EP3193114A1 - Verfahren zur gewinnung eines luftprodukts in einer luftzerlegungsanlage und luftzerlegungsanlage - Google Patents

Verfahren zur gewinnung eines luftprodukts in einer luftzerlegungsanlage und luftzerlegungsanlage Download PDF

Info

Publication number
EP3193114A1
EP3193114A1 EP17020003.4A EP17020003A EP3193114A1 EP 3193114 A1 EP3193114 A1 EP 3193114A1 EP 17020003 A EP17020003 A EP 17020003A EP 3193114 A1 EP3193114 A1 EP 3193114A1
Authority
EP
European Patent Office
Prior art keywords
tank
cryogenic liquid
period
air
during
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP17020003.4A
Other languages
English (en)
French (fr)
Other versions
EP3193114B1 (de
Inventor
Stefan Lochner
Ralph Spöri
Christian Zimmermann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Publication of EP3193114A1 publication Critical patent/EP3193114A1/de
Application granted granted Critical
Publication of EP3193114B1 publication Critical patent/EP3193114B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04848Control strategy, e.g. advanced process control or dynamic modeling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/04084Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04018Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of main feed air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04048Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/04096Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of argon or argon enriched stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04163Hot end purification of the feed air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04309Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04321Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04381Details relating to the work expansion, e.g. process parameter etc. using work extraction by mechanical coupling of compression and expansion so-called companders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/0443A main column system not otherwise provided, e.g. a modified double column flowsheet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04472Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages
    • F25J3/04478Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages for controlling purposes, e.g. start-up or back-up procedures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04472Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages
    • F25J3/04478Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages for controlling purposes, e.g. start-up or back-up procedures
    • F25J3/04484Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages for controlling purposes, e.g. start-up or back-up procedures for purity control during steady state operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04472Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages
    • F25J3/04496Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages for compensating variable air feed or variable product demand by alternating between periods of liquid storage and liquid assist
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04787Heat exchange, e.g. main heat exchange line; Subcooler, external reboiler-condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04872Vertical layout of cold equipments within in the cold box, e.g. columns, heat exchangers etc.
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/0489Modularity and arrangement of parts of the air fractionation unit, in particular of the cold box, e.g. pre-fabrication, assembling and erection, dimensions, horizontal layout "plot"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/30Processes or apparatus using separation by rectification using a side column in a single pressure column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/90Details relating to column internals, e.g. structured packing, gas or liquid distribution
    • F25J2200/94Details relating to the withdrawal point
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/40Air or oxygen enriched air, i.e. generally less than 30mol% of O2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/42Nitrogen or special cases, e.g. multiple or low purity N2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/50Oxygen or special cases, e.g. isotope-mixtures or low purity O2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/50Oxygen or special cases, e.g. isotope-mixtures or low purity O2
    • F25J2215/52Oxygen production with multiple purity O2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/50Oxygen or special cases, e.g. isotope-mixtures or low purity O2
    • F25J2215/56Ultra high purity oxygen, i.e. generally more than 99,9% O2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/58Argon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/02Separating impurities in general from the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/50Separating low boiling, i.e. more volatile components from oxygen, e.g. N2, Ar
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/08Cold compressor, i.e. suction of the gas at cryogenic temperature and generally without afterstage-cooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/40Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/50Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/50Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/02Recycle of a stream in general, e.g. a by-pass stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/02Bath type boiler-condenser using thermo-siphon effect, e.g. with natural or forced circulation or pool boiling, i.e. core-in-kettle heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/20Boiler-condenser with multiple exchanger cores in parallel or with multiple re-boiling or condensing streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2280/00Control of the process or apparatus
    • F25J2280/20Control for stopping, deriming or defrosting after an emergency shut-down of the installation or for back up system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/12Particular process parameters like pressure, temperature, ratios
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/34Details about subcooling of liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/60Details about pipelines, i.e. network, for feed or product distribution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/62Details of storing a fluid in a tank

