EP3201457A1 - Method and control device for operating a system consisting of a plurality of internal combustion engines - Google Patents

Method and control device for operating a system consisting of a plurality of internal combustion engines

Info

Publication number
EP3201457A1
EP3201457A1 EP15781880.8A EP15781880A EP3201457A1 EP 3201457 A1 EP3201457 A1 EP 3201457A1 EP 15781880 A EP15781880 A EP 15781880A EP 3201457 A1 EP3201457 A1 EP 3201457A1
Authority
EP
European Patent Office
Prior art keywords
internal combustion
combustion engine
exhaust gas
drive power
aftertreatment device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP15781880.8A
Other languages
German (de)
French (fr)
Inventor
Andreas Doering
Alexander Knafl
Mirko Bugsch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DOERING, ANDREAS
Original Assignee
MAN Diesel and Turbo SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAN Diesel and Turbo SE filed Critical MAN Diesel and Turbo SE
Publication of EP3201457A1 publication Critical patent/EP3201457A1/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/024Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
    • F02D41/0245Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus by increasing temperature of the exhaust gas leaving the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D25/00Controlling two or more co-operating engines
    • F02D25/04Controlling two or more co-operating engines by cutting-out engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • F02D41/0082Controlling each cylinder individually per groups or banks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D25/00Controlling two or more co-operating engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to a method for operating a system of several internal combustion engines. Furthermore, the invention relates to a control device for carrying out the method.
  • each internal combustion engine of such a system of internal combustion engines an individual exhaust aftertreatment device or several internal combustion engines of such a system of internal combustion engines is arranged downstream of a common exhaust gas aftertreatment device. Then, when internal combustion engine is followed by an individual exhaust aftertreatment device, the exhaust gas of the respective internal combustion engine in the respective exhaust gas aftertreatment device is subjected to an individual exhaust aftertreatment. Then, when a common exhaust gas aftertreatment device is arranged downstream of a plurality of internal combustion engines, the exhaust gas of these multiple internal combustion engines is combined for joint exhaust gas aftertreatment and then conducted via the common exhaust gas aftertreatment device.
  • Such an exhaust aftertreatment device may be, for example, an SCR catalyst in which nitrogen oxides are converted to nitrogen and water vapor using a reducing agent, such as ammonia.
  • a reducing agent such as ammonia.
  • Such an SCR catalyst may be preceded by a NO oxidation catalyst to convert NO into NO 2 upstream of the SCR catalyst and thereby increase the reaction rate in the SCR catalyst.
  • an exhaust aftertreatment device may also comprise a CH 4 oxidation catalyst in order, for example, to reduce CH emissions, which occur in particular in gas engines.
  • the regeneration of the respective exhaust aftertreatment device presents difficulties. This is due inter alia to the fact that for an effective regeneration of an exhaust aftertreatment device, the drive power of at least one internal combustion engine of the system has to be reduced from a plurality of internal combustion engines.
  • the internal combustion engines each provide drive power for at least one common consumer, since then the drive power available to the common consumer would be reduced and the same could no longer be operated in full.
  • the present invention has the object to provide a novel method for operating a system of a plurality of internal combustion engines and a control device for carrying out the method.
  • the drive power of at least one first internal combustion engine is reduced, the temperature of the exhaust gas of the or each first internal combustion engine is increased, and the drive power of at least one second internal combustion engine is increased such that the reduction of the drive power at the or each first internal combustion engine at least partially compensates for the regeneration of an exhaust gas aftertreatment device becomes.
  • the drive power of at least one first internal combustion engine is reduced. Further, the temperature of the exhaust gas of the or each first internal combustion engine whose driving power is reduced is increased. Furthermore, the drive power of at least one second internal combustion engine is increased in order to at least partially compensate for the reduction of the drive power of the or each first internal combustion engine. This makes it possible, despite the reduction of the drive power at least a first internal combustion engine, to keep the total drive power provided for the respective common load of the system from coupled internal combustion engines constant.
  • the exhaust gas temperature of the exhaust gas of the respective first internal combustion engine can be increased in particular by an engine-side intervention on the respective first internal combustion engine, without the risk that critical component temperatures are exceeded at the respective first internal combustion engine.
  • the exhaust gas temperature at the or each first internal combustion engine whose drive power is reduced can also be increased by an external heat source.
  • each internal combustion engine is followed by an individual exhaust aftertreatment device, the drive power of the respective first internal combustion engine is reduced for regeneration of the exhaust gas aftertreatment device of at least one first internal combustion engine, and furthermore the drive power of at least one second internal combustion engine whose exhaust aftertreatment device is not regenerated is increased such that the reduction in drive power on the or each first internal combustion engine is compensated.
  • the temperature of the exhaust gas to be regenerated via the exhaust aftertreatment device of the respective first internal combustion engine is increased, in particular by an engine intervention on the respective first internal combustion engine, wherein the drive power of the or each second internal combustion engine is increased such that one of the first and second internal combustion engines in total provided total drive power remains constant.
  • This embodiment of the method is advantageous if each internal combustion engine is arranged downstream of an individual exhaust aftertreatment device.
  • the drive power of at least a first internal combustion engine is reduced to regenerate an exhaust aftertreatment device, and further the drive power of at least a second internal combustion engine, the exhaust gas is passed through the same exhaust aftertreatment device, such that the reduction of the drive power is compensated on the or each first internal combustion engine.
  • the temperature Temperature of the exhaust gas of the or each first internal combustion engine whose drive power is reduced, in particular increased by an engine intervention on the respective first internal combustion engine, and moreover, the drive power of at least a second internal combustion engine is increased such that the reduction of the drive power to the or each first internal combustion engine such is compensated that a total provided by the first and second internal combustion engines total drive power remains constant.
  • This embodiment of the method is advantageous if a plurality of internal combustion engines downstream of a common exhaust gas aftertreatment device.
  • the temperature of the exhaust gas of the respective first internal combustion engine, the drive line is reduced by changing an air-fuel ratio and / or by changing an injection start and / or by changing an injection pressure and / or by changing a compression ratio and / or by change increased by valve opening times and / or by changing a charge air temperature and / or by changing an exhaust back pressure.
  • the temperature of the exhaust gas of the respective first internal combustion engine, the drive line is reduced, increased by an external heat source.
  • the temperature of the exhaust gas at the respective first internal combustion engine whose drive power is reduced can be increased particularly advantageously.
  • the control device comprises means for carrying out the method according to the invention.
  • Fig. 1 is a block diagram of a first system of several internal combustion engines.
  • Fig. 2 is a block diagram of a second system of several internal combustion engines.
  • the invention relates to a method for operating a system of a plurality of internal combustion engines and a control device for carrying out the method.
  • FIG. 1 shows in highly schematic form a first system 1 comprising a plurality of internal combustion engines 2, 3.
  • the internal combustion engines 2, 3 shown in FIG. 1 are coupled in such a way that drive powers provided by the same are taken from a common consumer 4.
  • This consumer 4 may be, for example, a hydraulic or electrical or mechanical or other consumer whose required drive power is provided by both internal combustion engines 2 and 3 in total. Both internal combustion engines 2 and 3 accordingly provide partial drive powers for the common consumer 4.
  • each of the internal combustion engines supplies fuel 5 and 6 and, on the other hand, combustion air 7, 8, wherein the fuel 5, 6 is burned in the respective internal combustion engine 2, 3 and exhaust gas 9, 10 is discharged from the respective internal combustion engine 2, 3 becomes.
  • each internal combustion engine 2, 3 is assigned an individual exhaust aftertreatment device 1 1, 12, in which the respective exhaust gas 9, 10 of the respective internal combustion engine 2, 3 is subjected to an individual exhaust aftertreatment. Accordingly, the exhaust gas aftertreatment device 1 1, 12 leaves cleaned exhaust gas 13, 14.
  • the exhaust aftertreatment device 12 which is connected downstream of the internal combustion engine 2, be regenerated, the drive power of the internal combustion engine 2 is reduced according to the invention for the regeneration of this exhaust aftertreatment device 12, the temperature of the exhaust gas 10 of this reduced in the drive power engine 2 and further increases the drive power the internal combustion engine 3, the exhaust aftertreatment device 1 1 is not regenerated, increases, in such a way that the reduction of the drive power to the internal combustion engine 2 at least partially, preferably completely, is compensated so as to provide for the common consumer 4 in total a constant total drive power.
  • the drive power is reduced at a first internal combustion engine, which is upstream of the exhaust aftertreatment device to be regenerated.
  • the exhaust aftertreatment device is not regenerated, the drive power is increased to compensate for the reduced drive power of the first internal combustion engine.
  • the temperature of the exhaust gas of that first internal combustion engine whose driving power has been reduced is increased to regenerate the exhaust gas after-treatment device downstream of this first internal combustion engine due to increased exhaust gas temperature.
  • the total drive power provided by the internal combustion engines remains constant, so that despite the reduction of the drive power to the first internal combustion engine due to the increase in the drive power to the second internal combustion engine, the common consumer can still be operated fully.
  • the increase in the exhaust gas temperature of the exhaust gas of that first internal combustion engine, the drive power is reduced, is preferably carried out by an engine-side engagement with the respective, reduced in the drive power first internal combustion engine.
  • Your such engine-side engagement for example, by changing an air-fuel ratio and / or by changing an injection start and / or by changing an injection pressure and / or by changing a compression ratio and / or by changing valve opening times and / or by change a charge air temperature and / or by changing an exhaust back pressure at the respective, reduced in the drive power engine, take place.
  • each exhaust gas aftertreatment device 1 1, 12 of the system 1 of FIG. 1 is assigned at least one sensor 15, 16, with the aid of which it can be automatically detected, whether for the respective exhaust gas aftertreatment device 1 1, 12 a regeneration is required.
  • This can be done for example via a NOx sensor or NH 3 - sensor or a soot sensor.
  • the measurement signal provided by the sensors 15, 16 is provided to a control device 17 which, when it detects that regeneration is required on one of the exhaust aftertreatment devices 1 1, 12, automatically carries out the above method by applying to the internal combustion engine, which is upstream of the exhaust aftertreatment device to be regenerated, the drive power is reduced, the exhaust gas temperature of this internal combustion engine increases and further the drive power of the other internal combustion engine, the exhaust aftertreatment device is not to be regenerated, increased to compensate for the reduction of the drive power to the other internal combustion engine ne.
  • the control device 17 comprises means for carrying out the method according to the invention. These resources are hardware resources and software resources.
  • the hardware-side means of the control device 17 are data interfaces in order to exchange data with the modules involved in carrying out the method according to the invention.
  • the hardware-side means of the control device 17 are a processor for data processing and a memory for storing data.
  • the software-side means of the control device 17 are program modules which serve to carry out the method according to the invention.
  • FIG. 2 shows an alternative system 21 comprising a plurality of coupled internal combustion engines 22, 23, the drive power of which is in turn removed by a common consumer 24.
  • fuel 25 and 26 is burned in the presence of charge air 27 and 28 to produce corresponding exhaust gas 29 and 30, however, in contrast to the system 1 of Fig. 1 in the system 21 of FIG Exhaust 29, 30 of the two
  • Internal combustion engines 22, 23 are guided via a common exhaust gas aftertreatment device 31 and subjected to a common exhaust aftertreatment.
  • the exhaust gas 29, 30 of both internal combustion engines 22, 23 is therefore guided in FIG. 2 via the common exhaust gas aftertreatment device 31, the same cleaned exhaust gas 32 leaving.
  • the exhaust aftertreatment device 31 is to be regenerated, which can be detected, for example, via a sensor 33 associated with the exhaust aftertreatment device 31, the drive power of a first internal combustion engine of the system 21 is reduced, the temperature of the exhaust gas of this first internal combustion engine reduced in drive power increases and increases the driving power of the other, second internal combustion engine to compensate for the reduction of the drive power of the other internal combustion engine.
  • the driving power of the internal combustion engine 22 can be reduced, the temperature of the exhaust gas 30 of this internal combustion engine 22 can be increased, and the driving power of the other internal combustion engine 23 can be increased, so that the two internal combustion engines 22 and 23 in turn for the total common load 24 provide a constant total drive power.
  • the increase in the exhaust gas temperature of the exhaust gas 30 at the engine 22 reduced in its drive power can take place in accordance with the embodiment of FIG. 1 again via at least one of the above-mentioned engine-side interventions and / or via an external heat source.
  • an external heat source 34 or 35 positioned over which the respective exhaust gas can be heated 29 and 30 of the respective internal combustion engine.
  • the regeneration thereof can be improved, but for this it is necessary for individual sections of the exhaust aftertreatment device 31 to be separated or decoupled from one another, for example by flaps or other shut-off elements for regeneration.
  • FIG. 2 again shows a control device 36 which serves to carry out the method according to the invention and has means for carrying it out.
  • the exhaust aftertreatment devices 1 1, 12, 31 shown in FIGS. 1 and 2 may comprise SCR catalysts with optionally upstream NO oxidation catalysts. Furthermore, the exhaust aftertreatment devices 1 1, 12, 31 may also comprise CH 4 oxidation catalysts and / or CH 2 0 oxidation catalysts and / or NO x storage catalysts or the like, which can be regenerated by a temperature increase.
  • both internal combustion engines 2 and 3 provide a drive power of 5 MW for the common load 4, so that they accordingly provide in total a total drive power of 10 MW.
  • the temperatures of the exhaust gases 9, 10 are in each case approximately 320 ° C.
  • the sensors 15, 16 designed as NOx sensors measure in purified exhaust gas 13, 14 a NOx concentration of approximately 400 mg / Nm 3 .
  • the sensor 1 6 detects an increase in the NOx concentration in the purified exhaust gas stream 14 to 700 mg / Nm 3 .
  • the control device 17 concludes that the exhaust gas aftertreatment device 12 is to be regenerated on the basis of this increased NOx concentration.
  • the drive power of the internal combustion engine 2 is then automatically reduced, for example, to 2 MW and the drive power to the internal combustion engine 3 is increased to 8 MW to compensate for this reduction, so that both internal combustion engines 2, 3 then in total a total drive power of 10 MW for the provide common consumer 4.
  • the temperature of the exhaust gas 10 leaving the engine 2 is increased, for example, to 380 ° C., as shown above, by at least one engine-side engagement and / or at least one external heat source.
  • the above measures taken for the regeneration of the respective exhaust aftertreatment device namely the reduction of the drive power of at least a first internal combustion engine, the increase of the temperature of the exhaust gas of the or each first internal combustion engine, and further increasing the drive power of at least a second internal combustion engine to compensate for the reduction of Drive power at the or each first internal combustion engine, for example, can be timed for a fixed period of time to regenerate the respective exhaust aftertreatment device in terms of timing.
  • the exhaust gas temperature is then lowered at the reduced in terms of their drive power first internal combustion engine, which increases in terms of their drive power reduced first internal combustion engine in their drive power and correspondingly reduces the other internal combustion engine in their drive power, so after Regenration the exhaust aftertreatment device, the two Combustion engines in total again provide a constant drive power.
  • the above measures taken to regenerate the respective exhaust gas aftertreatment device may be to reduce the drive power of at least one first internal combustion engine, increase the temperature of the exhaust gas of the or each first internal combustion engine, and further increase the drive power of at least one second internal combustion engine to compensate Reduction of the drive power at the or each first internal combustion engine, also time-variable in the sense of a regulation to be taken to regenerate the respective exhaust aftertreatment device depending on the degree of regeneration or regeneration success.
  • the regeneration of the respective exhaust aftertreatment device is terminated in particular when z. B. depending on the measurement signal of at least one sensor of the respective exhaust aftertreatment device is determined that no regeneration of the respective exhaust aftertreatment device is required more.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

