EP3184202B1 - Procédé de coulée continue d'une barre métallique - Google Patents

Procédé de coulée continue d'une barre métallique Download PDF

Info

Publication number
EP3184202B1
EP3184202B1 EP16201292.6A EP16201292A EP3184202B1 EP 3184202 B1 EP3184202 B1 EP 3184202B1 EP 16201292 A EP16201292 A EP 16201292A EP 3184202 B1 EP3184202 B1 EP 3184202B1
Authority
EP
European Patent Office
Prior art keywords
cast strip
strand
simulation
casting
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16201292.6A
Other languages
German (de)
English (en)
Other versions
EP3184202A1 (fr
Inventor
Esra Erdem-Hornauer
Markus Reifferscheid
Uwe Plociennik
Thomas Heimann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SMS Group GmbH
Original Assignee
SMS Group GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SMS Group GmbH filed Critical SMS Group GmbH
Publication of EP3184202A1 publication Critical patent/EP3184202A1/fr
Application granted granted Critical
Publication of EP3184202B1 publication Critical patent/EP3184202B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/22Controlling or regulating processes or operations for cooling cast stock or mould
    • B22D11/225Controlling or regulating processes or operations for cooling cast stock or mould for secondary cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/18Controlling or regulating processes or operations for pouring

Definitions

  • the invention is directed to a method for producing a metal strand, in particular a steel strand comprising the casting of a molten metal, in particular molten steel, in a continuous casting process to a casting strand, which is cooled with coolant and, if desired, reduced in thickness, based on one or more of the time-dependent temperature distribution over the cast strand length and / or the formation of a desired structure of the cast strand over the cast strand length descriptive and / or calculating simulation and computational models, in particular the so-called DSC ( D ynamic S olidification C ontrol) calculation and control program, constantly during the production of Gibilstrangs values be considered, which describe the formation of the respective microstructure composition and / or this or the cast strand training influencing process parameters and based on which online dynamically during the production d It is cast strand cooling the casting strand and / or the casting speed is adjusted. Furthermore, the invention is directed to a casting strand obtained by such a process.
  • DSC D y
  • the temperature of the cast strand obtained during solidification at each cross-sectional position of the cast strand during the production of the analysis dependent about 1,550 ° C amounting casting temperature drops below 900 ° C, sometimes below 700 ° C.
  • the ductility of the steel material used which is an evaluation criterion for the weakening of the material, has local minima in this temperature interval.
  • a simulation and calculation model is known, by means of which it is possible to calculate and adjust ZTU (time-temperature-conversion) diagrams or diagrams when rolling metallic rolling stock, and in particular when rolling steel in a hot strip mill or a heavy plate mill To predict structure compositions.
  • ZTU time-temperature-conversion
  • the basis of this simulation and calculation model is a temperature calculation model in which, among other things, the dynamic development of the enthalpy and the heat conduction as an input variable is taken into account.
  • the WO 01/91943 A1 discloses a method in which by means of a simulation and calculation model, the amount of coolant to be applied is calculated in order to obtain the target structure defined desired structure of the casting strand produced during continuous casting.
  • the continuous casting is carried out under on-line calculation on the basis of a simulation and calculation model describing the desired structure of the casting strand, whereby the variable of the continuous casting process affecting the structure formation, such as the specific coolant quantity provided for cooling the strand, is dynamically online, ie during of running casting.
  • the simulation and calculation model includes a metallurgical computational model considering the phase transformation kinetics and nucleation kinetics and a thermal computational model that allows temperature analysis due to the solution of heat equation equations.
  • the basis is in particular the appropriate consideration of the Gibbs energy and the multicomponent systems are integrated into the calculation model.
  • This known simulation and computational model also includes the measure to calculate the proportion of converted material on the basis of the ZTU graphs stored in the computer and the temperature which changes as a function of time, thus also taking into account the optionally non-uniform cooling of the cast strand produced to be able to.
  • the thickness of the strand shell can be calculated by knowing the solidus temperature from the material model at each time point and for each plant position.
  • the strand is solidified.
  • the position of complete solidification is of particular importance in a casting plant, since it must not exceed the last roll in order to prevent an uncontrolled swelling of the strand (whale formation).
  • the exact position of the sump tip is also required.
  • the isolines for all Solid Fraction fractions in the solidification interval and the isolines below the solidus temperature can also be calculated.
  • Ts-10 ° C to Ts-50 ° C the solidus temperature
  • the crack propagation extends outwardly into the region of zero toughness into the temperature range Ts-10 ° C to Ts-50 ° C.
  • the Solid Fraction Shares are also needed to determine the soft reduction positions.
  • the optimum time for soft reduction is determined by the liquid fraction ratio (solid fraction fraction) in the strand core, which is a criterion for evaluating the effect of soft reduction on center segregation.
  • the liquid fraction ratio solid fraction fraction
  • the different solubility of the alloying elements in solid and liquid causes an enrichment of the alloying elements in the molten phase.
  • the last solidifying areas have a higher concentration than the initial concentration (nominal analysis). In this area, this leads to a lowering of the solidus temperature. This is not important for whale formation, but for the detection of hot cracks.
  • the ductility profile over the entire surface can be represented.
  • isotherms of the critical ductility profile can be used for the localization of internal cracks.
  • the bulge and the associated expansion can be calculated at each plant position, taking into account the roll distances.
  • the elongation can be compared with a given maximum allowable elongation.
  • the sump tips wedge-shaped due to the one-dimensional heat dissipation and solidification.
