the writing pad 13. In this raw displacement raw relative coordinates RK x, raw ; RK y, raw documented and stored in memory 28. The aim of the raw relocation is to move the test object into the writing field 13.

Anschließend wird das Testobjekt mit der Projektionsoptik 8 und der Prozesskamera 23 aufgenommen. Anschließend wird das Testobjekt im Schreibfeld 13 fein positioniert, bis das Testobjekt im Schreibfeld 13 eine definierte Lage hat. Diese definierte Lage kann beispielsweise so sein, dass die Markierung des Testobjekts nach erfolgter Feinpositionierung im Schreibfeld 13 mit einem Zentrum xs, ys (vgl. Fig. 2) des Schreibfeldes 13 übereinstimmt. Auch die Änderungen der Roh-Relativkoordinaten des Testobjekts bei der Feinpositionierung werden dokumentiert und im Speicher 28 abgelegt. Aus den Roh-Relativkoordinaten und den dokumentierten Änderungen bei der Feinpositionierung können dann die gewünschten Relativkoordinaten der Lage des Schreibfeldes 13 relativ zur Lage des Vorschaufeldes 15 dokumentiert und im Speicher 28 abgelegt werden. Beim Beispiel nach Fig. 2 ergibt sich folgender Zusammenhang zwischen den Relativkoordinaten RKx, RKy und den Koordinaten xv, yv und xs, ys der Felder 15 und 13: RK x , RK y = x v x s , y v y s

Figure imgb0001
Subsequently, the test object with the projection optics 8 and the process camera 23 is recorded. Subsequently, the test object is finely positioned in the writing field 13 until the test object in the writing field 13 has a defined position. This defined position can, for example, be such that the marking of the test object after fine positioning in the writing field 13 has a center x s , y s (cf. Fig. 2 ) of the writing field 13 matches. The changes in the raw relative coordinates of the test object during the fine positioning are also documented and stored in the memory 28. From the raw relative coordinates and the documented changes in the fine positioning, the desired relative coordinates of the position of the writing field 13 relative to the position of the preview field 15 can then be documented and stored in the memory 28. For example Fig. 2 the following relationship between the relative coordinates RK x , RK y and the coordinates x v , y v and x s , y s of the fields 15 and 13 results: RK x . RK y = x v - x s . y v - y s
Figure imgb0001

Die erzeugten Relativkoordinaten RKx, RKy werden dann im Speicher 28 der Steuereinheit 27 abgelegt und stehen für einen nachfolgenden Abruf beim Verlagern eines Substrats, auf dem lithografisch eine Struktur erzeugt werden soll, in eine Schreib-Zielposition zur Verfügung.The generated relative coordinates RK x , RK y are then stored in the memory 28 of the control unit 27 and are available for a subsequent retrieval when moving a substrate on the lithographically a structure to be generated in a write-destination position.

Nach erfolgter Bestimmung der Relativkoordinaten RKx, RKy ist die Vorschauoptik 14 relativ zur Positionsoptik 8 kalibriert. Eine Verlagerung des Substrathalters 18 um die Koordinaten (RKx, RKy) überführt ein vom Substrathalter getragenes Objekt vom Zentrum des Vorschaufeldes 15 in das Zentrum des Schreibfeldes 13.After the determination of the relative coordinates RK x , RK y , the preview optics 14 are calibrated relative to the position optics 8. A displacement of the substrate holder 18 about the coordinates (RK x , RK y ) transfers an object carried by the substrate holder from the center of the preview field 15 into the center of the writing field 13.

Durch Kenntnis der Ausdehnung des Vorschaufeldes 15 kann auch eine vom Benutzer ausgewählte Position im Vorschaufeld 15 direkt auf ein Zentrum im Schreibfeld 13 überführt werden. Dies geschieht, indem die Steuereinheit 27 zunächst diese ausgewählte Position im Vorschaufeld 15 zentriert, was durch entsprechende Positionierung über den xy-Verlagerungsantrieb 19 und Dokumentierung entsprechender Relativkoordinaten erfolgt. Anschließend wird die vorstehend beschriebene Überführungs-Verlagerung durchgeführt. Die Zentrierung und die Überführungs-Verlagerung können auch innerhalb eines Schrittes kombiniert werden.By knowing the extent of the preview field 15, a position selected by the user in the preview field 15 can also be transferred directly to a center in the writing field 13. This is done by the control unit 27 initially centered on this selected position in Vorschaufeld 15, which is done by appropriate positioning on the xy displacement drive 19 and documenting corresponding relative coordinates. Subsequently, the transfer transfer described above is performed. The centering and transfer relocation can also be combined within one step.