The invention relates to a method for operating a system (1) consisting of a plurality of internal combustion engines (2, 3), the internal combustion engines (2, 3) being coupled such that drive outputs provided by said internal combustion engines (2, 3) are drawn off by at least one common load (4), a downstream individual exhaust gas aftertreatment device (11, 12), in which the exhaust gas of a particular internal combustion engine undergoes an individual exhaust gas aftertreatment, being positioned downstream of each internal combustion engine (2, 3), or a common exhaust gas aftertreatment device, in which the exhaust gas of the internal combustion engines in question undergoes a common exhaust gas aftertreatment, being positioned downstream of a plurality of internal combustion engines; and wherein in order to regenerate an exhaust gas aftertreatment device, the drive output of at least one first internal combustion engine is reduced, the temperature of the exhaust gas of the or of each first internal combustion engine is increased, and the drive output of at least one second internal combustion engine is increased such that the drive output reduction at the or each first internal combustion engine is at least partially compensated for.

Description

Verfahren und Steuerungseinrichtung zum Betreiben eines Systems aus mehreren  Method and control device for operating a system of several
Brennkraftmaschinen  Internal combustion engines
Die Erfindung betrifft ein Verfahren zum Betreiben eines Systems aus mehreren Brennkraftmaschinen. Des Weiteren betrifft die Erfindung eine Steuerungseinrichtung zur Durchführung des Verfahrens. The invention relates to a method for operating a system of several internal combustion engines. Furthermore, the invention relates to a control device for carrying out the method.
Aus der Praxis sind Systeme aus mehreren Brennkraftmaschinen bekannt, die derart gekoppelt sind, dass von den Brennkraftmaschinen bereitgestellte Antriebsleistungen von mindestens einem gemeinsamen Verbraucher abgenommen werden. Die von den Brennkraftmaschinen des Systems bereitgestellten Antriebsleistungen stellen dabei in Summe eine Gesamtleistung bereit, die von dem oder je- dem gemeinsamen Verbraucher abgenommen wird. From practice systems of several internal combustion engines are known, which are coupled in such a way that drive powers provided by the internal combustion engines are taken from at least one common consumer. The drive powers provided by the internal combustion engines of the system provide in total a total power which is taken from the or each common consumer.
Aus der Praxis ist ferner bekannt, dass entweder jeder Brennkraftmaschine eines solchen Systems aus Brennkraftmaschinen eine individuelle Abgasnachbehandlungseinrichtung oder mehreren Brennkraftmaschinen eines solchen Systems aus Brennkraftmaschinen eine gemeinsame Abgasnachbehandlungseinrichtung nachgeordnet ist. Dann, wenn Brennkraftmaschinen eine individuelle Abgasnachbehandlungseinrichtung nachgeordnet ist, wird das Abgas der jeweiligen Brennkraftmaschine in der jeweiligen Abgasnachbehandlungseinrichtung einer individuellen Abgasnachbehandlung unterzogen. Dann, wenn mehreren Brennkraftma- schinen eine gemeinsame Abgasnachbehandlungseinrichtung nachgeordnet ist, wird das Abgas dieser mehreren Brennkraftmaschinen zur gemeinsamen Abgasnachbehandlung zusammengeführt und dann über die gemeinsame Abgasnachbehandlungseinrichtung geführt. Bei einer solchen Abgasnachbehandlungseinrichtung kann es sich zum Beispiel um einen SCR-Katalysator handeln, in welchem Stickoxide unter Verwendung eines Reduktionsmittels, wie zum Beispiel Ammoniak, in Stickstoff und Wasserdampf umgesetzt werden. Einem solchen SCR-Katalysator kann ein NO- Oxidationskatalysator vorgeschaltet sein, um stromaufwärts des SCR-Katalysators NO in NO2 umzusetzen und hierdurch die Reaktionsgeschwindigkeit im SCR- Katalysator zu erhöhen. Zusätzlich oder alternativ kann eine Abgasnachbehandlungseinrichtung auch einen CH4-Oxidationskatalysator umfassen, um zum Beispiel CH -Emissionen, die insbesondere bei Gasmotoren anfallen, zu reduzieren. From practice it is also known that either each internal combustion engine of such a system of internal combustion engines an individual exhaust aftertreatment device or several internal combustion engines of such a system of internal combustion engines is arranged downstream of a common exhaust gas aftertreatment device. Then, when internal combustion engine is followed by an individual exhaust aftertreatment device, the exhaust gas of the respective internal combustion engine in the respective exhaust gas aftertreatment device is subjected to an individual exhaust aftertreatment. Then, when a common exhaust gas aftertreatment device is arranged downstream of a plurality of internal combustion engines, the exhaust gas of these multiple internal combustion engines is combined for joint exhaust gas aftertreatment and then conducted via the common exhaust gas aftertreatment device. Such an exhaust aftertreatment device may be, for example, an SCR catalyst in which nitrogen oxides are converted to nitrogen and water vapor using a reducing agent, such as ammonia. Such an SCR catalyst may be preceded by a NO oxidation catalyst to convert NO into NO 2 upstream of the SCR catalyst and thereby increase the reaction rate in the SCR catalyst. Additionally or alternatively, an exhaust aftertreatment device may also comprise a CH 4 oxidation catalyst in order, for example, to reduce CH emissions, which occur in particular in gas engines.
Im Betrieb besteht das Problem, dass Abgasnachbehandlungseinrichtungen insbesondere dann, wenn Betriebstemperaturen derselben über längere Zeit zu niedrig sind, einer Verkokung mit Kohlenwasserstoffen und/oder mit kraftstoffgenerierten und motorölgenerierten Sulfaten und Sulfiden unterliegen, wodurch die jeweili- ge Abgasnachbehandlungseinrichtung deaktiviert wird bzw. ihre Effektivität einbüßt. Eine derartige Deaktivierung ist reversibel und kann durch Anheben der Abgastemperatur im Sinne einer Regeneration der jeweiligen Abgasnachbehandlungseinrichtung rückgängig gemacht werden, wodurch die jeweilige Abgasnachbehandlungseinrichtung wieder ihre ursprüngliche Aktivität erlangt. In operation, there is the problem that exhaust aftertreatment devices, especially when their operating temperatures are too low for a long time, are subject to coking with hydrocarbons and / or with fuel-generated and motor oil-generated sulfates and sulfides, whereby the respective exhaust aftertreatment device is deactivated or loses its effectiveness , Such deactivation is reversible and can be reversed by raising the exhaust gas temperature in terms of a regeneration of the respective exhaust aftertreatment device, whereby the respective exhaust aftertreatment device regains its original activity.
Beim Betrieb eines Systems aus mehreren Brennkraftmaschinen, denen individuelle Abgasnachbehandlungseinrichtungen nachgeordnet sind oder denen eine gemeinsame Abgasnachbehandlungseinrichtung nachgeordnet ist, bereitet die Regeneration der jeweiligen Abgasnachbehandlungseinrichtung Schwierigkeiten. Dies liegt unter anderem darin begründet, dass für eine effektive Regeneration einer Abgasnachbehandlungseinrichtung die Antriebsleistung mindestens einer Brennkraftmaschine des Systems aus mehreren Brennkraftmaschinen reduziert werden muss. Dies ist jedoch dann, wenn die Brennkraftmaschinen jeweils Antriebsleistungen für mindestens einen gemeinsamen Verbraucher bereitstellen, nicht möglich, da sich dann die dem gemeinsamen Verbraucher zur Verfügung stehende Antriebsleistung reduzieren würde und derselbe nicht mehr vollumfänglich betrieben werden könnte. Hiervon ausgehend liegt der vorliegenden Erfindung die Aufgabe zugrunde, ein neuartiges Verfahren zum Betreiben eines Systems aus mehreren Brennkraftmaschinen und eine Steuerungseinrichtung zur Durchführung des Verfahrens zu schaffen. When operating a system comprising a plurality of internal combustion engines, to which individual exhaust aftertreatment devices are arranged downstream or to which a common exhaust aftertreatment device is arranged downstream, the regeneration of the respective exhaust aftertreatment device presents difficulties. This is due inter alia to the fact that for an effective regeneration of an exhaust aftertreatment device, the drive power of at least one internal combustion engine of the system has to be reduced from a plurality of internal combustion engines. However, this is not possible if the internal combustion engines each provide drive power for at least one common consumer, since then the drive power available to the common consumer would be reduced and the same could no longer be operated in full. On this basis, the present invention has the object to provide a novel method for operating a system of a plurality of internal combustion engines and a control device for carrying out the method.
Diese Aufgabe wird durch ein Verfahren nach Anspruch 1 gelöst. Erfindungsgemäß wird zur Regeneration einer Abgasnachbehandlungseinrichtung die Antriebsleistung mindestens einer ersten Brennkraftmaschine reduziert, die Temperatur des Abgases der oder jeder ersten Brennkraftmaschine erhöht, und ferner die Antriebsleistung mindestens einer zweiten Brennkraftmaschine derart erhöht, dass die Reduzierung der Antriebsleistung an der oder jeder ersten Brennkraftmaschine zumindest teilweise kompensiert wird. This object is achieved by a method according to claim 1. According to the invention, the drive power of at least one first internal combustion engine is reduced, the temperature of the exhaust gas of the or each first internal combustion engine is increased, and the drive power of at least one second internal combustion engine is increased such that the reduction of the drive power at the or each first internal combustion engine at least partially compensates for the regeneration of an exhaust gas aftertreatment device becomes.