  • Local crystal bridges do not lead to a complete constriction of the sump, so that the make-up of melt is still possible and no Kernlunker but at most loosening occur.
  • Round and square strands have a tapered conical crater due to the two-dimensional heat dissipation and solidification, is fed by the liquid metal to compensate for the solidification shrinkage.
  • Favorably oriented, leading dendrites can form bridges, complete the sump underneath and obstruct or prevent desserts with melt from above. These processes lead in the strand to Kernlunker and core loosening.
  • the temporal temperature field of the strand Prerequisite for the calculation of voids and pore formation is the temporal temperature field of the strand.
  • SDAS secondary dendrite arm spacing
  • a permeability which counteracts the hydrostatic pressure can be calculated.
  • the permeability describes the permeability of the Dendrite. The greater the permeability, the greater the permeability.
  • the pressure loss of the inflowing melt increases with decreasing permeability.
  • the make-up ends when the pressure loss of the feeding flow is greater than the ferrostatic load. This is the case with a plot of pressure loss and hydrostatic pressure in bar over the distance from the pouring mirror in meters (m), and thus over the cast strand length, intersection of the curves of pressure loss and hydrostatic pressure of the case.
  • Solidification structure (macrostructure):
  • the center segregations are associated with the appearance of the trans-crystalline (directional) digestion structure.
  • the causes are flows of the residual melt in the area of the sump tip, which lead to a redistribution of the alloying elements.
  • the enriched melt reaches the center of the strand and causes the positive center segregation there. It is characteristic of a mid-segregation that the enrichment in the middle of the strand always involves a depletion of the adjoining areas.
  • the positive segregation must correspond quantitatively to the negative one. It is of great importance to see how the proportion of globulitic (undirected & equiaxed) solidification structure depends on continuous casting techniques and steel composition. If the solidification structure is globulitic (undirected & equiaxed), the observed segregations are usually smaller.
  • High carbon steels have a much greater tendency for center segregation (macrosegregation) than those with low or medium carbon content.
  • High carbon content favors the transcrystalline (directional) solidification and thus the center segregation.
  • the material is additionally weakened by internal defects, which leads to fragility during transport.
  • the solidification rates and the temperature gradient at the solidification front can be determined.
  • the proportion of globulitic structure can then be calculated.
  • the globulitic part of the solidification structure can be increased by using stirrers and casting with a low overheating temperature.
  • the strand is e.g. To avoid bulges strongly cooled to quickly get a thick strand shell. In this case, the temperature may fall below the transformation temperature ⁇ / ⁇ . Since ferrite is much softer than austenite, it is believed that the deformation of the material is preferably at the ferrite spaces. The break is then initiated at the ferrite spaces. From calculated temperature fields, the cooling rates can be calculated for any line positions. With these cooling rates and the minimum temperatures achieved, the microstructure distribution can be read off with a coupled synthetic ZTU model.
  • the water quantities for each casting speed control point are specified for each control loop. Between these interpolation points, the quantities of water are linearly interpolated. If the casting speed is changed, the water quantities in all control loops are changed immediately.
  • setpoint temperatures are specified depending on the material group.
  • the spray water volumes are now controlled so that these predetermined temperatures are set.
  • the strand retains the same temperature distribution and thus constant qualities even with changes in the casting speed.
  • the casting speed is varied to set the sump tip at a predetermined position or to reach a desired temperature.
  • the temperature profile is controlled so that the surface temperatures in the crack-critical bending and straightening range do not fall below a critical value.
  • This critical temperature value is calculated from the intersection of the given ductility curve with the value of a critical limit (e.g., 75%).
  • a maximum permissible temperature value can also be calculated back from the permissible maximum strain.
  • the calculation of the maximum permissible temperature values takes place from the maximum elongation with the aid of a recursive calculation method, since with decreasing temperature the strand shell becomes thicker and the bulge and thus also the expansion decreases.
  • the invention has for its object to provide a solution with which the influence of cooling on the production of a cast strand obtained in continuous casting can be further improved.
  • a desired macrostructure which is the solidification structure, has a globulitic structure fraction of at least 30%, preferably at least 35%, and in the case of ferritic steel at least 40 %, preferably at least 45%.
  • The% data refers in each case to the surface of a micrograph.
  • the casting speed and the amount of spray water are controlled to set the desired macrostructure in a continuous casting machine equipped with a stirrer and in addition to that in a continuous casting machine with adjustable stirrer the desired macrostructure and / or the desired structure composition of the casting strand optimal stirrer position and the stirring intensity can be calculated and adjusted by means of or based on the simulation and calculation model, which further distinguishes the invention.
  • the casting speed and / or the secondary cooling is controlled so that the desired structure is achieved.
  • a control concept for the formation of the microstructure in the forming cast strand is characterized in that for setting the desired microstructure, the simulation and calculation model ZTU (time-temperature conversion) diagrams includes and calculated using an online temperature model of the cast strand G manstrangabkühlraten be combined such that for each defined calculation element of each G manstrangquerterrorisms the current G fauxstrangkkühlrate and the resulting structure composition can be calculated and calculated and by controlling the G fauxstrangabkühlraten the desired structure is set.
  • ZTU time-temperature conversion
