EP3201935B1 - Apparatus to prevent arc faults in electrical connectivity - Google Patents

Apparatus to prevent arc faults in electrical connectivity Download PDF

Info

Publication number
EP3201935B1
EP3201935B1 EP15847439.5A EP15847439A EP3201935B1 EP 3201935 B1 EP3201935 B1 EP 3201935B1 EP 15847439 A EP15847439 A EP 15847439A EP 3201935 B1 EP3201935 B1 EP 3201935B1
Authority
EP
European Patent Office
Prior art keywords
arc
electrical
connectivity
thermomorphic
electrically conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15847439.5A
Other languages
German (de)
French (fr)
Other versions
EP3201935A1 (en
EP3201935A4 (en
Inventor
Kenneth G. BLEMEL
Kenneth D. BLEMEL
Peter A. BLEMEL
Todd F. PETERSON
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Management Sciences Inc
Original Assignee
Management Sciences Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Management Sciences Inc filed Critical Management Sciences Inc
Publication of EP3201935A1 publication Critical patent/EP3201935A1/en
Publication of EP3201935A4 publication Critical patent/EP3201935A4/en
Application granted granted Critical
Publication of EP3201935B1 publication Critical patent/EP3201935B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H71/00Details of the protective switches or relays covered by groups H01H73/00 - H01H83/00
    • H01H71/10Operating or release mechanisms
    • H01H71/12Automatic release mechanisms with or without manual release
    • H01H71/14Electrothermal mechanisms
    • H01H71/145Electrothermal mechanisms using shape memory materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/06Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using melting, freezing, or softening
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/12Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in colour, translucency or reflectance
    • G01K11/18Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in colour, translucency or reflectance of materials which change translucency
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/04Fuses, i.e. expendable parts of the protective device, e.g. cartridges
    • H01H85/05Component parts thereof
    • H01H85/055Fusible members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/26Magazine arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/38Means for extinguishing or suppressing arc
    • H01H85/42Means for extinguishing or suppressing arc using an arc-extinguishing gas
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
    • H02H3/085Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current making use of a thermal sensor, e.g. thermistor, heated by the excess current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/34Electrical components comprising specially adapted electrical connection means to be structurally associated with the PV module, e.g. junction boxes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H2205/00Movable contacts
    • H01H2205/002Movable contacts fixed to operating part
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H1/00Details of emergency protective circuit arrangements
    • H02H1/0007Details of emergency protective circuit arrangements concerning the detecting means
    • H02H1/0015Using arc detectors
    • H02H1/0023Using arc detectors sensing non electrical parameters, e.g. by optical, pneumatic, thermal or sonic sensors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/02Details
    • H02H3/04Details with warning or supervision in addition to disconnection, e.g. for indicating that protective apparatus has functioned
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • Arc faults generate white hot plasma and intense heat. Arc faults can be caused, for example, by a manufacturing defect; overload, or thermal expansion and contraction at the joints by the thermo-dynamics of current on the conductor.
  • a manufacturing defect for example, by a manufacturing defect; overload, or thermal expansion and contraction at the joints by the thermo-dynamics of current on the conductor.
  • There is a plethora of publically available documents such as, "American Electricians Handbook" by T. Croft, F. Hartwell, and W. Summers (which is included in its entirety by reference herein), that teach electrical system designs and installations, as well as hazards related thereto. Other documents are publicly available that teach how to design systems that mitigate the related hazards with controllers, circuit breakers, ground fault detectors, and circuit interrupters.
  • Electrical systems typically include an infrastructure comprised of mechanical framework, electrical connectivity, and means for disconnecting, regulating, controlling, distributing, and modifying the electricity. Electrical arc-faults in connectivity can occur even when the operating voltages and currents are within normal bounds; such as, but not limited to, in the case of improper installation, unsafe design, small air gaps caused by differences in expansion of the conduit and metal contacts, or a manufacturing defect.
  • PV photovoltaic
  • the electrical conductors that carry DC output from PV modules are conventionally connected to metal lugs in a "junction box" located on the back of the PV module.
  • junction box located on the back of the PV module.
  • PV modules are often combined to aggregate the current or voltage in what is commonly called a PV string where several individual PV modules are joined by one or more electrical connectors that provide connectivity, usually in a series fashion.
  • PV strings are often further joined by downstream connectivity components, such as a combiner box that aggregates the electrical power.
  • combiner boxes are often connected in a tree-like fashion to large combiner boxes (sometimes called re-combiners) for aggregating power into a transmission line.
  • one or more combiner boxes include over-current protection and isolation means, such as relays and breakers and insulated levers to deal with overloads and isolate short circuits.
  • the present invention is a pro-active device to provide disruption of electrical connectivity without need for electrical devices.
  • the intense heat generated can result in a localized fire of combustible material used in the connectivity's construction and quickly spreads to proximal combustible materials.
  • the problem of arc faulting in PV connectivity is so serious that the Fire Protection Association (FPA) modified the 2014 National Electric Code (NEC) section 690.11 (listed as Reference # 1 in the LIST OF NON-PATENT DOCUMENTS): "Photovoltaic systems with DC source circuits, DC output circuits, or both, operating at a PV system maximum system voltage of 80 volts or greater, shall be protected by a listed (DC) arc-fault circuit interrupter, PV type, or other system components listed to provide equivalent protection.
  • the PV arc-fault protection means shall comply with the following requirements:
  • the present invention differentiates from electrical arc fault protection devices that operate by detecting noise, radio frequency, light of plasma, radio, and other electromagnetic emissions of an electrical discharge.
  • the approach of previous art is limiting, as it requires an arc-fault to be present before remediation is possible. Lightning bolts during storms result in false alarms.
  • Other prior art use information from thermal sensors, infrared sensors, and cameras as a means to detect heat, an active arc, or a fire. However, such means are not-proactive and cannot detect initiation of an arc or fire in places obstructed from view.
  • Arc detection devices include circuit breakers, ground fault interrupters (GFI), arc fault detectors (AFD), and arc fault circuit interrupters (AFCI) which act to mitigate electrical safety hazards. Stopping the current flow is not always effective because the intense heat of the plasma generated by an electrical arc can cause either immediate fire or embers which ignite at a later time and spread to the supporting structure or nearby flammable material. GFI, AFD, ACFI, and circuit breakers do not pre-empt direct current arcing and cannot completely interrupt DC current at the source when the source of energy is unstoppable, as is the case with solar energy.
  • Arc faults in PV modules and PV connectivity are often caused by defective installation, and factory defects are widely documented.
  • Ohmic heating caused by oxidation can also result in arc faults, as documented in the 2015 Sandia Laboratory Technical Report authored by B. Yang, K. Armijo, E. Schindelholz, K. G. Blemel, K. D. Blemel, J. Johnson, "Photovoltaic Balance of System Connector Arc Fault Prognostics through Optical Monitoring, " (SAND2015-0883, which at the current time is not available in the public domain, "For Official Use Only” (FOUO), withheld from pubic release.)
  • Ohmic heating due to corrosion or loose connections can also occur in junction boxes, combiner boxes, inverter boxes, and protection within the electrical distribution system.
  • the ohmic heating may also degrade the conduction path in a manner that when sufficient energy is present, an arc fault can be established in the conduction path.
  • Human trauma and electrocution can result by touching the metal frame and/or an associated electrically conductive structure of a system component, which is electrified by an arc fault.
  • the supporting energy of the arc fault is DC, there are no zero-crossings as in alternating current and the arc does not self-extinguish, but continues as long as sufficient energy exists.
  • the Underwriter Laboratory 1699B Standard (in reference# 7 in the LIST OF NON-PATENT DOCUMENTS,) requires DC arc-fault circuit protection devices intended for use in PV systems to mitigate the effects of arcing faults that may pose a risk of fire ignition under certain conditions if the arcing persists, because even though the electricity in the connectivity downstream from the PV module is shut off, the very hot plasma is likely to have caused conflagration of proximal combustibles in the module.
  • U.S. Patent No. 8,817,471 to Barna teaches adding release of a fire suppressant after detecting heat of an electrical fire in a junction box.
  • U.S. Patent No. 8,576,521 to Rodgers, et al teaches a controller-based detection system configured to adaptively learn to distinguish between detected light that is indicative of an arc-fault event and detected light that is not related to an arc-fault event. During normal operation of the electrical power system, the adaptively-determined one or more detection algorithms are utilized to identify arc-fault events in the electrical power system. Rodgers, et al. does not teach utilizing ohmic heating to diagnose risk of arc fault; or use of kinetic energy resultant from ohmic energy to disrupt connectivity before an arc-fault happens.
  • U.S. Patent No. 8,410,950 to Takehara, et al teaches an electronic monitoring module for measuring voltage and current of PV panel output, comparing measured values against minimum and maximum values saved in the monitoring module, and outputting an alarm signal when a measured value is outside a range defined by the minimum and maximum values.
  • DE 607 795 C describes a reversible switching capsule including a fluid filled casing which fluid is heated by ohmic resistance to enable vaporisation and the vapour thus formed serves to extinguish an arc already formed.
  • the vapour thus formed is to reversibly open switching contacts likewise included in the interior of the casing and to disrupt a current flow. A subsequent condensation of the vapour to fluid form again enables a reverse flow of such fluid to the interior of the casing again and a manually operated closure of the switching contacts reinstalls the switching capsule to be used again.
  • the present invention is defined in independent claim 1. Further optional features are defined in the dependent claims.
  • the disclosure teaches a protection apparatus for improving the safety of electrical power distribution systems from the damage of an electrical arc fault in a connectivity junction by detecting heat generated therein, which is unrecognized by ordinary means, and which eventually would result in an electrical arc with resulting fire, electrical shock, or hazards.
  • the focus herein is on applying the protection apparatus to associated connectivity wherein kinetic energy of a gas such as, but not limited to, carbon dioxide produced by temperature causing decomposition of sodium bicarbonate, is detected and risk of a future arc fault raises as the force increases, enabling mitigation of the condition before the arc fault occurs.
  • This disclosure describes use of kinetic energy due to chemical state change caused by elevation in temperature to isolate unsafe conditions in virtually any electrical system connectivity component.
  • the present disclosure teaches actions that isolate the offending component in a manner that functional modules can remain operational and that unfaulted parts of a system remain functional.
  • the present invention provides means to utilize the ohmic heating phenomena which is symptomatic of progression to an electrical arc fault at a higher temperature; 2) can be added during manufacturing of the connectivity; 3) can be plugged-in during installation of connectivity; 4) can be added after the connectivity is installed to provide protection to existing electrical systems; 5) has no electronic circuit which could fail; 6) has no electrical or mechanical contactors that make and break the connection; 7) can be embodied to cause disruption and eliminate further risk; 8) is easy to install or integrate into the connectivity.
  • the simplicity of the innovation is an important advantage over prior art that teaches complex means for detecting an electrical arc fault by observing the light caused by the arc, or the radio frequency emissions of the arc, or change in current caused by the arc, and then interrupting the current flow with a device such as a circuit breaker, relay, or fuse.
  • the present invention is different than prior art to detect an electrical arc-fault by teaching utilizing the heat generated by the hazardous condition that to disrupt the flow of electricity.
  • This invention is contrary to prior art; utilizing the ohmic thermal rise before an arc results with action to disrupt flow of current before arcing happens.
  • the present invention gives a successful implementation before the electrical arc fault occurs; providing successful implementation of the intent of the United States National Electric Code (i.e., to prevent fire and personal injury due to electrical arc faults).
  • the present invention is proactive in providing protection from fire due to deterioration of PV connectivity as well as the risk of injury and death from consequences of the fire.
  • the present invention also teaches proactive protection to degradation of junctions in junction boxes, combiner boxes, inverters, and power distribution conduits; as well as junctions in wiring harnesses.
  • the present invention omits the need for electronic modules and sensors used to recognize the artifacts of a live electrical arc fault, such as a flash of plasma, radio frequency emissions, current rise, and simultaneous voltage drop.
  • Fig. 1a is a cutaway top view of hollow slotted electrically conductive guide (6) that holds conductive pin (9).
  • Detent (18) at the left end of conductive pin (9) is positioned under the left end of slot (4) (not shown) to enable coupling with a mechanical means to forcibly move conductive pin (9) right-wise distance Y until conductive pin (9) frees.
  • Detent (18) couples to a mechanical means to force movement of conductive pin (9).
  • FIG. 1b is a top view of the apparatus diagrammed in Fig. 1a .
  • An electrically conductive guide (6) surrounds conductive pin (9).
  • Detent (18) at the left end of conductive pin (9) couples with a mechanical means to mechanically move conductive pin (9) along slot (4).
  • Fig. 1b also depicts a top view of a protruding retainer (16) which prevents movement of conductive pin (9) until ohmic heating is sufficient to produce a thermomorphic force that initiates movement of conductive pin (9).
  • FIG. 1c depicts a top view of the apparatus diagrammed in Fig. 1b after activation to protect against a DC arc.
  • Fig. 1c depicts the configuration after a force applied at detent (18) of conductive pin (9) within slotted electrically conductive guide (6) has transited right-wise along slot (4) distance "Y" freeing conductive pin (9).
  • Fig. 1c also depicts top view of protruding retainer (16).
  • FIG. 2a is a composite cutaway side view diagram of an exemplary apparatus constructed according to the teaching of this disclosure before heat causes state change of thermomorphic substance (13) within pliant magazine (12).
  • Conductor (1) represents an electrical wire.
  • Electrically conductive guide (6) is within a channel (15) through dielectric material (8).
  • Spring (11) is shown in its compressed state, prevented from releasing stored energy by magazine (12) which is held in place by barrier (14), itself held in place by retainer (16).
  • An electrically conductive pin (9) is shown surrounded within electrically conductive guide (6), enabling flow of electrical current.
  • Distance Y is of sufficient length to assure freeing of electrically conductive pin (9) from electrically conductive guide (6).
  • Barrier (14) moves axially in gas impermeable cavity (10) when energy released on heating of the thermomorphic substance (13) expands pliant magazine (12).
  • FIG. 2b is a cutaway side view diagram of the apparatus in Fig. 2a constructed according to the current disclosure.
  • Fig. 2b shows the state of the apparatus after force produced by heating thermomorphic substance (13).
