EP3204782B1 - Method for determining characteristics of a partial discharge event - Google Patents
Method for determining characteristics of a partial discharge event Download PDFInfo
- Publication number
- EP3204782B1 EP3204782B1 EP15783974.7A EP15783974A EP3204782B1 EP 3204782 B1 EP3204782 B1 EP 3204782B1 EP 15783974 A EP15783974 A EP 15783974A EP 3204782 B1 EP3204782 B1 EP 3204782B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- voltage
- measuring
- operating
- partial discharge
- component
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 28
- 230000008878 coupling Effects 0.000 claims description 32
- 238000010168 coupling process Methods 0.000 claims description 32
- 238000005859 coupling reaction Methods 0.000 claims description 32
- 239000003990 capacitor Substances 0.000 claims description 27
- 230000001960 triggered effect Effects 0.000 claims description 6
- 238000004458 analytical method Methods 0.000 claims description 2
- 238000010972 statistical evaluation Methods 0.000 claims description 2
- 238000005259 measurement Methods 0.000 description 46
- 238000012360 testing method Methods 0.000 description 8
- 238000011156 evaluation Methods 0.000 description 6
- 230000015556 catabolic process Effects 0.000 description 5
- 230000002123 temporal effect Effects 0.000 description 5
- 230000006378 damage Effects 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 4
- 238000001514 detection method Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 230000000737 periodic effect Effects 0.000 description 3
- 230000003321 amplification Effects 0.000 description 2
- 230000006735 deficit Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000012774 insulation material Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/12—Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
- G01R31/1227—Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R25/00—Arrangements for measuring phase angle between a voltage and a current or between voltages or currents
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/12—Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
- G01R31/14—Circuits therefor, e.g. for generating test voltages, sensing circuits
Definitions
- the invention relates to a method for determining characteristics of a partial discharge process in a high voltage electrical component, in which a partial discharge is detected and measured, wherein at the high voltage component, a total voltage is applied as a superposition of a DC operating voltage and additionally of a time varying measuring voltage, and in that a charge difference caused by a partial discharge is detected several times relative to the total voltage and at the same time a phase reference of this partial discharge to the measuring voltage which changes over time in order subsequently to carry out an error detection on the basis of the characteristic properties of the phase reference of the multiply measured partial discharges.
- Electrical high-voltage components that are part of a high-voltage system must have a sufficiently large and reliable insulation during operation in the high-voltage system to avoid electrical breakdown and damage caused by the high-voltage electrical components and the high-voltage system.
- Such a partial discharge can have various causes.
- An external partial discharge arises between a surface of the high-voltage component in a surrounding air space, wherein audible and visible corona discharges preferably occur at sharp-edged areas of the high-voltage component.
- audible and visible corona discharges preferably occur at sharp-edged areas of the high-voltage component.
- internal partial discharges may occur in which discharges, but not complete breakdowns in the insulating medium, are favored by inhomogeneities of the insulating medium.
- an alternating voltage can be applied to the high-voltage components to be tested, and the partial discharges detected or generated thereby can be detected.
- conclusions can be drawn on the basis of the often characteristic distribution of individual partial discharges relative to the phase position of the impressed for the measurement of AC voltage Type of partial discharge and thus to be drawn on the possible effects of a fault that is present in the high-voltage component and could possibly soon lead to overuse and failure of the electrical high-voltage component during operation.
- the measuring methods known from practice are based on a temporal assignment of individual partial discharges to an applied alternating voltage.
- the electrical high-voltage component is operated with a DC voltage, partial discharges that occur can not be set in relation to a phase position of an excitation, so that the evaluation methods known from practice can not be used. If a partial discharge is excited by a DC voltage, therefore, no conclusions can be drawn on the type of fault and ultimately on the risk of failure of the relevant high-voltage component.
- the effects of the DC voltage applied during operation of the high-voltage component would not occur during the measuring process and therefore can not be considered.
- the AC voltage applied separately instead of the DC operating voltage allows the detection of partial discharges, but does not allow reliable inference to occur during operation of the high voltage component with DC voltage partial discharges and the cause of the fault, or the risk of failure of the high voltage component when operating with DC voltage.
- JP 2012 088080 or JP 2002 323533 It is in each case known to additionally connect a high-voltage component connected to a DC voltage source to an external AC voltage source and to superimpose the DC voltage generated during normal operation with an additional AC voltage in order to be able to measure and evaluate the partial discharges occurring during a test procedure.
- a high-voltage component connected to a DC voltage source to an external AC voltage source and to superimpose the DC voltage generated during normal operation with an additional AC voltage in order to be able to measure and evaluate the partial discharges occurring during a test procedure.
- an individual adaptation of the AC voltage source and a suitable for carrying out the test process connection with the high-voltage component is required, which is associated with a considerable effort and usually with an at least temporary interruption of normal operation.
- the measuring voltage is generated from a residual ripple of the operating voltage generated from an AC voltage by either an already existing and a sufficiently large amplitude utilizing residual ripple or a ripple of the DC operating voltage is amplified to a Amplified ripple amplitude of at least 3%, preferably more than 10% and most preferably of more than 20% of the DC operating voltage.
- the high voltage required for the operation of the high-voltage electrical component is almost invariably generated in practice from an alternating voltage, which is converted by means of a rectifier device into a constant as possible DC operating voltage. In this case, even with complex rectifier devices, a completely constant DC operating voltage is often not achieved, but the voltage fluctuations of the AC voltage are largely, but not completely reduced.
- the residual ripple is a characteristic of the periodic voltage fluctuations remaining after rectification of the AC voltage, which can be reduced to less than 1% to 2% of an output amplitude of the AC voltage in efficient rectifier devices.
- This residual ripple usually has regular periodic fluctuations whose phase and frequency are predetermined by the alternating voltage used for generating the operating DC voltage. It has been shown that even with a slight amplification of this residual ripple, a regular periodic AC voltage component can be generated, which is superimposed on the DC operating voltage.
- the appropriately amplified residual ripple allows for occurring partial discharges simultaneously determining a phase reference of the generated partial discharges with the increased ripple, which allows the error assignment of the partial discharges.
- the as efficient as possible rectification of the AC voltage during regular operation of the high voltage component can thereby be selectively influenced in order to maintain a periodically fluctuating AC voltage component, which is superimposed on the DC component generated by the incomplete rectification.
- the modification of the rectification can be carried out, for example, by a targeted erroneous control of the semiconductor elements used for the rectification or optionally by an adjustment of the ignition angles of the semiconductor elements.
- the phase reference is detected in a separate measuring branch relative to the measuring voltage and separated from a measuring branch for the measurement of the partial discharge.
- the partial discharge or a charge difference caused thereby can be detected in a measuring branch relative to the operating DC voltage or to the total voltage generated by superimposition.
- a measurement of the phase reference relative to the measurement voltage and a measurement of the partial discharge relative to the DC operating voltage or the total voltage is taken in the sense of the present invention as a measurement, which are carried out at areas of the high voltage components or the voltage source associated with these high voltage components, in which predominantly or exclusively the measuring voltage, or the DC operating voltage or the resulting total voltage is applied.
- a measurement in separate measuring branches can be a spatially-spaced measurement of the Include phase reference and partial discharge. However, it is not considered to be a measurement in separate measuring branches when the measurements are made with series-connected measuring equipment or even with the same measuring equipment.
- the measurement of a partial discharge can be carried out, for example, by means of a first coupling capacitor, which is arranged between the high-voltage component charged with the operating DC voltage or with the total voltage and an earth conductor.