Das vorstehend beschriebene Bestimmungsverfahren kann alternativ auch ausgehend von einer Aufnahme des Testobjekts im Schreibfeld 13 erfolgen, wobei dann das Testobjekt zunächst im Schreibfeld 13 positioniert wird und anschließend eine Roh-Verlagerung des Testobjekts vom Schreibfeld 13 in das Vorschaufeld 15 mit entsprechender Feinpositionierung innerhalb des Vorschaufeldes 15 erfolgt. Die Dokumentation zunächst der Roh-Relativkoordinaten und die Erzeugung hieraus und dem Ergebnis der Feinpositionierung der gewünschten Relativkoordinaten erfolgt dann analog zu dem, was vorstehend im Zusammenhang mit dem Bestimmungsverfahren, ausgehend vom Testobjekt im Vorschaufeld 15, bereits erläutert wurde.Alternatively, the determination method described above can also be carried out starting from a recording of the test object in the write field 13, wherein the test object is first positioned in the writing field 13 and then a raw displacement of the test object from the writing field 13 into the preview field 15 with corresponding fine positioning takes place within the Vorschaufeldes 15. The documentation first of the raw relative coordinates and the generation thereof and the result of the fine positioning of the desired relative coordinates then takes place analogously to what has already been explained above in connection with the determination method, starting from the test object in the preview field 15.

Je nach der Reihenfolge einer Positionierung des Testobjekts handelt es sich beim Ausgangsfeld also entweder um das Vorschaufeld 15 oder um das Schreibfeld 13 und beim Zielfeld entweder um das Schreifeld 13 oder um das Vorschaufeld 15.Depending on the order of positioning of the test object, the output field is thus either the preview field 15 or the writing field 13 and the target field is either the Schreifeld 13 or the Vorschaufeld 15th

Bei der Feinpositionierung erfolgt eine Korrelationsmaximierung der Lagen des Testobjekts im Ausgangsfeld einerseits und im Zielfeld andererseits. Diese Korrelationsmaximierung erfolgt durch Drehung des Testobjektes und/oder durch Stauchung des Testobjektes und/oder durch Verschiebung des Testobjektes.In fine positioning, a correlation maximization of the positions of the test object in the output field on the one hand and in the target field on the other hand takes place. This correlation is maximized by rotation of the test object and / or by compression of the test object and / or by displacement of the test object.

Die Drehung erfolgt um eine zur z-Achse parallele Achse, was durch einen zusätzlichen Schwenkmotor 29 des Substrathalters 18 erfolgen kann. Alternativ kann eine Drehung auch durch eine Bilddrehung der jeweiligen Erfassungsoptik bei der Darstellung für den Benutzer geschehen. Zur Erfassung einer solchen Drehung sind mehrere Markierungen an verschiedenen x,y-Positionen des Testobjekts aufgebracht. Nach dem Roh-Verlagern bzw. bei Feinpositionierung kann durch Drehung eine Übereinstimmung dieser Testmarkierungen mit Zielmarkierungen maximiert werden.The rotation takes place about an axis parallel to the z-axis, which can be done by an additional pivot motor 29 of the substrate holder 18. Alternatively, a rotation can also be done by an image rotation of the respective detection optics in the representation for the user. To detect such a rotation, a plurality of markings are applied to different x, y positions of the test object. After raw relocation or fine positioning, rotation of these test marks with target marks can be maximized by rotation.

Bei der Stauchung wird über den z-Verlagerungsantrieb 26 ein Abbildungsmaßstab-Verhältnis zwischen der Produktionsoptik 8 und der Vorschauoptik 14 variiert, bis ein vorgegebenes Verhältnis mit einem Abstandsverhältnis von Testmarkierungen auf dem Testobjekt bei der Aufnahme einerseits über die Vorschauoptik 14 und andererseits über die Projektionsoptik 8 übereinstimmt.During the compression, a magnification ratio between the production optics 8 and the preview optics is produced via the z displacement drive 26 14 varies until a predetermined ratio coincides with a distance ratio of test marks on the test object during the recording on the one hand via the preview optics 14 and on the other hand via the projection optics 8.