Mit der hier vorliegenden Erfindung wird vorgeschlagen, dass dann, wenn eine Abgasnachbehandlungseinrichtung eines Systems aus mehreren gekoppelten Brennkraftmaschinen regeneriert werden soll, die Antriebsleistung mindestens einer ersten Brennkraftmaschine reduziert wird. Ferner wird die Temperatur des Abgases der oder jeder ersten Brennkraftmaschine, deren Antriebsleistung reduziert wird, erhöht. Ferner wird die Antriebsleistung mindestens einer zweiten Brennkraftmaschine erhöht, um die Reduzierung der Antriebsleistung der oder jeder ersten Brennkraftmaschine zumindest teilweise zu kompensieren. Hierdurch ist es möglich, trotz der Reduzierung der Antriebsleistung an mindestens einer ersten Brennkraftmaschine die für den jeweiligen gemeinsamen Verbraucher des Sys- tems aus gekoppelten Brennkraftmaschinen bereitgestellte Gesamtantriebsleistung konstant zu halten. Durch die Reduzierung der Antriebsleistung der oder jeder ersten Brennkraftmaschine kann die Abgastemperatur des Abgases der jeweiligen ersten Brennkraftmaschine insbesondere durch einen motorseitigen Eingriff an der jeweiligen ersten Brennkraftmaschine erhöht werden, ohne dass die Gefahr besteht, dass kritische Bauteiltemperaturen an der jeweiligen ersten Brennkraftmaschine überschritten werden. Alternativ oder zusätzlich kann die Abgastemperatur an der oder jeder ersten Brennkraftmaschine, deren Antriebsleistung reduziert wird, auch durch eine externe Wärmequelle erhöht werden. Es besteht der Vorteil, dass infolge der reduzier- ten Antriebsleistung an der jeweiligen ersten Brennkraftmaschine eine geringere Abgasmenge anfällt, sodass dann zur Erhöhung der Abgastemperatur eine relativ kleine externe Wärmequelle ausreicht, die auch nur relativ wenig Energie benötigt. Hierdurch kann der Kraftstoffbedarf reduziert werden. With the present invention, it is proposed that when an exhaust aftertreatment device of a system is to be regenerated from a plurality of coupled internal combustion engines, the drive power of at least one first internal combustion engine is reduced. Further, the temperature of the exhaust gas of the or each first internal combustion engine whose driving power is reduced is increased. Furthermore, the drive power of at least one second internal combustion engine is increased in order to at least partially compensate for the reduction of the drive power of the or each first internal combustion engine. This makes it possible, despite the reduction of the drive power at least a first internal combustion engine, to keep the total drive power provided for the respective common load of the system from coupled internal combustion engines constant. By reducing the drive power of the or each first internal combustion engine, the exhaust gas temperature of the exhaust gas of the respective first internal combustion engine can be increased in particular by an engine-side intervention on the respective first internal combustion engine, without the risk that critical component temperatures are exceeded at the respective first internal combustion engine. Alternatively or additionally, the exhaust gas temperature at the or each first internal combustion engine whose drive power is reduced, can also be increased by an external heat source. There is the advantage that as a result of the reduced drive power at the respective first internal combustion engine, a smaller amount of exhaust gas is obtained, so then sufficient to increase the exhaust gas temperature, a relatively small external heat source, which also requires relatively little energy. As a result, the fuel consumption can be reduced.
Dann, wenn jeder Brennkraftmaschine eine individuelle Abgasnachbehandlungseinrichtung nachgeordnet ist, wird zur Regeneration der Abgasnachbehandlungseinrichtung mindestens einer ersten Brennkraftmaschine die Antriebsleistung der jeweiligen ersten Brennkraftmaschine reduziert, und ferner wird die Antriebsleistung mindestens einer zweiten Brennkraftmaschine, deren Abgasnachbehand- lungseinrichtung nicht regeneriert wird, derart erhöht, dass die Reduzierung der Antriebsleistung an der oder jeder ersten Brennkraftmaschine kompensiert wird. Hierbei wird die Temperatur des über die zu regenerierende Abgasnachbehandlungseinrichtung der jeweiligen ersten Brennkraftmaschine zu führenden Abgases insbesondere durch einen Motoreingriff an der jeweiligen ersten Brennkraftma- schine erhöht, wobei die Antriebsleistung der oder jeder zweiten Brennkraftmaschine derart erhöht wird, dass eine von den ersten und zweiten Brennkraftmaschinen in Summe bereitgestellte Gesamtantriebsleistung konstant bleibt. Diese Ausgestaltung des Verfahrens ist dann von Vorteil, wenn jeder Brennkraftmaschine eine individuelle Abgasnachbehandlungseinrichtung nachgeordnet ist. Then, if each internal combustion engine is followed by an individual exhaust aftertreatment device, the drive power of the respective first internal combustion engine is reduced for regeneration of the exhaust gas aftertreatment device of at least one first internal combustion engine, and furthermore the drive power of at least one second internal combustion engine whose exhaust aftertreatment device is not regenerated is increased such that the reduction in drive power on the or each first internal combustion engine is compensated. In this case, the temperature of the exhaust gas to be regenerated via the exhaust aftertreatment device of the respective first internal combustion engine is increased, in particular by an engine intervention on the respective first internal combustion engine, wherein the drive power of the or each second internal combustion engine is increased such that one of the first and second internal combustion engines in total provided total drive power remains constant. This embodiment of the method is advantageous if each internal combustion engine is arranged downstream of an individual exhaust aftertreatment device.
Dann, wenn mehreren Brennkraftmaschinen eine gemeinsame Abgasnachbehandlungseinrichtung nachgeordnet ist, wird zur Regeneration einer Abgasnachbehandlungseinrichtung die Antriebsleistung mindestens einer ersten Brennkraftmaschine reduziert, und ferner wird die Antriebsleistung mindestens einer zweiten Brennkraftmaschine, deren Abgas über dieselbe Abgasnachbehandlungseinrichtung geführt wird, derart erhöht, dass die Reduzierung der Antriebsleistung an der oder jeder ersten Brennkraftmaschine kompensiert wird. Hierbei wird die Tempe- ratur des Abgases der oder jeder ersten Brennkraftmaschine, deren Antriebsleistung reduziert wird, insbesondere durch einen Motoreingriff an der jeweiligen ersten Brennkraftmaschine erhöht, und darüber hinaus wird die Antriebsleistung mindestens einer zweiten Brennkraftmaschine derart erhöht, dass die Reduzierung der Antriebsleistung an der oder jeder ersten Brennkraftmaschine derart kompensiert wird, dass eine von den ersten und zweiten Brennkraftmaschinen in Summe bereitgestellte Gesamtantriebsleistung konstant bleibt. Diese Ausgestaltung des Verfahrens ist dann von Vorteil, wenn mehreren Brennkraftmaschinen eine gemeinsame Abgasnachbehandlungseinrichtung nachgeordnet ist. Then, if several internal combustion engines a common exhaust aftertreatment device is arranged downstream, the drive power of at least a first internal combustion engine is reduced to regenerate an exhaust aftertreatment device, and further the drive power of at least a second internal combustion engine, the exhaust gas is passed through the same exhaust aftertreatment device, such that the reduction of the drive power is compensated on the or each first internal combustion engine. Here, the temperature Temperature of the exhaust gas of the or each first internal combustion engine whose drive power is reduced, in particular increased by an engine intervention on the respective first internal combustion engine, and moreover, the drive power of at least a second internal combustion engine is increased such that the reduction of the drive power to the or each first internal combustion engine such is compensated that a total provided by the first and second internal combustion engines total drive power remains constant. This embodiment of the method is advantageous if a plurality of internal combustion engines downstream of a common exhaust gas aftertreatment device.
Vorzugsweise wird die Temperatur des Abgases der jeweiligen ersten Brennkraftmaschine, der Antriebsleitung reduziert wird, durch Veränderung eines Kraftstoff-Luft-Verhältnisses und/oder durch Veränderung eines Einspritzbeginns und/oder durch Veränderung eines Einspritzdrucks und/oder durch Veränderung eines Verdichtungsverhältnisses und/oder durch Veränderung von Ventilöffnungszeiten und/oder durch Veränderung einer Ladelufttemperatur und/oder durch Veränderung eines Abgasgegendrucks erhöht. Alternativ oder zusätzlich wird die Temperatur des Abgases der jeweiligen ersten Brennkraftmaschine, der Antriebsleitung reduziert wird, durch eine externe Wärmequelle erhöht. Hierdurch kann die Temperatur des Abgases an der jeweiligen ersten Brennkraftmaschine, deren Antriebsleistung reduziert wird, besonders vorteilhaft erhöht werden. Preferably, the temperature of the exhaust gas of the respective first internal combustion engine, the drive line is reduced by changing an air-fuel ratio and / or by changing an injection start and / or by changing an injection pressure and / or by changing a compression ratio and / or by change increased by valve opening times and / or by changing a charge air temperature and / or by changing an exhaust back pressure. Alternatively or additionally, the temperature of the exhaust gas of the respective first internal combustion engine, the drive line is reduced, increased by an external heat source. As a result, the temperature of the exhaust gas at the respective first internal combustion engine whose drive power is reduced can be increased particularly advantageously.