- the measurement of the phase reference of a partial discharge measurement carried out in this way can be carried out on an AC voltage source which generates the DC operating voltage applied to the high-voltage component with the aid of a rectifier device. It merely has to be ensured that a phase position, determined during a partial discharge measurement, of the time-varying measuring voltage to the AC voltage source has a time-known dependence, which is decisive for the measured partial discharge.
- a characteristic of a given error type dependence of the partial discharges can be determined and evaluated by the respective phase.
- the partial discharge is determined with the aid of a first coupling capacitor
- the phase reference is determined by means of a second coupling capacitor, wherein the capacitance C k2 of the second coupling capacitor is substantially greater than the capacitance C k1 of the first coupling capacitor.
- the determination of the phase reference is triggered by means of a light signal of a light-emitting diode fed by the measuring voltage.
- a light signal of a light-emitting diode fed by the measuring voltage Commercially available electronic measuring components are known with the aid of which an occurring charge difference can be set in a temporal relation to an externally generated light signal or more generally in a relation to a triggered time information.
- a suitable light signal can be generated with commercially available and inexpensive components, with a high sensitivity of the light signal with respect to the time varying measuring voltage. With such a measuring process step can be reliably and with high accuracy detected a change over time of the measuring voltage and used for the determination of the phase reference of a simultaneous partial discharge and used.
- a particularly advantageous embodiment of the inventive concept is provided that as Measuring voltage is used an AC voltage whose peak value has less than 50% of the DC operating voltage, preferably less than 30% and more preferably less than 15% of the DC operating voltage.
- the AC voltage can be generated for example by a transformer which is integrated at a suitable point in the power supply of the high-voltage component.
- the high-voltage component is repeatedly applied with a pulse-shaped surge voltage.
- Fig. 1 shows a schematic representation of a measuring device 1 for a high voltage component 2, which is shown by way of example as part of a high-voltage system not shown in detail.
- the high-voltage component 2 is supplied and operated via a DC voltage device 3 during operation of the high-voltage system with a DC operating voltage.
- the DC voltage device 3 is fed from an AC voltage device 4 whose AC voltage is rectified by a rectifier device 5 and converted into a DC voltage.
- the rectifier device 5 is an amplifier device 6 with an integrated arranged electronic control with which the ripple of the rectifier device 5 is amplified and superimposed as an AC component of the DC voltage component generated with the rectifier device 5.
- a phase reference to the alternating voltage is determined, which has a temporal correlation to the amplified residual ripple, which is superimposed as a time-varying measuring voltage of the operating DC voltage.
- a second coupling capacitor 9 with a capacitance C k2 and a second quadrupole 10 a partial discharge in the high-voltage component 2 is determined.
- the measurement signals of the first quadrupole 8 and the second quadrupole 10 are fed to a partial discharge measurement system 11.
- the capacitance C k2 is much larger than the capacitance C k1 .
- a schematic representation of a differently configured measuring device 1 is shown.
- an AC voltage or a voltage pulse is generated by a suitable transformer 12 and transformer and arranged on a high voltage side third coupling capacitor 13 of the DC voltage superimposed.
- the first quadrupole 8 is coupled via the first coupling capacitor 7 to the AC voltage generated by the transformer 12 and allows a determination of the phase reference via the AC voltage, which is superposed as a measuring voltage changing over time.
- the capacitance C k3 is substantially larger than the capacitance C k2 , which in turn is substantially larger than the capacitance C k1 .
- phase position of the alternating voltage which is coupled via the transformer 12, can also be transmitted by suitable means directly to the partial discharge measuring system and fed to a further evaluation.
- Fig. 3 shows a schematic representation of a turn deviating configured measuring device 1, in which a freewheeling diode 14 and a light emitting diode 15 depending on the change in the measured voltage component in a separate measuring branch 16 light up.
- the light emission of the light-emitting diode 15 correlates with the temporal change of the amplified residual ripple, which is superimposed on the DC voltage as a periodically oscillating measuring voltage.
- each measurement results of a large number of partial discharges are shown.
- the respectively measured charge quantities of the partial discharges are plotted in standardized charge units along the Y-axis.
- the phase reference over a complete oscillation of 360 ° is applied.
- Such representations are referred to in practice as a phase / frequency-related matrix or as a PRPD pattern.
- Fig. 4 schematically a number of measurement results of the partial discharge measurement system is shown, wherein the partial discharges were generated by a non-inventive method exclusively by a DC voltage.
- the individual partial discharges are distributed essentially uniformly over the period of oscillation of the exciting alternating voltage, so that no characteristic phase reference is recognizable.
- Fig. 5 schematically shows a number of measurement results of the partial discharge measurement system
- the partial discharges were triggered by a measuring voltage with an AC voltage component of 5 kV, which was superimposed on a DC voltage of 50 kV.
- the partial discharges were caused by voids in an insulating material of the high voltage component used for the measurements.
- Two focal points of the frequency distribution of the partial discharges in dependence on the phase reference of the partial discharges at a phase angle of 50 ° and at a phase angle of 230 °. Based on such a characteristic frequency distribution can be on the nature of the cause of the error, here a voids in the insulation material closed.
- Fig. 6 schematically shows a number of measurement results of the partial discharge measuring system, wherein the Partial discharges were excited by an increased ripple of the DC voltage generated from an AC voltage.
- the partial discharges were caused by an external corona discharge.
- a characteristic frequency pattern that deviates significantly from a uniform distribution is discernible, which differs from the one in Fig. 5 differs and also allows conclusions about the nature of the cause of the error.
- the alternating voltage is generated with the aid of a series-connected transformer 18 connected via two coupling capacitors 17 with a grounded center tap 19 and superimposed on the DC voltage of the DC voltage device 3.
- the AC voltage is superimposed by two separate transformers 20 and 21 via high voltage side arranged coupling capacitors 22 of the DC voltage, and decoupled via low-voltage side arranged coupling capacitors 23, a partial discharge measurement.
- the AC voltage is coupled in separately from the output of the partial discharge measurement.
- the high-voltage component 2 is shown merely by way of example as a transmission path and an electrically conductive connection to an electrical load or a load 24.
- the load 24 may be connected to or disconnected from the high voltage component 2 either during the performance of a measurement, depending on the characteristics of the load 24.
- These embodiments correspond to the measurement of partial discharges in a high voltage cable connecting a load 24 to a DC voltage device 3.
- the DC voltage device 3 used during a common use of the high-voltage cable can be disconnected and replaced by a test voltage source 25 which generates a DC voltage component and a superimposed AC voltage component.
- the DC voltage component of the test voltage source 25 corresponds approximately to the DC operating voltage that is generated by the DC voltage device 3 during operation.
- the AC voltage component has an amplitude of less than 50% of the DC operating voltage.
- Fig. 11 the measured voltage superimposed on the DC voltage, which corresponds to the test voltage source 25, generated by a modified rectification of the AC voltage from which the rectifier device 5, the DC operating voltage is generated.
- Fig. 12 the measuring voltage is generated and superimposed by an amplification of the residual ripple of the rectified operating DC voltage with the aid of the amplifier device 6.
- Fig. 13 schematically shows that the measuring voltage is generated for example with a Marx generator 26 as a voltage pulse on the high voltage cable and causes a traveling wave, which is used as a time-varying measuring voltage.
- FIGS. 14 and 15 each show a schematic representation of polarity-dependent measurements of partial discharges in the high-voltage component.