Die Korrelationsmaximierung durch Verschiebung, also durch Translation in den Freiheitsgraden x und y, wurde vorstehend im Zusammenhang mit der Fig. 2 bereits erläutert.The correlation maximization by displacement, ie by translation in the degrees of freedom x and y, has been described above in connection with the Fig. 2 already explained.

Bei der Testobjekt-Aufnahme kann ein Bildstapel durch Aufnahme verschiedener Bilder des Testobjekts mit der jeweiligen Aufnahme-Optik, also mit der Projektionsoptik 8 oder der Vorschauoptik 14, in verschiedenen z-Verlagerungspositionen dieser Aufnahme-Optik relativ zum Testobjekt in der z-Verlagerungsrichtung senkrecht zur xy-Substratebene 12 erzeugt werden.In the test object recording, an image stack can be obtained by recording different images of the test object with the respective imaging optics, ie with the projection optics 8 or the preview optics 14 in different z-displacement positions of this recording optics relative to the test object in the z-displacement direction perpendicular to xy substrate plane 12 are generated.

Zusätzlich zu den Relativkoordinaten längs der x- und längs der y-Koordinate kann auch eine Relativkoordinate in z-Richtung abgelegt werden, sofern zwischen Fokalebenen der Projektionsoptik 8 einerseits und der Vorschauoptik 14 andererseits eine z-Ablage der Fokalebenen vorliegt.In addition to the relative coordinates along the x-coordinate and along the y-coordinate, a relative coordinate in the z-direction can also be stored if there is a z-offset of the focal planes between focal planes of the projection optics 8 on the one hand and the preview optics 14 on the other hand.

Bei der Bestimmung der Relativkoordinaten kann mehrfach ein Roh-Verlagern des Testobjekts zwischen den Feldern 13, 15 erfolgen. Das Bestimmen der Relativkoordinaten kann dann im Rahmen eines iterativen Prozesses erfolgen.When determining the relative coordinates, a raw displacement of the test object between the fields 13, 15 can take place several times. The determination of the relative coordinates can then take place within the scope of an iterative process.

Zur lithografischen Strukturerzeugung mit dem optischen System 1 werden zunächst, wie vorstehend erläutert, die Relativkoordinaten der Lage des Schreibfeldes 13 relativ zur Lage des Vorschaufeldes 15 bestimmt. Anschließend wird das Substrat 11 auf dem Substrathalter 18 bereitgestellt. Es kann dann ein für die Strukturierung vorgesehener Teilbereich auf dem gesamten Substrat 11 unter das Vorschaufeld 15 mit Hilfe des xy-Verlagerungsantriebs 19 gefahren werden. Es wird dann eine Schreib-Zielposition auf dem Substrat 11 im Vorschaufeld 15 identifiziert und durch den Benutzer ausgewählt. Diese Schreib-Zielposition kann dann im Vorschaufeld 15 ausgerichtet werden. Anschließend wird die Schreib-Zielposition vom Vorschaufeld 15 in das Schreibfeld 13 unter Nutzung der bestimmten Relativkoordinaten RKx, RKy verlagert. Sodann wird eine vorgegebene Struktur in das Schreibfeld 13 mit dem Schreiblichtbündel geschrieben, wobei der Schreibfokus 9 entsprechend der Form der vorgegebenen Struktur mithilfe der Ablenkeinrichtung 5 im Schreibfeld 13 verlagert wird.For lithographic structure generation with the optical system 1, the relative coordinates of the position of the writing field 13 relative to the position of the advance field 15 are initially determined, as explained above. Subsequently For example, the substrate 11 is provided on the substrate holder 18. It can then be driven on the entire substrate 11 under the Vorschaufeld 15 by means of the xy displacement drive 19 a provided for the structuring portion. A write destination position on the substrate 11 in the preview field 15 is then identified and selected by the user. This write target position can then be aligned in the preview field 15. Subsequently, the write target position is shifted from the preview field 15 into the write field 13 using the determined relative coordinates RK x , RK y . Then, a predetermined structure is written in the writing field 13 with the writing light beam, whereby the writing focus 9 is displaced according to the shape of the predetermined structure by means of the deflecting device 5 in the writing field 13.

