EP3198586B1 - Rundstrahlantenne - Google Patents

Rundstrahlantenne Download PDF

Info

Publication number
EP3198586B1
EP3198586B1 EP15774892.2A EP15774892A EP3198586B1 EP 3198586 B1 EP3198586 B1 EP 3198586B1 EP 15774892 A EP15774892 A EP 15774892A EP 3198586 B1 EP3198586 B1 EP 3198586B1
Authority
EP
European Patent Office
Prior art keywords
rings
antenna
ring
group
inter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15774892.2A
Other languages
English (en)
French (fr)
Other versions
EP3198586A1 (de
Inventor
Yves Lagier
Raphaël LARDAT
Daniel Andreis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP3198586A1 publication Critical patent/EP3198586A1/de
Application granted granted Critical
Publication of EP3198586B1 publication Critical patent/EP3198586B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/004Mounting transducers, e.g. provided with mechanical moving or orienting device
    • G10K11/006Transducer mounting in underwater equipment, e.g. sonobuoys
    • G10K11/008Arrays of transducers

Definitions

  • the invention generally relates to antennas, and in particular to omnidirectional antennas.
  • Marine platforms e.g. surface boats
  • a sonar antenna comprises a set of stacked transducers ensuring the emission of acoustic signals and mounted on a support.
  • the reception of the signals is carried out by a set of receivers (for example hydrophones) arranged in a configuration chosen in relation to the configuration of all the transmission transducers.
  • the antenna has a generally cylindrical or spherical shape and comprises a set of superimposed elementary transmission transducers (piezoelectric rings) along the axis of the antenna, each transducer having a ring shape as described in Requirement FR2 776 161 .
  • Such transducers can be of the “Tonpilz” type and ensure both transmission and reception.
  • the diameter of the rings being linked to the desired transmission frequency the lower the desired frequency, the larger the ring must be.
  • Such antennas are therefore bulky and have a relatively heavy weight.
  • “Tonpilz” type transducers require equipping the active element (piezoelectric, magneto- or electro-strictive material) with bulky mechanical parts (rear seismic mass, horn and sealing box in particular).
  • Such an antenna architecture is therefore unsuitable for the design of low-frequency antennas for low-tonnage surface vessels (in particular with a mass of less than 1500 tonnes) or for low-tonnage submarines (in particular with a mass of less than 6000 tonnes). Tons).
  • the omnidirectional sonar antenna comprises a vertical network of compact “flex-tensor” type transducers operating in a reduced frequency band in active mode (1800-2300 Hz).
  • This type of antenna is dedicated to transmission only.
  • This architecture is sufficiently compact and has a relatively low weight.
  • this type of antenna does not provide the frequency bandwidth necessary for modern wide-band sonars.
  • omnidirectional sonar antenna comprises a vertical network of active transmission rings, in which the interior of the rings is isolated from the medium in which the antenna bathes (using a technology called “Air Backed Ring” or ABR in the Anglo-Saxon language).
  • This type of antenna is used in particular for helicopter-borne sonar applications, such as for example the solution described in the patent application FR 1303023 , and has the advantage of offering more compactness with low weight.
  • these antennas are limited in frequency band due to the mono-resonant behavior of the active rings used in ABR mode.
  • the omnidirectional sonar antenna comprises a vertical network of compact and broadband transmission transducers, the walls of which are in contact with a fluid in the liquid state (using a technology called “Free-flooded Rings” or FFR in English). -Saxon).
  • the presence of liquid improves the acoustic performance of the antenna.
  • reception is ensured by a set of omnidirectional hydrophones placed on a light structure transparent to acoustic waves in the frequency band used.
  • the patent application EP3084755 corresponding to WO/2015/092066 , has a filing date prior to that of this application and was published on a later date.
  • the invention aims in particular to overcome the aforementioned drawbacks, by proposing an omnidirectional antenna according to claim 1.
  • inter-ring spacings between the rings of the same group and the inter-group spacings between two groups of successive rings are thus chosen so as to optimize the emission bandwidth and the sound level.
  • the proposed embodiments thus make it possible to reduce the mass and volume of the acoustic SONAR transmission antenna, as well as its complexity of production, while optimizing the sound level and the transmission frequency bandwidth, this which allows optimal acoustic performance to be obtained.
  • FIG. 1 is a diagram representing an example of structure 1 on which an omnidirectional antenna 100 can be mounted, according to certain embodiments.
  • the omnidirectional antenna 100 is intended to be immersed at least partially in water (for example in open water) to detect objects underwater by emitting sound waves. It can be mounted on any fixed or mobile structure 1, such as for example under a floating or anchored marine platform or a surface vessel as illustrated on the figure 1 .