- the partial discharge measuring system 11 is in each case arranged parallel to a measuring voltage branch 26 with a polarity-dependent coupled alternating voltage.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Testing Relating To Insulation (AREA)
Description
Die Erfindung betrifft ein Verfahren zum Ermitteln von Kenngrößen eines Teilentladungsvorgangs in einer elektrischen Hochspannungskomponente, in welcher eine Teilentladung detektiert und gemessen wird, wobei an der Hochspannungskomponente eine Gesamtspannung als Überlagerung von einer Betriebsgleichspannung und zusätzlich von einer sich mit der Zeit verändernden Messspannung angelegt wird, und dass mehrfach eine durch eine Teilentladung bewirkte Ladungsdifferenz relativ zu der Gesamtspannung und zeitgleich ein Phasenbezug dieser Teilentladung zu der sich mit der Zeit verändernden Messspannung erfasst wird, um anschließend eine Fehlererkennung anhand der charakteristischen Eigenschaften des Phasenbezugs der mehrfach gemessenen Teilentladungen durchzuführen.The invention relates to a method for determining characteristics of a partial discharge process in a high voltage electrical component, in which a partial discharge is detected and measured, wherein at the high voltage component, a total voltage is applied as a superposition of a DC operating voltage and additionally of a time varying measuring voltage, and in that a charge difference caused by a partial discharge is detected several times relative to the total voltage and at the same time a phase reference of this partial discharge to the measuring voltage which changes over time in order subsequently to carry out an error detection on the basis of the characteristic properties of the phase reference of the multiply measured partial discharges.
Elektrische Hochspannungskomponenten, die Bestandteil einer Hochspannungsanlage sind, müssen während des Betriebs in der Hochspannungsanlage eine ausreichend große und zuverlässige Isolierung aufweisen, um elektrische Durchschläge und eine dadurch verursachte Beschädigung der elektrischen Hochspannungskomponenten und der Hochspannungsanlage zu vermeiden.Electrical high-voltage components that are part of a high-voltage system must have a sufficiently large and reliable insulation during operation in the high-voltage system to avoid electrical breakdown and damage caused by the high-voltage electrical components and the high-voltage system.
Oftmals treten aufgrund von stark inhomogenen Feldverläufen räumlich beschränkte Überschreitungen einer materialabhängigen Durchschlagsfeldstärke auf, sodass es zu Teilentladungen kommt, bei denen eine Isolierung zwischen der elektrischen Hochspannungskomponente und einer üblicherweise geerdeten Potentialfläche nur teilweise überbrückt wird, sodass lediglich eine Teilentladung der elektrischen Hochspannungskomponente stattfindet und kein vollständiger elektrischer Durchschlag erfolgt.Often occur due to highly inhomogeneous field gradients spatially limited violations of a material-dependent breakdown field strength, so there are partial discharges in which insulation between the electrical high voltage component and a usually grounded potential surface is only partially bridged, so that only a partial discharge of the electrical high voltage component takes place and no more complete electrical breakdown occurs.
Eine derartige Teilentladung kann verschiedene Ursachen haben. Eine äußere Teilentladung entsteht zwischen einer Oberfläche der Hochspannungskomponente in einen umgebenden Luftraum, wobei hörbare und sichtbare Korona-Entladungen vorzugsweise an scharfkantigen Bereichen der Hochspannungskomponente entstehen. Innerhalb von Isoliermedien können innere Teilentladungen entstehen, bei denen begünstigt durch Inhomogenitäten des Isoliermediums Entladungen, jedoch keine vollständigen Durchschläge in dem Isoliermedium auftreten.Such a partial discharge can have various causes. An external partial discharge arises between a surface of the high-voltage component in a surrounding air space, wherein audible and visible corona discharges preferably occur at sharp-edged areas of the high-voltage component. Within insulating media, internal partial discharges may occur in which discharges, but not complete breakdowns in the insulating medium, are favored by inhomogeneities of the insulating medium.
Sowohl äußere Teilentladungen wie beispielsweise Korona-Entladungen als auch innere Teilentladungen innerhalb eines Isoliermediums führen auf Dauer zu einer Beeinträchtigung der elektrischen Hochspannungskomponente und gegebenenfalls zu einer Beschädigung und zu einem Ausfall der elektrischen Hochspannungskomponente.Both external partial discharges such as corona discharges and internal partial discharges within an insulating medium permanently lead to an impairment of the high voltage electrical component and possibly to damage and failure of the high voltage electrical component.
Um eine Beschädigung der elektrischen Hochspannungskomponenten und eine dadurch begünstigte Anfälligkeit der Hochspannungskomponente gegenüber elektrischen Durchschlägen, welche die elektrischen Hochspannungskomponente stark beeinträchtigen oder vollständig zerstören können, frühzeitig zu erkennen und gegebenenfalls zu vermeiden ist es aus der Praxis bekannt, dass Teilentladungen in der elektrischen Hochspannungskomponente detektiert und messtechnisch erfasst werden, um das Risiko einer baldigen Funktionsbeeinträchtigung oder Zerstörung der betreffenden elektrischen Hochspannungskomponente abzuschätzen und zu reduzieren.In order to damage the high voltage electrical components and thereby favored susceptibility of the high voltage component to electrical breakdown, which the electrical It is known from practice that partial discharges in the high-voltage electrical component are detected and metrologically detected in order to estimate and reduce the risk of a rapid impairment or destruction of the electrical high-voltage component in question severely or completely destroy high voltage component or destroy completely ,
Beispielsweise in
Bei einem aus der Praxis bekannten Auswerteverfahren können die zu überprüfenden Hochspannungskomponenten mit einer Wechselspannung beaufschlagt werden und die dabei detektierten, bzw. erzeugten Teilentladungen erfasst werden. Nachdem ein Bezug der gemessenen Teilentladung zu einer Phasenlage der für die Messung verwendeten Wechselspannung hergestellt wurde, können anhand der oftmals charakteristischen Verteilung einzelner Teilentladungen relativ zu der Phasenlage der für die Messung aufgeprägten Wechselspannung Rückschlüsse auf die Art der Teilentladung und damit auf die möglichen Auswirkungen eines Fehlers gezogen werden, der in der Hochspannungskomponente vorhanden ist und gegebenenfalls demnächst zu einer Überbeanspruchung und einem Versagen der elektrischen Hochspannungskomponente während des Betriebs führen könnte.In an evaluation method known from practice, an alternating voltage can be applied to the high-voltage components to be tested, and the partial discharges detected or generated thereby can be detected. After a reference of the measured partial discharge has been made to a phase angle of the alternating voltage used for the measurement, conclusions can be drawn on the basis of the often characteristic distribution of individual partial discharges relative to the phase position of the impressed for the measurement of AC voltage Type of partial discharge and thus to be drawn on the possible effects of a fault that is present in the high-voltage component and could possibly soon lead to overuse and failure of the electrical high-voltage component during operation.