Als Substrat 11 kann ein Wafer mit einem Durchmesser beispielsweise von etwa 15 cm (6 Zoll) oder von etwa 20 cm (8 Zoll) zum Einsatz kommen. Auch ein Wafer mit einem noch größeren Durchmesser kann zum Einsatz kommen.As the substrate 11, a wafer having a diameter of, for example, about 15 cm (6 inches) or about 20 cm (8 inches) may be used. Even a wafer with an even larger diameter can be used.

Claims (13)

  1. Optical system (1) for producing lithographic structures,
    - comprising a projection optical unit (8) for guiding a structure-producing writing light beam into a writing focus (9) in the region of a substrate surface (10) in a substrate plane (12),
    - comprising a deflection device (5) for deflecting the writing focus (9) of the writing light beam within a writing field (13) in the region of the substrate surface (10),
    - comprising a preview optical unit (14) for imaging a preview field (15) in the region of the substrate surface (10), wherein the preview field (15) has an area which is greater than an area of the writing field (13) by at least a factor of 10,
    - wherein the projection optical unit (8) and the preview optical unit (14) are carried by a common frame (16),
    - comprising a substrate holder (18), which is displaceable in a plane (xy) parallel to the substrate surface (10) with two degrees of translational freedom (x,y),
    - comprising a control unit (27) comprising a memory (28), in which relative coordinates (RKx, RKy) of a position of the writing field (13) relative to the position of the preview field (15) are stored.
  2. Optical system according to Claim 1, characterized by a process camera (23) for capturing the writing field (13) using the beam path of the writing light beam in the projection optical unit (8).
  3. Optical system according to Claim 1 or 2, characterized in that the projection optical unit (8) is displaceable relative to the preview optical unit (14) in a direction (z) perpendicular to the substrate plane (12).
  4. Optical system according to any one of Claims 1 to 3, characterized by an autofocusing device (25) for determining a focal plane of the projection optical unit (8) and/or of the preview optical unit (14).
  5. Optical system according to any one of Claims 1 to 4, characterized in that the projection optical unit (8) has an image-side numerical aperture which is greater than 1.0.
  6. Optical system according to any one of Claims 1 to 5, characterized in that the preview optical unit (14) has an image-side numerical aperture which is less than 0.1.
  7. Optical system according to any one of Claims 1 to 6, characterized by a light source (3) for producing writing light (4).
  8. Method for determining relative coordinates (RKx, RKy) of a position of a writing field (13) relative to a position of a preview field (15) in an optical system (1) according to any one of claims 1 to 7, said method comprising the following steps:
    - recording a test object using one of the two optical units (8, 14) from the optical group: preview optical unit (14) and projection optical unit (8) in an initial field (13, 15), namely in one of the two fields from the field group: preview field (15) and writing field (13),
    - positioning the test object in the initial field (13, 15) such that the test object has a defined position in the initial field (13, 15),
    - carrying out, by way of the substrate holder (18), a coarse displacement of the test object between the initial field (13, 15) and a target field (15, 13), namely the other of the two fields from the field group,
    - registering coarse relative coordinates (RKx, coarse; RKy, coarse) of this coarse displacement,
    - recording the test object using the other of the two optical units (14, 8) from the optical group,
    - finely positioning the test object in the target field (15, 13) such that the test object has a defined position in the target field (15, 13),
    - registering changes in the coarse relative coordinates (RKx, coarse; RKy, coarse) during the fine positioning and producing the relative coordinates (RKx, RKy) from the coarse relative coordinates (RKx, coarse; RKy, coarse) and the result of the registration.
  9. Method according to Claim 8, characterized in that a correlation of the position of the test object in the initial field (13, 15) on the one hand and in the target field (15, 13) on the other hand is maximized during the fine positioning.
  10. Method according to Claim 8 or 9, characterized in that an image stack is produced during the test object recording by recording various images of the test object using the recording optical unit (8, 14) in various displacement positions of the recording optical unit (14, 8) relative to the test object in a displacement direction (z) perpendicular to the substrate plane (12).
  11. Method according to any one of Claims 8 to 10, characterized in that a coarse displacement of the test object between the fields (13, 15) of the field group occurs multiple times during the determination.
  12. Method for producing lithographic structures using the optical system (1) according to any one of Claims 1 to 7, said method comprising the following steps:
    - determining the relative coordinates (RKx; RKy) of the position of the writing field (13) relative to the position of the preview field (15) using the method according to any one of Claims 8 to 11,
    - providing the substrate (11) on the substrate holder (18),
    - determining a writing target position on the substrate (11) in the preview field (15),
    - displacing the writing target position from the preview field (15) into the writing field (13) using the determined relative coordinates (RKx, RKy),
    - writing a predetermined structure into the writing field (13) using the writing light beam.
  13. Method according to Claim 12, characterized in that the writing target position is aligned in the preview field (15) before the writing target position is displaced from the preview field (15) into the writing field (13).
EP15767470.6A 2014-10-06 2015-09-22 Optical system for producing lithographic structures Active EP3204825B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014220168.3A DE102014220168B4 (en) 2014-10-06 2014-10-06 Optical system for lithographic structure generation and method for the determination of relative coordinates
PCT/EP2015/071709 WO2016055259A1 (en) 2014-10-06 2015-09-22 Optical system for producing lithographic structures