  • a continuous, dynamic and constant online calculation of the respectively on a G manstrangquerrough adjusting microstructure i. the microstructure composition and microstructure distribution which arises in such a cross-sectional area has hitherto not been carried out in the continuous casting process in the production of a metal strand, in particular a steel strand.
  • the limits of the third ductility minimum occurring at different cooling rates for the respective steel grades are calculated and plotted.
  • Such a possibility is in the DE 10 2012 224 502 A1 described and can in principle also be adapted for use in casting a casting strand in a continuous casting.
  • the respectively calculated cooling rates can be plotted in the respectively calculated ZTU diagram (s) or in ZTU diagrams calculated on the basis of measured values and stored in the simulation and calculation model and used for the calculation of the then resulting structure fractions.
  • the ductility minima occurring at the different temperatures for the respective steel grade can also be drawn.
  • An online temperature model represents the Dynamic Solidification Control (DSC) method or model.
  • DSC Dynamic Solidification Control
  • the amount of coolant to be applied to the respective surface side (s) of the cast strand in particular the amount of water, or the position of the nozzles, for example by adjusting the height of the nozzles, can be regulated and controlled in such a way that a uniform transformation of the microstructure can be obtained from the austenite in the ferrite on the narrow and / or broadside.
  • the risk of surface cracks occurring as a result of uneven cooling can be reduced, in particular in the case of strong, intensive cooling.
  • the aim of an embodiment of the method according to the invention is to achieve a uniform desired microstructure distribution.
  • the invention is characterized in that the G confusestrangabkühlraten at their respective position with respect to the casting strand by controlling the impacting in this area each on the casting strand coolant quantity and / or the control of the location or the surface of the impact of the coolant on the cast strand in such a way be controlled and regulated that the most uniform transformation of the metal structure on the narrow side and / or the broad side of the cast strand, in particular in a steel strand while avoiding the formation of the deposition of ferrite grains austenite grain boundaries, so-called Ferrites, is achieved.
  • the invention it is then also possible in this case to calculate ZTU diagrams or diagrams directly by means of the simulation and computational models that are used and to base the control of the coolant admission.
  • the invention therefore further provides that the ZTU (time-temperature conversion) diagrams are calculated by means of the simulation and calculation model.
  • a recursive calculation method is necessary, with the aid of which the required cooling intensity of the secondary cooling is calculated from the cooling rate.
  • the G manstrangabkühlraten at their respective position with respect to the G manstrangs by controlling the impacted in this area respectively on the G manstrang coolant quantity and / or the control of the location or the surface of the impact of the coolant on the G manstrang be controlled and controlled so that the most uniform possible transformation of the metal structure over the respectively considered cross-sectional area or side surface of the cast strand is achieved.
  • the application of the method according to the invention for the control of a uniform microstructure formation and a uniform Cooling of the narrow sides of a cast strand, which is generally rectangular in cross-section, to avoid cracking is advantageous.
  • the invention therefore also provides that the G manstrangabkühlraten be determined with respect to the narrow sides of the casting strand and the incident on the narrow sides of the casting strand coolant quantity and / or the location or area to which (n) the coolant on the respective narrow side of the casting strand is applied, is controlled in dependence of the adjoining in the boundary region to the surface of the narrow side structure and / will be.
  • a control concept for achieving a uniformly shaped sump tip can be realized according to another embodiment of the invention in an advantageous manner that for setting the desired position and / or formation of the sump tip of G fauxstrangs or on the basis of or simulation and computational models a desired sump length in The SPDF (Solidification Point Difference Factor) value (see definition below) is calculated and, if a maximum SPDF max value is exceeded, the desired SPDF value is adjusted and adjusted by increasing the amount of sprayed water in the edge zones of the casting strand in the area of the sump tip ,
  • SPDF Solidification Point Difference Factor
  • a control concept for achieving a constant outlet thickness of the cast strand can advantageously be realized according to the invention by adjusting the desired geometric dimension of the cast strand by means of or on the basis of the simulation and calculation models starting from the desired final thickness of the cast strand at the end of the plant to the mold over the length of the casting strand which calculates, adjusts and adjusts a position for providing the cooling rate and / or deformation necessary for achieving the desired dimension of the casting strand for each segment and / or roll.
  • segment adjustment and / or roller adjustment it is also expedient if the segment adjustment and / or roller adjustment to be set at each segment there to achieve a strand thickness necessary for achieving the desired final thickness (temperature-dependent) density (determined from the respectively determined temperature or temperature distribution) ( of the material) and the density difference resulting over the casting length is calculated by means of or on the basis of the simulation and calculation models, which the invention also provides.
  • the invention is characterized in a further embodiment in that for setting the desired surface finish or internal structure of the cast strand and for reducing voids or Kernlockerstellen means or on the basis of or simulation and calculation models on the cast strand length a desired cavity diameter is calculated and when a predetermined maximum value of the cavity diameter is exceeded, the casting speed is reduced.
  • the method according to the invention is used in the secondary cooling of the cast strand, which finally also provides the invention in an embodiment.
  • the Fig. 1 shows the generally designated 1 G manbogen a continuous casting, starting from a continuous casting mold 2, in which a liquid molten steel is poured 3, extends over the bending region 4 and the straightening region 5 into the region of solidified G manstranges 6.
  • a liquid molten steel is poured 3