Untersuchungen haben ergeben, dass unterschiedliche Fehlerquellen, die für das Auftreten von Teilentladungen im Betrieb verantwortlich sind, jeweils charakteristische und unterscheidbare Abhängigkeiten von der Wechselspannung aufweisen, mit der die Teilentladungen im Betrieb oder bei einer erhöhten Prüfspannung nachgewiesen werden. Anhand der Phasenbeziehung zu der anregenden Wechselspannung, die für die einzelnen gemessenen Teilentladungen hergestellt werden kann, lässt sich nach einer ausreichend großen Anzahl von einzelnen Messungen von Teilentladungen eine Korrelation zwischen den Teilentladungen und der die Teilentladungen erzeugenden Wechselspannung herstellen und auf die Ursache der einzelnen Teilentladungen schließen.Investigations have shown that different sources of error, which are responsible for the occurrence of partial discharges during operation, each have characteristic and distinguishable dependencies on the AC voltage with which the partial discharges are detected during operation or at an increased test voltage. Based on the phase relationship to the exciting AC voltage that can be produced for each measured partial discharges, after a sufficiently large number of individual measurements of partial discharges, a correlation between the partial discharges and the partial discharges generating AC voltage can be produced and close to the cause of the individual partial discharges ,
In der Praxis sind deshalb verschiedene Messverfahren entwickelt worden, mit deren Hilfe ausgehend von einer Anzahl von Teilentladungen, die mit einer an der Hochspannungskomponente angelegten Wechselspannung erzwungen und mit einer Messeinrichtung erfasst wurden, die Art der Teilentladung ermitteln und dadurch Rückschlüsse auf die Fehlerursache und auf ein Ausfallrisiko der Hochspannungskomponente während eines weiteren Betriebs schließen.In practice, therefore, various measuring methods have been developed, with the help of which, based on a number of partial discharges, which were enforced with an applied to the high voltage component AC voltage and detected by a measuring device, determine the type of partial discharge and thereby draw conclusions about the cause of the error and a Failure to close the high voltage component during further operation.
Die aus der Praxis bekannten Messverfahren basieren auf einer zeitlichen Zuordnung einzelner Teilentladungen zu einer angelegten Wechselspannung. Wird die elektrische Hochspannungskomponente dagegen mit einer Gleichspannung betrieben, können dabei auftretende Teilentladungen nicht in Bezug zu einer Phasenlage einer Anregung gesetzt werden, sodass die aus der Praxis bekannten Auswerteverfahren nicht angewandt werden können. Wird eine Teilentladung durch eine Gleichspannung angeregt, können deshalb keine Rückschlüsse auf die Fehlerart und letztendlich auf das Ausfallrisiko der betreffenden Hochspannungskomponente gezogen werden können.The measuring methods known from practice are based on a temporal assignment of individual partial discharges to an applied alternating voltage. On the other hand, if the electrical high-voltage component is operated with a DC voltage, partial discharges that occur can not be set in relation to a phase position of an excitation, so that the evaluation methods known from practice can not be used. If a partial discharge is excited by a DC voltage, therefore, no conclusions can be drawn on the type of fault and ultimately on the risk of failure of the relevant high-voltage component.
Würde die zu überprüfende Hochspannungskomponente von der Gleichspannungsquelle getrennt und mit einer Wechselspannung beaufschlagt werden, um die Messung und Auswertung der Teilentladungen mit dem aus der Praxis bekannten Messverfahren durchführen zu können, würden die Auswirkungen der während eines Betriebs der Hochspannungskomponente anliegenden Gleichspannung während des Messvorgangs nicht auftreten und deshalb nicht berücksichtigt werden können. Die anstelle der Betriebsgleichspannung separat angelegte Wechselspannung ermöglicht zwar die Detektion von Teilentladungen, ermöglicht aber keinen zuverlässigen Rückschluss auf die während des Betriebs der Hochspannungskomponente mit Gleichspannung auftretenden Teilentladungen und die Fehlerursache, bzw. das Ausfallrisiko der Hochspannungskomponente bei einem Betrieb mit Gleichspannung.If the high-voltage component to be checked were disconnected from the DC voltage source and subjected to an AC voltage in order to be able to carry out the measurement and evaluation of the partial discharges using the measuring method known from practice, the effects of the DC voltage applied during operation of the high-voltage component would not occur during the measuring process and therefore can not be considered. Although the AC voltage applied separately instead of the DC operating voltage allows the detection of partial discharges, but does not allow reliable inference to occur during operation of the high voltage component with DC voltage partial discharges and the cause of the fault, or the risk of failure of the high voltage component when operating with DC voltage.
Aus
Es wird als eine Aufgabe der vorliegenden Erfindung angesehen, ein Verfahren zum Ermitteln von Kenngrößen eines Teilentladungsvorgangs in einer elektrischen Hochspannungskomponente so auszugestalten, dass während des üblichen Betriebs mit einer Betriebsgleichspannung beaufschlagte Hochspannungskomponenten mit dem Verfahren gemessen und überprüft werden können.It is considered to be an object of the present invention to provide a method for determining characteristics of a partial discharge process in a high-voltage electrical component in such a way that during operation, high-voltage components subjected to a DC operating voltage can be measured and checked by the method.
Diese Aufgabe wird erfindungsgemäß nach dem Verfahrensanspruch 1 dadurch gelöst, dass die Messspannung ausgehend von einer Restwelligkeit der aus einer Wechselspannung erzeugten Betriebsgleichspannung erzeugt wird, indem entweder eine bereits vorhandene und eine ausreichend große Amplitude aufweisende Restwelligkeit ausgenutzt oder eine Restwelligkeit der Betriebsgleichspannung verstärkt wird, um eine Amplitude der verstärkten Restwelligkeit von mindestens 3 %, vorzugsweise von mehr als 10 % und besonders vorzugsweise von mehr als 20 % der Betriebsgleichspannung zu erhalten. Die für den Betrieb der elektrischen Hochspannungskomponente erforderliche Hochspannung wird in der Praxis nahezu ausnahmslos aus einer Wechselspannung erzeugt, die mit Hilfe einer Gleichrichtereinrichtung in eine möglichst gleichbleibende Betriebsgleichspannung umgewandelt wird. Dabei wird oftmals auch mit aufwändigen Gleichrichtereinrichtungen keine vollständig konstante Betriebsgleichspannung erreicht, sondern die Spannungsschwankungen der Wechselspannung weitgehend, aber nicht vollständig reduziert. Die Restwelligkeit ist eine Kenngröße der nach der Gleichrichtung der Wechselspannung verbleibenden periodischen Spannungsschwankungen, die bei effizienten Gleichrichtereinrichtungen auf weniger als 1 % bis 2 % einer Ausgangsamplitude der Wechselspannung reduziert werden kann.This object is achieved according to the
Diese Restwelligkeit weist üblicherweise regelmäßige periodische Schwankungen auf, deren Phase und Frequenz von der für die Erzeugung der Betriebsgleichspannung verwendeten Wechselspannung vorgegeben werden. Es hat sich gezeigt, dass bereits mit einer geringfügigen Verstärkung dieser Restwelligkeit ein regelmäßiger periodischer Wechselspannungsanteil erzeugt werden kann, der der Betriebsgleichspannung überlagert wird. Die in geeigneter Weise verstärkte Restwelligkeit ermöglicht bei auftretenden Teilentladungen gleichzeitig die Ermittlung eines Phasenbezugs der erzeugten Teilentladungen mit der verstärkten Restwelligkeit, welche die Fehlerzuordnung der Teilentladungen erlaubt.This residual ripple usually has regular periodic fluctuations whose phase and frequency are predetermined by the alternating voltage used for generating the operating DC voltage. It has been shown that even with a slight amplification of this residual ripple, a regular periodic AC voltage component can be generated, which is superimposed on the DC operating voltage. The appropriately amplified residual ripple allows for occurring partial discharges simultaneously determining a phase reference of the generated partial discharges with the increased ripple, which allows the error assignment of the partial discharges.