Publications (2)

Publication Number Publication Date
EP3204825A1 EP3204825A1 (en) 2017-08-16
EP3204825B1 true EP3204825B1 (en) 2019-02-27

Family

ID=54185954

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15767470.6A Active EP3204825B1 (en) 2014-10-06 2015-09-22 Optical system for producing lithographic structures

Country Status (6)

Country Link
US (2) US9989862B2 (en)
EP (1) EP3204825B1 (en)
JP (1) JP6643328B2 (en)
CN (1) CN106796404B (en)
DE (1) DE102014220168B4 (en)
WO (1) WO2016055259A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8164343B2 (en) 2003-09-05 2012-04-24 Midtronics, Inc. Method and apparatus for measuring a parameter of a vehicle electrical system
DE102014220168B4 (en) 2014-10-06 2017-10-12 Carl Zeiss Ag Optical system for lithographic structure generation and method for the determination of relative coordinates
WO2020015686A1 (en) * 2018-07-17 2020-01-23 苏州欧普照明有限公司 Smart control device for light fixture
CN112198770A (en) * 2020-11-01 2021-01-08 杨清华 Novel memorable photoetching machine system

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59100805A (en) * 1982-12-01 1984-06-11 Canon Inc Device for observing object
JP3141732B2 (en) * 1995-07-05 2001-03-05 株式会社日立製作所 Charged particle beam equipment
JPH10256350A (en) * 1997-03-06 1998-09-25 Toshiba Corp Semiconductor manufacturing method and apparatus therefor
WO1999056308A1 (en) * 1998-04-28 1999-11-04 Nikon Corporation Exposure system and method of manufacturing micro device
NL1018152C1 (en) 2000-11-29 2002-05-31 Innas Free Piston Bv Hydraulic device.
JP3446741B2 (en) * 2001-01-24 2003-09-16 松下電工株式会社 Light beam deflection control method and optical shaping apparatus
JP2004158741A (en) * 2002-11-08 2004-06-03 Canon Inc Aligning apparatus
US20050049751A1 (en) * 2002-11-11 2005-03-03 Farnworth Warren M. Machine vision systems for use with programmable material consolidation apparatus and systems
JP2004223790A (en) * 2003-01-21 2004-08-12 Seiko Instruments Inc Method and apparatus for smoothly producing fine shaped article having curved shape by optical shaping method
DE10315086B4 (en) * 2003-04-02 2006-08-24 Infineon Technologies Ag Method and apparatus for aligning semiconductor wafers in semiconductor manufacturing
JP2006078283A (en) * 2004-09-08 2006-03-23 Nikon Corp Position measuring device, aligner provided with the position-measuring device and aligning method using the position-measuring device
JP4699051B2 (en) * 2005-03-03 2011-06-08 三星ダイヤモンド工業株式会社 Stereolithography equipment
JP2008124142A (en) * 2006-11-09 2008-05-29 Dainippon Screen Mfg Co Ltd Position detecting method and apparatus, pattern drawing apparatus, and object to be detected
CN101738881B (en) * 2008-11-13 2011-06-22 财团法人金属工业研究发展中心 Two-stage image precise contraposition method for upper plate and lower plate, and device thereof
KR20110087401A (en) * 2010-01-26 2011-08-03 삼성전자주식회사 Auto focusing device and method of maskless exposure apparatus
US8903205B2 (en) 2012-02-23 2014-12-02 Karlsruhe Institute of Technology (KIT) Three-dimensional freeform waveguides for chip-chip connections
US9034222B2 (en) 2012-02-23 2015-05-19 Karlsruhe Institut Fuer Technologie Method for producing photonic wire bonds
DE102014220168B4 (en) 2014-10-06 2017-10-12 Carl Zeiss Ag Optical system for lithographic structure generation and method for the determination of relative coordinates