Die erfindungsgemäße Steuerungseinrichtung umfasst Mittel zur Durchführung des erfindungsgemäßen Verfahrens. The control device according to the invention comprises means for carrying out the method according to the invention.
Bevorzugte Weiterbildungen der Erfindung ergeben sich aus den Unteransprüchen und der nachfolgenden Beschreibung. Ausführungsbeispiele der Erfindung werden, ohne hierauf beschränkt zu sein, an Hand der Zeichnung näher erläutert. Dabei zeigt: Fig. 1 : ein Blockschaltbild eines ersten Systems aus mehreren Brennkraftmaschinen; und Preferred embodiments of the invention will become apparent from the dependent claims and the description below. Embodiments of the invention will be described, without being limited thereto, with reference to the drawings. Showing: Fig. 1 is a block diagram of a first system of several internal combustion engines; and
Fig. 2 ein Blockschaltbild eines zweiten Systems aus mehreren Brennkraftmaschinen. Fig. 2 is a block diagram of a second system of several internal combustion engines.
Die Erfindung betrifft ein Verfahren zum Betreiben eines Systems aus mehreren Brennkraftmaschinen und eine Steuerungseinrichtung zur Durchführung des Verfahrens. The invention relates to a method for operating a system of a plurality of internal combustion engines and a control device for carrying out the method.
Fig. 1 zeigt stark schematisiert ein erstes System 1 aus mehreren Brennkraftmaschinen 2, 3. Die in Fig. 1 gezeigten Brennkraftmaschinen 2, 3 sind derart gekoppelt, dass von denselben bereitgestellte Antriebsleistungen von einem gemeinsamen Verbraucher 4 abgenommen werden. Bei diesem Verbraucher 4 kann es sich zum Beispiel um einen hydraulischen oder elektrischen oder mechanischen oder sonstigen Verbraucher handeln, dessen benötigte Antriebsleistung von beiden Brennkraftmaschinen 2 und 3 in Summe bereitgestellt wird. Beide Brennkraftmaschinen 2 und 3 stellen demnach Teilantriebsleistungen für den gemeinsamen Verbraucher 4 bereit. FIG. 1 shows in highly schematic form a first system 1 comprising a plurality of internal combustion engines 2, 3. The internal combustion engines 2, 3 shown in FIG. 1 are coupled in such a way that drive powers provided by the same are taken from a common consumer 4. This consumer 4 may be, for example, a hydraulic or electrical or mechanical or other consumer whose required drive power is provided by both internal combustion engines 2 and 3 in total. Both internal combustion engines 2 and 3 accordingly provide partial drive powers for the common consumer 4.
Gemäß Fig. 1 wird jeder der Brennkraftmaschinen einerseits Kraftstoff 5 bzw. 6 und andererseits Verbrennungsluft 7, 8 zugeführt, wobei in der jeweiligen Brennkraftmaschine 2, 3 der Kraftstoff 5, 6 verbrannt wird und aus der jeweiligen Brennkraftmaschine 2, 3 Abgas 9, 10 abgeführt wird. 1, each of the internal combustion engines, on the one hand, supplies fuel 5 and 6 and, on the other hand, combustion air 7, 8, wherein the fuel 5, 6 is burned in the respective internal combustion engine 2, 3 and exhaust gas 9, 10 is discharged from the respective internal combustion engine 2, 3 becomes.
Beim System 1 der Fig. 1 ist jeder Brennkraftmaschine 2, 3 eine individuelle Abgasnachbehandlungseinrichtung 1 1 , 12 zugeordnet, in welcher das jeweilige Abgas 9, 10 der jeweiligen Brennkraftmaschine 2, 3 einer individuellen Abgasnachbehandlung unterzogen wird. Entsprechend verlässt die Abgasnachbehandlungseinrichtung 1 1 , 12 gereinigtes Abgas 13, 14. Soll nun zum Beispiel die Abgasnachbehandlungseinrichtung 12, die der Brennkraftmaschine 2 nachgeschaltet ist, regeneriert werden, so wird erfindungsgemäß zur Regeneration dieser Abgasnachbehandlungseinrichtung 12 die Antriebsleistung der Brennkraftmaschine 2 reduziert, die Temperatur des Abgases 10 dieser in der Antriebsleistung reduzierten Brennkraftmaschine 2 erhöht und ferner die Antriebsleistung der Brennkraftmaschine 3, deren Abgasnachbehandlungseinrichtung 1 1 nicht regeneriert wird, erhöht, und zwar derart, dass die Reduzierung der Antriebsleistung an der Brennkraftmaschine 2 zumindest teilweise, vorzugsweise vollständig, kompensiert wird, um so für den gemeinsamen Verbraucher 4 in Summe eine konstante Gesamtantriebsleistung bereitzustellen. In the system 1 of FIG. 1, each internal combustion engine 2, 3 is assigned an individual exhaust aftertreatment device 1 1, 12, in which the respective exhaust gas 9, 10 of the respective internal combustion engine 2, 3 is subjected to an individual exhaust aftertreatment. Accordingly, the exhaust gas aftertreatment device 1 1, 12 leaves cleaned exhaust gas 13, 14. If now, for example, the exhaust aftertreatment device 12, which is connected downstream of the internal combustion engine 2, be regenerated, the drive power of the internal combustion engine 2 is reduced according to the invention for the regeneration of this exhaust aftertreatment device 12, the temperature of the exhaust gas 10 of this reduced in the drive power engine 2 and further increases the drive power the internal combustion engine 3, the exhaust aftertreatment device 1 1 is not regenerated, increases, in such a way that the reduction of the drive power to the internal combustion engine 2 at least partially, preferably completely, is compensated so as to provide for the common consumer 4 in total a constant total drive power.
Zur Regeneration einer der Abgasnachbehandlungseinrichtungen des Systems der Fig. 1 wird demnach an einer ersten Brennkraftmaschine, die der zu regenerierenden Abgasnachbehandlungseinrichtung vorgelagert ist, die Antriebsleistung reduziert. An einer zweiten Brennkraftmaschine, deren Abgasnachbehandlungseinrichtung nicht regeneriert wird, wird die Antriebsleistung erhöht, um die reduzierte Antriebsleistung der ersten Brennkraftmaschine zu kompensieren. Ferner wird die Temperatur des Abgases derjenigen ersten Brennkraftmaschine, deren Antriebsleistung reduziert wurde, erhöht, um die dieser ersten Brennkraftmaschine nachgeschaltete Abgasnachbehandlungseinrichtung infolge erhöhten Abgastemperatur zu regenerieren. Dabei bleibt die von den Brennkraftmaschinen bereitgestellte Gesamtantriebsleistung konstant, sodass trotz der Reduzierung der Antriebsleistung an der ersten Brennkraftmaschine infolge der Erhöhung der Antriebsleistung an der zweiten Brennkraftmaschine der gemeinsame Verbraucher nach wie vor vollumfänglich betrieben werden kann. For the regeneration of one of the exhaust aftertreatment devices of the system of FIG. 1, therefore, the drive power is reduced at a first internal combustion engine, which is upstream of the exhaust aftertreatment device to be regenerated. At a second internal combustion engine, the exhaust aftertreatment device is not regenerated, the drive power is increased to compensate for the reduced drive power of the first internal combustion engine. Further, the temperature of the exhaust gas of that first internal combustion engine whose driving power has been reduced is increased to regenerate the exhaust gas after-treatment device downstream of this first internal combustion engine due to increased exhaust gas temperature. In this case, the total drive power provided by the internal combustion engines remains constant, so that despite the reduction of the drive power to the first internal combustion engine due to the increase in the drive power to the second internal combustion engine, the common consumer can still be operated fully.
Die Erhöhung der Abgastemperatur des Abgases derjenigen ersten Brennkraftmaschine, deren Antriebsleistung reduziert wird, erfolgt vorzugsweise durch einen motorseitigen Eingriff an der jeweiligen, in der Antriebsleistung reduzierten ersten Brennkraftmaschine. Dein solcher motorseitiger Eingriff kann zum Beispiel durch Veränderung eines Kraftstoff-Luft-Verhältnisses und/oder durch Veränderung eines Einspritzbeginns und/oder durch Veränderung eines Einspritzdrucks und/oder durch Veränderung eines Verdichtungsverhältnisses und/oder durch Veränderung von Ventilöffnungs- zeiten und/oder durch Veränderung einer Ladelufttemperatur und/oder durch Veränderung eines Abgasgegendrucks an der jeweiligen, in der Antriebsleistung reduzierten Brennkraftmaschine, erfolgen. The increase in the exhaust gas temperature of the exhaust gas of that first internal combustion engine, the drive power is reduced, is preferably carried out by an engine-side engagement with the respective, reduced in the drive power first internal combustion engine. Your such engine-side engagement, for example, by changing an air-fuel ratio and / or by changing an injection start and / or by changing an injection pressure and / or by changing a compression ratio and / or by changing valve opening times and / or by change a charge air temperature and / or by changing an exhaust back pressure at the respective, reduced in the drive power engine, take place.
Nach einer vorteilhaften Weiterbildung ist vorgesehen, dass jeder Abgasnachbe- handlungseinrichtung 1 1 , 12 des Systems 1 der Fig. 1 jeweils mindestens ein Sensor 15, 16 zugeordnet ist, mit Hilfe dessen automatisch detektiert werden kann, ob für die jeweilige Abgasnachbehandlungseinrichtung 1 1 , 12 eine Regeneration erforderlich ist. Dies kann zum Beispiel über einen NOx-Sensor oder NH3- Sensor oder einen Rußsensor erfolgen. According to an advantageous development, it is provided that each exhaust gas aftertreatment device 1 1, 12 of the system 1 of FIG. 1 is assigned at least one sensor 15, 16, with the aid of which it can be automatically detected, whether for the respective exhaust gas aftertreatment device 1 1, 12 a regeneration is required. This can be done for example via a NOx sensor or NH 3 - sensor or a soot sensor.