Die während eines regulären Betriebs der Hochspannungskomponente möglichst effiziente Gleichrichtung der Wechselspannung kann dadurch gezielt beeinflusst werden, um einen periodisch schwankenden Wechselspannungsanteil beizubehalten, der dem durch die unvollständige Gleichrichtung erzeugten Gleichspannungsanteil überlagert wird. Die Modifikation der Gleichrichtung kann beispielsweise durch eine gezielte Fehlansteuerung der für die Gleichrichtung verwendeten Halbleiterelemente bzw. gegebenenfalls durch eine Verstellung von den Zündwinkeln der Halbleiterelemente vorgenommen werden.The as efficient as possible rectification of the AC voltage during regular operation of the high voltage component can thereby be selectively influenced in order to maintain a periodically fluctuating AC voltage component, which is superimposed on the DC component generated by the incomplete rectification. The modification of the rectification can be carried out, for example, by a targeted erroneous control of the semiconductor elements used for the rectification or optionally by an adjustment of the ignition angles of the semiconductor elements.
Gemäß einer vorteilhaften Ausgestaltung des Erfindungsgedankens ist vorgesehen, dass der Phasenbezug in einem gesonderten Messzweig relativ zu der Messspannung und getrennt von einem Messzweig für die Messung der Teilentladung erfasst wird. Die Teilentladung bzw. eine dadurch verursachte Ladungsdifferenz kann in einem Messzweig relativ zu der Betriebsgleichspannung oder zu der durch Überlagerung erzeugten Gesamtspannung erfasst werden. Eine Messung des Phasenbezugs relativ zu der Messspannung und eine Messung der Teilentladung relativ zu der Betriebsgleichspannung oder der Gesamtspannung wird im Sinne der vorliegenden Erfindung als eine Messung aufgefasst, die an Bereichen der Hochspannungskomponenten oder der mit diesen Hochspannungskomponenten in Verbindung stehenden Spannungsquelle durchgeführt werden, in denen überwiegend oder ausschließlich die Messspannung, bzw. die Betriebsgleichspannung oder die resultierende Gesamtspannung anliegt. Eine Messung in gesonderten Messzweigen kann eine räumlich beabstandete Messung des Phasenbezugs und der Teilentladung umfassen. Es wird jedoch nicht als eine Messung in gesonderten Messzweigen angesehen, wenn die Messungen mit in Reihe geschalteten Messeinrichtungen oder sogar mit derselben Messeinrichtung durchgeführt werden.According to an advantageous embodiment of the inventive idea it is provided that the phase reference is detected in a separate measuring branch relative to the measuring voltage and separated from a measuring branch for the measurement of the partial discharge. The partial discharge or a charge difference caused thereby can be detected in a measuring branch relative to the operating DC voltage or to the total voltage generated by superimposition. A measurement of the phase reference relative to the measurement voltage and a measurement of the partial discharge relative to the DC operating voltage or the total voltage is taken in the sense of the present invention as a measurement, which are carried out at areas of the high voltage components or the voltage source associated with these high voltage components, in which predominantly or exclusively the measuring voltage, or the DC operating voltage or the resulting total voltage is applied. A measurement in separate measuring branches can be a spatially-spaced measurement of the Include phase reference and partial discharge. However, it is not considered to be a measurement in separate measuring branches when the measurements are made with series-connected measuring equipment or even with the same measuring equipment.
Die Messung einer Teilentladung kann beispielsweise mit Hilfe eines ersten Koppelkondensators erfolgen, der zwischen der mit der Betriebsgleichspannung oder mit der Gesamtspannung beaufschlagten Hochspannungskomponente und einem Erdleiter angeordnet ist. Die Messung des Phasenbezugs einer derart vorgenommenen Teilentladungsmessung kann an einer Wechselspannungsquelle vorgenommen werden, die mit Hilfe einer Gleichrichtereinrichtung die an der Hochspannungskomponente anliegende Betriebsgleichspannung erzeugt. Es muss lediglich sichergestellt werden, dass eine während einer Teilentladungsmessung ermittelte Phasenlage der sich mit der Zeit verändernden Messspannung zu der Wechselspannungsquelle eine zeitlich bekannte Abhängigkeit aufweist, die für die gemessene Teilentladung ausschlaggebend ist.The measurement of a partial discharge can be carried out, for example, by means of a first coupling capacitor, which is arranged between the high-voltage component charged with the operating DC voltage or with the total voltage and an earth conductor. The measurement of the phase reference of a partial discharge measurement carried out in this way can be carried out on an AC voltage source which generates the DC operating voltage applied to the high-voltage component with the aid of a rectifier device. It merely has to be ensured that a phase position, determined during a partial discharge measurement, of the time-varying measuring voltage to the AC voltage source has a time-known dependence, which is decisive for the measured partial discharge.
Durch die auch in räumlicher Hinsicht bestehende Auftrennung der Messung der Teilentladung einerseits und der Messung des Phasenbezugs dieser Teilentladung zu der verursachenden und zeitlich sich verändernden Messspannung andererseits lässt sich eine für einen vorgegebenen Fehlertyp charakteristische Abhängigkeit der Teilentladungen von der jeweiligen Phasenlage ermitteln und auswerten.By also existing in terms of spatial separation of the measurement of the partial discharge on the one hand and the measurement of the phase reference of this partial discharge to the causative and temporally changing measurement voltage on the other hand, a characteristic of a given error type dependence of the partial discharges can be determined and evaluated by the respective phase.
In vorteilhafter Weise ist vorgesehen, dass die Teilentladung mit Hilfe eines ersten Koppelkondensators ermittelt wird, dass der Phasenbezug mit Hilfe eines zweiten Koppelkondensators ermittelt wird, wobei die Kapazität Ck2 des zweiten Koppelkondensators wesentlich größer als die Kapazität Ck1 des ersten Koppelkondensators ist. Die an dem ersten Koppelkondensator und an dem zweiten Koppelkondensator auftretenden Ladungsdifferenzen und dadurch bewirkten Ausgleichsströme können kostengünstig und äußerst zuverlässig präzise mit Hilfe von Vierpolen bzw. Zweitorschaltungen ermittelt und ausgewertet werden.It is advantageously provided that the partial discharge is determined with the aid of a first coupling capacitor, that the phase reference is determined by means of a second coupling capacitor, wherein the capacitance C k2 of the second coupling capacitor is substantially greater than the capacitance C k1 of the first coupling capacitor. The charge differences occurring at the first coupling capacitor and at the second coupling capacitor and thus compensating currents can be determined and evaluated cost-effectively and extremely reliably precisely with the aid of four-pole or two-port circuits.
Es ist ebenfalls denkbar und für bestimmte Anwendungsfälle vorteilhaft, dass die Ermittlung des Phasenbezugs mit Hilfe eines Lichtsignals einer von der Messspannung gespeisten Leuchtdiode getriggert wird. Es sind handelsübliche elektronische Messbausteine bekannt, mit deren Hilfe eine auftretende Ladungsdifferenz in einen zeitlichen Bezug zu einem extern erzeugten Lichtsignal bzw. ganz allgemein in einen Bezug zu einer getriggerten Zeitinformation gesetzt werden kann. Ein geeignetes Lichtsignal kann mit handelsüblichen und kostengünstigen Bauteilen erzeugt werden, wobei eine hohe Sensitivität des Lichtsignals bezüglich der sich mit der Zeit verändernden Messspannung besteht. Mit einem derartigen Messverfahrensschritt kann zuverlässig und mit hoher Genauigkeit eine zeitliche Veränderung der Messspannung nachgewiesen und für die Ermittlung des Phasenbezugs einer gleichzeitig erfolgenden Teilentladung herangezogen und verwendet werden.It is also conceivable and advantageous for certain applications that the determination of the phase reference is triggered by means of a light signal of a light-emitting diode fed by the measuring voltage. Commercially available electronic measuring components are known with the aid of which an occurring charge difference can be set in a temporal relation to an externally generated light signal or more generally in a relation to a triggered time information. A suitable light signal can be generated with commercially available and inexpensive components, with a high sensitivity of the light signal with respect to the time varying measuring voltage. With such a measuring process step can be reliably and with high accuracy detected a change over time of the measuring voltage and used for the determination of the phase reference of a simultaneous partial discharge and used.