  • An electrical conductor (1) protruding from a male electrical connector (2) passes into an electrically conductive guide (6) within channel (15), which passes through dielectric material (8) within the apparatus.
  • the metal of the electrically conductive guide (6) has oxidized and become resistive.
  • Ohmic heating increased the temperature within the gas impermeable cavity (10).
  • Heating of the thermomorphic substance (13) has expanded the pliant magazine (12), causing barrier (14) to rise over retainer (16), which in turn caused spring (11) to expand.
  • Fig. 3 is a composite cutaway side view diagram of an apparatus to protect against DC arcing, constructed according to the teaching of the current disclosure before separation.
  • a conductor (1) from an insulated wire (insulation not shown).
  • the center of Fig. 3 is comprised of a female electrical connector (3) made of dielectric material (8) with a separable body (5) is shown with a pliant magazine (12) within.
  • Electrically conductive guide (6) passes through the length of the female electrical connector (3).
  • the frangible magazine (12) contains thermomorphic substance (13) such as, but not limited to, sodium bicarbonate.
  • the left portion of the electrically conductive guide (6) holds conductor (1) entering from the left.
  • a right portion of electrically conductive guide (6) is hollow to accept conductor (1) from male electrical connector (2) on the right.
  • the central portion of the metal electrically conductive guide (6) holds electrically conductive pin (9).
  • the right portion of the electrically conductive guide (6) mates conductor (1) from a male electrical connector (2), which enters from the right.
  • Force caused by ohmic heating causes state change of thermomorphic substance (13), expands pliant magazine (12), causing electrically conductive pin (9) to move, ejecting conductor (1) on the right, disrupting current flow. Extension of the length of conductor (1) with wire with surrounding insulation (17) is shown on the right.
  • the diagram of electrically conductive guide (6) and magazine (12) are meant to be representative and variants can be constructed that would work as well.
  • FIG. 4 depicts diagrammatically a device for warning responsible entities (21) of change in electrical power carried on a conductor (1) that carries power from a connective apparatus (not shown) constructed according to the teaching of this disclosure.
  • a comparator (19) detects permanent reduction in one or more parameters of electricity carried by the conductor (1).
  • the comparator (19) deploys a semaphore (22) or transmits a signal to one or more entities (21) via wired or wireless communicator (24).
  • the disruptor could be manufactured integral to either a male electrical connector or a female electrical connector or both.
  • the thermomorphic substance that produces kinetic energy sufficient to cause disruption of connectivity can be a compound comprising one or more ingredients including a substance such as, but not limited to, an essential oil, a salt solution, or other means to enhance production of kinetic energy.
  • a dye or fluorescent material that disperses during state change could be mixed with the thermomorphic substance.
  • inventions of the apparatus and method set forth herein relate to detection, mitigation, and isolation of unsafe connectivity that incorporates the present apparatus and method for purposes of properly disconnecting the flow of electricity within in the connectivity.
  • a socket contact assembly comprises a proximal end and a distal end, wherein the distal end is configured to be connected to a conductor, and the proximal end includes at least an outer surface.
  • the socket contact assembly is joined to a disruptor body comprising a proximal end and a distal end, wherein the proximal end includes a female electrical connector.
  • One or more chambers within the disruptor body are filled with a compound chosen for the property of rapid state change above a selected temperature, with the purpose to produce sufficient pressure (kinetic force) within the interior of the disruptor body to overcome the force of friction securing the disruptor body to the socket contact assembly, resulting in physical separation of the connection of the socket contact assembly and the conductor, thereby disrupting flow of electrical current.
  • the force causes movement of the electrically conductive guide, which frees the connectivity.
  • a technical contribution for the disclosed protection system is that it provides for unique autonomous mitigation of unsafe conditions at junctions of connectivity, such as an electrical system, and properly disconnecting the unsafe connectivity with an interrupter device before the unsafe condition that, if left unattended, could result in an arc or ground fault (in the case where conduits contain both anode and cathode), and the consequential damages thereto.
  • the disclosed protection system provides means for containing a dielectric chemical such as sodium bicarbonate for quenching a plasma that results when conductors carrying elevated current at a juncture are insufficiently separated with respect to speed of separation or distance of separation.
  • a dielectric chemical such as sodium bicarbonate
  • the quench can be accomplished by the noncombustible gas such as carbon dioxide displacing oxygen or by filling the void formed when the conductor separates.
  • One exemplary embodiment of the present invention is an apparatus fittable at a connectivity juncture or integral to the connectivity that comprises at least one disruptor that releases sufficient kinetic energy to force separation and unresettably open the circuit when a temperature internal to the connectivity rises to a desired trigger point below the temperature that causes an arc to form.
  • the purpose of the disruptor to forcibly open the circuit served by the connectivity to open and remain open when an excessive temperature condition is detected before the arcing happens.
  • the present invention extends to use in other equipment, which is subject to risk of damage, fire, and loss of property due to aging and manufacturing defects.
  • the embodiment would be constructed with, but not limited to, meeting the appropriate regulatory requirements.
  • the embodiment in the case of manufacturing a PV system component such as, but not limited to, a DC to AC inverter, the embodiment would be situated in connectivity proximal to inverter components and wiring therein that could have an unsafe condition.
  • the device would generate an unsafe condition signal that raises an alarm and the disrupter would interrupt current flow by opening a circuit or short-circuiting power as appropriate to mitigate the unsafe condition.
  • the apparatus is constructed with material selected for properties that will optimize detection and mitigation of unsafe conditions, by a release of sufficient kinetic energy above a certain temperature to forcibly open the connectivity.
  • material selected for properties that will optimize detection and mitigation of unsafe conditions, by a release of sufficient kinetic energy above a certain temperature to forcibly open the connectivity.
  • the nature of constituents used in the embodiment is selected so that any byproducts produced are non-toxic, non-flammable, and, further, are dielectric to provide arc quench.
  • the senor sends an unsafe condition signal when a first threshold is exceeded and releases kinetic energy on exceedance of a higher temperature, which indicates a very unsafe condition, but lower than a temperature that indicates imminent arc formation.
  • pre-detection of an emerging unsafe condition with an optional sensor device would be continuous when electrical current is carried by the conductivity. This approach would detect heating due to an arc or an external fire. Should such conditions occur, the sensor device would send an unsafe condition signal, which results in an alarm and the associate connectivity system component being de-energized by disconnecting the flow of electricity with a disruptor according to the teaching herein.
  • the disruptor device can augmented with a sensor built into or inserted into the body.
  • the sensor can be produced by placing a portion of translucent media that changes optical transmissivity above 85 degrees Celsius which is the rated temperature for PV connectivity.
  • the media such as, but not limited to High Density Polyethylene (HDPE), is positioned in close proximity to the components that exhibit resistive electrical heating phenomena, also known as "ohmic heating.” Ohmic heating in the connectivity of an electrical system can result in localized elevated heating that results in arcing.
  • HDPE High Density Polyethylene
  • sensitized media that produce a measurable response sufficiently below the temperature where arcing is expected to occur.
  • ASTME American Society of Test and Measurement Engineers
  • translucence of HDPE decreases above 104 degrees Celsius; a point the ASTME calls, "Tm.”
  • HDPE melts at 150 degrees Celsius, a point the ASTME calls, "Tc.”
  • the media for example, could be a semiconductor which becomes a conductor (or non-conductor) above a certain temperature based on its composition.
  • Embodiments can be constructed without an electronic circuit for risk mitigation; or can be constructed at additional cost with a digital circuit, an analog circuit, or a combination thereof.
  • the embodiment could, according to need to communicate, be able to receive analog and digital input signals.
  • the design could, according to need to take pre-action, also have analog and/or digital outputs to provide actuation such as, but not limited to a status indicator light or semaphore.
  • the circuitry could be designed with the ability to be unaffected by the DC current on the conductors.
  • the design could include a means for sending data and information such as, but not limited to, coded modulation onto the current carried by the conductor within the connectivity; or wireless means, for sending information using approved protocols such as, but not limited to, Bluetooth TM or Ethernet.
  • Measurement means for determining an unsafe condition could include, but is not limited to, using an electronic circuit to measure temperature directly or indirectly.
  • indirect means could be accomplished by measuring change in a parameter affected by temperature.
  • An appropriate timing delay could be built in or incorporated so as not to generate false alarms.
  • the energy source for the sensor circuitry could be, but is not limited to, a tap of energy carried by the conductor, an inductive coil surrounding the conductor, or a solar cell.
  • the energy source if any, should be selected for operating as long as possible and to hold sufficient charge for as long as the system component wherein the sensor is installed.
  • Digital or analog information can be delivered to a remote device.
  • the remote device could be located in a junction box or a combiner box, or an electrical system health monitoring and control center.
  • the information could be used, for example, to produce an estimate of the remaining time before an arc will occur by using an algorithm based on parameters including, but not limited to, the rate of increase in temperature sensed and time.
  • the means to deliver the information could be wireless using a protocol such as but not limited to Bluetooth or Wi-Fi (such as, for example only, a modulation on the conduit DC or AC signal).
  • the present disclosure teaches a kinetic apparatus that, by design, operates before a sustained arc is produced due to temperatures within electrified connectivity.
  • the temperature sufficient to sustain a DC arc is 200 degrees Celsius.
  • the disrupter is operably situated in a connectivity junction for,the purpose of having kinetic energy forcibly open an overheated junction below the temperature where arcing occurs.
  • the apparatus is wholly non-electric based on use of compounds, such as, but without limitation, powdered sodium bicarbonate (NaHCO 3 ) within a structure designed to expand, vent, or fracture to permit release of the kinetic energy.
  • NaHCO 3 powdered sodium bicarbonate
  • the byproduct of carbon dioxide gas provides the kinetic force.
  • the disruptor device should be constructed to provide an amount of kinetic force to permanently open the connectivity at a temperature below that which produces an electrical arc fault.
  • the sources of the kinetic energy could be, but are not limited to, a miniscule coating of polymerized cyclotrimethylenetrinitramine; a compaction of granules that decompose producing copious gas above a certain temperature, for example sodium bicarbonate; a mixture of chemicals that react with production of gas above a certain temperature, for example powdered starch and potassium carbonate; an effervescent liquid; and microencapsulated media that release gas above a certain temperature.
  • the material used for producing the kinetic energy should be encapsulated, such as, but not limited to, a suitable polymer, metal, or glass of strength that provides accumulation of force needed to cause assured disruption of flow of electricity by separation of the electrical conduits within the connectivity.
  • the accumulated force could be augmented with a mechanical means such as, but not limited to, a pre-stressed spring that uncoils when unstressed.
  • the encasement would also protect from moisture which could alter the effectiveness of the charge.
  • Safety, toxicity, flammability, reliability, stability, and durability are key parameters to be considered in making a selection.
  • the material used to produce kinetic energy of the disrupter and packaging, if any, should be reliable and stable for the expected service life of the connectivity.
  • the apparatus could include features such as, but not limited to, a self-test function, ability to annunciate, to be interrogated by wired or wireless means, and interrupt current flow by opening the circuit to stop the flow of electricity.
  • an apparatus for performing a series of measurement tests that produce data to determine the response characteristics of the sensing media to change in resistance or current versus temperature. For example, after measuring the resistance, incrementally increase current with a calibrated current source, such as a variable transformer. Increasing the resistance can be accomplished by placing the corrodible test article in a salt-air environment at an elevated temperature to quicken the corrosion and thus the resistance. The change in resistance due to corrosion of the junction under test will cause the sensed parameters to increase or diminish.
  • a comparator such as a flip flop circuit, array of logic gates or differential amplifier settable at a preferred temperature with the purpose to generate an unsafe condition signal.
  • the unsafe condition criteria could include, but is not limited to, one or more of a threshold value.
  • the comparator logic if it requires electricity to operate, it is connected to electricity carried by the connectivity or electricity from another source, such as a battery or capacitor energized by kinetic energy or solar energy.
  • a proximal translucent polymer strand coupled to a photon detector would melt and the light signal would not reach the photon detector, causing a logic circuit to signal an interrupter device of a pre-arc condition.
  • An alternative is an illuminated proximal translucent polymer strand coupled to a photon detector would exhibit reduced transmissivity and the reduced light signal reaching the photon detector would cause a logic circuit to signal an interrupter device to open the connectivity and stop the flow of current.
  • thermomorphic substance which on heating, release an odor so that a trained dog or other animal could locate a point of conductivity disrupted with the kinetic force.
  • water which is thermomorphic, releasing steam above 100 degrees Celsius at sea level.
  • sodium chloride, ethylene glycol, or another substance that prevents freezing could be added.
  • a prototype of a disruptor was constructed using a 3-D printer that operates by heating a strand of acrylonitrile butadiene styrene (ABS), a high temperature polymer, to form a separable body with a central pathway for containing a metal electrically conductive guide that enters the female electrical connector and surrounds the end of the electrical conductor within and similarly surrounds the protruding conductor from the male electrical connector forming a separable joint.
  • ABS acrylonitrile butadiene styrene
  • an injection mold would be more efficient.
  • the compartment was filled with NaHCO 3 powder (commonly known as baking soda), then capped with an air-tight lid.
  • NaHCO 3 was selected for the property of releasing kinetic energy in the form of carbon dioxide gas starting at above 100 degrees Celsius and kinetic energy from release of carbon dioxide gas being fully depleted at around 200 degrees Celsius.
  • the prototype disruptor was heated to 125 degrees Celsius in a temperature-controlled oven, the heat caused the NaHCO 3 sealed within the sealed disruptor cavity to decompose, releasing carbon dioxide gas, which quickly accumulated sufficient kinetic force to break open the lid of the cylinder and separate the disruptor body.
  • the connectivity can be within a junction box, a panel, or electronic assembly.
  • the invention should therefore not be limited by the above described embodiment, method, and examples, but by all embodiments and methods within the scope of the invention as claimed.