Definitions

  • the invention relates to a method for obtaining an air product in an air separation plant and to an air separation plant configured for carrying out such a method.
  • cryogenic separation of air in air separation plants is known and, for example at H.-W. Haring (ed.), Industrial Gases Processing, Wiley-VCH, 2006 , in particular Section 2.2.5, "Cryogenic Rectification" described.
  • pressurized oxygen is needed, for the production of which air separation plants with so-called internal compression can be used.
  • air separation plants are also described, for example, in Häring and with reference to the local FIG. 2 .3A explained.
  • a cryogenic liquid in particular liquid oxygen
  • the internal compression has, among other things, energy advantages compared to a subsequent compression of an already gaseous product.
  • cryogenic liquid is brought from the liquid state into a supercritical state.
  • the term "pseudo-vaporization” or “liquefaction” is used.
  • the high-pressure heat carrier is liquefied (or possibly subjected to a "pseudo-liquefaction" when it is under supercritical pressure).
  • the heat transfer medium is frequently formed by a part of the air supplied to the air separation plant.
  • an air product can also be stored by means of a partial flow of compressed feed air in a tank system and brought there to pressure.
  • the present invention proposes a method for obtaining an air product in an air separation plant and an air separation plant equipped for carrying out such a method with the features of the independent patent claims.
  • Preferred embodiments are subject of the dependent claims and the following description.
  • pressure level and "temperature level” to characterize pressures and temperatures, which is to express that pressures and temperatures in a given equipment need not be used in the form of exact pressure or temperature values to achieve this to realize innovative concept.
  • pressures and temperatures typically range in certain ranges that are, for example, ⁇ 1%, 5%, 10%, 20% or even 50% about an average.
  • Corresponding pressure levels and temperature levels can be in disjoint areas or in areas that overlap one another.
  • pressure levels include unavoidable pressure losses or expected pressure drops, for example due to cooling effects or Line losses, a.
  • the pressure levels indicated here in bar are absolute pressures.
  • the present invention proposes a method of recovering an air product by means of an air separation plant having a distillation column system and a tank system having a first tank and a second tank.
  • a cryogenic liquid for example pure oxygen or one of the other air products explained above, is removed from the distillation column system and stored at least partly in liquid form in the tank system. After removal from the tank system, the cryogenic liquid may be used as the air product.
  • a tank system with a first and a second tank is used, which are charged in alternating operation with the cryogenic liquid.
  • the cryogenic liquid is supplied to the first tank and not to the second tank during a first period and to the second tank and not to the first tank during a second period.
  • the alternate operation further includes taking the cryogenic liquid from the first tank rather than the first tank during the first time period and the first tank and not the second tank during the second time period. It may also be provided to use more than two tanks, which are subjected to a corresponding cycle. However, these always include a first and a second tank and a corresponding supply or withdrawal in a first or second period.
  • the present invention therefore proposes to use as the tank system a tank system with an additional third tank, wherein the cryogenic liquid, which is taken during the first period of the second tank and during the second period of the first tank, at least partially (and in particular at least temporarily) is transferred unheated in the third tank. It may therefore be provided in this context, only a part of the cryogenic liquid, which is taken during the first period of the second tank and during the second period of the first tank unheated transferred to the third tank and another part of the cryogenic liquid directly, as explained below, via a by-pass as an air product or to use in another form.
  • the third tank serves as a template or buffer storage, which is filled with a suitable amount of cryogenic liquid, which is sufficient to bridge the previously explained periods.
  • a transfer to the third tank is "unheated" when the cryogenic liquid, which is taken during the first period of the second tank and during the second period of the first tank, at the removal temperature level of the second or first tank is transferred to the third tank.
  • the cryogenic liquid is not subjected to active temperature-increasing measures or heating.
  • the cryogenic liquid is thus led in particular by no heat exchanger, heater, countercurrent, etc. for heating.
  • temperature level this does not exclude that, due to unavoidable heat inputs, there is a certain, but not active, heating.
  • the term "temperature level” takes this into account, so that the aforementioned removal temperature level can still be within the specified extent below a feed temperature level in the third tank.
  • the unheated transfer to the third tank is therefore particularly to avoid evaporation losses.
  • the cryogenic liquid stored in the first and second tanks is no longer or not exclusively discharged therefrom and used as the air product. Rather, the air product is provided, at least in part, using the cryogenic liquid transferred unheatedly into the third tank, or a portion thereof.
  • cryogenic liquid that has been unheatedly transferred to the third tank is used to provide the air product.
  • Part of the cryogenic liquid transferred unheated into the third tank can be taken out of the third tank and used in a different way. It is also possible that, for example, the portion of the cryogenic liquid evaporated in the respective tanks is not used to provide the air product.
  • cryogenic liquid used to provide the air product is taken from the third tank in liquid state from the third tank, evaporated or transferred from the liquid to the supercritical state and discharged from the air separation plant, and / or that the cryogenic liquid used to provide the air product is taken out of the third tank in the liquid state and stored liquid in a fourth tank in a liquid state.
  • the fourth tank can be part of the tank system with the first to third tank, but it can also be provided separately, for example as part of another tank system.
  • the fourth tank may be located within the air separation plant, for example within a cold box, or within a thermally insulating outer shell which also includes the first to third tanks.
  • the fourth tank can also be arranged outside the air separation plant.
  • the air product may thus be a gaseous or supercritical air product and / or a liquid air product.
  • the gaseous air product can also be stored inside or outside the air separation plant, in particular in a corresponding gas tank.
  • the cryogenic liquid is removed from the distillation column system of the air separation plant at a pressure level on which a corresponding column of the distillation column system, in particular a pure oxygen column, hereinafter also referred to as "second separation column", is operated.
  • the cryogenic liquid is supplied to the first tank and the second tank of the tank system at a pressure level referred to herein as a "first" pressure level.
  • the first pressure level may correspond to the pressure level at which the cryogenic liquid was withdrawn from the distillation column system if no pressure-influencing devices such as pumps are arranged between the separation column and the first and second tanks, respectively. If, for example, a corresponding pump is used, the first pressure level can also be above the pressure level of the separation column.
  • the cryogenic liquid is supplied to the third tank of the tank system at a second, higher pressure level (storage pressure), which can depend in particular on the pressure (product pressure) at which the air product is to be provided.
  • the storage pressure is advantageously slightly above the product pressure, so that a discharge is possible without additional pumps or compressors.
  • the second pressure level can be achieved, in particular, by carrying out a pressure build-up evaporation in the first and / or the second tank.
  • the present invention through the use of the illustrated tank system and pressure increase, combines the advantages of a traditional internal compression process, namely the continuous production of the air product, with the advantages of improved analysis capability. Through this improved analysis option, a high purity of the air product can be guaranteed and documented at any time.
  • evaporation or conversion to the supercritical state can be carried out within the air separation plant used, for example using its main heat exchanger.
  • a backup system with a standby evaporator that does not draw heat of vaporization from the air separation plant can also be used.
  • cryogenic liquid can also be discharged from the third tank (or via the bypass lines from the first and the second tank) in liquid form from the air separation plant, in liquid form, for example in a tank. transported to a consumer and used there in liquid or (after evaporation) gaseous state.
  • the first pressure level ie the pressure level at which the cryogenic liquid is supplied to the first and the second tank, is approximately 1.3 to 4 bar.
  • the second pressure level is, depending on the requirement, at 2 to 100 bar, but above the first pressure level.
  • a particularly flexible pressure increase in time can take place taking into account the pressure requirements of a consumer.
  • the cryogenic liquid may be brought to the first pressure level before being fed to the first tank and the second tank using a pump.
  • the present invention combines the advantages of conventional in this embodiment Internal compression method using appropriate pumps, however, do not allow the implementation of discontinuous analysis methods due to the continuous pressure increase, with processes in which alternately different tanks are charged.
  • the invention develops particular advantages in air separation plants that have very high purity requirements of the respective air product, such as oxygen.
  • conventional fast (routine) analytical methods can approach the detection limit, and more sensitive analytical methods such as gas chromatography must be used.
  • more sensitive analysis methods take much longer to determine the measured value than conventional methods, so that a discontinuous measurement must be carried out.
  • the inventive method also saves energy compared to methods in which an evaporation of a corresponding air product, such as oxygen, takes place only at the consumer. Overall, energy savings of about 1 kW per Nm 3 / h of oxygen can be achieved.
  • the present invention can be used in principle and with particular advantage in corresponding tank systems with pure pressure build-up evaporation. In this way, can be completely dispensed with a pump, which allows a more cost-effective creation of a corresponding air separation plant.
  • the absence of moving or driven parts in a pressure build-up evaporation allows a particularly energy-saving and low-maintenance operation.
  • the evaporation losses which inevitably result in a pressure build-up evaporation do not fall into consideration, in particular, if a gaseous or supercritical air product is to be provided anyway.
  • a combination of an increase in pressure by means of a pump and an additional pressure build-up evaporation is possible.
  • the method according to the invention is particularly suitable for providing highly pure air products, because a discontinuous analysis before heating and delivery to the plant boundary is possible.
  • a purity of the cryogenic liquid which is supplied to the first tank during the first period and to the second tank during the second period is advantageously determined.
  • Conventional methods for purity testing for example spectroscopic methods and / or gas chromatography, can be used for a corresponding analysis.
  • the cryogenic liquid is advantageously transferred from the second tank and into the third tank during the first period and from the first tank during the second period and into the third tank during the second period if its purity corresponds to a preset value.
  • the third tank is thus always filled with cryogenic liquid of defined purity and can be used at any time without additional analysis to provide the air product.
  • the present invention proves by the use of a third tank as particularly advantageous because a corresponding interruption can be compensated by removing the cryogenic liquid from the third tank.
  • an amount of the cryogenic liquid is kept, which is at least as large as a quantity of the cryogenic liquid which can be stored in the first tank and / or in the second tank, or at least as large is that the switching times, during which no liquid can be removed from the first two containers, bridged to allow a continuous withdrawal. In this way, deep cryogenic liquid can be continuously heated and released as an air product, even if the contents of a completely filled first or second tank must be returned or discarded due to a non-default purity in the distillation column system.
  • the present invention is used in air separation plants for the production of pure oxygen.
  • the distillation column system has a first separation column and a second separation column.
  • a fluid stream enriched in a first oxygen content of oxygen is generated using which liquid pure oxygen is generated in the second separation column, which is withdrawn from the second separation column at least in part as the cryogenic liquid.
  • the present invention allows continuous supply of high purity oxygen through the use of the third tank.
  • Such a method comprises, using the first separation column, further generating a fluid stream enriched in a second oxygen content of oxygen and a fluid stream enriched in a third oxygen content of oxygen.
  • the fluid stream enriched in oxygen at the second oxygen content is advantageously taken from the first separation column below the fluid stream enriched in oxygen at the first oxygen content. He therefore has a higher oxygen content.
  • the fluid stream enriched in the third oxygen content of oxygen is advantageously taken from the bottom of the first separation column.
  • the two fluid streams are then in particular in one Head condenser of the first separation column and heated in a main heat exchanger to different temperatures, wherein the oxygen enriched to the second oxygen content, heated fluid stream is at least partially compressed in a compressor coupled with a relaxation machine, cooled and recycled to the first separation column.
  • part of the fluid stream enriched in the third oxygen content of oxygen is used to drive the expansion machine.
  • a main heat exchanger of the air separation plant is used for heating the cryogenic liquid which is subsequently provided as the air product.
  • a separate evaporator may also be used.
  • a corresponding evaporator can also be used in particular if a capacity of the main heat exchanger of the air separation plant is insufficient and / or if additional amounts of air products are to be provided than it is able to provide a corresponding main heat exchanger (also temporary).
  • the present invention also extends to an air separation plant adapted to recover an air product.
  • the air separation plant comprises a distillation column system and a tank system with a first tank and a second tank and has features as indicated in the corresponding device claim.
  • a corresponding air separation plant is set up for carrying out a method, as has been explained in detail above. Reference should therefore be made to the relevant features and advantages at this point.
  • FIGS. 2 and 3 each show tank systems, as in an air separation plant according to FIG. 1 or a deviating trained air separation plant may be involved.
  • the integration of the tank system results from the also in FIG. 1 specified elements.
  • FIG. 1 an air separation plant according to an embodiment of the present invention is shown schematically in the form of an installation diagram.
  • the air separation plant is designated 100 in total.
  • Atmospheric air 1 (AIR) is sucked in via a filter 2 from an air compressor 3 and compressed there to an absolute pressure of 6 to 20 bar, preferably about 9 bar.
  • the compressed air 6 is cleaned in a cleaning device 7 which has a pair of containers filled with adsorption material, preferably molecular sieve.
  • the purified air 8 is cooled in a main heat exchanger 9 to about dew point and partially liquefied.
  • a first part 11 of the cooled air 10 is introduced via a throttle valve 51 into a first separation column 12, which is designed as a single column.
  • the feed is preferably some practical or theoretical soils above the sump.
  • the operating pressure of the first separation column 12 is at the top 6 to 20 bar, preferably about 9 bar.
  • Your top condenser 13 is cooled with a fluid stream 18 and a fluid stream 14.
  • the fluid stream 18 is from an intermediate point some practical or theoretical plates above the air supply or at the same level as this, the fluid stream 14 withdrawn from the bottom of the first separation column 12.
  • the fluid stream 18 has been referred to in the above discussion as a "second oxygen oxygenated fluid stream" and the fluid stream 14 is referred to as a "third oxygen oxygenated fluid stream.”
  • gaseous nitrogen 15, 16 is withdrawn at the top of the first separation column 12, heated in the main heat exchanger 9 to about ambient temperature and finally withdrawn via line 17 as gaseous pressure product (PGAN). Additional gaseous nitrogen is passed through the top condenser 13. A part 53 of the condensate 52 obtained in the top condenser 13 may be recovered as liquid nitrogen product (PLIN); the rest 54 is given up as reflux to the top of the separation column 12.
  • PLIN liquid nitrogen product
  • the fluid flow 14 is in the top condenser 13 under a pressure of 2 to 9 bar, preferably about 4 bar, evaporated and then flows in gaseous form via a line 19 to the cold end of the main heat exchanger 9. From this it is taken at an intermediate temperature in the form of the stream 20 and in a relaxation machine 21, which is designed in the example shown as a turboexpander, work-performing expanded to about 300 mbar above atmospheric pressure.
  • the expansion machine 21 is mechanically coupled to a (cold) compressor 30 and a braking device 22, which is formed in the illustrated example by an oil brake.
  • the expanded fluid stream 23 is heated in the main heat exchanger 9 to approximately ambient temperature.
  • the warm fluid stream 24 is blown off into the atmosphere (ATM) as fluid flow 25 and / or used as regeneration gas 26, 27, optionally after heating in the heating device 28.
  • ATM atmosphere
  • the fluid stream 18 is vaporized in the top condenser 13 under a pressure of 2 to 9 bar, preferably about 4 bar, and flows in gaseous form via a line 29 to the compressor 30, in which it is recompressed to approximately the operating pressure of the first separation column 12.
  • the recompressed fluid stream 31 is cooled again in the main heat exchanger 9 to column temperature and finally fed via line 32 of the first separation column 12 at the bottom again.
  • the explained treatment of the fluid streams 14 and 18 corresponds to the already mentioned, so-called SPECTRA method.
  • a fluid stream 36 is withdrawn from an intermediate location of the separation column 12 in the liquid state, leaving 5 to 25 theoretical or practical levels above the air supply is arranged.
  • the fluid stream 36 is optionally subcooled in a sump evaporator 37 of a second separation column 38, which is designed as a pure oxygen column, and then fed via a line 39 and a throttle valve 40 to the top of the second separation column 38.
  • the operating pressure of the second separation column 38 (at the top) is 1.3 to 4 bar, preferably about 2.5 bar.
  • the sump evaporator 37 of the second separation column 38 is also operated by means of a second part 42 of the cooled feed air 10.
  • the feed air stream 42 is thereby at least partially, for example completely, condensed and flows via a line 43 to the first separation column 12, where it is introduced approximately at the level of feeding the remaining feed air 11 or into the column bottom.
  • cryogenic liquid 41 From the bottom of the second separation column 38 pure oxygen is removed as cryogenic liquid 41, optionally brought by a pump 55 to an elevated pressure of 2 to 100 bar, preferably about 12 bar, and in a tank assembly 70, which in the following FIGS. 2 and 3 is fed. After an intermediate storage in the tank assembly 70, the cryogenic liquid is passed via a line 56 to the cold end of the main heat exchanger 9, evaporated there under the increased pressure and warmed to about ambient temperature and finally recovered via line 57 as a gaseous product (GOX-IC).
  • GOX-IC gaseous product
  • a top gas 58 of the second separation column 38 is admixed with the above-explained expanded second fluid stream 23 (see link A). If necessary, part of the feed air for pump prevention of the cold compressor 30 is led to its inlet via a bypass line 59 (so-called anti-surge control).
  • liquid separation plant 100 upstream of and / or downstream of the pump 55 liquid oxygen can be removed as a liquid fraction (in the drawing with LOX).
  • an external liquid such as liquid argon, liquid nitrogen or liquid oxygen, even from a liquid tank, in the main heat exchanger 9 are evaporated in indirect heat exchange with the feed air (not shown in the drawing).
  • FIG. 2 is a tank system according to an embodiment of the invention, which in an air separation plant 100, as shown in FIG. 1 is illustrated, illustrated in the form of a schematic system diagram and designated overall by 70.
  • the cryogenic liquid of the fluid flow 41 is brought from a first pressure level to a second pressure level.
  • the first pressure level may in particular correspond to a pressure level at which a second separation column 38 (pure oxygen column) of an air separation plant 100, as described in US Pat FIG. 1 is shown, can be operated.
  • the second pressure level is for example 2 to 100 bar.
  • the pressure-increased fluid flow 41 is supplied to a first tank 71 or a second tank 72.
  • the tanks 71 and 72 are alternatively charged with the cryogenic liquid of the fluid flow 41, i.e., with each other. during a first period, the cryogenic liquid of the fluid stream 41 is supplied to the first tank 71 and not to the second tank 72 and to the second tank 72 and not the first tank 71 for a second period.
  • a tank controller 80 may be provided, for example.
  • a third tank 73 As already explained, it can also be provided, for example, when the third tank 73 is completely filled, as illustrated here by means of a line 74, to forward corresponding fluid directly and to supply it to a heating.
  • the heating of the fluid can, as also mentioned, for example, in a main heat exchanger 9 of a corresponding air separation plant, for example, the air separation plant 100 according to FIG. 1 , and / or take place in an additional evaporator 90.
  • FIG. 3 illustrates a tank system according to another embodiment of the invention in the form of a schematic diagram of the system.
  • the tank system of FIG. 3 is designated 70.
  • the tank system 70 which in FIG. 3 is equipped with a pressure build-up evaporator 75.
  • a pump 55 as in the tank system 70 according to FIG. 2 or in the air separation plant 100 according to FIG. 1 is optional here.
  • a corresponding pump 55 is regularly omitted and the cryogenic liquid of the stream 41 is fed to the tanks 71 and 72 at the distillation pressure in the pure oxygen column 38, which here corresponds to the "first pressure level".
  • the pressure build-up evaporator 75 a portion of the cryogenic liquid of the stream 41 removed in liquid form from the tanks 71 and 72 is vaporized.
  • the vaporized and pressurized gas is supplied to a head space of the tanks 71 and 72, respectively. In this way, the pump 55 can be saved and it can only be a pressure build-up evaporation used.
  • the cryogenic liquid used to provide the liquid air product may be removed from the third tank 73 in the liquid state and vaporized in the main heat exchanger 9 and / or in the additional evaporator 90 or transferred from the liquid to the supercritical state and discharged from the air separation plant become.
  • the cryogenic liquid used to provide the liquid air product can also be removed from the third tank 73 in the liquid state and stored in a fourth tank 76 until it is liquid. Details have already been explained. Further withdrawals upstream and / or downstream of the third tank 73 are possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