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
DE102014220168B4 (en) 2017-10-12
US20170205715A1 (en) 2017-07-20
US20180275528A1 (en) 2018-09-27
US10310385B2 (en) 2019-06-04
JP2017538139A (en) 2017-12-21
DE102014220168A1 (en) 2016-04-07
JP6643328B2 (en) 2020-02-12
WO2016055259A1 (en) 2016-04-14
EP3204825A1 (en) 2017-08-16
CN106796404B (en) 2019-08-06
CN106796404A (en) 2017-05-31
US9989862B2 (en) 2018-06-05

Similar Documents

Publication Publication Date Title
DE3318980C2 (en) Device for adjustment during projection copying of masks
EP3204825B1 (en) Optical system for producing lithographic structures
DE202011111072U1 (en) Device for the spatially resolved introduction of an intensity pattern of electromagnetic radiation into a photosensitive substance
EP1436658B1 (en) Method and device for optically examining an object
EP1116932A2 (en) Measuring apparatus and method for measuring structures on a substrat
DE102010001388A1 (en) Facet mirror for use in microlithography
DE102012208514A1 (en) Adjustment device and mask inspection device with such an adjustment device
DE102008017645A1 (en) Apparatus for microlithographic projection exposure and apparatus for inspecting a surface of a substrate
DE3910048C2 (en)
DE3915642A1 (en) ALIGNMENT AND EXPOSURE DEVICE
WO2018113918A1 (en) Device and method for exposing a light-sensitive layer
DE102007000981A1 (en) Apparatus and method for measuring structures on a mask and for calculating the structures resulting from the structures in a photoresist
DE102007022895B9 (en) Device for transferring structures provided in a mask onto a substrate
DE102014215439B4 (en) Method for producing a structure
WO2015052323A1 (en) Facet element with adjustment markings
DE102017206541A1 (en) illumination optics
AT413305B (en) METHOD AND DEVICE FOR ORIENTING A ADJUSTABLE MICROSCOPE USING THE MIRRORED ADJUSTING MASK
EP4329977A2 (en) Method and system for producing microstructured components
DE102017221746A1 (en) EUV collector for use in an EUV projection exposure system
DE102018212073A1 (en) Measuring device for determining a spatial position of an illumination light beam path of an EUV projection exposure apparatus
DE102021201016A1 (en) Method for calibrating a module of a projection exposure system for semiconductor lithography
DE102006036172B4 (en) Optical arrangement for the sequential positioning of working fields on an object
EP1179748A2 (en) Combination of imaging and scanning methods for checking reticles
DE10001239A1 (en) Device for measuring structures on substrate has non-optical measurement device on bearer element, whereby normal air pressure conditions exist between measurement device and substrate
DE102015000920A1 (en) Apparatus and method for depositing drops on a substrate

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170327

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180926

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HUEBNER, PHILIPP

Inventor name: RICHTER, STEFAN

Inventor name: MAPPES, TIMO

Inventor name: KRAMPERT, GERHARD

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1102251

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015008156

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190227

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190527

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190528

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190527

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015008156

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20191128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190922

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190922

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150922

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1102251

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200922

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502015008156

Country of ref document: DE

Owner name: NANOSCRIBE HOLDING GMBH, DE

Free format text: FORMER OWNER: CARL ZEISS AG, 73447 OBERKOCHEN, DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20220317 AND 20220323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230504

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230919

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230918

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231117

Year of fee payment: 9