Description

    BACKGROUND OF THE INVENTION
  • Electrical arc faults generate white hot plasma and intense heat. Arc faults can be caused, for example, by a manufacturing defect; overload, or thermal expansion and contraction at the joints by the thermo-dynamics of current on the conductor. There is a plethora of publically available documents such as, "American Electricians Handbook" by T. Croft, F. Hartwell, and W. Summers (which is included in its entirety by reference herein), that teach electrical system designs and installations, as well as hazards related thereto. Other documents are publicly available that teach how to design systems that mitigate the related hazards with controllers, circuit breakers, ground fault detectors, and circuit interrupters.
  • Electrical systems typically include an infrastructure comprised of mechanical framework, electrical connectivity, and means for disconnecting, regulating, controlling, distributing, and modifying the electricity. Electrical arc-faults in connectivity can occur even when the operating voltages and currents are within normal bounds; such as, but not limited to, in the case of improper installation, unsafe design, small air gaps caused by differences in expansion of the conduit and metal contacts, or a manufacturing defect.
  • List of Referenced Background Documents U.S. Patent Documents
  • Patent Number Issue Date Inventor
    7,590,496 September, 2009 Blemel
    7,356,444 April 2008 Blemel
    7,277,822 October 2007 Blemel
    7,974,815 July 2011 Blemel
    20140231637 August 2014 Blemel
    8,817,471 August 2014 Barna
  • Non-Patent Documents
    1. 1. M. W. Earley, P.E., et al, "2014 National Electric Code (NEC) Handbook," 2013 National Fire Protective Association, Quincy, Massachusetts, Thirteenth Edition, p. 889-902.
    2. 2. J. Johnson, B. Pahl, C.J. Luebke, T. Pier, T. Miller, J. Strauch, S. Kuszmaul and W. Bower, "Photovoltaic DC arc-fault detector testing at Sandia National Laboratories," 19-24 June 2011, Seattle, WA, 37th IEEE PVSC.
    3. 3. J. Johnson, "Arc-fault detection and mitigation in PV systems: Industry progress and future needs," 28 Feb. 2012, Denver, CO, NREL Module Reliability Workshop.
    4. 4. T. Croft, F. Hartwell, W. Summers, "American Electricians Handbook," Sixteenth Edition, 23 July 2013, McGraw Hill Professional - Publisher.
    5. 5. Y. Otsubo, K. Yamaguci, "Journal of the Japanese Chemical Society," Vol. 82, pp. 557-560 (1961)
    6. 6. B. Yang, K. Armijo, E. Schindelholz, K. G. Blemel, K. D. Blemel, J. Johnson, "Photovoltaic Balance of System Connector Arc Fault Prognostics through Optical Monitoring," February 2015, Sandia Laboratory Technical Report SAND2015-0883 (Not for public release- For Official Use Only).
    7. 7. Underwriter Laboratory Photovoltaic (PV) DC Arc-Fault Circuit Protection 1699B http://ulstandardsinfonet.ul.com/outscope/outscope.asp?fn=1699B.html
    8. 8. D. Wolpert and P. Ampadu, "Managing Temperature Effects in Nanoscale Adaptive Systems", DOI 10.1007/978-1-4614-0748.
    Definitions
    1. 1) Connectivity: Connectivity as used herein is a general term that includes wiring and associated attachment means used for the purpose of conducting direct current (DC), alternating current (AC), or combinations thereof. The connectivity components are sometimes called connectors, plugs, terminals, receptacles and junction boxes among other names.
    2. 2) Thermal decomposition: State change of a chemical due to heat. For example, sodium bicarbonate (NaHCO3) is unstable with respect to heating. According to Otsubo, cited as Reference # 5 in the LIST OF NON-PATENT DOCUMENTS, solid NaHCO3 begins to lose carbon dioxide and water around 100°C, with complete conversion to solid sodium carbonate Na2CO3 by 200°C. (Documented by Y. Otsubo and K. Yamaguci, Journal of the Japanese Chemical Society, Vol. 82, 1961 pp 557-560.) NaHCO3 is used as a fire-suppression agent in some dry powder fire extinguishers.
    3. 3) Thermomorphic material: A substance that exhibits state change above a certain temperature.
    4. 4) Electric arc or arc discharge: An electrical breakdown of a gas that produces an ongoing plasma discharge, resulting from a current through normally nonconductive media such as air.
    5. 5) Thermal plasma: Energy generated by direct current and alternating current arc discharges.
    6. 6) Thermal energy: The internal energy present in a system by virtue of its temperature.
    7. 7) Pro-Active: To be preventive; e.g., taking action based on diagnosing a pre-condition.
    8. 8) Kinetic Energy of Gas Molecules: The average energy of a collection of gas molecules depends on the temperature of the gas and nothing else because gases are composed of a large number of molecules that behave like hard, spherical objects in a state of constant, random motion. The molecules move in a straight line until collision with another particle or the wall of a container. There is no force of attraction between gas molecules or between the molecules and the walls of the container. Because collisions between gas molecules or with the walls of the container are perfectly elastic, none of the energy of a gas particle is lost when it collides with another particle or with the walls of the container.
  • For brevity, the following summary is focused on, but not limited to, photovoltaic (PV) systems that produce DC electricity directly from the sun's rays shining on PV modules that contain a number of interconnected solar cells. The electrical conductors that carry DC output from PV modules are conventionally connected to metal lugs in a "junction box" located on the back of the PV module. Several PV modules are often combined to aggregate the current or voltage in what is commonly called a PV string where several individual PV modules are joined by one or more electrical connectors that provide connectivity, usually in a series fashion. Several PV strings are often further joined by downstream connectivity components, such as a combiner box that aggregates the electrical power. Several combiner boxes are often connected in a tree-like fashion to large combiner boxes (sometimes called re-combiners) for aggregating power into a transmission line. In practice, one or more combiner boxes include over-current protection and isolation means, such as relays and breakers and insulated levers to deal with overloads and isolate short circuits.
  • Briefly stated, the present invention is a pro-active device to provide disruption of electrical connectivity without need for electrical devices.
  • In the case of an arc happening within connectivity, such as that of a PV system, the intense heat generated can result in a localized fire of combustible material used in the connectivity's construction and quickly spreads to proximal combustible materials.
  • The problem of arc faulting in PV connectivity is so serious that the Fire Protection Association (FPA) modified the 2014 National Electric Code (NEC) section 690.11 (listed as Reference # 1 in the LIST OF NON-PATENT DOCUMENTS):
    "Photovoltaic systems with DC source circuits, DC output circuits, or both, operating at a PV system maximum system voltage of 80 volts or greater, shall be protected by a listed (DC) arc-fault circuit interrupter, PV type, or other system components listed to provide equivalent protection. The PV arc-fault protection means shall comply with the following requirements:
    1. (1) The system shall detect and interrupt arcing faults resulting from a failure in the intended continuity of a conductor, connection, module, or other system component in the DC PV source and DC PV output circuits.
    2. (2) The system shall require that the disabled or disconnected equipment be manually restarted.
    3. (3) The system shall have an annunciator that provides a visual indication the circuit interrupter has operated. This indication shall not reset automatically."
  • The present invention differentiates from electrical arc fault protection devices that operate by detecting noise, radio frequency, light of plasma, radio, and other electromagnetic emissions of an electrical discharge. The approach of previous art is limiting, as it requires an arc-fault to be present before remediation is possible. Lightning bolts during storms result in false alarms. Other prior art use information from thermal sensors, infrared sensors, and cameras as a means to detect heat, an active arc, or a fire. However, such means are not-proactive and cannot detect initiation of an arc or fire in places obstructed from view.
  • Arc detection devices include circuit breakers, ground fault interrupters (GFI), arc fault detectors (AFD), and arc fault circuit interrupters (AFCI) which act to mitigate electrical safety hazards. Stopping the current flow is not always effective because the intense heat of the plasma generated by an electrical arc can cause either immediate fire or embers which ignite at a later time and spread to the supporting structure or nearby flammable material. GFI, AFD, ACFI, and circuit breakers do not pre-empt direct current arcing and cannot completely interrupt DC current at the source when the source of energy is unstoppable, as is the case with solar energy.
  • Arc faults in PV modules and PV connectivity are often caused by defective installation, and factory defects are widely documented. Ohmic heating caused by oxidation can also result in arc faults, as documented in the 2015 Sandia Laboratory Technical Report authored by B. Yang, K. Armijo, E. Schindelholz, K. G. Blemel, K. D. Blemel, J. Johnson, "Photovoltaic Balance of System Connector Arc Fault Prognostics through Optical Monitoring," (SAND2015-0883, which at the current time is not available in the public domain, "For Official Use Only" (FOUO), withheld from pubic release.)
  • Ohmic heating due to corrosion or loose connections can also occur in junction boxes, combiner boxes, inverter boxes, and protection within the electrical distribution system. The ohmic heating may also degrade the conduction path in a manner that when sufficient energy is present, an arc fault can be established in the conduction path.
  • Human trauma and electrocution can result by touching the metal frame and/or an associated electrically conductive structure of a system component, which is electrified by an arc fault. When the supporting energy of the arc fault is DC, there are no zero-crossings as in alternating current and the arc does not self-extinguish, but continues as long as sufficient energy exists.
  • The Underwriter Laboratory 1699B Standard (in reference# 7 in the LIST OF NON-PATENT DOCUMENTS,) requires DC arc-fault circuit protection devices intended for use in PV systems to mitigate the effects of arcing faults that may pose a risk of fire ignition under certain conditions if the arcing persists, because even though the electricity in the connectivity downstream from the PV
    module is shut off, the very hot plasma is likely to have caused conflagration of proximal combustibles in the module.
  • There is a pressing need for an improved means described in detail in the present disclosure that acts autonomously to take action to prevent arc-faults from happening. It would therefore be desirable to provide an apparatus with means for pre-arc, unsafe-condition detection and mitigation therein that works even when voltages and currents are within normal limits. Further, the protection system would meet the NEC Section 690.11 and other NEC requirements by annunciating unsafe conditions in PV system equipment and associated wiring. The protection system would provide mitigation before the arc-fault occurs, shutting down the PV component with an unsafe condition; therefore preventing fire damage and human disasters by properly isolating only the unsafe component in a safe manner and alerting the system owner or consumer for replacement or reinstatement.
  • Discussion of Prior Art
  • A search of World Intellectual Property Organization (WIPO) member websites found over two hundred issued patents for detecting and protecting after electrical arc faults happen in chafing, overload, and wire short situations. None of these patents deal with methods or system with means to pre-empt DC arcing hours, days, or even months before the discharge occurs. However, several patents and limitations thereof which are overcome by the present application are presented below.
  • There are numerous examples of prior art, including patents and publications that present principles, methods, systems, apparatus, and techniques for detecting and mitigating active arc-faults when they occur. Several companies have begun embedding electronics into PV components to detect DC arc-faults when they occur. There are numerous examples of art that teach detecting the arcing of a "load-side short," as experienced when electrical equipment fails, causing fuses to blow due to current increase of electricity supplied by a generator or power facility. These methods cannot work well when sunlight is the energy source, as is the case with PV modules. This means a solar-source arc continues, due to the sun's rays (either direct or reflected from the moon) unless the module is covered somehow to occlude the sunlight; or the connectivity upstream is disrupted.