Das von den Sensoren 15, 1 6 bereitgestellte Messsignal wird einer Steuerungseinrichtung 17 bereitgestellt, die dann, wenn dieselbe detektiert, dass an einer der Abgasnachbehandlungseinrichtungen 1 1 , 12 eine Regeneration erforderlich ist, das obige Verfahren automatisch ausführt, indem an derjenigen Brennkraftma- schine, die der zu regenerierenden Abgasnachbehandlungseinrichtung vorgelagert wird, die Antriebsleistung reduziert wird, die Abgastemperatur dieser Brennkraftmaschine erhöht und ferner die Antriebsleistung der anderen Brennkraftmaschine, deren Abgasnachbehandlungseinrichtung nicht zu regenerieren ist, erhöht wird, um die Reduzierung der Antriebsleistung an der anderen Brennkraftmaschi- ne zu kompensieren. The measurement signal provided by the sensors 15, 16 is provided to a control device 17 which, when it detects that regeneration is required on one of the exhaust aftertreatment devices 1 1, 12, automatically carries out the above method by applying to the internal combustion engine, which is upstream of the exhaust aftertreatment device to be regenerated, the drive power is reduced, the exhaust gas temperature of this internal combustion engine increases and further the drive power of the other internal combustion engine, the exhaust aftertreatment device is not to be regenerated, increased to compensate for the reduction of the drive power to the other internal combustion engine ne.
Die Steuerungseinrichtung 17 umfasst Mittel zur Durchführung des erfindungsgemäßen Verfahrens. Bei diesen Mitteln handelt es sich um hardwareseitige Mittel und um softwareseitige Mittel. Bei den hardwareseitigen Mitteln der Steuerungseinrichtung 17 handelt es sich um Datenschnittstellen, um mit den an der Durchführung des erfindungsgemäßen Verfahrens beteiligten Baugruppen Daten auszutauschen. Weiterhin handelt es sich bei den hardwareseitigen Mitteln der Steuerungseinrichtung 17 um einen Pro- zessor zur Datenverarbeitung und um einen Speicher zur Speicherung von Daten. Bei den softwareseitigen Mitteln der Steuerungseinrichtung 17 handelt es sich um Programmbausteine, die der Ausführung des erfindungsgemäßen Verfahrens dienen. The control device 17 comprises means for carrying out the method according to the invention. These resources are hardware resources and software resources. The hardware-side means of the control device 17 are data interfaces in order to exchange data with the modules involved in carrying out the method according to the invention. Furthermore, the hardware-side means of the control device 17 are a processor for data processing and a memory for storing data. The software-side means of the control device 17 are program modules which serve to carry out the method according to the invention.
Obwohl in Fig. 1 nicht gezeigt, ist es möglich, eine Abgastemperatur für das Abgas einer hinsichtlich ihrer Antriebsleistung reduzierten Brennkraftmaschine alternativ oder zusätzlich zum motorseitigen Eingriff an der jeweiligen Brennkraftmaschine auch über eine externe Wärmequelle zu erhöhen. Bedingt durch die Reduzierung der Antriebsleistung der jeweiligen Brennkraftmaschine fällt an derselben eine ge- ringere Abgasmenge an, sodass dann das Abgas der in der Antriebsleistung reduzierten Brennkraftmaschine über eine relativ kleine externe Wärmequelle, die relativ wenig Energie benötigt, auf eine zur Regeneration der jeweiligen Abgasnachbehandlungseinrichtung erforderliche Temperatur erhöht werden kann. Although not shown in FIG. 1, it is possible to increase an exhaust gas temperature for the exhaust gas of an engine reduced in driving power as an alternative or in addition to the engine-side engagement with the respective engine also via an external heat source. Due to the reduction of the drive power of the respective internal combustion engine falls on the same a smaller amount of exhaust gas, so then the exhaust of the engine reduced in the drive power via a relatively small external heat source that requires relatively little energy to one for the regeneration of the respective exhaust aftertreatment device required Temperature can be increased.
Fig. 2 zeigt ein alternatives System 21 aus mehreren gekoppelten Brennkraftmaschinen 22, 23, deren Antriebsleistung wiederum von einem gemeinsamen Verbraucher 24 abgenommen wird. Auch in den Brennkraftmaschinen 22 und 23 wird Kraftstoff 25 bzw. 26 unter Anwesenheit von Ladeluft 27 bzw. 28 unter Erzeugung entsprechenden Abgases 29 bzw. 30 verbrannt, wobei jedoch im Unterschied zum System 1 der Fig. 1 beim System 21 der Fig. 2 das Abgas 29, 30 der beidenFIG. 2 shows an alternative system 21 comprising a plurality of coupled internal combustion engines 22, 23, the drive power of which is in turn removed by a common consumer 24. In the internal combustion engines 22 and 23, fuel 25 and 26 is burned in the presence of charge air 27 and 28 to produce corresponding exhaust gas 29 and 30, however, in contrast to the system 1 of Fig. 1 in the system 21 of FIG Exhaust 29, 30 of the two
Brennkraftmaschinen 22, 23 über eine gemeinsame Abgasnachbehandlungseinrichtung 31 geführt und einer gemeinsamen Abgasnachbehandlung unterzogen wird. Das Abgas 29, 30 beider Brennkraftmaschinen 22, 23 wird demnach in Fig. 2 über die gemeinsame Abgasnachbehandlungseinrichtung 31 geführt, wobei die- selbe gereinigtes Abgas 32 verlässt. Dann, wenn die Abgasnachbehandlungseinrichtung 31 regeneriert werden soll, was zum Beispiel über einen der Abgasnachbehandlungseinrichtung 31 zugeordneten Sensor 33 detektiert werden kann, wird die Antriebsleistung einer ersten Brennkraftmaschine des Systems 21 reduziert, die Temperatur des Abgases die- ser in der Antriebsleistung reduzierten, ersten Brennkraftmaschine erhöht und die Antriebsleistung der anderen, zweiten Brennkraftmaschine erhöht, um die Reduzierung der Antriebsleistung der anderen Brennkraftmaschine zu kompensieren. Internal combustion engines 22, 23 are guided via a common exhaust gas aftertreatment device 31 and subjected to a common exhaust aftertreatment. The exhaust gas 29, 30 of both internal combustion engines 22, 23 is therefore guided in FIG. 2 via the common exhaust gas aftertreatment device 31, the same cleaned exhaust gas 32 leaving. Then, when the exhaust aftertreatment device 31 is to be regenerated, which can be detected, for example, via a sensor 33 associated with the exhaust aftertreatment device 31, the drive power of a first internal combustion engine of the system 21 is reduced, the temperature of the exhaust gas of this first internal combustion engine reduced in drive power increases and increases the driving power of the other, second internal combustion engine to compensate for the reduction of the drive power of the other internal combustion engine.
So kann zum Beispiel in Fig. 2 die Antriebsleistung der Brennkraftmaschine 22 re- duziert werden, die Temperatur des Abgases 30 dieser Brennkraftmaschine 22 erhöht werden und die Antriebsleistung der anderen Brennkraftmaschine 23 erhöht werden, sodass die beiden Brennkraftmaschinen 22 und 23 wiederum in Summe für den gemeinsamen Verbraucher 24 eine konstante Gesamtantriebsleistung bereitstellen. For example, in FIG. 2, the driving power of the internal combustion engine 22 can be reduced, the temperature of the exhaust gas 30 of this internal combustion engine 22 can be increased, and the driving power of the other internal combustion engine 23 can be increased, so that the two internal combustion engines 22 and 23 in turn for the total common load 24 provide a constant total drive power.
Die Erhöhung der Abgastemperatur des Abgases 30 an der in ihrer Antriebsleistung reduzierten Brennkraftmaschine 22 kann dabei in Übereinstimmung zum Ausführungsbeispiel der Fig. 1 wiederum über mindestens einen der oben erwähnten motorseitigen Eingriffe und/oder über eine externe Wärmequelle erfol- gen. In Fig. 2 ist stromabwärts jeder Brennkraftmaschine 22, 23 eine derartige externe Wärmequelle 34 bzw. 35 positioniert, über welche das jeweilige Abgas 29 bzw. 30 der jeweiligen Brennkraftmaschine erhitzt werden kann. The increase in the exhaust gas temperature of the exhaust gas 30 at the engine 22 reduced in its drive power can take place in accordance with the embodiment of FIG. 1 again via at least one of the above-mentioned engine-side interventions and / or via an external heat source. In FIG downstream of each internal combustion engine 22, 23, such an external heat source 34 or 35 positioned over which the respective exhaust gas can be heated 29 and 30 of the respective internal combustion engine.
Im Ausführungsbeispiel der Fig. 2, in welchem das Abgas der beiden Brennkraft- maschinen 22, 23 über eine gemeinsame Abgasnachbehandlungseinrichtung 31 geführt wird, kann vorgesehen sein, dass die Regeneration derselben sektionsweise bzw. abschnittsweise erfolgt, indem zum Beispiel das hinsichtlich seiner Temperatur erhöhte Abgas der in der Leistung reduzierten Brennkraftmaschine 22 über eine erste Sektion der Abgasnachbehandlungseinrichtung 31 und das Abgas der hinsichtlich ihrer Antriebsleistung erhöhten Brennkraftmaschine 23 über eine zweite Sektion der Abgasnachbehandlungseinrichtung 31 geführt wird. Ebenfalls kann vorgesehen sein, die Abgase beider Brennkraftmaschinen 22, 23 vorab zu mischen und anschließend das Gemisch ausschließlich über eine Sektion der Abgasnachbehandlungseinrichtung zu führen. In the embodiment of FIG. 2, in which the exhaust gas of the two internal combustion engines 22, 23 is guided via a common exhaust gas aftertreatment device 31, it can be provided that the regeneration of the same takes place in sections or sections, for example by increasing the exhaust gas with regard to its temperature the engine 22, which is reduced in power, is guided via a first section of the exhaust gas aftertreatment device 31 and the exhaust gas of the engine 23, which is increased in terms of its drive power, via a second section of the exhaust aftertreatment device 31. It can also be provided to premix the exhaust gases of both internal combustion engines 22, 23 and then to lead the mixture exclusively via a section of the exhaust gas aftertreatment device.