Einer besonders vorteilhaften Ausgestaltung des Erfindungsgedankens zufolge ist vorgesehen, dass als Messspannung eine Wechselspannung verwendet wird, deren Scheitelwert weniger als 50 % der Betriebsgleichspannung, vorzugsweise weniger als 30 % und besonders vorzugsweise weniger als 15 % der Betriebsgleichspannung aufweist. Die Wechselspannung kann beispielsweise durch einen Transformator erzeugt werden, der an einer geeigneten Stelle in die Spannungsversorgung der Hochspannungskomponente eingebunden wird.A particularly advantageous embodiment of the inventive concept is provided that as Measuring voltage is used an AC voltage whose peak value has less than 50% of the DC operating voltage, preferably less than 30% and more preferably less than 15% of the DC operating voltage. The AC voltage can be generated for example by a transformer which is integrated at a suitable point in the power supply of the high-voltage component.
Es hat sich gezeigt, dass in vielen Fällen lediglich eine Wechselspannung mit einer kleinen Amplitude im Vergleich zu der Betriebsgleichspannung erforderlich ist, um die für eine Fehlererkennung erforderlichen Teilentladungen zu erzeugen und auszuwerten. Durch die Überlagerung der Betriebsgleichspannung mit einer Wechselspannung, die beispielsweise eine Frequenz von 50 Hz, aber auch eine geringere oder deutlich höhere Frequenz aufweisen kann, können innerhalb einer kurzen Messdauer eine große Anzahl von Teilentladungen erzwungen und ausgewertet werden. Die Messung des Phasenbezugs kann in einfacher Weise an der Wechselspannung vorgenommen werden oder ausgehend von den bekannten Vorgaben bei der Erzeugung der Wechselspannung abgeleitet und mit den gemessenen Teilentladungen korreliert werden.It has been found that in many cases only an alternating voltage with a small amplitude compared to the operating DC voltage is required in order to generate and evaluate the partial discharges required for fault detection. By superimposing the DC operating voltage with an AC voltage, which may for example have a frequency of 50 Hz, but also a lower or significantly higher frequency, a large number of partial discharges can be enforced and evaluated within a short measurement period. The measurement of the phase reference can be made in a simple manner to the AC voltage or derived from the known specifications in the generation of the AC voltage and correlated with the measured partial discharges.
Gemäß einer Ausgestaltung des Erfindungsgedankens ist vorgesehen, dass die Hochspannungskomponente wiederholt mit einer impulsförmigen Stoßspannung beaufschlagt wird.According to one embodiment of the inventive concept it is provided that the high-voltage component is repeatedly applied with a pulse-shaped surge voltage.
Es ist insbesondere bei einer als Hochspannungskabel ausgestalteten Hochspannungskomponente ebenfalls denkbar, dass die Hochspannungskomponente mit einer Wanderwelle beaufschlagt wird.It is also conceivable, in particular, for a high-voltage component designed as a high-voltage cable, that the high voltage component is applied to a traveling wave.
Gemäß einer weiteren Ausgestaltung des Erfindungsgedankens ist vorgesehen, dass jeweils nur die positive oder die negative Betriebsgleichspannungskomponente mit einer gleichgerichteten Wechselspannung beaufschlagt wird.According to a further embodiment of the inventive concept it is provided that in each case only the positive or the negative DC operating voltage component is subjected to a rectified AC voltage.
Im Rahmen einer erfindungsgemäßen Auswertung der Messergebnisse des Teilentladungsmesssystems ist vorgesehen, dass eine Analyse der Messergebnisse mit Hilfe von statistischen Auswerteverfahren zu einer Erkennung von komplexen oder überlagerten Teilentladungen verwendet wird.Within the scope of an evaluation of the measurement results of the partial discharge measurement system according to the invention, it is provided that an analysis of the measurement results with the aid of statistical evaluation methods is used to detect complex or superimposed partial discharges.
Vorzugsweise erfolgt über Schalteinrichtungen eine gezielte Messung von Teilentladungen der positiven oder der negativen Polarität über die Auskopplung mit Hilfe von niederspannungsseitigen Koppelkondensatoren.Preferably, a targeted measurement of partial discharges of the positive or negative polarity via the coupling out with the aid of low-voltage side coupling capacitors via switching devices.
Nachfolgend werden Ausführungsbeispiele des Erfindungsgedankens näher erläutert, die in der Zeichnung dargestellt sind. Es zeigt:
-
Fig. 1 eine schematische Darstellung einer Messeinrichtung für eine Hochspannungskomponente, wobei über einen ersten Koppelkondensator und einen ersten Vierpol ein Phasenbezug zu einer Wechselspannung ermittelt und über einen zweiten Koppelkondensator und einen zweiten Vierpol eine Teilentladung in einer Hochspannungskomponente ermittelt wird, an der eine Betriebsgleichspannung und eine sich mit der Zeit verändernde Messspannung anliegt, -
Fig. 2 eine schematische Darstellung einer abweichend ausgestalteten Messeinrichtung, bei der über einen Transformator eine Wechselspannung als Messspannung eingekoppelt wird und die Ermittlung des Phasenbezugs relativ zu der Wechselspannung über einen ersten Koppelkondensator und einen ersten Vierpol ermittelt wird, -
Fig. 3 eine schematische Darstellung einer abweichend ausgestalteten Messeinrichtung, bei der eine Leuchtdiode in Abhängigkeit von der zeitlichen Veränderung des Messspannungsanteils in einem gesonderten Messzweig aufleuchten und eine Ermittlung eines Phasenbezugs auslösen, -
Fig. 4 eine schematische Darstellung einer Anzahl von gemessenen Teilentladungen in Abhängigkeit von der jeweils zugeordneten Phasenbeziehung, wobei die Teilentladungen ausschließlich durch eine Gleichspannung erzeugt sind, -
Fig. 5 eine schematische Darstellung einer Anzahl von gemessenen Teilentladungen in Abhängigkeit von der jeweils zugeordneten Phasenbeziehung, wobei die Teilentladungen durch eine Messspannung mit einem Wechselspannungsanteil von 5 kV ausgelöst sind, die einer Gleichspannung von 50 kV überlagert ist, und wobei die Teilentladungen durch Lunker in einem Isolierungsmaterial der Hochspannungskomponente verursacht werden, -
Fig. 6 eine schematische Darstellung einer Anzahl von gemessenen Teilentladungen in Abhängigkeit von der jeweils zugeordneten Phasenbeziehung, wobei die Teilentladungen durch eine verstärkte Restwelligkeit der aus einer Wechselspannung erzeugten Gleichspannung ausgelöst sind, und wobei die Teilentladungen durch eine äußere Korona-Entladung verursacht werden, -
Fig. 7 eine schematische Darstellung einer Überlagerung einer Wechselspannung mit Hilfe eines in Reihe geschalteten und über Koppelkondensatoren eingebundenen Transformators mit einem geerdeten Mittenabgriff, -
Fig. 8 eine schematische Darstellung einer abweichend ausgestalteten Überlagerung einer Wechselspannung, die durch zwei separate Transformatoren über hochspannungsseitig angeordnete Koppelkondensatoren der Gleichspannung überlagert wird, und über niederspannungsseitig angeordnete Koppelkondensatoren eine Teilentladungsmessung erfolgt, -
Fig. 9 eine schematische Darstellung einer wiederum abweichend ausgestalteten Überlagerung einer Wechselspannung, die über einen Transformator mit geerdetem Mittenabgriff eingekoppelt wird, und wobei eine Teilentladungsmessung über hochspannungsseitige und niederspannungsseitige Koppelkondensatoren erfolgt, -
Fig. 10 eine schematische Darstellung einer Messeinrichtung für eine Hochspannungsanlage mit einer Betriebsgleichspannungsquelle, einer alternativ zuschaltbaren Prüfspannungsquelle, einer zu prüfenden Hochspannungskomponente und einer wahlweise zuschaltbaren oder trennbaren Verbraucherlast, -