  • While there are numerous patents for detecting current overload which cause fire in panels and electrical outlets, a search of the World Wide Web and the USPTO site patent database did not find issued U.S. patents or published U.S. patent applications that teach direct mitigation of unsafe conditions without need for an electrical device such as a temperature sensor. Nor were there identified any examples of prior art providing mitigation when current and voltage are within acceptable limits. The following are instances of prior art that a) use active monitoring of output of symptoms such as current, light, or radio frequency emissions with electrical means to determine a PV system is arcing; and b) use of electrical means to determine that insulation is degrading.
  • U.S. Patent Application Publication No. 2014/0231637 by Blemel et al . teaches measuring light intensity with a photodetector to sense thermal damage due to resistive heating or arcing.
  • U.S. Patent No. 8,817,471 to Barna teaches adding release of a fire suppressant after detecting heat of an electrical fire in a junction box.
  • U.S. Patent Application Publication No. 2010/0277325 A1 by Kopelman teaches monitoring infra-red emissions with an electronic sensor to detect overheated junctions.
  • U.S. Patent No. 8,576,521 to Rodgers, et al . teaches a controller-based detection system configured to adaptively learn to distinguish between detected light that is indicative of an arc-fault event and detected light that is not related to an arc-fault event. During normal operation of the electrical power system, the adaptively-determined one or more detection algorithms are utilized to identify arc-fault events in the electrical power system. Rodgers, et al. does not teach utilizing ohmic heating to diagnose risk of arc fault; or use of kinetic energy resultant from ohmic energy to disrupt connectivity before an arc-fault happens.
  • U.S. Patent No. 8,410,950 to Takehara, et al . teaches an electronic monitoring module for measuring voltage and current of PV panel output, comparing measured values against minimum and maximum values saved in the monitoring module, and outputting an alarm signal when a measured value is outside a range defined by the minimum and maximum values.
  • H. Bruce Land III, Christopher L. Eddins, and John M. Klimek (Land, et al.), in a paper publicly available on the web entitled, "Evolution of Arc-Fault Protection Technology at APL," claims that an electrical fire is reported in the United States every five minutes. This paper documents that Applied Physics Laboratory (APL) created an AFD system to detect and quench these fires. This paper also documents that APL developed electronically operated circuit breakers that are the follow-on to AFCI and GFI breakers.
  • U.S. Patent Nos. 7,590,496 , 7,356,444 , 7,277,822 , and 7,974,815 to Blemel individually or collectively teach using damage to sensitized translucent sheets, strips, or strands (including but not limited to translucent glass and polymer), arranged on the surface or within conduits, to detect damage to the conduit such as caused by incision, solvent, or flame.
  • DE 607 795 C describes a reversible switching capsule including a fluid filled casing which fluid is heated by ohmic resistance to enable vaporisation and the vapour thus formed serves to extinguish an arc already formed. The vapour thus formed is to reversibly open switching contacts likewise included in the interior of the casing and to disrupt a current flow. A subsequent condensation of the vapour to fluid form again enables a reverse flow of such fluid to the interior of the casing again and a manually operated closure of the switching contacts reinstalls the switching capsule to be used again.
  • According to current publications (see list of non-patent documents), experts in solar systems state there are currently no technologies (other than that described herein) that can operate without use of electronic sensors to detect and mitigate the risk of a DC arc in electrical connectivity before the arc happens.
  • None of the above patents, patent applications, and publically available prior art teach utilizing non electronic means to disrupt flow of electricity to mitigate an unsafe condition before sustained electrical arcing occurs.
  • BRIEF SUMMARY OF THE INVENTION
  • The present invention is defined in independent claim 1. Further optional features are defined in the dependent claims. The disclosure teaches a protection apparatus for improving the safety of electrical power distribution systems from the damage of an electrical arc fault in a connectivity junction by detecting heat generated therein, which is unrecognized by ordinary means, and which eventually would result in an electrical arc with resulting fire, electrical shock, or hazards. The focus herein is on applying the protection apparatus to associated connectivity wherein kinetic energy of a gas such as, but not limited to, carbon dioxide produced by temperature causing decomposition of sodium bicarbonate, is detected and risk of a future arc fault raises as the force increases, enabling mitigation of the condition before the arc fault occurs.
  • This disclosure describes use of kinetic energy due to chemical state change caused by elevation in temperature to isolate unsafe conditions in virtually any electrical system connectivity component. The present disclosure teaches actions that isolate the offending component in a manner that functional modules can remain operational and that unfaulted parts of a system remain functional.
  • While the present specification uses the example of PV balance of system connectors to teach the principles, a person familiar with electrical systems would realize that connectivity devices are components found in most, if not all, electrical systems.
  • Advantages Over Prior Art
  • The following summarizes some of the advantages of the present invention over prior art. 1) The present invention provides means to utilize the ohmic heating phenomena which is symptomatic of progression to an electrical arc fault at a higher temperature; 2) can be added during manufacturing of the connectivity; 3) can be plugged-in during installation of connectivity; 4) can be added after the connectivity is installed to provide protection to existing electrical systems; 5) has no electronic circuit which could fail; 6) has no electrical or mechanical contactors that make and break the connection; 7) can be embodied to cause disruption and eliminate further risk; 8) is easy to install or integrate into the connectivity. 9) is immune to producing false alarms due to naturally occurring RF emissions; 10) operates before there is a significant precursor change in voltage or current produced by an arc event; 11) is able to operate when repeated hot/cold cycles result in very low ampere electrical discharges across a sub-millimeter size gap at joints within the connectivity component; or there is a factory defect in the connectivity component; or an installer does not make a proper connection causing a gap in the joint small enough to cause a self-extinguishing discharge which will subsequently result in an arc fault with associated high temperature plasma energy.
  • Using the heat generated in a connectivity junction that precedes an arc fault to disconnect the flow of current is novel.
  • It is a very significant advantage over prior art that the present invention meets and exceeds the 2014 NEC 690.11 requirement for mitigating arcs in PV systems by freeing the unsafe component before an arc occurs.
  • It is an important advantage over prior art that the present invention is simple, low cost, and easy to implement because there are hundreds of thousands of PV systems installed and producing electricity today.
  • The simplicity of the innovation is an important advantage over prior art that teaches complex means for detecting an electrical arc fault by observing the light caused by the arc, or the radio frequency emissions of the arc, or change in current caused by the arc, and then interrupting the current flow with a device such as a circuit breaker, relay, or fuse.
  • The present invention is different than prior art to detect an electrical arc-fault by teaching utilizing the heat generated by the hazardous condition that to disrupt the flow of electricity.
  • This invention is contrary to prior art; utilizing the ohmic thermal rise before an arc results with action to disrupt flow of current before arcing happens.
  • The present invention gives a successful implementation before the electrical arc fault occurs; providing successful implementation of the intent of the United States National Electric Code (i.e., to prevent fire and personal injury due to electrical arc faults).
  • The present invention is proactive in providing protection from fire due to deterioration of PV connectivity as well as the risk of injury and death from consequences of the fire.
  • The present invention also teaches proactive protection to degradation of junctions in junction boxes, combiner boxes, inverters, and power distribution conduits; as well as junctions in wiring harnesses.
  • The present invention omits the need for electronic modules and sensors used to recognize the artifacts of a live electrical arc fault, such as a flash of plasma, radio frequency emissions, current rise, and simultaneous voltage drop.
  • BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS
    • Fig. 1a depicts a cutaway top view of a slotted electrically conductive guide with left end for accepting a male electrical conductor and right end for accepting a conductive pin. A slot on the top allows a barrier to move a distance "Y" sufficient to forcibly eject a conductive pin fitted into the right end of the electrically conductive guide.
    • Fig. 1b depicts a top view of the apparatus in Fig. 1a constructed with a slot along the top side that enables a mechanically coupled means to move and free a conductive pin fitted into the right end of the electrically conductive guide.
    • Fig. 1c depicts a top view diagram of the apparatus in Fig. 1b after a mechanical means in contact with the conductive pin has transited distance Y, freeing the conductive pin.
    • Fig. 2a is a cutaway, side view diagram that depicts an electrical connector with a single conductor connector before activation of the thermomorphic substance with the functions and components constructed according to the teaching of this application.
    • Fig. 2b is a cutaway, side view diagram that depicts the apparatus of Fig. 2a after heating activates the thermomorphic substance.
    • Fig. 3 is a composite cutaway side view diagram of an apparatus to protect against DC arcing, which is depicted as a female connector constructed with a pliant magazine that expands due to sufficient internal force generated by heating of thermomorphic substance with force moving a conductive pin axially in an electrically conductive guide ejecting a male connector opening the connectivity. A diagram of an electrical conductor is depicted on the left and a male electrical connector is depicted on the right of the apparatus.
    • Fig. 4 depicts a device for warning responsible entities of excessive heating of junctions of electrical connectivity employing a semaphore or wired or wireless communicator. The device employs a comparator that diagnoses rapid decrease in energy on a conductor serving a junction or connector.
    Reference o Numerals Used in Drawings
  • The components identified in the figures:
    • (1) Electrical Conductor
    • (2) Male electrical connector
    • (3) Female electrical connector
    • (4) Slot
    • (5) Separable Body
    • (6) Electrically Conductive Guide
    • (7) Shell
    • (8) Dielectric Material
    • (9) Conductive Pin
    • (10) Gas Impermeable Cavity
    • (11) Spring
    • (12) Magazine
    • (13) Thermomorphic substance
    • (14) Barrier
    • (15) Channel
    • (16) Retainer
    • (17) Insulation
    • (18) Detent
    • (19) Comparator
    • (21) Entity
    • (22) Semaphore
    • (23) Communicator
    DETAILED DESCRIPTION OF THE INVENTION
  • Various embodiments of the invention are disclosed in the following detailed description and accompanying drawings. Each drawing teaches how to implement the techniques and or components to effect the purposes of the disclosed invention.
  • Referring now to Fig. 1a, which is a cutaway top view of hollow slotted electrically conductive guide (6) that holds conductive pin (9). Detent (18) at the left end of conductive pin (9) is positioned under the left end of slot (4) (not shown) to enable coupling with a mechanical means to forcibly move conductive pin (9) right-wise distance Y until conductive pin (9) frees. Detent (18) couples to a mechanical means to force movement of conductive pin (9).
  • Referring now to Fig. 1b which is a top view of the apparatus diagrammed in Fig. 1a. An electrically conductive guide (6) surrounds conductive pin (9). Detent (18) at the left end of conductive pin (9) couples with a mechanical means to mechanically move conductive pin (9) along slot (4). Fig. 1b also depicts a top view of a protruding retainer (16) which prevents movement of conductive pin (9) until ohmic heating is sufficient to produce a thermomorphic force that initiates movement of conductive pin (9).
  • Referring now to Fig. 1c, which depicts a top view of the apparatus diagrammed in Fig. 1b after activation to protect against a DC arc. Fig. 1c depicts the configuration after a force applied at detent (18) of conductive pin (9) within slotted electrically conductive guide (6) has transited right-wise along slot (4) distance "Y" freeing conductive pin (9). Fig. 1c also depicts top view of protruding retainer (16).