  • FIG. 2 illustrates the arrangement of the different elements of the antenna according to certain embodiments.
  • the omnidirectional antenna 100 comprises a transmission base 2 comprising a set of elementary transducers 200 stacked along an axis 10 (hereinafter called "longitudinal axis of the antenna"), the transducers being configured to emit sound waves.
  • the antenna 100 can in particular be fixed on the bottom of the structure 1.
  • the transmission transducers 200 can cooperate with a reception base 3 comprising a set of omnidirectional receivers for receiving the signals.
  • the transmission base (forming antenna transmission) constituted by the elementary transducers 200 can be distinct from the reception base (forming a reception antenna).
  • the omnidirectional antenna 100 can be a sonar antenna intended to equip an active sonar.
  • the receivers of the transmitting base are hydrophones.
  • the omnidirectional antenna 100 may have a generally cylindrical shape to be omnidirectional in bearing.
  • the directivity in elevation depends on its extension along its axis of revolution 10.
  • the elementary transducers 200 comprise a set of emission rings 20, each ring being centered around an axis parallel to the axis 10 of the antenna 100.
  • the emission rings 20 are superimposed along the axis longitudinal of the antenna.
  • the transmission rings can be substantially identical and centered around the longitudinal axis of the antenna 100.
  • the diameter D of each ring 20 is adapted to the transmission frequency.
  • the rings 20 are assembled in groups, each group constituting an elementary transducer 200 (in the remainder of the description, the groups of rings will thus be designated by the reference 200).
  • the groups of rings 200 are spaced from each other by a chosen pitch (the pitch will also be called “intergroup spacing” below) in the stacking direction, defined by axis 10.
  • each group 200 (elementary transmission transducer) comprises a chosen number of rings.
  • the different groups of rings 200 comprise the same number of rings and are spaced from each other by the same distance (i.e. the intergroup spacing is identical between the different groups).
  • the emission base 2 comprises three pairs of rings spaced from one another, according to the same intergroup spacing chosen (denoted “p”), and each group of rings 200 comprises a pair of rings.
  • the groups of rings 200 can be held in position by a holding structure.
  • the antenna 100 can be connected via cables or connectors to electronic equipment arranged for example on the structure 1 and configured to ensure the electrical supply of the antenna 100 and the exchange of data with the antenna 100.
  • each transmission ring 20 can be controlled separately by means of a power amplifier so as to produce a transmission lobe in downward direction, for example by acoustic decoupling.
  • each group of rings 200 can be powered separately, using a parallel power supply.
  • Such a configuration of the rings 20 makes it possible to optimize the transmission bandwidth of the antenna and the sound level.
  • the receiving base 3 can be placed coaxially with the transmitting base.
  • tie rods 202 can be used to secure the rings of the same group to each other or to the entire antenna, as illustrated in the figure 2 .
  • the tie rods 202 can for example be metal tie rods.
  • inter-group clamping wedges 204 can be placed in the intervals separating two groups of successive rings.
  • the tightening shims 204 may be part of the assembly and may be in the form of plastic shims, for example, through which the tie rods 202 pass.
  • the tie rods 202 may include metal tie rods passing through plastic shims which serve as shims. .
  • All of the elements of the transmitting base 2 can be clamped between the parts 205 (crown) which allow the mechanical strength of the transmitting antenna independently of the entire surrounding structure.
  • One of the crowns 205 can interface with the support structure 1 shown on the figure 1 .
  • the rings are of substantially identical dimensions and centered around the longitudinal axis of the antenna 10, they can be superimposed one on top of the other so that the inter-group clamping wedges 204 are in opposite each other in the direction defined by the longitudinal axis 10.
  • the antenna 100 may further comprise a profiled ring 205 with a diameter at least equal to the diameter of the rings placed at each end of the stack to hold all of the rings and facilitate the installation of the transmitting antenna 100.
  • FIG. 3 illustrates an example of positioning of the reception base 3.
  • the receivers 31 are hydrophones fixed on the mechanical holding structure 33 of the transmission base 2.
  • the holding structure 33 can in particular be transparent to acoustic waves in the frequency band used.
  • the set of receivers 31 can be part of the mechanical structure holding the transmitting antenna.
  • the receivers 31 of the receiving antenna 3 can for example be hydrophones distributed around the transmitting antenna 100 and without physical link with the transmitting antenna 100.
  • the receivers 31 forming the receiving antenna can be arranged substantially in a column or staggered on the holding structure 33 surrounding the transmitting antenna, along the longitudinal axis 10.
  • the hydrophones 31 may comprise a set of elementary hydrophones distributed around the transmitting antenna 100 on supports 32 and without physical link with the transmitting antenna 100.
  • the elementary hydrophones are arranged in three coaxial rings represented schematically by the dotted curves 311, 312 and 313 and centered around axis 10.
  • the rings 311, 312 and 313 are spaced from one another, according to the axis 10, of a chosen distance.
  • the transmitting antenna 100 can be arranged inside the holding structure 33 and held by it.
  • the emission rings 20 may be active rings made of piezoelectric material (for example active rings of piezoelectric ceramic).
  • Each ring 20 can for example comprise a set of segments placed inside a crown of insulating material (for example, fiberglass/resin wound directly on the ceramics) as shown in the figure. Figure 4 or in the form of a composite ring forming a hoop as shown in the Figure 5 .
  • Such segments 201 can be separated from each other by metal pieces in the form of corners 202 removable towards the center of the ring by means of a device, which makes it possible to separate the segments from each other and to impose a mechanical prestress in the ceramic ring.
  • the segments can be pressed against a shrink ring (or assembled by gluing).
  • each ring can be a ring prestressed by a shaper formed from a set of piezoelectric segments grouped to form substantially identical sectors.
  • each ring can be made from a single piece of ceramic (monolithic form) as illustrated in the Figure 6 .
  • the transmitting antenna and the internal cavity of the transmitting rings 20 are bathed in a non-ionic dielectric fluid 207, such as oil for example.
  • the transmitting antenna 100 can be placed in a sealed enclosure 208 which can be over-pressurized and which can contain the non-ionic dielectric fluid 207.
  • a device electrical insulation and/or sealing around the emission rings 20 such as for example a coating, overmolding around the rings or mechanical parts for electrical insulation and sealing of the rings).
  • the electro-acoustic efficiency of each emission ring 20, and consequently the “sound level to size” ratio. and the “sound level to mass” ratio of the transmitting antenna 100, are optimized.
  • the dielectric fluid 207 in which the emission rings 20 are bathed can also have a function of thermal drainage of the heat generated by the active rings during emission. In fact, it can behave like a heat transfer fluid which cools the ceramic rings by natural convection in particular, which makes it possible to optimize the sound level emitted and the duration of use at full load.
  • Cavity mode can be activated by powering each group of rings in parallel.
  • each emission ring 20 is made of piezoelectric material
  • the energy necessary for the radial resonance can be provided by the alternating electrical excitation injected onto the ceramic.
  • the energy used for the resonance of the cavity mode can also be induced by the radial mode of the ring.
  • the cavity mode and the radial mode are coupled to obtain a large operating frequency band so that each ring 20 can operate in wide band.
  • the cavity frequency is chosen lower than the radial frequency, which allows optimal operation.
  • FIG 7 is a diagram showing in more detail the arrangement of the emission rings 20.
  • the groups of rings 200 are spaced from each other by a distance p constituting the “inter-group spacing”.
  • the inter-group spacing p between the different groups 200 of rings is chosen so as to optimize the operation of the antenna.
  • the inter-ring spacing, denoted “ d ”, between the rings of the same group (for example pair) is chosen so as to control the cavity frequency of the group of rings 200.
  • the inter-ring spacing, denoted “ d ”, between the rings of the same group (for example pair) is chosen as a function of the cavity frequency of the group of rings 200 and/or the radial frequency of the group d 'ring.
  • the cavity frequency and the radial frequency of the ring group 200 are substantially identical to those obtained for a single ring.
  • the cavity frequency of the couple can be twice as low as that of the ring alone.
  • the omnidirectional antenna 100 can in particular be configured so that, whatever the inter-ring spacing d, the radial frequency of the elementary rings remains unchanged.
  • Optimizing the inter-ring spacing d for a given antenna thus makes it possible to vary the cavity frequency of the antenna and optimize it for a given operation.
  • the inter-ring distance d between the elementary rings thus makes it possible to best position the cavity frequency of the antenna in relation to the needs of the antenna 100.
  • the inter-group spacing p between two groups of the antenna can be advantageously chosen so as to optimize the acoustic efficiency of the transmitting base 2.
  • the inter-group spacing p is chosen as a function of the frequency operational use of the emission base.
  • the inter-group spacing p can be chosen equal to the half-wavelength of the operational use frequency of the transmission base 2.
  • the inter-group spacing p can thus be optimized either from an acoustic point of view (bandwidth and sensitivity to transmission) or from a more general point of view, including the transmission chain, in order to have the maximum active power in the antenna on the widest possible frequency band.
  • the groups of rings separated by the intergroup distance d can be supplied with an appropriate phase shift to obtain an antenna mode making it possible to transmit with an offset of the main lobe following the axis of revolution of the antenna.
  • the presence of fluid allows the rings to be used in FFR mode (“Free-flooded Rings” technology in English) and therefore to obtain broadband operation.
  • the minimum inter-ring distance “d” between rings of the same group is chosen so as to optimize the acoustic operation according to the cavity mode of the ring.
  • the electro-acoustic efficiency obtained is thus much higher than that obtained with conventional omnidirectional transmitting antennas.
  • the dielectric fluid in which the transmitting antenna 100 is bathed and which is in contact with the internal cavity of each ring (in the FFR mode) can have acoustic characteristics (in particular, density, speed of sound, acoustic impedance) similar to water, such as a specific mineral oil.
  • the dielectric fluid can also have thermal characteristics optimized with respect to cooling by natural convection of the active rings.
  • the enclosure 208 is an acoustically transparent enclosure, such as for example made of fiber composite material, resin (glass, carbon, etc.). ..), or in rubber or polyurethane elastomer.
  • Such an enclosure 208 can in particular be over-pressurized to push back the cavitation limits of the transmitting antenna 100.
  • the enclosure 208 can also be configured to be in hydrostatic equilibrium with the external environment, which may be of particular interest for applications embedded on vehicles with variable immersion (such as for example a submarine, a towed body, a drone , etc..
  • the enclosure 208 can be partially coated with acoustic material (for example anechoic or by masking) in order to optimize the radiation pattern of the transmitting antenna and/or the signal response of the antenna. and/or the noise of the associated reception base (3).
  • acoustic material for example anechoic or by masking
  • the omnidirectional antenna 100 has an optimized compactness compared to conventional solutions. Indeed, the different embodiments make it possible to address the lower part of the frequency band by a fluid mode which has a limited dependence on the physical structure of the antenna (for a given physical dimension, the band of frequencies is broadened towards low frequencies).
  • the different embodiments of the invention thus facilitate the installation of the acoustic antenna on a marine platform such as a surface vessel, particularly of low tonnage and reduced draft, or on a submarine, for which the volume available in superstructures is very limited.
  • the omnidirectional antenna according to the different embodiments can also be used in any type of sonar application, such as for example in airborne sonar type applications or fixed or mobile maritime surveillance devices.
  • the different embodiments make it possible to optimize the sound level and the bandwidth of the transmission frequencies.
  • the acoustic performance of the transmitting antenna is advantageously optimized so as to cover all environmental and propagation conditions, whether in deep sea or shallow water conditions, potentially highly reverberant.
  • the proposed embodiments have particular advantages in the area of low and mid frequency SONAR systems enabling detection/classification of submarines.
  • the invention is not limited to the embodiments described above by way of non-limiting example. It encompasses all the alternative embodiments which could be envisaged by those skilled in the art.
  • the invention is not limited to a particular arrangement of the receivers 31 forming the reception antenna 3, nor to a particular architecture for producing the transmission rings 20.
  • the invention is not limited either at a spacing d between rings of the same group (inter-ring spacing) constant within the same group.
  • the inter-ring spacing d can be variable within the same group in order to best adapt the cavity modes of each group to its position in the antenna.
  • the invention is not limited to a constant inter-group spacing p between two successive groups.
  • a variable inter-group spacing can be chosen for example depending on the required performance, the position of the group relative to the axis of the antenna, etc.
  • the invention is not limited to rings 20 of identical dimensions within the same group 20.
  • the rings 20 of the same group 200 can have a different height. More generally, the configuration of the different groups 200 may differ from one group to another.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • Details Of Aerials (AREA)

Claims (11)

  1. Rundstrahlantenne (100) zur Ausrüstung eines Sonars, wobei die Antenne um eine Längsachse (10) zentriert ist und eine Senderinggruppe (20) umfasst, die entlang der Längsachse gestapelt sind, wobei jeder Sendering (20) um die Längsachse herum gebildet ist, wobei die Senderinge (20) direkt in ein dielektrisches Fluid eingetaucht sind, wobei jeder Sendering einen Ring bildet, der in dem dielektrischen Fluid schwingt und einen inneren Hohlraum umfasst, wobei die Antenne dadurch gekennzeichnet ist, dass der innere Hohlraum jedes Rings in Kontakt mit dem dielektrischen Fluid steht, wobei jeder Ring mindestens zwei Resonanzfrequenzen aufweist, die akustisch mit dem Fluid gekoppelt sind, wobei die Resonanzfrequenzen eine Hohlraumfrequenz, die einem Hohlraummodus entspricht, und eine radiale Frequenz, die einem radialen Modus entspricht, umfassen, und dadurch, dass die Senderinge (20) in Gruppen von Ringen (200) zusammengebaut sind, wobei jede Gruppe einen elementaren Sendewandler (200) bildet, der zum Aussenden von Schallwellen konfiguriert ist, wobei die Antenne (100) mindestens zwei Ringgruppen (200) umfasst und jede Ringgruppe mindestens zwei Ringe (20) umfasst, und dadurch, dass die Zwischenringabstände (d) zwischen den Ringen einer gleichen Gruppe eine Funktion der Hohlraumfrequenz der Ringgruppe (200) sind, wohingegen die Zwischengruppenabstände (p) zwischen zwei aufeinanderfolgenden Ringgruppen eine Funktion der Betriebsnutzungsfrequenz der Senderinge (20) sind, wobei der Zwischenringabstand (d) zwischen den Ringen einer gleichen Gruppe ferner als eine Funktion der radialen Frequenz der Ringgruppe gewählt wird, wobei die Antenne eine parallele Stromversorgung umfasst, um jede Ringgruppe (200) separat mit Strom zu versorgen, und dass der Hohlraummodus durch die parallele Stromversorgung jeder Ringgruppe aktiviert wird.
  2. Rundstrahlantenne (100) nach Anspruch 1, dadurch gekennzeichnet, dass die Ringe (20) aus piezoelektrischem Material bestehen.
  3. Rundstrahlantenne (100) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Summe aus dem Zwischengruppenabstand zwischen zwei Ringgruppen (p), dem Zwischenringabstand (d) zwischen zwei Ringen und der doppelten Höhe eines Rings im Wesentlichen gleich der halben Wellenlänge der Betriebsnutzungsfrequenz der Senderinge (20) ist.
  4. Rundstrahlantenne (100) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Zwischenringabstand (d) zwischen zwei Ringen einer gleichen Gruppe so gewählt ist, dass die Hohlraumfrequenz der Ringgruppe mit der radialen Frequenz der Ringe der Ringgruppe gekoppelt wird.
  5. Rundstrahlantenne (100) nach Anspruch 1, dadurch gekennzeichnet, dass die Antenne (100) in einem dichten Gehäuse (208) untergebracht ist, das mit dem dielektrischen Fluid gefüllt ist.
  6. Rundstrahlantenne (100) nach Anspruch 5, dadurch gekennzeichnet, dass das Gehäuse (208) mit Überdruck beaufschlagt ist.
  7. Rundstrahlantenne (100) nach einem der Ansprüche 1 oder 5, dadurch gekennzeichnet, dass das Gehäuse (208) in ein hydrostatisches Gleichgewicht mit der Außenumgebung gebracht wird.
  8. Rundstrahlantenne (100) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Zwischenringabstand zwischen zwei Ringen (20) innerhalb einer Gruppe variiert.
  9. Rundstrahlantenne (100) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Zwischengruppenabstand zwischen zwei Gruppen der Antenne für alle Gruppen der Antenne (200) variiert.
  10. Rundstrahlantenne (100) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Radialmodus durch abwechselnde Dehnung/Kompression des Materials erzielt wird, aus dem der Ring besteht.
  11. Rundstrahlantenne (100) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Hohlraummodus von der Höhe des Rings abhängt.
EP15774892.2A 2014-09-26 2015-09-25 Rundstrahlantenne Active EP3198586B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1402168A FR3026569B1 (fr) 2014-09-26 2014-09-26 Antenne omnidirectionnelle
PCT/EP2015/072131 WO2016046377A1 (fr) 2014-09-26 2015-09-25 Antenne omnidirectionnelle

Publications (2)

Publication Number Publication Date
EP3198586A1 EP3198586A1 (de) 2017-08-02
EP3198586B1 true EP3198586B1 (de) 2024-05-01

Family

ID=52473947

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15774892.2A Active EP3198586B1 (de) 2014-09-26 2015-09-25 Rundstrahlantenne

Country Status (7)

Country Link
US (1) US10789928B2 (de)
EP (1) EP3198586B1 (de)
BR (1) BR112017006067A2 (de)
CA (1) CA2962492C (de)
FR (1) FR3026569B1 (de)
SG (2) SG10201902442YA (de)
WO (1) WO2016046377A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3042134B1 (fr) * 2015-10-09 2020-10-09 Ixblue Dispositif d'emission/reception acoustique sous-marine a large bande
FR3087542B1 (fr) 2018-10-22 2021-01-15 Thales Sa Antenne d'emission acoustique
US20220380043A1 (en) * 2021-05-25 2022-12-01 Hydronalix, Inc. Unmanned aerial vehicle with underwater sonar scanning capability
CN113224514B (zh) * 2021-07-07 2021-09-14 中国人民解放军海军工程大学 一种海面拖曳天线及参数确认装置

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3139603A (en) * 1960-12-29 1964-06-30 Acoustica Associates Inc Mass-loaded electromechanical transducer
US3177382A (en) * 1961-01-25 1965-04-06 Charles E Green Mosaic construction for electroacoustical cylindrical transducers
FR1303023A (fr) 1961-07-13 1962-09-07 Appareil perfectionné pour le traitement de l'eau et autres applications
US3274537A (en) * 1963-10-17 1966-09-20 William J Toulis Flexural-extensional electro-mechanical transducer
US3329408A (en) * 1965-03-29 1967-07-04 Branson Instr Transducer mounting arrangement
US3461910A (en) * 1966-06-02 1969-08-19 Gen Dynamics Corp Hydroacoustic amplifier
US3583677A (en) * 1969-08-28 1971-06-08 Electro Sonic Oil Tools Inc Electro-mechanical transducer for secondary oil recovery
US3728725A (en) * 1971-04-23 1973-04-17 Gen Electric Target display for pulse-echo return system
FR2302655A1 (fr) * 1975-02-27 1976-09-24 France Etat Transducteur piezoelectrique multimoteurs a contremasse unique
US4413331A (en) * 1976-04-26 1983-11-01 Westinghouse Electric Corp. Broad beam transducer
US4373143A (en) * 1980-10-03 1983-02-08 The United States Of America As Represented By The Secretary Of The Navy Parametric dual mode transducer
US4546459A (en) * 1982-12-02 1985-10-08 Magnavox Government And Industrial Electronics Company Method and apparatus for a phased array transducer
US4689773A (en) * 1982-12-02 1987-08-25 Magnavox Government And Industrial Electronics Company Extendible sonobuoy apparatus
US4777627A (en) * 1985-06-26 1988-10-11 Magnavox Government And Industrial Electronics Company Extendible sonobuoy apparatus
US4850450A (en) * 1987-11-19 1989-07-25 Schlumberger Technology Corporation Logging tool housing with acoustic delay
FR2665998B1 (fr) * 1988-05-05 1993-10-29 Etat Francais Delegue Armement Procedes et transducteurs electro-acoustiques pour emettre des ondes acoustiques a basse frequence dans un liquide.
FR2639786B1 (fr) * 1988-11-04 1991-07-26 Thomson Csf Transducteur flextenseur