Fig. 11 eine schematische Darstellung einer abweichend ausgestalteten Messeinrichtung, bei der ausgehend von einer Wechselspannung eine modifizierte Gleichrichtung erfolgt, so dass einem Gleichspannungsanteil ein Wechselspannungsanteil überlagert wird,
-
Fig. 12 eine schematische Darstellung einer wiederum abweichend ausgestalteten Messeinrichtung, wobei eine Restwelligkeit einer Gleichspannungsquelle verstärkt und der Gleichspannung überlagert wird, -
Fig. 13 eine schematische Darstellung einer wiederum abweichend ausgestalteten Messeinrichtung, wobei ein Spannungsimpuls als Messspannung eingekoppelt wird, -
Fig. 14 eine schematische Darstellung von polaritätsabhängigen Messungen von Teilentladungen in oder an der Hochspannungskomponente.und 15
-
Fig. 1 a schematic representation of a measuring device for a high voltage component, wherein via a first coupling capacitor and a first quadrupole a phase reference to an alternating voltage determined and a second coupling capacitor and a second quadrupole a partial discharge in a high voltage component is determined, at which a DC operating voltage and with the Time-varying measuring voltage is applied, -
Fig. 2 a schematic representation of a deviating designed measuring device, in which via a transformer an AC voltage is coupled as a measuring voltage and the determination of the phase reference relative to the AC voltage across a first coupling capacitor and a first quadrupole is determined -
Fig. 3 a schematic representation of a deviating designed measuring device, in which a light emitting diode in dependence on the temporal change of the measuring voltage component in a separate measuring branch light up and trigger a determination of a phase reference, -
Fig. 4 a schematic representation of a number of measured partial discharges as a function of the respectively associated phase relationship, wherein the partial discharges are generated exclusively by a DC voltage, -
Fig. 5 a schematic representation of a number of measured partial discharges depending on the respective associated phase relationship, wherein the partial discharges are triggered by a measuring voltage with an AC component of 5 kV, which is superimposed on a DC voltage of 50 kV, and wherein the partial discharges by voids in an insulating material of the High voltage component caused -
Fig. 6 a schematic representation of a number of measured partial discharges in dependence on the respectively associated phase relationship, wherein the partial discharges by an increased residual ripple of a AC voltage generated are triggered, and wherein the partial discharges are caused by an external corona discharge, -
Fig. 7 a schematic representation of an overlaying of an alternating voltage by means of a series-connected and integrated via coupling capacitors transformer with a grounded center tap, -
Fig. 8 a schematic representation of a differently designed superimposition of an alternating voltage, which is superimposed by two separate transformers via high-voltage side arranged coupling capacitors of the DC voltage, and via low-voltage side arranged coupling capacitors, a partial discharge measurement, -
Fig. 9 a schematic representation of a turn differently designed superposition of an AC voltage, which is coupled via a transformer with grounded center tap, and wherein a partial discharge measurement via high-voltage side and low-voltage side coupling capacitors, -
Fig. 10 a schematic representation of a measuring device for a high voltage system with a DC operating voltage source, an alternatively switchable test voltage source, a high voltage component to be tested and an optionally switchable or separable load load, -
Fig. 11 a schematic representation of a differently configured measuring device in which, starting from an AC voltage, a modified rectification, so that a DC voltage component is superimposed on an AC component,
-
Fig. 12 a schematic representation of a turn deviating designed measuring device, wherein a residual ripple of a DC voltage source is amplified and the DC voltage is superimposed, -
Fig. 13 a schematic representation of a again deviating designed measuring device, wherein a voltage pulse is coupled as a measuring voltage, -
FIGS. 14 and 15 a schematic representation of polarity-dependent measurements of partial discharges in or on the high voltage component.
Über einen ersten Koppelkondensator 7 mit einer Kapazität Ck1 und einen ersten Vierpol 8 wird ein Phasenbezug zu der Wechselspannung ermittelt, welche eine zeitliche Korrelation zu der verstärkten Restwelligkeit aufweist, die als zeitlich veränderliche Messspannung der Betriebsgleichspannung überlagert wird. Über einen zweiten Koppelkondensator 9 mit einer Kapazität Ck2 und einen zweiten Vierpol 10 wird eine Teilentladung in der Hochspannungskomponente 2 ermittelt. Die Messsignale des ersten Vierpols 8 und des zweiten Vierpols 10 werden einem Teilentladungsmesssystem 11 zugeführt. Die Kapazität Ck2 ist wesentlich größer als die Kapazität Ck1.Via a
Nach der Messung einer ausreichend großen Anzahl von Teilentladungen sowie der zugeordneten Phasenbezüge kann die Ermittlung von Kenngrößen des Teilentladungsvorgangs durchgeführt werden, was nachfolgend noch näher beschrieben wird.After measuring a sufficiently large number of partial discharges and the associated phase references, the determination of parameters of the partial discharge process can be carried out, which will be described in more detail below.
In
Die Phasenlage der Wechselspannung, die über den Transformator 12 eingekoppelt wird, kann mit geeigneten Mitteln auch direkt an das Teilentladungsmesssystem übermittelt und einer weiteren Auswertung zugeführt werden.The phase position of the alternating voltage, which is coupled via the
In den
In
In
In
In den
Bei dem in
Bei dem in
Bei dem in
In den
In
In
In
In
Die
Claims (10)
- A method for determining characteristics of a partial discharge event in an electric high-voltage component (2), in which a partial discharge is detected and measured, wherein a total voltage as a superposition of an operating DC voltage and additionally a time-variant measuring voltage is applied to the high-voltage component (2), and wherein a charge difference caused by the partial discharge and a phase relation to the time-variant measuring voltage is detected multiple times simultaneously, in order to subsequently carry out an error identification by means of the characteristic properties of the phase relation of the partial discharges measured multiple times, characterized in that the measuring voltage is generated based upon a ripple of an operating DC voltage generated from of an AC voltage, in that a ripple of the operating DC voltage is amplified to obtain an amplitude of the amplified ripple of at least 5 %, preferably more than 10 %, and particularly preferably more than 20 % of the operating DC voltage, and that a dependency of the partial discharges on the respective phase position, which is characteristic to a specified error type, is determined and evaluated.
- The method according to claim 1, characterized in that the phase relation is detected in a separate measuring branch relative to the measuring voltage, and separately from a measuring branch for the measuring of the partial discharge.
- The method according to claim 2, characterized in that the partial discharge is determined using a first coupling capacitor (7), that the phase relation is determined using a second coupling capacitor (9), wherein the capacitance Ck2 of the second coupling capacitor (9) is significantly higher than the capacitance Ck1 of the first coupling capacitor (7).
- The method according to claim 2, characterized in that the determination of the phase relation is triggered using a light signal of a light-emitting diode (14, 15) powered by the measuring voltage.