  • Referring now is made to Fig. 2a, which is a composite cutaway side view diagram of an exemplary apparatus constructed according to the teaching of this disclosure before heat causes state change of thermomorphic substance (13) within pliant magazine (12). Conductor (1) represents an electrical wire. Electrically conductive guide (6) is within a channel (15) through dielectric material (8). Spring (11) is shown in its compressed state, prevented from releasing stored energy by magazine (12) which is held in place by barrier (14), itself held in place by retainer (16). An electrically conductive pin (9) is shown surrounded within electrically conductive guide (6), enabling flow of electrical current. Distance Y is of sufficient length to assure freeing of electrically conductive pin (9) from electrically conductive guide (6). Barrier (14) moves axially in gas impermeable cavity (10) when energy released on heating of the thermomorphic substance (13) expands pliant magazine (12).
  • Referring now to Fig. 2b, which is a cutaway side view diagram of the apparatus in Fig. 2a constructed according to the current disclosure. Fig. 2b shows the state of the apparatus after force produced by heating thermomorphic substance (13). An electrical conductor (1) protruding from a male electrical connector (2) passes into an electrically conductive guide (6) within channel (15), which passes through dielectric material (8) within the apparatus. The metal of the electrically conductive guide (6) has oxidized and become resistive. Ohmic heating increased the temperature within the gas impermeable cavity (10). Heating of the thermomorphic substance (13) has expanded the pliant magazine (12), causing barrier (14) to rise over retainer (16), which in turn caused spring (11) to expand. The sum of forces released by spring (11) and energy of thermomorphic substance (13) pushed moveable barrier (14) past the retainer (16) axially Y distance, freeing electrically conductive pin (9) from electrically conductive guide (6), thereby disrupting the connectivity. Slot (4) in the upper surface of electrically conductive guide (6) depicted in Fig. 2a is hidden from view (not shown) due to the side view perspective. The diagram is meant to be representative and variants can be constructed that would work as well.
  • Referring now to Fig. 3, which is a composite cutaway side view diagram of an apparatus to protect against DC arcing, constructed according to the teaching of the current disclosure before separation. On the left of Fig. 3 is a conductor (1) from an insulated wire (insulation not shown). The center of Fig. 3 is comprised of a female electrical connector (3) made of dielectric material (8) with a separable body (5) is shown with a pliant magazine (12) within. Electrically conductive guide (6) passes through the length of the female electrical connector (3). The frangible magazine (12) contains thermomorphic substance (13) such as, but not limited to, sodium bicarbonate. The left portion of the electrically conductive guide (6) holds conductor (1) entering from the left. A right portion of electrically conductive guide (6) is hollow to accept conductor (1) from male electrical connector (2) on the right. The central portion of the metal electrically conductive guide (6) holds electrically conductive pin (9). The right portion of the electrically conductive guide (6) mates conductor (1) from a male electrical connector (2), which enters from the right. Force caused by ohmic heating causes state change of thermomorphic substance (13), expands pliant magazine (12), causing electrically conductive pin (9) to move, ejecting conductor (1) on the right, disrupting current flow. Extension of the length of conductor (1) with wire with surrounding insulation (17) is shown on the right. The diagram of electrically conductive guide (6) and magazine (12) are meant to be representative and variants can be constructed that would work as well.
  • Referring now to Fig. 4 which depicts diagrammatically a device for warning responsible entities (21) of change in electrical power carried on a conductor (1) that carries power from a connective apparatus (not shown) constructed according to the teaching of this disclosure. A comparator (19) detects permanent reduction in one or more parameters of electricity carried by the conductor (1). The comparator (19) deploys a semaphore (22) or transmits a signal to one or more entities (21) via wired or wireless communicator (24).
  • The following is a detailed description describing exemplary embodiments to illustrate the principles of the invention. The embodiments are provided to illustrate aspects of the invention, but the invention is not limited to any embodiment. The scope of the invention encompasses numerous alternatives, modifications, and equivalent; it is limited only by the claims.
  • Numerous specific details set forth in the figures and descriptions are provided in order to provide a thorough understanding of the disclosed apparatus and method and how to practice the invention. However, the invention may be practiced according to the claims without some or all of these specific details. For the purpose of clarity, technical material that is known in the technical fields related to the invention has not been described in detail so that the invention is not unnecessarily obscured. For example, the disruptor could be manufactured integral to either a male electrical connector or a female electrical connector or both. Also, the thermomorphic substance that produces kinetic energy sufficient to cause disruption of connectivity can be a compound comprising one or more ingredients including a substance such as, but not limited to, an essential oil, a salt solution, or other means to enhance production of kinetic energy. A dye or fluorescent material that disperses during state change could be mixed with the thermomorphic substance.
  • References are cited that provide detailed information about electrical systems, unsafe conditions of electrical systems, and approved techniques for implementing protection systems. However, a person with ordinary experience in instrumenting systems would understand the application also applies to steam and chemical piping systems that overheat.
  • The embodiments of the apparatus and method set forth herein relate to detection, mitigation, and isolation of unsafe connectivity that incorporates the present apparatus and method for purposes of properly disconnecting the flow of electricity within in the connectivity.
  • In a preferred embodiment, a socket contact assembly comprises a proximal end and a distal end, wherein the distal end is configured to be connected to a conductor, and the proximal end includes at least an outer surface. The socket contact assembly is joined to a disruptor body comprising a proximal end and a distal end, wherein the proximal end includes a female electrical connector.
  • One or more chambers within the disruptor body are filled with a compound chosen for the property of rapid state change above a selected temperature, with the purpose to produce sufficient pressure (kinetic force) within the interior of the disruptor body to overcome the force of friction securing the disruptor body to the socket contact assembly, resulting in physical separation of the connection of the socket contact assembly and the conductor, thereby disrupting flow of electrical current. In an alternate embodiment, the force causes movement of the electrically conductive guide, which frees the connectivity.
  • A technical contribution for the disclosed protection system is that it provides for unique autonomous mitigation of unsafe conditions at junctions of connectivity, such as an electrical system, and properly disconnecting the unsafe connectivity with an interrupter device before the unsafe condition that, if left unattended, could result in an arc or ground fault (in the case where conduits contain both anode and cathode), and the consequential damages thereto.
  • Another technical contribution for the disclosed protection system is that it provides means for containing a dielectric chemical such as sodium bicarbonate for quenching a plasma that results when conductors carrying elevated current at a juncture are insufficiently separated with respect to speed of separation or distance of separation. Without limitation, the quench can be accomplished by the noncombustible gas such as carbon dioxide displacing oxygen or by filling the void formed when the conductor separates.
  • One exemplary embodiment of the present invention is an apparatus fittable at a connectivity juncture or integral to the connectivity that comprises at least one disruptor that releases sufficient kinetic energy to force separation and unresettably open the circuit when a temperature internal to the connectivity rises to a desired trigger point below the temperature that causes an arc to form. The purpose of the disruptor to forcibly open the circuit served by the connectivity to open and remain open when an excessive temperature condition is detected before the arcing happens.
  • In a broad embodiment, the present invention extends to use in other equipment, which is subject to risk of damage, fire, and loss of property due to aging and manufacturing defects.
  • For example, in the case of manufacturing a connector for use in establishing connectivity of a PV system, the embodiment would be constructed with, but not limited to, meeting the appropriate regulatory requirements.
  • In another example, in the case of manufacturing a PV system component such as, but not limited to, a DC to AC inverter, the embodiment would be situated in connectivity proximal to inverter components and wiring therein that could have an unsafe condition. The device would generate an unsafe condition signal that raises an alarm and the disrupter would interrupt current flow by opening a circuit or short-circuiting power as appropriate to mitigate the unsafe condition.
  • In a preferred embodiment, the apparatus is constructed with material selected for properties that will optimize detection and mitigation of unsafe conditions, by a release of sufficient kinetic energy above a certain temperature to forcibly open the connectivity. Further, the nature of constituents used in the embodiment is selected so that any byproducts produced are non-toxic, non-flammable, and, further, are dielectric to provide arc quench.
  • In a preferred embodiment, the sensor sends an unsafe condition signal when a first threshold is exceeded and releases kinetic energy on exceedance of a higher temperature, which indicates a very unsafe condition, but lower than a temperature that indicates imminent arc formation.
  • In a preferred embodiment, pre-detection of an emerging unsafe condition with an optional sensor device would be continuous when electrical current is carried by the conductivity. This approach would detect heating due to an arc or an external fire. Should such conditions occur, the sensor device would send an unsafe condition signal, which results in an alarm and the associate connectivity system component being de-energized by disconnecting the flow of electricity with a disruptor according to the teaching herein.
  • Construction of Embodiments
  • The US National Electric Code (2014 edition, (listed as Reference # 1 in the LIST OF NON-PATENT DOCUMENTS) requires that components and conduits used in solar systems must operate at temperatures up to 85 degrees Celsius. The degree of heat generated by flow of electricity in connectivity is represented by the relationship Ohmic Energy=Current*Resistance (E=I*R). The relationship means that either increased resistance or increased current would eventually result in a DC arc with the hazards that the DC arc entails. A temperature of around 200 degrees Celsius identified as sufficient for sustained arcing is documented by B. Yang, et al, in reference # 6 in the LIST OF NON-PATENT DOCUMENTS which is incorporated in its entirety by reference.
  • In another embodiment, the disruptor device can augmented with a sensor built into or inserted into the body. In the case of PV connectivity, the sensor can be produced by placing a portion of translucent media that changes optical transmissivity above 85 degrees Celsius which is the rated temperature for PV connectivity. The media, such as, but not limited to High Density Polyethylene (HDPE), is positioned in close proximity to the components that exhibit resistive electrical heating phenomena, also known as "ohmic heating." Ohmic heating in the connectivity of an electrical system can result in localized elevated heating that results in arcing.
  • In order to produce a sensor device according to the teaching of this disclosure, select from sensitized media that produce a measurable response sufficiently below the temperature where arcing is expected to occur. For example, according to the American Society of Test and Measurement Engineers (ASTME), translucence of HDPE decreases above 104 degrees Celsius; a point the ASTME calls, "Tm." Further, HDPE melts at 150 degrees Celsius, a point the ASTME calls, "Tc." Alternatively, the media, for example, could be a semiconductor which becomes a conductor (or non-conductor) above a certain temperature based on its composition.
