EP3194772B1 - Piston pump - Google Patents

Piston pump Download PDF

Info

Publication number
EP3194772B1
EP3194772B1 EP15767111.6A EP15767111A EP3194772B1 EP 3194772 B1 EP3194772 B1 EP 3194772B1 EP 15767111 A EP15767111 A EP 15767111A EP 3194772 B1 EP3194772 B1 EP 3194772B1
Authority
EP
European Patent Office
Prior art keywords
piston
pump
valve
stepped piston
stepped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15767111.6A
Other languages
German (de)
French (fr)
Other versions
EP3194772A1 (en
Inventor
Jens Norberg
Patrick Schellnegger
Andreas Lechler
Oliver Gaertner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP3194772A1 publication Critical patent/EP3194772A1/en
Application granted granted Critical
Publication of EP3194772B1 publication Critical patent/EP3194772B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B5/00Machines or pumps with differential-surface pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/04Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement
    • F04B1/0404Details or component parts
    • F04B1/0408Pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B11/00Equalisation of pulses, e.g. by use of air vessels; Counteracting cavitation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/10Valves; Arrangement of valves
    • F04B53/12Valves; Arrangement of valves arranged in or on pistons
    • F04B53/125Reciprocating valves
    • F04B53/126Ball valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/14Pistons, piston-rods or piston-rod connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B9/00Piston machines or pumps characterised by the driving or driven means to or from their working members
    • F04B9/02Piston machines or pumps characterised by the driving or driven means to or from their working members the means being mechanical
    • F04B9/04Piston machines or pumps characterised by the driving or driven means to or from their working members the means being mechanical the means being cams, eccentrics or pin-and-slot mechanisms
    • F04B9/042Piston machines or pumps characterised by the driving or driven means to or from their working members the means being mechanical the means being cams, eccentrics or pin-and-slot mechanisms the means being cams