- The method according to one of claims 1 to 4, characterized in that an AC voltage is used as the measuring voltage, the peak value of which amounts to less than 50 % of the operating DC voltage, preferably less than 30% and particularly preferably less than 15 % of the operating DC voltage.
- The method according to one of claims 1 to 5, characterized in that a pulse-type surge voltage is repeatedly applied to the high-voltage component (2).
- The method according to one of claims 1 to 6, characterized in that a travelling wave is applied to the high-voltage component (2).
- The method according to one of claims 1 to 5, characterized in that in each case only the positive or the negative operating DC voltage component is applied with a rectified AC voltage.
- The method according to one of claims 1 to 8, characterized in that via switching means, a targeted measuring of partial discharges of the positive or negative polarity occurs via the decoupling using low-voltage-side coupling capacitors.
- The method according to one of claims 1 to 9, characterized in that an analysis of the measuring results using statistical evaluation methods is used to detect complex or superimposed partial discharges.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102014114563.1A DE102014114563A1 (en) | 2014-10-07 | 2014-10-07 | Method for determining parameters of a partial discharge process |
PCT/EP2015/073138 WO2016055515A1 (en) | 2014-10-07 | 2015-10-07 | Method for identifying parameters of a partial discharge process |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3204782A1 EP3204782A1 (en) | 2017-08-16 |
EP3204782B1 true EP3204782B1 (en) | 2018-12-12 |
Family
ID=54337733
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15783974.7A Active EP3204782B1 (en) | 2014-10-07 | 2015-10-07 | Method for determining characteristics of a partial discharge event |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP3204782B1 (en) |
DE (1) | DE102014114563A1 (en) |
WO (1) | WO2016055515A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106292820B (en) | 2016-08-05 | 2017-09-08 | 广州金升阳科技有限公司 | A kind of ripple current generation circuit |
CN111289858A (en) * | 2020-03-19 | 2020-06-16 | 山东电力设备有限公司 | Method for judging partial discharge inside transformer |
CN113433427B (en) * | 2020-03-23 | 2023-09-05 | 西安高压电器研究院常州有限责任公司 | Insulation performance detection circuit and method |
DE102022127492A1 (en) | 2022-10-19 | 2024-04-25 | Bayerische Motoren Werke Aktiengesellschaft | Method and test bench for determining a fault in an electrical component |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DD100811A1 (en) * | 1972-11-28 | 1973-10-05 | ||
DE2856354C2 (en) * | 1978-12-27 | 1986-06-26 | Calor-Emag Elektrizitäts-Aktiengesellschaft, 4030 Ratingen | Device for testing metal-enclosed high-voltage systems for partial discharges |
JP2002323533A (en) * | 2001-04-27 | 2002-11-08 | Sumitomo Electric Ind Ltd | Partial discharge testing method for electric power equipment |
JP5444185B2 (en) * | 2010-10-15 | 2014-03-19 | 株式会社日本自動車部品総合研究所 | Partial discharge measuring apparatus and partial discharge measuring method |
CN102508031B (en) * | 2011-11-01 | 2014-08-27 | 国家电网公司 | Fourier series based measurement method of phase angle of partial discharge pulse |
-
2014
- 2014-10-07 DE DE102014114563.1A patent/DE102014114563A1/en not_active Withdrawn
-
2015
- 2015-10-07 EP EP15783974.7A patent/EP3204782B1/en active Active
- 2015-10-07 WO PCT/EP2015/073138 patent/WO2016055515A1/en active Application Filing
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
DE102014114563A1 (en) | 2016-04-07 |
WO2016055515A1 (en) | 2016-04-14 |
EP3204782A1 (en) | 2017-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102007046483B4 (en) | Circuit arrangement and method for monitoring electrical insulation | |
DE69332697T2 (en) | Method and device for determining an earth fault resistance in an electric vehicle | |
EP2568560B1 (en) | Frequency inverter and method for detecting and blocking a residual current in a frequency inverter | |
DE102005025449B4 (en) | Method and device for measuring a dielectric response of an electrical insulation system | |
EP3204782B1 (en) | Method for determining characteristics of a partial discharge event | |
DE102011083307A1 (en) | Device for measuring a battery current | |
DE102018114540B3 (en) | Method for detecting electric arcs in DC circuits | |
DE112017003081T5 (en) | PROTECTION DEVICE FOR ELECTRICAL DC CIRCUIT AND ARC DETECTION METHOD | |
EP3631976B1 (en) | Method for detecting a contact fault in a photovoltaic system | |
DE102017116613B3 (en) | Method and test device for measuring partial discharge pulses of a shielded cable | |
DE19644833A1 (en) | Device for testing the insulation of an electrical conductor | |
DE102013110993A1 (en) | Method and device for monitoring at least one electronic switch contact for a vehicle | |
DE102015225442A1 (en) | Arc recognition device, corresponding method and electronic component | |
DE102016100671A1 (en) | Method and device for short-circuit monitoring of a three-phase load | |
DE102011105112A1 (en) | Device for monitoring switching state of positive pole-side power switch utilized for e.g. disconnecting high volt battery system in electrical vehicle, has signal generator and detection device electrically connected to power switch | |
DE112015005677T5 (en) | Ground fault detection device for a vehicle | |
DE102021124670B3 (en) | Testing device for locating a partial discharge in or on an electrical component and method for locating the partial discharge | |
DE102020110190A1 (en) | Method for monitoring an electrical potential of an electrically operated vehicle and electronic monitoring system | |
DE4012445C2 (en) | Process for partial discharge measurement and / or fault location in high-voltage insulation under on-site conditions and arrangement for carrying out the process | |
WO2016091932A1 (en) | Demagnetization device and method for demagnetizing a transformer core | |
DE102011004850A1 (en) | Self-energy for ignition sump with integrated ion detection circuit | |
DE102009053788B4 (en) | Method and device for monitoring high-voltage ionizers | |
DE69820548T2 (en) | Fault detection arrangement for an electrical line of a vehicle, in particular a commercial vehicle | |
EP2910961B1 (en) | Method and measurement setup for determining coil errors in electric appliances | |
DE102023001511A1 (en) | Device and method for detecting arc faults |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20170426 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: SUNARYADI, DODY Inventor name: RADLER, FRANK Inventor name: BETZ, THOMAS Inventor name: DEZENZO, TOBIAS |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20180628 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1076731 Country of ref document: AT Kind code of ref document: T Effective date: 20181215 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502015007247 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502015007247 Country of ref document: DE Representative=s name: PATENTANWAELTE KATSCHER HABERMANN, DE Ref country code: DE Ref legal event code: R082 Ref document number: 502015007247 Country of ref document: DE Representative=s name: HABERMANN INTELLECTUAL PROPERTY PARTNERSCHAFT , DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: VALIPAT S.A. C/O BOVARD SA NEUCHATEL, CH |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20181212 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181212 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181212 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190312 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181212 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181212 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181212 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190312 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190313 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181212 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181212 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181212 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181212 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181212 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181212 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190412 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181212 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181212 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181212 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181212 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181212 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190412 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502015007247 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181212 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181212 |
|
26N | No opposition filed |
Effective date: 20190913 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181212 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20191023 Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181212 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191007 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20191031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191031 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20191007 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191007 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191007 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181212 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181212 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20151007 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201031 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181212 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20231023 Year of fee payment: 9 Ref country code: DE Payment date: 20231016 Year of fee payment: 9 Ref country code: AT Payment date: 20231019 Year of fee payment: 9 |