  • spray water 8 as a coolant that is sprayed from the outside on its surface sides, so that within the cast strand 6, a liquid core 9 of non-solidified melt. 3 forms until this liquid core ends after passing through the straightening region 5 in the form of a sump tip 10 in the cast strand.
  • the spray 8 emerges from spray nozzles, which are arranged to several in each one engagable segment 29, of which a plurality of strung together along the casting strand 6 is arranged. In this area, the casting strand 6 is also exposed to a water cooling 11.
  • the cast strand 6 has a substantially and approximately rectangular cross-sectional area with two opposite broad sides and two opposite narrow sides.
  • the Fig. 2 shows a ZTU diagram drawn in the context of carrying out the control concept according to the invention for setting a desired microstructure with the simulation and computational model used here with cast strand cooling curves 12-15, which are characterized by their positions 12 'on the surface of a broad side of the cast strand 6, 13 'in the transition region of the broad side to an adjacent narrow side of the G beaustranges 6 and 14 'and 15' on the narrow side of the casting strand 6 differ, as shown schematically in the upper right partial image, which is a cross section through a portion of a casting strand 6, schematically.
  • the individual G manstrangabkühlkurven 12-15 are each different G manstrangkkschreibraten associated with the result that shown at the respective positions 12'-15 'in the simulation and calculation model respectively associated and detected calculation element 16 (shown the position 14' associated computing element 16 ) of the cross-sectional area set different structural components.
  • FIG. 2 are the G manstrangabkühlraten and the structural components on a cross section after 2235 mm, so even before the bending area shown.
  • the different G manstrangkkschreibraten and obtained microstructural components are in the upper left part of the Fig. 2 in the respective columns 12 "to 15", which are respectively associated with the same number cast strand cooling curve and the same-numbered position.
  • the G hasslestrangabkühlkurve 12 is thus carried out with a G manstrangkkühlrate of 0.1 K / s and there is a microstructure of 100% austenite in the area 12 'adjacent area.
  • a cast strand cooling curve 13 With a cast strand cooling rate of 2.30 K / s in a region adjoining the edge of the cast strand 6, a composition of the structure consisting of 77.91% ferrite, 1.65% pearlite, 4.24% bainite and 16.2% austenite.
  • the G hasslestrangabkühlkurve 14 is performed with a G manstrangkkühlrate of 9.93 K / s and in the adjacent to the position 14 'region 16 is a microstructure composed of 72.73% ferrite, 3.13% perlite, 7.17% bainite and 16.97% austenite.
  • the G manstrangabkühlkurve 15 is performed with a G manstrangkkühlrate of 5.30 K / s, so that in the adjoining the position 15 'cross-sectional area of the casting 6, a microstructure composition is composed of 10.41% ferrite and 89.59% austenite.
  • the cooling rates are determined, for example by means of Dynamic Solidification Control (DSC) and calculated and in the either using the simulation and calculation model calculated ZTU diagram or in such a computing unit 17, see FIG. 6 and associated description, stored and deposited ZTU diagram drawn.
  • the simulation and calculation model can also be used to calculate the structural components then obtained in the individual calculation element 16, so that the cast strand cooling rates can be controlled and influenced in a targeted manner for setting the desired structure composition at the respective position, for example by regulating the amount of coolant sprayed at the respective position or by influencing the spray area and thus the surface on which the coolant impinges on the respective surface side of the casting strand 6.
  • a control and regulation of the application of broadsides 19 and / or the narrow sides 18 of the casting strand 6 are provided.
  • the basic structure of this control and regulation shows the Fig. 6 ,
  • the centerpiece is the arithmetic unit 17, in which the simulation and calculation model 21, which is based on a mathematical / physical model, as for example in the DE 10 2012 224 502 A1 is described, is deposited.
  • step 23 a change in the coolant flowing out of the respective nozzles, in particular water, and / or the position of the nozzles relative to the surface of a broad side 19 or narrow side is produced with the aid of the simulation and calculation model 21 18 or the distance of the nozzle from the respective associated surface side changed, as indicated in step 26.
  • step 26 is intervened in the spray plan 27 of the respective loop and / or in the nozzle distribution and nozzle assembly 28.
  • the intervention in the spray plan is that the output to the respective surface side of the casting strand 6 coolant quantity is changed, that is increased or decreased.
  • the influence with respect to the nozzle distribution 28 is that thereby the position of one or more nozzles along one or more side surface (s), ie the broad side 19 and / or a narrow side 18, but in particular a narrow side 18, is changed.
  • This can be achieved, for example, by spray nozzles which are height-adjustable in relation to the height (thickness) of a cast strand 6, so that an adjustable relative position of the respective nozzle to the narrow side 18 can be adjusted by this height adjustability.
  • the distance of the respective nozzle of a broad side 19 or narrow side 18 formed changeable, so that on such an adjustment of each nozzle sprayed surface of a broad side 19 or narrow side 18 can be influenced.
  • Part of the control step 28 is thus also a control and regulation of the nozzle distribution with wide control circuits.
  • this control loop the structure formation on the broad sides 19 and the narrow sides 18 of a cast strand 6 can be controlled and influenced in a targeted manner, the influencing of the structure formation and structure distribution on the narrow sides 18 of the cast strand 6 being provided according to the invention. It is aimed at a uniform cooling.
  • values are continuously and continuously calculated during the production of the cast strand 6 which describe the formation of the respective microstructure composition and control process parameters, ie in particular the coolant admission, so that on the basis of these calculated values and process parameters a dynamic online control of the production of the casting strand 6 and in particular the cooling of the casting strand 6 is possible and adjusted.