Definitions

  • the invention relates to a piston pump with the features of the preamble of claim 1.
  • the piston pump is provided for a slip-controlled hydraulic vehicle brake system.
  • a piston pump according to the features of the preamble of claim 1 is known from EP 0 945 614 A2 already known.
  • a displacement chamber and a step room communicate with a pump outlet such that a stepped piston displaces pressure medium from the displacement chamber during a forward stroke while the step space is blocked from the pump outlet and the stepped piston displaces pressure medium from the step room into the pump outlet on a return stroke while the displacement chamber is shut off from the pump outlet.
  • a piston pump is known in which, during a forward stroke of the stepped piston, a first part of the volume displaced from the displacement chamber flows into the step space and a second part of the displaced volume flows to the pump outlet.
  • the pressure medium flows from the step room to the pump outlet, while the stepped piston is filled with new pressure medium via a pump inlet.
  • the patent application DE 10 2004 061 810 A1 discloses a piston pump with a stepped graduated piston which is axially displaceable in an internally also graduated pump bore.
  • the pump bore does not need to be drilled but can basically be made in any way.
  • the known piston pump on an eccentric, which is arranged on an eccentric end face of the stepped piston and rests on the circumference of the stepped piston with its front end.
  • the stepped piston of the known piston pump On a side facing away from the eccentric, which here refers to the unique designation as displacement side is limited, the stepped piston of the known piston pump a displacement chamber in the pump bore, the volume of the stepped piston alternately reduced in a reciprocating stroke movement and increased.
  • the piston stroke, in which the volume of the displacement chamber decreases, is referred to here as a forward stroke
  • the stroke in the opposite direction, in which the volume of the displacement chamber increases is referred to here as a return stroke.
  • the stepped piston of the known piston pump has an annular space facing away from the displacement chamber, which limits a space in the pump bore, which is referred to here for clarity as step room.
  • a volume change of the step room is inversely increased to the volume change of the displacement chamber, the forward stroke of the stepped piston and the return stroke of the stepped piston, the volume of the step space decreases.
  • the stepped space of the known piston pump is an annular space surrounding the stepped piston in the pump bore, whose cross section is smaller than a cross section of the displacement space, so that the volume change of the step space opposite the displacement space is smaller during the stroke movement of the stepped piston.
  • the step room and the displacement room communicate with a pump outlet.
  • the stepped piston of the known piston pump displaces fluid from the displacement space into the pump outlet and sucks fluid from the pump outlet into the step room. Because the volume change of the displacement space is greater than the volume change of the step room, the piston pump displaces fluid from the pump bore into the pump outlet during the forward stroke.
  • the known piston pump draws fluid from a pump inlet through an inlet valve into the displacement chamber, whose volume increases during the return stroke, and displaces fluid from the step chamber into the pump outlet.
  • the known piston pump thus has the advantage that it displaces fluid into the pump outlet both during a forward stroke and during a return stroke, whereby a fluid volume flow in the pump outlet is more uniform and pressure pulsations are lower.
  • the displacement space and the step room have cross-sectional ratios of 2: 1, so that the piston pump displaces the same amount of fluid into the pump outlet in both strokes.
  • the piston pump according to the invention with the features of claim 1 has a stepped piston with one or more piston stages.
  • the stepped piston is preferably cylindrical with one or more diameter increments, ie ring stages forming one or more piston stages. A cylindrical shape and However, ring stages are not mandatory for the invention.
  • the stepped piston is arranged in a likewise stepped pump bore and driven to a reciprocating stroke movement.
  • the pump bore is an inner surface of a cylinder, a pump housing, a hydraulic block or the like, in which the stepped piston is slidably disposed. It may be manufactured in a manner other than by drilling and, like the stepped piston, is preferably but not necessarily cylindrical and has one or more diameter steps.
  • the stepped piston delimits a displacement space in the pump bore whose volume changes during a stroke movement of the stepped piston depending on its direction of movement.
  • a space in the pump bore which is referred to here as step room.
  • the volume of the step room also changes, but conversely how the volume of the displacement chamber changes. While the volume of the displacement chamber is reduced in the case of a stroke of the stepped piston which is referred to here as an unambiguous designation as a forward stroke, the volume of the step space increases.
  • a cross section of the step room is smaller than a cross section of the displacement space, so that the volume change of the displacement space during a stroke movement of the stepped piston is greater than the inverse volume change of the step room.
  • the cross sections of the displacement space and the step room are in a ratio of 2: 1 to each other.
  • the stepped piston of the piston pump of the present invention displaces fluid from the displacement space into a pump outlet and simultaneously draws a smaller amount of fluid from the pump outlet or the displacement chamber into the step room, such that the piston pump collects fluid into the pump outlet during a forward stroke of its stepped piston repressed.
  • the piston pump sucks in fluid from a pump inlet into the displacement chamber and displaces fluid from the step chamber into the pump outlet, so that the piston pump according to the invention displaces fluid into the pump outlet even during a return stroke.
  • a cross-sectional ratio of 2: 1 the displacement volumes for the forward stroke and the return stroke are the same.
  • the piston pump has a valve through which the step room communicates with the pump outlet.
  • the step chamber can be hydraulically separated from the pump outlet by the valve under certain operating conditions. For example, at high back pressure in the pump outlet, the valve can close and thereby hydraulically separate the step room from the pump outlet, so that the stepped piston displaces at high back pressure in the pump outlet not with the piston stage but only with the displacement side fluid.
  • a pressure-controlled valve is provided as a valve which closes when a pressure in the pump outlet exceeds a closing pressure of the valve or a differential pressure valve is provided which closes when a pressure difference between the pump outlet and the step room exceeds a closing pressure of the differential pressure of the pressure valve.
  • Claim 2 provides a check valve for the step room, which prevents backflow of fluid from the pump outlet into the step room.
  • Claim 3 is directed to that the pump piston is also formed on a suction side as a stepped piston, so that also distributes a Ansaugvolumenstrom the piston pump according to the invention on the forward stroke and the return stroke.
  • This embodiment of the invention has the advantage of a more uniform volume flow and lower pressure pulsations on the suction side of the piston pump.
  • FIG. 1 shows an axial section of a piston pump according to the invention.
  • the drawing is as schematic and simplified To understand illustration for explanation and understanding of the invention.
  • the inventive piston pump 1 is provided as a hydraulic pump for a slip-controlled, hydraulic vehicle brake system, in which such hydraulic pumps are also referred to as return pumps. It serves to build up pressure, increase the pressure and return of brake fluid when lowering wheel brake pressures during or during slip control or braking.
  • the piston pump 1 is arranged in a hydraulic block 2, which can also be understood as a pump housing.
  • the hydraulic block 2 is a block-shaped metal block, for example of an aluminum alloy, in which, apart from the piston pump 1, further hydraulic components of a slip control are arranged and hydraulically interconnected by a bore of the hydraulic block.
  • Such other hydraulic components of a slip control are solenoid valves, check valves, hydraulic accumulator, damper. Hydraulic blocks for slip control are known and will not be discussed further here.
  • the piston pump 1 has a hollow cylindrical bushing 3, which can be considered as a cylinder of the piston pump 1 and in which a diameter-graded cylindrical stepped piston 4 is received axially displaceable.
  • a rotatably driven eccentric 5 is arranged, whose axis of rotation extends radially to an axis of the stepped piston 4.
  • the stepped piston 4 has two conical diameter increments, with which it widens in the direction of the bush bottom 7.
  • the diameter steps are referred to here as piston stages 8, 9.
  • the bushing 3 is inside diameter-matched to the stepped piston 4, the stepped piston 4 is located between the piston stages 8, 9 and with its largest diameter, ie on a side facing away from the eccentric 5 of the eccentric 5 distant and larger piston stage 8 inside cylindrical inner surfaces of the liner 3 on.
  • An inner side of the bushing 3, which, as already mentioned, can also be understood as a cylinder, can be regarded as a pump bore 10, regardless of the manner of its manufacture.
  • the eccentric 5 distant piston stage 8 of the stepped piston 4 is sealed with sealing rings 11 in the pump bore 10.
  • the stepped piston 4 of the piston pump 1 is radially crossed by a bore which forms a pump inlet 12 and a suction side of the piston pump 1.
  • the pump inlet 12 communicates with an annular suction chamber 14 of the piston pump 1, which is formed in the bushing 3 between an eccentric cylinder stage 15 and the eccentric piston stage 9.
  • the stepped piston 4 has an axial blind hole 16, which opens at a the eccentric 5 distant end side of the stepped piston 4, which is referred to here as the displacement side 17.
  • the axial blind hole 16 is crossed by radial bores 18, through which the blind hole 16 communicates with the pumping event 12.
  • a check valve is arranged as the inlet valve 20 of the piston pump 1.
  • the inlet valve 20 has a ball as a shut-off body 21, which is acted upon by a valve spring 22 against the valve seat 19.
  • the shut-off body 21 and the valve spring 22 are received in a cylindrical tubular valve cage 23 which has a flange 24 which is held by the piston spring 6 on the displacement side 17 of the stepped piston 4.
  • the piston pump 1 has a displacement space 25 in the bushing 3, the volume of which alternately decreases and increases in the reciprocating stroke movement of the stepped piston 4.
  • a movement of the stepped piston 4 away from the eccentric 5 is referred to here as a forward stroke, it reduces the Volume of the displacement chamber 25.
  • An opposite movement of the stepped piston 4 in the direction of the eccentric 5 is referred to here as a return stroke and increases the volume of the displacement chamber 25. Due to the increase in volume of the displacement chamber 25 during the return stroke of the stepped piston 4, the piston pump 1 sucks brake fluid from the inlet 12 the intersecting radial bores 18, the axial blind hole 16 and the opening inlet valve 20 in the displacement chamber 25 at.
  • a volume of the suction chamber 14 decreases during the return stroke of the stepped piston 4, the stepped piston 4 displacing brake fluid from the suction chamber 14 through the passages 13 into the pump inlet 12 with the eccentric piston stage 9. This reduces a suction volume during the return stroke of the pump piston 4 through the pump inlet 12. Because a cross-sectional area of the suction space 14 is smaller than a cross-sectional area of the displacement space 25, the volume of brake fluid displaced from the suction space 14 into the pump inlet 12 during the return stroke is smaller than that in FIGS Displacement space 25 sucked brake fluid volume, so that there is still a sucked through the pump inlet 12 brake fluid volume.
  • the cross-sectional areas of the displacement chamber 25 and the suction chamber 14 have a ratio of 2: 1, so that in a return stroke of the stepped piston 4 half as much brake fluid from the suction chamber 14 into the pump inlet 12 displaces as is sucked into the displacement chamber 25.
  • the inlet valve 20 is closed and the volume of the suction chamber 14 increases, so that the piston pump 1 also draws brake fluid through the pump inlet 12 during the forward stroke of the stepped piston 4.
  • the cross-sectional ratio of the displacement chamber 25 and the suction chamber 14 is 2: 1, the flowing brake fluid volumes during a forward stroke and a return stroke of the stepped piston 4 through the pump inlet 12 are equal.
  • the suction and displacement of brake fluid in the suction chamber 14 causes an intake of brake fluid in the manner explained both in the forward stroke and the return stroke and a consequent more uniform intake flow and lower pressure pulsations on the suction side of the piston pump. 1
  • the bush bottom 7 has a center hole 26, the outer mouth of which is a valve seat of an outlet valve 27 of the piston pump 1 forms.
  • the outlet valve 27 is formed in the illustrated and described embodiment, as well as the inlet valve 20 as a check valve and has a ball as shut-off 28, which is acted upon by a valve spring 29 from the outside against the valve seat forming the mouth of the center hole 26 in the bush bottom 7.
  • the shut-off body 28 and the valve spring 29 are arranged in a blind hole 30 in a pump cover 30, which is pressure-tight pressed or caulked in the hydraulic block 2.
  • a radial gap 32 which merges into an annular gap 33 enclosing the bushing 3, into which a radial bore opens which forms a pump outlet 34, which can also be regarded as the pressure side of the piston pump 1.
  • a forward stroke of the stepped piston 4 reduces the volume of the displacement chamber 25 and displaces brake fluid from the displacement chamber 25 through the opening exhaust valve 27 into the radial gap 32, from which the brake fluid flows through the annular gap 33 in the pump outlet 34.
  • the stepped piston 4 defines an annular space in the bushing 3, which is referred to here as step room 36.
  • a volume of the step room 36 increases in a forward stroke of the stepped piston 4, in which the volume of the displacement chamber 25 decreases, and the volume of the step room 36 decreases during the return stroke of the stepped piston 4, in which the volume of the displacement chamber 25 increases.
  • a cross-sectional area of the annular step space 36 is smaller than the cross-sectional area of the displacement space 25, the volume change of the step space 36 at a stroke of the stepped piston 4 is smaller than the inverse volume change of the displacement space 25.
  • a cross-sectional ratio of 2: 1 so that the volume changes of the displacement space 25 and the step room 36 are in a ratio of 2: 1.
  • the step room 36 communicates through a valve 37 with the annular bushing 33 enclosing the bushing 3 and thereby with the pump outlet 34.
  • brake fluid displaces from the displacement space 25 into the pump outlet 34
  • the piston pump 1 sucks brake fluid out of the annular gap 33 or the pump outlet 34 in the step room 36.
  • the sucked in a forward stroke in the step room 36 Brake fluid volume is smaller than the simultaneously displaced from the displacement chamber 25 brake fluid volume, so that the piston pump 1 displaces a total of brake fluid into the pump outlet 34.
  • the outlet valve 27 is closed and the stepped piston 4 displaces brake fluid from the step space 36, which reduces the return stroke, into the pump outlet 34, so that the piston pump 1 also displaces brake fluid into the pump outlet 34 during the return stroke.
  • the amount of brake fluid displaced from the displacement space 25 during a forward stroke of the stepped piston 4 is twice as large as the amount of brake fluid drawn in the step space 36, thereby equaling the amount of brake fluid displaced in the pump outlet 34 during a forward stroke and the return stroke from the piston pump 1 as a whole is.
  • the piston pump 1 Due to the step space 36 and the outlet or pressure side stepped design of the stepped piston 4, the piston pump 1 has a more uniform outlet volume flow, which is distributed over the forward stroke and the return stroke; Pressure pulsations in the pump outlet 34 and thus on the pressure side of the piston pump 1 are reduced.
  • the valve 37 associated with the step chamber 36 is a check valve or a differential pressure valve, which is held open by a valve spring 38 and closes when a pressure difference between the pump outlet 34 and the step room 36 a closing pressure of the valve 37th exceeds.
  • the valve 37 can also be understood as a pressure-controlled valve.
  • the closing pressure of the valve 37 is for example 40 bar. If the differential pressure between the pump outlet 34 and the step room 36 exceeds the closing pressure of the valve 37, the valve 37 closes and thereby hydraulically separates the step room 36 from the pump outlet 34.
  • the eccentric remote piston stage 8 of the stepped piston 4 works maximally against the closing pressure of the valve 37, which a force for moving the stepped piston 4 in the return stroke, which must be applied by the piston spring 6 limited.

Description

Die Erfindung betrifft eine Kolbenpumpe mit den Merkmalen des Oberbegriffs des Anspruchs 1. Die Kolbenpumpe ist für eine schlupfgeregelte hydraulische Fahrzeugbremsanlage vorgesehen.The invention relates to a piston pump with the features of the preamble of claim 1. The piston pump is provided for a slip-controlled hydraulic vehicle brake system.

Stand der TechnikState of the art

Eine Kolbenpumpe nach den Merkmalen des Oberbegriffs des Anspruchs 1 ist aus der EP 0 945 614 A2 bereits bekannt. Bei dieser bekannten Kolbenpumpe kommunizieren ein Verdrängungsraum und ein Stufenraum mit einem Pumpenauslass derart, dass ein Stufenkolben bei einem Vorwärtshub Druckmittel aus dem Verdrängungsraum verdrängt, während der Stufenraum gegenüber dem Pumpenauslass gesperrt ist und dass der Stufenkolben bei einem Rückwärtshub Druckmittel aus dem Stufenraum in den Pumpenauslass verdrängt, während der Verdrängungsraum gegenüber dem Pumpenauslass abgesperrt ist.A piston pump according to the features of the preamble of claim 1 is known from EP 0 945 614 A2 already known. In this known piston pump, a displacement chamber and a step room communicate with a pump outlet such that a stepped piston displaces pressure medium from the displacement chamber during a forward stroke while the step space is blocked from the pump outlet and the stepped piston displaces pressure medium from the step room into the pump outlet on a return stroke while the displacement chamber is shut off from the pump outlet.

Aus der GB 2 180 302 A ist ferner eine Kolbenpumpe bekannt, bei welcher bei einem Vorwärtshub des Stufenkolbens ein erster Teil des aus dem Verdrängungsraum verdrängten Volumens in den Stufenraum einströmt und ein zweiter Teil des verdrängten Volumen zum Pumpenauslass strömt. Beim folgenden Rückwärtshub strömt das Druckmittel aus dem Stufenraum zum Pumpenauslass, während der Stufenkolben über einen Pumpeneinlass mit neuem Druckmittel befüllt wird.From the GB 2 180 302 A Furthermore, a piston pump is known in which, during a forward stroke of the stepped piston, a first part of the volume displaced from the displacement chamber flows into the step space and a second part of the displaced volume flows to the pump outlet. During the following backward stroke, the pressure medium flows from the step room to the pump outlet, while the stepped piston is filled with new pressure medium via a pump inlet.

Die Patentanmeldung DE 10 2004 061 810 A1 offenbart eine Kolbenpumpe mit einem durchmessergestuften Stufenkolben, der in einer innen ebenfalls durchmessergestuften Pumpenbohrung axial verschieblich ist. Die Pumpenbohrung muss nicht durch Bohren sondern kann grundsätzlich in beliebiger Weise hergestellt sein. Zum Antrieb zu einer in der Pumpenbohrung hin- und hergehenden Hubbewegung des Stufenkolbens weist die bekannte Kolbenpumpe einen Exzenter auf, der an einem exzenterseitigen Stirnende des Stufenkolbens angeordnet ist und an dessen Umfang der Stufenkolben mit seinem Stirnende anliegt. Auf einer dem Exzenter fernen Stirnseite, die hier zur eindeutigen Bezeichnung als Verdrängungsseite bezeichnet wird, begrenzt der Stufenkolben der bekannten Kolbenpumpe einen Verdrängungsraum in der Pumpenbohrung, dessen Volumen der Stufenkolben bei einer hin- und hergehenden Hubbewegung abwechselnd verkleinert und vergrößert. Der Kolbenhub, bei dem sich das Volumen des Verdrängungsraums verkleinert, wird hier als Vorwärtshub bezeichnet, der Hub in entgegengesetzter Richtung, bei der sich das Volumen des Verdrängungsraums vergrößert, wird hier als Rückhub bezeichnet. Der Stufenkolben der bekannten Kolbenpumpe weist eine dem Verdrängungsraum abgewandte Ringstufe auf, die einen Raum in der Pumpenbohrung begrenzt, der hier zur eindeutigen Bezeichnung als Stufenraum bezeichnet wird. Eine Volumenänderung des Stufenraums ist umgekehrt zur Volumenänderung des Verdrängungsraums, beim Vorwärtshub des Stufenkolbens vergrößert und beim Rückhub des Stufenkolbens verkleinert sich das Volumen des Stufenraums. Der Stufenraum der bekannten Kolbenpumpe ist ein den Stufenkolben umschließender Ringraum in der Pumpenbohrung, dessen Querschnitt kleiner als ein Querschnitt des Verdrängungsraums ist, so dass die dem Verdrängungsraum entgegengesetzte Volumenänderung des Stufenraums bei der Hubbewegung des Stufenkolbens kleiner ist. Der Stufenraum und der Verdrängungsraum kommunizieren mit einem Pumpenauslass. Bei einem Vorwärtshub verdrängt der Stufenkolben der bekannten Kolbenpumpe Fluid aus dem Verdrängungsraum in den Pumpenauslass und saugt Fluid aus dem Pumpenauslass in den Stufenraum. Weil die Volumenänderung des Verdrängungsraums größer ist als die Volumenänderung des Stufenraums verdrängt die Kolbenpumpe beim Vorwärtshub Fluid aus der Pumpenbohrung in den Pumpenauslass. Beim Rückhub saugt die bekannte Kolbenpumpe Fluid aus einem Pumpeneinlass durch ein Einlassventil in den Verdrängungsraum, dessen Volumen sich beim Rückhub vergrößert, und verdrängt Fluid aus dem Stufenraum in den Pumpenauslass. Die bekannte Kolbenpumpe hat somit den Vorteil, dass sie sowohl bei einem Vorwärtshub als auch bei einem Rückhub Fluid in den Pumpenauslass verdrängt, wodurch ein Fluidvolumenstrom im Pumpenauslass gleichmäßiger und Druckpulsationen geringer sind. Idealerweise weisen der Verdrängungsraum und der Stufenraum Querschnittsverhältnisse von 2:1 auf, so dass die Kolbenpumpe bei beiden Hüben gleichviel Fluid in den Pumpenauslass verdrängt.The patent application DE 10 2004 061 810 A1 discloses a piston pump with a stepped graduated piston which is axially displaceable in an internally also graduated pump bore. The pump bore does not need to be drilled but can basically be made in any way. To drive to a reciprocating in the pump bore reciprocating stroke of the stepped piston, the known piston pump on an eccentric, which is arranged on an eccentric end face of the stepped piston and rests on the circumference of the stepped piston with its front end. On a side facing away from the eccentric, which here refers to the unique designation as displacement side is limited, the stepped piston of the known piston pump a displacement chamber in the pump bore, the volume of the stepped piston alternately reduced in a reciprocating stroke movement and increased. The piston stroke, in which the volume of the displacement chamber decreases, is referred to here as a forward stroke, the stroke in the opposite direction, in which the volume of the displacement chamber increases, is referred to here as a return stroke. The stepped piston of the known piston pump has an annular space facing away from the displacement chamber, which limits a space in the pump bore, which is referred to here for clarity as step room. A volume change of the step room is inversely increased to the volume change of the displacement chamber, the forward stroke of the stepped piston and the return stroke of the stepped piston, the volume of the step space decreases. The stepped space of the known piston pump is an annular space surrounding the stepped piston in the pump bore, whose cross section is smaller than a cross section of the displacement space, so that the volume change of the step space opposite the displacement space is smaller during the stroke movement of the stepped piston. The step room and the displacement room communicate with a pump outlet. In a forward stroke, the stepped piston of the known piston pump displaces fluid from the displacement space into the pump outlet and sucks fluid from the pump outlet into the step room. Because the volume change of the displacement space is greater than the volume change of the step room, the piston pump displaces fluid from the pump bore into the pump outlet during the forward stroke. During the return stroke, the known piston pump draws fluid from a pump inlet through an inlet valve into the displacement chamber, whose volume increases during the return stroke, and displaces fluid from the step chamber into the pump outlet. The known piston pump thus has the advantage that it displaces fluid into the pump outlet both during a forward stroke and during a return stroke, whereby a fluid volume flow in the pump outlet is more uniform and pressure pulsations are lower. Ideally, the displacement space and the step room have cross-sectional ratios of 2: 1, so that the piston pump displaces the same amount of fluid into the pump outlet in both strokes.

Offenbarung der ErfindungDisclosure of the invention

Die erfindungsgemäße Kolbenpumpe mit den Merkmalen des Anspruchs 1 weist einen Stufenkolben mit einer oder mehreren Kolbenstufen auf. Der Stufenkolben ist vorzugsweise zylindrisch mit einer oder mehreren Durchmesserstufungen, d.h. Ringstufen, die eine oder mehrere Kolbenstufen bilden. Eine Zylinderform und Ringstufen sind jedoch nicht zwingend für die Erfindung. Der Stufenkolben ist in einer ebenfalls gestuften Pumpenbohrung angeordnet und zu einer hin- und hergehenden Hubbewegung antreibbar. Die Pumpenbohrung ist eine Innenfläche eines Zylinders, eines Pumpengehäuses, eines Hydraulikblocks oder dgl., in der der Stufenkolben verschieblich angeordnet ist. Sie kann in anderer Weise als durch Bohren hergestellt sein und ist wie der Stufenkolben vorzugsweise, jedoch nicht zwingend zylindrisch und weist eine oder mehrere Durchmesserstufen auf.The piston pump according to the invention with the features of claim 1 has a stepped piston with one or more piston stages. The stepped piston is preferably cylindrical with one or more diameter increments, ie ring stages forming one or more piston stages. A cylindrical shape and However, ring stages are not mandatory for the invention. The stepped piston is arranged in a likewise stepped pump bore and driven to a reciprocating stroke movement. The pump bore is an inner surface of a cylinder, a pump housing, a hydraulic block or the like, in which the stepped piston is slidably disposed. It may be manufactured in a manner other than by drilling and, like the stepped piston, is preferably but not necessarily cylindrical and has one or more diameter steps.

Auf einer hier als Verdrängungsseite bezeichneten Seite begrenzt der Stufenkolben einen Verdrängungsraum in der Pumpenbohrung, dessen Volumen sich bei einer Hubbewegung des Stufenkolbens abhängig von dessen Bewegungsrichtung ändert. An einer dem Verdrängungsraum abgewandten Kolbenstufe begrenzt der Stufenkolben der erfindungsgemäßen Kolbenpumpe einen Raum in der Pumpenbohrung, der hier als Stufenraum bezeichnet wird. Bei einer Hubbewegung des Stufenkolbens ändert sich auch das Volumen des Stufenraums, allerdings umgekehrt wie sich das Volumen des Verdrängungsraums ändert. Während sich bei einem hier zur eindeutigen Bezeichnung als Vorwärtshub bezeichneten Hub des Stufenkolbens das Volumen des Verdrängungsraums verkleinert vergrößert sich das Volumen des Stufenraums. Bei einem entgegengesetzten Hub des Stufenkolbens, der hier als Rückhub bezeichnet wird, vergrößert sich das Volumen des Verdrängungsraums und das Volumen des Stufenraums verkleinert sich. Ein Querschnitt des Stufenraums ist kleiner als ein Querschnitt des Verdrängungsraums, so dass die Volumenänderung des Verdrängungsraums bei einer Hubbewegung des Stufenkolbens größer als die umgekehrte Volumenänderung des Stufenraums ist. Idealerweise stehen die Querschnitte des Verdrängungsraums und des Stufenraums in einem Verhältnis von 2:1 zueinander.On a side designated here as a displacement side, the stepped piston delimits a displacement space in the pump bore whose volume changes during a stroke movement of the stepped piston depending on its direction of movement. At a piston stage facing away from the displacement chamber of the stepped piston of the piston pump according to the invention defines a space in the pump bore, which is referred to here as step room. During a stroke movement of the stepped piston, the volume of the step room also changes, but conversely how the volume of the displacement chamber changes. While the volume of the displacement chamber is reduced in the case of a stroke of the stepped piston which is referred to here as an unambiguous designation as a forward stroke, the volume of the step space increases. In an opposite stroke of the stepped piston, which is referred to here as return stroke, increases the volume of the displacement chamber and the volume of the step space decreases. A cross section of the step room is smaller than a cross section of the displacement space, so that the volume change of the displacement space during a stroke movement of the stepped piston is greater than the inverse volume change of the step room. Ideally, the cross sections of the displacement space and the step room are in a ratio of 2: 1 to each other.

Während eines Vorwärtshubs verdrängt der Stufenkolben der erfindungsgemäßen Kolbenpumpe mit seiner Verdrängungsseite Fluid aus dem Verdrängungsraum in einen Pumpenauslass und saugt zugleich eine kleinere Fluidmenge aus dem Pumpenauslass oder dem Verdrängungsraum in den Stufenraum an, so dass die Kolbenpumpe insgesamt bei einem Vorwärtshub ihres Stufenkolbens Fluid in den Pumpenauslass verdrängt. Beim Rückhub saugt die Kolbenpumpe Fluid aus einem Pumpeneinlass in den Verdrängungsraum an und verdrängt Fluid aus dem Stufenraum in den Pumpenauslass, so dass die erfindungsgemäße Kolbenpumpe auch bei einem Rückhub Fluid in den Pumpenauslass verdrängt. Bei einem Querschnittsverhältnis von 2:1 sind die Verdrängungsvolumina beim Vorwärtshub und beim Rückhub gleich groß. Durch das Verdrängen von Fluid in den Pumpenauslass sowohl beim Vorwärtshub als auch beim Rückhub weist die erfindungsgemäße Kolbenpumpe einen gleichmäßigeren Fluidstrom im Pumpenauslass auf als eine herkömmliche Kolbenpumpe ohne druck- bzw. auslassseitige Kolbenstufe und Druckpulsationen sind kleiner.During a forward stroke, the stepped piston of the piston pump of the present invention displaces fluid from the displacement space into a pump outlet and simultaneously draws a smaller amount of fluid from the pump outlet or the displacement chamber into the step room, such that the piston pump collects fluid into the pump outlet during a forward stroke of its stepped piston repressed. During the return stroke, the piston pump sucks in fluid from a pump inlet into the displacement chamber and displaces fluid from the step chamber into the pump outlet, so that the piston pump according to the invention displaces fluid into the pump outlet even during a return stroke. With a cross-sectional ratio of 2: 1, the displacement volumes for the forward stroke and the return stroke are the same. By displacing fluid into the pump outlet During both the forward stroke and the return stroke, the piston pump according to the invention has a more uniform fluid flow in the pump outlet than a conventional piston pump without pressure or outlet-side piston stage and pressure pulsations are smaller.

Die Kolbenpumpe weist ein Ventil auf, durch das der Stufenraum mit dem Pumpenauslass kommuniziert. Beim Gegenstand der Erfindung läßt sich durch das Ventil der Stufenraum bei bestimmten Betriebszuständen hydraulisch vom Pumpenauslass trennen. Beispielsweise bei hohem Gegendruck im Pumpenauslass kann das Ventil schließen und dadurch den Stufenraum hydraulisch vom Pumpenauslass trennen, so dass der Stufenkolben bei hohem Gegendruck im Pumpenauslass nicht mit der Kolbenstufe sondern nur mit der Verdrängungsseite Fluid verdrängt.The piston pump has a valve through which the step room communicates with the pump outlet. In the subject matter of the invention, the step chamber can be hydraulically separated from the pump outlet by the valve under certain operating conditions. For example, at high back pressure in the pump outlet, the valve can close and thereby hydraulically separate the step room from the pump outlet, so that the stepped piston displaces at high back pressure in the pump outlet not with the piston stage but only with the displacement side fluid.

Erfindungsgemäß ist als Ventil ein druckgesteuertes Ventil vorgesehen, das schließt, wenn ein Druck im Pumpenauslass einen Schließdruck des Ventils übersteigt oder es ist ein Differenzdruckventil vorgesehen, das schließt, wenn eine Druckdifferenz zwischen dem Pumpenauslass und dem Stufenraum einen Schließdruck des Differenzdrucks Druckventils übersteigt. Beide Ausgestaltungen trennen bei hohem Gegendruck im Pumpenauslass den Stufenraum hydraulisch vom Pumpenauslass, so dass der Stufenkolben bei hohem Gegendruck im Pumpenauslass nicht mit der Kolbenstufe fördert.According to the invention, a pressure-controlled valve is provided as a valve which closes when a pressure in the pump outlet exceeds a closing pressure of the valve or a differential pressure valve is provided which closes when a pressure difference between the pump outlet and the step room exceeds a closing pressure of the differential pressure of the pressure valve. Both configurations separate the step room hydraulically from the pump outlet in the event of a high back pressure in the pump outlet, so that the high-pressure piston in the pump outlet does not deliver with the piston stage.

Die Unteransprüche haben vorteilhafte Ausgestaltungen und Weiterbildungen der im Anspruch 1 angegebenen Erfindungen zum Gegenstand.The dependent claims have advantageous refinements and developments of the invention specified in claim 1 to the subject.

Anspruch 2 sieht ein Rückschlagventil für den Stufenraum vor, das ein Rückströmen von Fluid aus dem Pumpenauslass in den Stufenraum verhindert.Claim 2 provides a check valve for the step room, which prevents backflow of fluid from the pump outlet into the step room.

Anspruch 3 ist darauf gerichtet, dass der Pumpenkolben auch auf einer Saugseite als Stufenkolben ausgebildet ist, so dass sich auch ein Ansaugvolumenstrom der erfindungsgemäßen Kolbenpumpe auf den Vorwärtshub und den Rückhub verteilt. Diese Ausgestaltung der Erfindung hat den Vorteil eines gleichmäßigeren Volumenstroms und geringerer Druckpulsationen auch auf der Saugseite der Kolbenpumpe.Claim 3 is directed to that the pump piston is also formed on a suction side as a stepped piston, so that also distributes a Ansaugvolumenstrom the piston pump according to the invention on the forward stroke and the return stroke. This embodiment of the invention has the advantage of a more uniform volume flow and lower pressure pulsations on the suction side of the piston pump.

Kurze Beschreibung der ZeichnungShort description of the drawing

Die Erfindung wird nachfolgend anhand einer in der Zeichnung dargestellten Ausführungsform näher erläutert. Figur 1 zeigt einen Achsschnitt einer erfindungsgemäßen Kolbenpumpe. Die Zeichnung ist als schematisierte und vereinfachte Darstellung zur Erläuterung und zum Verständnis der Erfindung zu verstehen.The invention will be explained in more detail with reference to an embodiment shown in the drawing. FIG. 1 shows an axial section of a piston pump according to the invention. The drawing is as schematic and simplified To understand illustration for explanation and understanding of the invention.

Ausführungsform der ErfindungEmbodiment of the invention

Die in der Zeichnung dargestellte, erfindungsgemäße Kolbenpumpe 1 ist als Hydropumpe für eine schlupfgeregelte, hydraulische Fahrzeugbremsanlage vorgesehen, in denen solche Hydropumpen auch als Rückförderpumpen bezeichnet werden. Sie dient zu einem Druckaufbau, einer Druckerhöhung und einer Rückförderung von Bremsflüssigkeit beim Absenken von Radbremsdrücken während bzw. zu einer Schlupfregelung oder Bremsung. Die Kolbenpumpe 1 ist in einem Hydraulikblock 2 angeordnet, der auch als Pumpengehäuse aufgefasst werden kann. Bei dem Hydraulikblock 2 handelt es sich um einen quaderförmigen Metallblock, beispielsweise aus einer Aluminiumlegierung, in dem außer der Kolbenpumpe 1 weitere hydraulische Bauelemente einer Schlupfregelung angeordnet und durch eine Verbohrung des Hydraulikblocks hydraulisch miteinander verschaltet sind. Solche weitere hydraulische Bauelemente einer Schlupfregelung sind Magnetventile, Rückschlagventile, Hydrospeicher, Dämpfer. Hydraulikblöcke für Schlupfregelungen sind bekannt und werden hier nicht weiter erläutert.The illustrated in the drawing, the inventive piston pump 1 is provided as a hydraulic pump for a slip-controlled, hydraulic vehicle brake system, in which such hydraulic pumps are also referred to as return pumps. It serves to build up pressure, increase the pressure and return of brake fluid when lowering wheel brake pressures during or during slip control or braking. The piston pump 1 is arranged in a hydraulic block 2, which can also be understood as a pump housing. The hydraulic block 2 is a block-shaped metal block, for example of an aluminum alloy, in which, apart from the piston pump 1, further hydraulic components of a slip control are arranged and hydraulically interconnected by a bore of the hydraulic block. Such other hydraulic components of a slip control are solenoid valves, check valves, hydraulic accumulator, damper. Hydraulic blocks for slip control are known and will not be discussed further here.

Die Kolbenpumpe 1 weist eine hohlzylindrische Laufbuchse 3 auf, die auch als Zylinder der Kolbenpumpe 1 aufgefasst werden kann und in der ein durchmessergestufter zylindrischer Stufenkolben 4 axial verschieblich aufgenommen ist. An einem Ende des Stufenkolbens 4, das aus der Laufbuchse 3 vorsteht, ist ein drehend antreibbarer Exzenter 5 angeordnet, dessen Drehachse radial zu einer Achse des Stufenkolbens 4 verläuft. Eine Kolbenfeder 6, die in der Laufbuchse 3 angeordnet ist, sich an einem Laufbuchsenboden 7 abstützt und gegen eine dem Exzenter 5 ferne Stirnseite des Stufenkolbens 4 drückt, drückt ein exzenterseitige Ende des Stufenkolbens 4 gegen den Umfang des Exzenters 5, so dass bei einem drehenden Antrieb des Exzenters 5 der Stufenkolben 4 zu einer axial in der Laufbuchse 3 hin- und hergehenden Hubbewegung angetrieben wird.The piston pump 1 has a hollow cylindrical bushing 3, which can be considered as a cylinder of the piston pump 1 and in which a diameter-graded cylindrical stepped piston 4 is received axially displaceable. At one end of the stepped piston 4, which protrudes from the bushing 3, a rotatably driven eccentric 5 is arranged, whose axis of rotation extends radially to an axis of the stepped piston 4. A piston spring 6, which is arranged in the bushing 3, is supported on a bushing bottom 7 and presses against the eccentric 5 far end side of the stepped piston 4, presses an eccentric end of the stepped piston 4 against the circumference of the eccentric 5, so that in a rotating Drive the eccentric 5 of the stepped piston 4 is driven to an axially reciprocating in the bushing 3 reciprocating motion.

Der Stufenkolben 4 weist zwei konische Durchmesserstufungen auf, mit denen er sich in Richtung des Laufbuchsenbodens 7 erweitert. Die Durchmesserstufen werden hier als Kolbenstufen 8, 9 bezeichnet. Die Laufbuchse 3 ist innen komplementär zum Stufenkolben 4 durchmessergestuft, der Stufenkolben 4 liegt zwischen den Kolbenstufen 8, 9 und mit seinem größten Durchmesser, d. h. auf einer dem Exzenter 5 abgewandten Seite der dem Exzenter 5 fernen und größeren Kolbenstufe 8 innen an zylindrischen Innenflächen der Laufbuchse 3 an. Eine Innenseite der Laufbuchse 3, die, wie bereits gesagt, auch als Zylinder aufgefasst werden kann, kann unabhängig von der Art ihrer Herstellung auch als Pumpenbohrung 10 aufgefasst werden. Zwischen den Kolbenstufen 8, 9 und auf der dem Exzenter 5 abgewandten Seite der größeren, dem Exzenter 5 fernen Kolbenstufe 8 ist der Stufenkolben 4 mit Dichtringen 11 in der Pumpenbohrung 10 abgedichtet.The stepped piston 4 has two conical diameter increments, with which it widens in the direction of the bush bottom 7. The diameter steps are referred to here as piston stages 8, 9. The bushing 3 is inside diameter-matched to the stepped piston 4, the stepped piston 4 is located between the piston stages 8, 9 and with its largest diameter, ie on a side facing away from the eccentric 5 of the eccentric 5 distant and larger piston stage 8 inside cylindrical inner surfaces of the liner 3 on. An inner side of the bushing 3, which, as already mentioned, can also be understood as a cylinder, can be regarded as a pump bore 10, regardless of the manner of its manufacture. Between the piston stages 8, 9 and on the side facing away from the eccentric 5 of the larger, the eccentric 5 distant piston stage 8 of the stepped piston 4 is sealed with sealing rings 11 in the pump bore 10.

Außerhalb der Laufbuchse 3 wird der Stufenkolben 4 der Kolbenpumpe 1 von einer Bohrung radial gekreuzt, die einen Pumpeneinlass 12 bzw. eine Saugseite der Kolbenpumpe 1 bildet. Durch achsparallele Durchlässe 13 am Umfang des Stufenkolbens 4 kommuniziert der Pumpeneinlass 12 mit einem ringförmigen Saugraum 14 der Kolbenpumpe 1, der in der Laufbuchse 3 zwischen einer exzenterseitigen Zylinderstufe 15 und der exzenterseitigen Kolbenstufe 9 gebildet ist.Outside the bushing 3, the stepped piston 4 of the piston pump 1 is radially crossed by a bore which forms a pump inlet 12 and a suction side of the piston pump 1. By axially parallel passages 13 on the circumference of the stepped piston 4, the pump inlet 12 communicates with an annular suction chamber 14 of the piston pump 1, which is formed in the bushing 3 between an eccentric cylinder stage 15 and the eccentric piston stage 9.

Der Stufenkolben 4 weist ein axiales Sackloch 16 auf, das an einer dem Exzenter 5 fernen Stirnseite des Stufenkolbens 4 mündet, die hier als Verdrängungsseite 17 bezeichnet wird. Das axiale Sackloch 16 wird von Radialbohrungen 18 gekreuzt, durch die das Sackloch 16 mit dem Pumpenanlass 12 kommuniziert. An einer Mündung des Sacklochs 16, die einen Ventilsitz 19 bildet, ist ein Rückschlagventil als Einlassventil 20 der Kolbenpumpe 1 angeordnet. Das Einlassventil 20 weist eine Kugel als Absperrkörper 21 auf, der von einer Ventilfeder 22 gegen den Ventilsitz 19 beaufschlagt wird. Der Absperrkörper 21 und die Ventilfeder 22 sind in einem zylinderrohrförmigen Ventilkäfig 23 aufgenommen, der einen Flansch 24 aufweist, der von der Kolbenfeder 6 an der Verdrängungsseite 17 des Stufenkolbens 4 gehalten wird. Zwischen der Verdrängungsseite 17 des Stufenkolbens 4 und dem Zylinderboden 7 weist die Kolbenpumpe 1 einen Verdrängungsraum 25 in der Laufbuchse 3 auf, dessen Volumen sich bei der hin- und hergehenden Hubbewegung des Stufenkolbens 4 abwechselnd verkleinert und vergrößert. Eine Bewegung des Stufenkolbens 4 weg vom Exzenter 5 wird hier als Vorwärtshub bezeichnet, sie verkleinert das Volumen des Verdrängungsraums 25. Eine entgegengesetzte Bewegung des Stufenkolbens 4 in Richtung des Exzenters 5 wird hier als Rückhub bezeichnet und vergrößert das Volumen des Verdrängungsraums 25. Durch die Volumenvergrößerung des Verdrängungsraums 25 beim Rückhub des Stufenkolbens 4 saugt die Kolbenpumpe 1 Bremsflüssigkeit aus dem Einlass 12 durch die einander kreuzenden Radialbohrungen 18, das axiale Sackloch 16 und das sich öffnende Einlassventil 20 in den Verdrängungsraum 25 an. Zugleich verkleinert sich während des Rückhubs des Stufenkolbens 4 ein Volumen des Saugraums 14, wobei der Stufenkolben 4 mit der exzenterseitigen Kolbenstufe 9 Bremsflüssigkeit aus dem Saugraum 14 durch die Durchlässe 13 in den Pumpeneinlass 12 verdrängt. Das verringert ein Ansaugvolumen während des Rückhubs des Pumpenkolbens 4 durch den Pumpeneinlass 12. Weil eine Querschnittsfläche des Saugraums 14 kleiner als eine Querschnittsfläche des Verdrängungsraums 25 ist, ist das während des Rückhubs aus dem Saugraum 14 in den Pumpeneinlass 12 verdrängte Bremsflüssigkeitsvolumen kleiner als das in den Verdrängungsraum 25 angesaugte Bremsflüssigkeitsvolumen, so dass sich immer noch ein durch den Pumpeneinlass 12 angesaugtes Bremsflüssigkeitsvolumen ergibt. Idealerweise weisen die Querschnittsflächen des Verdrängungsraums 25 und des Saugraums 14 ein Verhältnis von 2:1, so dass bei einem Rückhub der Stufenkolben 4 halb so viel Bremsflüssigkeit aus dem Saugraum 14 in den Pumpeneinlass 12 verdrängt wie in den Verdrängungsraum 25 ansaugt wird.The stepped piston 4 has an axial blind hole 16, which opens at a the eccentric 5 distant end side of the stepped piston 4, which is referred to here as the displacement side 17. The axial blind hole 16 is crossed by radial bores 18, through which the blind hole 16 communicates with the pumping event 12. At a mouth of the blind hole 16, which forms a valve seat 19, a check valve is arranged as the inlet valve 20 of the piston pump 1. The inlet valve 20 has a ball as a shut-off body 21, which is acted upon by a valve spring 22 against the valve seat 19. The shut-off body 21 and the valve spring 22 are received in a cylindrical tubular valve cage 23 which has a flange 24 which is held by the piston spring 6 on the displacement side 17 of the stepped piston 4. Between the displacement side 17 of the stepped piston 4 and the cylinder bottom 7, the piston pump 1 has a displacement space 25 in the bushing 3, the volume of which alternately decreases and increases in the reciprocating stroke movement of the stepped piston 4. A movement of the stepped piston 4 away from the eccentric 5 is referred to here as a forward stroke, it reduces the Volume of the displacement chamber 25. An opposite movement of the stepped piston 4 in the direction of the eccentric 5 is referred to here as a return stroke and increases the volume of the displacement chamber 25. Due to the increase in volume of the displacement chamber 25 during the return stroke of the stepped piston 4, the piston pump 1 sucks brake fluid from the inlet 12 the intersecting radial bores 18, the axial blind hole 16 and the opening inlet valve 20 in the displacement chamber 25 at. At the same time, a volume of the suction chamber 14 decreases during the return stroke of the stepped piston 4, the stepped piston 4 displacing brake fluid from the suction chamber 14 through the passages 13 into the pump inlet 12 with the eccentric piston stage 9. This reduces a suction volume during the return stroke of the pump piston 4 through the pump inlet 12. Because a cross-sectional area of the suction space 14 is smaller than a cross-sectional area of the displacement space 25, the volume of brake fluid displaced from the suction space 14 into the pump inlet 12 during the return stroke is smaller than that in FIGS Displacement space 25 sucked brake fluid volume, so that there is still a sucked through the pump inlet 12 brake fluid volume. Ideally, the cross-sectional areas of the displacement chamber 25 and the suction chamber 14 have a ratio of 2: 1, so that in a return stroke of the stepped piston 4 half as much brake fluid from the suction chamber 14 into the pump inlet 12 displaces as is sucked into the displacement chamber 25.

Beim Vorwärtshub des Stufenkolbens 4 ist das Einlassventil 20 geschlossen und das Volumen des Saugraums 14 vergrößert sich, so dass die Kolbenpumpe 1 auch während des Vorwärtshubs des Stufenkolbens 4 Bremsflüssigkeit durch den Pumpeneinlass 12 ansaugt. Beträgt das Querschnittsverhältnis des Verdrängungsraums 25 und des Saugraums 14 2:1, sind die strömenden Bremsflüssigkeitsvolumina bei einem Vorwärtshub und bei einem Rückhub des Stufenkolbens 4 durch den Pumpeneinlass 12 gleich groß. Das Ansaugen und Verdrängen von Bremsflüssigkeit im Saugraum 14 bewirkt ein Ansaugen von Bremsflüssigkeit in erläuterter Weise sowohl beim Vorwärtshub als auch beim Rückhub und einen infolge dessen gleichmäßigeren Ansaugvolumenstrom und geringere Druckpulsationen auf der Saugseite der Kolbenpumpe 1.During the forward stroke of the stepped piston 4, the inlet valve 20 is closed and the volume of the suction chamber 14 increases, so that the piston pump 1 also draws brake fluid through the pump inlet 12 during the forward stroke of the stepped piston 4. If the cross-sectional ratio of the displacement chamber 25 and the suction chamber 14 is 2: 1, the flowing brake fluid volumes during a forward stroke and a return stroke of the stepped piston 4 through the pump inlet 12 are equal. The suction and displacement of brake fluid in the suction chamber 14 causes an intake of brake fluid in the manner explained both in the forward stroke and the return stroke and a consequent more uniform intake flow and lower pressure pulsations on the suction side of the piston pump. 1

Für einen Auslass weist der Laufbuchsenboden 7 ein Mittelloch 26 auf, dessen äußere Mündung einen Ventilsitz eines Auslassventils 27 der Kolbenpumpe 1 bildet. Das Auslassventil 27 ist in der dargestellten und beschriebenen Ausführungsform ebenso wie das Einlassventil 20 als Rückschlagventil ausgebildet und weist eine Kugel als Absperrkörper 28 auf, der von einer Ventilfeder 29 von außen gegen die den Ventilsitz bildende Mündung des Mittellochs 26 im Laufbuchsenboden 7 beaufschlagt wird. Der Absperrkörper 28 und die Ventilfeder 29 sind in einem Sackloch 30 in einem Pumpendeckel 30 angeordnet, der in den Hydraulikblock 2 druckdicht eingepresst oder verstemmt ist. Zwischen dem Pumpendeckel 30 und dem Laufbuchsenboden 7 besteht ein Radialspalt 32, der in einen die Laufbuchse 3 umschließenden Ringspalt 33 übergeht, in den eine Radialbohrung mündet, die einen Pumpenauslass 34 bildet, der auch als Druckseite der Kolbenpumpe 1 aufgefasst werden kann. Bei einem Vorwärtshub verkleinert der Stufenkolben 4 das Volumen des Verdrängungsraums 25 und verdrängt Bremsflüssigkeit aus dem Verdrängungsraum 25 durch das sich öffnende Auslassventil 27 in den Radialspalt 32, aus dem die Bremsflüssigkeit durch den Ringspalt 33 in den Pumpenauslass 34 strömt.For an outlet, the bush bottom 7 has a center hole 26, the outer mouth of which is a valve seat of an outlet valve 27 of the piston pump 1 forms. The outlet valve 27 is formed in the illustrated and described embodiment, as well as the inlet valve 20 as a check valve and has a ball as shut-off 28, which is acted upon by a valve spring 29 from the outside against the valve seat forming the mouth of the center hole 26 in the bush bottom 7. The shut-off body 28 and the valve spring 29 are arranged in a blind hole 30 in a pump cover 30, which is pressure-tight pressed or caulked in the hydraulic block 2. Between the pump cover 30 and the bush bottom 7, there is a radial gap 32, which merges into an annular gap 33 enclosing the bushing 3, into which a radial bore opens which forms a pump outlet 34, which can also be regarded as the pressure side of the piston pump 1. In a forward stroke of the stepped piston 4 reduces the volume of the displacement chamber 25 and displaces brake fluid from the displacement chamber 25 through the opening exhaust valve 27 into the radial gap 32, from which the brake fluid flows through the annular gap 33 in the pump outlet 34.

Zwischen der exzenterfernen Kolbenstufe 8 und einer zugeordneten Ringstufe 35 im Innern der Laufbuchse 3 begrenzt der Stufenkolben 4 einen Ringraum in der Laufbuchse 3, der hier als Stufenraum 36 bezeichnet wird. Ein Volumen des Stufenraums 36 vergrößert sich bei einem Vorwärtshub des Stufenkolbens 4, bei dem sich das Volumen des Verdrängungsraums 25 verkleinert, und das Volumen des Stufenraums 36 verkleinert sich beim Rückhub des Stufenkolbens 4, bei dem sich das Volumen des Verdrängungsraums 25 vergrößert. Weil eine Querschnittsfläche des ringförmigen Stufenraums 36 kleiner als die Querschnittsfläche des Verdrängungsraums 25 ist, ist die Volumenänderung des Stufenraums 36 bei einem Hub des Stufenkolbens 4 kleiner als die umgekehrte Volumenänderung des Verdrängungsraums 25. Auch hier gilt idealerweise ein Querschnittsverhältnis von 2:1, so dass die Volumenänderungen des Verdrängungsraums 25 und des Stufenraums 36 in einem Verhältnis von 2:1 stehen.Between the eccentric remote piston stage 8 and an associated annular step 35 in the interior of the bushing 3, the stepped piston 4 defines an annular space in the bushing 3, which is referred to here as step room 36. A volume of the step room 36 increases in a forward stroke of the stepped piston 4, in which the volume of the displacement chamber 25 decreases, and the volume of the step room 36 decreases during the return stroke of the stepped piston 4, in which the volume of the displacement chamber 25 increases. Because a cross-sectional area of the annular step space 36 is smaller than the cross-sectional area of the displacement space 25, the volume change of the step space 36 at a stroke of the stepped piston 4 is smaller than the inverse volume change of the displacement space 25. Again, ideally, a cross-sectional ratio of 2: 1, so that the volume changes of the displacement space 25 and the step room 36 are in a ratio of 2: 1.

Der Stufenraum 36 kommuniziert durch ein Ventil 37 mit dem die Laufbuchse 3 umschließenden Ringspalt 33 und dadurch mit dem Pumpenauslass 34. Verdrängt während eines Vorwärtshubs der Stufenkolben 4 Bremsflüssigkeit aus dem Verdrängungsraum 25 in den Pumpenauslass 34 saugt die Kolbenpumpe 1 Bremsflüssigkeit aus dem Ringspalt 33 bzw. dem Pumpenauslass 34 in den Stufenraum 36. Das bei einem Vorwärtshub in den Stufenraum 36 angesaugte Bremsflüssigkeitsvolumen ist kleiner als das gleichzeitig aus dem Verdrängungsraum 25 verdrängte Bremsflüssigkeitsvolumen, so dass die Kolbenpumpe 1 insgesamt Bremsflüssigkeit in den Pumpenauslass 34 verdrängt.The step room 36 communicates through a valve 37 with the annular bushing 33 enclosing the bushing 3 and thereby with the pump outlet 34. During a forward stroke of the stepped piston 4, brake fluid displaces from the displacement space 25 into the pump outlet 34, the piston pump 1 sucks brake fluid out of the annular gap 33 or the pump outlet 34 in the step room 36. The sucked in a forward stroke in the step room 36 Brake fluid volume is smaller than the simultaneously displaced from the displacement chamber 25 brake fluid volume, so that the piston pump 1 displaces a total of brake fluid into the pump outlet 34.

Bei einem Rückhub des Stufenkolbens 4 ist das Auslassventil 27 geschlossen und der Stufenkolben 4 verdrängt Bremsflüssigkeit aus dem sich beim Rückhub verkleinernden Stufenraum 36 in den Pumpenauslass 34, so dass die Kolbenpumpe 1 auch beim Rückhub Bremsflüssigkeit in den Pumpenauslass 34 verdrängt. Im Idealfall ist die bei einem Vorwärtshub des Stufenkolbens 4 aus dem Verdrängungsraum 25 verdrängte Bremsflüssigkeitsmenge doppelt so groß wie die in den Stufenraum 36 angesaugte Bremsflüssigkeitsmenge, wodurch die bei einem Vorwärtshub und die bei einem Rückhub von der Kolbenpumpe 1 insgesamt in den Pumpenauslass 34 verdrängte Bremsflüssigkeitsmenge gleich ist. Aufgrund des Stufenraums 36 bzw. der auslass- bzw. druckseitig gestuften Ausbildung des Stufenkolbens 4 weist die Kolbenpumpe 1 einen gleichmäßigeren Auslassvolumenstrom auf, der über den Vorwärtshub und den Rückhub verteilt ist; Druckpulsationen im Pumpenauslass 34 und damit auf der Druckseite der Kolbenpumpe 1 sind verringert.During a return stroke of the stepped piston 4, the outlet valve 27 is closed and the stepped piston 4 displaces brake fluid from the step space 36, which reduces the return stroke, into the pump outlet 34, so that the piston pump 1 also displaces brake fluid into the pump outlet 34 during the return stroke. Ideally, the amount of brake fluid displaced from the displacement space 25 during a forward stroke of the stepped piston 4 is twice as large as the amount of brake fluid drawn in the step space 36, thereby equaling the amount of brake fluid displaced in the pump outlet 34 during a forward stroke and the return stroke from the piston pump 1 as a whole is. Due to the step space 36 and the outlet or pressure side stepped design of the stepped piston 4, the piston pump 1 has a more uniform outlet volume flow, which is distributed over the forward stroke and the return stroke; Pressure pulsations in the pump outlet 34 and thus on the pressure side of the piston pump 1 are reduced.

In der dargestellten und beschriebenen Ausführungsform der Erfindung ist das dem Stufenraum 36 zugeordnete Ventil 37 ein Rückschlagventil bzw. ein Differenzdruckventil, das von einer Ventilfeder 38 offengehalten wird und das schließt, wenn eine Druckdifferenz zwischen dem Pumpenauslass 34 und dem Stufenraum 36 einen Schließdruck des Ventils 37 übersteigt. Allgemein kann das Ventil 37 auch als druckgesteuertes Ventil aufgefasst werden. Der Schließdruck des Ventils 37 beträgt beispielsweise 40 bar. Übersteigt der Differenzdruck zwischen dem Pumpenauslass 34 und dem Stufenraum 36 den Schließdruck des Ventils 37, schließt das Ventil 37 und trennt dadurch den Stufenraum 36 hydraulisch von Pumpenauslass 34. Dadurch arbeitet die exzenterferne Kolbenstufe 8 des Stufenkolbens 4 maximal gegen den Schließdruck des Ventils 37, was eine Kraft zum Bewegen des Stufenkolbens 4 in der Rückhubrichtung, die von der Kolbenfeder 6 aufgebracht werden muss, begrenzt.In the illustrated and described embodiment of the invention, the valve 37 associated with the step chamber 36 is a check valve or a differential pressure valve, which is held open by a valve spring 38 and closes when a pressure difference between the pump outlet 34 and the step room 36 a closing pressure of the valve 37th exceeds. In general, the valve 37 can also be understood as a pressure-controlled valve. The closing pressure of the valve 37 is for example 40 bar. If the differential pressure between the pump outlet 34 and the step room 36 exceeds the closing pressure of the valve 37, the valve 37 closes and thereby hydraulically separates the step room 36 from the pump outlet 34. As a result, the eccentric remote piston stage 8 of the stepped piston 4 works maximally against the closing pressure of the valve 37, which a force for moving the stepped piston 4 in the return stroke, which must be applied by the piston spring 6 limited.

Claims (3)

  1. Piston pump with a stepped piston (4) which has a piston step (8, 9) and can be driven in a reciprocating stroke movement in a stepped piston bore (10), wherein the piston pump (1) on a displacement side (17) of the stepped piston (4) comprises a displacement chamber (25) in the pump bore (10) which is delimited on one side by the stepped piston (4) and the volume of which reduces on a forward stroke of the stepped piston (4) and enlarges on a return stroke the stepped piston (4) in the opposite direction, wherein the piston pump (1) on a side of a piston step (8) of the stepped piston (4) facing away from the displacement chamber (25) comprises a step chamber (36) in the pump bore (10), the cross-section of which is smaller than a cross-section of the displacement chamber (25) and the volume of which enlarges on a forward stroke of the stepped piston (4) and reduces on a return stroke, and wherein the displacement chamber (25) and the step chamber (36) communicate with a pump outlet (34), wherein the step chamber (36) communicates with the pump outlet (34) via a valve (37), characterized in that the valve (37) is pressure-controlled and closes when a pressure in the pump outlet (34) exceeds a closing pressure of the valve (37) or in that the valve (37) is a differential pressure valve which closes when a pressure difference between the pump outlet (34) and the step chamber (36) exceeds a closing pressure of the differential pressure valve.
  2. Piston pump according to Claim 1, characterized in that the valve (37) is a check valve.
  3. Piston pump according to Claim 1, characterized in that the stepped piston (4) is configured as a stepped piston also on a suction side so that the piston pump (1) sucks in fluid in both stroke directions.
EP15767111.6A 2014-09-19 2015-09-09 Piston pump Active EP3194772B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014218915.2A DE102014218915A1 (en) 2014-09-19 2014-09-19 piston pump
PCT/EP2015/070562 WO2016041821A1 (en) 2014-09-19 2015-09-09 Piston pump

Publications (2)

Publication Number Publication Date
EP3194772A1 EP3194772A1 (en) 2017-07-26
EP3194772B1 true EP3194772B1 (en) 2018-12-26

Family

ID=54151255

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15767111.6A Active EP3194772B1 (en) 2014-09-19 2015-09-09 Piston pump

Country Status (7)

Country Link
US (1) US10385833B2 (en)
EP (1) EP3194772B1 (en)
JP (1) JP6453471B2 (en)
KR (1) KR102366884B1 (en)
CN (1) CN106715900B (en)
DE (1) DE102014218915A1 (en)
WO (1) WO2016041821A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO20171100A1 (en) * 2017-07-04 2019-01-07 Rsm Imagineering As A dual-acting pressure boosting liquid partition device, system, fleet and use
CN110481528B (en) * 2018-10-24 2020-11-06 京西重工(上海)有限公司 Hydraulic control unit
US11668291B2 (en) * 2021-09-29 2023-06-06 Chipmast Autotronix Co., Ltd. Oil-scavenge pump and method for assembling the same
US11781541B2 (en) * 2021-09-29 2023-10-10 Chipmast Autotronix Co., Ltd. Oil-scavenge pump and method for assembling the same
CN115143096B (en) * 2022-09-06 2022-12-02 万向钱潮股份公司 Plunger pump for automotive electronics stable control system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8522466D0 (en) * 1985-09-11 1985-10-16 British Syphon Ind Plc Liquid dispence system
DE4102364A1 (en) 1991-01-28 1992-07-30 Teves Gmbh Alfred Piston pump unit - has stepped piston forming two working chambers
DE19813302A1 (en) * 1998-03-26 1999-09-30 Bosch Gmbh Robert Piston pump or brake system with piston pump
DE19924774A1 (en) * 1999-05-29 2000-11-30 Bosch Gmbh Robert Piston pump
DE102004061810A1 (en) 2004-12-22 2006-07-06 Robert Bosch Gmbh Piston pump with at least one stepped piston element
DE102006051589A1 (en) * 2006-11-02 2008-05-08 Robert Bosch Gmbh piston pump
DE102006061462B4 (en) * 2006-12-23 2015-11-12 Continental Teves Ag & Co. Ohg Electrohydraulic pump system
DE102010063544A1 (en) 2010-12-20 2012-06-21 Robert Bosch Gmbh Piston pump, in particular for a hydraulic vehicle brake system
CN103670989A (en) * 2014-01-13 2014-03-26 四川大学 Opposed piston pump

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
KR102366884B1 (en) 2022-02-25
DE102014218915A1 (en) 2016-04-07
WO2016041821A1 (en) 2016-03-24
CN106715900B (en) 2019-05-31
US10385833B2 (en) 2019-08-20
CN106715900A (en) 2017-05-24
EP3194772A1 (en) 2017-07-26
JP6453471B2 (en) 2019-01-16
JP2017526864A (en) 2017-09-14
KR20170058372A (en) 2017-05-26
US20170291586A1 (en) 2017-10-12

Similar Documents

Publication Publication Date Title
EP3194772B1 (en) Piston pump
DE19752545B4 (en) piston pump
EP0961882B1 (en) Piston pump
EP0932762B1 (en) Tubular piston produced by cold forming and closure plug for pump with radial pistons
WO2000073658A1 (en) Piston pump
DE19739904A1 (en) Check valve, especially for a piston pump
DE19750851A1 (en) Piston pump
EP1623118B1 (en) Reciprocating pump
DE102005042197A1 (en) Piston pump with improved piston
DE19732791A1 (en) Piston pump
EP2205865B1 (en) Piston pump for conveying a fluid and associated braking system
DE10022811A1 (en) Check valve for reciprocating pump for vehicle brake unit; is made in one piece and has coil spring with connection element and foot ring arranged at each end formed as one piece with spring
DE102005017131A1 (en) Piston pump for slip-regulated vehicle brake unit has valve cage with inlet valve and shoulder with support for piston seal which has sealing section extending over shoulder into pressure chamber
DE102009054520A1 (en) piston pump
WO2012034739A1 (en) Method for producing a piston pump and piston pump
DE102005045937B4 (en) Piston pump for a slip control vehicle brake system
DE19831450A1 (en) Piston pump
DE10022808A1 (en) Check valve for reciprocating pump for vehicle brake unit; has valve seat part with valve closure body pressed against valve seat by spring clip fitting over valve closure body
DE10042369A1 (en) piston pump
DE102007049152A1 (en) Hydraulic piston pump
DE2318080A1 (en) PRESSURE MEDIUM PUMP
EP1926909B1 (en) Piston pump with reduced clearance volume
DE102004035452A1 (en) Piston pump with improved pressure build-up dynamics
EP2655881A1 (en) Piston pump having a cylinder barrel
EP1090230A1 (en) Piston pump

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170419

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180925

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1081791

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015007458

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190326

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190326

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20181226

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190426

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190426

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015007458

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190909

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190909

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150909

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1081791

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20220927

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20220920

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231124

Year of fee payment: 9