Durch die sektionsweise Generierung der Abgasnachbehandlungseinrichtung 31 kann die Regeneration derselben verbessert werden, wozu es jedoch erforderlich ist, dass einzelne Sektionen der Abgasnachbehandlungseinrichtung 31 zum Beispiel durch Klappen oder andere Absperrelemente zur Regeneration voneinander getrennt bzw. entkoppelt werden können. By regenerating the exhaust aftertreatment device 31 in sections, the regeneration thereof can be improved, but for this it is necessary for individual sections of the exhaust aftertreatment device 31 to be separated or decoupled from one another, for example by flaps or other shut-off elements for regeneration.
In Fig. 2 ist wiederum eine Steuerungseinrichtung 36 gezeigt, die der Ausführung des erfindungsgemäßen Verfahrens dient und Mittel zur Durchführung desselben aufweist. FIG. 2 again shows a control device 36 which serves to carry out the method according to the invention and has means for carrying it out.
Die in Fig. 1 und 2 gezeigten Abgasnachbehandlungseinrichtungen 1 1 , 12, 31 können SCR-Katalysatoren mit ggf. vorgelagerten NO-Oxidationskatalysatoren umfassen. Ferner können die Abgasnachbehandlungseinrichtungen 1 1 , 12, 31 auch CH4-Oxidationskatalysatoren und/oder CH20-Oxidationskatalysatoren und/oder NOx-Speicherkatalysatoren oder dergleichen umfassen, die durch eine Temperaturanhebung regeneriert werden können. The exhaust aftertreatment devices 1 1, 12, 31 shown in FIGS. 1 and 2 may comprise SCR catalysts with optionally upstream NO oxidation catalysts. Furthermore, the exhaust aftertreatment devices 1 1, 12, 31 may also comprise CH 4 oxidation catalysts and / or CH 2 0 oxidation catalysts and / or NO x storage catalysts or the like, which can be regenerated by a temperature increase.
An einem konkreten Zahlenbeispiel soll zum Beispiel für das Ausführungsbeispiel der Fig. 1 davon ausgegangen werden, dass beide Brennkraftmaschinen 2 und 3 für den gemeinsamen Verbraucher 4 eine Antriebsleistung von 5 MW bereitstellen, sodass dieselben demnach in Summe eine Gesamtantriebsleistung von 10 MW bereitstellen. Im Normalbetrieb betragen die Temperaturen der Abgase 9, 10 jeweils in etwa 320 °C, die als NOx-Sensoren ausgebildeten Sensoren 15, 1 6 messen in gereinigten Abgas 13, 14 eine NOx-Konzentration von in etwa 400 mg/Nm3. Es soll weiterhin davon ausgegangen werden, dass zum Beispiel der Sensor 1 6 eine Erhöhung der NOx-Konzentration im gereinigten Abgasstrom 14 auf 700 mg/Nm3 feststellt. Die Steuerungseinrichtung 17 schließt dann auf Grundlage dieser erhöhten NOx-Konzentration darauf, dass die Abgasnachbehandlungseinrich- tung 12 zu regenerieren ist. For example, for the exemplary embodiment of FIG. 1, a concrete numerical example is assumed that both internal combustion engines 2 and 3 provide a drive power of 5 MW for the common load 4, so that they accordingly provide in total a total drive power of 10 MW. In normal operation, the temperatures of the exhaust gases 9, 10 are in each case approximately 320 ° C., and the sensors 15, 16 designed as NOx sensors measure in purified exhaust gas 13, 14 a NOx concentration of approximately 400 mg / Nm 3 . It should further be assumed that, for example, the sensor 1 6 detects an increase in the NOx concentration in the purified exhaust gas stream 14 to 700 mg / Nm 3 . The control device 17 then concludes that the exhaust gas aftertreatment device 12 is to be regenerated on the basis of this increased NOx concentration.
Hierzu wird dann automatisch die Antriebsleistung der Brennkraftmaschine 2 zum Beispiel auf 2 MW reduziert und zur Kompensation dieser Reduktion die Antriebsleistung an der Brennkraftmaschine 3 auf 8 MW erhöht, sodass beide Brennkraft- maschinen 2, 3 dann wiederum in Summe eine Gesamtantriebsleistung von 10 MW für den gemeinsamen Verbraucher 4 bereitstellen. Ebenso wird die Temperatur des die Brennkraftmaschine 2 verlassenden Abgases 10 erhöht, zum Beispiel auf 380 °C, und zwar wie oben dargestellt, durch mindestens einen motorseitigen Eingriff und/oder über mindestens eine externe Wärmequelle. For this purpose, the drive power of the internal combustion engine 2 is then automatically reduced, for example, to 2 MW and the drive power to the internal combustion engine 3 is increased to 8 MW to compensate for this reduction, so that both internal combustion engines 2, 3 then in total a total drive power of 10 MW for the provide common consumer 4. Likewise, the temperature of the exhaust gas 10 leaving the engine 2 is increased, for example, to 380 ° C., as shown above, by at least one engine-side engagement and / or at least one external heat source.
Die obigen Maßnahmen, die zur Regeneration der jeweiligen Abgasnachbehandlungseinrichtung ergriffen werden, nämlich die Reduzierung der Antriebsleistung mindestens einer ersten Brennkraftmaschine, die Erhöhung der Temperatur des Abgases der oder jeder ersten Brennkraftmaschine, und ferner die Erhöhung der Antriebsleistung mindestens einer zweiten Brennkraftmaschine zur Kompensation der Reduzierung der Antriebsleistung an der oder jeder ersten Brennkraftmaschine, können zum Beispiel zeitgesteuert für eine feste Zeitspanne ergriffen werden, um die jeweilige Abgasnachbehandlungseinrichtung im Sinne einer Zeitsteuerung zu regenerieren. Nach Ablauf dieser Zeitspanne wird dann wiederum die Abgas- temperatur an der hinsichtlich ihrer Antriebsleistung reduzierten ersten Brennkraftmaschine abgesenkt, die hinsichtlich ihrer Antriebsleistung reduzierte erste Brennkraftmaschine in ihrer Antriebsleistung erhöht und entsprechend die andere Brennkraftmaschine in ihrer Antriebsleistung reduziert, sodass nach der Regenration der Abgasnachbehandlungseinrichtung die beiden Brennkraftmaschinen in Summe wieder eine konstante Antriebsleistung bereitstellen. Alternativ können die obigen Maßnahmen, die zur Regeneration der jeweiligen Abgasnachbehandlungseinrichtung ergriffen werden, nämlich die Reduzierung der Antriebsleistung mindestens einer ersten Brennkraftmaschine, die Erhöhung der Temperatur des Abgases der oder jeder ersten Brennkraftmaschine, und ferner die Erhöhung der Antriebsleistung mindestens einer zweiten Brennkraftmaschine zur Kompensation der Reduzierung der Antriebsleistung an der oder jeder ersten Brennkraftmaschine, auch zeitvariabel im Sinne einer Regelung ergriffen werden, um die jeweilige Abgasnachbehandlungseinrichtung abhängig vom Regenerationsgrad bzw. Regenerationserfolg zu regenerieren. In diesem Fall wird die Rege- nerierung der jeweiligen Abgasnachbehandlungseinrichtung insbesondere dann beendet, wenn z. B. abhängig vom Messsignal mindestens eines Sensors der jeweiligen Abgasnachbehandlungseinrichtung festgestellt wird, dass keine Regeneration der jeweiligen Abgasnachbehandlungseinrichtung mehr erforderlich ist. The above measures taken for the regeneration of the respective exhaust aftertreatment device, namely the reduction of the drive power of at least a first internal combustion engine, the increase of the temperature of the exhaust gas of the or each first internal combustion engine, and further increasing the drive power of at least a second internal combustion engine to compensate for the reduction of Drive power at the or each first internal combustion engine, for example, can be timed for a fixed period of time to regenerate the respective exhaust aftertreatment device in terms of timing. After this period of time, the exhaust gas temperature is then lowered at the reduced in terms of their drive power first internal combustion engine, which increases in terms of their drive power reduced first internal combustion engine in their drive power and correspondingly reduces the other internal combustion engine in their drive power, so after Regenration the exhaust aftertreatment device, the two Combustion engines in total again provide a constant drive power. Alternatively, the above measures taken to regenerate the respective exhaust gas aftertreatment device may be to reduce the drive power of at least one first internal combustion engine, increase the temperature of the exhaust gas of the or each first internal combustion engine, and further increase the drive power of at least one second internal combustion engine to compensate Reduction of the drive power at the or each first internal combustion engine, also time-variable in the sense of a regulation to be taken to regenerate the respective exhaust aftertreatment device depending on the degree of regeneration or regeneration success. In this case, the regeneration of the respective exhaust aftertreatment device is terminated in particular when z. B. depending on the measurement signal of at least one sensor of the respective exhaust aftertreatment device is determined that no regeneration of the respective exhaust aftertreatment device is required more.
Bezugszeichenliste LIST OF REFERENCE NUMBERS
1 System 1 system
2 Brennkraftmaschine  2 internal combustion engine
3 Brennkraftmaschine 3 internal combustion engine
4 Verbraucher  4 consumers
5 Kraftstoff  5 fuel
6 Kraftstoff  6 fuel
7 Ladeluft  7 charge air
8 Ladeluft 8 charge air
9 Abgas  9 exhaust
10 Abgas  10 exhaust
1 1 Abgasnachbehandlungseinrichtung 1 1 exhaust aftertreatment device
12 Abgasnachbehandlungseinrichtung 13 Abgas 12 exhaust aftertreatment device 13 exhaust gas
14 Abgas  14 exhaust
15 Sensor  15 sensor
16 Sensor  16 sensor
17 Steuerungseinrichtung  17 control device
21 System 21 system
22 Brennkraftmaschine  22 internal combustion engine
23 Brennkraftmaschine  23 internal combustion engine
24 Verbraucher  24 consumers
25 Kraftstoff 25 fuel
26 Kraftstoff  26 fuel
27 Ladeluft  27 charge air
28 Ladeluft  28 charge air
29 Abgas  29 exhaust
30 Abgas 30 exhaust
31 Abgasnachbehandlungseinrichtung 31 Exhaust gas aftertreatment device
32 Abgas 32 exhaust
33 Sensor Wärmequelle 33 sensor heat source
Wärmequelle heat source
Steuerungseinrichtung control device