  • the simulation and calculation model 21 combines ZTU diagrams and cast strand cooling rates determined by an online temperature model such that for each defined calculation element 16 of each G manstrangqueriteses each G toysstrangabkühlrate determined at a respectively defined and determined position and the resulting microstructure composition is calculated and is influenced by the control of G manstrangabkühlraten to the effect that adjusts the particular desired structure or desired structure composition in the respective calculation element 16.
  • this regulation and control is performed on the narrow sides 18 of the cast strand 6.
  • the control concept thus has an effect on the height-adjustable side cooling of the cast strand 6 and the control of the narrow side injection water quantity on the basis of the microstructure calculation.
  • Control concept for setting a macrostructure (CET "Columnar to equiaxed transition”).
  • the proportion of globulitic structure in ferritic steels should be above 45%.
  • the globulitic part of the structure is dependent not only on the overheating, the casting speed and the secondary cooling, but above all on the type and position of the stirrer used in the casting of a molten metal, in particular molten steel in continuous casting.
  • the casting speed and the spray water quantities (coolant) can be controlled so that the desired solidification structure is achieved with model calculations.
  • Adjustable stirrers also allow their optimal position and intensity to be calculated and adjusted.
  • the control concept for setting a macrostructure is the Fig. 7 refer to.
  • current process parameters are determined and fed to the mathematical-physical model, which is part of a simulation and calculation model 21.
  • the globulitic fraction of the macrostructure in the macrostructure which is established over the cast strand length at a respectively defined location is calculated in% and it is checked whether this calculated globulitic fraction is ⁇ the desired globulitic fraction. If so, the process parameters remain unchanged. If not, the stirrer action is increased, if possible, and / or superheat is reduced and / or the casting speed is increased.
  • the calculation model 21 is checked using micrographs. If the micrographs show a different globulitic component of the macrostructure than results from the calculation, the calculation model is adapted accordingly. With this control concept, in particular the power-adjustable stirrer with associated automation and the secondary cooling are applied and influenced.
  • the result of uniform cooling is a uniformly formed sump tip.
  • the applied or applied spray water volumes over the strand width are often not constant, but the marginal areas then so-called edge control loops are assigned by means of which a smaller specific amount of water than in the remaining area of the surface of the strand width is applied , This increases the surface temperature of the edge and the temperature drop at the edge is then not so high.
  • Negative here, however, is that the strand over its width no longer solidifies uniformly, but the sump tip forms a so-called "W" shape.
  • An uneven sump tip is very problematic. It can lead to an increased center segregation at the edges and thus in itself set an increased internal defect at various points of the casting strand 6.
  • the quantities of water in the peripheral zones are now regulated so that the SPDF value does not exceed a predetermined level, the SPDF max value. If this is the case, the spray water volumes in the edge zones are increased again.
  • the determination of the respective solidification position takes place with the aid of a mathematical-physical model which forms or is part of the one or more possibly simulation and calculation models 21.
  • the regulatory scheme is the Fig. 8 refer to.
  • the solidification front is calculated and determined.
  • the Kokillenaustritts crusher can not be determined directly from the desired final thickness and the density difference. Namely, the individual segments 29 and rollers have to be adjusted in such a way that they push away the natural sock formed by the density difference. For this purpose, the temperature difference in each calculation element 16 and the associated contraction must be calculated for the current process values. The contraction of the still liquid material (metal, steel) does not have to be taken into account, as it constantly flows through the ferrostatic load inside the strand. Thereafter, starting from the required final thickness from the end of the system to the mold down over the length of the casting strand 6, the employment for each segment 29 and its rollers 7 is calculated. If the process values are changed, a new determination of the segment position takes place immediately.
  • the difference in density and the temperature distribution at the last setting position ie at the last segment 29 of the cast strand 6 before separation of a slab, may be required there Thickness can be calculated.
  • the hydraulically adjustable segments in slab casters or adjustable single rolls in long-tailed plants serve as a strand setting.
  • the local employment can be calculated again.
  • the G hasslestrangdicke at the exit from the mold 2 is determined plant-specific and fixed and can not dynamic be adjusted.
  • About an Anstellver republic this additional thickness decrease is distributed over the individual Anstellpositionen. If the calculated material thickness after cooling is already less than the specified final thickness even without setting, this can not be compensated by changing the casting speed or amount of spray water. These changes would only delay the end of the cooling period.
  • the knowledge of the temporal temperature field of the cast strand 6 is a prerequisite.
  • the secondary dendrite arm spacing (SDAS) and a permeability which counteracts the hydrostatic pressure can be calculated.
  • the permeability describes the permeability of the dendrite structure. The greater the permeability, the greater the permeability.
  • the pressure loss of the inflowing melt increases with decreasing permeability. The make-up ends when the pressure loss of the feeding flow is greater than the ferrostatic load.
  • the control concept according to the invention consists in varying the casting speed in a continuous casting plant for slabs and long products (billet, billet or round plants) such that the shrinkage diameter determined with the mathematical-physical calculation model or one of the simulation and calculation models 21 is a given Measured value does not exceed.
  • the regulatory scheme for this regulatory concept is in the FIG. 10 shown. It can be seen that with the aid of the simulation and calculation model 21 the voids diameter (at the respective location of the cast strand 6) is calculated and compared with the desired size, ie a desired voucher diameter. If the calculated blow hole diameter is greater than specified, the casting speed will be lowered to reduce the blowhole diameter that will be created.

Claims (12)

  1. Procédé pour la fabrication d'une barre métallique, en particulier d'une barre en acier dans la lingotière (1) d'une installation de coulée continue, comprenant la coulée d'un métal en fusion, en particulier d'acier en fusion (3), dans le procédé de coulée continue afin d'obtenir une barre de coulée (6) qui est refroidie avec un agent de refroidissement (8, 11) et dont, le cas échéant, l'épaisseur fait l'objet d'une réduction ; dans lequel, en se basant sur un ou plusieurs modèles de simulation et de calcul (21) déposés dans une unité de calcul, qui décrivent ou qui calculent la distribution de la température en fonction du temps sur la longueur de la barre de coulée et la formation d'une structure désirée de la barre de coulée (6) sur la longueur de la barre de coulée, par exemple en se basant sur le programme de calcul et de commande DSC (Dynamic Solidification Control), au cours de la fabrication de la barre de coulée (6) au moyen d'une unité de calcul (17) et du ou des modèles de simulation et de calcul (21), des valeurs sont calculées de manière conjointe en ligne en permanence et en continu, valeurs qui décrivent la formation de la composition de structure respective et qui commandent cette dernière ou les paramètres opératoires influençant la réalisation de la barre de coulée et sur base desquelles on règle de manière dynamique en ligne, au cours de la fabrication de la barre de coulée (6), le refroidissement de la barre de coulée (6) et/ou la vitesse de coulée, caractérisé en ce que le ou les modèles de simulation et de calcul (21) déposés dans l'unité de calcul, sur base de modèles mathématiques/physiques qui représentent des éléments constitutifs du ou des modèles de simulation et/ou de calcul (21), mettent en oeuvre différents concepts de réglage en ce qui concerne la macrostructure, la microstructure, afin d'obtenir une pointe du cône liquide réalisée de manière uniforme, afin de régler une épaisseur de sortie constante de la barre de coulée et afin d'éviter des retassures et des lacunes centrales localisées ; dans lequel, en fonction de la distribution en vigueur calculée de la température sur la longueur de la barre de coulée ou dans une section transversale de la barre de coulée envisagée de manière respective, on règle la quantité de l'agent de refroidissement ou la distribution de l'agent de refroidissement, en particulier la quantité de projection d'eau ou la distribution de projection d'eau à appliquer localement sur la barre de coulée, ainsi que la vitesse de coulée et le placement des rouleaux ou des segments, d'une manière telle que l'on calcule et que l'on règle en ligne la structure désirée ou la composition de structure désirée, de manière dynamique et de manière constante, en continu, et on règle également un emplacement désiré et une réalisation désirée de la pointe du cône liquide, ainsi qu'une dimension géométrique ou une qualité superficielle ou une qualité de la structure interne de la barre de coulée (6) que l'on souhaite obtenir.
  2. Procédé selon la revendication 1, caractérisé en ce qu'on règle une macrostructure (= une structure de solidification) désirée comprenant une fraction de structure globulaire d'au moins 30 %, de préférence d'au moins 35 % et dans le cas d'acier ferritique, d'au moins 40 %, de préférence d'au moins 45 %.
  3. Procédé selon la revendication 1 ou 2, caractérisé en ce que, pour le réglage de la macrostructure désirée, dans le cas d'une installation de coulée continue équipée d'un agitateur, on règle la vitesse de coulée et la quantité de projection d'eau et, dans le cas d'une installation de coulée continue équipée d'un agitateur réglable, on calcule et on règle en outre la position optimale de l'agitateur en ce qui concerne l'obtention de la macrostructure désirée et/ou la composition structure désirée de la barre de coulée (6), ainsi que l'intensité d'agitation au moyen du modèle de simulation et de calcul (21) ou sur base du modèle en question.
  4. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que, pour le réglage de la microstructure désirée, le modèle de simulation et de calcul (21) comprend des diagrammes ZTU (de modification de la température en fonction du temps) et combine ces derniers avec des vitesses de refroidissement de la barre de coulée calculées au moyen d'un modèle de température en ligne de la barre de coulée (6), d'une manière telle que pour chaque élément de calcul défini (16) de chacune des sections transversales de la barre de coulée, on peut calculer et on calcule la vitesse de refroidissement respectivement en vigueur de la barre de coulée ainsi que la composition de structure qui en découle, de même que l'on règle la structure désirée via la commande des vitesses de refroidissement de la barre de coulée.
  5. Procédé selon la revendication 4, caractérisé en ce que l'on commande et on règle les vitesses de refroidissement de la barre de coulée à sa position respective en ce qui concerne la barre de coulée (6) via un réglage de la quantité de l'agent de refroidissement impliquée spécifiquement dans cette zone respectivement sur la barre de coulée (6) et/ou la commande de l'endroit ou de la surface spécifiquement visé par l'application de l'agent de refroidissement (8, 11) sur la barre de coulée (6), d'une manière telle que l'on obtient une transformation la plus uniforme possible de la structure métallique sur le petit côté (18) et/ou sur le grand côté (19) de la barre de coulée (6), en particulier, dans le cas d'une barre en acier, en évitant la formation d'un dépôt de grains de ferrite sur des limites de grains d'austénite.
  6. Procédé selon la revendication 4 ou 5, caractérisé en ce que l'on calcule les diagrammes ZTU (de modification de la température en fonction du temps) au moyen du modèle de simulation et de calcul (21).
  7. Procédé selon une ou plusieurs des revendications 4 à 6, caractérisé en ce que l'on détermine les vitesses de refroidissement de la barre de coulée en ce qui concerne les petits côtés (18) de la barre de coulée (6) et l'on commande et l'on règle la quantité de l'agent de refroidissement qui s'applique spécifiquement sur les petits côtés (18) de la barre de coulée (6) et/ou l'endroit ou la surface spécifiquement visé(s) par l'application de l'agent de refroidissement (8, 11) sur le petit côté respectif (18) de la barre de coulée (6), en fonction de la structure qui doit être réglée dans la zone limite par rapport à la surface du petit côté (18).
  8. Procédé selon la revendication 1, caractérisé en ce que, pour le réglage de l'emplacement désiré et/ou de la réalisation désirée de la pointe du cône liquide de la barre de coulée (6), au moyen du ou des modèles de simulation et de calcul (21) ou sur la base du ou des modèles en question, on calcule une longueur désirée du cône liquide sous la forme d'une valeur SPDF (Solidification Point Différence Factor) et, dans le cas d'un dépassement vers le haut d'une valeur SPDFmax maximale, on adapte et on règle la valeur SPDF désirée via une augmentation de la quantité de projection d'eau dans les zones marginales de la barre de coulée (6) dans le secteur de la pointe du cône liquide.
  9. Procédé selon la revendication 1, caractérisé en ce que, pour le réglage de la dimension géométrique désirée de la barre de coulée (6) au moyen du ou des modèles de simulation et de calcul (21) ou sur la base du ou des modèles en question, en partant de l'épaisseur finale désirée de la barre de coulée (6) à l'extrémité de l'installation jusqu'à la lingotière, on calcule, on adapte et on règle, sur la longueur de la barre de coulée (6), la vitesse de refroidissement nécessaire pour l'obtention de la dimension désirée de la barre de coulée (6) et/ou le placement entraînant une déformation, pour chaque segment (29) et/ou pour chaque rouleau (7).
  10. Procédé selon la revendication 9, caractérisé en ce que l'on calcule, au moyen du ou des modèles de simulation et de calcul (21) ou sur la base du ou des modèles en question, pour l'obtention d'un placement de segment et/ou d'un placement de rouleau, qui doi(ven)t régler, pour l'obtention de l'épaisseur finale désirée, l'épaisseur de barre respectivement requise, à partir de la densité déterminée à partir de la température ou de la distribution de température respectivement déterminée et de la différence de densité que l'on obtient sur la longueur de la barre de coulée.
  11. Procédé selon la revendication 1, caractérisé en ce que, pour le réglage de la qualité superficielle ou de la qualité de la structure interne de la barre de coulée, que l'on souhaite obtenir, et pour éviter des retassures ou des lacunes centrales localisées, on calcule un diamètre désiré des retassures sur la longueur de la barre de coulée au moyen du ou des modèles de simulation et du calcul (21) ou sur la base du ou des modèles en question et, dans le cas d'un dépassement vers le haut d'une valeur maximale prédéfinie du diamètre de retassure, on réduit la vitesse de coulée.
  12. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le procédé est mis en oeuvre au cours du refroidissement secondaire de la barre de coulée (6).
EP16201292.6A 2015-11-30 2016-11-30 Procédé de coulée continue d'une barre métallique Active EP3184202B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102015223788.5A DE102015223788A1 (de) 2015-11-30 2015-11-30 Verfahren zum Stranggießen eines Metallstranges und durch dieses Verfahren erhaltener Gießstrang

Publications (2)

Publication Number Publication Date
EP3184202A1 EP3184202A1 (fr) 2017-06-28
EP3184202B1 true EP3184202B1 (fr) 2019-07-31

Family

ID=57442533

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16201292.6A Active EP3184202B1 (fr) 2015-11-30 2016-11-30 Procédé de coulée continue d'une barre métallique

Country Status (2)

Country Link
EP (1) EP3184202B1 (fr)
DE (1) DE102015223788A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021213885A1 (de) 2021-12-07 2023-06-07 Sms Group Gmbh Verfahren zum Optimieren der chemischen Zusammensetzung eines Werkstoffs

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3437757A1 (fr) * 2017-08-04 2019-02-06 Primetals Technologies Austria GmbH Coulée continue d'une barre métallique
EP3437759B1 (fr) * 2017-08-04 2022-10-12 Primetals Technologies Austria GmbH Coulée continue d'une barre métallique
EP3437756B1 (fr) * 2017-08-04 2021-12-22 Primetals Technologies Austria GmbH Coulée continue d'une barre métallique
DE102017213842A1 (de) * 2017-08-08 2019-02-14 Sms Group Gmbh Verfahren und Anlage zum Stranggießen eines metallischen Produkts
DE102017221086A1 (de) * 2017-11-24 2019-05-29 Sms Group Gmbh Verfahren zur Analyse von Fehlerursachen beim Stranggießen
DE102020211720A1 (de) * 2020-09-18 2022-03-24 Sms Group Gmbh Verfahren und Sprüheinrichtung zur thermischen Oberflächenbehandlung eines metallischen Produkts
AT525111A1 (de) * 2021-06-08 2022-12-15 Primetals Technologies Austria GmbH Rühren bei gegossenen Vorblöcken mit oszillierendem Strangrührer
CN113695543A (zh) * 2021-08-18 2021-11-26 中天钢铁集团有限公司 一种高拉速下控制焊丝钢中心缩孔的方法
CN114247863B (zh) * 2021-12-30 2023-09-12 中冶赛迪工程技术股份有限公司 改善连铸坯质量的二冷装置控制方法、系统、设备及介质

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19612420C2 (de) * 1996-03-28 2000-06-29 Siemens Ag Verfahren und Einrichtung zur Steuerung der Kühlung eines Stranges in einer Stranggießanlage
AT409352B (de) * 2000-06-02 2002-07-25 Voest Alpine Ind Anlagen Verfahren zum stranggiessen eines metallstranges
US20090084517A1 (en) * 2007-05-07 2009-04-02 Thomas Brian G Cooling control system for continuous casting of metal
DE102012224502A1 (de) 2012-12-28 2014-07-03 Sms Siemag Ag Walzverfahren, bevorzugt für eine Warmbandstraße oder eine Grobblechstraße
DE102014105870A1 (de) * 2014-04-25 2015-10-29 Thyssenkrupp Ag Verfahren und Vorrichtung zum Dünnbrammen-Stranggießen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021213885A1 (de) 2021-12-07 2023-06-07 Sms Group Gmbh Verfahren zum Optimieren der chemischen Zusammensetzung eines Werkstoffs
WO2023104836A1 (fr) 2021-12-07 2023-06-15 Sms Group Gmbh Procédé d'optimisation de la composition chimique d'un matériau

Also Published As

Publication number Publication date
DE102015223788A1 (de) 2017-06-01
EP3184202A1 (fr) 2017-06-28

Similar Documents

Publication Publication Date Title
EP3184202B1 (fr) Procédé de coulée continue d'une barre métallique
EP2279052B1 (fr) Procédé de coulée continue d'une barre métallique
EP1289691B1 (fr) Procede pour couler des barres de metal en continu
EP2753439B1 (fr) Procédé de coulée, en particulier procédé de coulée continue
AT408197B (de) Verfahren zum stranggiessen eines metallstranges
EP1200216B1 (fr) Procede et dispositif de fabrication d'un brin metallique
EP2346631B1 (fr) Procédé et dispositif de commande de la solidification d'une barre de coulée dans une installation de coulée continue lors de la mise en marche du processus de coulée
EP2762251B1 (fr) Procédé et dispositif de coulée d'une tige
AT506847B1 (de) Verfahren zum stranggiessen eines metallstrangs
DE69938126T2 (de) Stranggussverfahren
DE102019208736A1 (de) Verfahren zum Gießen eines Gießstrangs in einer Stranggießanlage
AT411026B (de) Verfahren zum stranggiessen
EP2906369B1 (fr) Procédé permettant d'influer sur la largeur d'une matière à laminer en forme de bande
DE102020209794A1 (de) Verfahren zur Steuerung oder Regelung der Temperatur eines Gießstrangs in einer Stranggießanlage
EP3173166B1 (fr) Procédé et dispositif de réglage de la largeur d'une barre métallique coulée en continu
EP3733323A1 (fr) Procédé et installation de coulée en continu d'une barre de coulée
DE102009048567B4 (de) Verfahren und Anordnung zum Kühlen eines Gießstrangs in einer Stranggießanlage
DE10011689A1 (de) Verfahren zum Stranggiessen von Brammen und insbesondere von Dünnbrammen
EP1385656A1 (fr) Procede et dispositif permettant la coulee continue de blocs, de brames ou de brames minces
EP2295170A2 (fr) Procédé et dispositif de coulée en continu pour déformer un faisceau coulé à chaud en métal, notamment en acier ou matières dérivées de l'acier
DE19916190C2 (de) Verfahren und Vorrichtung zum Stranggießen von Brammen
EP1743721A2 (fr) Procédé et dispositif de coulée continue de façonnage direct d'un métal, notamment d'une barre de coulée en matériaux à base d'acier
EP3944910A1 (fr) Procédé de fabrication d'une barre de coulée dans une installation de coulée continue
EP1013362A1 (fr) Procédé et installation de coulée en continu de brames

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20161130

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170825

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: B22D 11/16 20060101ALI20190211BHEP

Ipc: B22D 11/18 20060101ALI20190211BHEP

Ipc: B22D 11/22 20060101AFI20190211BHEP

INTG Intention to grant announced

Effective date: 20190304

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016005783

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1160384

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190731

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191031

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191202

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191101

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191130

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016005783

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

26N No opposition filed

Effective date: 20200603

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20161130

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230707

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231124

Year of fee payment: 8

Ref country code: DE

Payment date: 20231121

Year of fee payment: 8

Ref country code: AT

Payment date: 20231121

Year of fee payment: 8