Es wird ein Verfahren zur Gewinnung eines Luftprodukts (GOX-IC) mittels einer Luftzerlegungsanlage (100) mit einem Destillationssäulensystem (12, 38) und einem Tanksystem (70) mit einem ersten Tank (71) und einem zweiten Tank (72) vorgeschlagen, bei dem dem Destillationssäulensystem (12, 38) eine tiefkalte Flüssigkeit (41) entnommen, zumindest zum Teil in dem Tanksystem (70) gespeichert, und danach zumindest zum Teil als das Luftprodukt (GOX-IC) verwendet wird, wobei die tiefkalte Flüssigkeit (41) während eines ersten Zeitraums dem ersten Tank (71) und nicht dem zweiten Tank (72) und während eines zweiten Zeitraums dem zweiten Tank (72) und nicht dem ersten Tank (71) zugeführt und während des ersten Zeitraums dem zweiten Tank (72) und nicht dem ersten Tank (71) und während des zweiten Zeitraums dem ersten Tank (71) und nicht dem zweiten Tank (71) entnommen wird. Es ist vorgesehen, dass als das Tanksystem (70) ein Tanksystem (70) mit einem zusätzlichen dritten Tank (73) verwendet wird, und dass die tiefkalte Flüssigkeit (41), die während des ersten Zeitraums dem zweiten Tank (72) und während des zweiten Zeitraums dem ersten Tank (71) entnommen wird, zumindest teilweise unerwärmt in den dritten Tank (73) überführt wird, wobei nd das Luftprodukt zumindest teilweise unter Verwendung der unerwärmt in den dritten Tank (73) überführten tiefkalten Flüssigkeit oder eines Teils hiervon bereitgestellt wird, wobei die zur Bereitstellung des Luftprodukts (GOX-IC) verwendete tiefkalte Flüssigkeit in flüssigem Zustand aus dem dritten Tank (73) entnommen, verdampft oder in den überkritischen Zustand überführt und aus der Luftzerlegungsanlage (100) ausgeleitet wird, und/oder wobei die zur Bereitstellung des Luftprodukts (GOX-IC) verwendete tiefkalte Flüssigkeit in flüssigem Zustand aus dem dritten Tank (73) entnommen und in flüssigem Zustand in einem vierten Tank (76) gespeichert wird. Eine Luftzerlegungsanlage (100) ist ebenfalls Gegenstand der Erfindung.