  • Embodiments, without limitation, can be constructed without an electronic circuit for risk mitigation; or can be constructed at additional cost with a digital circuit, an analog circuit, or a combination thereof. The embodiment could, according to need to communicate, be able to receive analog and digital input signals. The design could, according to need to take pre-action, also have analog and/or digital outputs to provide actuation such as, but not limited to a status indicator light or semaphore. The circuitry could be designed with the ability to be unaffected by the DC current on the conductors. The design could include a means for sending data and information such as, but not limited to, coded modulation onto the current carried by the conductor within the connectivity; or wireless means, for sending information using approved protocols such as, but not limited to, Bluetooth or Ethernet.
  • Measurement means for determining an unsafe condition could include, but is not limited to, using an electronic circuit to measure temperature directly or indirectly. For example, indirect means could be accomplished by measuring change in a parameter affected by temperature. An appropriate timing delay could be built in or incorporated so as not to generate false alarms.
  • The energy source for the sensor circuitry, could be, but is not limited to, a tap of energy carried by the conductor, an inductive coil surrounding the conductor, or a solar cell. The energy source, if any, should be selected for operating as long as possible and to hold sufficient charge for as long as the system component wherein the sensor is installed.
  • Digital or analog information, including but not limited to, temperature measurements and alerts produced by the sensor, can be delivered to a remote device. The remote device could be located in a junction box or a combiner box, or an electrical system health monitoring and control center. The information could be used, for example, to produce an estimate of the remaining time before an arc will occur by using an algorithm based on parameters including, but not limited to, the rate of increase in temperature sensed and time. The means to deliver the information could be wireless using a protocol such as but not limited to Bluetooth or Wi-Fi (such as, for example only, a modulation on the conduit DC or AC signal).
  • The present disclosure teaches a kinetic apparatus that, by design, operates before a sustained arc is produced due to temperatures within electrified connectivity. (According to B. Yang, et al, cited previously as Reference #6 in the LIST OF NON-PATENT DOCUMENTS, the temperature sufficient to sustain a DC arc is 200 degrees Celsius.) The disrupter is operably situated in a connectivity junction for,the purpose of having kinetic energy forcibly open an overheated junction below the temperature where arcing occurs.
  • The apparatus is wholly non-electric based on use of compounds, such as, but without limitation, powdered sodium bicarbonate (NaHCO3) within a structure designed to expand, vent, or fracture to permit release of the kinetic energy. In the case of NaHCO3, the byproduct of carbon dioxide gas provides the kinetic force. (Research published by Y. Otsubo and K. Yamaguci, which is listed as # 5 in the LIST OF NON-PATENT DOCUMENTS, explains that granules of NaHCO3 decompose and release carbon dioxide gas beginning around 100 degrees Celsius with release of carbon dioxide gas complete by 200 degrees Celsius.) Sodium bicarbonate is also used in electrical fire extinguishers because heating releases carbon dioxide.
  • The disruptor device should be constructed to provide an amount of kinetic force to permanently open the connectivity at a temperature below that which produces an electrical arc fault.
  • The sources of the kinetic energy could be, but are not limited to, a miniscule coating of polymerized cyclotrimethylenetrinitramine; a compaction of granules that decompose producing copious gas above a certain temperature, for example sodium bicarbonate; a mixture of chemicals that react with production of gas above a certain temperature, for example powdered starch and potassium carbonate; an effervescent liquid; and microencapsulated media that release gas above a certain temperature.
  • The material used for producing the kinetic energy should be encapsulated, such as, but not limited to, a suitable polymer, metal, or glass of strength that provides accumulation of force needed to cause assured disruption of flow of electricity by separation of the electrical conduits within the connectivity. The accumulated force could be augmented with a mechanical means such as, but not limited to, a pre-stressed spring that uncoils when unstressed. The encasement would also protect from moisture which could alter the effectiveness of the charge. Safety, toxicity, flammability, reliability, stability, and durability are key parameters to be considered in making a selection.
  • In accordance with yet another aspect of the present apparatus and method, the material used to produce kinetic energy of the disrupter and packaging, if any, should be reliable and stable for the expected service life of the connectivity.
  • In accordance with a third aspect of the present invention, the apparatus could include features such as, but not limited to, a self-test function, ability to annunciate, to be interrogated by wired or wireless means, and interrupt current flow by opening the circuit to stop the flow of electricity.
  • To test the functionality of the system, create an apparatus for performing a series of measurement tests that produce data to determine the response characteristics of the sensing media to change in resistance or current versus temperature. For example, after measuring the resistance, incrementally increase current with a calibrated current source, such as a variable transformer. Increasing the resistance can be accomplished by placing the corrodible test article in a salt-air environment at an elevated temperature to quicken the corrosion and thus the resistance. The change in resistance due to corrosion of the junction under test will cause the sensed parameters to increase or diminish.
  • In yet another embodiment, additionally include a comparator (such as a flip flop circuit, array of logic gates or differential amplifier) settable at a preferred temperature with the purpose to generate an unsafe condition signal. The unsafe condition criteria could include, but is not limited to, one or more of a threshold value.
  • In accordance with another aspect of the present invention, if the comparator logic requires electricity to operate, it is connected to electricity carried by the connectivity or electricity from another source, such as a battery or capacitor energized by kinetic energy or solar energy.
  • Reduction to Practice
  • Under an appropriate non-disclosure agreement, Sandia National Laboratories (SNL) was commissioned to explore the temperature at which a DC arc initiates in a single conductor connector of the type used in PV connectivity. This SNL research resulted in Sandia Laboratory Technical Report SAND2015-0883, February 2015, (Not for public release-For Official Use Only) and determined that a first arc in a PV connector occurs in PV connectors at around 200 degrees Celsius. In this research, SNL also explored whether melting of translucent media_could be applied successfully to detect arc-faults in PV connectors. The concept being that in the event of hot spots, which are believed to precede arc-faults, a proximal translucent polymer strand coupled to a photon detector would melt and the light signal would not reach the photon detector, causing a logic circuit to signal an interrupter device of a pre-arc condition. An alternative is an illuminated proximal translucent polymer strand coupled to a photon detector would exhibit reduced transmissivity and the reduced light signal reaching the photon detector would cause a logic circuit to signal an interrupter device to open the connectivity and stop the flow of current.
  • We, the inventors, explored using the phenomena of thermal response to develop a method based on temperature affects that could be applied to predict and prevent an arc-fault in connectivity above 100 degrees Celsius and below the 200 degrees Celsius at which SNL research found a DC arc initiates. The concept is that in the event of increased resistive heating caused by conductor corrosion within a connector, the temperature within the connector body would measurably change and reflect degree of risk. When the amount of change increases significantly, a signal would be produced to an integral interrupter means to disconnect the connector and stop the flow of current.
  • The thermal effects on translucent polymers at temperatures under 200 degrees Celsius were explored. We found several translucent polymers, according to the ASTME, that exhibit the property to melt at a temperature below 200 degrees Celsius. We experimented with polymers including low density polyethylene (LDPE), which melts at 125 degrees Celsius and high density polyethylene (HDPE) which, according to the ASTME, melts at 150 degrees Celsius.
  • We also explored utilizing semiconductor circuits which are known to become unstable above 125 degrees Celsius based on its composition as temperature affects the energy band gap. (This property is documented by D. Wolpert and P. Ampadu, "Managing Temperature Effects in Nanoscale Adaptive Systems", DOI 10.1007/978-1-4614-0748 - cited as number 8 in the LIST OF NON-PATENT DOCUMENTS above)
  • We explored the use of micro-encapsulated fragrances in a thermomorphic substance, which on heating, release an odor so that a trained dog or other animal could locate a point of conductivity disrupted with the kinetic force. We also studied use of water, which is thermomorphic, releasing steam above 100 degrees Celsius at sea level. For cold climates, sodium chloride, ethylene glycol, or another substance that prevents freezing, could be added.
  • In reduction to practice, we produced and experimented with several forms of prototype devices made according to the teachings herein. A prototype of a disruptor was constructed using a 3-D printer that operates by heating a strand of acrylonitrile butadiene styrene (ABS), a high temperature polymer, to form a separable body with a central pathway for containing a metal electrically conductive guide that enters the female electrical connector and surrounds the end of the electrical conductor within and similarly surrounds the protruding conductor from the male electrical connector forming a separable joint. In practice, an injection mold would be more efficient. The compartment was filled with NaHCO3 powder (commonly known as baking soda), then capped with an air-tight lid. NaHCO3 was selected for the property of releasing kinetic energy in the form of carbon dioxide gas starting at above 100 degrees Celsius and kinetic energy from release of carbon dioxide gas being fully depleted at around 200 degrees Celsius. When the prototype disruptor was heated to 125 degrees Celsius in a temperature-controlled oven, the heat caused the NaHCO3 sealed within the sealed disruptor cavity to decompose, releasing carbon dioxide gas, which quickly accumulated sufficient kinetic force to break open the lid of the cylinder and separate the disruptor body.
  • We modified commercial, injection-molded, PV connectivity connectors to incorporate combinations of the sensor and disruptor. To produce exemplary heating caused by corrosion at current typical of that of PV connectivity at the current time, examples of corroded PV connectivity electrically conductive guides and pins were produced. The examples were assembled. The examples worked as described herein establishing that resistive heating within a connector well below the 200 degree Celsius that produces an arc can be means to disrupt unsafe connectivity preventing the arc from happening. Further, that a combination of the disruptor and a sensor device that detects loss of transmissivity of a translucent polymer strand can cause a logic circuit to produce a future risk of arcing signal. The purpose of the signal is to alert of pending danger from a DC arc at a distant future time.
  • Conclusions, Ramifications, and Scope
  • The present invention has been described in terms of the preferred embodiment, and it is recognized that equivalents, alternatives, and modifications (aside from those expressly stated), are possible and within the scope of the appending claims.
  • While the foregoing written description of the invention enables one of ordinary skill to make and use what is considered presently to be the best mode thereof, those of ordinary skill will understand and appreciate the existence of variations, combinations, and equivalents of the specific embodiment, method, and examples herein. For example, the connectivity can be within a junction box, a panel, or electronic assembly. The invention should therefore not be limited by the above described embodiment, method, and examples, but by all embodiments and methods within the scope of the invention as claimed.
  • The previous description of specific embodiments is provided to enable any person skilled in the art to make or use the present invention. The various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other embodiments without the use of the inventive faculty. Each protecting apparatus can include different arrangements of sensors and disruptors depending on the functionality required. The embodiments presented in this application focus on preventing arc-faults in PV power systems, but can be applied in any situation where arc-faults can result in loss of life and destruction of property. Thus, the present invention is not intended to be limited to the embodiments shown herein, but is to be accorded the widest scope consistent with the principles and novel features disclosed herein and as defined by the following claims.