Claims

Ansprüche claims
Verfahren zum Betreiben eines Systems (1 ; 21 ) aus mehreren Brennkraftmaschinen (2, 3; 22, 23), wobei die Brennkraftmaschinen (2, 3; 22, 23) derart gekoppelt sind, dass von den Brennkraftmaschinen (2, 3; 22, 23) bereitgestellte Antriebsleistungen von mindestens einem gemeinsamen Verbraucher (4; 24) abgenommen werden, und wobei jeder Brennkraftmaschine (2, 3) eine individuelle Abgasnachbehandlungseinrichtung (1 1 , 12), in welcher das Abgas der jeweiligen Brennkraftmaschine einer individuellen Abgasnachbehandlung unterzogen wird, oder mehreren Brennkraftmaschinen (22, 23) eine gemeinsame Abgasnachbehandlungseinrichtung (31 ), in welcher das Abgas der jeweiligen Brennkraftmaschinen einer gemeinsamen Abgasnachbehandlung unterzogen wird, nachgeordnet ist, dadurch gekennzeichnet, dass zur Regeneration einer Abgasnachbehandlungseinrichtung (1 1 , 12; 31 ) die Antriebsleistung mindestens einer ersten Brennkraftmaschine reduziert wird, die Temperatur des Abgases der oder jeder ersten Brennkraftmaschine erhöht wird, und ferner die Antriebsleistung mindestens einer zweiten Brennkraftmaschine derart erhöht wird, dass die Reduzierung der Antriebsleistung an der oder jeder ersten Brennkraftmaschine zumindest teilweise kompensiert wird. Method for operating a system (1; 21) from a plurality of internal combustion engines (2, 3; 22, 23), wherein the internal combustion engines (2, 3; 22, 23) are coupled in such a way that the internal combustion engines (2, 3; 23) are taken from at least one common consumer (4; 24), and wherein each internal combustion engine (2, 3) an individual exhaust aftertreatment device (1 1, 12), in which the exhaust gas of the respective internal combustion engine is subjected to an individual exhaust aftertreatment, or a common exhaust aftertreatment device (31), in which the exhaust gas of the respective internal combustion engine is subjected to a common exhaust aftertreatment, characterized in that for the regeneration of an exhaust aftertreatment device (1 1, 12; 31) the drive power at least one first internal combustion engine is reduced, the temperature of the exhaust gas of the or each first Brennkra Further, the drive power of at least one second internal combustion engine is increased such that the reduction of the drive power at the or each first internal combustion engine is at least partially compensated.
Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass dann, wenn jeder Brennkraftmaschine (2, 3) eine individuelle Abgasnachbehandlungseinrichtung (1 1 , 12) nachgeordnet ist, zur Regeneration der Abgasnachbehandlungseinrichtung (1 1 , 12) mindestens einer ersten Brennkraftmaschine (2, 3) die Antriebsleistung der jeweiligen ersten Brennkraftmaschine (2, 3) reduziert wird, und ferner die Antriebsleistung mindestens einer zweiten Brennkraftmaschine (2, 3), deren Abgasnachbehandlungseinrichtung (1 1 , 12) nicht regeneriert wird, derart erhöht wird, dass die Reduzierung der Antriebsleistung an der oder jeder ersten Brennkraftmaschine (2, 3) kompensiert wird. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass zur Regeneration der Abgasnachbehandlungseinrichtung (1 1 , 12) der jeweiligen ersten Brennkraftmaschine (2, 3) die Antriebsleistung der jeweiligen ersten Brennkraftmaschine (2, 3) reduziert und die Temperatur des über die zu regenerierende Abgasnachbehandlungseinrichtung (1 1 , 12) der jeweiligen ersten Brennkraftmaschine (2, 3) zu führenden Abgases erhöht wird, und dass die Antriebsleistung der oder jeder zweiten Brennkraftmaschine (2, 3) derart erhöht wird, dass eine von den ersten und zweiten Brennkraftmaschinen (2, 3) in Summe bereitgestellte Gesamtantriebsleistung konstant bleibt. A method according to claim 1, characterized in that when each internal combustion engine (2, 3) an individual exhaust aftertreatment device (1 1, 12) is arranged downstream, for regeneration of the exhaust aftertreatment device (1 1, 12) at least a first internal combustion engine (2, 3) the drive power of the respective first internal combustion engine (2, 3) is reduced, and further the drive power of at least a second internal combustion engine (2, 3), the exhaust aftertreatment device (1 1, 12) is not regenerated, is increased such that the reduction of the drive power at the or each first internal combustion engine (2, 3) is compensated. A method according to claim 2, characterized in that for the regeneration of the exhaust gas aftertreatment device (1 1, 12) of the respective first internal combustion engine (2, 3) reduces the drive power of the respective first internal combustion engine (2, 3) and the temperature of the exhaust aftertreatment device to be regenerated ( 1 1, 12) of the respective first internal combustion engine (2, 3) to leading exhaust gas is increased, and that the driving power of the or each second internal combustion engine (2, 3) is increased such that one of the first and second internal combustion engines (2, 3 ) in total provided total drive power remains constant.
Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass dann, wenn mehreren Brennkraftmaschinen (22, 23) eine gemeinsame Abgasnachbehandlungseinrichtung (31 ) nachgeordnet ist, zur Regeneration einer Abgasnachbehandlungseinrichtung (31 ) die Antriebsleistung mindestens einer ersten Brennkraftmaschine ( 22, 23) reduziert wird, und ferner die Antriebsleistung mindestens einer zweiten Brennkraftmaschine (22, 23), deren Abgas über dieselbe Abgasnachbehandlungseinrichtung (31 ) geführt wird, derart erhöht wird, dass die Reduzierung der Antriebsleistung an der oder jeder ersten Brennkraftmaschine (22, 23) kompensiert wird. A method according to claim 1, characterized in that when a plurality of internal combustion engines (22, 23) is arranged downstream of a common exhaust aftertreatment device (31), the drive power of at least one first internal combustion engine (22, 23) is reduced for regeneration of an exhaust aftertreatment device (31), and Further, the drive power of at least a second internal combustion engine (22, 23), the exhaust gas is passed through the same exhaust gas treatment device (31) is increased such that the reduction of the drive power to the or each first internal combustion engine (22, 23) is compensated.
Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass hierbei die Temperatur des Abgases der oder jeder ersten Brennkraftmaschine (22, 23), deren Antriebsleistung reduziert wird, erhöht wird, und darüber hinaus die Antriebsleistung mindestens einer zweiten Brennkraftmaschine (22, 23) derart erhöht wird, dass die Reduzierung der Antriebsleistung an der oder jeder ersten Brennkraftmaschine (22, 23) derart kompensiert wird, dass eine von den ersten und zweiten Brennkraftmaschinen (22, 23) in Summe bereitgestellte Gesamtantriebsleistung konstant bleibt. A method according to claim 4, characterized in that in this case the temperature of the exhaust gas of the or each first internal combustion engine (22, 23) whose driving power is reduced, is increased, and beyond the drive power of at least a second internal combustion engine (22, 23) is increased in such a way in that the reduction in drive power at the or each first internal combustion engine (22, 23) is compensated such that a total drive power provided by the first and second internal combustion engines (22, 23) remains constant.
6. Verfahren nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass die zu regenerierenden Abgasnachbehandlungseinrichtung (31 ) nur segmentweise vom Abgas durchströmt wird. 6. The method according to claim 4 or 5, characterized in that the exhaust gas aftertreatment device to be regenerated (31) is flowed through only in segments by the exhaust gas.
Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass mit Hilfe mindestens eines Sensors (15, 1 6; 33) überwacht wird, ob eine Regeneration einer Abgasnachbehandlungseinrichtung (1 1 , 12; 31 ) erforderlich ist, und dass dann, wenn festgestellt wird, dass eine Regeneration einer Abgasnachbehandlungseinrichtung erforderlich ist, die Regeneration dieser Abgasnachbehandlungseinrichtung automatisch durchgeführt wird. Method according to one of Claims 1 to 6, characterized in that it is monitored by means of at least one sensor (15, 16, 33) as to whether regeneration of an exhaust aftertreatment device (11, 12, 31) is required, and that if it is determined that a regeneration of an exhaust aftertreatment device is required, the regeneration of this exhaust aftertreatment device is automatically performed.
Verfahren ach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Regeneration der jeweiligen Abgasnachbehandlungseinrichtung (1 1 , 12; 31 ) geregelt oder zeitgesteuert durchgeführt wird. Method according to one of claims 1 to 7, characterized in that the regeneration of the respective exhaust aftertreatment device (1 1, 12, 31) is regulated or time-controlled.
Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Temperatur des Abgases der oder jeder ersten Brennkraftmaschine (2, 3; 22, 23), deren Antriebsleistung reduziert wird, durch einen Motoreingriff an der jeweiligen ersten Brennkraftmaschine erhöht wird. Method according to one of claims 1 to 8, characterized in that the temperature of the exhaust gas of the or each first internal combustion engine (2, 3; 22, 23) whose driving power is reduced, is increased by an engine intervention on the respective first internal combustion engine.
Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass die Temperatur des Abgases der jeweiligen ersten Brennkraftmaschine (2, 3, 22, 23) durch Veränderung eines Kraftstoff-Luft-Verhältnisses und/oder durch Veränderung eines Einspritzbeginns und/oder durch Veränderung eines Einspritzdrucks und/oder durch Veränderung eines Verdichtungsverhältnisses und/oder durch Veränderung von Ventilöffnungszeiten und/oder durch Veränderung einer Ladelufttemperatur und/oder durch Veränderung eines Abgasgegendrucks erhöht wird. A method according to claim 9, characterized in that the temperature of the exhaust gas of the respective first internal combustion engine (2, 3, 22, 23) by changing an air-fuel ratio and / or by changing an injection start and / or by changing an injection pressure and / or by changing a compression ratio and / or by changing valve opening times and / or by changing a charge air temperature and / or by changing an exhaust back pressure is increased.
1 1 . Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die Temperatur des Abgases der jeweiligen ersten Brennkraftmaschine (2, 3; 22, 23) durch eine externe Wärmequelle (34, 35) erhöht wird. 1 1. Method according to one of claims 1 to 10, characterized in that the temperature of the exhaust gas of the respective first internal combustion engine (2, 3, 22, 23) by an external heat source (34, 35) is increased.
12. Steuerungseinrichtung, gekennzeichnet durch Mittel zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 1 1 . 12. Control device, characterized by means for carrying out the method according to one of claims 1 to 1 1st
EP15781880.8A 2014-10-01 2015-09-30 Method and control device for operating a system consisting of a plurality of internal combustion engines Pending EP3201457A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014014636.7A DE102014014636A1 (en) 2014-10-01 2014-10-01 Method and control device for operating a system of several internal combustion engines
PCT/EP2015/072627 WO2016050881A1 (en) 2014-10-01 2015-09-30 Method and control device for operating a system consisting of a plurality of internal combustion engines