Description

  • Die Erfindung betrifft ein Verfahren zur Gewinnung eines Luftprodukts in einer Luftzerlegungsanlage und eine zur Durchführung eines derartigen Verfahrens eingerichtete Luftzerlegungsanlage.
  • Stand der Technik
  • Die Herstellung von Luftprodukten in flüssigem oder gasförmigem Zustand durch Tieftemperaturzerlegung von Luft in Luftzerlegungsanlagen ist bekannt und beispielsweise bei H.-W. Häring (Hrsg.), Industrial Gases Processing, Wiley-VCH, 2006, insbesondere Abschnitt 2.2.5, "Cryogenic Rectification", beschrieben.
  • Für eine Reihe industrieller Anwendungen wird Drucksauerstoff benötigt, zu dessen Gewinnung Luftzerlegungsanlagen mit sogenannter Innenverdichtung zum Einsatz kommen können. Entsprechende Luftzerlegungsanlagen sind beispielweise ebenfalls bei Häring beschrieben und unter Bezugnahme auf die dortige Figur 2.3A erläutert. In derartigen Luftzerlegungsanlagen wird eine tiefkalte Flüssigkeit, insbesondere Flüssigsauerstoff, in tiefkaltem Zustand flüssig auf Druck gebracht, gegen einen Wärmeträger verdampft, und schließlich als gasförmiges Druckprodukt abgegeben. Die Innenverdichtung hat, unter anderem, energetische Vorteile im Vergleich zu einer nachträglichen Verdichtung eines bereits gasförmig vorliegenden Produkts.
  • Bei überkritischem Druck findet dabei kein Phasenübergang im eigentlichen Sinne statt, die tiefkalte Flüssigkeit wird stattdessen aus dem flüssigen Zustand in einen überkritischen Zustand gebracht. Hierfür wird auch der Begriff "Pseudoverdampfung" oder "Entflüssigung" verwendet. Gegen die aus dem flüssigen Zustand in den überkritischen Zustand gebrachte tiefkalte Flüssigkeit wird der unter hohem Druck stehende Wärmeträger verflüssigt (oder ggf. einer "Pseudoverflüssigung" unterworfen, wenn er unter überkritischem Druck steht). Der Wärmeträger wird häufig durch einen Teil der der Luftzerlegungsanlage zugeführten Luft gebildet.
  • Die vorstehenden Erläuterungen gelten in entsprechender Weise auch für andere Luftprodukte wie beispielsweise Stickstoff oder Argon, die ebenfalls unter Verwendung der Innenverdichtung in gasförmigem oder überkritischem Zustand erhalten werden können und zuvor als tiefkalte Flüssigkeiten vorliegen.
  • Zur Erhöhung des Drucks von Luftprodukten in Luftzerlegungsanlagen ist die sogenannte Druckaufbauverdichtung bekannt und beispielsweise in der DE 676 616 C und der EP 0 464 630 A1 beschrieben. Wie beispielsweise in der US 6 295 840 B1 offenbart, kann ein Luftprodukt auch mittels eines Teilstroms verdichteter Einsatzluft in einem Tanksystem gespeichert und dort auf Druck gebracht werden.
  • Es besteht der Bedarf nach verbesserten Möglichkeiten zur Erzeugung von entsprechenden Luftprodukten in Luftzerlegungsanlagen, insbesondere in Luftzerlegungsanlagen mit den erläuterten Tanksystemen.
  • Offenbarung der Erfindung
  • Die vorliegende Erfindung schlägt vor diesem Hintergrund ein Verfahren zur Gewinnung eines Luftprodukts in einer Luftzerlegungsanlage und eine zur Durchführung eines derartigen Verfahrens eingerichtete Luftzerlegungsanlage mit den Merkmalen der unabhängigen Patentansprüche vor. Bevorzugte Ausgestaltungen sind Gegenstand der abhängigen Patentansprüche sowie der nachfolgenden Beschreibung.
  • Die vorliegende Anmeldung verwendet zur Charakterisierung von Drücken und Temperaturen die Begriffe "Druckniveau" und "Temperaturniveau", wodurch zum Ausdruck gebracht werden soll, dass Drücke und Temperaturen in einer entsprechenden Anlage nicht in Form exakter Druck- bzw. Temperaturwerte verwendet werden müssen, um das erfinderische Konzept zu verwirklichen. Jedoch bewegen sich derartige Drücke und Temperaturen typischerweise in bestimmten Bereichen, die beispielsweise ± 1%, 5%, 10%, 20% oder sogar 50% um einen Mittelwert liegen. Entsprechende Druckniveaus und Temperaturniveaus können dabei in disjunkten Bereichen liegen oder in Bereichen, die einander überlappen. Insbesondere schließen beispielsweise Druckniveaus unvermeidliche Druckverluste oder zu erwartende Druckverluste, beispielsweise aufgrund von Abkühlungseffekten oder Leitungsverlusten, ein. Entsprechendes gilt für Temperaturniveaus. Bei den hier in bar angegebenen Druckniveaus handelt es sich um Absolutdrücke.
  • Vorteile der Erfindung
  • Die vorliegende Erfindung schlägt ein Verfahren zur Gewinnung eines Luftprodukts mittels einer Luftzerlegungsanlage mit einem Destillationssäulensystem und einem Tanksystem mit einem ersten Tank und einem zweiten Tank vor.
  • Dem Destillationssäulensystem wird im Rahmen des erfindungsgemäßen Verfahrens eine tiefkalte Flüssigkeit, beispielsweise Reinsauerstoff oder eines der zuvor erläuterten anderen Luftprodukte, entnommen und zumindest zum Teil in flüssiger Form in dem Tanksystem gespeichert. Nach einer Entnahme aus dem Tanksystem kann die tiefkalte Flüssigkeit als das Luftprodukt verwendet werden. Im Rahmen der vorliegenden Erfindung kommt dabei ein Tanksystem mit einem ersten und einem zweiten Tank zum Einsatz, die im Wechselbetrieb mit der tiefkalten Flüssigkeit beschickt werden. Mit anderen Worten wird die tiefkalte Flüssigkeit während eines ersten Zeitraums dem ersten Tank und nicht dem zweiten Tank und während eines zweiten Zeitraums dem zweiten Tank und nicht dem ersten Tank zugeführt. Der Wechselbetrieb umfasst ferner, dass während des ersten Zeitraums dem zweiten Tank und nicht dem ersten Tank und während des zweiten Zeitraums dem ersten Tank und nicht dem zweiten Tank die tiefkalte Flüssigkeit entnommen wird. Es kann auch vorgesehen sein, mehr als zwei Tanks zu verwenden, die einem entsprechenden Zyklus unterworfen werden. Diese umfassen jedoch immer einen ersten und einen zweiten Tank und eine entsprechende Zuführung bzw. Entnahme in einem ersten bzw. zweiten Zeitraum.
  • Durch die Verwendung eines entsprechenden Tanksystems wird es möglich, in einem Innenverdichtungsverfahren ein Produkt mit einer spezifizierten Reinheit bereitzustellen, weil das Verfahren die Verwendung von nicht kontinuierlich durchführbaren Analyseverfahren erlaubt. In herkömmlichen Innenverdichtungsverfahren, bei denen die Druckerhöhung mittels Pumpen erfolgt, ist dies nicht möglich, da hier der Pumpenabstrom kontinuierlich direkt der Erwärmung zugeführt wird. Im Rahmen des erfindungsgemäßen Verfahrens kann beispielsweise nach dem ersten Zeitraum die in dem ersten Tank und nach dem zweiten Zeitraum die in dem zweiten Tank gespeicherte tiefkalte Flüssigkeit auf ihre Reinheit hin überprüft werden. Entspricht diese Reinheit einem Vorgabewert, wird die tiefkalte Flüssigkeit als das Luftprodukt bereitgestellt. Entspricht die Reinheit nicht dem Vorgabewert, kann eine entsprechende tiefkalte Flüssigkeit verworfen oder, vorteilhafterweise, in das Destillationssäulensystem zurückgeführt werden.
  • Bei einem derartigen Wechselbetrieb ergeben sich jedoch, insbesondere bei der Umschaltung zwischen den Tanks, d.h. zwischen dem ersten Zeitraum und dem zweiten Zeitraum bzw. dem zweiten Zeitraum und dem ersten Zeitraum, oder wenn der Tankinhalt beispielsweise aufgrund einer nicht ausreichenden Reinheit nicht als das Luftprodukt bereitgestellt werden kann, Unterbrechungen in der Bereitstellung der tiefkalten Flüssigkeit aus dem Tanksystem, die sich letztlich in einer diskontinuierlichen Produktion des Luftprodukts niederschlagen. Hierdurch können sich Probleme bei den an eine entsprechende Luftzerlegungsanlage angebundenen Verbrauchern, die nicht ausreichend versorgt werden, aber auch nachteilige Effekte in einer ggf. zur Erwärmung der tiefkalten Flüssigkeit eingesetzten Einrichtung, beispielsweise dem Hauptwärmetauscher der Luftzerlegungsanlage, ergeben.
  • Die vorliegende Erfindung schlägt daher vor, als das Tanksystem ein Tanksystem mit einem zusätzlichen dritten Tank zu verwenden, wobei die tiefkalte Flüssigkeit, die während des ersten Zeitraums dem zweiten Tank und während des zweiten Zeitraums dem ersten Tank entnommen wird, zumindest teilweise (und insbesondere zumindest zeitweise) unerwärmt in den dritten Tank überführt wird. Es kann in diesem Zusammenhang also auch vorgesehen sein, nur einen Teil der tiefkalten Flüssigkeit, die während des ersten Zeitraums dem zweiten Tank und während des zweiten Zeitraums dem ersten Tank entnommen wird, unerwärmt in den dritten Tank zu überführen und einen weiteren Teil der tiefkalten Flüssigkeit direkt, wie nachfolgend erläutert, über einen Bypass als Luftprodukt bereitzustellen oder in anderer Form zu verwenden. Der dritte Tank dient dabei als Vorlage- bzw. Pufferspeicher, der mit einer geeigneten Menge an tiefkalter Flüssigkeit befüllt wird, die zur Überbrückung der zuvor erläuterten Zeiträume ausreicht.
  • Eine Überführung in den dritten Tank ist "unerwärmt", wenn die tiefkalte Flüssigkeit, die während des ersten Zeitraums dem zweiten Tank und während des zweiten Zeitraums dem ersten Tank entnommen wird, auf dem Entnahmetemperaturniveau aus dem zweiten bzw. ersten Tank in den dritten Tank überführt wird. Dies ist der Fall, wenn die tiefkalte Flüssigkeit keinen aktiv temperaturerhöhenden Maßnahmen bzw. keiner Erwärmung unterworfen wird. Die tiefkalte Flüssigkeit wird also insbesondere durch keinen Wärmetauscher, Heizer, Gegenströmer usw. zur Erwärmung geführt. Wie oben zum Begriff des "Temperaturniveaus" bereits erläutert, schließt dies jedoch nicht aus, dass durch unvermeidliche Wärmeeinträge eine gewisse, jedoch nicht aktiv vorgenommene, Erwärmung erfolgt. Der Begriff "Temperaturniveau", berücksichtigt dies, so dass das erwähnte Entnahmetemperaturniveau dennoch im genannten Umfang unterhalb eines Einspeisetemperaturniveaus in den dritten Tank liegen kann. Die unerwärmte Überführung in den dritten Tank erfolgt insbesondere deshalb, um Verdampfungsverluste zu vermeiden.
  • Erfindungsgemäß wird also die tiefkalte Flüssigkeit, die in dem ersten bzw. dem zweiten Tank gespeichert ist, nicht mehr oder nicht ausschließlich hieraus ausgeleitet und als das Luftprodukt verwendet. Das Luftprodukt wird vielmehr zumindest teilweise unter Verwendung der unerwärmt in den dritten Tank überführten tiefkalten Flüssigkeit oder eines Teils hiervon bereitgestellt. Im Rahmen der vorliegenden Erfindung können dabei aber auch, wie erwähnt, Bypassleitungen vorgesehen sein, die eine Ausleitung aus dem ersten bzw. zweiten Tank ermöglichen, so dass das Luftprodukt auch teilweise unter Verwendung der dort gespeicherten, aber nicht in den dritten Tank überführten tiefkalten Flüssigkeit bereitgestellt werden kann. Auf diese Weise kann, beispielsweise wenn der dritte Tank vollständig gefüllt und eine ausreichende Reinheit sichergestellt ist, auch eine direkte Entnahme aus dem ersten oder dem zweiten Tank erfolgen. Es kann ferner vorgesehen sein, dass nicht die gesamte tiefkalte Flüssigkeit, die unerwärmt in den dritten Tank überführt wurde, zur Bereitstellung des Luftprodukts verwendet wird. Ein Teil der unerwärmt in den dritten Tank überführten tiefkalten Flüssigkeit kann flüssig aus dem dritten Tank entnommen und auf anderere Weise genutzt werden. Ebenso ist es möglich, dass beispielsweise der in den jeweiligen Tanks verdampfte Anteil der tiefkalten Flüssigkeit nicht zur Bereitstellung des Luftprodukts verwendet wird.
  • Erfindungsgemäß ist außerdem vorgesehen, dass die zur Bereitstellung des Luftprodukts verwendete tiefkalte Flüssigkeit aus dem dritten Tank in flüssigem Zustand aus dem dritten Tank entnommen, verdampft oder aus dem flüssigen in den überkritischen Zustand überführt und aus der Luftzerlegungsanlage ausgeleitet wird, und/oder dass die zur Bereitstellung des Luftprodukts verwendete tiefkalte Flüssigkeit in flüssigem Zustand aus dem dritten Tank entnommen und in flüssigem Zustand in einem vierten Tank flüssig gespeichert wird.
  • Der vierte Tank kann Teil des Tanksystems mit dem ersten bis dritten Tank sein, er kann jedoch auch separat, beispielsweise als Teil eines weiteren Tanksystems, bereitgestellt sein. Der vierte Tank kann sich innerhalb der Luftzerlegungsanlage, beispielsweise innerhalb einer Coldbox, oder innerhalb einer thermisch isolierenden Außenhülle, die außerdem den ersten bis dritten Tank einschließt, befinden. Der vierte Tank kann jedoch auch außerhalb der Luftzerlegungsanlage angeordnet sein. Bei dem Luftprodukt kann es sich somit im Rahmen der vorliegenden Erfindung um ein gasförmiges oder in überkritischem Zustand vorliegendes Luftprodukt und/oder um ein flüssiges Luftprodukt handeln. Wie das flüssige Luftprodukt kann auch das gasförmige Luftprodukt innerhalb oder außerhalb der Luftzerlegungsanlage, insbesondere in einem entsprechenden Gastank, gespeichert werden.
    Vorteilhafterweise wird die tiefkalte Flüssigkeit dem Destillationssäulensystem der Luftzerlegungsanlage auf einem Druckniveau entnommen, auf dem auch eine entsprechende Säule des Destillationssäulensystems, insbesondere eine Reinsauerstoffsäule, nachfolgend auch als "zweite Trennsäule" bezeichnet, betrieben wird. Die tiefkalte Flüssigkeit wird dem ersten Tank und dem zweiten Tank des Tanksystems auf einem Druckniveau zugeführt, das hier als "erstes" Druckniveau bezeichnet wird. Das erste Druckniveau kann dem Druckniveau entsprechen, auf dem die tiefkalte Flüssigkeit dem Destillationssäulensystem entnommen wurde, wenn zwischen der Trennsäule und dem ersten bzw. zweiten Tank keine druckbeeinflussenden Vorrichtungen wie Pumpen angeordnet sind. Wird beispielsweise eine entsprechende Pumpe verwendet, kann das erste Druckniveau auch oberhalb des Druckniveaus der Trennsäule liegen. Dem dritten Tank des Tanksystems wird die tiefkalte Flüssigkeit auf einem zweiten, höheren Druckniveau (Speicherdruck) zugeführt, das sich insbesondere danach richten kann, auf welchem Druck (Produktdruck) das Luftprodukt bereitgestellt werden soll. Der Speicherdruck liegt vorteilhafterweise etwas oberhalb des Produktdrucks, so dass eine Ausleitung auch ohne zusätzliche Pumpen oder Verdichter möglich ist. Das zweite Druckniveau kann insbesondere dadurch erzielt werden, dass in dem ersten und/oder dem zweiten Tank eine Druckaufbauverdampfung vorgenommen wird.
  • Die vorliegende Erfindung kombiniert durch die Verwendung des erläuterten Tanksystems und einer Druckerhöhung die Vorteile eines herkömmlichen Innenverdichtungsverfahrens, nämlich die kontinuierliche Herstellung des Luftprodukts, mit den Vorteilen einer verbesserten Analysemöglichkeit. Durch diese verbesserte Analysemöglichkeit kann zu jedem Zeitpunkt eine hohe Reinheit des Luftprodukts garantiert und dokumentiert werden.
  • Nach der Entnahme der tiefkalten Flüssigkeit aus dem dritten Tank (bzw. über die genannten Bypassleitungen aus dem ersten und dem zweiten Tank) kann diese, wie erwähnt, insbesondere verdampft oder aus dem flüssigen in den überkritischen Zustand überführt werden, wenn ein gasförmiges oder in überkritischem Zustand vorliegendes Luftprodukt hergestellt werden soll. Die Verdampfung oder Überführung in den überkritischen Zustand (nachfolgend wird der Einfachheit halber für beide Fälle der Begriff "Verdampfung" verwendet) kann innerhalb der verwendeten Luftzerlegungsanlage, beispielsweise unter Verwendung von deren Hauptwärmetauscher, erfolgen. Für Fälle, in denen die Luftzerlegungsanlage nicht verfügbar ist, kann auch ein Backupsystem mit einem Notversorgungsverdampfer, der Verdampfungswärme nicht aus der Luftzerlegungsanlage bezieht, verwendet werden. Die tiefkalte Flüssigkeit kann jedoch, wie ebenfalls erwähnt, auch nach der Entnahme aus dem dritten Tank (bzw. über die genannten Bypassleitungen aus dem ersten und dem zweiten Tank) in flüssiger Form aus der Luftzerlegungsanlage ausgeleitet, in flüssiger Form, beispielsweise in einem Tank, zu einem Verbraucher transportiert und dort in flüssigem oder (nach Verdampfung) gasförmigem Zustand verwendet werden.
  • Vorteilhafterweise liegt das erste Druckniveau, also das Druckniveau, auf dem die tiefkalte Flüssigkeit dem ersten und dem zweiten Tank zugeführt wird, bei ca. 1,3 bis 4 bar. Das zweite Druckniveau liegt, je nach Anforderung, bei 2 bis 100 bar, jedoch oberhalb des ersten Druckniveaus. Im Rahmen der vorliegenden Erfindung kann auch eine insbesondere zeitlich flexible Druckerhöhung unter Berücksichtigung der Druckerfordernisse eines Verbrauchers erfolgen.
  • Gemäß einer Ausführungsform der Erfindung kann die tiefkalte Flüssigkeit vor dem Einspeisen in den ersten Tank und in den zweiten Tank unter Verwendung einer Pumpe auf das erste Druckniveau gebracht werden. Die vorliegende Erfindung kombiniert in dieser Ausführungsform die Vorteile herkömmlicher Innenverdichtungsverfahren unter Verwendung entsprechender Pumpen, die jedoch aufgrund der kontinuierlichen Druckerhöhung keine Durchführung diskontinuierlicher Analyseverfahren ermöglichen, mit Verfahren, bei denen alternierend unterschiedliche Tanks beschickt werden.
  • Bei den herkömmlichen Verfahren, die unter Verwendung von Tanksystemen mit zwei Tanks durchgeführt werden, erfolgt eine Druckaufbauverdampfung. Bei einer Druckaufbauverdampfung ist aufgrund des für den Druckaufbau benötigten Anteils einer entsprechenden tiefkalten Flüssigkeit ein Produktverlust unvermeidlich. Dieser Produktverlust kann bis zu 10% betragen. Durch eine Verwendung einer Pumpe wird ein derartiger Produktverlust verringert. Die auch hier unvermeidlichen Flashverluste in den Tanks sind mit ca. 5% deutlich geringer als die Verluste aufgrund der Druckaufbauverdampfung. Wenngleich eine entsprechende Pumpe einen zusätzlichen Energiebedarf hat, wiegt die höhere Produktausbeute diesen zusätzlichen Energiebedarf ggf. auf.
  • Die Erfindung entfaltet dabei besondere Vorteile in Luftzerlegungsanlagen, die sehr hohe Reinheitsanforderungen an das jeweilige Luftprodukt, beispielsweise Sauerstoff, haben. Bei derartigen sehr hohen Reinheitsanforderungen können herkömmliche schnelle (Routine-)Analyseverfahren an die Nachweisgrenze kommen, und es müssen sensitivere Analyseverfahren wie die Gaschromatographie zum Einsatz kommen. Entsprechende sensitivere Analyseverfahren benötigen jedoch wesentlich länger zur Messwertermittlung als herkömmliche Verfahren, es muss also eine diskontinuierliche Messung vorgenommen werden.
  • Das erfindungsgemäße Verfahren spart zudem Energie gegenüber Verfahren, bei denen eine Verdampfung eines entsprechenden Luftprodukts, beispielsweise Sauerstoff, erst beim Verbraucher erfolgt. Insgesamt lassen sich Energieeinsparungen von etwa 1 kW pro Nm3/h Sauerstoff erzielen.
  • Von den mit der vorliegenden Erfindung verbundenen Vorteilen profitieren insbesondere kleinere Luftzerlegungsanlagen, deren Kapazität durch die maximalen Transportabmessungen begrenzt ist. Verbessert man die Effizienz, erhöht sich entsprechend die Ausbeute.
  • Wenngleich die erläuterte Druckerhöhung der tiefkalten Flüssigkeit mittels einer Pumpe in bestimmten Fällen vorteilhaft sein kann, kann die vorliegende Erfindung grundsätzlich und mit besonderem Vorteil auch in entsprechenden Tanksystemen mit reiner Druckaufbauverdampfung eingesetzt werden. Auf diese Weise kann vollständig auf eine Pumpe verzichtet werden, was eine kostengünstigere Erstellung einer entsprechenden Luftzerlegungsanlage ermöglicht. Der Verzicht auf bewegliche bzw. angetriebene Teile bei einer Druckaufbauverdampfung ermöglicht einen besonders energiesparenden und wartungsarmen Betrieb. Die sich zwangsläufig bei einer Druckaufbauverdampfung ergebenden Verdampfungsverluste fallen insbesondere dann nicht ins Gewicht, wenn ohnehin ein gasförmiges oder in überkritischem Zustand vorliegendes Luftprodukt bereitgestellt werden soll. Auch eine Kombination aus einer Druckerhöhung mittels einer Pumpe und einer zusätzlichen Druckaufbauverdampfung ist möglich.
  • Wie bereits erwähnt, eignet sich das erfindungsgemäße Verfahren insbesondere zur Bereitstellung hochreiner Luftprodukte, weil eine diskontinuierliche Analyse vor der Erwärmung und Abgabe an die Anlagengrenze möglich ist. Mit anderen Worten wird im Rahmen der vorliegenden Erfindung vorteilhafterweise eine Reinheit der tiefkalten Flüssigkeit, die während des ersten Zeitraums dem ersten Tank und während des zweiten Zeitraums dem zweiten Tank zugeführt wird, ermittelt. Für eine entsprechende Analytik können gängige Verfahren zur Reinheitsüberprüfung, beispielsweise spektroskopische Verfahren und/oder die Gaschromatographie, verwendet werden.
  • Im Rahmen der vorliegenden Erfindung wird dabei vorteilhafterweise die tiefkalte Flüssigkeit nur dann während des ersten Zeitraums aus dem zweiten Tank und in den dritten Tank und während des zweiten Zeitraums aus dem ersten Tank in den dritten Tank überführt, wenn ihre Reinheit einem Vorgabewert entspricht. Der dritte Tank ist damit stets mit tiefkalter Flüssigkeit definierter Reinheit befüllt und kann jederzeit ohne zusätzliche Analytik zur Bereitstellung des Luftprodukts verwendet werden.
  • Entspricht die Reinheit der tiefkalten Flüssigkeit den Vorgabewert nicht, kann diese hingegen vorteilhafterweise während des ersten Zeitraums aus dem zweiten Tank und während des zweiten Zeitraums aus dem ersten Tank in das Destillationssäulensystem zurückgeführt werden. Insbesondere in einer derartigen Verfahrensvariante erweist sich die vorliegende Erfindung durch die Verwendung eines dritten Tanks als besonders vorteilhaft, weil eine entsprechende Unterbrechung durch Entnahme der tiefkalten Flüssigkeit aus dem dritten Tank ausgeglichen werden kann. Vorteilhafterweise ist daher vorgesehen, dass in dem dritten Tank eine Menge der tiefkalten Flüssigkeit vorgehalten wird, die zumindest so groß ist wie eine Menge der tiefkalten Flüssigkeit, die in dem ersten Tank und/oder in dem zweiten Tank speicherbar ist, bzw. mindestens so groß ist, dass die Schaltzeiten, während derer aus den ersten beiden Behältern keine Flüssigkeit entnommen werden kann, überbrückt werden, um eine kontinuierliche Entnahme zu ermöglichen. Auf diese Weise lässt sich kontinuierlich tiefkalte Flüssigkeit erwärmen und als Luftprodukt abgeben, auch wenn der Inhalt eines vollständig gefüllten ersten oder zweiten Tanks aufgrund einer nicht einer Vorgabe entsprechenden Reinheit in das Destillationssäulensystem zurückgeführt bzw. verworfen werden muss.
  • Insbesondere kommt die vorliegende Erfindung in Luftzerlegungsanlagen zur Herstellung von Reinsauerstoff zum Einsatz. In einer derartigen Luftzerlegungsanlage weist das Destillationssäulensystem eine erste Trennsäule und eine zweite Trennsäule auf. Unter Verwendung der ersten Trennsäule wird ein auf einen ersten Sauerstoffgehalt an Sauerstoff angereicherter Fluidstrom erzeugt, unter Verwendung dessen in der zweiten Trennsäule flüssiger Reinsauerstoff erzeugt wird, der der zweiten Trennsäule zumindest zu einem Teil als die tiefkalte Flüssigkeit entnommen wird. Die vorliegende Erfindung erlaubt durch den Einsatz des dritten Tanks eine kontinuierliche Bereitstellung hochreinen Sauerstoffs.
  • Insbesondere kann die Erfindung im Zusammenhang mit dem sogenannten SPECTRA-Verfahren der Anmelderin zum Einsatz kommen, wie es z.B. in der US 2009/107177 A1 beschrieben ist. Die Erfindung ist jedoch nicht hierauf beschränkt. Ein derartiges Verfahren umfasst, dass unter Verwendung der ersten Trennsäule ferner ein auf einen zweiten Sauerstoffgehalt an Sauerstoff angereicherter Fluidstrom und ein auf einen dritten Sauerstoffgehalt an Sauerstoff angereicherter Fluidstrom erzeugt werden. Der auf den zweiten Sauerstoffgehalt an Sauerstoff angereicherte Fluidstrom wird vorteilhafterweise der ersten Trennsäule unterhalb des auf den ersten Sauerstoffgehalt an Sauerstoff angereicherten Fluidstroms entnommen. Er weist daher einen höheren Sauerstoffgehalt auf. Der auf den dritten Sauerstoffgehalt an Sauerstoff angereicherte Fluidstrom wird vorteilhafterweise der ersten Trennsäule aus dessen Sumpf entnommen. Die zwei Fluidströme werden anschließend insbesondere in einem Kopfkondensator der ersten Trennsäule und in einem Hauptwärmetauscher auf unterschiedliche Temperaturen erwärmt, wobei der auf den zweiten Sauerstoffgehalt an Sauerstoff angereicherte, erwärmte Fluidstrom zumindest zu einem Teil in einem mit einer Entspannungsmaschine gekoppelten Verdichter verdichtet, abgekühlt und in die erste Trennsäule zurückgeführt wird. Ein Teil des auf den dritten Sauerstoffgehalt an Sauerstoff angereicherten Fluidstroms wird hingegen zum Antreiben der Entspannungsmaschine verwendet. Zu weiteren Details eines entsprechenden Verfahrens sei auf die beigefügte Figur 1 verwiesen. Ein entsprechendes Verfahren erweist sich als energetisch besonders vorteilhaft.
  • Vorteilhafterweise wird für die Erwärmung der tiefkalten Flüssigkeit, die anschließend als das Luftprodukt bereitgestellt wird, ein Hauptwärmetauscher der Luftzerlegungsanlage verwendet. Zusätzlich oder alternativ dazu kann jedoch auch ein gesonderter Verdampfer verwendet werden. Ein entsprechender Verdampfer kann insbesondere auch dann eingesetzt werden, wenn eine Kapazität des Hauptwärmetauschers der Luftzerlegungsanlage nicht ausreicht und/oder wenn zusätzliche Mengen an Luftprodukten bereitgestellt werden sollen, als sie ein entsprechender Hauptwärmetauscher (auch temporär) bereitzustellen in der Lage ist.
  • Die vorliegende Erfindung erstreckt sich auch auf eine Luftzerlegungsanlage, die zur Gewinnung eines Luftprodukts eingerichtet ist. Die Luftzerlegungsanlage umfasst ein Destillationssäulensystem und ein Tanksystem mit einem ersten Tank und einem zweiten Tank und weist Merkmale auf, wie sie im entsprechenden Vorrichtungsanspruch angegeben sind..
    Vorteilhafterweise ist eine entsprechende Luftzerlegungsanlage zur Durchführung eines Verfahrens eingerichtet, wie es zuvor im Detail erläutert wurde. Auf die entsprechenden Merkmale und Vorteile sei daher an dieser Stelle ausdrücklich verwiesen.
  • Die Erfindung wird nachfolgend unter Bezugnahme auf die beigefügten Zeichnungen näher erläutert, die bevorzugte Ausführungsformen der vorliegenden Erfindung veranschaulichen.
  • Kurze Beschreibung der Zeichnungen
    • Figur 1 zeigt eine Luftzerlegungsanlage gemäß einer Ausführungsform der Erfindung in Form eines schematischen Anlagendiagramms.
    • Figur 2 zeigt ein Tanksystem gemäß einer Ausführungsform der Erfindung in Form eines schematischen Anlagendiagramms.
    • Figur 3 zeigt ein Tanksystem gemäß einer Ausführungsform der Erfindung in Form eines schematischen Anlagendiagramms.
    Ausführliche Beschreibung der Zeichnungen
  • In den nachfolgenden Figuren sind einander entsprechende Elemente mit identischen Bezugszeichen angegeben und werden der Übersichtlichkeit halber nicht wiederholt erläutert. Die Figuren 2 und 3 zeigen dabei jeweils Tanksysteme, wie sie in einer Luftzerlegungsanlage gemäß Figur 1 bzw. einer abweichend dazu ausgebildeten Luftzerlegungsanlage eingebunden sein können. Die Einbindung des Tanksystems ergibt sich dabei durch die auch in Figur 1 angegebenen Elemente.
  • In Figur 1 ist eine Luftzerlegungsanlage gemäß einer Ausführungsform der vorliegenden Erfindung schematisch in Form eines Anlagendiagramms dargestellt. Die Luftzerlegungsanlage ist insgesamt mit 100 bezeichnet.
    Atmosphärische Luft 1 (AIR) wird über ein Filter 2 von einem Luftverdichter 3 angesaugt und dort auf einen Absolutdruck von 6 bis 20 bar, vorzugsweise etwa 9 bar, verdichtet. Nach Durchströmen eines Nachkühlers 4 und eines Wasserabscheiders 5 zum Abscheiden von Wasser (H2O) wird die verdichtete Luft 6 in einer Reinigungsvorrichtung 7 gereinigt, die ein Paar von mit Adsorptionsmaterial, vorzugsweise Molekularsieb, gefüllten Behältern aufweist. Die gereinigte Luft 8 wird in einem Hauptwärmetauscher 9 auf etwa Taupunkt abgekühlt und teilweise verflüssigt. Ein erster Teil 11 der abgekühlten Luft 10 wird über ein Drosselventil 51 in eine erste Trennsäule 12 eingeleitet, die als Einzelsäule ausgebildet ist. Die Einspeisung erfolgt vorzugsweise einige praktische oder theoretische Böden oberhalb des Sumpfs.
  • Der Betriebsdruck der ersten Trennsäule 12 beträgt am Kopf 6 bis 20 bar, vorzugsweise etwa 9 bar. Ihr Kopfkondensator 13 wird mit einem Fluidstrom 18 und einem Fluidstrom 14 gekühlt. Der Fluidstrom 18 wird von einer Zwischenstelle einige praktische oder theoretische Böden oberhalb der Luftzuspeisung oder auf gleicher Höhe wie diese, der Fluidstrom 14 vom Sumpf der ersten Trennsäule 12 abgezogen. Der Fluidstrom 18 wurde im Rahmen der obigen Erläuterungen als ein "auf einen zweiten Sauerstoffgehalt an Sauerstoff angereicherter Fluidstrom" und der Fluidstrom 14 als ein "auf einen dritten Sauerstoffgehalt an Sauerstoff angereicherter Fluidstrom" bezeichnet.
  • Als Hauptprodukt der ersten Trennsäule 12 wird gasförmiger Stickstoff 15, 16 am Kopf der ersten Trennsäule 12 abgezogen, im Hauptwärmetauscher 9 auf etwa Umgebungstemperatur angewärmt und schließlich über Leitung 17 als gasförmiges Druckprodukt (PGAN) abgezogen. Weiterer gasförmiger Stickstoff wird durch den Kopfkondensator 13 geführt. Ein Teil 53 des in dem Kopfkondensator 13 erhaltenen Kondensats 52 kann als Flüssigstickstoffprodukt (PLIN) gewonnen werden; der Rest 54 wird als Rücklauf auf den Kopf der Trennsäule 12 aufgegeben.
  • Der Fluidstrom 14 wird im Kopfkondensator 13 unter einem Druck von 2 bis 9 bar, vorzugsweise etwa 4 bar, verdampft und strömt anschließend gasförmig über eine Leitung 19 zum kalten Ende des Hauptwärmetauschers 9. Aus diesem wird er bei einer Zwischentemperatur in Form des Stroms 20 entnommen und in einer Entspannungsmaschine 21, die im dargestellten Beispiel als Turboexpander ausgebildet ist, arbeitsleistend auf etwa 300 mbar über Atmosphärendruck entspannt. Die Entspannungsmaschine 21 ist mechanisch mit einem (Kalt-)Verdichter 30 und einer Bremseinrichtung 22 gekoppelt, die im dargestellten Beispiel durch eine Ölbremse gebildet wird. Der entspannte Fluidstrom 23 wird im Hauptwärmetauscher 9 auf etwa Umgebungstemperatur angewärmt. Der warme Fluidstrom 24 wird als Fluidstrom 25 in die Atmosphäre (ATM) abgeblasen und/oder als Regeneriergas 26, 27 eingesetzt, gegebenenfalls nach Erwärmung in der Heizeinrichtung 28.
  • Der Fluidstrom 18 wird im Kopfkondensator 13 unter einem Druck von 2 bis 9 bar, vorzugsweise etwa 4 bar, verdampft und strömt gasförmig über eine Leitung 29 zu dem Verdichter 30, in dem er auf etwa den Betriebsdruck der ersten Trennsäule 12 rückverdichtet wird. Der rückverdichtete Fluidstrom 31 wird im Hauptwärmetauscher 9 wieder auf Säulentemperatur abgekühlt und schließlich über Leitung 32 der ersten Trennsäule 12 am Sumpf wieder zugeführt. Die erläuterte Behandlung der Fluidströme 14 und 18 entspricht dem bereits erwähnten, sogenannten SPECTRA-Verfahren.
  • Ein Fluidstrom 36, zuvor als ein "auf einen ersten Sauerstoffgehalt an Sauerstoff angereicherter Fluidstrom" bezeichnet, der im Wesentlichen frei von schwerer flüchtigen Verunreinigungen ist, wird von einer Zwischenstelle der Trennsäule 12 in flüssigem Zustand abgezogen, die 5 bis 25 theoretische oder praktische Böden oberhalb der Luftzuspeisung angeordnet ist. Der Fluidstrom 36 wird ggf. in einem Sumpfverdampfer 37 einer zweiten Trennsäule 38, die als Reinsauerstoffsäule ausgebildet ist, unterkühlt und anschließend über eine Leitung 39 und ein Drosselventil 40 auf den Kopf der zweiten Trennsäule 38 aufgegeben. Der Betriebsdruck der zweiten Trennsäule 38 (am Kopf) beträgt 1,3 bis 4 bar, vorzugsweise etwa 2,5 bar.
  • Der Sumpfverdampfer 37 der zweiten Trennsäule 38 wird außerdem mittels eines zweiten Teils 42 der abgekühlten Einsatzluft 10 betrieben. Der Einsatzluftstrom 42 wird dabei mindestens teilweise, beispielsweise vollständig, kondensiert und strömt über eine Leitung 43 zur ersten Trennsäule 12, wo er etwa auf Höhe der Zuspeisung der übrigen Einsatzluft 11 oder in den Kolonnensumpf eingeleitet wird.
  • Vom Sumpf der zweiten Trennsäule 38 wird Reinsauerstoff als tiefkalte Flüssigkeit 41 entnommen, optional mittels einer Pumpe 55 auf einen erhöhten Druck von 2 bis 100 bar, vorzugsweise etwa 12 bar gebracht, und in eine Tankanordnung 70, die in den nachfolgenden Figuren 2 und 3 veranschaulicht ist, eingespeist. Nach einer Zwischenspeicherung in der Tankanordnung 70 wird die tiefkalte Flüssigkeit über eine Leitung 56 zum kalten Ende des Hauptwärmetauschers 9 geführt, dort unter dem erhöhten Druck verdampft und auf etwa Umgebungstemperatur angewärmt und schließlich über Leitung 57 als gasförmiges Produkt (GOX-IC) gewonnen.
  • Ein Kopfgas 58 der zweiten Trennsäule 38 wird dem zuvor erläuterten entspannten zweiten Fluidstrom 23 zugemischt (vgl. Verknüpfung A). Über eine Bypassleitung 59 wird gegebenenfalls ein Teil der Einsatzluft zur Pumpverhütung des Kaltverdichters 30 zu dessen Eintritt geleitet (sogenannte Anti-Surge Control).
  • Bei Bedarf kann der Luftzerlegungsanlage 100 stromauf und/oder stromab der Pumpe 55 flüssiger Sauerstoff als Flüssigfraktion entnommen werden (in der Zeichnung mit LOX bezeichnet). Zusätzlich kann eine externe Flüssigkeit, beispielsweise flüssiges Argon, flüssiger Stickstoff oder flüssiger Sauerstoff, auch aus einem Flüssigtank, in dem Hauptwärmetauscher 9 in indirektem Wärmeaustausch mit der Einsatzluft verdampft werden (in der Zeichnung nicht dargestellt).
  • In Figur 2 ist ein Tanksystem gemäß einer Ausführungsform der Erfindung, das in einer Luftzerlegungsanlage 100, wie sie in Figur 1 veranschaulicht ist, eingesetzt werden kann, in Form eines schematischen Anlagendiagramms veranschaulicht und insgesamt mit 70 bezeichnet.
  • Mittels der bereits unter Bezugnahme auf Figur 1 erläuterten Pumpe 55 wird die tiefkalte Flüssigkeit des Fluidstroms 41 von einem ersten Druckniveau auf ein zweites Druckniveau gebracht. Das erste Druckniveau kann insbesondere einem Druckniveau entsprechen, auf dem eine zweite Trennsäule 38 (Reinsauerstoffsäule) einer Luftzerlegungsanlage 100, wie sie in Figur 1 gezeigt ist, betrieben werden kann. Das zweite Druckniveau beträgt beispielsweise 2 bis 100 bar.
  • Der druckerhöhte Fluidstrom 41 wird einem ersten Tank 71 oder einem zweiten Tank 72 zugeführt. Wie mehrfach erläutert, werden die Tanks 71 und 72 alternativ zueinander mit der tiefkalten Flüssigkeit des Fluidstroms 41 beschickt, d.h. während eines ersten Zeitraums wird die tiefkalte Flüssigkeit des Fluidstroms 41 dem ersten Tank 71 und nicht dem zweiten Tank 72 und während eines zweiten Zeitraums dem zweiten Tank 72 und nicht dem ersten Tank 71 zugeführt. Zur Ansteuerung entsprechend eingesetzter Ventile 71a und 72a kann beispielsweise eine Tanksteuerung 80 vorgesehen sein.
  • Wie ebenfalls mehrfach erläutert, wird stets dem Tank 71, 72, dem momentan keine tiefkalte Flüssigkeit des Fluidstroms 41 zugeführt wird, tiefkalte Flüssigkeit entnommen. Diese wird unerwärmt in einen dritten Tank 73 überführt. Wie bereits erläutert, kann, beispielsweise bei vollständiger Befüllung des dritten Tanks 73 auch vorgesehen sein, wie hier mittels einer Leitung 74 veranschaulicht, entsprechendes Fluid direkt weiter zu leiten und einer Erwärmung zuzuführen. Die Erwärmung des Fluids kann, wie ebenfalls erwähnt, beispielsweise in einem Hauptwärmetauscher 9 einer entsprechenden Luftzerlegungsanlage, beispielsweise der Luftzerlegungsanlage 100 gemäß Figur 1, und/oder in einem zusätzlichen Verdampfer 90 erfolgen.
  • Figur 3 veranschaulicht ein Tanksystem gemäß einer weiteren Ausführungsform der Erfindung in Form eines schematischen Anlagendiagramms. Auch das Tanksystem der Figur 3 ist mit 70 bezeichnet. Das Tanksystem 70, das in Figur 3 veranschaulicht ist, ist mit einer Druckaufbauverdampfungseinrichtung 75 ausgestattet. Eine Pumpe 55 wie in dem Tanksystem 70 gemäß Figur 2 bzw. in der Luftzerlegungsanlage 100 gemäß Figur 1 ist hier optional vorgesehen. Bei einer Druckaufbauverdampfung wird eine entsprechende Pumpe 55 regelmäßig weggelassen und die tiefkalte Flüssigkeit des Stroms 41 wird auf dem Destillationsdruck in der Reinsauerstoffsäule 38, der hier dem "ersten Druckniveau" entspricht, in die Tanks 71 bzw. 72 eingespeist. In der Druckaufbauverdampfungseinrichtung 75 wird ein flüssig den Tanks 71 bzw. 72 entnommener Anteil der tiefkalten Flüssigkeit des Stroms 41 verdampft. Das verdampfte und unter einem erhöhten Druck vorliegende Gas wird einem Kopfraum der Tanks 71 bzw. 72 zugeführt. Auf diese Weise lässt sich die Pumpe 55 einsparen und es kann ausschließlich eine Druckaufbauverdampfung zum Einsatz kommen.
  • Wie hier dargestellt, kann die zur Bereitstellung des flüssigen Luftprodukts verwendete tiefkalte Flüssigkeit in flüssigem Zustand aus dem dritten Tank 73 entnommen und im Hauptwärmetauscher 9 und/oder in dem zusätzlichen Verdampfer 90 verdampft oder aus dem flüssigen in den überkritischen Zustand überführt und aus der Luftzerlegungsanlage ausgeleitet werden. Die zur Bereitstellung des flüssigen Luftprodukts verwendete tiefkalte Flüssigkeit kann jedoch auch in flüssigem Zustand aus dem dritten Tank 73 entnommen und in einem vierten Tank 76 bis zur Verwendung flüssig gespeichert werden. Details wurden bereits erläutert. Auch weitere Entnahmen stromauf und/oder stromab des dritten Tanks 73 sind möglich.

Claims (14)

  1. Verfahren zur Gewinnung eines Luftprodukts (GOX-IC) mittels einer Luftzerlegungsanlage (100) mit einem Destillationssäulensystem (12, 38) und einem Tanksystem (70) mit einem ersten Tank (71) und einem zweiten Tank (72), bei dem dem Destillationssäulensystem (12, 38) eine tiefkalte Flüssigkeit (41) entnommen, zumindest zum Teil in dem Tanksystem (70) gespeichert, und danach zumindest zum Teil als das Luftprodukt (GOX-IC) verwendet wird, wobei die tiefkalte Flüssigkeit (41) während eines ersten Zeitraums dem ersten Tank (71) und nicht dem zweiten Tank (72) und während eines zweiten Zeitraums dem zweiten Tank (72) und nicht dem ersten Tank (71) zugeführt und während des ersten Zeitraums dem zweiten Tank (72) und nicht dem ersten Tank (71) und während des zweiten Zeitraums dem ersten Tank (71) und nicht dem zweiten Tank (71) entnommen wird, dadurch gekennzeichnet, dass als das Tanksystem (70) ein Tanksystem (70) mit einem zusätzlichen dritten Tank (73) verwendet wird, und dass die tiefkalte Flüssigkeit (41), die während des ersten Zeitraums dem zweiten Tank (72) und während des zweiten Zeitraums dem ersten Tank (71) entnommen wird, zumindest teilweise unerwärmt in den dritten Tank (73) überführt wird, und dass das Luftprodukt zumindest teilweise unter Verwendung der unerwärmt in den dritten Tank (73) überführten tiefkalten Flüssigkeit oder eines Teils hiervon bereitgestellt wird, wobei die zur Bereitstellung des Luftprodukts (GOX-IC) verwendete tiefkalte Flüssigkeit aus dem dritten Tank (73) in flüssigem Zustand aus dem dritten Tank (73) entnommen, verdampft oder aus dem flüssigen in den überkritischen Zustand überführt und aus der Luftzerlegungsanlage (100) ausgeleitet wird, und/oder wobei die zur Bereitstellung des Luftprodukts (GOX-IC) verwendete tiefkalte Flüssigkeit aus dem dritten Tank (73) in flüssigem Zustand aus dem dritten Tank (73) entnommen und in flüssigem Zustand in einem vierten Tank (76) gespeichert wird.
  2. Verfahren nach Anspruch 1, bei dem die tiefkalte Flüssigkeit (41) auf einem ersten Druckniveau dem ersten Tank (71) und dem zweiten Tank (72) zugeführt wird, und/oder bei dem die tiefkalte Flüssigkeit (41) in dem dritten Tank (73) auf einem zweiten, höheren Druckniveau gespeichert wird.
  3. Verfahren nach Anspruch 2, bei dem das erste Druckniveau bei 1,3 bis 7 bar und das zweite Druckniveau bei 2 bis 100 bar liegt.
  4. Verfahren nach Anspruch 2 oder 3, bei dem die tiefkalte Flüssigkeit (41) vor dem Einspeisen in den ersten Tank (71) und in den zweiten Tank (72) unter Verwendung einer Pumpe (55) in flüssigem Zustand von dem ersten Druckniveau auf das zweite Druckniveau gebracht wird.
  5. Verfahren nach einem der vorstehenden Ansprüche, bei dem die tiefkalte Flüssigkeit (41) in dem ersten Tank (71) und dem zweiten Tank (72) einer Druckaufbauverdampfung auf das zweite Druckniveau unterworfen wird.
  6. Verfahren nach einem der vorstehenden Ansprüche, bei dem eine Reinheit der tiefkalten Flüssigkeit (41), die während des ersten Zeitraums dem ersten Tank (71) und während des zweiten Zeitraums dem zweiten Tank (72) zugeführt wird, in dem jeweiligen Tank (71, 72) ermittelt wird.
  7. Verfahren nach Anspruch 6, bei dem die tiefkalte Flüssigkeit (41) nur dann während des ersten Zeitraums aus dem zweiten Tank (72) in den dritten Tank (73) und während des zweiten Zeitraums aus dem ersten Tank (71) in den dritten Tank (73) überführt wird, wenn ihre Reinheit einem Vorgabewert entspricht.
  8. Verfahren nach Anspruch 7, bei dem die tiefkalte Flüssigkeit (41) während des ersten Zeitraums aus dem zweiten Tank (72) und während des zweiten Zeitraums aus dem ersten Tank (71) in das Destillationssäulensystem (12, 38) zurückgeführt wird, wenn ihre Reinheit dem Vorgabewert nicht entspricht.
  9. Verfahren nach einem der Ansprüche 1 bis 8, bei dem in dem dritten Tank (73) eine Menge der tiefkalten Flüssigkeit (41) vorgehalten wird, die zumindest so groß ist wie eine Menge der tiefkalten Flüssigkeit (41), die in dem ersten Tank (71) und/oder in dem zweiten Tank (71) speicherbar ist.
  10. Verfahren nach einem der vorstehenden Ansprüche, bei dem das Destillationssäulensystem (12, 38) eine erste Trennsäule (12) und eine zweite Trennsäule (38) umfasst, wobei unter Verwendung der ersten Trennsäule (12) ein auf einen ersten Sauerstoffgehalt an Sauerstoff angereicherter Fluidstrom (36) erzeugt wird, unter Verwendung dessen in der zweiten Trennsäule (38) flüssiger Reinsauerstoff erzeugt wird, der der zweiten Trennsäule (38) zumindest zu einem Teil als die tiefkalte Flüssigkeit (41) entnommen wird.
  11. Verfahren nach Anspruch 8, bei dem unter Verwendung der ersten Trennsäule (12) ferner ein auf einen zweiten Sauerstoffgehalt an Sauerstoff angereicherter Fluidstrom (18) und ein auf einen dritten Sauerstoffgehalt an Sauerstoff angereicherter Fluidstrom (14) erzeugt und auf unterschiedliche Temperaturen erwärmt werden, wobei der auf den zweiten Sauerstoffgehalt an Sauerstoff angereicherte, erwärmte Fluidstrom (14) zumindest zu einem Teil in einem mit einer Entspannungsmaschine (21) gekoppelten Verdichter (30) verdichtet, abgekühlt und in die erste Trennsäule (12) zurückgeführt und ein Teil des auf dritten Sauerstoffgehalt an Sauerstoff angereicherten, erwärmten Fluidstroms (14) zum Antreiben der Entspannungsmaschine (21) verwendet wird.
  12. Verfahren nach einem der vorstehenden Ansprüche, bei dem für die Erwärmung der tiefkalten Flüssigkeit (41) ein Hauptwärmetauscher (9) der Luftzerlegungsanlage (100) und/oder ein Verdampfer (80) verwendet werden.
  13. Luftzerlegungsanlage (100), die zur Gewinnung eines Luftprodukts (GOX-IC) eingerichtet ist, mit einem Destillationssäulensystem (12, 38) und einem Tanksystem (70) mit einem ersten Tank (71) und einem zweiten Tank (72), Mitteln, die dafür eingerichtet sind, dem Destillationssäulensystem (12, 38) eine tiefkalte Flüssigkeit (41) zu entnehmen, zumindest zum Teil in dem Tanksystem (70) zu speichern, und danach zumindest zum Teil und als das Luftprodukt (GOX-IC) zu verwenden, und mit Mitteln, die dafür eingerichtet sind, die tiefkalte Flüssigkeit (41) während eines ersten Zeitraums dem ersten Tank (71) und nicht dem zweiten Tank (72) und während eines zweiten Zeitraums dem zweiten Tank (72) und nicht dem ersten Tank (71) zuzuführen und während des ersten Zeitraums dem zweiten Tank (72) und nicht dem ersten Tank (71) und während des zweiten Zeitraums dem ersten Tank (71) und nicht dem zweiten Tank (71) zu entnehmen, dadurch gekennzeichnet, dass das Tanksystem (70) einen zusätzlichen dritten Tank (73) umfasst, und dass Mittel vorgesehen sind, die dafür eingerichtet sind, die tiefkalte Flüssigkeit (41), die während des ersten Zeitraums dem zweiten Tank (72) und während des zweiten Zeitraums dem ersten Tank (71) entnommen wird, zumindest zeitweise und zumindest teilweise unerwärmt in den dritten Tank (73) zu überführen und das Luftprodukt (GOX-IC) zumindest teilweise unter Verwendung der unerwärmt in den dritten Tank (73) überführten tiefkalten Flüssigkeit oder eines Teils hiervon bereitzustellen, wobei Mittel vorgesehen sind, die dafür eingerichtet sind, die zur Bereitstellung des Luftprodukts (GOX-IC) verwendete tiefkalte Flüssigkeit aus dem dritten Tank (73) in flüssigem Zustand aus dem dritten Tank (73) zu entnehmen, zu verdampfen oder aus dem flüssigen in den überkritischen Zustand zu überführen und aus der Luftzerlegungsanlage (100) auszuleiten, und/oder die dafür eingerichtet sind, die zur Bereitstellung des Luftprodukts (GOX-IC) verwendete tiefkalte Flüssigkeit aus dem dritten Tank (73) in flüssigem Zustand aus dem dritten Tank (73) zu entnehmen und in einem vierten Tank (76) flüssig zu speichern.
  14. Luftzerlegungsanlage (100) nach Anspruch 13, die zur Durchführung eines Verfahrens nach einem der Ansprüche 1 bis 12 eingerichtet ist.
EP17020003.4A 2016-01-14 2017-01-02 Verfahren zur gewinnung eines luftprodukts in einer luftzerlegungsanlage und luftzerlegungsanlage Active EP3193114B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP16000084 2016-01-14

Publications (2)

Publication Number Publication Date
EP3193114A1 true EP3193114A1 (de) 2017-07-19
EP3193114B1 EP3193114B1 (de) 2019-08-21

Family

ID=55177730

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17020003.4A Active EP3193114B1 (de) 2016-01-14 2017-01-02 Verfahren zur gewinnung eines luftprodukts in einer luftzerlegungsanlage und luftzerlegungsanlage

Country Status (5)

Country Link
US (1) US10209004B2 (de)
EP (1) EP3193114B1 (de)
KR (1) KR20170085449A (de)
CN (1) CN107238255B (de)
TW (1) TWI712770B (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018219685A1 (en) * 2017-05-31 2018-12-06 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Gas production system
WO2021129948A1 (de) 2019-12-23 2021-07-01 Linde Gmbh Verfahren und anlage zur bereitstellung eines sauerstoffprodukts

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111273570B (zh) * 2020-02-19 2021-07-06 北京天拓集智科技有限公司 一种空气分离设备的控制方法
KR20230069966A (ko) 2020-09-17 2023-05-19 린데 게엠베하 혼합 가스 터빈을 이용한 공기의 극저온 분리를 위한 공정 및 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE676616C (de) 1936-09-04 1939-06-08 Messer & Co Gmbh Verfahren zur Erzeugung von unter Druck stehendem gasfoermigem Sauerstoff
EP0464630A1 (de) 1990-06-27 1992-01-08 Praxair Technology, Inc. Tieftemperatur-Lufttrennung mit Nebenverdampfer für beide Produkte
US6295840B1 (en) 2000-11-15 2001-10-02 Air Products And Chemicals, Inc. Pressurized liquid cryogen process
US20090107177A1 (en) 2007-10-25 2009-04-30 Stefan Lochner Process and device for low temperature air fractionation
WO2014173496A2 (de) * 2013-04-25 2014-10-30 Linde Aktiengesellschaft Verfahren zur gewinnung eines luftprodukts in einer luftzerlegungsanlage mit zwischenspeicherung und luftzerlegungsanlage

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103092339B (zh) * 2012-12-13 2015-10-07 鸿富锦精密工业(深圳)有限公司 电子装置及其页面演示方法
EP2979051B1 (de) * 2013-03-28 2019-07-17 Linde Aktiengesellschaft Verfahren und vorrichtung zur erzeugung von gasförmigem drucksauerstoff mit variablem energieverbrauch

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE676616C (de) 1936-09-04 1939-06-08 Messer & Co Gmbh Verfahren zur Erzeugung von unter Druck stehendem gasfoermigem Sauerstoff
EP0464630A1 (de) 1990-06-27 1992-01-08 Praxair Technology, Inc. Tieftemperatur-Lufttrennung mit Nebenverdampfer für beide Produkte
US6295840B1 (en) 2000-11-15 2001-10-02 Air Products And Chemicals, Inc. Pressurized liquid cryogen process
US20090107177A1 (en) 2007-10-25 2009-04-30 Stefan Lochner Process and device for low temperature air fractionation
WO2014173496A2 (de) * 2013-04-25 2014-10-30 Linde Aktiengesellschaft Verfahren zur gewinnung eines luftprodukts in einer luftzerlegungsanlage mit zwischenspeicherung und luftzerlegungsanlage

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Industrial Gases Processing", 2006, WILEY-VCH, article "Cryogenic Rectification"

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018219685A1 (en) * 2017-05-31 2018-12-06 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Gas production system
US11346603B2 (en) 2017-05-31 2022-05-31 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Gas production system
WO2021129948A1 (de) 2019-12-23 2021-07-01 Linde Gmbh Verfahren und anlage zur bereitstellung eines sauerstoffprodukts

Also Published As

Publication number Publication date
TWI712770B (zh) 2020-12-11
EP3193114B1 (de) 2019-08-21
TW201730493A (zh) 2017-09-01
KR20170085449A (ko) 2017-07-24
CN107238255B (zh) 2021-03-16
CN107238255A (zh) 2017-10-10
US20170205142A1 (en) 2017-07-20
US10209004B2 (en) 2019-02-19

Similar Documents

Publication Publication Date Title
EP1067345B1 (de) Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
EP3193114B1 (de) Verfahren zur gewinnung eines luftprodukts in einer luftzerlegungsanlage und luftzerlegungsanlage
EP3179187B1 (de) Verfahren zur gewinnung eines flüssigen und eines gasförmigen, sauerstoffreichen luftprodukts in einer luftzerlegungsanlage und luftzerlegungsanlage
EP1995537A2 (de) Verfahren und Vorrichtung zur Tieftemperatur-Luftzerlegung
WO2020083528A1 (de) Verfahren und anlage zur tieftemperaturzerlegung von luft
EP2989400B1 (de) Verfahren zur gewinnung eines luftprodukts in einer luftzerlegungsanlage mit zwischenspeicherung und luftzerlegungsanlage
EP3521739A1 (de) Verfahren und vorrichtung zur gewinnung von druckstickstoff durch tieftemperaturzerlegung von luft
WO2014146779A2 (de) Verfahren und vorrichtung zur erzeugung von gasförmigem druckstickstoff
EP2053328A1 (de) Verfahren zur Tieftemperatur-Luftzerlegung
EP2053331A1 (de) Verfahren und Vorrichtung zur Tieftemperatur-Luftzerlegung
WO2021078405A1 (de) Verfahren und anlage zur tieftemperaturzerlegung von luft
WO2016058666A1 (de) Verfahren und vorrichtung zur variablen gewinnung von argon durch tieftemperaturzerlegung
EP2551619A1 (de) Verfahren und Vorrichtung zur Gewinnung von Druckstickstoff und Drucksauerstoff durch Tieftemperaturzerlegung von Luft
WO2020244801A1 (de) Verfahren und anlage zur tieftemperaturzerlegung von luft
WO2014154339A2 (de) Verfahren zur luftzerlegung und luftzerlegungsanlage
DE19933558C5 (de) Dreisäulenverfahren und -vorrichtung zur Tieftemperaturzerlegung von Luft
EP4081747A1 (de) Verfahren und anlage zur bereitstellung eines sauerstoffprodukts
DE102017010001A1 (de) Verfahren und Anlage zur Tieftemperaturzerlegung von Luft
DE102016015446A1 (de) Verfahren zur Tieftemperaturzerlegung von Luft und Luftzerlegungsanlage
WO2021204424A2 (de) Verfahren zur tieftemperaturzerlegung von luft, luftzerlegungsanlage und verbund aus wenigstens zwei luftzerlegungsanlagen
WO2014037091A2 (de) Verfahren und anlage zur erzeugung flüssiger und gasförmiger sauerstoffprodukte durch tieftemperaturzerlegung von luft
DE10045128A1 (de) Verfahren und Vorrichtung zur Erzeugung hoch reinen Stickstoffs durch Tieftemperatur-Luftzerlegung
EP2784420A1 (de) Verfahren zur Luftzerlegung und Luftzerlegungsanlage
DE10339230A1 (de) Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
DE10045121A1 (de) Verfahren und Vorrichtung zur Gewinnung eines gasförmigen Produkts durch Tieftemperaturzerlegung von Luft

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180115

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190312

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017002051

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1170231

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190821

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191223

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191121

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191221

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191122

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017002051

Country of ref document: DE

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: LINDE GMBH

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502017002051

Country of ref document: DE

Owner name: LINDE GMBH, DE

Free format text: FORMER OWNER: LINDE AKTIENGESELLSCHAFT, 80331 MUENCHEN, DE

PG2D Information on lapse in contracting state deleted

Ref country code: IS

26N No opposition filed

Effective date: 20200603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200102

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230525

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20240118

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240118

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240119

Year of fee payment: 8