Claims (9)

  1. An apparatus for mitigation of an unsafe condition in an electrical connectivity, comprising
    - a disruptor body (5) with a distal end and a proximal end extending in a mating direction axially along an axis, the disruptor body (5) containing a thermomorphic substance (13)
    - a hollow channel and an electrical conductor (1) for conducting an electric current
    characterized in that
    - the electrical conductor (1) comprises an electrically conductive guide (6) and an electrically conductive pin (9);
    - the disruptor body (5) comprises a channel (15) through a dielectric material (8) and a pliant magazine (12) containing the thermomorphic substance (13) within an enclosed cavity (10) thereof, that, when heated by a non-arc source above a certain temperature, by rapid chemical decomposition produces kinetic force to separate the conductive pin (9) from the conductive guide (6) thereby opening the electrical connectivity.
  2. The apparatus of claim 1, characterized by a spring mechanism (11) to augment the kinetic force produced by the thermomorphic material.
  3. The apparatus of claim 1, characterized in that the unsafe condition is an electrical arc.
  4. The apparatus of claim 1, characterized in that the thermomorphic material additionally is compounded with a fire suppressant.
  5. The apparatus of claim 1, characterized by at least one comparator (19) that compares one or more characteristic of the connectivity with a threshold and, based on the comparison, generates an unsafe condition signal.
  6. The apparatus of claim 2, characterized by a retainer (16) for holding a movable barrier (14), wherein the kinetic force causes the barrier (14) to rise over the retainer (16) to allow the spring mechanism (11) to expand.
  7. The apparatus of claim 5, characterized in that energy for the comparator (19) is electricity conducted by the apparatus.
  8. The apparatus of claim 5, characterized in that the unsafe condition is an electrical arc.
  9. The apparatus of claim 1, characterized by means for warning of a change in the electric current conducted by the electrical conductor (1), comprising a comparator (19) for detecting a reduction in a parameter of the electric current and transmitting a warning signal to an entity (21).
EP15847439.5A 2014-10-03 2015-10-02 Apparatus to prevent arc faults in electrical connectivity Active EP3201935B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201462071789P 2014-10-03 2014-10-03
PCT/US2015/053820 WO2016054567A1 (en) 2014-10-03 2015-10-02 Method, system, and apparatus to prevent arc faults in electrical

Publications (3)

Publication Number Publication Date
EP3201935A1 EP3201935A1 (en) 2017-08-09
EP3201935A4 EP3201935A4 (en) 2018-05-30
EP3201935B1 true EP3201935B1 (en) 2023-07-26

Family

ID=55631644

Family Applications (2)

Application Number Title Priority Date Filing Date
EP15847439.5A Active EP3201935B1 (en) 2014-10-03 2015-10-02 Apparatus to prevent arc faults in electrical connectivity
EP15846155.8A Active EP3201890B1 (en) 2014-10-03 2015-10-05 Method, system, and apparatus to prevent arc faults in electrical connectivity

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP15846155.8A Active EP3201890B1 (en) 2014-10-03 2015-10-05 Method, system, and apparatus to prevent arc faults in electrical connectivity

Country Status (4)

Country Link
US (2) US9464946B2 (en)
EP (2) EP3201935B1 (en)
CN (2) CN106796856B (en)
WO (2) WO2016054567A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016054567A1 (en) * 2014-10-03 2016-04-07 Management Sciences, Inc Method, system, and apparatus to prevent arc faults in electrical
JP6332126B2 (en) * 2015-04-20 2018-05-30 株式会社オートネットワーク技術研究所 In-vehicle load control device and computer program
US10447043B2 (en) 2016-05-24 2019-10-15 Sunpower Corporation Verifying status of a termination end cap of a microinverter chain
DE102016217431A1 (en) * 2016-09-13 2018-03-15 Robert Bosch Gmbh Method for operating a safety device
US20180286617A1 (en) * 2017-03-28 2018-10-04 Management Sciences, Inc. Method, System, and Apparatus to Prevent Electrical or Thermal-Based Hazards in Conduits
KR101864372B1 (en) * 2017-06-29 2018-06-04 국방기술품질원 Transmit and Receive Module
WO2020033297A1 (en) 2018-08-08 2020-02-13 Carrier Corporation Arc fault detection in transport refrigeration unit
US11410479B2 (en) 2019-06-17 2022-08-09 Security Enhancement Systems, Llc Electronic access control system and method for arc flash prevention
CN110649748A (en) * 2019-10-22 2020-01-03 江苏顺隆鸿泰电力设备有限公司 Effectual generator of shock attenuation
US20220404211A1 (en) * 2021-06-22 2022-12-22 Everactive, Inc. Monitors for pressurized systems

Family Cites Families (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE607795C (en) * 1927-12-31 1935-01-08 Sigwart Ruppel Dipl Ing Switch capsule
US3739726A (en) * 1970-08-17 1973-06-19 Intron Int Inc Electronic fuze
US4003039A (en) * 1973-07-19 1977-01-11 Pyrotector, Incorporated Optical fire detection system
CH634153A5 (en) * 1978-09-29 1983-01-14 Bbc Brown Boveri & Cie SYNTHETIC TEST ARRANGEMENT FOR TESTING THE SWITCHING CAPACITY OF A HIGH VOLTAGE APPARATUS.
JPS55113228A (en) * 1979-02-22 1980-09-01 Nifco Inc Temperature fuse
US4406952A (en) * 1982-01-07 1983-09-27 Molen George M Opening switch for interrupting current using a plasma focus device
US5323011A (en) * 1991-11-04 1994-06-21 The Johns Hopkins University Fiber optic ionizing radiation detector
DE4140273C2 (en) * 1991-12-06 1995-08-17 Stewing Nachrichtentechnik Heat-sensitive surface coating for heat-shrinkable products, especially shrink sleeves made of thermoplastic for cable sleeves
US5889118A (en) * 1996-06-03 1999-03-30 Minnesota Mining And Manufacturing Company Thermomorphic "smart" pressure sensitive adhesives
US5990572A (en) * 1997-02-28 1999-11-23 Harness System Technologies Research, Ltd. Electric circuit breaker for vehicle
US6016250A (en) * 1998-01-30 2000-01-18 Credence Systems Corporation Self-balancing thermal control device for integrated circuits
DE19900666A1 (en) * 1999-01-11 2000-07-13 Abb Research Ltd Electric quick switch
US6236010B1 (en) * 1999-07-14 2001-05-22 Southern States, Inc. Circuit interrupter including a penetrating electrical contact with grip and release structure
US6433976B1 (en) * 1999-09-24 2002-08-13 Square D Company Instantaneous arc fault light detector with resistance to false tripping
US6218921B1 (en) * 2000-02-24 2001-04-17 Eaton Corporation Adjustable flux transfer shunt trip actuator and electric power switch incorporating same
US7277822B2 (en) * 2000-09-28 2007-10-02 Blemel Kenneth G Embedded system for diagnostics and prognostics of conduits
CN1187582C (en) 2000-12-27 2005-02-02 三洋电机株式会社 Temperature monitor for electro-mechanical part
US20020181544A1 (en) * 2001-06-01 2002-12-05 Tai-Tung Huang Bi-metal strip heat detector
US6683766B1 (en) * 2002-02-11 2004-01-27 Yazaki North-America, Inc. DC arc detection and prevention circuit and method
EP1357649B1 (en) * 2002-04-25 2005-11-09 ABB Schweiz AG Separation device
JP4270390B2 (en) * 2002-08-29 2009-05-27 農工大ティー・エル・オー株式会社 Chemical process equipment using a solvent set that reversibly changes its compatibility and separation state with temperature
US8028531B2 (en) * 2004-03-01 2011-10-04 GlobalFoundries, Inc. Mitigating heat in an integrated circuit
TWI240608B (en) * 2004-05-13 2005-09-21 Delta Electronics Inc Electronic apparatus with heat-dissipating structure
US7245470B2 (en) * 2004-05-19 2007-07-17 Panamax Unsafe voltage shutoff control
US20050265423A1 (en) * 2004-05-26 2005-12-01 Mahowald Peter H Monitoring system for cooking station
US7138597B2 (en) * 2004-11-12 2006-11-21 Eaton Corporation Circuit breaker with arc gas propelled movable contact and opposed arc cutoff shutters
GB2421788A (en) * 2004-12-21 2006-07-05 Rolls Royce Plc Fire warning system
US7291292B2 (en) * 2005-08-26 2007-11-06 E.I. Du Pont De Nemours And Company Preparation of silver particles using thermomorphic polymers
US7366622B1 (en) * 2005-10-17 2008-04-29 X-L Synergy Arc fault identification using model reference estimation
JP4871599B2 (en) * 2006-01-20 2012-02-08 日立住友重機械建機クレーン株式会社 Crane and crane disassembly method
US20070169928A1 (en) * 2006-01-26 2007-07-26 Dayan Richard A Heat sink for controlling dissipation of a thermal load
WO2007120914A2 (en) * 2006-04-17 2007-10-25 Kopelman Robert Z Electrical fire prevention from over-temperature conditions
US8686738B2 (en) * 2006-07-24 2014-04-01 Newire, Inc. Electrical safety devices and systems for use with electrical wiring, and methods for using same
EP2070099A4 (en) * 2006-08-24 2011-10-19 Technology Mavericks Llc Current sensing load demand apparatus and methods
JP5032091B2 (en) * 2006-10-12 2012-09-26 株式会社東芝 Gas insulated switchgear and arc damage detection method for gas insulated switchgear parts
DE102007012296A1 (en) * 2007-03-08 2008-09-11 Siemens Ag Disconnecting device and method for producing a separation switching device
US8459807B2 (en) * 2007-07-11 2013-06-11 3M Innovative Properties Company Sheeting with composite image that floats
CN201163690Y (en) * 2007-12-14 2008-12-10 深大宇电器(深圳)有限公司 Plug
WO2009095961A1 (en) * 2008-01-28 2009-08-06 Uchiya Thermostat Co., Ltd. Thermal protector
ATE523890T1 (en) * 2008-07-31 2011-09-15 Abb Technology Ag DRIVE AND CONTROL UNIT FOR A LOW OR MEDIUM VOLTAGE DEVICE
US8339760B2 (en) * 2009-06-15 2012-12-25 Apple Inc. Thermal protection circuits and structures for electronic devices and cables
US8410950B2 (en) * 2009-08-17 2013-04-02 Paceco Corp. Photovoltaic panel monitoring apparatus
US8324907B2 (en) * 2010-01-25 2012-12-04 American Power Conversion Corporation Electrical connection quality detection
CN101840796B (en) * 2010-02-11 2012-12-19 冯运福 Circuit breaker closing/opening actuating mechanism
US8743513B2 (en) * 2010-06-03 2014-06-03 Shakira Limited Arc fault detector for AC or DC installations
CN103597172A (en) * 2011-03-22 2014-02-19 克里米恩股份有限公司 Method for conversion of low temperature heat to electricity and cooling, and system therefor
US8576521B2 (en) 2011-08-16 2013-11-05 Schneider Electric USA, Inc. Adaptive light detection for arc mitigation systems
WO2013101104A1 (en) 2011-12-29 2013-07-04 Intel Corporation Sharing tlb mappings between contexts
US20150355245A1 (en) * 2013-01-25 2015-12-10 Circuitmeter Inc. System and method for monitoring an electrical network
CN104956283A (en) * 2013-02-04 2015-09-30 夏普株式会社 Solar energy utilization system, and cool box, air conditioner or pump included therein
US9413155B2 (en) * 2013-02-19 2016-08-09 Kenneth Gerald Blemel System to protect from unsafe conditions in an electrical power system
US20140231637A1 (en) * 2013-02-21 2014-08-21 Kenneth Gerald Blemel Apparatus for Distance Measurement Using Inductive Means
CA2822146C (en) * 2013-07-26 2016-09-20 Julian Jameson Air heater systems and control methods
WO2016054567A1 (en) * 2014-10-03 2016-04-07 Management Sciences, Inc Method, system, and apparatus to prevent arc faults in electrical

Also Published As

Publication number Publication date
US9816877B2 (en) 2017-11-14
CN106796856B (en) 2020-03-06
CN106796856A (en) 2017-05-31
US9464946B2 (en) 2016-10-11
US20160097685A1 (en) 2016-04-07
EP3201935A1 (en) 2017-08-09
EP3201890A1 (en) 2017-08-09
EP3201890B1 (en) 2023-07-26
US20160099126A1 (en) 2016-04-07
WO2016054632A1 (en) 2016-04-07
WO2016054567A1 (en) 2016-04-07
CN106716507B (en) 2019-07-16
CN106716507A (en) 2017-05-24
EP3201935A4 (en) 2018-05-30
EP3201890A4 (en) 2018-05-16

Similar Documents

Publication Publication Date Title
EP3201935B1 (en) Apparatus to prevent arc faults in electrical connectivity
EP3108557B1 (en) Protecting electrical power systems from unsafe conditions
US7869167B2 (en) Method and device for prevention and protection of electrical transformer against explosion and fire
JP5795247B2 (en) Electrical equipment fire suppression device
US20080192389A1 (en) Arc suppression device, system and methods for liquid insulated electrical apparatus
RU139706U1 (en) CIRCUIT BREAKER FOR ELECTRIC CIRCUIT
CA2845781C (en) Device for thermal monitoring of the terminals of an electrical connection device
US8159803B2 (en) Heat actuated interrupter receptacle
US20240029987A1 (en) Method, System, and Apparatus to Prevent Electrical or Thermal-Based Hazards in Conduits
CN104882851A (en) Temperature-rise electric contact protection device for power high-voltage switch cabinet fault, and control method
CN106796859A (en) Switching device for an overvoltage protection device
US20120139737A1 (en) Photovoltaic module and combination of several photovoltaic modules
GB2504967A (en) Electrical supply unit with overheating protection measuring rate of change of temperature
Lee et al. A study on residential fires due to electrical faults in Hong Kong
US11361926B2 (en) Apparatus, system and method for alarm triggered electrical supply disconnection
CN204706872U (en) A kind of temperature rise electric contact protective device of power high voltage switch cubicle fault
CN211456666U (en) Novel explosion-proof isolation protection of power consumption device
KR20240004180A (en) Smart outlets device for preventing fire
CN106030949B (en) System for protecting against unsafe conditions in an electrical power system
Zobenko et al. Study of the Features of the Protection of Energy System Elements Caused by Excessive Local Heating
Arora Study of causes of failure of power transformers and significance of adequate earthing (Grounding) in mitigation of hazards in substations
CN114884026A (en) Intelligent circuit breaker with arc light protection function
Damian et al. Protection of Encapsulated Medium Voltage Cells Against Electric Arc
Kidd Electrical protection for domestic and small commercial installations

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170327

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20180426

RIC1 Information provided on ipc code assigned before grant

Ipc: H01H 37/74 20060101AFI20180420BHEP

Ipc: H02H 5/04 20060101ALI20180420BHEP

Ipc: H02H 7/26 20060101ALI20180420BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190809

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230316

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230523

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015084816

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230726

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1592942

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231127

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231026

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231126

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231027

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231006

Year of fee payment: 9

Ref country code: CH

Payment date: 20231102

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726