Publications (1)

Publication Number Publication Date
EP3201457A1 true EP3201457A1 (en) 2017-08-09

Family

ID=54337242

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15781880.8A Pending EP3201457A1 (en) 2014-10-01 2015-09-30 Method and control device for operating a system consisting of a plurality of internal combustion engines

Country Status (7)

Country Link
US (1) US10100755B2 (en)
EP (1) EP3201457A1 (en)
JP (1) JP6412257B2 (en)
KR (1) KR20170041241A (en)
CN (1) CN107076042B (en)
DE (1) DE102014014636A1 (en)
WO (1) WO2016050881A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202017105323U1 (en) 2017-09-05 2017-09-25 Man Diesel & Turbo Se Control device for operating a system of several internal combustion engines
DE102017123044A1 (en) * 2017-10-05 2019-04-11 Man Diesel & Turbo Se Method and control device for operating a system of several internal combustion engines
DE102017123040A1 (en) * 2017-10-05 2019-04-11 Man Energy Solutions Se Method and control device for operating a system of several internal combustion engines

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6345496B1 (en) * 1995-11-09 2002-02-12 Toyota Jidosha Kabushiki Kaisha Method and device for purifying exhaust gas of an engine
JP3702544B2 (en) * 1996-03-22 2005-10-05 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
US6698394B2 (en) * 1999-03-23 2004-03-02 Thomas Engine Company Homogenous charge compression ignition and barrel engines
DE10018062B4 (en) * 2000-04-12 2014-04-03 Volkswagen Ag Multi-cylinder engine for motor vehicles having a multi-flow exhaust gas purification system and method for controlling operation of the multi-cylinder engine
DE10101593B4 (en) * 2001-01-16 2010-07-15 Bayerische Motoren Werke Aktiengesellschaft Method for operating an internal combustion engine provided with direct fuel injection into the combustion chamber
DE10131802A1 (en) * 2001-06-30 2003-01-16 Bosch Gmbh Robert Method for controlling an internal combustion engine
DE10238771B4 (en) 2002-08-23 2009-01-22 Umicore Ag & Co. Kg Process for desulfating a nitrogen oxide storage catalyst
US20070204594A1 (en) 2006-03-02 2007-09-06 Nissan Motor Co., Ltd. Exhaust purification system for hybrid vehicle
JP2007230475A (en) 2006-03-03 2007-09-13 Nissan Motor Co Ltd Exhaust gas purification system for hybrid vehicle
JP5308179B2 (en) * 2009-02-12 2013-10-09 ヤンマー株式会社 Exhaust gas purification system
DE102009030771A1 (en) * 2009-06-27 2010-12-30 Mahle International Gmbh Piston engine and operating procedures
US8868266B2 (en) * 2011-08-19 2014-10-21 General Electric Company Method and system for engine exhaust filter regeneration of a vehicle in a consist
CA2865958C (en) * 2012-03-15 2021-04-27 Bright Energy Storage Technologies, Llp Auxiliary power unit assembly and method of use
US9644528B2 (en) * 2013-01-31 2017-05-09 Electro-Motive Diesel, Inc. Engine system with EGR over-pressure protection

Also Published As

Publication number Publication date
KR20170041241A (en) 2017-04-14
JP6412257B2 (en) 2018-10-24
CN107076042B (en) 2020-09-08
WO2016050881A1 (en) 2016-04-07
CN107076042A (en) 2017-08-18
US10100755B2 (en) 2018-10-16
JP2017533373A (en) 2017-11-09
DE102014014636A1 (en) 2016-04-07
US20170218857A1 (en) 2017-08-03

Similar Documents

Publication Publication Date Title
EP3115566B1 (en) Method for exhaust gas after-treatment of an internal combustion engine
DE102015212514B4 (en) Method for exhaust gas aftertreatment and device for cleaning the exhaust gas of an internal combustion engine
EP1373693B1 (en) Method and device for monitoring an exhaust gas treatment system
DE112014000573T5 (en) System, method and apparatus for improved desulfurization of aftertreatment components
DE102016119586A1 (en) DIAGNOSIS OXIDATION CATALYST DEVICE WITH HYDROCARBON STORAGE
DE102015204093B4 (en) Method for suppressing ammonia slip during operation of an SCR catalytic converter of a hybrid electric drive
EP0689640B1 (en) Process for checking the conversion capability of a catalyst
EP3201457A1 (en) Method and control device for operating a system consisting of a plurality of internal combustion engines
DE102012211703A1 (en) Method for checking nitrogen oxide sensor in SCR catalyst system, involves introducing reducing agent into exhaust line upstream of catalyst for checking nitrogen oxide sensor, and avoiding ammonia slippage from catalyst
DE102018106420A1 (en) A POST-TREATMENT SYSTEM, A COMBUSTION ENGINE ASSEMBLY AND RELATED METHODS
DE102014016447B4 (en) Method and control device for operating an internal combustion engine
DE602005003971T2 (en) DEVICE FOR REGENERATING AN EXHAUST GAS TREATMENT SYSTEM INTEGRATED INTO AN EXHAUST SYSTEM OF AN INTERNAL COMBUSTION ENGINE OF A MOTOR VEHICLE
DE102006062650B4 (en) Process for the reactivation of precious metal-containing exhaust gas aftertreatment components of continuously lean-burning internal combustion engines and control unit for controlling the process
DE102022105060A1 (en) Apparatus and method for controlling a reduction system
DE102019206114A1 (en) Exhaust aftertreatment device with a turbocharger between an SCR catalytic converter and a nitrogen oxide storage catalytic converter
DE102007030235A1 (en) Device for treatment of exhaust gases of combustion engine, has nitrogen oxide storage catalyst for storing of nitrogen oxides from exhaust gas supplied from combustion engine
DE102016112363B4 (en) exhaust aftertreatment system
DE102020103897A1 (en) Process for exhaust aftertreatment of an internal combustion engine and exhaust aftertreatment system
DE10034143A1 (en) Method for adapting a catalytic converter temperature target range for a NOx storage catalytic converter
DE102006000449B4 (en) Auxiliary device control system
DE102019206109A1 (en) Exhaust gas aftertreatment device with turbocharger between nitrogen oxide storage catalytic converter and particle filter
DE102016209531A1 (en) Regeneration of a dual nitrogen oxide storage catalyst system with an exhaust gas recirculation system
DE102012221551A1 (en) Method for operating exhaust system for internal combustion engine, involves operating exhaust system partially in diagnostic mode, in which rich exhaust gas atmosphere is present in area of hydrocarbon sensor
DE102013208878B4 (en) Arrangement and method for reducing emissions of a diesel engine
DE102018203309B4 (en) Arrangement of an internal combustion engine with an exhaust tract, motor vehicle and method for controlling an exhaust gas flow

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170201

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BUGSCH, MIRKO

Inventor name: KNAFL, ALEXANDER

Inventor name: DOERING, ANDREAS

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MAN ENERGY SOLUTIONS SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210531

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DOERING, ANDREAS

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DOERING, ANDREAS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS