EP3198300A1 - Method for operating a multiplicity of radar sensors in a motor vehicle and motor vehicle - Google Patents

Method for operating a multiplicity of radar sensors in a motor vehicle and motor vehicle

Info

Publication number
EP3198300A1
EP3198300A1 EP15770797.7A EP15770797A EP3198300A1 EP 3198300 A1 EP3198300 A1 EP 3198300A1 EP 15770797 A EP15770797 A EP 15770797A EP 3198300 A1 EP3198300 A1 EP 3198300A1
Authority
EP
European Patent Office
Prior art keywords
radar sensors
motor vehicle
radar
data
environment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP15770797.7A
Other languages
German (de)
French (fr)
Other versions
EP3198300B1 (en
Inventor
Rachid Khlifi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Audi AG
Original Assignee
Audi AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Audi AG filed Critical Audi AG
Publication of EP3198300A1 publication Critical patent/EP3198300A1/en
Application granted granted Critical
Publication of EP3198300B1 publication Critical patent/EP3198300B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/86Combinations of radar systems with non-radar systems, e.g. sonar, direction finder
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/932Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles using own vehicle data, e.g. ground speed, steering wheel direction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93271Sensor installation details in the front of the vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93272Sensor installation details in the back of the vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93274Sensor installation details on the side of the vehicles

Definitions

  • the invention relates to a method for operating a plurality of radar sensors in a motor vehicle, wherein at least one operating parameter of the radar sensors is variable, and a motor vehicle.
  • radar sensors are nowadays usually used as environment sensors for a medium and large distance range in order to determine other road users or larger objects in distance, angle and relative speed.
  • Such radar data can enter into environmental models or even be made available to vehicle systems directly.
  • Benefits of radar data draw in the prior art, for example, longitudinal guidance systems, such as ACC, or security systems.
  • Radar sensors of conventional design usually have a greater extent and are rather clunky, after the antennas and the electronic components required directly on the antenna, so the radar front end, are integrated in a housing. Mainly the electronic components thereby form the radar transceiver, which contains a frequency control (usually comprising a phase-locked loop - PLL), mixing devices, a low noise amplifier (LNA) and the like, but often also control modules and digital signal processing components are realized close to the antenna, for example already processed Sensor data, such as object lists, on a connected bus, such as a CAN bus to give.
  • a frequency control usually comprising a phase-locked loop - PLL
  • mixing devices usually comprising a phase-locked loop - PLL
  • LNA low noise amplifier
  • a very low cost small radar sensor is possible, which can meet the space requirements significantly better and due to the short signal paths also has a very low signal-to-noise ratio and for high frequencies and larger, variable frequency bandwidths is suitable. Therefore, such small-sized radar sensors can also be used for short-range applications, for example in the range of 30 cm to 10 m.
  • CMOS transceiver chip and / or a package with CMOS transceiver chip and antenna on a common circuit board with a digital signal processing processor (DSP processor) or the functions of the signal processing processor in the CMOS Integrate transceiver chip. Similar integration is possible for control functions.
  • DSP processor digital signal processing processor
  • radar sensors are usually operated as "stand-alone" sensors, which means that each radar sensor decides for itself under what operating parameters it should operate and should rad radar data, whereby radar sensors have already been proposed in which signal and functional algorithms are implemented.
  • the radar sensors themselves also form the control units and can thus, for example, directly actuate various actuators and / or issue outputs, for example via a man-machine interface of the motor vehicle.
  • the monitored area to be detected is defined by the implemented or addressed function. That is, the radar sensors are hard-coded for a particular function, which may, for example, be associated with a vehicle system. This limits the use of the radar sensors for additional functions, in addition, the radar sensors are always active, which means a high energy demand.
  • the invention is therefore based on the object to improve the operation of radar sensors in motor vehicles in terms of efficiency and availability for different functions of vehicle systems.
  • a current driving situation of the motor vehicle descriptive driving situation data to determine a requirement profile to the sensor data of the radar sensors and adjusted taking into account at least the detection characteristics of all radar sensors, the operating parameters of the radar sensors to the requirements profile become.
  • the invention therefore proposes centralized control of the radar sensors, which determines from driving situation data about the current driving situation which properties the sensor data of the radar sensors currently required should have in order to be as beneficial as possible by at least one function of the vehicle systems of the motor vehicle, preferably several functions of vehicle systems of the motor vehicle to be processed.
  • This is defined by a requirement profile to the sensor data.
  • a requirement profile may contain, for example, which of the surrounding areas of interest sensor data are required for, how frequent / fast this sensor data is required, and in what quality the sensor sorrtz be needed.
  • the device implementing the method according to the invention where the radar sensors are arranged and which properties the radar sensors have, it is possible to map this requirement profile, knowing the detection properties of the radar sensors, to operating parameters of the radar sensors which fulfill the requirement profile as well as possible. It is therefore made a holistic view of the performance of all radar sensors so as to meet the requirements as precisely as possible and also to achieve improvements in energy requirements, the bus load and / or computing resources needs, for example, after it can be decided which radar sensors currently not needed and which radar sensors are needed. If a suitable architecture of the radar sensors is selected or if the radar sensors are even connected to a central unit, many applications, specifically functions of vehicle systems, can benefit from the performance of this configuration optimization. Consequently, additional information about the driving situation is used in order to determine the most efficient operation possible of the entirety of the radar sensors, wherein the interaction, supplementation and the like of the detection properties of all radar sensors is taken into account.
  • the requirement profile can be described, for example, by request parameters, which preferably indicate for different environment regions of the environment of the motor vehicle, with which priority data are required from there (or if data is actually needed there), which is the desired accuracy of the sensor data from the surrounding area as well as how fast and / or with what frequency ideally data should be gained. If it results from the driving situation data, for example, that there is currently a turning process, only sensor data from the direction in which the motor vehicle turns, in the end, are relevant, for example, left-directed radar sensors in a left turn. The other radar sensors can be deactivated, for example.
  • a critical environment for example, can be found which contains this potential collision partner and from which extremely fast 'extremely accurate' radar data can be obtained.
  • data acquisition rates or accuracies of other radar sensors can be reduced in order nevertheless to enable rapid transport and rapid evaluation of this sensor data from the critical environment. Consequently, by evaluating the requirement profile and, ideally, additionally also efficiency criteria, operating strategies that are perfectly matched between the radar sensors result.
  • radar sensors which comprise a semiconductor chip which realizes the radar transceiver, in particular a CMOS chip.
  • CMOS complementary metal-oxide-semiconductor
  • a digital signal processing component and / or a control unit of the radar sensor are realized to provide a portion of the intelligence in these radar sensors and in particular to allow a fast and efficient change of operating parameters in the radar sensor.
  • the radar sensors it is conceivable to implement the radar sensors so that they can be switched between different frequency bandwidths, data acquisition rates and the like.
  • a particularly compact, highly integrated design results when the semiconductor chip and an antenna arrangement of the radar sensor are realized as a package. Then, the radar sensor can be formed extremely small, for example, by the arranged on a circuit board package.
  • activation and / or deactivation of a radar sensor can be triggered by the operating parameters and / or a data acquisition rate and / or at least one operating parameter describing the detection range and / or an operating parameter describing the spacing capability can be used as operating parameters Radar sensor to be pre-evaluated.
  • Bender operating parameters are used. It is thus conceivable, on the one hand, to temporarily switch a radar sensor on or off by means of a corresponding operating parameter, but it is also possible for the operating parameters to be used generally as operating parameters changing the current detection characteristics.
  • the detection properties of the radar sensors which are taken into account in the implementation of the requirement profile, are therefore to be understood as encompassing the basic setting possibilities of the radar sensors and their effects on the current detection properties thereof.
  • the general detection characteristics of the radar sensors with respect to the operating parameters indicate the basic possibilities for setting to a specific operating state with certain current detection characteristics, but also include the arrangement of the radar sensor and allow in this regard a conclusion on the detected part of the environment of the motor vehicle.
  • a concrete advantageous embodiment of the present invention provides that in an environment of interest described by the requirement profile only the radar sensors detecting the environment of interest or the radar sensors detecting the environment of interest are operated with more frequent and / or more accurate sensor data than the other radar sensors supplying operating parameters. Furthermore, as already described, it is conceivable that in a critical environment described by the requirement profile, at least two radar sensors are operated for the redundant detection of at least part of the critical environment in particular as a subregion of the environment of interest. This will be explained in more detail by means of some concrete examples.
  • the radar sensors for the relevant right lateral surrounding areas are activated.
  • the left-side sensors are not relevant in this driving maneuver, so the right turn. This means they can be shut down or operated at reduced cost, so that efficient use of the entire radar sensors, in particular with regard to bus bandwidth, computing resources, energy / operating current, performance in terms of dynamics / accuracy / redundancy, etc., is realized with such a targeted connection and disconnection or reduction of the requirements.
  • objects are to be finely separated from one another in an environment of interest, it is possible to operate at least one radar sensor with a higher frequency bandwidth, for example 3 GHz, while the remaining radar sensors are operated with a low bandwidth, for example 100 MHz. Similarly, it is possible to operate some radar sensors with a higher cycle time (lower data acquisition rate) and others with a lower cycle time (higher data acquisition rate).
  • the detection quality can be increased, for example by reducing ambiguity, if a plurality of adjacent radar sensors, whose coverage areas overlap in overlapping areas, can detect certain objects in a redundant manner. If the object is contained in the sensor data of all these radar sensors, the sensor data relating to the object can be statistically combined.
  • the radar system formed by the radar sensors is operated as economically as possible in terms of energy consumption, bus bandwidth used, computing resources, and of course requirement profiles, for example with regard to potential collision effects or other possibly risky driving maneuvers, outweigh these efficiency criteria.
  • the question evaluated in the operating method according to the invention is how the requirement profile can be achieved with otherwise highest possible efficiency.
  • the radar sensors of the radar sensors which detect redundant areas of interest are switched off and / or whose detection area is adapted to minimize the redundancy. It is also quite possible, if an increase in the detection quality is not desired to disable radar sensors that provide the same measurements of the identical object. This saves energy and computing resources and reduces the amount of data in the bus system. Of course, this also applies to radar sensors that are not relevant for the current traffic scenario.
  • the surroundings of the motor vehicle are used in their detection areas in a radar sensor which detects 360.degree.
  • a radar sensor which detects 360.degree.
  • a radar system can be created which can be adapted dynamically to the current driving situation and the information actually required by functions of the vehicle systems, with a more efficient operation Operation is possible.
  • Such an arrangement of radar sensors can be achieved, for example, with eight radar sensors, if radar sensors each arranged in the corner regions of the motor vehicle and between the corners of the motor vehicle are used.
  • the radar sensors provided at the corners of the motor vehicle can be aligned, for example, at a 45 ° angle to the longitudinal direction of the motor vehicle, the radar sensors arranged between the corners being aligned perpendicular to the side in which they are arranged.
  • a central control unit of the motor vehicle which is assigned in particular at least two vehicle systems.
  • Such central control units are known, for example, under the keyword “central driver assistance system” (zFAS) .
  • zFAS central driver assistance system
  • the idea is that all functions to be performed by driver assistance systems are implemented on a single control unit which also receives the sensor data of all connected sensors, including the radar sensors.
  • the control unit also determines and updates an environment model of the motor vehicle, since then the driving situation data may also include data of the surrounding model, which is already present in the control unit Operating state and the driving situation descriptive driving situation data, so that when all the necessary input data, the determination of the requirement profile and the operating parameters can be particularly easily implemented as an additional function e connection architectures of the radar sensors with the central control unit conceivable, for example, for each radar sensor own connection (star architecture), or the use of rings or chains along which the radar sensors are connected.
  • the central control unit it is also possible in such a central control unit to ultimately query directly from the functions what sensor data they require from the radar sensors in order to incorporate this in the requirement profile. In this case, a weighting of different functions, for example by prioritization, be made.
  • second embodiment of the present invention can be provided that the evaluation of the driving situation and the control of the radar sensors by a computing device of at least one of the radar sensors. Since modern radar sensors themselves have a certain degree of intelligence, for example in the case of the described radar sensors realized in semiconductor technology, which have a control unit. realize unit and / or digital signal processing components through the semiconductor chip, can thus be realized without any problems described by the inventive method for determining the requirement profile and the operating parameters within a radar sensor. The radar sensor, whose computing device takes over this central vote, ultimately has a master role held, while the remaining radar sensors can be regarded as slaves.
  • the master radar sensor uses corresponding algorithms, which may be part of a decision module, for example, to evaluate the driving situation data to the requirement profile and to derive suitable operating parameters therefrom.
  • a master radar sensor acts as a distribution point for the sensor data of the radar sensors, thus, for example, initially receives all sensor data of all radar sensors and forwards or even realizes even functions of at least one vehicle system that evaluates the sensor data.
  • the radar sensor whose computing device is used is selected dynamically, in particular as a function of the driving situation data and / or the operating parameters.
  • Each radar sensor can thus be configured basically as master or slave, even while driving, for example, depending on the current traffic scenario, ie the current driving situation.
  • a particularly efficient utilization (distribution of intelligence) of the configuration is realized with multiple radar sensors.
  • the radar sensor currently to be used as the master it is possible, for example, to take into account data transmission paths from the further radar sensors supplying the most relevant sensor data and the like.
  • the driving situation data can be used as the driving situation data.
  • the environment data describing the operating state of the motor vehicle and / or at least one predictive operating state of the motor vehicle describing ego data and / or the surroundings of the motor vehicle descriptive environment data and / or specific requirements as driving situation data. be used by at least one vehicle system descriptive request data. From this information, an overall picture of the driving situation results, from which the requirement profile, for example as a request parameter, can be derived. If request data from vehicle systems or even individual functions of vehicle systems is used, a prioritization can be provided within the vehicle systems and / or the functions, so that, for example, safety-relevant vehicle systems are given a higher priority than comfort-relevant vehicle systems and the like.
  • the invention also relates to a motor vehicle with a plurality of radar sensors, wherein at least one computing device of a radar sensor and / or a control device of the motor vehicle is designed for carrying out the method according to the invention. All statements relating to the method according to the invention can be analogously transferred to the motor vehicle according to the invention, with which therefore also the already mentioned advantages can be obtained.
  • the control device is preferably a central control device that implements the functions of a plurality of vehicle systems and if necessary also determines an environmental model of the motor vehicle and keeps it up to date.
  • the radar sensors may comprise a semiconductor chip implementing the radar transceiver, in particular a CMOS chip.
  • CMOS chip implementing the radar transceiver
  • Such radar sensors can, as has already been stated, be implemented in an extremely compact manner and, in particular when using the CMOS technology, are inexpensive to produce and thus available.
  • even larger numbers of radar sensors can save space and ideally invisibly integrate from the outside into various components of the motor vehicle, for example in a vehicle door and / or a bumper.
  • the radar sensors also provide appropriate intelligence for carrying out functions, in particular also the method according to the invention, so that it can be provided that the digital signal processing component and / or the computer as the computing device for carrying out the method according to the invention Control unit of a radar sensor can be used.
  • FIG. 1 shows a motor vehicle according to the invention in a first embodiment
  • Fig. 4 is a sketch for the construction of a radar sensor
  • Fig. 5 shows an inventive motor vehicle in a second embodiment.
  • FIG. 1 shows a schematic diagram of a motor vehicle 1 according to the invention of a first embodiment.
  • this has eight radar sensors 2a - 2h, wherein four radar sensors 2a, 2c, 2e, 2g are arranged at the corners of the motor vehicle 1, the remaining radar sensors 2b, 2d, 2f and 2h at the sides respectively centered between the corner radar sensors 2a, 2c, 2e and 2g.
  • the associated largest possible detection ranges of the radar sensors 2a-2h are shown in FIG. 2 and designated by the reference symbols 3a-3h. Obviously, a 360 ° angle range is detected.
  • the radar sensors 2a, 2c, 2d, 2e, 2g and 2h can in the bumpers of the Motor vehicle 1 may be arranged, the radar sensors 2b and 2f in the doors.
  • Various operating parameters of the radar sensors 2a-2h can be set, in particular the operating parameters defining the current detection characteristics such as opening angle, bandwidth, data acquisition rate and the like.
  • a central control unit 4 which is designed to carry out the method according to the invention.
  • the radar sensors 2a - 2h in the present case each four pieces are connected via a chain, but also other connection architectures are conceivable.
  • the central control unit 4 carries out various functions of a plurality of driver assistance systems, in particular of all driver assistance systems, and determines and updates from sensor data of the radar sensors 2a-2h and further sensors of the motor vehicle 1, which are not shown here, an environmental model of the motor vehicle 1, which is controlled by the various functions is taken into account.
  • the central control unit 4 is provided with further vehicle systems, which are not shown here in detail, of ego data of the motor vehicle which can describe the current operating state of the motor vehicle 1 and optionally predicted future operating states.
  • vehicle systems which are not shown here in detail, of ego data of the motor vehicle which can describe the current operating state of the motor vehicle 1 and optionally predicted future operating states.
  • a requirement profile for the sensor data of the radar sensors 2a-2h is determined from current driving situation data which describe the driving situation of the motor vehicle 1.
  • a driving situation data for example, environment data describing the environment of the motor vehicle, for example the described environmental model, and ego data of the motor vehicle 1, for example its speed, Steering angle and the like, considered. It is expedient to additionally take into account requirement data of the functions which use sensor data of the radar sensors 2a-2h, wherein the functions or the corresponding vehicle systems may be prioritized among one another.
  • a requirement profile results in step S1, which may be described by request parameters, for example.
  • a requirement profile can first of all indicate from which area of interest of the environment of the motor vehicle 1 interest in the sensor is to be obtained.
  • This environment of interest can now be subdivided into shares, to which, for example, priorities and / or attributes are assigned. If, for example, a potential collision object has been detected as a subarea of the environment of interest in a critical environment area, cf. In FIG. 2, for example, the object 5, this critical surrounding area can be highly prioritized and / or particularly accurate sensor data can be requested very quickly from this area.
  • Other areas of interest and / or even critical environments arise, for example, from the current direction of travel of the motor vehicle 1.
  • the surrounding area behind the motor vehicle 1 is the area of interest of interest; If there is a turn to the right, the surrounding area to the right of the motor vehicle 1 is the surrounding area of interest and the like. Obviously, it can be concluded from the driving situation from where in what frequency, speed and quality sensor data of the radar sensors 2a - 2h are needed, which is described by the requirement profile.
  • efficiency criteria 6 relate in particular to the energy consumption, the restriction of data traffic on the bus systems of the motor vehicle 1 and the lowest possible utilization of computing resources. For example, if there is a right turn, no or very little data is needed from the radar sensors 2e, 2f and 2g to the left so that they can be deactivated, for example, which saves energy and data traffic as well as computational resources.
  • the sensors 2h and 2d which are directed to the front and to the rear, provide data that could be relevant, but not as relevant as the sensor data supplied by the sensors 2a and 2b, for example, so that the detection ranges of the sensors 2a and 2b ideally can be adjusted so that they reflect the most important environment and a particularly high auf near merate with high ' accuracy is given, while the sensors 2h and 2d can be operated with below-average data collection rates and rather lower quality requirements, while the sensor 2c with medium Operating parameters can continue to operate.
  • the detection ranges of the sensors 3a, 3b and 3h can be set in that all three radar sensors 3a, 3b and 3h detect the object 5 so that a redundant detection is provided and more accurate information about the object 5 can be obtained.
  • the actual, actually used detection ranges of the sensors 3a, 3b and 3h can be adjusted in such a case so that only one of these radar sensors 3a, 3b and 3h, for example the radar sensor 3a, actually misses the object 5.
  • a multiplicity of driving situations can be mapped to corresponding requirement profiles, from which in turn an optimally suitable set of operating parameters for the radar sensors 2a-2h follows, which optimally fulfills this requirement profile. ciently, for example, by turning off / activating some sensors, operating with higher or lower resource requirements, and the like.
  • step S3 the radar sensors 2a-2h are activated in accordance with the operating parameters determined in step S2.
  • the method is of course cyclically repeated, so that the current driving situation is always represented by corresponding parameter sets, in each case a holistic view of the radar systems formed by the radar sensors 2a-2h is performed in order to optimally meet requirement profiles to fulfill.
  • Fig. 4 shows a particularly advantageous usable radar sensor 2 in more detail.
  • This comprises a printed circuit board 8, on which a package 9 is arranged, which is formed from the antenna arrangement 10 of the radar sensor 2 and a semiconductor chip 11, in this case a CMOS chip.
  • CMOS chip 11 By the CMOS chip 11, a radar transceiver 12, a control unit 13 and a digital signal processing component 14 (DSP) are realized.
  • DSP digital signal processing component 14
  • the radar sensor 2 can be realized extremely compact and thus save space in doors and bumpers of the motor vehicle 1 install.
  • radar sensor side already given a certain intelligence by the realized by the semiconductor chip 11 components.
  • each of the sensors 2a-2h now has a computing device 15, which is designed to carry out the method according to the invention, which is presently formed by the control unit 13 and / or the digital signal processing component 14.
  • One of the sensors 2a-2h is now determined as a master, in particular depending on the driving situation, and its computing device 15 carries out the method according to the invention until another sensor 2a-2h is mastered. is true.
  • the other sensors 2a-2h which are not the master, ultimately act as slaves. In this way, the distributed intelligence, which is given in the radar sensors 2a - 2h, use particularly appropriate.

Abstract

A method for operating a multiplicity of radar sensors (2, 2a – 2h) in a motor vehicle (1, 1'), wherein at least one operating parameter of the radar sensors (2, 2a – 2h) can be changed, wherein driving situation data which describe a current driving situation of the motor vehicle (1, 1') are evaluated in order to determine a request profile for the sensor data of the radar sensors (2, 2a – 2h), and the operating parameters of the radar sensors (2, 2a – 2h) are adapted to the request profile by taking into account at least the detection properties of all the radar sensors (2, 2a – 2h).

Description

Verfahren zum Betrieb einer Mehrzahl von Radarsensoren in einem Kraftfahrzeug und Kraftfahrzeug  Method for operating a plurality of radar sensors in a motor vehicle and motor vehicle
Die Erfindung betrifft ein Verfahren zum Betrieb einer Mehrzahl von Radarsensoren in einem Kraftfahrzeug, wobei wenigstens ein Betriebsparameter der Radarsensoren veränderbar ist, sowie ein Kraftfahrzeug. The invention relates to a method for operating a plurality of radar sensors in a motor vehicle, wherein at least one operating parameter of the radar sensors is variable, and a motor vehicle.
Die Verwendung von Radarsensoren in Kraftfahrzeugen ist im Stand der Technik bereits weitgehend bekannt. Radarsensoren werden heutzutage meist als Umfeldsensoren für einen mittleren und größeren Distanzbereich eingesetzt, um andere Verkehrsteilnehmer oder größere Objekte in Distanz, Winkel und Relativgeschwindigkeit bestimmen zu können. Derartige Radardaten können in Umfeldmodelle eingehen oder auch unmittelbar Fahrzeugsystemen zur Verfügung gestellt werden. Nutzen aus Radardaten ziehen im bekannten Stand der Technik beispielsweise Längsführungssysteme, wie ACC, oder auch Sicherheitssysteme. The use of radar sensors in motor vehicles is already widely known in the art. Radar sensors are nowadays usually used as environment sensors for a medium and large distance range in order to determine other road users or larger objects in distance, angle and relative speed. Such radar data can enter into environmental models or even be made available to vehicle systems directly. Benefits of radar data draw in the prior art, for example, longitudinal guidance systems, such as ACC, or security systems.
Radarsensoren herkömmlicher Bauart weisen meist eine größere Ausdehnung auf und sind eher klobig, nachdem die Antennen sowie die unmittelbar an der Antenne benötigten Elektronikkomponenten, also das Radar- Frontend, in einem Gehäuse integriert sind. Hauptsächlich bilden die Elektronikkomponenten dabei den Radar-Transceiver, der eine Frequenzsteuerung (üblicherweise umfassend eine Phasenregelschleife - PLL), Mischeinrichtungen, einem Low Noise Amplifier (LNA) und dergleichen enthält, oft werden jedoch auch Steuermodule und digitale Signalverarbeitungskomponenten antennennah realisiert, beispielweise um bereits aufbereitete Sensordaten, beispielsweise Objektlisten, auf einen angeschlossenen Bus, beispielsweise einen CAN-Bus, geben zu können. Die Realisierung von Radarkomponenten auf Halbleiterbasis erwies sich lange Zeit als schwierig, da teure Spezialhalbleiter, insbesondere GaAs, benötigt wurden. Es wurden kleinere Radarsensoren vorgeschlagen, deren gesamtes Radar-Frontend auf einem einzigen Chip in SiGe-Technologie realisiert ist, ehe auch Lösungen in der CMOS-Technologie bekannt wurden. Solche Lösungen sind Ergebnis der Erweiterung der CMOS-Technologie auf Hochfrequenzanwendungen, was oft auch als RF-CMOS bezeichnet wird. Ein solcher CMOS-Radarchip ist äußerst kleinbauend realisiert und nutzt keine teuren Spezialhalbleiter, bietet also vor allem in der Herstellung deutliche Vorteile gegenüber anderen Halbleitertechnologien. Eine beispielhafte Realisierung eines 77 GHz-Radar-Transceivers als ein CMOS-Chip ist in dem Artikel von Jri Lee et al., „A Fully Integrated 77-GHz FMCW Radar Transceiver in 65-nm CMOS Technology", IEEE Journal of Solid State Cir- cuits 45 (2010), S. 2746-2755, beschrieben. Radar sensors of conventional design usually have a greater extent and are rather clunky, after the antennas and the electronic components required directly on the antenna, so the radar front end, are integrated in a housing. Mainly the electronic components thereby form the radar transceiver, which contains a frequency control (usually comprising a phase-locked loop - PLL), mixing devices, a low noise amplifier (LNA) and the like, but often also control modules and digital signal processing components are realized close to the antenna, for example already processed Sensor data, such as object lists, on a connected bus, such as a CAN bus to give. The realization of semiconductor-based radar components has long proved difficult, as expensive specialty semiconductors, particularly GaAs, have been required. Smaller radar sensors have been proposed, whose entire radar frontend is realized on a single chip in SiGe technology before solutions in CMOS technology became known. Such solutions are the result of extending CMOS technology to high frequency applications, often referred to as RF CMOS. Such a CMOS radar chip is realized extremely compact and does not use expensive special semiconductors, thus offers significant advantages over other semiconductor technologies, especially in the production. An exemplary implementation of a 77 GHz radar transceiver as a CMOS chip is described in the article by Jri Lee et al., "A Fully Integrated 77 GHz FMCW Radar Transceiver in 65 nm CMOS Technology", IEEE Journal of Solid State Cir - cuits 45 (2010), pp. 2746-2755.
Nachdem zudem vorgeschlagen wurde, den Chip und die Antenne in einem gemeinsamen Package zu realisieren, ist ein äußerst kostengünstiger kleiner Radarsensor möglich, der Bauraumanforderungen deutlich besser erfüllen kann und aufgrund der kurzen Signalwege auch ein sehr niedriges Signal- Zu-Rausch-Verhältnis aufweist sowie für hohe Frequenzen und größere, variable Frequenzbandbreiten geeignet ist. Daher lassen sich derartige, kleinbauende Radarsensoren auch für Kurzreichweiten-Anwendungen, beispielsweise im Bereich von 30 cm bis 10 m, einsetzen. After it has also been proposed to realize the chip and the antenna in a common package, a very low cost small radar sensor is possible, which can meet the space requirements significantly better and due to the short signal paths also has a very low signal-to-noise ratio and for high frequencies and larger, variable frequency bandwidths is suitable. Therefore, such small-sized radar sensors can also be used for short-range applications, for example in the range of 30 cm to 10 m.
Es wurde auch bereits vorgeschlagen, einen solchen CMOS-Transceiver- Chip und/oder ein Package mit CMOS-Transceiver-Chip und Antenne auf einer gemeinsamen Leiterplatte mit einem digitalen Signalverarbeitungsprozessor (DSP-Prozessor) vorzusehen oder die Funktionen des Signalverarbeitungsprozessors ebenso in den CMOS-Transceiver-Chip zu integrieren. Eine ähnliche Integration ist für Steuerungsfunktionen möglich. It has also been proposed to provide such a CMOS transceiver chip and / or a package with CMOS transceiver chip and antenna on a common circuit board with a digital signal processing processor (DSP processor) or the functions of the signal processing processor in the CMOS Integrate transceiver chip. Similar integration is possible for control functions.
In heutigen Kraftfahrzeugen werden Radarsensoren üblicherweise als „stand-alone"-Sensoren betrieben, das bedeutet, jeder Radarsensor entscheidet für sich, unter welchen Betriebsparametern er arbeiten soll und lie- fert Radardaten, wobei auch bereits Radarsensoren vorgeschlagen wurden, in denen Signal- und Funktionsalgorithmen implementiert sind. In diesem Fall bilden die Radarsensoren selbst auch die Steuergeräte aus und können somit beispielsweise unmittelbar diverse Aktuatoren ansteuern und/oder Ausgaben tätigen, beispielsweise über eine Mensch-Maschine-Schnittstelle des Kraftfahrzeugs. In diesem Kontext wird der zu erfassende Überwachungsbereich durch die realisierte bzw. adressierte Funktion definiert. Das bedeutet, die Radarsensoren sind für eine spezielle Funktion, die beispielsweise einem Fahrzeugsystem zugeordnet sein kann, fest programmiert. Dies limitiert die Verwendung der Radarsensoren für weitere Funktionen, zudem sind die Radarsensoren immer aktiv, was einen hohen Energiebedarf bedeutet. In today's motor vehicles, radar sensors are usually operated as "stand-alone" sensors, which means that each radar sensor decides for itself under what operating parameters it should operate and should rad radar data, whereby radar sensors have already been proposed in which signal and functional algorithms are implemented. In this case, the radar sensors themselves also form the control units and can thus, for example, directly actuate various actuators and / or issue outputs, for example via a man-machine interface of the motor vehicle. In this context, the monitored area to be detected is defined by the implemented or addressed function. That is, the radar sensors are hard-coded for a particular function, which may, for example, be associated with a vehicle system. This limits the use of the radar sensors for additional functions, in addition, the radar sensors are always active, which means a high energy demand.
Der Erfindung liegt daher die Aufgabe zugrunde, den Betrieb von Radarsensoren in Kraftfahrzeugen hinsichtlich der Effizienz und der Verfügbarkeit für unterschiedliche Funktionen von Fahrzeugsystemen zu verbessern. The invention is therefore based on the object to improve the operation of radar sensors in motor vehicles in terms of efficiency and availability for different functions of vehicle systems.
Zur Lösung dieser Aufgabe ist bei einem Verfahren der eingangs genannten Art erfindungsgemäß vorgesehen, dass eine aktuelle Fahrsituation des Kraftfahrzeugs beschreibende Fahrsituationsdaten zur Ermittlung eines Anforderungsprofils an die Sensordaten der Radarsensoren ausgewertet werden und unter Berücksichtigung wenigstens der Erfassungseigenschaften aller Radarsensoren die Betriebsparameter der Radarsensoren auf das Anforderungsprofil angepasst werden. To solve this problem, it is provided according to the invention that a current driving situation of the motor vehicle descriptive driving situation data to determine a requirement profile to the sensor data of the radar sensors and adjusted taking into account at least the detection characteristics of all radar sensors, the operating parameters of the radar sensors to the requirements profile become.
Die Erfindung schlägt mithin eine zentralisierte Ansteuerung der Radarsensoren vor, die aus Fahrsituationsdaten über die aktuelle Fahrsituation bestimmt, welche Eigenschaften die aktuell benötigten Sensordaten der Radarsensoren haben sollten, um möglichst nutzbringend durch wenigstens eine Funktion der Fahrzeugsysteme des Kraftfahrzeugs, bevorzugt mehrere Funktionen von Fahrzeugsystemen des Kraftfahrzeugs, verarbeitet zu werden. Dies wird durch ein Anforderungsprofil an die Sensordaten definiert. Ein derartiges Anforderungsprofil kann beispielsweise enthalten, aus welchen interessierenden Umfeldbereichen Sensordaten benötigt werden, wie häufig/ schnell diese Sensordaten benötigt werden und in welcher Qualität die Sen- sordaten benötigt werden. Nachdem der das erfindungsgemäße Verfahren ausführenden Einrichtung bekannt ist, wo die Radarsensoren angeordnet sind und welche Eigenschaften die Radarsensoren haben, ist es möglich, dieses Anforderungsprofil unter Kenntnis der Erfassungseigenschaften der Radarsensoren auf Betriebsparameter der Radarsensoren abzubilden, die das Anforderungsprofil möglichst gut erfüllen. Es wird mithin eine ganzheitliche Betrachtung der Leistungsfähigkeit aller Radarsensoren vorgenommen, um so das Anforderungsprofil möglichst genau erfüllen zu können und dabei auch Verbesserungen hinsichtlich des Energiebedarfs, der Busauslastungen und/oder des Rechenressourcenbedarfs zu erreichen, nachdem beispielsweise entschieden werden kann, welche Radarsensoren gerade nicht benötigt werden und welche Radarsensoren benötigt werden. Wird eine geeignete Architektur der Radarsensoren selber gewählt oder werden die Radarsensoren gar an eine zentrale Einheit angebunden, können viele Applikationen, konkret Funktionen von Fahrzeugsystemen, von der Performance dieser Konfigurationsoptimierung profitieren. Es wird mithin Zusatzinformation über die Fahrsituation genutzt, um einen möglichst effizienten Betrieb der Gesamtheit der Radarsensoren zu bestimmen, wobei die Wechselwirkung, Ergänzung und dergleichen der Erfassungseigenschaften aller Radarsensoren berücksichtigt wird. The invention therefore proposes centralized control of the radar sensors, which determines from driving situation data about the current driving situation which properties the sensor data of the radar sensors currently required should have in order to be as beneficial as possible by at least one function of the vehicle systems of the motor vehicle, preferably several functions of vehicle systems of the motor vehicle to be processed. This is defined by a requirement profile to the sensor data. Such a requirement profile may contain, for example, which of the surrounding areas of interest sensor data are required for, how frequent / fast this sensor data is required, and in what quality the sensor sordaten be needed. After the device implementing the method according to the invention is known, where the radar sensors are arranged and which properties the radar sensors have, it is possible to map this requirement profile, knowing the detection properties of the radar sensors, to operating parameters of the radar sensors which fulfill the requirement profile as well as possible. It is therefore made a holistic view of the performance of all radar sensors so as to meet the requirements as precisely as possible and also to achieve improvements in energy requirements, the bus load and / or computing resources needs, for example, after it can be decided which radar sensors currently not needed and which radar sensors are needed. If a suitable architecture of the radar sensors is selected or if the radar sensors are even connected to a central unit, many applications, specifically functions of vehicle systems, can benefit from the performance of this configuration optimization. Consequently, additional information about the driving situation is used in order to determine the most efficient operation possible of the entirety of the radar sensors, wherein the interaction, supplementation and the like of the detection properties of all radar sensors is taken into account.
Das Anforderungsprofil kann beispielsweise durch Anforderungsparameter beschrieben werden, die bevorzugt für verschiedene Umfeldbereiche des Umfelds des Kraftfahrzeugs angeben, mit welcher Priorität von dort Daten benötigt werden (bzw. ob überhaupt Daten von dort benötigt werden), was die gewünschte Genauigkeit der Sensordaten aus dem Umfeldbereich ist sowie wie schnell und/oder mit welcher Häufigkeit idealerweise Daten gewönnen werden sollten. Ergibt sich aus den Fahrsituationsdaten beispielsweise, dass gerade ein Abbiegevorgang vorliegt, sind letztlich nur Sensordaten aus der Richtung relevant, in die das Kraftfahrzeug abbiegt, beispielsweise also bei einem Linksabbiegevorgang nach links ausgerichtete Radarsensoren. Die anderen Radarsensoren können beispielsweise deaktiviert werden. Wurde bereits ein potentieller Kollisionspartner erkannt, der genauer vermessen werden soll, kann beispielsweise ein kritischer Umfeldbereich definiert werden, der diesen potentiellen Kollisionspartner enthält und aus dem äußerst schnell äußerst genaue 'Radardaten erhalten werden können. Hierfür können beispielsweise Datenaufnahmeraten bzw. Genauigkeiten anderer Radarsensoren reduziert werden, um dennoch einen schnellen Transport und eine schnelle Auswertung dieser Sensordaten aus dem kritischen Umfeldbereich zu ermöglichen. Mithin ergeben sich durch Auswertung des Anforderungsprofils sowie idealerweise zusätzlich noch Effizienzkriterien hervorragend zwischen den Radarsensoren abgestimmte Betriebsstrategien. The requirement profile can be described, for example, by request parameters, which preferably indicate for different environment regions of the environment of the motor vehicle, with which priority data are required from there (or if data is actually needed there), which is the desired accuracy of the sensor data from the surrounding area as well as how fast and / or with what frequency ideally data should be gained. If it results from the driving situation data, for example, that there is currently a turning process, only sensor data from the direction in which the motor vehicle turns, in the end, are relevant, for example, left-directed radar sensors in a left turn. The other radar sensors can be deactivated, for example. If a potential collision partner has already been identified, which is to be measured more precisely, a critical environment, for example, can be found which contains this potential collision partner and from which extremely fast 'extremely accurate' radar data can be obtained. For this purpose, for example, data acquisition rates or accuracies of other radar sensors can be reduced in order nevertheless to enable rapid transport and rapid evaluation of this sensor data from the critical environment. Consequently, by evaluating the requirement profile and, ideally, additionally also efficiency criteria, operating strategies that are perfectly matched between the radar sensors result.
Dabei können besonders vorteilhaft Radarsensoren eingesetzt werden, die einen den Radar-Transceiver realisierenden Halbleiterchip, insbesondere einen CMOS-Chip, umfassen. Diese eingangs beschriebenen neuartigen, insbesondere im CMOS-Technologie realisierten Radarsensoren bieten nicht nur den Vorteil, äußerst kleinbauend realisiert werden zu können und somit beispielsweise in Türen, Stoßfängern und dergleichen eingebaut zu werden, sondern es ist dann auch möglich, insbesondere, wenn durch den Halbleiterchip auch eine digitale Signalverarbeitungskomponente und/oder eine Steuereinheit des Radarsensors realisiert sind, einen Teil der Intelligenz in diesen Radarsensoren vorzusehen und insbesondere eine schnelle und effiziente Veränderung von Betriebsparametern im Radarsensor zu ermöglichen. So ist es beispielsweise denkbar, die Radarsensoren so zu realisieren, dass sie zwischen verschiedenen Frequenzbandbreiten, Datenaufnahmeraten und dergleichen umgeschaltet werden können. Eine besonders kompakte, hochintegrierte Bauweise ergibt sich, wenn der Halbleiterchip und eine Antennenanordnung des Radarsensors als ein Package realisiert sind. Dann kann der Radarsensor beispielsweise durch das auf einer Leiterplatte angeordnete Package äußerst kleinbauend gebildet werden. In this case, it is particularly advantageous to use radar sensors which comprise a semiconductor chip which realizes the radar transceiver, in particular a CMOS chip. These radar sensors realized in the beginning, in particular realized in CMOS technology, not only offer the advantage of being able to be realized extremely compact and thus, for example, to be installed in doors, bumpers and the like, but it is also possible, in particular, if by the semiconductor chip Also, a digital signal processing component and / or a control unit of the radar sensor are realized to provide a portion of the intelligence in these radar sensors and in particular to allow a fast and efficient change of operating parameters in the radar sensor. For example, it is conceivable to implement the radar sensors so that they can be switched between different frequency bandwidths, data acquisition rates and the like. A particularly compact, highly integrated design results when the semiconductor chip and an antenna arrangement of the radar sensor are realized as a package. Then, the radar sensor can be formed extremely small, for example, by the arranged on a circuit board package.
Allgemein gesagt kann durch die Betriebsparameter eine Aktivierung und/oder eine Deaktivierung eines Radarsensors ausgelöst werden und/oder es können als Betriebsparameter eine Datenaufnahmerate und/oder wenigstens ein den Erfassungsbereich beschreibender Betriebsparameter und/oder ein die Abstandstrennfähigkeit beschreibender Betriebsparameter und/oder ein die seitens des Radarsensors vorzunehmende Vorauswertung beschrei- bender Betriebsparameter verwendet werden. Es ist mithin zum einen denkbar, durch einen entsprechenden Betriebsparameter einen Radarsensor temporär an- oder auszuschalten, es ist jedoch auch möglich, dass als Betriebsparameter allgemein gesagt die aktuellen Erfassungseigenschaften verändernde Betriebsparameter eingesetzt werden. Die bei der Umsetzung des Anforderungsprofils berücksichtigten Erfassungseigenschaften der Radarsensoren sind mithin so zu verstehen, dass die grundsätzlichen Einstellmöglichkeiten der Radarsensoren und ihre Auswirkungen auf die aktuellen Erfassungseigenschaften davon umfasst sind. Mithin geben die allgemeinen Erfassungseigenschaften der Radarsensoren im Hinblick auf die Betriebsparameter die grundsätzlichen Möglichkeiten zur Einstellung auf einen konkreten Betriebszustand mit bestimmten aktuellen Erfassungseigenschaften an, enthalten jedoch auch die Anordnung des Radarsensors und erlauben diesbezüglich einen Rückschluss auf den erfassten Teil des Umfelds des Kraftfahrzeugs. Generally speaking, activation and / or deactivation of a radar sensor can be triggered by the operating parameters and / or a data acquisition rate and / or at least one operating parameter describing the detection range and / or an operating parameter describing the spacing capability can be used as operating parameters Radar sensor to be pre-evaluated. Bender operating parameters are used. It is thus conceivable, on the one hand, to temporarily switch a radar sensor on or off by means of a corresponding operating parameter, but it is also possible for the operating parameters to be used generally as operating parameters changing the current detection characteristics. The detection properties of the radar sensors, which are taken into account in the implementation of the requirement profile, are therefore to be understood as encompassing the basic setting possibilities of the radar sensors and their effects on the current detection properties thereof. Thus, the general detection characteristics of the radar sensors with respect to the operating parameters indicate the basic possibilities for setting to a specific operating state with certain current detection characteristics, but also include the arrangement of the radar sensor and allow in this regard a conclusion on the detected part of the environment of the motor vehicle.
Eine konkrete vorteilhafte Ausgestaltung der vorliegenden Erfindung sieht vor, dass bei einem durch das Anforderungsprofil beschriebenen interessierenden Umfeldbereich nur die den interessierenden Umfeldbereich erfassenden Radarsensoren oder die den interessierenden Umfeldbereich erfassenden Radarsensoren mit häufigere und/oder genauere Sensordaten als die sonstigen Radarsensoren liefernden Betriebsparametern betrieben werden. Ferner ist es, wie bereits beschrieben wurde, denkbar, dass bei einem durch das Anforderungsprofil beschriebenen kritischen Umfeldbereich insbesondere als Unterbereich des interessierenden Umfeldbereichs wenigstens zwei Radarsensoren zur redundanten Erfassung wenigstens eines Teils des kritischen Umfeldbereichs betrieben werden. Dies sei anhand einiger konkreter Beispiele genauer erläutert. A concrete advantageous embodiment of the present invention provides that in an environment of interest described by the requirement profile only the radar sensors detecting the environment of interest or the radar sensors detecting the environment of interest are operated with more frequent and / or more accurate sensor data than the other radar sensors supplying operating parameters. Furthermore, as already described, it is conceivable that in a critical environment described by the requirement profile, at least two radar sensors are operated for the redundant detection of at least part of the critical environment in particular as a subregion of the environment of interest. This will be explained in more detail by means of some concrete examples.
Wird beispielsweise festgestellt, dass ein Rechtsabbiegen durchgeführt wird, werden nur die Radarsensoren für die relevanten rechten seitlichen Umfeld- bereiche aktiviert. Die linksseitigen Sensoren sind bei diesem Fahrmanöver, also dem Rechtsabbiegen, nicht relevant. Das bedeutet, sie können abgeschaltet werden oder mit reduziertem Aufwand betrieben werden, so dass mit einer derartigen gezielten An- und Abschaltung bzw. Reduzierung der Anforderungen eine effiziente Nutzung der gesamten Radarsensoren, insbesondere im Hinblick auf Busbandbreite, Rechenressourcen, Energie/ Betriebsstrom, Performance in Sachen Dynamik/Genauigkeit/Redundanz, etc. realisiert wird. Sollen beispielsweise in einem interessierenden Umfeldbe- reich Objekte fein voneinander getrennt werden, ist es möglich, wenigstens ein Radarsensor mit einer höheren Frequenzbandbreite, beispielsweise 3 GHz, zu betreiben, während die restlichen Radarsensoren mit einer niedrigen Bandbreite, beispielsweise 100 MHz, betrieben werden. Genauso ist es möglich, einige Radarsensoren mit einer höheren Zykluszeit (niedrigere Da- tenaufnahmerate) und andere mit einer niedrigeren Zykluszeit (höhere Da- tenaufnahmerate) zu betreiben. If, for example, it is determined that a right turn is being made, only the radar sensors for the relevant right lateral surrounding areas are activated. The left-side sensors are not relevant in this driving maneuver, so the right turn. This means they can be shut down or operated at reduced cost, so that efficient use of the entire radar sensors, in particular with regard to bus bandwidth, computing resources, energy / operating current, performance in terms of dynamics / accuracy / redundancy, etc., is realized with such a targeted connection and disconnection or reduction of the requirements. If, for example, objects are to be finely separated from one another in an environment of interest, it is possible to operate at least one radar sensor with a higher frequency bandwidth, for example 3 GHz, while the remaining radar sensors are operated with a low bandwidth, for example 100 MHz. Similarly, it is possible to operate some radar sensors with a higher cycle time (lower data acquisition rate) and others with a lower cycle time (higher data acquisition rate).
Die Detektionsqualität kann, beispielsweise durch Reduzierung von Mehrdeutigkeiten, erhöht werden, wenn mehrere benachbarte Radarsensoren, deren Erfassungsbereiche in Überlappungsbereichen überlappen, bestimmte Objekte redundant detektieren können. Ist das Objekt in den Sensordaten aller dieser Radarsensoren enthalten, können die Sensordaten bezüglich des Objekts entsprechend statistisch zusammengeführt werden. The detection quality can be increased, for example by reducing ambiguity, if a plurality of adjacent radar sensors, whose coverage areas overlap in overlapping areas, can detect certain objects in a redundant manner. If the object is contained in the sensor data of all these radar sensors, the sensor data relating to the object can be statistically combined.
Wie bereits erwähnt, ist es allgemein besonders vorteilhaft, wenn bei der Anpassung der Betriebsparameter der Radarsensoren auch wenigstens ein den Energieverbrauch und/oder die zu transportierende Datenmenge und/oder die benötigten Rechenressourcen minimierendes Effizienzkriterium berücksichtigt wird. Das bedeutet, das durch die Radarsensoren gebildete Radarsystem wird im Hinblick auf den Energieverbrauch, die genutzte Busbandbreite, die Rechenressourcen und dergleichen möglichst sparsam betrieben, wobei selbstverständlich Anforderungsprofile, beispielsweise hinsichtlich potentieller Kollisionseffekte oder sonstiger möglicherweise riskanter Fahrmanöver diese Effizienzkriterien grundsätzlich überwiegen. Letztlich ist also die im erfindungsgemäßen Betriebsverfahren ausgewertete Fragestellung die, wie das Anforderungsprofil bei ansonsten möglichst hoher Effizienz erreicht werden kann. In diesem Kontext kann beispielsweise vorgesehen sein, dass bei einem nicht kritischen Anteil eines in dem Anforderungsprofil enthalten- den interessierenden Umfeldbereichs redundant erfassenden Radarsensoren einer der Radarsensoren abgeschaltet wird und/oder sein Erfassungsbereich zur Minimierung der Redundanz angepasst wird. Es ist also auch durchaus möglich, falls eine Steigerung der Detektionsqualität nicht gewünscht ist, Radarsensoren abzuschalten, die die gleichen Messungen vom identischen Objekt liefern. So können Energie und Rechenressourcen gespart werden und die Datenmenge im Bussystem reduziert werden. Dies gilt selbstverständlich auch für Radarsensoren, die für das aktuelle Verkehrsszenario nicht relevant sind. As already mentioned, it is generally particularly advantageous if, during the adaptation of the operating parameters of the radar sensors, at least one efficiency criterion which minimizes the energy consumption and / or the amount of data to be transported and / or the required computing resources is taken into account. This means that the radar system formed by the radar sensors is operated as economically as possible in terms of energy consumption, bus bandwidth used, computing resources, and of course requirement profiles, for example with regard to potential collision effects or other possibly risky driving maneuvers, outweigh these efficiency criteria. Ultimately, therefore, the question evaluated in the operating method according to the invention is how the requirement profile can be achieved with otherwise highest possible efficiency. In this context, it may be provided, for example, that in the case of a non-critical portion of one of the requirements profile the radar sensors of the radar sensors which detect redundant areas of interest are switched off and / or whose detection area is adapted to minimize the redundancy. It is also quite possible, if an increase in the detection quality is not desired to disable radar sensors that provide the same measurements of the identical object. This saves energy and computing resources and reduces the amount of data in the bus system. Of course, this also applies to radar sensors that are not relevant for the current traffic scenario.
Mit besonderem Vorteil kann vorgesehen sein, dass in ihren Erfassungsbereichen das Umfeld des Kraftfahrzeugs in einem 360°-Winkelbereich erfassende Radarsensoren verwendet werden. Es können also mehrere Radarsensoren im Kraftfahrzeug derart eingesetzt werden, dass eine 360°- Überwachung des gesamten Umfelds des Kraftfahrzeugs ermöglicht wird, wodurch im Übrigen auch ejne genauere Kartierung des gesamten Umfelds (statisch und dynamisch) erzielt werden kann. Durch Auswahl einer geeigneten Architektur bzw. Anbindung der Radarsensoren an die das erfindungsgemäße Verfahren durchführende Einheit lässt sich insgesamt ein Radarsystem schaffen, das auf die aktuelle Fahrsituation und die tatsächlich von Funktionen der Fahrzeugsysteme benötigten Informationen in seiner Betriebsweise dynamisch angepasst werden kann, wobei zudem ein effizienter Betrieb möglich ist. Eine derartige Anordnung von Radarsensoren kann beispielsweise mit acht Radarsensoren erreicht werden, wenn jeweils in den Eckbereichen des Kraftfahrzeugs und zwischen den Ecken des Kraftfahrzeugs angeordnete Radarsensoren verwendet werden. Dabei können die an den Ecken des Kraftfahrzeugs vorgesehenen Radarsensoren beispielsweise in einem 45°-Winkel zur Längsrichtung des Kraftfahrzeugs ausgerichtet werden, die zwischen den Ecken angeordneten Radarsensoren jeweils senkrecht zu der Seite, in der sie angeordnet sind, ausgerichtet sein. It can be provided with particular advantage that the surroundings of the motor vehicle are used in their detection areas in a radar sensor which detects 360.degree. Thus, it is possible to use a plurality of radar sensors in the motor vehicle in such a way that a 360 ° monitoring of the entire surroundings of the motor vehicle is possible, by which means a more accurate mapping of the entire environment (static and dynamic) can be achieved. By selecting a suitable architecture or connection of the radar sensors to the unit carrying out the method according to the invention, a radar system can be created which can be adapted dynamically to the current driving situation and the information actually required by functions of the vehicle systems, with a more efficient operation Operation is possible. Such an arrangement of radar sensors can be achieved, for example, with eight radar sensors, if radar sensors each arranged in the corner regions of the motor vehicle and between the corners of the motor vehicle are used. In this case, the radar sensors provided at the corners of the motor vehicle can be aligned, for example, at a 45 ° angle to the longitudinal direction of the motor vehicle, the radar sensors arranged between the corners being aligned perpendicular to the side in which they are arranged.
Zur Realisierung des erfindungsgemäßen Verfahrens können unterschiedliche Einheiten verwendet werden, welche mithin die Auswertung, die Ermittlung der Betriebsparameter und die Ansteuerung der Radarsensoren gemäß der Betriebsparameter übernehmen. Dabei ist in einer ersten alternativen Ausführungsform der vorliegenden Erfindung vorgesehen, dass die Auswertung der Fahrsituation und die Ansteuerung der Radarsensoren seitens eines zentralen Steuergeräts des Kraftfahrzeugs erfolgt, welches insbesondere wenigstens zwei Fahrzeugsystemen zugeordnet ist. Derartige zentrale Steuergeräte sind beispielsweise unter dem Schlagwort„zentrales Fahrerassistenzsystem" (zFAS) bekannt. Die Idee ist es, dass alle von Fahrerassistenzsystemen durchzuführenden Funktionen auf einem einzigen Steuergerät realisiert sind, welches auch die Sensordaten aller angeschlossenen Sensoren, mithin auch der Radarsensoren, empfängt. In diesem Zusammenhang ist es besonders zweckmäßig, wenn das Steuergerät auch ein Umfeldmodell des Kraftfahrzeugs ermittelt und aktualisiert, da dann die Fahrsituationsdaten auch Daten des Umfeldmodells, welches ohnehin in dem Steuergerät vorliegt, umfassen können. Zudem empfängt ein solches zentrales Steuergerät meist ohnehin weitere den aktuellen Betriebszustand und die Fahrsituation beschreibende Fahrsituationsdaten, so dass sich bei Vorliegen aller nötigen Eingangsdaten die Ermittlung des Anforderungsprofils sowie der Betriebsparameter besonders leicht als zusätzliche Funktion realisieren lässt. Dabei sind verschiedene Verbindungsarchitekturen der Radarsensoren mit dem zentralen Steuergerät denkbar, beispielsweise für jeden Radarsensor eine eigene Verbindung (Sternarchitektur), oder aber die Verwendung von Ringen oder Ketten, entlang denen die Radarsensoren angeschlossen sind. Neben den allgemeinen Fahrsituationsdaten ist es in einem solchen zentralen Steuergerät auch möglich, von den Funktionen letztlich direkt abzufragen, welche Sensordaten sie von den Radarsensoren benötigen, um dies in das Anforderungsprofil einfließen zu lassen. Dabei kann eine Gewichtung unterschiedlicher Funktionen, beispielsweise durch Priorisierung, vorgenommen werden. For realizing the method according to the invention, different units can be used, which consequently the evaluation, the determination of the operating parameters and the control of the radar sensors according to assume the operating parameters. It is provided in a first alternative embodiment of the present invention that the evaluation of the driving situation and the control of the radar sensors takes place by a central control unit of the motor vehicle, which is assigned in particular at least two vehicle systems. Such central control units are known, for example, under the keyword "central driver assistance system" (zFAS) .The idea is that all functions to be performed by driver assistance systems are implemented on a single control unit which also receives the sensor data of all connected sensors, including the radar sensors. In this context, it is particularly expedient if the control unit also determines and updates an environment model of the motor vehicle, since then the driving situation data may also include data of the surrounding model, which is already present in the control unit Operating state and the driving situation descriptive driving situation data, so that when all the necessary input data, the determination of the requirement profile and the operating parameters can be particularly easily implemented as an additional function e connection architectures of the radar sensors with the central control unit conceivable, for example, for each radar sensor own connection (star architecture), or the use of rings or chains along which the radar sensors are connected. In addition to the general driving situation data, it is also possible in such a central control unit to ultimately query directly from the functions what sensor data they require from the radar sensors in order to incorporate this in the requirement profile. In this case, a weighting of different functions, for example by prioritization, be made.
In einer alternativen, zweiten Ausführungsform der vorliegenden Erfindung kann vorgesehen sein, dass die Auswertung der Fahrsituation und die Ansteuerung der Radarsensoren seitens einer Recheneinrichtung wenigstens eines der Radarsensoren erfolgt. Nachdem moderne Radarsensoren selbst eine gewisse Intelligenz aufweisen, beispielsweise im Fall der beschriebenen, in Halbleitertechnologie realisierten Radarsensoren, die eine Steuerein- heit und/oder digitale Signalverarbeitungskomponenten durch den Halbleiterchip realisieren, kann mithin problemlos die durch das erfindungsgemäße Verfahren beschriebene Funktion zur Ermittlung des Anforderungsprofils und der Betriebsparameter auch innerhalb eines Radarsensors realisiert werden. Der Radarsensor, dessen Recheneinrichtung diese zentrale Abstimmung übernimmt, hat letztlich eine Master-Rolle inne, während die restlichen Radarsensoren als Slaves aufgefasst werden können. Der Master-Radarsensor nutzt entsprechende Algorithmen, die beispielsweise Teil eines Entscheidungsmoduls sein können, um die Fahrsituationsdaten zu dem Anforderungsprofil auszuwerten und hieraus geeignete Betriebsparameter abzuleiten. Denkbar ist es im Übrigen auch, dass ein derartiger Master-Radarsensor als Verteilstelle für die Sensordaten der Radarsensoren fungiert, mithin beispielsweise zunächst alle Sensordaten aller Radarsensoren entgegennimmt und diese weiterleitet oder gar selbst Funktionen wenigstens eines Fahrzeugsystems realisiert, das die Sensordaten auswertet. In an alternative, second embodiment of the present invention can be provided that the evaluation of the driving situation and the control of the radar sensors by a computing device of at least one of the radar sensors. Since modern radar sensors themselves have a certain degree of intelligence, for example in the case of the described radar sensors realized in semiconductor technology, which have a control unit. realize unit and / or digital signal processing components through the semiconductor chip, can thus be realized without any problems described by the inventive method for determining the requirement profile and the operating parameters within a radar sensor. The radar sensor, whose computing device takes over this central vote, ultimately has a master role held, while the remaining radar sensors can be regarded as slaves. The master radar sensor uses corresponding algorithms, which may be part of a decision module, for example, to evaluate the driving situation data to the requirement profile and to derive suitable operating parameters therefrom. Incidentally, it is also conceivable that such a master radar sensor acts as a distribution point for the sensor data of the radar sensors, thus, for example, initially receives all sensor data of all radar sensors and forwards or even realizes even functions of at least one vehicle system that evaluates the sensor data.
Besonders zweckmäßig ist es in diesem Zusammenhang, wenn der Radarsensor, dessen Recheneinrichtung verwendet wird, dynamisch, insbesondere in Abhängigkeit der Fahrsituationsdaten und/oder der Betriebsparameter, ausgewählt wird. Jeder Radarsensor kann also grundsätzlich als Master oder Slave konfiguriert werden, auch im Fahrbetrieb, beispielsweise abhängig vom aktuellen Verkehrsszenario, also der aktuellen Fahrsituation. Hierdurch wird eine besonders effiziente Ausnutzung (Verteilung der Intelligenz) der Konfiguration mit mehreren Radarsensoren realisiert. Zur Auswahl des aktuell als Master zu benutzenden Radarsensors können beispielsweise Datenübertragungswege von den die relevanteste Sensordaten liefernden weiteren Radarsensoren und dergleichen berücksichtigt werden. It is particularly expedient in this context if the radar sensor whose computing device is used is selected dynamically, in particular as a function of the driving situation data and / or the operating parameters. Each radar sensor can thus be configured basically as master or slave, even while driving, for example, depending on the current traffic scenario, ie the current driving situation. As a result, a particularly efficient utilization (distribution of intelligence) of the configuration is realized with multiple radar sensors. For selecting the radar sensor currently to be used as the master, it is possible, for example, to take into account data transmission paths from the further radar sensors supplying the most relevant sensor data and the like.
Wie bereits erwähnt wurde, können als Fahrsituationsdaten verschiedenste, die Fahrsituation beschreibende Eingangsdaten eingesetzt werden. So kann insbesondere vorgesehen sein, dass als Fahrsituationsdaten den Betriebszustand des Kraftfahrzeugs und/oder wenigstens einen prädiktiven Betriebszustand des Kraftfahrzeugs beschreibende Egodaten und/oder das Umfeld des Kraftfahrzeugs beschreibende Umfelddaten und/oder konkrete Anforde- rungen von wenigstens einem Fahrzeugsystem beschreibende Anforderungsdaten verwendet werden. Aus diesen Informationen ergibt sich ein Gesamtbild der Fahrsituation, aus dem das Anforderungsprofil, beispielsweise als Anforderungsparameter, abgeleitet werden kann. Werden Anforderungsdaten von Fahrzeugsystemen bzw. auch einzelnen Funktionen von Fahrzeugsystemen verwendet, kann innerhalb der Fahrzeugsysteme und/oder der Funktionen eine Priorisierung vorgesehen sein, so dass beispielsweise sicherheitsrelevante Fahrzeugsysteme höher priorisiert werden als komfortrelevante Fahrzeugsysteme und dergleichen. As already mentioned, a wide variety of input data describing the driving situation can be used as the driving situation data. Thus, it can be provided, in particular, that the environment data describing the operating state of the motor vehicle and / or at least one predictive operating state of the motor vehicle describing ego data and / or the surroundings of the motor vehicle descriptive environment data and / or specific requirements as driving situation data. be used by at least one vehicle system descriptive request data. From this information, an overall picture of the driving situation results, from which the requirement profile, for example as a request parameter, can be derived. If request data from vehicle systems or even individual functions of vehicle systems is used, a prioritization can be provided within the vehicle systems and / or the functions, so that, for example, safety-relevant vehicle systems are given a higher priority than comfort-relevant vehicle systems and the like.
Neben dem Verfahren betrifft die Erfindung auch ein Kraftfahrzeug mit mehreren Radarsensoren, wobei wenigstens eine Recheneinrichtung eines Radarsensors und/oder ein Steuergerät des Kraftfahrzeugs zur Durchführung des erfindungsgemäßen Verfahrens ausgebildet ist. Sämtliche Ausführungen bezüglich des erfindungsgemäßen Verfahrens lassen sich analog auf das erfindungsgemäße Kraftfahrzeug übertragen, mit welchem mithin ebenso die bereits genannten Vorteile erhalten werden können. Bei dem Steuergerät handelt es sich dabei bevorzugt um ein zentrales Steuergerät, das die Funktionen mehrerer Fahrzeugsysteme realisiert und gegebenenfalls auch ein Umfeldmodell des Kraftfahrzeugs ermittelt und aktuell hält. In addition to the method, the invention also relates to a motor vehicle with a plurality of radar sensors, wherein at least one computing device of a radar sensor and / or a control device of the motor vehicle is designed for carrying out the method according to the invention. All statements relating to the method according to the invention can be analogously transferred to the motor vehicle according to the invention, with which therefore also the already mentioned advantages can be obtained. The control device is preferably a central control device that implements the functions of a plurality of vehicle systems and if necessary also determines an environmental model of the motor vehicle and keeps it up to date.
Vorzugsweise können die Radarsensoren einen den Radar-Transceiver realisierenden Halbleiterchip, insbesondere einen CMOS-Chip, umfassen. Besonders zweckmäßig ist es in diesem Zusammenhang, wenn durch den Halbleiterchip auch eine digitale Signalverarbeitungskomponente und/oder eine Steuereinheit des Radarsensors realisiert sind und/oder der Halbleiterchip und eine Antennenanordnung des Radarsensors als ein Package realisiert sind. Derartige Radarsensoren lassen sich, wie bereits ausgeführt wurde, äußerst kleinbauend realisieren und sind, insbesondere bei Verwendung der CMOS-Technologie, günstig herzustellen und somit verfügbar. So lassen sich auch größere Zahlen von Radarsensoren bauraumsparend und idealerweise von außen unsichtbar in verschiedene Komponenten des Kraftfahrzeugs integrieren, beispielsweise in eine Fahrzeugtür und/oder einen Stoßfänger. Insbesondere bei Integration digitaler Signalverarbeitungskomponen- ten und/oder Steuereinheiten in den Halbleiterchip liegt seitens der Radarsensoren auch eine entsprechende Intelligenz zur Durchführung von Funktionen, insbesondere auch des erfindungsgemäßen Verfahrens, vor, so dass vorgesehen sein kann, dass als Recheneinrichtung zur Durchführung des erfindungsgemäßen Verfahrens die digitale Signalverarbeitungskomponente und/oder die Steuereinheit eines Radarsensors verwendet werden. Preferably, the radar sensors may comprise a semiconductor chip implementing the radar transceiver, in particular a CMOS chip. In this context, it is particularly expedient if a digital signal processing component and / or a control unit of the radar sensor are realized by the semiconductor chip and / or the semiconductor chip and an antenna arrangement of the radar sensor are implemented as a package. Such radar sensors can, as has already been stated, be implemented in an extremely compact manner and, in particular when using the CMOS technology, are inexpensive to produce and thus available. Thus, even larger numbers of radar sensors can save space and ideally invisibly integrate from the outside into various components of the motor vehicle, for example in a vehicle door and / or a bumper. Especially when integrating digital signal processing components The radar sensors also provide appropriate intelligence for carrying out functions, in particular also the method according to the invention, so that it can be provided that the digital signal processing component and / or the computer as the computing device for carrying out the method according to the invention Control unit of a radar sensor can be used.
Weitere Vorteile und Einzelheiten der vorliegenden Erfindung ergeben sich aus den im Folgenden beschriebenen Ausführungsbeispielen sowie anhand der Zeichnung. Dabei zeigen: Further advantages and details of the present invention will become apparent from the embodiments described below and with reference to the drawing. Showing:
Fig. 1 ein erfindungsgemäßes Kraftfahrzeug in einer ersten Ausführungsform, 1 shows a motor vehicle according to the invention in a first embodiment,
Fig. 2 die Erfassungsbereiche der Radarsensoren des erfindungsgemäßen Kraftfahrzeugs, 2 the detection ranges of the radar sensors of the motor vehicle according to the invention,
Fig. 3 einen Ablaufplan des erfindungsgemäßen Verfahrens, 3 is a flowchart of the method according to the invention,
Fig. 4 eine Skizze zum Aufbau eines Radarsensors, und Fig. 4 is a sketch for the construction of a radar sensor, and
Fig. 5 ein erfindungsgemäßes Kraftfahrzeug in einer zweiten Ausführungsform. Fig. 5 shows an inventive motor vehicle in a second embodiment.
Fig. 1 zeigt eine Prinzipskizze eines erfindungsgemäßen Kraftfahrzeugs 1 einer ersten Ausführungsform. Um eine 360°-Überwachung des Umfelds des Kraftfahrzeugs 1 zu ermöglichen, weist dieses vorliegend acht Radarsensoren 2a - 2h auf, wobei vier Radarsensoren 2a, 2c, 2e, 2g an den Ecken des Kraftfahrzeugs 1 angeordnet sind, die restlichen Radarsensoren 2b, 2d, 2f und 2h an den Seiten jeweils mittig zwischen den Eck-Radarsensoren 2a, 2c, 2e und 2g. Die zugehörigen größtmöglichen Erfassungsbereiche der Radarsensoren 2a - 2h sind in Fig. 2 dargestellt und mit den Bezugszeichen 3a - 3h bezeichnet. Ersichtlich wird ein 360°-Winkelbereich erfasst. Die Radarsensoren 2a, 2c, 2d, 2e, 2g und 2h können dabei in den Stoßfängern des Kraftfahrzeugs 1 angeordnet sein, die Radarsensoren 2b und 2f in den Türen. Verschiedene Betriebsparameter der Radarsensoren 2a - 2h lassen sich einstellen, insbesondere die aktuellen Erfassungseigenschaften definierende Betriebsparameter wie Öffnungswinkel, Bandbreite, Datenaufnahme- rate und dergleichen. 1 shows a schematic diagram of a motor vehicle 1 according to the invention of a first embodiment. In order to allow a 360 ° monitoring of the environment of the motor vehicle 1, this has eight radar sensors 2a - 2h, wherein four radar sensors 2a, 2c, 2e, 2g are arranged at the corners of the motor vehicle 1, the remaining radar sensors 2b, 2d, 2f and 2h at the sides respectively centered between the corner radar sensors 2a, 2c, 2e and 2g. The associated largest possible detection ranges of the radar sensors 2a-2h are shown in FIG. 2 and designated by the reference symbols 3a-3h. Obviously, a 360 ° angle range is detected. The radar sensors 2a, 2c, 2d, 2e, 2g and 2h can in the bumpers of the Motor vehicle 1 may be arranged, the radar sensors 2b and 2f in the doors. Various operating parameters of the radar sensors 2a-2h can be set, in particular the operating parameters defining the current detection characteristics such as opening angle, bandwidth, data acquisition rate and the like.
Um den Betrieb der Radarsensoren 2a - 2h zu steuern, ist ein zentrales Steuergerät 4 vorgesehen, das zur Durchführung des erfindungsgemäßen Verfahrens ausgebildet ist. Mit dem Steuergerät 4 sind die Radarsensoren 2a - 2h vorliegend je vier Stück über eine Kette verbunden, wobei jedoch auch andere Verbindungsarchitekturen denkbar sind. Das zentrale Steuergerät 4 führt vorliegend verschiedene Funktionen mehrerer Fahrerassistenzsysteme, insbesondere aller Fahrerassistenzsysteme, aus und ermittelt und aktualisiert aus Sensordaten der Radarsensoren 2a - 2h sowie weiterer Sensoren des Kraftfahrzeugs 1 , die hier nicht näher dargestellt sind, ein Umfeldmodell des Kraftfahrzeugs 1 , welches durch die verschiedenen Funktionen berücksichtigt wird. Ferner werden dem zentralen Steuergerät 4 über hier nicht näher gezeigte weitere Fahrzeugsysteme Egodaten des Kraftfahrzeugs zur Verfügung gestellt, die den aktuellen Betriebszustand des Kraftfahrzeugs 1 sowie gegebenenfalls prädizierte zukünftige Betriebszustände beschreiben können. Mithin ist es innerhalb des Steuergeräts 4 möglich, ein gutes Abbild der aktuellen Fahrsituation des Kraftfahrzeugs 1 durch die vorliegenden Fahrsituationsdaten sowie gegebenenfalls weitere Daten der Funktionen zu erstellen. In order to control the operation of the radar sensors 2a-2h, a central control unit 4 is provided which is designed to carry out the method according to the invention. With the control unit 4, the radar sensors 2a - 2h in the present case each four pieces are connected via a chain, but also other connection architectures are conceivable. In the present case, the central control unit 4 carries out various functions of a plurality of driver assistance systems, in particular of all driver assistance systems, and determines and updates from sensor data of the radar sensors 2a-2h and further sensors of the motor vehicle 1, which are not shown here, an environmental model of the motor vehicle 1, which is controlled by the various functions is taken into account. Furthermore, the central control unit 4 is provided with further vehicle systems, which are not shown here in detail, of ego data of the motor vehicle which can describe the current operating state of the motor vehicle 1 and optionally predicted future operating states. Thus, it is possible within the control unit 4 to create a good image of the current driving situation of the motor vehicle 1 by the present driving situation data as well as possibly further data of the functions.
Dies wird im Rahmen des erfindungsgemäßen Verfahrens ausgenutzt, dessen Ablaufplan in Fig. 3 näher dargestellt ist. This is utilized in the context of the method according to the invention, the flowchart of which is shown in more detail in FIG.
In einem Schritt S1 wird dabei aus aktuellen Fahrsituationsdaten, die die Fahrsituation des Kraftfahrzeugs 1 beschreiben, ein Anforderungsprofil an die Sensordaten der Radarsensoren 2a - 2h ermittelt. Als Fahrsituationsdaten werden dabei beispielsweise das Umfeld des Kraftfahrzeugs beschreibende Umfelddaten, beispielsweise das beschriebene Umfeldmodell, und Egodaten des Kraftfahrzeugs 1 , beispielsweise dessen Geschwindigkeit, Lenkwinkel und dergleichen, berücksichtigt. Zweckmäßig ist es, zusätzlich noch Anforderungsdaten der Funktionen, die Sensordaten der Radarsensoren 2a - 2h verwenden, zu berücksichtigen, wobei die Funktionen bzw. die entsprechenden Fahrzeugsysteme untereinander priorisiert sein können. In a step S1, a requirement profile for the sensor data of the radar sensors 2a-2h is determined from current driving situation data which describe the driving situation of the motor vehicle 1. As a driving situation data, for example, environment data describing the environment of the motor vehicle, for example the described environmental model, and ego data of the motor vehicle 1, for example its speed, Steering angle and the like, considered. It is expedient to additionally take into account requirement data of the functions which use sensor data of the radar sensors 2a-2h, wherein the functions or the corresponding vehicle systems may be prioritized among one another.
Durch Verarbeitung all dieser Daten ergibt sich in Schritt S1 ein Anforderungsprofil, welches beispielsweise durch Anforderungsparameter beschrieben sein kann. Ein derartiges Anforderungsprofil kann zunächst angeben, aus welchem interessierenden Umfeldbereich des Umfelds des Kraftfahrzeugs 1 überhaupt Sensordaten gewonnen werden sollen. Dieser interessierende Umfeldbereich kann nun noch in Anteile unterteilt werden, denen beispielsweise Prioritäten und/oder Attribute zugeordnet werden. Ist beispielsweise in einem kritischen Umfeldbereich als Teilbereich des interessierenden Umfeldbereichs ein potentielles Kollisionsobjekt detektiert worden, vgl. in Fig. 2 beispielsweise das Objekt 5, kann dieser kritische Umgebungsbereich hoch priorisiert werden und/oder können aus diesem Bereich besonders genaue Sensordaten besonders schnell angefordert werden. Andere interessierende und/oder gar kritische Umfeldbereiche ergeben sich beispielsweise aus der aktuellen Fahrtrichtung des Kraftfahrzeugs 1. Fährt dieses beispielsweise rückwärts, ist der hinter dem Kraftfahrzeug 1 liegende Umfeldbereich der interessierende Umfeldbereich; liegt ein Abbiegevorgang nach rechts vor, ist der rechts vom Kraftfahrzeug 1 liegende Umfeldbereich der interessierende Umfeldbereich und dergleichen. Ersichtlich lässt sich also aus der Fahrsituation schlussfolgern, von wo in welcher Häufigkeit, Schnelligkeit und Qualität Sensordaten der Radarsensoren 2a - 2h benötigt werden, was durch das Anforderungsprofil beschrieben wird. By processing all of these data, a requirement profile results in step S1, which may be described by request parameters, for example. Such a requirement profile can first of all indicate from which area of interest of the environment of the motor vehicle 1 interest in the sensor is to be obtained. This environment of interest can now be subdivided into shares, to which, for example, priorities and / or attributes are assigned. If, for example, a potential collision object has been detected as a subarea of the environment of interest in a critical environment area, cf. In FIG. 2, for example, the object 5, this critical surrounding area can be highly prioritized and / or particularly accurate sensor data can be requested very quickly from this area. Other areas of interest and / or even critical environments arise, for example, from the current direction of travel of the motor vehicle 1. If, for example, this drives backwards, the surrounding area behind the motor vehicle 1 is the area of interest of interest; If there is a turn to the right, the surrounding area to the right of the motor vehicle 1 is the surrounding area of interest and the like. Obviously, it can be concluded from the driving situation from where in what frequency, speed and quality sensor data of the radar sensors 2a - 2h are needed, which is described by the requirement profile.
In einem Schritt S2 werden aus diesem Anforderungsprofil unter Berücksichtigung von Effizienzkriterien 6 nun Betriebsparameter ermittelt, mit denen sich dieses Anforderungsprofil (am besten) realisieren lässt. Diese Betriebsparameter können auch einen Betriebsparameter umfassen, der ein Aktivieren und ein Deaktivieren des jeweiligen Radarsensors 2a - 2h steuert. Effizienzkriterien 6 beziehen sich insbesondere auf den Energieverbrauch, die Beschränkung des Datenverkehrs auf den Bussystemen des Kraftfahrzeugs 1 sowie eine möglichst geringe Auslastung von Rechenressourcen. Liegt beispielsweise ein Rechtsabbiegevorgang vor, werden grundsätzlich keine oder nur sehr wenige Daten von den nach links gerichteten Radarsensoren 2e, 2f und 2g benötigt, so dass diese beispielsweise deaktiviert werden können, was Energie und Datenverkehr sowie Rechenressourcen einspart. Die Sensoren 2h und 2d, die nach vorne bzw. nach hinten gerichtet sind, liefern Daten, die relevant sein könnten, aber nicht so relevant wie die beispielsweise von den Sensoren 2a und 2b gelieferten Sensordaten, so dass die Erfassungsbereiche der Sensoren 2a und 2b idealerweise so angepasst werden können, dass sie den wichtigsten Umfeldbereich widergeben und eine besonders hohe Datenauf nah merate bei hoher'Genauigkeit gegeben ist, während die Sensoren 2h und 2d mit unterdurchschnittlichen Datenaufnahmera- ten und eher kleineren Qualitätsanforderungen betrieben werden können, während der Sensor 2c mit mittleren Betriebsparametern weiterbetrieben werden kann. In a step S2, from this requirement profile, taking into account efficiency criteria 6, operating parameters are now determined with which this requirement profile can (best) be realized. These operating parameters may also include an operating parameter that controls activation and deactivation of the respective radar sensor 2a-2h. Efficiency criteria 6 relate in particular to the energy consumption, the restriction of data traffic on the bus systems of the motor vehicle 1 and the lowest possible utilization of computing resources. For example, if there is a right turn, no or very little data is needed from the radar sensors 2e, 2f and 2g to the left so that they can be deactivated, for example, which saves energy and data traffic as well as computational resources. The sensors 2h and 2d, which are directed to the front and to the rear, provide data that could be relevant, but not as relevant as the sensor data supplied by the sensors 2a and 2b, for example, so that the detection ranges of the sensors 2a and 2b ideally can be adjusted so that they reflect the most important environment and a particularly high Datenauf near merate with high ' accuracy is given, while the sensors 2h and 2d can be operated with below-average data collection rates and rather lower quality requirements, while the sensor 2c with medium Operating parameters can continue to operate.
Gibt das Anforderungsprofil in einem anderen Beispiel wider, dass genaue Daten von dem potentiellen Kollisionsobjekt 5 (vgl. Fig. 2) benötigt werden, können die Erfassungsbereiche der Sensoren 3a, 3b und 3h (Fig. 2 zeigt die maximal möglichen Erfassungsbereiche) so eingestellt werden, dass alle drei Radarsensoren 3a, 3b und 3h das Objekt 5 erfassen, so dass eine redundante Erfassung gegeben ist und genauere Informationen über das Objekt 5 erhalten werden können. Es ist jedoch auch der Fall denkbar, dass keine kritische Fahrsituation vorliegt und mithin aufgrund der Effizienzkriterien 6 Objekte nur einmal erfasst werden sollen. Die aktuellen, tatsächlich verwendeten Erfassungsbereiche der Sensoren 3a, 3b und 3h können in einem solchen Fall so angepasst werden, dass nur einer dieser Radarsensoren 3a, 3b und 3h, beispielsweise der Radarsensor 3a, das Objekt 5 tatsächlich ver- misst. In another example, if the requirement profile indicates that accurate data is needed from the potential collision object 5 (see Fig. 2), the detection ranges of the sensors 3a, 3b and 3h (Fig. 2 shows the maximum possible detection ranges) can be set in that all three radar sensors 3a, 3b and 3h detect the object 5 so that a redundant detection is provided and more accurate information about the object 5 can be obtained. However, it is also conceivable that there is no critical driving situation and therefore 6 objects should be recorded only once due to the efficiency criteria. The actual, actually used detection ranges of the sensors 3a, 3b and 3h can be adjusted in such a case so that only one of these radar sensors 3a, 3b and 3h, for example the radar sensor 3a, actually misses the object 5.
Wie diese konkreten Beispiele zeigen, können eine Vielzahl von Fahrsituationen auf entsprechende Anforderungsprofile abgebildet werden, aus welchen wiederum ein optimal geeigneter Satz von Betriebsparametern für die Radarsensoren 2a - 2h folgt, die dieses Anforderungsprofil möglichst effi- zient erfüllen, beispielsweise, indem manche Sensoren abgeschaltet/aktiviert werden, mit höherem oder niedrigerem Ressourcenbedarf betrieben werden und dergleichen. As these concrete examples show, a multiplicity of driving situations can be mapped to corresponding requirement profiles, from which in turn an optimally suitable set of operating parameters for the radar sensors 2a-2h follows, which optimally fulfills this requirement profile. ciently, for example, by turning off / activating some sensors, operating with higher or lower resource requirements, and the like.
In einem Schritt S3 werden schließlich die Radarsensoren 2a - 2h entsprechend der im Schritt S2 ermittelten Betriebsparameter angesteuert. Wie der gestrichelte Pfeil 7 in Fig. 3 andeutet, wird das Verfahren selbstverständlich zyklisch wiederholt, so dass immer die aktuelle Fahrsituation durch entsprechende Betriebsparametersätze abgebildet wird, wobei jeweils eine gesamtheitliche Betrachtung des durch die Radarsensoren 2a - 2h gebildeten Radarsysteme vorgenommen wird, um Anforderungsprofile optimal zu erfüllen. Finally, in a step S3, the radar sensors 2a-2h are activated in accordance with the operating parameters determined in step S2. As indicated by the dashed arrow 7 in FIG. 3, the method is of course cyclically repeated, so that the current driving situation is always represented by corresponding parameter sets, in each case a holistic view of the radar systems formed by the radar sensors 2a-2h is performed in order to optimally meet requirement profiles to fulfill.
Fig. 4 zeigt einen besonders vorteilhaft verwendbaren Radarsensor 2 genauer. Dieser umfasst eine Leiterplatte 8, auf der ein Package 9 angeordnet ist, das aus der Antennenanordnung 10 des Radarsensors 2 und einem Halbleiterchip 11 , hier einem CMOS-Chip, gebildet ist. Durch den CMOS- Chip 11 werden ein Radar-Transceiver 12, eine Steuereinheit 13 und eine digitale Signalverarbeitungskomponente 14 (DSP) realisiert. Der Radarsensor 2 lässt sich äußerst kleinbauend realisieren und somit bauraumsparend in Türen und Stoßfängern des Kraftfahrzeugs 1 einbauen. Zudem ist durch die durch den Halbleiterchip 11 realisierten Komponenten radar- sensorseitig bereits eine gewisse Intelligenz gegeben. Fig. 4 shows a particularly advantageous usable radar sensor 2 in more detail. This comprises a printed circuit board 8, on which a package 9 is arranged, which is formed from the antenna arrangement 10 of the radar sensor 2 and a semiconductor chip 11, in this case a CMOS chip. By the CMOS chip 11, a radar transceiver 12, a control unit 13 and a digital signal processing component 14 (DSP) are realized. The radar sensor 2 can be realized extremely compact and thus save space in doors and bumpers of the motor vehicle 1 install. In addition, radar sensor side already given a certain intelligence by the realized by the semiconductor chip 11 components.
Dies wird in einer zweiten Ausführungsform eines erfindungsgemäßen Kraftfahrzeugs V ausgenutzt, wie es in Fig. 5 zu sehen ist. Dort ist das zentrale Steuergerät 4, obwohl es auch vorgesehen sein kann, nicht gezeigt, und die Sensoren 2a - 2h sind in einer ringartigen Verbindungsstruktur untereinander verbunden. Allerdings weist jeder der Sensoren 2a - 2h nun eine Recheneinrichtung 15 auf, die zur Durchführung des erfindungsgemäßen Verfahrens ausgebildet ist, welche vorliegend durch die Steuereinheit 13 und/oder die digitale Signalverarbeitungskomponente 14 gebildet ist. Einer der Sensoren 2a - 2h wird nun, insbesondere abhängig von der Fahrsituation, als Master bestimmt und seine Recheneinrichtung 15 führt das erfindungsgemäße Verfahren aus, bis ein anderer Sensor 2a - 2h als Master be- stimmt wird. Die anderen Sensoren 2a - 2h, die nicht der Master sind, wirken letztlich als Slave. Auf diese Weise lässt sich die verteilte Intelligenz, die in den Radarsensoren 2a - 2h gegeben ist, besonders zweckmäßig nutzen. This is utilized in a second embodiment of a motor vehicle V according to the invention, as can be seen in FIG. There is the central control unit 4, although it may also be provided, not shown, and the sensors 2a - 2h are interconnected in an annular connecting structure. However, each of the sensors 2a-2h now has a computing device 15, which is designed to carry out the method according to the invention, which is presently formed by the control unit 13 and / or the digital signal processing component 14. One of the sensors 2a-2h is now determined as a master, in particular depending on the driving situation, and its computing device 15 carries out the method according to the invention until another sensor 2a-2h is mastered. is true. The other sensors 2a-2h, which are not the master, ultimately act as slaves. In this way, the distributed intelligence, which is given in the radar sensors 2a - 2h, use particularly appropriate.

Claims

P A T E N T A N S P R Ü C H E P A T E N T A N S P R E C H E
1. Verfahren zum Betrieb einer Mehrzahl von Radarsensoren (2, 2a-2h) in einem Kraftfahrzeug (1 , 1'), wobei in ihren Erfassungsbereichen (3a-3h) das Umfeld des Kraftfahrzeugs (1 , 1 ') in einem 360°-Winkelbereich erfassende Radarsensoren (2, 2a-2h) verwendet werden und wenigstens ein Betriebsparameter der Radarsensoren (2, 2a-2h) veränderbar ist, wobei eine aktuelle Fahrsituation des Kraftfahrzeugs (1 , 1') beschreibende Fahrsituationsdaten zur Ermittlung eines Anforderungsprofils an die Sensordaten der Radarsensoren (2, 2a-2h) ausgewertet werden und unter Berücksichtigung wenigstens der Erfassungseigenschaften aller Radarsensoren (2, 2a-2h) die Betriebsparameter der Radarsensoren (2, 2a-2h) auf das Anforderungsprofil angepasst werden. 1. A method for operating a plurality of radar sensors (2, 2a-2h) in a motor vehicle (1, 1 '), wherein in their detection areas (3a-3h) the environment of the motor vehicle (1, 1') in a 360 ° - Angular range detecting radar sensors (2, 2a-2h) are used and at least one operating parameter of the radar sensors (2, 2a-2h) is variable, wherein a current driving situation of the motor vehicle (1, 1 ') descriptive driving situation data to determine a requirement profile to the sensor data of Radar sensors (2, 2a-2h) are evaluated and, taking into account at least the detection characteristics of all radar sensors (2, 2a-2h), the operating parameters of the radar sensors (2, 2a-2h) are adapted to the requirement profile.
2. Verfahren nach Anspruch 1 , 2. The method according to claim 1,
dadurch gekennzeichnet,  characterized,
dass durch die Betriebsparameter eine Aktivierung und/oder eine Deak- tivierung eines Radarsensors (2, 2a-2h) ausgelöst wird und/oder als Betriebsparameter eine Datenaufnahmerate und/oder wenigstens ein den Erfassungsbereich (3a-3h) beschreibender Betriebsparameter und/oder wenigstens ein die Abstandstrennfähigkeit beschreibender Betriebsparameter und/oder wenigstens ein die seitens des Radarsensors (2, 2a-2h) vorzunehmende Vorauswertung beschreibender Betriebsparameter verwendet werden.  an activation and / or a deactivation of a radar sensor (2, 2a-2h) is triggered by the operating parameters and / or a data acquisition rate and / or at least one operating parameter describing the detection range (3a-3h) and / or at least one the spacing capability of descriptive operating parameters and / or at least one operating parameter to be taken on the part of the radar sensor (2, 2a-2h) must be used.
3. Verfahren nach Anspruch 1 oder 2, 3. The method according to claim 1 or 2,
dadurch gekennzeichnet,  characterized,
dass bei einem durch das Anforderungsprofil beschriebenen interessierenden Umfeldbereich nur die den interessierenden Umfeldbereich erfassenden Rädarsensoren (2, 2a-2h) oder die den interessierenden Umfeldbereich erfassenden Radarsensoren (2, 2a-2h) mit häufiger und/oder genauere Sensordaten als die sonstigen Radarsensoren (2, 2a-2h) liefernden Betriebsparametern betrieben werden. Verfahren nach einem der vorangehenden Ansprüche, in an environment region of interest described by the requirement profile, only the radar sensors (2, 2a-2h) detecting the surroundings of interest or the radar sensors (2, 2a-2h) detecting the surroundings of interest with more frequent and / or more accurate sensor data than the other radar sensors (2 , 2a-2h) operating parameters are operated. Method according to one of the preceding claims,
dadurch gekennzeichnet, characterized,
dass bei einem durch das Anforderungsprofil beschriebenen kritischen Umfeldbereich insbesondere als Unterbereich des interessierenden Umfeldbereichs wenigstens zwei Radarsensoren (2, 2a-2h) zur redundanten Erfassung wenigstens eines Teils des kritischen Umfeldbereichs betrieben werden. at least two radar sensors (2, 2a-2h) are operated for the redundant detection of at least part of the critical surrounding area in a critical environment described by the requirement profile, in particular as a subregion of the environment of interest.
Verfahren nach einem der vorangehenden Ansprüche, Method according to one of the preceding claims,
dadurch gekennzeichnet, characterized,
dass bei der Anpassung der Betriebsparameter der Radarsensoren (2, 2a-2h) auch wenigstens ein den Energieverbrauch und/oder die zu transportierende Datenmenge und/oder die benötigten Rechenressourcen minimierendes Effizienzkriterium (6) berücksichtigt wird. that during the adaptation of the operating parameters of the radar sensors (2, 2a-2h) at least one efficiency criterion (6) minimizing the energy consumption and / or the amount of data to be transported and / or the required computing resources is taken into account.
Verfahren nach Anspruch 5, Method according to claim 5,
dadurch gekennzeichnet, characterized,
dass bei einen nichtkritischen Anteil eines in dem Anforderungsprofil enthaltenen interessierenden Umfeldbereichs redundant erfassenden Radarsensoren (2, 2a-2h) einer der Radarsensoren (2, 2a-2h) abgeschaltet wird und/oder sein Erfassungbereich (3a-3h) zur Minimierung der Redundanz angepasst wird. in the case of a non-critical portion of an environment of interest included in the requirement profile, redundantly detecting radar sensors (2, 2a-2h) of one of the radar sensors (2, 2a-2h) are switched off and / or their detection range (3a-3h) is adapted to minimize redundancy ,
Verfahren nach einem der vorangehenden Ansprüche, Method according to one of the preceding claims,
dadurch gekennzeichnet, characterized,
dass jeweils in den Eckbereichen des Kraftfahrzeugs (1 , 1') und zwischen den Ecken des Kraftfahrzeugs (1 , 1') einer von acht Radarsensoren (2, 2a-2h) angeordnet ist. in that in each case one of eight radar sensors (2, 2a-2h) is arranged in the corner regions of the motor vehicle (1, 1 ') and between the corners of the motor vehicle (1, 1').
Verfahren nach einem der vorangehenden Ansprüche, Method according to one of the preceding claims,
dadurch gekennzeichnet, characterized,
dass die Auswertung der Fahrsituation und die Ansteuerung der Radarsensoren (2, 2a-2h) seitens eines zentralen Steuergeräts (4) des Kraftfahrzeugs (1 , 1') erfolgt, welches insbesondere wenigstens zwei Fahrzeugsystemen zugeordnet ist. that the evaluation of the driving situation and the control of the radar sensors (2, 2a-2h) by a central control unit (4) of the Motor vehicle (1, 1 ') takes place, which is assigned in particular at least two vehicle systems.
Verfahren nach Anspruch 8, Method according to claim 8,
dadurch gekennzeichnet,  characterized,
dass als Fahrsituationsdaten die Daten eines seitens des Steuergeräts (4) ermittelten und aktualisierten Umfeldmodells verwendet werden.  in that the data of an environment model determined and updated by the control device (4) are used as the driving situation data.
10. Verfahren nach einem der Ansprüche 1 bis 7, 10. The method according to any one of claims 1 to 7,
dadurch gekennzeichnet,  characterized,
dass die Auswertung der Fahrsituation und die Ansteuerung der Radarsensoren (2, 2a-2h) seitens einer Recheneinrichtung (15) wenigstens eines der Radarsensoren (2, 2a-2h) erfolgt.  that the evaluation of the driving situation and the control of the radar sensors (2, 2a-2h) by a computing device (15) of at least one of the radar sensors (2, 2a-2h) takes place.
11. Verfahren nach Anspruch 10, 11. The method according to claim 10,
dadurch gekennzeichnet,  characterized,
dass der Radarsensor (2, 2a-2h), dessen Recheneinrichtung (15) verwendet wird, dynamisch, insbesondere in Abhängigkeit der Fahrsituationsdaten und/oder der Betriebsparameter, ausgewählt wird.  the radar sensor (2, 2a-2h), whose computing device (15) is used, is selected dynamically, in particular as a function of the driving situation data and / or the operating parameters.
12. Verfahren nach einem der vorangehenden Ansprüche, 12. The method according to any one of the preceding claims,
dadurch gekennzeichnet,  characterized,
dass als Fahrsituationsdaten den Betriebszustand des Kraftfahrzeugs (1 , 1 ') und/oder wenigstens einen prädiktiven Betriebszustand des Kraftfahrzeugs (1 , 1 ') beschreibende Egodaten und/oder das Umfeld des Kraftfahrzeugs (1 , 1 ') beschreibende Umfelddaten und/oder konkrete Anforderungen von wenigstens einem Fahrzeugsystem beschreibende Anforderungsdaten verwendet werden.  that environment data describing the operating state of the motor vehicle (1, 1 ') and / or at least one predictive operating state of the motor vehicle (1, 1') and / or environment data describing the environment of the motor vehicle (1, 1 ') and / or specific requirements Requirement data describing at least one vehicle system may be used.
13. Kraftfahrzeug (1 , 1') mit mehreren Radarsensoren (2, 2a-2h), welche in ihren Erfassungsbereichen (3a-h) das Umfeld des Kraftfahrzeugs (1 , 1 ') in einem 360°-Winkelbereich erfassen, wobei wenigstens eine Recheneinrichtung (15) eines Radarsensors (2, 2a-2h) und/oder ein Steuerge- rät (4) des Kraftfahrzeugs (1, 1') zur Durchführung eines Verfahrens nach einem der vorangehenden Ansprüche ausgebildet ist. 13. Motor vehicle (1, 1 ') with a plurality of radar sensors (2, 2a-2h), which detect in their detection areas (3a-h) the environment of the motor vehicle (1, 1') in a 360 ° angle range, wherein at least one Computing means (15) of a radar sensor (2, 2a-2h) and / or a control advises (4) of the motor vehicle (1, 1 ') is designed to carry out a method according to any one of the preceding claims.
14. Kraftfahrzeug nach Anspruch 13, 14. Motor vehicle according to claim 13,
dadurch gekennzeichnet,  characterized,
dass die Radarsensoren (2, 2a-2h) einen den Radar-Transceiver (12) realisierenden Halbleiterchip (11 ), insbesondere einen CMOS-Chip, umfassen.  in that the radar sensors (2, 2a-2h) comprise a semiconductor chip (11) which realizes the radar transceiver (12), in particular a CMOS chip.
15. Kraftfahrzeug nach Anspruch 14, 15. Motor vehicle according to claim 14,
dadurch gekennzeichnet,  characterized,
dass durch den Halbleiterchip (11 ) auch eine digitale Signalverarbeitungskomponente (14) und/oder eine Steuereinheit (12) des Radarsensors (2, 2a-2h) realisiert sind und/oder der Halbleiterchip (11) und eine Antennenanordnung (10) des Radarsensors (2, 2a-2h) als ein Package (9) realisiert sind.  in that a digital signal processing component (14) and / or a control unit (12) of the radar sensor (2, 2a-2h) are also realized by the semiconductor chip (11) and / or the semiconductor chip (11) and an antenna arrangement (10) of the radar sensor ( 2, 2a-2h) are realized as a package (9).
EP15770797.7A 2014-09-25 2015-09-24 Method for operating a multiplicity of radar sensors in a motor vehicle and motor vehicle Active EP3198300B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014014307.4A DE102014014307A1 (en) 2014-09-25 2014-09-25 Method for operating a plurality of radar sensors in a motor vehicle and motor vehicle
PCT/EP2015/001892 WO2016045794A1 (en) 2014-09-25 2015-09-24 Method for operating a multiplicity of radar sensors in a motor vehicle and motor vehicle

Publications (2)

Publication Number Publication Date
EP3198300A1 true EP3198300A1 (en) 2017-08-02
EP3198300B1 EP3198300B1 (en) 2020-08-26

Family

ID=54199161

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15770797.7A Active EP3198300B1 (en) 2014-09-25 2015-09-24 Method for operating a multiplicity of radar sensors in a motor vehicle and motor vehicle

Country Status (5)

Country Link
US (2) US10451729B2 (en)
EP (1) EP3198300B1 (en)
CN (1) CN106716173B (en)
DE (1) DE102014014307A1 (en)
WO (1) WO2016045794A1 (en)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014014307A1 (en) 2014-09-25 2016-03-31 Audi Ag Method for operating a plurality of radar sensors in a motor vehicle and motor vehicle
DE102015011927B3 (en) * 2015-09-12 2016-12-15 Audi Ag Method for reducing the energy consumption of radar sensors in a motor vehicle and motor vehicle
DE102016202112A1 (en) * 2016-02-12 2017-08-17 Robert Bosch Gmbh Radar sensor for driver assistance systems in motor vehicles
DE102016004305A1 (en) * 2016-04-08 2017-10-12 Audi Ag Motor vehicle with a plurality of radar sensors arranged at different installation positions and method for operating a plurality of radar sensors arranged at different installation positions of a motor vehicle
DE102016210365A1 (en) * 2016-06-10 2017-12-14 Audi Ag Method for operating a vehicle system for rolling protection and motor vehicle
DE102016222549B4 (en) * 2016-11-16 2019-05-16 Audi Ag Method for determining trailer information and motor vehicle
DE102017205495A1 (en) * 2017-03-31 2018-10-04 Conti Temic Microelectronic Gmbh Device and method for focusing sensors in the driving dynamic limit range for a motor vehicle
JP7222892B2 (en) * 2017-08-03 2023-02-15 株式会社小糸製作所 Vehicle lighting system, vehicle system and vehicle
DE102017214657B3 (en) 2017-08-22 2018-11-22 Audi Ag Method for evaluating radar data and motor vehicle
US20200209869A1 (en) * 2017-09-22 2020-07-02 Sony Corporation Information processing device, autonomous mobile device, method, and program
DE102017217805B4 (en) 2017-10-06 2019-05-02 Vega Grieshaber Kg Radar level gauge with synchronization signal on different line types
CN108279671B (en) * 2018-01-08 2021-12-14 深圳市易成自动驾驶技术有限公司 Terahertz-based environment sensing method and device and computer readable storage medium
DE102018200814B3 (en) * 2018-01-18 2019-07-18 Audi Ag Method for operating a fully automatic guidance of a motor vehicle trained vehicle guidance system of the motor vehicle and motor vehicle
DE102018202296A1 (en) * 2018-02-15 2019-08-22 Robert Bosch Gmbh Radar sensor system and method for operating a radar sensor system
JP7045249B2 (en) * 2018-04-19 2022-03-31 本田技研工業株式会社 Transport equipment
DE102018206553A1 (en) * 2018-04-27 2019-10-31 Robert Bosch Gmbh Radar sensor head for a radar system
CN110418310B (en) * 2018-04-28 2021-03-30 华为技术有限公司 Method for realizing integration of vehicle radar communication, related equipment and system
US11353872B2 (en) * 2018-07-30 2022-06-07 Pony Ai Inc. Systems and methods for selectively capturing and filtering sensor data of an autonomous vehicle
US20210373151A1 (en) * 2018-10-12 2021-12-02 Kyocera Corporation Electronic device, control method of electronic device, and control program of electronic device
DE102018219376A1 (en) 2018-11-13 2020-05-14 Robert Bosch Gmbh Procedures for selecting and accelerating action responses
DE102018130916A1 (en) * 2018-12-05 2020-06-10 Valeo Schalter Und Sensoren Gmbh Method for the prioritized transmission of recorded information from a sensor of a motor vehicle to a control unit of the motor vehicle, sensor, driver assistance system and motor vehicle
DE102019203783B4 (en) * 2019-03-20 2022-08-11 Vitesco Technologies GmbH Method, program and system for using signal quality requirements within the framework of security concepts
DE102019203808A1 (en) * 2019-03-20 2020-09-24 Robert Bosch Gmbh Method and data processing device for analyzing a sensor composite configuration and at least partially autonomous robots
CN115657515A (en) * 2019-06-21 2023-01-31 华为技术有限公司 Sensor control method and device and sensor
JP7310524B2 (en) * 2019-10-11 2023-07-19 トヨタ自動車株式会社 Remote self-driving vehicle and vehicle remote command system
EP3869221A1 (en) * 2020-02-20 2021-08-25 Veoneer Sweden AB A radar system with sub-bands
EP4113166A4 (en) * 2020-02-25 2024-03-20 Furukawa Electric Co Ltd Radar system, processing method, and processing program
CN113954766A (en) * 2020-07-20 2022-01-21 罗伯特·博世有限公司 Method and device for processing sensor data of a motor vehicle on the basis of conditions

Family Cites Families (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3302848B2 (en) * 1994-11-17 2002-07-15 本田技研工業株式会社 In-vehicle radar device
DE19529173C1 (en) * 1995-08-08 1997-01-09 Siemens Ag Radar device with reduced radiated power
US5847661A (en) * 1996-03-15 1998-12-08 Intelligent Ideation, Inc. Vehicle data acquisition system
GB9613645D0 (en) * 1996-06-28 1996-08-28 Cambridge Consultants Vehicle radar system
DE19803660C2 (en) * 1998-01-30 2001-07-05 Siemens Ag Motor vehicle radar
JP3463734B2 (en) * 1998-03-30 2003-11-05 三菱電機株式会社 Weather observation radar system
DE19845568A1 (en) * 1998-04-23 1999-10-28 Volkswagen Ag Object detection device for motor vehicles
US6268803B1 (en) * 1998-08-06 2001-07-31 Altra Technologies Incorporated System and method of avoiding collisions
EP1309882B1 (en) * 2000-08-16 2004-12-08 Raytheon Company Near object detection system
DE10059673A1 (en) * 2000-12-01 2002-06-06 Bosch Gmbh Robert Pulse radar method as well as pulse radar sensor and system
JP3885716B2 (en) * 2002-11-21 2007-02-28 日産自動車株式会社 Recommended operation amount generator for vehicles
KR100498965B1 (en) * 2003-04-22 2005-07-01 삼성전자주식회사 A System and Method For Communicating Vehicle Driving Information Using Ad Hoc Network
WO2006120823A1 (en) * 2005-05-13 2006-11-16 Murata Manufacturing Co., Ltd. Radar
JPWO2006123499A1 (en) * 2005-05-16 2008-12-25 株式会社村田製作所 Radar
JP2007116217A (en) * 2005-10-18 2007-05-10 Hitachi Ltd Millimeter-wave radar apparatus and millimeter radar system using it
JP4224096B2 (en) * 2006-10-27 2009-02-12 三菱電機株式会社 Radar equipment
WO2008063367A2 (en) * 2006-10-31 2008-05-29 Valeo Raytheon Systems, Inc. System and method for generating an alert signal in a detection system
JP5160114B2 (en) * 2007-03-26 2013-03-13 本田技研工業株式会社 Vehicle passage judgment device
JP4476315B2 (en) * 2007-08-17 2010-06-09 三菱電機株式会社 In-vehicle radar system
US20090254260A1 (en) * 2008-04-07 2009-10-08 Axel Nix Full speed range adaptive cruise control system
US7969349B2 (en) * 2009-04-06 2011-06-28 Raytheon Company System and method for suppressing close clutter in a radar system
JP2010261784A (en) * 2009-05-01 2010-11-18 Denso Corp Radar apparatus
JP5327321B2 (en) 2009-06-04 2013-10-30 トヨタ自動車株式会社 Vehicle periphery monitoring device and vehicle periphery monitoring method
US8354920B2 (en) * 2010-01-22 2013-01-15 John Kole Vehicle overhead clearance detection system and method of operation
US8600606B2 (en) * 2010-02-11 2013-12-03 GM Global Technology Operations LLC Vehicle safety systems and methods
JP5183661B2 (en) * 2010-03-29 2013-04-17 三菱電機株式会社 In-vehicle radar system
CN101833092B (en) * 2010-04-27 2012-07-04 成都捌零科技有限公司 360-degree dead-angle-free obstacle intelligent detection and early warning method for vehicle
EP2390679B1 (en) * 2010-05-27 2012-10-03 Mitsubishi Electric R&D Centre Europe B.V. Automotive radar with radio-frequency interference avoidance
DE102012201282A1 (en) * 2011-01-31 2012-08-02 Denso Corporation Antenna device, radar device and vehicle radar system
DE102011078641A1 (en) * 2011-07-05 2013-01-10 Robert Bosch Gmbh Radar system for motor vehicles and motor vehicle with a radar system
WO2013024583A1 (en) * 2011-08-12 2013-02-21 パナソニック株式会社 Radar apparatus
JP5866917B2 (en) * 2011-09-20 2016-02-24 富士通株式会社 Detecting and ranging apparatus and detecting and ranging method
DE102011055693A1 (en) * 2011-11-24 2013-05-29 Hella Kgaa Hueck & Co. Radar apparatus and method for detecting a failure of a receiving channel of a radar device
US8957807B2 (en) * 2011-12-14 2015-02-17 Ford Global Technologies, Llc Internal multi-axis G sensing used to align an automotive forward radar to the vehicle's thrust axis
US20130169468A1 (en) * 2011-12-30 2013-07-04 Flir Systems, Inc. Radar system and related methods
DE102013101079A1 (en) * 2012-02-03 2013-08-08 Conti Temic Microelectronic Gmbh Method for operating control unit for vehicle, involves determining processing sequence of processers and time period for machining processes depending on the prioritization processes
DE102012015250A1 (en) * 2012-08-01 2014-02-06 Audi Ag Radar sensor for a motor vehicle, motor vehicle and communication method
JP5324690B1 (en) * 2012-09-21 2013-10-23 株式会社小松製作所 Work vehicle periphery monitoring system and work vehicle
US8994581B1 (en) * 2012-09-25 2015-03-31 Adam Brown Direction of arrival (DOA) estimation using multiple offset receive channels
US9116242B2 (en) * 2013-03-06 2015-08-25 Toyota Motor Engineering & Manufacturing North America, Inc. Map aware adaptive automotive radar
EP3045934A4 (en) * 2013-09-12 2016-10-19 Panasonic Corp Radar device, vehicle, and moving-body-speed detection method
JP6413240B2 (en) 2014-01-08 2018-10-31 株式会社デンソー Vehicle control device and vehicle
DE102014201026A1 (en) * 2014-01-21 2015-07-23 Robert Bosch Gmbh Method for angle estimation and radar sensor for motor vehicles
JP6371534B2 (en) * 2014-02-12 2018-08-08 株式会社デンソーテン Radar apparatus, vehicle control system, and signal processing method
US9733348B2 (en) * 2014-07-03 2017-08-15 GM Global Technology Operations LLC Vehicle radar with beam adjustment
TWI571399B (en) * 2014-08-20 2017-02-21 啟碁科技股份有限公司 Pre-warning method and vehicle radar system
US9720072B2 (en) * 2014-08-28 2017-08-01 Waymo Llc Methods and systems for vehicle radar coordination and interference reduction
DE102014014307A1 (en) 2014-09-25 2016-03-31 Audi Ag Method for operating a plurality of radar sensors in a motor vehicle and motor vehicle
US10006987B2 (en) * 2014-10-08 2018-06-26 Nxp Usa, Inc. Radar device utilizing phase shift
US9541638B2 (en) * 2014-11-11 2017-01-10 Nxp B.V. MIMO radar system
US9720080B1 (en) * 2014-11-25 2017-08-01 Sandia Corporation Combined radar and telemetry system
JP2016118427A (en) * 2014-12-19 2016-06-30 富士通テン株式会社 Radar equipment and signal processing method

Also Published As

Publication number Publication date
US10877149B2 (en) 2020-12-29
DE102014014307A1 (en) 2016-03-31
US20170285165A1 (en) 2017-10-05
US20200124720A1 (en) 2020-04-23
CN106716173B (en) 2020-07-07
WO2016045794A1 (en) 2016-03-31
US10451729B2 (en) 2019-10-22
EP3198300B1 (en) 2020-08-26
CN106716173A (en) 2017-05-24

Similar Documents

Publication Publication Date Title
EP3198300B1 (en) Method for operating a multiplicity of radar sensors in a motor vehicle and motor vehicle
EP3397990B1 (en) Method for operating a driver asistance system of a vehicle and vehicle
DE102017216435B4 (en) Method for operating radar sensors and motor vehicles
EP3198678A1 (en) Mimo radar apparatus for the decoupled determination of an elevation angle and an azimuth angle of an object, and method for operating a mimo radar apparatus
DE102014009861B4 (en) Radar sensor device with at least two radar sensors and a motor vehicle
DE102017124868A1 (en) Improved object detection in multiple radars
EP2065727B1 (en) Method for estimating the width of radar objects
EP2244104A2 (en) Method and device for operating a radar-controlled environment recognition system
DE102015200020A1 (en) Vehicle control device and vehicle
EP3204790A1 (en) Radar sensor arrangement and motor vehicle
DE102011012379A1 (en) Method and radar sensor arrangement for detecting location and speed of objects relative to a vehicle
EP3452847A1 (en) Motor vehicle having at least two radar sensors
EP3151035B1 (en) Method for operating radar sensors in a motor vehicle and motor vehicle
DE102018122595A1 (en) SYNCHRONIZING MULTIPLE RADAR RUNNING TIMES TO REDUCE TROUBLESHOOTING
DE102017124863A1 (en) Vehicle radar control
DE102015205924A1 (en) Communication device for a motor vehicle
DE102014009869A1 (en) Method for operating a radar sensor in a motor vehicle and motor vehicle
EP3215866B1 (en) Radar sensor for the use on a movable part of a vehicle, vehicle and method for the operation of a radar sensor
DE102018118238A1 (en) Method for operating a radar device and radar device
DE102016004305A1 (en) Motor vehicle with a plurality of radar sensors arranged at different installation positions and method for operating a plurality of radar sensors arranged at different installation positions of a motor vehicle
DE102018127782A1 (en) System and method for pseudo-random chirp planning to avoid interference
DE102016223259A1 (en) Method for operating a radar sensor arrangement of a motor vehicle and motor vehicle
DE102018128738A1 (en) METHOD AND DEVICE FOR CONTINUOUS TRACKING IN A MULTI-RADAR SYSTEM
DE102019200127A1 (en) Radar sensor architecture
DE102018129323A1 (en) Method and apparatus for improved radar tracking with performance information

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170425

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20181129

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502015013340

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: G01S0013870000

Ipc: G01S0013860000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: G01S 13/931 20200101ALI20200507BHEP

Ipc: G01S 13/86 20060101AFI20200507BHEP

INTG Intention to grant announced

Effective date: 20200602

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1306885

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015013340

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201127

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201228

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201126

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201126

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015013340

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200924

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

26N No opposition filed

Effective date: 20210527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200930

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200930

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200924

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200930

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1306885

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200924

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200924

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230920

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230922

Year of fee payment: 9

Ref country code: DE

Payment date: 20230930

Year of fee payment: 9