US5270985A (en) * 1989-04-21 1993-12-14 British Gas Plc Seismic pulse generation
GB2237477A (en) * 1989-10-06 1991-05-01 British Aerospace Sonar transducer
US5367501A (en) * 1993-01-08 1994-11-22 The United States Of America As Represented By The Secretary Of The Navy Dual-frequency sonar system
US5371330A (en) * 1993-08-06 1994-12-06 Exxon Production Research Company Synchronized acoustic source
US5418335A (en) * 1993-08-06 1995-05-23 Exxon Production Research Company Synchronized acoustic source
US6135234A (en) * 1997-01-02 2000-10-24 Gas Research Institute Dual mode multiple-element resonant cavity piezoceramic borehole energy source
ES1037919Y (es) 1997-07-16 1998-11-01 Inibsa Lab Cartucho contenedor de dos liquidos.
US6781288B2 (en) * 1999-01-27 2004-08-24 Bae Systems Information And Electronic Systems Integration Inc. Ultra-low frequency acoustic transducer
US6193010B1 (en) * 1999-10-06 2001-02-27 Tomoseis Corporation System for generating a seismic signal in a borehole
AU2769501A (en) * 2000-01-06 2001-07-16 Lockheed Martin Corporation Active housing broadband tonpilz transducer
FR2818081B1 (fr) * 2000-12-08 2003-04-11 Thomson Marconi Sonar Sas Sonar de coque pour batiment naval
US6404701B1 (en) * 2001-07-16 2002-06-11 The United States Of America As Represented By The Secretary Of The Navy Encapsulated volumetric acoustic array in the shape of a towed body
US6643221B1 (en) * 2001-11-06 2003-11-04 Schlumberger Technology Corporation Structures and methods for damping tool waves particularly for acoustic logging tools
US6690620B1 (en) * 2002-09-12 2004-02-10 The United States Of America As Represented By The Secretary Of The Navy Sonar transducer with tuning plate and tuning fluid
US7081699B2 (en) * 2003-03-31 2006-07-25 The Penn State Research Foundation Thermoacoustic piezoelectric generator
US7406001B1 (en) * 2006-01-17 2008-07-29 The United States Of America As Represented By The Secretary Of The Navy Underwater acoustic beacon and method of operating same for navigation
JP4765782B2 (ja) * 2006-06-09 2011-09-07 日本電気株式会社 水中送波器及び水中送波方法
US8406084B2 (en) * 2009-11-20 2013-03-26 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. Transducer device having coupled resonant elements
GB2486680A (en) * 2010-12-22 2012-06-27 Morgan Electro Ceramics Ltd Ultrasonic or acoustic transducer that supports two or more frequencies
CN202042175U (zh) * 2011-03-29 2011-11-16 哈尔滨工程大学 一种低频宽带小尺寸深水水声换能器
US9179219B2 (en) * 2011-11-09 2015-11-03 Airmar Technology Corporation Widebeam acoustic transducer
US9348042B2 (en) * 2011-12-27 2016-05-24 Cgg Services Sa Buried pressurized volumetric source and method
GB2516976B (en) * 2013-08-09 2016-10-12 Atlas Elektronik Uk Ltd System for producing sound waves
FR3015785B1 (fr) * 2013-12-20 2015-12-25 Thales Sa Antenne omnidirectionnelle compacte pour sonar trempe
US9534492B2 (en) * 2014-11-11 2017-01-03 Baker Hughes Incorporated Pressure compensated capacitive micromachined ultrasound transducer for downhole applications

Also Published As

Publication number Publication date
SG10201902442YA (en) 2019-04-29
FR3026569A1 (fr) 2016-04-01
CA2962492A1 (fr) 2016-03-31
WO2016046377A1 (fr) 2016-03-31
EP3198586A1 (de) 2017-08-02
US20170301332A1 (en) 2017-10-19
CA2962492C (en) 2023-08-22
FR3026569B1 (fr) 2017-12-08
BR112017006067A2 (pt) 2018-01-30
SG11201702420YA (en) 2017-04-27
US10789928B2 (en) 2020-09-29

Similar Documents

Publication Publication Date Title
EP3084755B1 (de) Kompakte omnidirektionale antenne für ein eintauch-sonar
EP3198586B1 (de) Rundstrahlantenne
EP2670536B1 (de) Elektroakustischer niederfrequenzwandler und verfahren zur erzeugung von schallwellen
FR2961902A1 (fr) Vibrateur acoustique marin ayant une amplitude a basse frequence accrue
EP0641262B1 (de) Akustische unterwasserantenne mit flächensensor
US8334460B2 (en) Integrated coaxial transducer with alternating insulators
EP1373933B1 (de) Geschlepptes niederfrequenz-unterwasserdetektionssystem
FR2789494A1 (fr) Source d'energie acoustique et procede pour generer une impulsion de pression dans l'eau, et source sismique marine
FR2969770A1 (fr) Procede, dispositif et unite de reception pour l'acquisition sismique au fond de la mer
EP0684084B1 (de) Verfahren und Wandler zum Ausstrahlen von Breitband- und Niederfrequenz-Schallwellen in unbegrenzter Tauchtiefe
EP0118329B1 (de) Geschwindigkeitshydrophon
FR2731129A1 (fr) Procede et dispositif pour diminuer la frequence de resonance des cavites des transducteurs immergeables
EP1356450B1 (de) Rumpfsonar für seeschiff
EP3223360B1 (de) Doppelschleifenantenne für unterwasserfahrzeug
EP3871001B1 (de) Verfahren zur verwendung eines aktiven sonars mit einem breiten spektralen emissionsband und sonarsystem
WO2010012809A2 (fr) Procédé et dispositif de contrôle non-destructif par ultrasons à couplage aérien d'une structure
FR2779533A1 (fr) Dispositif d'acquisition sismique a haute resolution
US6404701B1 (en) Encapsulated volumetric acoustic array in the shape of a towed body
EP0728533B1 (de) Verfahren und Wandler zum Aussenden von akustischen Wellen in einer Flüssigkeit mit einer betonten Richtcharakteristik bei Niederfrequenzen
EP2126897B1 (de) Sonar mit mastanbringung
FR2728425A1 (fr) Antenne lineaire electroacoustique d'emission et antenne d'emission/reception comprenant une telle antenne
EP0506529B1 (de) Richtantenne für akustische Niederfrequenzwellen
EP1868004A2 (de) Vorrichtung und Verfahren, die mit der Messung der magnetischen Signatur eines Boots verbunden sind
FR2806867A1 (fr) Transducteur de sonar a deux frequences
FR2981760A1 (fr) Seismic source with positive reflection plate and method

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170323

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20191115

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20231129

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THALES

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015088561

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH