EP3183891B1 - Calculation of fir filter coefficients for beamformer filter - Google Patents

Calculation of fir filter coefficients for beamformer filter Download PDF

Info

Publication number
EP3183891B1
EP3183891B1 EP15753373.8A EP15753373A EP3183891B1 EP 3183891 B1 EP3183891 B1 EP 3183891B1 EP 15753373 A EP15753373 A EP 15753373A EP 3183891 B1 EP3183891 B1 EP 3183891B1
Authority
EP
European Patent Office
Prior art keywords
frequency
filters
forming
filter
calculation means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15753373.8A
Other languages
German (de)
French (fr)
Other versions
EP3183891A1 (en
Inventor
Andreas Franck
Christoph SLADECZEK
Albert ZHYKHAR
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Publication of EP3183891A1 publication Critical patent/EP3183891A1/en
Application granted granted Critical
Publication of EP3183891B1 publication Critical patent/EP3183891B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • H04R1/40Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers
    • H04R1/403Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers loud-speakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • H04R1/40Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers
    • H04R1/406Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/005Circuits for transducers, loudspeakers or microphones for combining the signals of two or more microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2201/00Details of transducers, loudspeakers or microphones covered by H04R1/00 but not provided for in any of its subgroups
    • H04R2201/40Details of arrangements for obtaining desired directional characteristic by combining a number of identical transducers covered by H04R1/40 but not provided for in any of its subgroups
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2430/00Signal processing covered by H04R, not provided for in its groups
    • H04R2430/20Processing of the output signals of the acoustic transducers of an array for obtaining a desired directivity characteristic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/12Circuits for transducers, loudspeakers or microphones for distributing signals to two or more loudspeakers

Definitions

  • the present invention is concerned with the calculation of FIR filter coefficients for beamforming filters of a transducer array, such as e.g. an array of microphones or speakers.
  • Beamforming technologies such as those used in the audio field, specify - in the case of a microphone array for the evaluation of the individual signals of the microphones or in the case of a loudspeaker array for the reproduction of the signals of the individual speakers - as the signals of an individual Filtering with a respective discrete-time filter are subjected.
  • the resulting FIR filters accurately map the given frequency response in the frequency raster given by the DFT, but the frequency response can assume arbitrary values between the raster points. This often leads to useless designs with strong oscillations of the resulting frequency response.
  • the length of the FIR filter automatically results from the resolution of the frequency response specification (and vice versa).
  • Filters created using Frequency Sampling Design are susceptible to temporal aliasing, ie periodic convolution of impulse responses (eg [Smi11]). Additional techniques such as zero-padding the DFTs or windowing the generated FIR filters may need to be used.
  • An alternative approach is to determine the FIR coefficients in a one-step process directly in the time domain [MDK11].
  • the radiation behavior of the array for a given pattern of frequencies is represented directly as a function of the FIR coefficients of all transducers (ie loudspeakers / microphones) and formulated as a single optimization problem, by the solution of the optimal filter coefficients for all beamforming filters are determined simultaneously.
  • the problem here is the size of the optimization problem, both in terms of the number of variables to be optimized (filter length times the number of beamforming filters) and with respect to the dimension of the determination equations and, if necessary, secondary conditions.
  • the latter dimension is usually proportional to both the number of frequency raster points and the spatial resolution used to determine the desired beamformer response.
  • this method is limited to low element count arrays and very small filter orders. For example, [MSK11] microphone arrays of six elements and a filter length of 8 are used.
  • EP 1 919 251 A1 shows a beamforming filter, designed as an FIR filter and applied to data coming from an array of sensors.
  • the characteristics of the filters can be determined in the frequency domain.
  • the FIR filter coefficients are then derived from the determined characteristics.
  • the object of the present invention is to provide a concept for calculating FIR filter coefficients for the beamforming filters of a transducer array, which is more effective, such as in relation to the ratio between achieved beamforming quality and the amount of computation required. This object is solved by the subject matter of the appended independent claim.
  • One idea on which the present application is based is to have realized that the effectiveness of calculating FIR filter coefficients for beamforming filters for transducer arrays, such as arrays of microphones or loudspeakers, can be increased if the calculation is performed in two stages is, on the one hand by the calculation of frequency domain filter weights of the beamforming filters in a predetermined frequency raster, ie coefficients describing the transmission function of the beamforming filters in the frequency domain or for a respective frequency or for a sinusoidal input signal with a respective frequency to target frequency responses for the To obtain beamforming filters such that application of the beamforming filters to the array approximates a desired direction selectivity and followed by a calculation of the FIR filter coefficients for the beamforming filters, ie coefficients describing the impulse response of the beamforming filters in the time domain such that frequency responses of the beamforming filters approximate the intermediate frequency responses.
  • the two-step nature allows for independent choice of the frequency resolution resulting from the discrete Fourier transform of the Implus responses described by the FIR filter coefficients. Furthermore, specific secondary conditions can be specified both in the calculation of the beamforming drive weights in the frequency domain and in the calculation of the time domain FIR filter coefficients, in order to influence the respective calculation in a targeted manner.
  • Fig. 1 shows first an example of an array 10 of loudspeakers 12, which is to be enabled by the application of beamforming filters (BFF) 14 to have a desired directional selectivity, ie, for example, to radiate in a particular direction 16.
  • BFF beamforming filters
  • the number N of speakers 12 may be two or more.
  • the loudspeaker 12 n is connected to a common audio input 18 via its corresponding beam-forming filter 14 n .
  • the audio signal s () at the input 18 is a discrete-time audio signal consisting of a sequence of audio samples and the beamforming filters 14 n are configured as FIR filters and thus fold the audio signal with the impulse response of the respective beamforming filter 14 n as defined by the FIR filter coefficients of the respective beamforming filter 14 n .
  • h is BFF n ( i ) the filter coefficients of the FIR filter 14 n with the FIR order I BFF n or the filter length I BFF n +1 is.
  • the loudspeaker array 10 emits the audio signal at the input 18 with a desired directional selectivity, such as in the desired direction 16.
  • Fig. 1 by way of example only, the loudspeakers 12 n are arranged equidistantly in a line and the array 10 is a linear array of loudspeakers.
  • a two-dimensional arrangement of loudspeakers would also be conceivable, as well as a non-uniform distribution of the loudspeakers 12 in the array 10 and also an arrangement deviating from an arrangement along a straight line or a plane.
  • the emission direction 16 can be measured, for example, by an angular deviation of the direction 16 from a mid-perpendicular of the straight line or the surface along which the loudspeakers 12 are arranged.
  • the radiation should preferably be audible at a particular location in front of the array 10.
  • the filter coefficients h of the beamforming filters 14 n can also be selected more precisely such that the directional characteristic or directional selectivity of the array 10 not only experiences a maximum in a certain direction 16 when irradiated, but also fulfills other desired criteria, such as an angular one Beamwidth, a particular frequency response in a direction 16 maximum radiation or even a specific frequency response as far as an area that includes the direction 16 and directions around it affected.
  • Fig. 2 shows such a microphone array.
  • the microphone array of Fig. 2 is exemplarily also provided with the reference numeral 10, but in each case consists of microphones 20 1 ... 20 N together.
  • each microphone generates a received audio signal S BFF i and is connected via a respective beamforming filter 14 n to a common output node 22 for outputting the received output signal s ', so that the filtered audio signals s ' BFF s the beamforming filter 14 n additively contribute to the audio signal s'.
  • an adder 24 is connected between the outputs of the beamforming filters 14 n and the common output node 22.
  • h is BFF n again the FIR filter coefficients of the beamforming filters 14 n .
  • the microphone array 10 Fig. 2 has a desired directional or directional characteristic to primarily or exclusively absorb the sound scene from a particular direction 16, so that it is reflected in the output signal s', the direction 16 again as in the case of Fig. 1 can be defined by the angulare deviation ⁇ or in the two-dimensional case ⁇ and ⁇ from a perpendicular of the array 10 and the desired direction selectivity may possibly also be more accurate than just specifying a direction of maximum sensitivity, namely more precisely in terms of spatial dimension or frequency dimension.
  • Fig. 3 now shows an embodiment of an apparatus for calculating FIR filter coefficients for the beamforming filter of a transducer array, such as an array of microphones, as for example in Fig. 2 was shown, or speakers, such as in Fig. 1 was shown.
  • a transducer array such as an array of microphones, as for example in Fig. 2 was shown, or speakers, such as in Fig. 1 was shown.
  • the device is indicated generally at 30 and may be implemented, for example, in software executed by a computer, in which case all of the devices and modules described below may be, for example, different sections of a computer program.
  • An implementation in the form of a dedicated hardware e.g. in the form of an ASIC or in the form of a programmable logic circuit, e.g. an FPGA, however, is also possible.
  • the device 30 calculates the FIR filter coefficients 32, such as the h BFF just mentioned above n for the beamforming filters 14 n , specific to the array 10, to which the device 30 has interfaces to obtain information about the array 10 or information about the desired direction selectivity.
  • the device 30 receives converter data 34 from outside, which will be described in more detail below and for example the positions and orientations of the transducer elements, ie for example the loudspeakers or microphones, and their individual direction-selective sensitivity or emission characteristic and / or specify the frequency response.
  • Other information relates, for example, to the desired directional selectivity. For example, shows Fig.
  • the device 30 obtains data 36 which indicate the desired directional behavior of the array 10, such as a direction of maximum radiation and possibly more precise information, such as the radiation behavior or the sensitivity around the just mentioned maximum radiation / sensitivity.
  • the data 36 are supplemented, for example, by further data 38 which can be specified from the outside of the device 30 and, for example, the desired transfer characteristic or the frequency response of the array 10 in the direction of the radiation or sensitivity of the array 10, ie the frequency-dependent desired description the sensitivity or emission intensity of the array adjusted with the final FIR filter coefficients in a certain direction or directions.
  • FIR filter coefficients 32 Other information may also be provided to the device 30 for calculating the FIR filter coefficients 32, such as specifications regarding robustness to be maintained of the calculated FIR filter coefficients against deviations of the transducer data 34 from actual physical conditions of an actual array 10, these specifications in Fig. 3 40, as well as data on a frequency restriction, 42, whose exemplary meaning for the calculation will be described below and possibly related to the transducer data 34.
  • all of the information 34 to 42 used for the device 30 of FIG Fig. 3 can be specified from outside, are optional.
  • the device 30 could also be specific to a particular array setup, and it would also be possible for the device to be specific to particular settings of the other data. In the case of an input facility, this may be implemented via an input interface, such as via user input interfaces of a computer or read interfaces of a computer, such that, for example, the data is read from one or more particular files.
  • the device of Fig. 3 includes first calculating means 44 and second calculating means 46.
  • the first calculating means 44 calculates frequency-domain filter weights of the beamforming filters, ie complex-valued samples of the transfer function of the beamforming filters. They are used to set a target frequency response for the beamforming filters.
  • the first calculation device 44 calculates the frequency range drive weights in a frequency raster defined by specific, not necessarily equidistant frequencies ⁇ 1 ... ⁇ k , such that it has a transfer function H BFF n describe the beamforming filter which approximates the desired direction selectivity when applying such beamforming filters to the array 10.
  • the first calculation device uses, for example, a suitable optimization algorithm, for example a method for solving linear, quadratic or convex optimization problems.
  • the frequency raster may, for example, in accordance with requirements of the beamforming application, such as different requirements for the accuracy of the radiation specification in certain frequency ranges, or according to other requirements, such as the subsequent and below-mentioned FIR time domain design method, such as necessary sampling rate for the definition of the desired frequency response, to be selected.
  • the second calculation means 46 is for determining the FIR filter coefficients of the beamforming filters which describe the impulse response of the beamforming filters.
  • the second calculation device 46 carries out the calculation in such a way that the frequency responses of the beamforming filters, as they correspond to the FIR filter coefficients via the relationship between transfer function and impulse response, approximate the target frequency responses predetermined by the first calculation device 44.
  • the second calculation device 46 also uses optimization according to the following embodiment description, which can again be implemented as a method for solving linear, quadratic or convex optimization problems.
  • the first calculation means 44 performs the calculation by solving a first optimization problem, after which a deviation between a directional selectivity of the array, as reflected by the frequency range drive weights H BFF n ( ⁇ k ), and the desired direction selectivity that may be predetermined by the data 34 and / or 38 is minimized. As it is in Fig.
  • the first calculation means 44 may use the robustness specifications 40 as a constraint of the optimization problem, and the conversion data 34 is used to determine the relationship between the optimization variables, namely the frequency domain drive weights H BFF n ( ⁇ k ) on the one hand and the resulting directional selectivity on the other hand to set or define.
  • the second calculator 46 may also solve an optimization problem to make the calculation. After the second optimization problem on which the second calculation device 46 is based, a deviation from the target frequency responses H BFF n ( ⁇ k ) minimized in the frequency domain.
  • the FIR filter coefficients to be calculated by the second calculator 46 correspond to the impulse response, and the device 46 tries to calculate them by optimization according to the following embodiments such that the transfer functions corresponding to these impulse responses correspond to the transfer functions H BFF n ( ⁇ k ) as close as they have been calculated by the first calculating means 44. From the description below In this case, it will become clear that, advantageously, in the optimization of the calculation device 46, ancillary conditions provided specifically for this optimization can be taken into account, as specified by the data 42.
  • a target frequency response modification device 48 optionally provided between the two calculation devices 44 and 46, which optionally modifies the target frequency responses of the beamforming filters as determined by the first calculation device 44 before being used as the approximation target by the second calculation device 46 are used.
  • Various modification options are described. They are designed to not cause the effectiveness of the calculation of the FIR filter coefficients 32 by the computing device 46 or even the calculation of lower-quality FIR filter coefficients.
  • the device 30 may optionally include an optional modification device 50 for modifying the calculated FIR filter coefficients, as calculated by the second calculation device 46, so that the respective modification is taken into account.
  • Fig. 3 will also exemplarily describe a possible modular structure for the first calculation device 44 and the target frequency response modification device 48, but the respective modular design is merely exemplary.
  • the filter design process as implemented by the device 30, provides for a variety of individual interrelated measures and precautions in accordance with the embodiments described below. All in all, they enable the generation of particularly stable, robust control filters or beamforming filters. The operation of the device 30 will now be described in detail. However, some of the measures can also be left out depending on the application.
  • the transducer characteristics ie the properties of, for example, microphones or loudspeakers
  • the transducer data 34 describes the transducer characteristics that are typically derived from measurements or modeling, such as simulation.
  • the transducer data 34 may represent, for example, the directional and frequency dependent transfer function of the transducers of (in the case of loudspeakers) and to (in the case of sensors or microphones, respectively) different points in space.
  • a module 52 of the computing device 44 may perform directional characteristic interpolation, ie, interpolation of the transducer data 34 to determine the transfer function of the transducers from / to points or Allow directions that are not included under the original data 34, ie, not in the original records.
  • the converter data of the module 52 thus obtained are used in two function blocks or modules 54 and 56 of the first calculation device 44, namely a delay and sum beamformer module and an optimization module 56.
  • the delay and sum (delay and summation Beamformer module 54 calculates a delay and an amplitude weight, ie, for each transducer n , based on a desired specification for the directional behavior of the transducer array, which specifies, for example, a desired magnitude in the emission direction or emission directions, using the individual transducers of the array in the respective direction frequency-independent quantities, such as a time delay and a gain factor per converter 12 and 14.
  • the optimization 56 operates in the frequency domain.
  • the frequency range shaping coefficients already mentioned above or the frequency range control weights H BFF n ie frequency dependent quantities can be improved by the inclusion of specific converter transfer functions, especially if they deviate greatly from an ideally assumed behavior, such as a monopole characteristic.
  • transducer data 34 obtained by measurements often have pure delays, such as acoustic propagation, and a delay extraction module 58 connected between the directional characteristic interpolation module 52 and the optimization module 56 could be provided to remove common delay times of all transducer data.
  • the desired complex sound radiation which is described by the objective function, is not necessarily limited to directions.
  • Other arguments are also possible, for example, such as the desired emission along a line or across a surface / volume.
  • robustness refers to the property of showing only a relatively small deterioration of the radiation behavior in the case of deviations of the transducer array 10 or of the transmission system, eg due to deviations of the control filters from ideal behavior, positioning errors of the transducers in the array or deviations from the modeled transmission behavior
  • a measure of robustness frequently used for microphone arrays is the so-called "White Noise Gain” [BW01, MSK09], ([WNG]), which results as the quotient of the signal magnitude in the direction of incidence and the L 2 standard of the drive weights for the array .
  • This measure can also be usefully used for loudspeaker arrays [MK07], whereby here the signal magnitude in the desired emission direction assumes the role of the magnitude in the direction of incidence.
  • the calculation device 44 has another module, namely a module 58, which determines the final specification of the frequency response of the transducer array in the emission direction from the acquired reference magnitude response of the module 54 in combination with the specifications 38 for the desired frequency response or desired frequency response. That is, the starting point for the determination of the module 58 is the frequency response of the transducer array, as determined by the DSB values of the module 54, ie the frequency response that results for the transducer array with the DSB values in the corresponding direction. From this Magnitudengang starting, are made by the module 58 modifications. For example, modifications are made to the reference magnitude response, for example to equalize the frequency response.
  • the directivity of the array can be increased within certain limits (either globally or for certain frequencies) by reducing the magnitude response in the direction of emission from the reference magnitude response.
  • the use of the DSB reference design and its WNG value allows a good estimation of the robustness properties of the final design specification.
  • psychoacoustic findings flow into the frequency response determination 58.
  • the knowledge can be exploited that certain frequency ranges of a signal are more important for the perception of a sound event, and that therefore a less advantageous, because less directed, radiation in other frequency ranges can be compensated or less perceptible by a targeted increase in these frequency ranges .
  • this equalization is, for one thing, independent of the signal and is also limited to only one emission characteristic, that is to say is not based on psychoacoustic masking between different emission characteristics or audio signals.
  • optimization is then performed in module 56.
  • the beamforming filter is designed here in the frequency domain for a series of discrete frequencies ⁇ k .
  • optimization methods based on convex optimization are preferably used [M07, MSK09].
  • the optimization-based approach allows for numerous constraints that affect both the radiation achieved and the driving power can relate to. For example, a limitation on the minimum white noise gain can be set. In the same way it is possible to set maximum amounts for the control weights in order to limit the control of the individual transducers.
  • Fig. 4 The previous description of the possible implementation of the operation of the first calculation means 44 summarized once again in an illustrative manner, becomes Fig. 4 directed.
  • the starting point of the target frequency response calculation by the calculation device 44 forms the desired direction selectivity, which in Fig. 4 described with ⁇ is and is provided with the reference numeral 70.
  • the desired direction selectivity ⁇ is illustrated here by way of example as a function ⁇ dependent on the emission angle ⁇ . However, as stated above, the directionality may be defined other than angular.
  • Fig. 4 by a dashed ⁇ , the desired direction selectivity 70 can be defined in space sense, not just in one plane. Top right is in Fig. 4 indicated how the angles ⁇ and ⁇ could be defined.
  • could depend on ⁇ .
  • this frequency response ⁇ is to be distinguished from the frequency response H n ( ⁇ k ) for the individual beamforming filters, as they are to be calculated by the calculation device 44. Both act like a filter with a transfer function as determined by the dependence on ⁇ , but the frequency response ⁇ is affected by the finally calculated frequency responses H n of the individual beamforming filters.
  • the desired direction selectivity 70 is now to be achieved with the particular transducer array.
  • Fig. 4 In the upper right corner loudspeakers were used as the elements of the array, but as already mentioned, an array of other transducers, such as microphones, is also possible.
  • the array is thus determined from certain transducer positions, transducer orientations, a transducer frequency response, wherein the frequency response may in turn be direction-dependent, and / or a directional dependence of the radiation or the sensitivity, which in turn may be frequency dependent.
  • module 54 a pair of values ⁇ n and a n , namely frequency-independent delay ⁇ and a gain value a, which is also frequency-independent, are now determined for each transducer n, so that assuming only these frequency-independent values in the BFFs the transducer n are applied, the directional selectivity ⁇ '72 results, which is direction-dependent, that is, for example, depending on ⁇ and optionally ⁇ and frequency-dependent, ie depending on ⁇ .
  • the determination in module 54 is performed so that the desired direction selectivity 70 is achieved or approximated where possible. This is only to a limited extent, of course, as per converter yes only be determined frequency independent delay and gain n.
  • ⁇ '72 now serves as a starting point for the actual desired direction selectivity 74, which will later be the basis of optimization 56. From the directional selectivity 72 one uses the foreknowledge that it is due to its DSB property is robust. The module 58 now modifies the directionality ⁇ '72 to be closer to the desire for a particular frequency dependence of directional selectivity.
  • the optimization target 74 of the optimization 56 is thus a frequency-dependent and direction-dependent directional selectivity ⁇ Ziei and the optimization 56 is carried out in such a way that it finds target frequency responses or transfer functions H n ( ⁇ k ) for the beamforming filters n .
  • Optimization goal 74 is achieved or approximated as well as possible by its use in the beamforming filters of transducer array 10, ie, a deviation according to a certain criterion is minimized
  • Optimization 56 could thus be regarded as a fine adjustment of beamforming filter transfer functions 76 which when used for the beamforming filters, to d frequency independent delays and gains are equivalent.
  • the DSB design is actually used only for the optimization target formulation and the frequency domain optimization 56 may start independently of the DSB design.
  • the DSB design is not adapted or used as a basis, thus serving merely as a template for the desired frequency response in the emission direction, ie for the optimization target definition, and the optimization algorithm 56 starts "from Scratch ", ie without knowledge of the DSB weighting.
  • the optimization 56 is carried out, may be suitably set by the application.
  • the variables to be optimized are 2 ⁇ N ⁇ K, where N is the number of converters and K is the number of frequency samples for which optimization 56 is performed.
  • the optimized target frequency responses 78, which result from the optimization 56, can be achieved by optionally additionally subjecting the optimization to additional constraints, such as, for example, ancillary conditions regarding compliance with certain robustness criteria, as specified by the data 40.
  • the optimization 56 can therefore in particular be a quadratic program with a secondary condition that does not fall below a certain robustness measure.
  • the frequency responses of the individual drive filters n result from the drive weights H n ( ⁇ k ) obtained in the optimization 56, since the weights of the filter are taken in each case.
  • These filters often contain a significant delay or delay, which manifests itself for example by the phase or group delay. This delay is a hindrance for the further processing stages, such as in particular the subsequent optimization in the second calculation means 46.
  • the optional smoothing step described below is also made more difficult or requires a significantly higher resolution of the frequency raster in the optimization 56 in the first calculation means, since the smoothing is a Determination of the continuous phase involved by a phase unwrapping. The greater the increase in the phase function contained in the frequency response, the more difficult is the correct detection and subsequent compensation of the phase jumps. This has a negative effect on the correctness of the "phase-unwrapping" algorithms.
  • the local optimization target ie target frequency response 78
  • the local optimization target ie target frequency response 78
  • the local optimization target ie target frequency response 78
  • the phase terms caused by delays are eliminated as far as possible become.
  • Further requirements of the optimization step in the calculation device 46 will be described in more detail below.
  • the causality of the resulting filters is not relevant at this stage of the design process. It is possible to work with non-causal, near zero-phase transfer functions desired frequency responses for the drive filter. The causality can be made causal again after the FIR design (by reinserting the extracted delays, possibly supplemented by additional delays).
  • Fig. 5 illustrates once again the operation of the delay adjustment module 80 of the modifier 48.
  • the starting point is the set of target frequency responses 78 to be modified, ie H n ( ⁇ k ).
  • Fig. 5 Illustratively shows the phase curve 82 of H n ( ⁇ k ). It has exemplary phase jumps 84.
  • the 2 ⁇ phase-shift-adjusted phase profile is shown at 86 and this can be approximated by a linear curve 88, such as a least square fit, where the linear portion 88 has a slope corresponding to a frequency-independent delay ⁇ ' ⁇ equivalent.
  • Fig. 5 at 90 shows the phase characteristic of the thus modified target frequency responses H ' n ( ⁇ k ).
  • the delays ⁇ ' ⁇ are reserved or stored.
  • the frequency-domain smoothing by the module 92 has the following meaning.
  • the frequency responses 78 and H ' n ( ⁇ k ) of the drive filters n generated by the optimization-based filter design typically have large fluctuations of the magnitude and also of the phase.
  • Such design specifications are difficult to implement in an FIR filter design or require a very high FIR filter order or FIR length of the beamforming filters. In the latter case, although a good agreement with the given interfaces can be achieved, however, strong overshoot phenomena frequently occur between the interpolation points ⁇ k , which deteriorate the frequency response of the resulting beamformer. Even from psychoacoustic considerations, it often does not make sense to map such narrowband fluctuations.
  • the desired frequency responses 78 of the drive filters are subjected to a smoothing algorithm. This is done, for example, for psychoacoustic considerations with a frequency-dependent window width of, for example, 1/3 octave or 1/6 octave [HN00].
  • the smoothing is carried out separately for magnitude and phase, ie a separate smoothing of the magnitude transfer function (to be more precise of the "zero-phase" frequency response (cf., for example, [Sar93, SI07]) and the continuous ( It is possible that magnitude and phase are generated and independently by a phase unwrapping algorithm in the module 92 from the complex frequency response H ⁇ ( ⁇ k ) or H ' n ( ⁇ k ) is smoothed by convolution with a frequency-dependent smoothing filter, also referred to as "window.”
  • the phase unwrapping in the module 92 may, in the case of the presence of the module 80, occur if necessary because phase unwrapping was already performed in module 80.
  • optimization methods for linear, quadratic or more generally convex compression problems can be used, and this optimization problem may be accompanied by constraints, which for example concern the course of the transfer function of the beamforming filters, ie a secondary condition that the The transfer function or the frequency range of the beamforming filters is concerned if the optimization in the calculation device 46 otherwise relates to the FIR filter coefficients of the beamforming filters which correspond to the impulse response of the beamforming filters as optimization variables.
  • the modification device 50 It is responsible for "integrating" the modification by the module 80, ie the leveling of the phase response of the target frequency responses of the beamforming filters, back into the FIR filter coefficients obtained by the optimization in the calculation means 46, if necessary, by adding a kind of delay Recombination performed, such as the zeros insertion described in more detail below, after which the FIR filter coefficients are prefixed zeros. This will be described below. Fig.
  • FIG. 6 shows by way of example by a double arrow that the FIR filter coefficients h BFF obtained by the optimization in the calculation device 46 n Beamforming filter mode, the impulse response of the respective beam-forming filter n describe and pass over an FFT or Fourier transforms in the transfer function H n ( ⁇ ) of the respective beamforming filter or correspond to her.
  • Fig. 6 shows by way of example at 96 the impulse response and at 98 exemplarily the 2 ⁇ phase-jump-corrected phase characteristic of the transfer function.
  • f 0 Hz
  • a dedicated specification of the radiation behavior is not useful, especially when modulating real converter.
  • very high frequencies such as relative to the spatial aliasing frequency of the array, usually no meaningful guidelines possible: 1) the formation of pronounced side lobes can not be prevented by a corresponding desired characteristic. 2)
  • the width of the "beam" of the desired direction of radiation decreases with increasing frequency.
  • the optimization process in the calculator 46 i. the optimization-based design of FIR filters, the introduction of frequency ranges or frequency sections for which no specifications are made, i. for which there is no desired frequency response or target frequency response, i. for which no optimization goal is specified. Such areas may be referred to as transition bands or "do not care bands".
  • transition bands or do not care bands For the considered beamforming applications, however, it can be seen that even very narrow frequency ranges without design specification or without optimization target in the optimization of the second calculation means 46 lead to uncontrolled behavior of the designed FIR filters, such as e.g. to an extremely high magnitude and to fluctuations of the beamforming filter frequency response in these frequency sections.
  • Fig. 3 the optional possibility, according to which restrictions 42 are made for the optimization target with regard to the frequency response of these frequency sections.
  • the frequency sections may be selected depending on characteristics of the converter.
  • the frequency constraint 42 is included in the optimization problem to be solved by the calculation means 46 by specifying a maximum magnitude as a constraint for the convex optimization problem: ... under the constraint that
  • X represents a discretized representation of the transition or "do not care" bands, ie those frequency segments for which there is no optimization target in the optimization in the second calculation means 46, and
  • the aim of the optimization in the second calculation device 46 is the frequencies obtained by the frequency domain design for the beamformers, which are denoted above as H n ( ⁇ k ) and H ' n ( ⁇ k ) and H " n ( ⁇ k ), respectively hereinafter referred to as the desired frequency response with the variable name ⁇ ( ⁇ ) to generate FIR filters, with which the filtering of the source signals, ie the speaker signals in the case of a loudspeaker array, as shown in FIG Fig. 1 and the microphone output signals in the case of a microphone array as shown in FIG Fig. 2 shown can be done.
  • a mathematical optimization method is used, which can be, for example, a method of convex optimization.
  • the frequency response H (w) of the designed FIR filter h (i) is determined so that ⁇ ( ⁇ ) is approximated as best as possible, ie that the error with respect to a selectable standard p becomes minimal.
  • the optimization problem can generally be represented in the following form: minimize H i ,, 0 ⁇ i ⁇ I ⁇ H ⁇ - H ⁇ ⁇ ⁇ p under the constraint that ⁇ constraint s >
  • the suffix ⁇ constraint (s)> is optional. Secondary conditions do not have to be present, but may be present, as described above with regard to the high-frequency restrictions, as an example. A single constraint is also possible. In general, these constraints represent a variety of possible constraints, including, but not limited to, the frequency response or coefficients of the FIR filter.
  • the target frequency responses for the time domain optimization in the second calculation device 46 which arise in the context of the frequency domain optimization 56 (or with modification 80 and / or 92) are generally complex-valued and have a non-trivial, in particular neither linear nor minimal-phase, frequency response.
  • the optimization problem of the above equation (2) corresponds to a filter design problem for FIR filters with arbitrary phase characteristics.
  • a large number of methods are described in the literature, for example in [PR95, KM95; KM99].
  • the delays contained in the filters ⁇ ( ⁇ ) and ⁇ ( ⁇ ) ie the linear term of the phase response which has been adjusted by 2 ⁇ phase jumps, are of particular importance.
  • the desired function ⁇ ( ⁇ ) should be adjusted so that the linear component of the phase is as close to 0 as possible. This is effectively realized by the modifications 80 and 50.
  • the modification device 50 optionally integrates the previously compensated delay components back into the drive filters.
  • the integration of the delays ⁇ ' ⁇ into the filters n is bypassed by applying the pure delays ⁇ ' n at runtime of the beamforming application be applied to the input or output signals of the control filters by means of suitable signal processing means, such as digital delay lines (English Delay Lines ). In this case it is only necessary to ensure that the impulse responses of the obtained FIR filters are causal, ie that the indices of the impulse responses begin at zero.
  • Such a modification does not require active arithmetic operations at run-time, but merely corresponds to the introduction of a constant implementation-related delay for all drive filters n. It should be ensured that this delay is constant for all drive filters of a beamformer.
  • frequency domain optimization 56 could also use a hybrid design approach.
  • an optimization-based approach for obtaining the frequency domain drive functions H m ( ⁇ k ) as described so far is combined with a design corresponding to the DSB design as calculated in the module 54, wherein the DSB Design approach is used for the high frequencies.
  • the aim is to reduce the required filter order while improving robustness. It is exploited that for high frequencies, the emission characteristics of the transducer array due to the spatial aliasing can not be completely controlled.
  • a DSB design approach is used for frequencies above a fixed fundamental frequency, such as a frequency that is relatively close to the spatial aliasing frequency of the transducer array.
  • the frequency domain specification of the complete filter is composed of two parts: the frequency responses obtained by optimization up to the cutoff frequency and the frequency responses corresponding to those of the DSB for the frequencies above it.
  • the combination of both methods is followed by the subsequent smoothing already described above and the optimization-based FIR design.
  • a critical step here is the alignment of the signal delays of both design approaches. For example, it is possible to use a least-square fitting to determine a delay offset for the DSB in such a way that the delay jumps of the individual control filters are minimized in the root mean square.
  • the hybrid design approach allows for more robust high frequency radiation, resulting in less erratic fluctuations in performance without significant loss of performance, with partially improved low frequency directivity, and consistent filter ordering.
  • the reason for this can be assumed that the degrees of freedom provided by a certain filter order are better used with the hybrid design approach for the frequency ranges in which the characteristic can be influenced, while for high frequencies in which due to spatial aliasing hard restrictions for the Suppression of unwanted radiation, less resources are spent.
  • Fig. 7 illustrates again the hybrid design approach:
  • the transfer function to be used for time domain optimization in the second calculating means 46 is composed of the obtained according to the frequency range optimization 56 transfer function, as far as a portion of lower audio frequencies is concerned 100, where the the frequency-independent pairs of values ⁇ ⁇ a ⁇ corresponding transfer functions H n be used in the higher audio frequency section 102.
  • Section 100 and section 102 can be concatenated to a cutoff frequency ⁇ cross connect to each other, for example, corresponds to the spatial aliasing frequency border of the transducer array or from the latter deviates less than 10%. It is also possible that, as indicated by dashed dots, low-frequency section and high-frequency sections 100 and 102 overlap each other.
  • the time-domain optimization transfer function finally to be used could be obtained, for example, by averaging between both transfer functions (DSB design and optimization result of FIG. 56).
  • the above embodiments thus described a possibility for the creation of a design of robust FIR filters for beamforming applications. From complex-valued frequency responses of the individual beamforming filters, FIR filters with arbitrary phase responses can be generated. Particular value of the above embodiments is that robustness properties of the beamformer can be obtained.
  • the present invention can be used in a variety of beamforming applications, e.g. in loudspeaker arrays for room-selective sonication, for generating "quiet zones" or for reproducing surround material via loudspeaker lines (soundbars).
  • the above embodiments may also be used by microphone arrays to record sound directionally selective.
  • aspects have been described in the context of a device, it will be understood that these aspects also constitute a description of the corresponding method, so that a block or a component of a device is also to be understood as a corresponding method step or as a feature of a method step. Similarly, aspects described in connection with or as a method step also provide a description of a corresponding one
  • Some or all of the method steps may be performed by a hardware device (or using a hardware device), such as a microprocessor, a programmable computer, or an electronic circuit. In some embodiments, some or more of the most important method steps may be performed by such an apparatus.
  • the inventive set of FIR filter coefficients 32 for the beamforming filters may be stored on a digital storage medium, or may be transmitted on a transmission medium such as a wireless transmission medium or a wired transmission medium such as the Internet.
  • embodiments of the invention may be implemented in hardware or in software.
  • the implementation may be performed using a digital storage medium, such as a floppy disk, a DVD, a Blu-ray Disc, a CD, a ROM, a PROM, an EPROM, an EEPROM or FLASH memory, a hard disk, or other magnetic disk or optical memory are stored on the electronically readable control signals that can cooperate with a programmable computer system or cooperate such that the respective method is performed. Therefore, the digital storage medium can be computer readable.
  • some embodiments according to the invention include a data carrier having electronically readable control signals capable of interacting with a programmable computer system such that one of the methods described herein is performed.
  • embodiments of the present invention may be implemented as a computer program product having a program code, wherein the program code is operable to perform one of the methods when the computer program product runs on a computer.
  • the program code can also be stored, for example, on a machine-readable carrier.
  • inventions include the computer program for performing any of the methods described herein, wherein the computer program is stored on a machine-readable medium.
  • an embodiment of the method according to the invention is thus a computer program which has a program code for performing one of the methods described herein when the computer program runs on a computer.
  • a further embodiment of the inventive method is thus a data carrier (or a digital storage medium or a computer-readable medium) on which the computer program is recorded for carrying out one of the methods described herein.
  • a further embodiment of the method according to the invention is thus a data stream or a sequence of signals, which represent the computer program for performing one of the methods described herein.
  • the data stream or the sequence of signals may be configured, for example, to be transferred via a data communication connection, for example via the Internet.
  • Another embodiment includes a processing device, such as a computer or a programmable logic device, that is configured or adapted to perform one of the methods described herein.
  • a processing device such as a computer or a programmable logic device, that is configured or adapted to perform one of the methods described herein.
  • Another embodiment includes a computer on which the computer program is installed to perform one of the methods described herein.
  • Another embodiment according to the invention comprises a device or system adapted to transmit a computer program for performing at least one of the methods described herein to a receiver.
  • the transmission can be done for example electronically or optically.
  • the receiver may be, for example, a computer, a mobile device, a storage device or a similar device.
  • the device or system may include a file server for transmitting the computer program to the recipient.
  • a programmable logic device eg, a field programmable gate array, an FPGA
  • a field programmable gate array may cooperate with a microprocessor to perform one of the methods described herein.
  • the methods are performed by any hardware device. This may be a universal hardware such as a computer processor (CPU) or hardware specific to the process, such as an ASIC.

Landscapes

  • Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • General Health & Medical Sciences (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Obtaining Desirable Characteristics In Audible-Bandwidth Transducers (AREA)

Description

Die vorliegende Erfindung beschäftigt sich mit der Berechnung von FIR-Filterkoeffizienten für Beamforming-Filter eines Wandlerarrays, wie z.B. eines Arrays aus Mikrofonen oder Lautsprechern.The present invention is concerned with the calculation of FIR filter coefficients for beamforming filters of a transducer array, such as e.g. an array of microphones or speakers.

Beamforming-Technologien, wie sie beispielsweise im Audiobereich eingesetzt werden, geben - in dem Fall eines Mikrofonarrays für die Auswertung der einzelnen Signale der Mikrofone bzw. in dem Fall eines Lautsprecherarrays für die Wiedergabe der Signale der einzelnen Lautsprecher - vor, wie die Signale einer individuellen Filterung mit einem jeweiligen zeitdiskreten Filter zu unterziehen sind. Für Breitband-Anwendungen, wie z.B. Musik, werden dazu aus der Spezifikation der optimalen Frequenzgänge Koeffizienten für diese zeitdiskreten Filter bestimmt.Beamforming technologies, such as those used in the audio field, specify - in the case of a microphone array for the evaluation of the individual signals of the microphones or in the case of a loudspeaker array for the reproduction of the signals of the individual speakers - as the signals of an individual Filtering with a respective discrete-time filter are subjected. For broadband applications, such as Music, are determined from the specification of the optimal frequency response coefficients for these time-discrete filters.

Die Literatur zu Beamforming und Signalansteuerung behandelt fast ausschließlich den Entwurf der Ansteuergewichte im Frequenzbereich. Dabei wird implizit davon ausgegangen, dass die Bestimmung von FIR-Filtern im Zeitbereich durch eine inverse diskrete Fourier-Transformation (DFT), als FFT bezeichnet, erfolgt. Diese Herangehensweise kann als Frequency Sampling-Design [Smi11, Lyo11] interpretiert werden, einem sehr einfachen, mit verschiedenen Nachteilen behafteten Verfahren zum Filterentwurf: Der Frequenzgang der Filter muss in einem äquidistanten Raster über die komplette zeitdiskrete Frequenzachse bis zur Samplingfrequenz angegeben werden. Falls für einzelne Frequenzbereiche (z.B. sehr niedrige Frequenzen, in denen keine befriedigende Richtwirkung möglich ist bzw. hohe Frequenzen, in denen aufgrund räumlichen Aliasings keine gezielte Beeinflussung der Abstrahlung erfolgen kann), keine sinnvollen Vorgaben für den Frequenzgang gemacht werden können, besteht die Gefahr, dass die resultierenden FIR-Filter nicht brauchbar sind(z.B. aufgrund starker Fluktuationen zwischen den Frequenzabtastpunkten sehr hohe Verstärkungswerte bei bestimmten Frequenzen etc.)The literature on beamforming and signal control deals almost exclusively with the design of the drive weights in the frequency domain. It is implicitly assumed that the determination of FIR filters in the time domain by an inverse discrete Fourier transform (DFT), referred to as FFT, takes place. This approach can be interpreted as a frequency sampling design [Smi11, Lyo11], a very simple, variously detrimental method of filter design: The frequency response of the filters must be specified in an equidistant grid over the complete time discrete frequency axis up to the sampling frequency. If for individual frequency ranges (eg very low frequencies where no satisfactory directivity is possible or high frequencies in which due to spatial aliasing no targeted influencing of the radiation can take place), no meaningful specifications for the frequency response can be made, there is a risk that the resulting FIR filters are not usable (eg due to strong fluctuations between the frequency sampling points very high gain values at certain frequencies etc.)

Die resultierenden FIR-Filter bilden den vorgegebenen Frequenzgang in dem durch die DFT gegebenen Frequenzraster genau ab, zwischen den Rasterpunkten kann der Frequenzgang jedoch beliebige Werte annehmen. Dies führt häufig zu unbrauchbaren Designs mit starken Oszillationen des resultierenden Frequenzganges.The resulting FIR filters accurately map the given frequency response in the frequency raster given by the DFT, but the frequency response can assume arbitrary values between the raster points. This often leads to useless designs with strong oscillations of the resulting frequency response.

Des Weiteren ergibt sich beim Frequency Sampling-Desing die Länge des FIR-Filters automatisch aus der Auflösung der Frequenzgangvorgabe (und umgekehrt).
Mittels Frequency Sampling Design erstellte Filter sind anfällig für zeitliches Aliasing (time-domain aliasing), also eine periodische Überfaltung der Impulsantworten (z.B. [Smi11]). Dazu müssen ggf. zusätzliche Techniken wie Zero-Padding der DFTs oder eine Fensterung der generierten FIR-Filter verwendet werden.
Ein alternativer Ansatz besteht darin, die FIR-Koeffizienten in einem einstufigen Prozess direkt im Zeitbereich zu bestimmen [MDK11]. Dabei wird das Abstrahlverhalten des Arrays für ein vorgegebenes Raster von Frequenzen direkt als Funktion der FIR-Koeffizienten aller Wandler (d.h. Lautsprecher/Mikrofone) dargestellt und als ein einzelnes Optimierungsproblem formuliert, durch dessen Lösung die optimalen Filterkoeffizienten für alle Beamforming-Filter simultan bestimmt werden. Problematisch dabei ist die Größe des Optimierungsproblems, sowohl bzgl. der Anzahl zu optimierender Variablen (Filterlänge mal Zahl der Beamforming-Filter) als auch bzgl. der Dimension der Bestimmungsgleichungen und ggf. Nebenbedingungen. Letztere Dimension ist üblicherweise proportional sowohl zur Zahl der Frequenzrasterpunkte als auch zur räumlichen Auflösung, mit der die gewünschte Beamformer-Antwort festgelegt wird. Als Konsequenz dieser schnell ansteigenden Komplexität ist dieses Verfahren auf Arrays mit geringer Elementzahl sowie auf sehr kleine Filterordnungen beschränkt. Z.B. werden [MSK11] Mikrofon-Arrays aus sechs Elementen und einer Filterlänge von 8 verwendet.
Furthermore, in frequency sampling design, the length of the FIR filter automatically results from the resolution of the frequency response specification (and vice versa).
Filters created using Frequency Sampling Design are susceptible to temporal aliasing, ie periodic convolution of impulse responses (eg [Smi11]). Additional techniques such as zero-padding the DFTs or windowing the generated FIR filters may need to be used.
An alternative approach is to determine the FIR coefficients in a one-step process directly in the time domain [MDK11]. In this case, the radiation behavior of the array for a given pattern of frequencies is represented directly as a function of the FIR coefficients of all transducers (ie loudspeakers / microphones) and formulated as a single optimization problem, by the solution of the optimal filter coefficients for all beamforming filters are determined simultaneously. The problem here is the size of the optimization problem, both in terms of the number of variables to be optimized (filter length times the number of beamforming filters) and with respect to the dimension of the determination equations and, if necessary, secondary conditions. The latter dimension is usually proportional to both the number of frequency raster points and the spatial resolution used to determine the desired beamformer response. As a consequence of this rapidly increasing complexity, this method is limited to low element count arrays and very small filter orders. For example, [MSK11] microphone arrays of six elements and a filter length of 8 are used.

EP 1 919 251 A1 zeigt ein Beamforming-Filter, das als FIR Filter ausgeführt ist und auf Daten angewendet wird, die von einem Array von Sensoren stammen. Die Charakteristika der Filter können im Frequenzbereich bestimmt werden. Die FIR Filterkoeffizienten werden dann von den bestimmten Charakteristika abgeleitet. EP 1 919 251 A1 shows a beamforming filter, designed as an FIR filter and applied to data coming from an array of sensors. The characteristics of the filters can be determined in the frequency domain. The FIR filter coefficients are then derived from the determined characteristics.

Die Aufgabe der vorliegenden Erfindung besteht darin, ein Konzept zur Berechnung von FIR-Filterkoeffizienten für die Beamforming-Filter eines Wandlerarrays zu schaffen, das effektiver ist, wie z.B. in Bezug auf das Verhältnis zwischen erreichter Beamforming-Qualität und aufgewendetem Berechnungsaufwand.
Diese Aufgabe wird durch den Gegenstand der beigefügten unabhängigen Patentanspruch gelöst.
Ein Gedanke, auf dem die vorliegende Anmeldung basiert, besteht darin, erkannt zu haben, dass die Effektivität einer Berechnung von FIR-Filterkoeffizienten für Beamforming-Filter für Wandlerarrays, wie z.B. Arrays von Mikrofonen oder Lautsprechern, gesteigert werden kann, wenn die Berechnung zweistufig vorgenommen wird, nämlich einerseits durch die Berechnung von Frequenzbereichs-Filtergewichten der Beamforming-Filter in einem vorbestimmten Frequenzraster, d.h. Koeffizienten, die die Übertragungsfunktion der Beamforming-Filter im Frequenzbereich bzw. jeweils für eine jeweilige Frequenz oder für ein sinusförmiges Eingangssignal mit einer jeweiligen Frequenz beschreiben, um Zielfrequenzgänge für die Beamforming-Filter zu erhalten, so dass eine Anwendung der Beamforming-Filter auf das Array eine Wunschrichtungsselektivität approximiert, und gefolgt durch eine Berechnung der FIR-Filterkoeffizienten für die Beamforming-Filter, d.h. von Koeffizienten, die die Impulsantwort der Beamforming-Filter im Zeitbereich beschreiben, derart, dass Frequenzgänge der Beamforming-Filter die Zwischenfrequenzgänge approximieren. Die Zweistufigkeit erlaubt eine unabhängige Wahl der Frequenzauflösung, wie sie sich aus der diskreten Fouriertransformation der durch die FIR-Filterkoeffizienten beschriebenen Implusantworten ergibt. Weiterhin können sowohl bei der Berechnung der Beamforming-Ansteuergewichte im Frequenzbereich als auch bei der Berechnung der Zeitbereichs-FIR-Filterkoeffizienten spezifische Nebenbedingungen vorgegeben werden, um die jeweilige Berechnung zielgerichtet zu beeinflussen..
The object of the present invention is to provide a concept for calculating FIR filter coefficients for the beamforming filters of a transducer array, which is more effective, such as in relation to the ratio between achieved beamforming quality and the amount of computation required.
This object is solved by the subject matter of the appended independent claim.
One idea on which the present application is based is to have realized that the effectiveness of calculating FIR filter coefficients for beamforming filters for transducer arrays, such as arrays of microphones or loudspeakers, can be increased if the calculation is performed in two stages is, on the one hand by the calculation of frequency domain filter weights of the beamforming filters in a predetermined frequency raster, ie coefficients describing the transmission function of the beamforming filters in the frequency domain or for a respective frequency or for a sinusoidal input signal with a respective frequency to target frequency responses for the To obtain beamforming filters such that application of the beamforming filters to the array approximates a desired direction selectivity and followed by a calculation of the FIR filter coefficients for the beamforming filters, ie coefficients describing the impulse response of the beamforming filters in the time domain such that frequency responses of the beamforming filters approximate the intermediate frequency responses. The two-step nature allows for independent choice of the frequency resolution resulting from the discrete Fourier transform of the Implus responses described by the FIR filter coefficients. Furthermore, specific secondary conditions can be specified both in the calculation of the beamforming drive weights in the frequency domain and in the calculation of the time domain FIR filter coefficients, in order to influence the respective calculation in a targeted manner.

Vorteilhafte Ausgestaltungen der vorliegenden Erfindung sind gegenstandabhängige Patentansprüche. Bevorzugte Ausführungsbeispiele der vorliegenden Anmeldung werden nachfolgend Bezug nehmend auf die Figuren näher erläutert, unter welchen

Fig. 1
ein schematisches Blockschaltbild eines Lautsprecherarrays mit Beamforming-Filtern zeigt, für welches die Ausführungsbeispiele der vorliegenden Anmeldung verwendet werden könnten;
Fig. 2
ein schematisches Blockschaltbild eines Mikrofonarrays mit Beamforming-Filtern zeigt, für welches Ausführungsbeispiele der vorliegenden Anmeldung verwendet werden könnten;
Fig. 3
ein Blockschaltbild einer Vorrichtung zur Berechnung von FIR-Filterkoeffizienten für die Beamforming-Filtern gemäß einem Ausführungsbeispiel zeigt;
Fig. 4
schematisch veranschaulicht, wie gemäß einem Ausführungsbeispiel bei Fig. 3 die optimierungsbasierte Berechnung der Zielfrequenzgänge der Beamforming-Filter stufenweise über die Modellierung eines DSB-Designs durchgeführt wird;
Fig. 5
schematisch veranschaulicht, wie gemäß einem Ausführungsbeispiel die zwischen den zwei Berechnungseinrichtungen angeordnete Modifikationseinrichtung in Fig. 3 das Optimierungsziel für die Zeitbereichsoptimierung der zweiten Berechnungseinrichtung geeigneter macht;
Fig. 6
schematisch veranschaulicht, wie gemäß einem Ausführungsbeispiel die in dem Verzögerungsanpassungsmodul von Fig. 3 durch Phasennivellierung entnommenen Verzögerungen in die berechneten FIR-Filterkoeffizienten re-integriert werden können; und
Fig. 7
schematisch darstellt, wie sich gemäß einem Hybrid-Ansatz zur Durchführung der Zielfrequenzgangberechnung in der ersten Berechnungseinrichtung von Fig. 3 der Zielfrequenzgang aus einem optimierten Anteil in einen Niederfrequenzabschnitt und einer DSB-Übertragungsfunktion in einem Hochfrequenzabschnitt zusammensetzt.
Advantageous embodiments of the present invention are subject-matter dependent claims. Preferred embodiments of the present application are explained in more detail below with reference to the figures, among which
Fig. 1
shows a schematic block diagram of a speaker array with beamforming filters for which the embodiments of the present application could be used;
Fig. 2
shows a schematic block diagram of a microphone array with beamforming filters, for which embodiments of the present application could be used;
Fig. 3
shows a block diagram of an apparatus for calculating FIR filter coefficients for the beamforming filters according to an embodiment;
Fig. 4
schematically illustrates how according to an embodiment at Fig. 3 the optimization-based calculation of the target frequency responses of the beamforming filters is carried out step by step via the modeling of a DSB design;
Fig. 5
schematically illustrates how, according to one embodiment, the arranged between the two calculating means in Fig. Fig. 3 makes the optimization target for the time domain optimization of the second calculation means more appropriate;
Fig. 6
schematically illustrates how in the delay adjustment module of FIG Fig. 3 can be re-integrated into the calculated FIR filter coefficients by phase-leveling delays; and
Fig. 7
schematically illustrates how according to a hybrid approach for performing the target frequency response calculation in the first calculation means of Fig. 3 the target frequency response is composed of an optimized portion into a low frequency section and a DSB transfer function in a high frequency section.

Fig. 1 zeigt zunächst ein Beispiel für ein Array 10 von Lautsprechern 12, das durch die Anwendung von Beamforming-Filtern (BFF) 14 dazu in die Lage versetzt werden soll, eine gewünschte Richtungsselektivität aufzuweisen, d.h. z.B. in eine bestimmte Richtung 16 abzustrahlen. In Fig. 1 wird beispielsweise ein Index verwendet, um die einzelnen Lautsprecher 12 voneinander zu unterscheiden. Die Anzahl N der Lautsprecher 12 kann zwei oder mehr betragen. Wie es in Fig. 1 zu sehen ist, ist jedem Lautsprecher 12n mit i=1...N ein Beamforming-Filter 14n vorgeschaltet, das das entsprechende Lautsprechereingangssignal filtert. Insbesondere ist hier der Lautsprecher 12n über sein entsprechendes Beam-forming-Filter 14n mit einem gemeinsamen Audioeingang 18 verbunden. Das bedeutet, alle Lautsprecher 12n erhalten das gleiche Audiosignal, allerdings gefiltert durch das jeweilige Beamforming-Filter 14n. Bei dem Audiosignal s() am Eingang 18 handelt es sich um ein zeitdiskretes Audiosignal bestehend aus einer Folge von Audiosamples und die Beamforming-Filter 14n sind als FIR-Filter ausgestaltet und falten somit das Audiosignal mit der Impulsantwort des jeweiligen Beamforming-Filters 14n, wie sie durch die FIR-Filterkoeffizienten des jeweiligen Beamforming-Filters 14n definiert wird. Sei beispielsweise das Audiosignal am Eingang 18 durch die Folge von Audiosamples s(k) beschrieben, so könnte beispielsweise das sich daraus ergebende, gefilterte Lautsprechersignal s' BFFn (k) für den jeweiligen Lautsprecher 12n beschrieben werden als s BF F n k = i = 0 I BF F n h BF F n i s k i ,

Figure imgb0001
wobei hBFFn (i) die Filterkoeffizienten des FIR-Filters 14n mit der FIR-Ordnung IBFFn bzw. der Filterlänge IBFFn +1 ist. Fig. 1 shows first an example of an array 10 of loudspeakers 12, which is to be enabled by the application of beamforming filters (BFF) 14 to have a desired directional selectivity, ie, for example, to radiate in a particular direction 16. In Fig. 1 For example, an index is used to distinguish the individual speakers 12 from each other. The number N of speakers 12 may be two or more. As it is in Fig. 1 can be seen, each speaker 12 n with i = 1 ... N is preceded by a beamforming filter 14 n , which filters the corresponding speaker input signal. In particular, the loudspeaker 12 n is connected to a common audio input 18 via its corresponding beam-forming filter 14 n . This means that all speakers 12 n receive the same audio signal, but filtered by the respective beamforming filter 14 n . The audio signal s () at the input 18 is a discrete-time audio signal consisting of a sequence of audio samples and the beamforming filters 14 n are configured as FIR filters and thus fold the audio signal with the impulse response of the respective beamforming filter 14 n as defined by the FIR filter coefficients of the respective beamforming filter 14 n . For example, if the audio signal at input 18 is described by the sequence of audio samples s (k), for example, the resulting filtered loudspeaker signal s ' BFF n ( k ) for the respective speaker 12 n are described as s ' BF F n k = Σ i = 0 I BF F n H BF F n i s k - i .
Figure imgb0001
where h is BFF n ( i ) the filter coefficients of the FIR filter 14 n with the FIR order I BFF n or the filter length I BFF n +1 is.

Die Kunst der FIR-Koeffizientenberechnung besteht darin, dass das Lautsprecherarray 10 das Audiosignal am Eingang 18 mit einer gewünschten Richtungsselektivität abstrahlt, wie z.B. in die gewünschte Richtung 16. Dabei stellt Fig. 1 nur exemplarisch dar, dass die Lautsprecher 12n äquidistant in einer Linie angeordnet sind und das Array 10 ein lineares Array von Lautsprechern ist. Eine zweidimensionale Anordnung von Lautsprechern wäre aber ebenfalls denkbar, ebenso wie eine nicht-gleichmäßige Verteilung der Lautsprecher 12 in dem Array 10 und ebenso wie eine Anordnung abweichend von einer Anordnung entlang einer Geraden bzw. einer Ebene. Die Abstrahlrichtung 16 kann beispielsweise durch eine angulare Abweichung der Richtung 16 von einer Mittelsenkrechten der Geraden bzw. der Fläche, entlang der die Lautsprecher 12 angeordnet sind, gemessen sein. Allerdings bestehen auch hier Abwandlungsmöglichkeiten. Zum Beispiel ist es möglich, dass die Abstrahlung bevorzugt an einem bestimmten Ort vor der Array 10 vernehmbar sein soll. Die Filterkoeffizienten h der Beamforming-Filter 14n können allerdings auch noch präziser so gewählt sein, dass die Richtcharakteristik bzw. Richtungsselektivität des Arrays 10 bei Abstrahlung nicht nur ein Maximum in eine bestimmte Richtung 16 erfährt, sondern auch andere Wunschkriterien erfüllt, wie z.B. eine angulare Abstrahlbreite, einen bestimmten Frequenzgang in einer Richtung 16 maximaler Abstrahlung oder sogar ein bestimmter Frequenzgang soweit ein Bereich, der die Richtung 16 und Richtungen darum herum umfasst, betroffen ist.The art of FIR coefficient calculation is that the loudspeaker array 10 emits the audio signal at the input 18 with a desired directional selectivity, such as in the desired direction 16. In doing so Fig. 1 by way of example only, the loudspeakers 12 n are arranged equidistantly in a line and the array 10 is a linear array of loudspeakers. However, a two-dimensional arrangement of loudspeakers would also be conceivable, as well as a non-uniform distribution of the loudspeakers 12 in the array 10 and also an arrangement deviating from an arrangement along a straight line or a plane. The emission direction 16 can be measured, for example, by an angular deviation of the direction 16 from a mid-perpendicular of the straight line or the surface along which the loudspeakers 12 are arranged. However, there are also variations here. For example, it is possible that the radiation should preferably be audible at a particular location in front of the array 10. However, the filter coefficients h of the beamforming filters 14 n can also be selected more precisely such that the directional characteristic or directional selectivity of the array 10 not only experiences a maximum in a certain direction 16 when irradiated, but also fulfills other desired criteria, such as an angular one Beamwidth, a particular frequency response in a direction 16 maximum radiation or even a specific frequency response as far as an area that includes the direction 16 and directions around it affected.

Nachfolgend werden Ausführungsbeispiele für eine effektive Art und Weise beschrieben, die soeben erwähnten FIR-Filterkoeffizienten der Beamforming-Filter 14n eines Wandlerarrays 10 zu berechnen. Die nachfolgend beschriebenen Ausführungsbeispiele sind aber ebenfalls anwendbar, um die Beamforming-Filter anderer Arrays von Wandlern zu berechnen, wie z.B. von Ultraschallwandlern, Antennen oder dergleichen. Auch Wandlerarrays zum Empfang können Gegenstand des Beamformings sein. So können nachfolgend beschriebene Ausführungsbeispiele ebenfalls angewendet werden, um die Beam-forming-Filter eines Mikrofonarrays zu entwerfen, d.h. deren FIR-Filterkoeffizienten zu berechnen. Fig. 2 zeigt ein solches Mikrofonarray. Das Mikrofonarray von Fig. 2 ist exemplarisch ebenfalls mit den Bezugszeichen 10 versehen, setzt sich aber in jedem Fall aus Mikrofonen 201 ... 20N zusammen. Bezüglich der Anordnung der Mikrofone gilt das Gleiche wie bezüglich der Lautsprecher 12 von Fig. 1: Sie können entlang einer Linie eindimensional oder entlang einer Fläche zweidimensional angeordnet sein, wobei die Linie gerade bzw. die Fläche eine Ebene sein kann, und auch eine regelmäßig Verteilung ist nicht notwendig. Jedes Mikrofon erzeugt ein empfangenes Audiosignal SBFFi und ist über ein jeweiliges Beamforming-Filter 14n mit einem gemeinsamen Ausgangsknoten 22 zur Ausgabe des empfangenen Ausgangssignals s' verbunden, so dass die gefilterten Audiosignale s' BFFn der Beamforming-Filter 14n additiv zum Audiosignal s' beitragen. Dazu ist ein Addierer 24 zwischen die Ausgänge der Beamforming-Filter 14n und den gemeinsamen Ausgangsknoten 22 geschaltet. Die Beamforming-Filter sind wieder als FIR-Filter ausgestaltet und bilden aus dem jeweiligen Audiosignal des jeweiligen Mikrofons 20n, d.h. s'BFFn , das gefilterte Audiosignal s' BFFn beispielsweise gemäß s BF F n k = i = o I BF F n h BF F n i S BF F n k i ,

Figure imgb0002
wobei hBFFn wiederum die FIR-Filterkoeffizienten der Beamforming-Filter 14n sind. Die Summierung durch den Addierer 24 ergibt dann das gesamte Ausgangssignal s' gemäß s k = n = 1 N s BF F n k .
Figure imgb0003
In the following, embodiments for an effective manner of calculating the just mentioned FIR filter coefficients of the beamforming filters 14 n of a transducer array 10 will be described. However, the embodiments described below are also applicable to calculate the beamforming filters of other arrays of transducers, such as ultrasonic transducers, antennas, or the like. Transducer arrays for reception can also be the object of beamforming. Thus, embodiments described below can also be used to design the beam-forming filters of a microphone array, ie to calculate their FIR filter coefficients. Fig. 2 shows such a microphone array. The microphone array of Fig. 2 is exemplarily also provided with the reference numeral 10, but in each case consists of microphones 20 1 ... 20 N together. Regarding the arrangement of the microphones, the same applies as with respect to the speaker 12 of Fig. 1 : They can be arranged one-dimensionally along a line or two-dimensionally along a surface, where the line can be straight or the surface can be a plane, and also a regular distribution is not necessary. Each microphone generates a received audio signal S BFF i and is connected via a respective beamforming filter 14 n to a common output node 22 for outputting the received output signal s ', so that the filtered audio signals s ' BFF s the beamforming filter 14 n additively contribute to the audio signal s'. For this purpose, an adder 24 is connected between the outputs of the beamforming filters 14 n and the common output node 22. The beamforming filters are again configured as FIR filters and form from the respective audio signal of the respective microphone 20 n , ie s' BFF n , the filtered audio signal s ' BFF n for example according to s ' BF F n k = Σ i = O I BF F n H BF F n i S BF F n k - i .
Figure imgb0002
where h is BFF n again the FIR filter coefficients of the beamforming filters 14 n . The summation by the adder 24 then gives the total output signal s' according to s ' k = Σ n = 1 N s ' BF F n k ,
Figure imgb0003

Die nachfolgenden Ausführungsbeispiele ermöglichen dann wiederum, dass das Mikrofonarray 10 Fig. 2 eine gewünschte Richtungsselektivität bzw. Richtcharakteristik aufweist, um die Schallszene aus einer bestimmten Richtung 16 vornehmlich bzw. ausschließlich aufzunehmen bzw. dafür empfindlich zu sein, so dass es sich im Ausgangssignal s' niederschlägt, wobei die Richtung 16 wieder wie in dem Fall von Fig. 1 durch die angulare Abweichung ϕ bzw. im zweidimensionalen Fall ϕ und θ von einer mittelsenkrechten des Arrays 10 definiert sein kann und die Wunschrichtungsselektivität gegebenenfalls auch genauer ausfallen kann als lediglich die Angabe einer Richtung maximaler Empfindlichkeit, nämlich genauer hinsichtlich der räumlichen Dimension oder Frequenzdimension.The following embodiments in turn then allow the microphone array 10 Fig. 2 has a desired directional or directional characteristic to primarily or exclusively absorb the sound scene from a particular direction 16, so that it is reflected in the output signal s', the direction 16 again as in the case of Fig. 1 can be defined by the angulare deviation φ or in the two-dimensional case φ and θ from a perpendicular of the array 10 and the desired direction selectivity may possibly also be more accurate than just specifying a direction of maximum sensitivity, namely more precisely in terms of spatial dimension or frequency dimension.

Fig. 3 zeigt nun ein Ausführungsbeispiel einer Vorrichtung zur Berechnung von FIR-Filterkoeffizienten für die Beamforming-Filter eines Wandlerarrays, wie z.B. eines Arrays aus Mikrofonen, wie es beispielsweise in Fig. 2 gezeigt wurde, oder Lautsprechern, wie es beispielsweise in Fig. 1 gezeigt wurde. Fig. 3 now shows an embodiment of an apparatus for calculating FIR filter coefficients for the beamforming filter of a transducer array, such as an array of microphones, as for example in Fig. 2 was shown, or speakers, such as in Fig. 1 was shown.

Die Vorrichtung ist allgemein mit 30 angezeigt und kann beispielsweise in Software, die von einem Computer ausgeführt wird, implementiert sein, in welchem Fall all die Einrichtungen und Module, die im Nachfolgenden beschrieben werden, beispielsweise unterschiedliche Abschnitte eines Computerprogramms sein können. Eine Implementierung in Form einer dezidierten Hardware, wie z.B. in Form eines ASICs oder in Form einer programmierbaren Logikschaltung, z.B. einem FPGA, ist allerdings ebenfalls möglich.The device is indicated generally at 30 and may be implemented, for example, in software executed by a computer, in which case all of the devices and modules described below may be, for example, different sections of a computer program. An implementation in the form of a dedicated hardware, e.g. in the form of an ASIC or in the form of a programmable logic circuit, e.g. an FPGA, however, is also possible.

Die Vorrichtung 30 berechnet die FIR-Filterkoeffizienten 32, wie z.B. die eben oben erwähnten hBFFn für die Beamforming-Filter 14n, spezifisch für das Array 10, wozu die Vorrichtung 30 Schnittstellen aufweist, um Informationen über das Array 10 oder Informationen über die Wunschrichtungsselektivität zu erhalten. In Fig. 3 wird exemplarisch gezeigt, dass die Vorrichtung 30 von extern Wandlerdaten 34 erhält, die im Folgenden noch exemplarisch näher beschrieben werden und beispielsweise die Positionen und Ausrichtungen der Wandlerelemente, d.h. zum Beispiel der Lautsprecher oder Mikrofone, sowie deren individuellen richtungsselektive Empfindlichkeit bzw. Abstrahlcharakteristik und/oder den Frequenzgang angeben. Andere Informationen beziehen sich beispielsweise auf die Wunschrichtungsselektivität. Beispielsweise zeigt Fig. 3, dass die Vorrichtung 30 Daten 36 erhält, die das gewünschte Richtungsverhalten des Arrays 10 angeben, wie z.B. eine Richtung maximaler Abstrahlung bzw. Empfindlichkeit und gegebenenfalls genauere Informationen, wie z.B. das Abstrahlverhalten bzw. die Empfindlichkeit um die soeben erwähnte maximaler Abstrahlung/Empfindlichkeit herum. Die Daten 36 werden beispielsweise um weitere Daten 38 ergänzt, die von außen der Vorrichtung 30 vorgegeben werden können, und beispielsweise die Wunschübertragungscharakteristik bzw. den Frequenzgang des Arrays 10 in Richtung der Abstrahlung bzw. Empfindlichkeit des Arrays 10 betreffend, d.h. die frequenzabhängige Soll-Beschreibung der Empfindlichkeit oder Abstrahlstärke des mit den schließlichen FIR-Filterkoeffizienten eingestellten Arrays in einer bestimmten Richtung bzw. bestimmten Richtungen. Andere Informationen können der Vorrichtung 30 zur Berechnung der FIR-Filterkoeffizienten 32 ebenfalls vorgegeben werden, wie z.B. Vorgaben betreffend eine einzuhaltende Robustheit der berechneten FIR-Filterkoeffizienten gegenüber Abweichungen der Wandlerdaten 34 von tatsächlichen physikalischen Gegebenheiten eines tatsächlich aufgebauten Arrays 10, wobei diese Vorgaben in Fig. 3 mit dem Bezugszeichen 40 versehen sind, sowie Daten über eine Frequenzbeschränkung, 42, deren exemplarische Bedeutung für die Berechnung im Folgenden noch beschrieben wird und möglicherweise mit den Wandlerdaten 34 zusammenhängt.The device 30 calculates the FIR filter coefficients 32, such as the h BFF just mentioned above n for the beamforming filters 14 n , specific to the array 10, to which the device 30 has interfaces to obtain information about the array 10 or information about the desired direction selectivity. In Fig. 3 It is shown by way of example that the device 30 receives converter data 34 from outside, which will be described in more detail below and for example the positions and orientations of the transducer elements, ie for example the loudspeakers or microphones, and their individual direction-selective sensitivity or emission characteristic and / or specify the frequency response. Other information relates, for example, to the desired directional selectivity. For example, shows Fig. 3 in that the device 30 obtains data 36 which indicate the desired directional behavior of the array 10, such as a direction of maximum radiation and possibly more precise information, such as the radiation behavior or the sensitivity around the just mentioned maximum radiation / sensitivity. The data 36 are supplemented, for example, by further data 38 which can be specified from the outside of the device 30 and, for example, the desired transfer characteristic or the frequency response of the array 10 in the direction of the radiation or sensitivity of the array 10, ie the frequency-dependent desired description the sensitivity or emission intensity of the array adjusted with the final FIR filter coefficients in a certain direction or directions. Other information may also be provided to the device 30 for calculating the FIR filter coefficients 32, such as specifications regarding robustness to be maintained of the calculated FIR filter coefficients against deviations of the transducer data 34 from actual physical conditions of an actual array 10, these specifications in Fig. 3 40, as well as data on a frequency restriction, 42, whose exemplary meaning for the calculation will be described below and possibly related to the transducer data 34.

Es wird darauf hingewiesen, dass all die Informationen 34 bis 42, die für die Vorrichtung 30 von Fig. 3 exemplarisch von außen vorgebbar sind, optional sind. Die Vorrichtung 30 könnte auch für ein bestimmtes Array-Setup spezifisch ausgebildet sein und ebenso wäre es möglich, dass die Vorrichtung spezifisch für bestimmte Einstellungen der anderen Daten ausgebildet ist. In dem Fall einer Eingabemöglichkeit, kann diese Beispielsweise über eine Eingabeschnittstelle realisiert sein, wie z.B. über Benutzereingabeschnittstellen eines Computers oder Leseschnittstellen eines Computers, so dass beispielsweise die Daten von einer oder mehreren bestimmten Dateien gelesen werden.It should be noted that all of the information 34 to 42 used for the device 30 of FIG Fig. 3 can be specified from outside, are optional. The device 30 could also be specific to a particular array setup, and it would also be possible for the device to be specific to particular settings of the other data. In the case of an input facility, this may be implemented via an input interface, such as via user input interfaces of a computer or read interfaces of a computer, such that, for example, the data is read from one or more particular files.

Die Vorrichtung von Fig. 3 umfasst eine erste Berechnungseinrichtung 44 und eine zweite Berechnungseinrichtung 46. Die erste Berechnungseinrichtung 44 berechnet Frequenzbereichs-Filtergewichte der Beamforming-Filter, d.h. komplexwertige Abtastwerte der Übertragungsfunktion der Beamforming-Filter. Sie dienen dazu, einen Zielfrequenzgang für die Beamforming-Filter festzulegen. Insbesondere berechnet die erste Berechnungseinrichtung 44 die Frequenzbereichs-Ansteuergewichte in einem durch bestimmte, nicht zwingend äquidistant zueinander liegende Frequenzen ω1... ωk definiertes Frequenzraster so, dass sie eine Übertragungsfunktion HBFFn der Beamforming-Filter beschreiben, die bei Anwendung solcher Beamforming-Filter auf das Array 10 die Wunschrichtungsselektivität approximiert. Im Folgenden wird beschrieben, dass die erste Berechnungseinrichtung dazu beispielsweise einen geeigneten Optimierungsalgorithmus verwendet, wie z.B. ein Verfahren zur Lösung linearer, quadratischer oder konvexer Optimierungsprobleme. Das Frequenzraster kann beispielsweise gemäß Anforderungen der Beamforming-Anwendung, wie z.B. unterschiedliche Anforderungen an die Genauigkeit der Abstrahl-Vorgabe in bestimmten Frequenzbereichen, oder auch gemäß anderen Anforderungen, wie z.B. des sich anschließenden und im Folgenden erähnten FIR-Zeitbereichsentwurfsverfahrens, wie z.B. in Abhäniggkeit einer notwendigen Abtastrate für die Definition des gewünschten Frequenzganges, gewählt werden.The device of Fig. 3 includes first calculating means 44 and second calculating means 46. The first calculating means 44 calculates frequency-domain filter weights of the beamforming filters, ie complex-valued samples of the transfer function of the beamforming filters. They are used to set a target frequency response for the beamforming filters. In particular, the first calculation device 44 calculates the frequency range drive weights in a frequency raster defined by specific, not necessarily equidistant frequencies ω 1 ... Ω k , such that it has a transfer function H BFF n describe the beamforming filter which approximates the desired direction selectivity when applying such beamforming filters to the array 10. In the following, it is described that the first calculation device uses, for example, a suitable optimization algorithm, for example a method for solving linear, quadratic or convex optimization problems. The frequency raster may, for example, in accordance with requirements of the beamforming application, such as different requirements for the accuracy of the radiation specification in certain frequency ranges, or according to other requirements, such as the subsequent and below-mentioned FIR time domain design method, such as necessary sampling rate for the definition of the desired frequency response, to be selected.

Während die erste Berechnungseinrichtung 44 also die Übertragungsfunktion HBFFn der Beamforming-Filter über die Frequenz ω beschreibt bzw. die Übertragungsfunktion berechnet, nämlich an bestimmten Stützstellen ω1... ωk beispielsweise, ist die zweite Berechnungseinrichtung 46 dazu da, die FIR-Filterkoeffizienten der Beamforming-Filter zu bestimmen, die die Impulsantwort der Beamforming-Filter beschreiben. Die zweite Berechnungseinrichtung 46 führt die Berechnung so durch, dass die Frequenzgänge der Beamforming-Filter, wie sie den FIR-Fitlerkoeffizienten über den Zusammenhang zwischen Übertragungsfunktion und Impulsanwort entsprechen, die von der ersten Berechnungseinrichtung 44 vorgegebenen Zielfrequenzgänge approximieren. Auch die zweite Berechnungseinrichtung 46 verwendet dazu gemäß der nachfolgenden Ausführungsbeschreibung eine Optimierung, die wieder als Verfahren zur Lösung linearer, quadratischer oder konvexer Optimierungsprobleme ausgeführt sein kann.While the first calculation means 44 thus the transfer function H BFF n the beamforming filter describes over the frequency ω or calculates the transfer function, namely at certain nodes ω 1 ... ω k, for example, the second calculation means 46 is for determining the FIR filter coefficients of the beamforming filters which describe the impulse response of the beamforming filters. The second calculation device 46 carries out the calculation in such a way that the frequency responses of the beamforming filters, as they correspond to the FIR filter coefficients via the relationship between transfer function and impulse response, approximate the target frequency responses predetermined by the first calculation device 44. The second calculation device 46 also uses optimization according to the following embodiment description, which can again be implemented as a method for solving linear, quadratic or convex optimization problems.

Im Folgenden wird nun die Funktionsweise der Vorrichtung 30 von Fig. 3 für einen möglichen Implementierungsfall näher beschrieben. Bei der Beschreibung wird auch auf verschiedene Implementierungsmöglichkeiten hingewiesen. Gemäß einer Implementierungsmöglichkeit führt die erste Berechnungseinrichtung 44 die Berechnung durch Lösung eines ersten Optimierungsproblems durch, wonach eine Abweichung zwischen einer Richtungsselektivität des Arrays, wie sie sich durch die Frequenzbereichs-Ansteuergewichte HBFFn k) ergibt, und der Wunschrichtungsselektivität minimiert wird, die durch die Daten 34 und/oder 38 vorgegeben sein kann. Wie es in Fig. 3 gezeigt ist, kann dazu die erste Berechnungseinrichtung 44 die Robustheitsvorgaben 40 als Nebenbedingung des Optimierungsproblems verwenden und die Wandlerdaten 34 werden verwendet, um den Zusammenhang zwischen den Optimierungsvariablen, nämlich den Frequenzbereichs-Ansteuergewichte HBFFn k) einerseits und der sich ergebenden Richtungsselektivität andererseits, einzustellen bzw. zu definieren. Die nachfolgende Beschreibung wird sich danach möglichen Implementierungen der zweiten Berechnungseinrichtung 46 zuwenden, woraus sich ergeben wird, dass die zweite Berechnungseinrichtung ebenfalls ein Optimierungsproblem lösen kann, um die Berechnung vorzunehmen. Nach dem zweiten Optimierungsproblem, das der zweiten Berechnungseinrichtung 46 zugrunde liegt, wird eine Abweichung zu den Zielfrequenzgängen HBFFn k) im Frequenzbereich minimiert. Wie gesagt, entsprechen die FIR-Filterkoeffizienten, die durch die zweite Berechnungseinrichtung 46 zu berechnen sind, der Impulsantwort, und die Einrichtung 46 versucht sie gemäß nachfolgenden Ausführungsbeispielen durch Optimierung so zu berechnen, dass die Übertragungsfunktionen, die diesen Impulsantworten entsprechen, den Übertragungsfunktionen HBFFn k) möglichst nahekommen, wie sie durch die erste Berechnungseinrichtung 44 berechnet worden sind. Aus der nachfolgenden Beschreibung wird dabei deutlich werden, dass vorteilhafterweise bei der Optimierung der Berechnungseinrichtung 46 eigens für diese Optimierung vorgesehene Nebenbedingungen berücksichtigt werden können, wie sie durch die Daten 42 vorgeben werden. Die nachfolgende Beschreibung wird auch auf eine optional zwischen den beiden Berechnungseinrichtungen 44 und 46 vorgesehene Zielfrequenzgangmodifikationseinrichtung 48 eingehen, die gegebenenfalls die Zielfrequenzgänge der Beamforming-Filter, wie sie durch die erste Berechnungseinrichtung 44 bestimmt worden sind, modifiziert, bevor sie als Approximationsziel durch die zweite Berechnungseinrichtung 46 verwendet werden. Verschiedene Modifikationsmöglichkeiten werden beschrieben. Sie sind dazu da, bei der Berechnung der FIR-Filterkoeffizienten 32 durch die Berechnungseinrichtung 46 nicht zu Effektivitätseinbußen oder sogar zur Berechnung qualitativ schlechterer FIR-Filterkoeffizienten zu führen. Gemäß einem der Modifikationsmöglichkeiten kann die Vorrichtung 30 gegebenenfalls noch eine optionale Modifikationseinrichtung 50 zur Modifikation der berechneten FIR-Filterkoeffizienten, wie sie durch die zweite Berechnungseinrichtung 46 berechnet worden sind, umfassen, damit die jeweilige Modifikation berücksichtigt wird. Fig. 3 wird im Folgenden auch exemplarisch einen möglichen modularen Aufbau für die erste Berechnungseinrichtung 44 und die Zielfrequenzgangmodifikationseinrichtung 48 beschreiben, aber der jeweilige modulare Aufbau ist lediglich exemplarisch.The functioning of the device 30 of FIG Fig. 3 for a possible implementation case described in more detail. The description also refers to various implementation options. According to an implementation possibility, the first calculation means 44 performs the calculation by solving a first optimization problem, after which a deviation between a directional selectivity of the array, as reflected by the frequency range drive weights H BFF n k ), and the desired direction selectivity that may be predetermined by the data 34 and / or 38 is minimized. As it is in Fig. 3 For this purpose, the first calculation means 44 may use the robustness specifications 40 as a constraint of the optimization problem, and the conversion data 34 is used to determine the relationship between the optimization variables, namely the frequency domain drive weights H BFF n k ) on the one hand and the resulting directional selectivity on the other hand to set or define. The following description will then turn to possible implementations of the second calculator 46, from which it will be seen that the second calculator may also solve an optimization problem to make the calculation. After the second optimization problem on which the second calculation device 46 is based, a deviation from the target frequency responses H BFF n k ) minimized in the frequency domain. As stated, the FIR filter coefficients to be calculated by the second calculator 46 correspond to the impulse response, and the device 46 tries to calculate them by optimization according to the following embodiments such that the transfer functions corresponding to these impulse responses correspond to the transfer functions H BFF n k ) as close as they have been calculated by the first calculating means 44. From the description below In this case, it will become clear that, advantageously, in the optimization of the calculation device 46, ancillary conditions provided specifically for this optimization can be taken into account, as specified by the data 42. The following description will also deal with a target frequency response modification device 48, optionally provided between the two calculation devices 44 and 46, which optionally modifies the target frequency responses of the beamforming filters as determined by the first calculation device 44 before being used as the approximation target by the second calculation device 46 are used. Various modification options are described. They are designed to not cause the effectiveness of the calculation of the FIR filter coefficients 32 by the computing device 46 or even the calculation of lower-quality FIR filter coefficients. According to one of the modification possibilities, the device 30 may optionally include an optional modification device 50 for modifying the calculated FIR filter coefficients, as calculated by the second calculation device 46, so that the respective modification is taken into account. Fig. 3 will also exemplarily describe a possible modular structure for the first calculation device 44 and the target frequency response modification device 48, but the respective modular design is merely exemplary.

Wie also schon im vorhergehenden skizziert ist, kann die Vorrichtung 30 von Fig. 3 zum Auffinden der Zeitbereichs-FIR-Filter bzw. der FIR-Filterkoeffizienten für die Beamforming-Filter Lösungen von Optimierungsproblemen verwenden. Die Zeitbereichs-FIR-Filterberechnung mit Hilfe optimierungsbasierter Filterentwurfsverfahren vermeidet ,wie im Nachfolgenden beschrieben ist, sowohl die Nachteile des Frequency Sampling Designs als auch die Komplexität und damit die Anforderungen an Rechenzeit und Ressourcen, wie z.B. Arbeitsspeicher, zum direkten Zeitbereichs-Entwurf der Filter, wie sie im Einleitungsteil der vorliegenden Anmeldung beschrieben worden sind. Durch die erste und zweite Berechnungseinrichtung 44 und 46 erfolgt der Entwurf der Beamforming-Filter gemäß Fig. 3 in einem zweistufigen Prozess:

  • In einer ersten Stufe, wie sie durch die erste Berechnungseinrichtung 44 bereitgestellt wird, wird der Frequenzgang der Beamforming-Ansteuerfilter BFF im Frequenzbereich in einen vorgegebenen Frequenzraster ωk entworfen, das eine bestimmte Frequenzauflösung festlegt, wie z.B. Δω= ωk-ωk-1. Das Frequenzraster muss dabei jedoch nicht äquidistant gewählt werden, sondern kann auch unregelmässig sein. Hier kann auf die in der Literatur beschriebenen Beamforming-Techniken zurückgegriffen werden. Optimierungen können verwendet werden. Ein solches Frequenzbereichs-Optimierungsverfahren wird beispielsweise in [MSK09] beschrieben.
  • In einer zweiten Stufe, wie sie durch die zweite Berechnungseinrichtung 46 bereitgestellt wird, wird für jedes Beamforming-Ansteuerfilter BFFn aus dessen Zielfrequenzgang, wie er durch die erste Stufe vorgegeben wurde, ein FIR-Filter erzeugt, indem dessen FIR-Filterkoeffizienten hBFFn berechnet werden. Hier können ebenfalls Optimierungsverfahren verwendet werden, um eine bestmögliche Approximation des gewünschten Zielfrequenzganges für die gegebene FIR-Filteranordnung, eine frei wählbare Filternorm sowie gegebenenfalls eine Anzahl zusätzlicher Nebenbedingungen zu erzielen. Die Frequenzauflösung des FIR-Filterdesigns, festgelegt durch beispielsweise die Nyquist-Frequenz des FIR-Filters geteilt durch die Hälfte der FIR-Filterlänge, bzw., ein wenig exakter ausgedrückt, die Nyquist-Frequenz (halbe Abtastrate) des zeitdiskreten Systems, in dem der Beamformer und damit auch die FIR -Filter implementiert sind, kann zu der Frequenzauflösung der Frequenzbereichsauflösung unterschiedlich gewählt werden.
As already outlined above, the device 30 of Fig. 3 To find the time domain FIR filters or the FIR filter coefficients for the beamforming filter, use solutions of optimization problems. The time-domain FIR filter calculation using optimization-based filter design techniques, as described below, avoids both the disadvantages of frequency sampling design and the complexity, and hence the demands on computation time and resources, such as memory, for direct time-domain design of the filters. as described in the introductory part of the present application. By the first and second calculation means 44 and 46, the design of the beamforming filters according to Fig. 3 in a two-step process:
  • In a first stage, as provided by the first calculating means 44, the frequency response of the beamforming Ansteuerfilter BFF in the frequency range ω in a predetermined frequency grid is designed k, which determines a particular frequency resolution, such as Δω = ω k ω k-1 , However, the frequency grid does not have to be chosen equidistantly, but can also be irregular. Here may refer to the beamforming techniques described in the literature be resorted to. Optimizations can be used. Such a frequency domain optimization method is described, for example, in [MSK09].
  • In a second stage, as provided by the second calculating means 46, for each beamforming drive filter BFF n, from its target frequency response, as dictated by the first stage, an FIR filter is generated by having its FIR filter coefficients h BFF n be calculated. Optimization methods can also be used here in order to achieve the best possible approximation of the desired target frequency response for the given FIR filter arrangement, a freely selectable filter standard and optionally a number of additional secondary conditions. The frequency resolution of the FIR filter design, defined by, for example, the Nyquist frequency of the FIR filter divided by half the FIR filter length, or, to a lesser extent, the Nyquist frequency (half the sampling rate) of the time-discrete system in which Beamformer and thus the FIR filters are implemented, can be selected differently to the frequency resolution of the frequency domain resolution.

Der Filterentwurfsprozess, wie er durch die Vorrichtung 30 umgesetzt wird, sieht gemäß der nachfolgend beschriebenen Ausführungen eine Vielzahl einzelner, in Verbindung zueinander stehender Maßnahmen und Vorkehrungen vor. In der Summe ermöglichen sie die Generierung besonders stabiler, robuster Ansteuerfilter bzw. Beamforming-Filter. Die Funktionsweise der Vorrichtung 30 wird nun im Einzelnen beschrieben. Allerdings können einzelne der Maßnahmen je nach Anwendungsfall auch wegelassen werden.The filter design process, as implemented by the device 30, provides for a variety of individual interrelated measures and precautions in accordance with the embodiments described below. All in all, they enable the generation of particularly stable, robust control filters or beamforming filters. The operation of the device 30 will now be described in detail. However, some of the measures can also be left out depending on the application.

Wie bereits im Vorhergehenden erwähnt, werden bei der ersten Berechnung durch die Berechnungseinrichtung 44 die Wandlereigenschaften, d.h. die Eigenschaften von beispielsweise Mikrofonen bzw. Lautsprechern, mit einbezogen. Die Wandlerdaten 34 beschreiben die Wandlereigenschaften, die üblicherweise aus Messungen oder aber aus Modellbildung, wie z.B. Simulation, gewonnen werden. Die Wandlerdaten 34 können beispielsweise die richtungs- und frequenzabhängige Übertragungsfunktion der Wandler von (im Falle von Lautsprechern) bzw. zu (im Falle von Sensoren bzw. Mikrofonen) verschiedenen Punkten im Raum darstellen. Ein Modul 52 der Berechnungseinrichtung 44 kann beispielsweise eine Richtungscharakteristik-Interpolation durchführen, d.h. eine Interpolation der Wandlerdaten 34, um die Übertragungsfunktion der Wandler von/zu Punkten oder Richtungen zu ermöglichen, die nicht unter den ursprünglichen Daten 34, d.h. nicht in den ursprünglichen Datensätzen, enthalten sind.As already mentioned above, in the first calculation by the calculation device 44, the transducer characteristics, ie the properties of, for example, microphones or loudspeakers, are included. The transducer data 34 describes the transducer characteristics that are typically derived from measurements or modeling, such as simulation. The transducer data 34 may represent, for example, the directional and frequency dependent transfer function of the transducers of (in the case of loudspeakers) and to (in the case of sensors or microphones, respectively) different points in space. For example, a module 52 of the computing device 44 may perform directional characteristic interpolation, ie, interpolation of the transducer data 34 to determine the transfer function of the transducers from / to points or Allow directions that are not included under the original data 34, ie, not in the original records.

Die so erhaltenen Wandlerdaten des Moduls 52 werden in zwei Funktionsblöcken bzw. Modulen 54 und 56 der ersten Berechnungseinrichtung 44 verwendet, nämlich einem Delay- und- Sum-Beamformer-Modul und einem Optimierungsmodul 56. Das Delay- und-Sum (Verzögerung und Aufsummierungs-) Beamformer-Modul 54 berechnet anhand einer Wunschvorgabe für das Richtungsverhalten des Wandlerarrays, die beispielsweise eine gewünschte Magnitude in Abstrahlrichtung bzw. Abstrahlrichtungen spezifiziert, unter Verwendung der einzelnen Wandler des Arrays in der jeweiligen Richtung, für jeden Wandler n eine Verzögerung und ein Amplitudengewicht, d.h. frequenzunabhängige Größen, wie eine zeitliche Verzögerung und einen Verstärkungsfaktor pro Wandler 12 bzw. 14. Die Optimierung 56 arbeitet im Frequenzbereich. Sie optimiert als Optimierungsvariablen die oben bereits erwähnten Frequenzbereichs-Formungskoeffizienten bzw. die Frequenzbereichs-Ansteuergewichte HBFFn , d.h. frequenzabhängige Größen. Letztere Optimierung 56 der Frequenzbereichs-Ansteuergewichte kann durch die Einbeziehung konkreter Wandler-Übertragungsfunktionen verbessert werden, insbesondere wenn diese stark von einem ideal angenommenen Verhalten, wie z.B. einer Monopol-Charakteristik, abweichen. Beispielsweise weisen durch Messungen gewonnene Wandlerdaten 34 oftmals reine Verzögerungen, wie z.B. durch die akustische Ausbreitung auf, und ein zwischen das Richtungscharakteristiks-Interpolationsmodul 52 und das Optimierungsmodul 56 geschaltetes Verzögerungsextraktionsmodul 58 könnte vorgesehen sein, um gemeinsame Verzögerungszeiten aller Wandler bzw. Wandlerdaten zu entfernen. Dies vereinfacht den Optimierungsprozess in dem Optimierungsmodul 56, weil die Verzögerungen dann nicht mehr in die gewünschte Optimierungszielfunktion einbezogen werden müssen bzw. die erzielten Beamforming-Filter diese den Wandlern gemeinsame Verzögerung des Arrays nicht kompensieren müssen. Es wird sich noch aus der nachfolgenden Beschreibung ergeben, dass ein Vorteil der Verwendung des Delay-and-Sum-Blocks darin besteht, dass durch dasselbe eine mit den verwendeten Wandlern mit hoher Robustheit realisierbare Entwurfsvorgabe für den Frequenzgang des Wandlerarrays in gewünschter Abstrahlrichtung/Einfallsrichtung mit hoher Sensitivität gewonnen werden kann.The converter data of the module 52 thus obtained are used in two function blocks or modules 54 and 56 of the first calculation device 44, namely a delay and sum beamformer module and an optimization module 56. The delay and sum (delay and summation Beamformer module 54 calculates a delay and an amplitude weight, ie, for each transducer n , based on a desired specification for the directional behavior of the transducer array, which specifies, for example, a desired magnitude in the emission direction or emission directions, using the individual transducers of the array in the respective direction frequency-independent quantities, such as a time delay and a gain factor per converter 12 and 14. The optimization 56 operates in the frequency domain. It optimizes as optimization variables the frequency range shaping coefficients already mentioned above or the frequency range control weights H BFF n ie frequency dependent quantities. The latter optimization 56 of the frequency range drive weights can be improved by the inclusion of specific converter transfer functions, especially if they deviate greatly from an ideally assumed behavior, such as a monopole characteristic. For example, transducer data 34 obtained by measurements often have pure delays, such as acoustic propagation, and a delay extraction module 58 connected between the directional characteristic interpolation module 52 and the optimization module 56 could be provided to remove common delay times of all transducer data. This simplifies the optimization process in the optimization module 56, because the delays no longer have to be included in the desired optimization target function, or the beamforming filters achieved do not have to compensate for the array delay common to the transducers. It will become apparent from the following description that an advantage of the use of the delay-and-sum block is that by the same with the used converters with high robustness feasible design specification for the frequency response of the transducer array in the desired direction of radiation / incident with high sensitivity can be obtained.

Noch einmal sei darauf hingewiesen, dass die soeben beschriebene Einbeziehung von Wandlereigenschaften in die Berechnung durch die Berechnungseinrichtung 44 lediglich optional ist, d.h. die Vorgabe der Daten 34 sowie die Module 52 und 58 fehlen können. Vielmehr könnte die Berechnung durch die Berechnungseinrichtung auch unter der Annahme von idealisierten Übertragungscharakteristiken durchgeführt werden. Andererseits ermöglicht die Verwendung realer Wandlerdaten 34 oftmals eine höhere Performance der schließlich berechneten Beamforming-Filter.Once again, it should be pointed out that the just described inclusion of converter characteristics in the calculation by the calculation device 44 is merely optional, ie the presetting of the data 34 as well as the modules 52 and 58 may be missing. Rather, the calculation by the calculation device could also be based on the assumption of idealized transfer characteristics. On the other hand, the use of real transducer data 34 often allows for a higher performance of the finally calculated beamforming filters.

Die Spezifizierung des gewünschten Richtungsverhaltens bzw. Beamformingverhaltens wird gemäß Fig. 3 über die Daten 36 vorgenommen. Sie bilden den Startpunkt des Beamformer-Entwurfs, indem sie eine gewünschte Richtungscharakteristik beschreiben. Sie beschreiben beispielsweise eine gewünschte Abstrahlung des gewünschten Schalls in eine oder mehrere Richtungen oder Bereiche in dem Fall von Lautsprechern bzw. Empfindlichkeit für Schall aus einer oder mehreren Richtungen oder Bereichen in dem Fall von Mikrofonen, während die Abstrahlung in bzw. die Empfindlichkeit für andere Richtungen/Bereiche möglichst unterdrückt werden soll. Diese Beschreibung durch die Daten 36 wird beispielsweise durch ein Modul 60 in eine Zielmuster-Spezifizierung umgewandelt, d.h. in eine mathematische Formulierung des gewünschten Richtungsverhaltens. Die von der Zielmusterspezifizierung 60 ausgegebene Zielfunktion beschreibt beispielsweise die gewünschte komplexe Schallabstrahlung in verschiedene Raumrichtungen ϕ bzw. ϕ und θ. Die Zielfunktion kann entweder frequenzunabhängig oder aber frequenzabhängig sein, d.h. mit verschiedenen Vorgaben für verschiedene Frequenzen oder Frequenzbereiche. Darüber hinaus kann die mathematische Formulierung des Richtungsverhaltens eines oder mehrere der folgenden Elemente aufweisen:

  • eine oder mehrere bevorzugte Abstrahlrichtungen oder -Punkte;
  • Richtungen oder Bereiche, in denen die erzielte Schallabstrahlung nur in definierter Weise (typischerweise durch maximale Abweichungen vorgegeben) von der gewünschten Schallabstrahlung abweichen darf;
  • Bereiche, in denen keine Vorgaben über die Schallabstrahlung gemacht werden, welche auch als Übergangsbereiche oder räumliche "don't care"-Bereiche bezeichnet werden können;
  • Bereiche, in denen die Schallabstrahlung minimiert werden soll, optional mit einer Gewichtungsfunktion, um die Priorität einzelner Teilbereiche anzupassen.
The specification of the desired directional behavior or beamforming behavior is determined according to Fig. 3 made via the data 36. They form the starting point of the beamformer design by describing a desired directional characteristic. For example, they describe a desired radiation of the desired sound in one or more directions or areas in the case of loudspeakers for one or more directions or areas in the case of microphones, while the radiation is in sensitivity for other directions / Areas should be suppressed as possible. This description of the data 36 is converted, for example, by a module 60 into a target pattern specification, ie a mathematical formulation of the desired directional behavior. The target function output by the target pattern specification 60 describes, for example, the desired complex sound radiation in different spatial directions φ or φ and θ. The objective function can be either frequency-independent or frequency-dependent, ie with different specifications for different frequencies or frequency ranges. In addition, the mathematical formulation of the directional behavior may include one or more of the following elements:
  • one or more preferred radiating directions or points;
  • Directions or areas in which the sound radiation achieved may deviate from the desired sound radiation only in a defined manner (typically given by maximum deviations);
  • Areas where noise exposure is not provided, which may also be referred to as transition areas or "do not care"areas;
  • Areas in which the sound radiation is to be minimized, optionally with a weighting function, to adjust the priority of individual partial areas.

Allgemein wird darauf hingewiesen, dass die gewünschte komplexe Schallabstrahlung, die durch die Zielfunktion beschrieben wird, nicht zwingend auf Richtungen beschränkt ist. Andere Argumente sind beispielsweise ebenfalls möglich, wie z.B. die gewünschte Abstrahlung entlang einer Linie oder über eine Fläche/ein Volumen.In general, it should be noted that the desired complex sound radiation, which is described by the objective function, is not necessarily limited to directions. Other arguments are also possible, for example, such as the desired emission along a line or across a surface / volume.

Hinsichtlich der Robustheitsvorgaben 40 gilt Folgendes. Im Kontext von Beamforming-Anwendungen bezeichnet Robustheit die Eigenschaft, bei Abweichungen des Wandlerarrays 10 oder des Übertragungssystems, wie z.B. durch Abweichungen der Ansteuerfilter vom idealen Verhalten, Positionierungsfehler der Wandler im Array oder Abweichungen vom modellierten Übertragungsverhalten, nur eine relativ geringe Verschlechterung des Abstrahlverhaltens zu zeigen. Ein für beispielsweise Mikrofonarrays häufig eingesetztes Maß für die Robustheit ist der sogenannte "White Noise Gain" [BW01, MSK09], ([WNG]), welches sich als Quotient der Signalmagnitude in Einfallsrichtung und der L2-Norm der Ansteuergewichte für das Array ergibt. Dieses Maß kann auch sinnvoll für Lautsprecherarrays eingesetzt werden [MK07], wobei hier die Signalmagnitude in gewünschter Abstrahlrichtung die Rolle der Magnitude in Einfallsrichtung einnimmt.With regard to the robustness specifications 40, the following applies. In the context of beamforming applications robustness refers to the property of showing only a relatively small deterioration of the radiation behavior in the case of deviations of the transducer array 10 or of the transmission system, eg due to deviations of the control filters from ideal behavior, positioning errors of the transducers in the array or deviations from the modeled transmission behavior , A measure of robustness frequently used for microphone arrays, for example, is the so-called "White Noise Gain" [BW01, MSK09], ([WNG]), which results as the quotient of the signal magnitude in the direction of incidence and the L 2 standard of the drive weights for the array , This measure can also be usefully used for loudspeaker arrays [MK07], whereby here the signal magnitude in the desired emission direction assumes the role of the magnitude in the direction of incidence.

Wie im vorhergehenden Abschnitt dargestellt, wirkt sich die Magnitude in Abstrahlrichtung (respektive Einfallsrichtung) bezogen auf eine erlaubte Norm der Ansteuergewichte direkt auf das WNG und damit auf die Robustheit aus. In gleicher Weise ist der erzielbare Pegel in Abstrahlrichtung sowohl vom maximal zulässigen Betrag der Ansteuergewichte als auch von der Abstrahlcharakteristik der Wandler abhängig. Es ist daher notwendig, die Magnitude (bzw. Amplitude des gewünschten Abstrahlpatterns) so zu spezifizieren, dass sowohl Anforderungen an die Robustheit als auch an die erzielte Abstrahlmagnitude erreicht werden. Um einen guten Ausgangspunkt für diese Spezifikation zu erhalten, ist es möglich, folgendes Verfahren zu verwenden:

  • Basierend auf der gewünschten Abstrahlrichtung bzw. den Daten 36 zum gewünschten Richtungsverhalten wird die Übertragungsfunktion der Ansteuerfilter für den Delay- und Sum-Beamformer (DSB) in dem Modul 54 erstellt. Das heißt, Modul 54 geht von einfachen Filtern aus, die nur von der Position der Wandler und der Abstrahlrichtung abhängen und lediglich aus einem frequenzunabhängigen Verstärkungswert und einer frequenzunabhängigen Verzögerung, jeweils pro Wandlerelement, bestehen. Nur solche frequenzunabhängigen Werte pro Wandler werden durch das Modul 54 berechnet, ausgehend von dem gewünschten Richtungsverhalten 36 und unter Einbeziehung der Wandlerdaten 34. Ein DSB entspricht also quasi dem Aufbau von Fig. 1 bzw. 2, wobei allerdings einfachere BFFs verwendet werden, nämlich lediglich solche, die eine zeitliche Verzögerung und eine frequenzunabhängige Verstärkung durchführen. Während die Richtwirkung eines solchen DSBs insbesondere für niedrige Frequenzen gering ist, weist er hohe WNG-Werte und damit eine gute Robustheit auf.
  • Mit diesem DSB-Ansteuerfiltersatz (bestehend aus lediglich dem frequenzunabhängigen Verstärkungswert und der frequenzunabhängigen Verzögerung pro Wandlerelement) wird die Abstrahlung des Arrays in der gewünschten Abstrahlrichtung berechnet/simuliert. In die Berechnung dieser frequenzunabhängigen Wertepaare pro Wandlerelement durch das Modul 54 fließen, wie bereits erwähnt, die modellierten oder gemessenen Wandlercharakteristiken aus den Daten 34 ein.
  • Der aus dem DSB-Ansteuerfiltersatz des Moduls 54 resultierende Frequenzgang des Wandlerarrays in Abstrahlrichtung kann als Referenz-Frequenzgang (bzw. Magnitudengang) bezeichnet und in den nachfolgenden Schritten der Berechnung durch die Berechnungseinrichtung 44 verwendet werden. Der Vorteil des Vorgehens besteht darin, dass hierdurch eine Vorgabe für die Magnitude vorliegt, welche durch das Wandlerarray innerhalb der vorgegebenen Maximalaussteuerungen für die Einzelwandler realisiert werden kann, und welches (weil aus einem DSB-Design resultierend) gute Robustheitseigenschaften besitzt bzw. so entworfen werden kann, dass es gute Robustheitseigenschaften besitzt.
As shown in the previous section, the magnitude in the direction of radiation (respectively direction of incidence) has a direct effect on the WNG and thus on the robustness in relation to an allowed standard of the drive weights. In the same way, the achievable level in the emission direction depends both on the maximum permissible amount of the drive weights and on the emission characteristics of the converters. It is therefore necessary to specify the magnitude (or amplitude of the desired radiation pattern) so that both robustness and radiation amplitude requirements are achieved. To get a good starting point for this specification, it is possible to use the following procedure:
  • Based on the desired emission direction or the data 36 for the desired directional behavior, the transfer function of the drive filters for the delay and sum beamformer (DSB) in the module 54 is created. That is, module 54 is based on simple filters, which depend only on the position of the transducers and the emission direction and consist only of a frequency-independent gain value and a frequency-independent delay, each per transducer element. Only such frequency-independent values per converter are calculated by the module 54, starting from the desired directional behavior 36 and taking into account the converter data 34. A DSB thus corresponds to the structure of Fig. 1 or 2, but using simpler BFFs, namely only those that have a time delay and perform a frequency-independent amplification. While the directivity of such a DSB is low, especially for low frequencies, it has high WNG values and thus good robustness.
  • With this DSB control filter set (consisting of only the frequency-independent gain value and the frequency-independent delay per transducer element), the radiation of the array in the desired emission direction is calculated / simulated. In the calculation of these frequency-independent value pairs per transducer element by the module 54, as already mentioned, the modeled or measured transducer characteristics flow from the data 34.
  • The frequency response of the transducer array in the emission direction resulting from the DSB drive filter set of the module 54 may be referred to as the reference frequency response (or magnitude response) and used in the subsequent steps of the calculation by the calculation device 44. The advantage of the approach is that it provides a magnitude constraint that can be realized by the transducer array within the given maximum drive levels for the individual transducers, and that has (because of a DSB design) good robustness characteristics can, that it has good robustness properties.

Gemäß dem Beispiel von Fig. 3 weist die Berechnungseinrichtung 44 noch ein weiteres Modul auf, nämlich ein Modul 58, das aus dem gewonnenen Referenz-Magnitudengang des Moduls 54 in Kombination mit den Vorgaben 38 für den gewünschten Frequenzgang bzw. Wunschfrequenzgang die endgültige Spezifikation des Frequenzgangs des Wandlerarrays in Abstrahlrichtung bestimmt. Das bedeutet, Ausgangspunkt für die Bestimmung des Moduls 58 bildet der Frequenzgang des Wandlerarrays, wie er durch die DSB-Werte des Moduls 54 bisher bestimmt ist, d.h. der Frequenzgang, der sich für das Wandlerarray mit den DSB-Werten in der entsprechenden Richtung ergibt. Von diesem Magnitudengang ausgehend, werden durch das Modul 58 Modifikationen vorgenommen. beispielsweise werden Modifikationen am Referenz-Magnitudengang vorgenommen, um z.B. den Frequenzgang zu equalisieren. Auch kann die Richtwirkung des Arrays innerhalb gewisser Grenzen erhöht werden (entweder global oder für bestimmte Frequenzen), indem der Magnitudengang in Abstrahlrichtung gegenüber dem Referenz-Magnitudengang reduziert wird. Die Verwendung des DSB-Referenzdesigns und dessen WNG-Wert ermöglicht dabei eine gute Abschätzung der Robustheitseigenschaften der finalen Designspezifikation.According to the example of Fig. 3 For example, the calculation device 44 has another module, namely a module 58, which determines the final specification of the frequency response of the transducer array in the emission direction from the acquired reference magnitude response of the module 54 in combination with the specifications 38 for the desired frequency response or desired frequency response. That is, the starting point for the determination of the module 58 is the frequency response of the transducer array, as determined by the DSB values of the module 54, ie the frequency response that results for the transducer array with the DSB values in the corresponding direction. From this Magnitudengang starting, are made by the module 58 modifications. For example, modifications are made to the reference magnitude response, for example to equalize the frequency response. Also, the directivity of the array can be increased within certain limits (either globally or for certain frequencies) by reducing the magnitude response in the direction of emission from the reference magnitude response. The use of the DSB reference design and its WNG value allows a good estimation of the robustness properties of the final design specification.

In einem optionalen Anwendungsbeispiel fließen psychoakustische Erkenntnisse in die Frequenzgangbestimmung 58 ein. Dabei kann beispielsweise die Erkenntnis ausgenutzt werden, dass bestimmte Frequenzbereiche eines Signals wichtiger für die Wahrnehmung eines Schallereignisses sind, und dass daher durch eine gezielte Anhebung dieser Frequenzbereiche eine weniger vorteilhafte, weil weniger gerichtete, Abstrahlung in anderen Frequenzbereichen kompensiert bzw. weniger wahrnehmbar gemacht werden kann. Hier wird darauf hingewiesen, dass diese Equalisierung zum einen signalunabhängig ist und sich auch auf nur eine Abstrahlcharakteristik beschränkt, also nicht auf psychoakustischer Maskierung zwischen verschiedenen Abstrahlcharakteristiken oder Audiosignalen beruht.In an optional application example, psychoacoustic findings flow into the frequency response determination 58. In this case, for example, the knowledge can be exploited that certain frequency ranges of a signal are more important for the perception of a sound event, and that therefore a less advantageous, because less directed, radiation in other frequency ranges can be compensated or less perceptible by a targeted increase in these frequency ranges , It should be noted here that this equalization is, for one thing, independent of the signal and is also limited to only one emission characteristic, that is to say is not based on psychoacoustic masking between different emission characteristics or audio signals.

Auf Basis des bestimmten Frequenzgangziels für das Wandlerarray, wie es durch das Modul 58 bestimmt worden ist, wird dann im Modul 56 die Optimierung durchgeführt. Der Entwurf der Beamforming-Filter erfolgt hier im Frequenzbereich für eine Reihe diskreter Frequenzen ωk. Im Kontext der vorliegenden Anmeldung werden bevorzugt auf konvexer Optimierung basierende Optimierungsverfahren verwendet [M07, MSK09]. Diese ermöglichen eine im Sinne einer Optimierung bestmögliche Approximation der durch das Modul 58 vorgegebenen bzw. gewählten Abstrahlcharakteristik, wie sie ausgehend von den Daten 36 durch die Module 60, 54 und 58 bestimmt wird, und zwar bezüglich einer wählbaren Fehlernorm, wie z.B. der L2- ("least squares, kleinster quadratischer Fehler) oder der L∞-Norm (Chebyshev-, Minimax-Norm). Ergebnis der Optimierung im Modul 56 ist für jede diskrete Frequenz ein komplexer Ansteuerwert, so dass sich ein Vektor Hnk) komplexer anderer Gewichte pro Wandler n ergibt. In das Optimierungsproblem, das durch das Modul 56 gelöst wird, können gemessene oder modellierte Wandlerdaten bzw. die Daten 34 einbezogen werden, um auf den Frequenzgang und die Abstrahlcharakteristik optimierte Ansteuerfilter-Frequenzgänge Hn zu erhalten. Des Weiteren ermöglicht der optimierungsbasierte Ansatz zahlreiche Nebenbedingungen, die sich sowohl auf die erzielte Abstrahlung als auch auf die Ansteuergewichte beziehen können. So kann beispielsweise eine Beschränkung für das minimale White Noise Gain festgelegt werden. In gleicher Weise ist es möglich, Maximalbeträge für die Ansteuergewichte festzulegen, um die Ansteuerung der Einzelwandler zu begrenzen.Based on the determined frequency response target for the transducer array, as determined by the module 58, optimization is then performed in module 56. The beamforming filter is designed here in the frequency domain for a series of discrete frequencies ω k . In the context of the present application, optimization methods based on convex optimization are preferably used [M07, MSK09]. These allow a best possible approximation of the predetermined or selected by the module 58 Abstrahlcharakteristik as it is determined from the data 36 by the modules 60, 54 and 58, with respect to a selectable error standard, such as the L 2 - (least squares, least square error) or the L∞ norm (Chebyshev, Minimax norm) The result of the optimization in module 56 is a complex drive value for each discrete frequency, so that a vector H nk ) complex of other weights per transducer n is obtained. In the optimization problem that is solved by the module 56, measured or modeled transducer data, or the data can be included 34 in order to obtain n on the frequency response and radiation pattern optimized Ansteuerfilter frequency responses H. Furthermore, the optimization-based approach allows for numerous constraints that affect both the radiation achieved and the driving power can relate to. For example, a limitation on the minimum white noise gain can be set. In the same way it is possible to set maximum amounts for the control weights in order to limit the control of the individual transducers.

Die bisherige Beschreibung der möglichen Implementierung der Funktionsweise der ersten Berechnungseinrichtung 44 noch einmal in anschaulicher Weise zusammenfassend, wird auf Fig. 4 verwiesen. Ausgangspunkt der Zielfrequenzgangberechnung durch die Berechnungseinrichtung 44 bildet die Wunschrichtungsselektivität, die in Fig. 4 mit Ω beschrieben ist und mit dem Bezugszeichen 70 versehen ist. Die Wunschrichtungsselektivität Ω ist hier exemplarisch als eine vom Abstrahlwinkel ϕ abhängige Funktion Ω veranschaulicht. Wie im Vorhergehenden angegeben, kann die Richtungsabhängigkeit allerdings auch anders als angular definiert sein. Ferner zeigt Fig. 4 durch ein gestrichteltes ϑ an, dass die Wunschrichtungsselektivität 70 im Raumsinne definiert sein kann und nicht nur in einer Ebene. Rechts oben ist in Fig. 4 angedeutet, wie die Winkel ϕ und ϑ definiert sein könnten. In der Wunschrichtungsselektivität könnte auch bereits eine Frequenzabhängigkeit enthalten sein, d.h. Ω könnte von ω abhängen. Insofern wurde häufig auch von einem "Frequenzgang" Ω gesprochen, weil richtungsabhängig bestimmte Frequenzen weniger oder mehr gedämpft werden. Dieser Frequenzgang Ω ist allerdings zu unterscheiden von dem Frequenzgang Hnk) für die einzelnen Beamforming-Filter, wie sie durch die Berechnungseinrichtung 44 berechnet werden sollen. Beide wirken wie ein Filter mit einer Übertragungsfunktion, wie sie durch die Abhängigkeit von ω bestimmt ist, aber der Frequenzgang Ω wird durch die schließlich berechneten Frequenzgänge Hn der einzelnen Beamforming-Filter beeinflusst.The previous description of the possible implementation of the operation of the first calculation means 44 summarized once again in an illustrative manner, becomes Fig. 4 directed. The starting point of the target frequency response calculation by the calculation device 44 forms the desired direction selectivity, which in Fig. 4 described with Ω is and is provided with the reference numeral 70. The desired direction selectivity Ω is illustrated here by way of example as a function Ω dependent on the emission angle φ. However, as stated above, the directionality may be defined other than angular. Further shows Fig. 4 by a dashed θ, the desired direction selectivity 70 can be defined in space sense, not just in one plane. Top right is in Fig. 4 indicated how the angles φ and θ could be defined. In the desired direction selectivity, a frequency dependence could already be included, ie Ω could depend on ω. In this respect, there has often been talk of a "frequency response" Ω, because direction-dependent certain frequencies are attenuated less or more. However, this frequency response Ω is to be distinguished from the frequency response H nk ) for the individual beamforming filters, as they are to be calculated by the calculation device 44. Both act like a filter with a transfer function as determined by the dependence on ω, but the frequency response Ω is affected by the finally calculated frequency responses H n of the individual beamforming filters.

Die Wunschrichtungsselektivität 70, wie sie durch die Daten 36 vorgegeben werden, soll nun mit dem speziellen Wandlerarray erzielt werden. In Fig. 4 wurde rechts oben exemplarisch von Lautsprechern als den Elementen des Arrays ausgegangen, aber wie bereits erwähnt, ist ein Array aus anderen Wandlern, wie z.B. Mikrofonen, ebenfalls möglich. Das Array bestimmt sich also aus bestimmten Wandlerpositionen, Wandlerausrichtungen, einem Wandlerfrequenzgang, wobei der Frequenzgang wiederum richtungsabhängig sein kann, und/oder einer Richtungsabhängigkeit der Abstrahlung bzw. der Empfindlichkeit, die wiederum umgekehrt frequenzabhängig sein kann. In dem Modul 54 werden nun für jeden Wandler n ein Paar von Werten ψn und an, nämlich frequenzunabhängige Verzögerung ψ und ein Verstärkungswert a, der ebenfalls frequenzunabhängig ist, bestimmt, so dass unter der Annahme, dass lediglich diese frequenzunabhängigen Werte in den BFFs der Wandler n angewendet werden, die Richtungsselektivität Ω' 72 resultiert, die richtungsabhängig ist, also beispielsweise abhängig von ϕ und optional ϑ sowie frequenzabhängig, d.h. abhängig von ω. Die Bestimmung im Modul 54 wird so durchgeführt, dass die Wunschrichtungsselektivität 70 nach Möglichkeit erreicht bzw. approximiert wird. Das ist natürlich nur beschränkt möglich, da pro Wandler n ja lediglich frequenzunabhängige Verzögerung bzw. Verstärkung bestimmt werden. Dafür aber wird die Richtungsselektivität Ω' mit großer Robustheit erreicht. Wie beschrieben, dient nun Ω' 72 als Ausgangspunkt für die tatsächliche Wunschrichtungsselektivität 74, wie sie später der Optimierung 56 zugrunde liegen soll. Von der Richtungsselektivität 72 nutzt man das Vorwissen aus, dass es aufgrund seiner DSB-Eigenschaft robust ist. Das Modul 58 modifiziert nun die Richtungsselektivität Ω' 72 so, dass sie dem Wunsch nach einer bestimmten Frequenzabhängigkeit der Richtungsselektivität näher kommt. Beispielsweise wird in dem Modul 58 durch die Übertragungscharakteristik 38 eine Frequenzabhängigkeit der Richtungsselektivität Ω in eine vordefinierte Richtung ϕ0 bzw. (ϕ00 vorgegeben, wie z.B. in Richtung der maximalen Abstrahlung bzw. maximalen Selektivität, d.h. der Richtung, für die Ω bei 70 maximal ist. Das Optimierungsziel 74 der Optimierung 56 ist also eine frequenz- und richtungsabhängige Richtungsselektivität ΩZiei und die Optimierung 56 wird so durchgeführt, dass sie Zielfrequenzgänge bzw. Übertragungsfunktionen Hnk) für die Beamforming-Filter n so findet, dass durch ihre Verwendung in den Beamforming-Filtern des Wandlerarrays 10 das Optimierungsziel 74 möglichst gut erzielt bzw. approximiert wird, d.h. eine Abweichung nach einem bestimmten Kriterium minimiert wird. Die Optimierung 56 könnte damit als eine Feinjustage von Beamforming-Filterübertragungsfunktionen 76 betrachtet werden, die, wenn sie für die Beamforming-Filter verwendet werden, zu den frequenzunabhängigen Verzögerungen und Verstärkungen äquivalent sind. Allerdings ist zu beachten, dass dennoch der DSB-Entwurf eigentlich nur für die Optimierungszielformulierung verwendet wird und die Frequenzbereichsoptimierung 56 unabhängig von dem DSB-Entwurf starten kann. In anderen Worten ausgedrückt, wird das DSB-Design gemäß einer bevorzugten Ausführungsform nicht angepasst bzw. als Grundlage verwendet, die somit lediglich als Vorlage für die den gewünschten Frequenzgang in Abstrahlrichtung dient, d.h. zur Optimierungszieldefinition, und der Optimierungs-algorithmus 56 startet "from Scratch", d.h. ohne Wissen über die DSB-Gewichtung. Die frequenzunabhängigen Verzögerungen und Verstärkungen Ψn und an, wie sie im Modul 54 berechnet werden, können nämlich in gleicher Weise durch Filter mit Übertragungsfunktionen Hn erzeugt werden, deren 2π-Phasensprung-bereinigter linearer Phasenverlauf eine Steigung aufweist, die ψη entspricht, und deren Magnitude bzw. Betrag an entspricht und damit konstant ist. Für welche Frequenzstützstellen diese Abtastpunkte ωk mit k = 1 ... K die Optimierung 56 durchgeführt wird, mag vom Anwendungsfall her geeignet eingestellt werden. Die zu optimierenden Variablen sind also, da die Übertragungsfunktion Hn eine komplexwertige Funktion ist, 2·N·K, wobei N die Anzahl der Wandler und K die Anzahl der Frequenzabtastwerte ist, für die die Optimierung 56 durchgeführt wird. Die optimierten Zielfrequenzgänge 78, die sich aus der Optimierung 56 ergeben, können erzielt werden, indem zusätzlich die Optimierung optional noch Nebenbedingungen unterworfen wird, wie z.B. Nebenbedingungen betreffend die Einhaltung bestimmter Robustheitskriterien, wie sie durch die Daten 40 vorgegeben werden. Die Optimierung 56 kann also insbesondere ein quadratisches Programm mit einer Nebenbedingung sein, das ein bestimmtes Robustheitsmaß nicht unterschritten wird.The desired direction selectivity 70, as dictated by data 36, is now to be achieved with the particular transducer array. In Fig. 4 In the upper right corner loudspeakers were used as the elements of the array, but as already mentioned, an array of other transducers, such as microphones, is also possible. The array is thus determined from certain transducer positions, transducer orientations, a transducer frequency response, wherein the frequency response may in turn be direction-dependent, and / or a directional dependence of the radiation or the sensitivity, which in turn may be frequency dependent. In module 54, a pair of values ψ n and a n , namely frequency-independent delay ψ and a gain value a, which is also frequency-independent, are now determined for each transducer n, so that assuming only these frequency-independent values in the BFFs the transducer n are applied, the directional selectivity Ω '72 results, which is direction-dependent, that is, for example, depending on φ and optionally θ and frequency-dependent, ie depending on ω. The determination in module 54 is performed so that the desired direction selectivity 70 is achieved or approximated where possible. This is only to a limited extent, of course, as per converter yes only be determined frequency independent delay and gain n. But the directional selectivity Ω 'is achieved with great robustness. As described above, Ω '72 now serves as a starting point for the actual desired direction selectivity 74, which will later be the basis of optimization 56. From the directional selectivity 72 one uses the foreknowledge that it is due to its DSB property is robust. The module 58 now modifies the directionality Ω '72 to be closer to the desire for a particular frequency dependence of directional selectivity. For example, in the module 58 by the transfer characteristic 38, a frequency dependence of the directional selectivity Ω in a predefined direction φ 0 or (φ 0 , θ 0 given, such as in the direction of maximum radiation or maximum selectivity, ie the direction for which Ω The optimization target 74 of the optimization 56 is thus a frequency-dependent and direction-dependent directional selectivity Ω Ziei and the optimization 56 is carried out in such a way that it finds target frequency responses or transfer functions H nk ) for the beamforming filters n . Optimization goal 74 is achieved or approximated as well as possible by its use in the beamforming filters of transducer array 10, ie, a deviation according to a certain criterion is minimized Optimization 56 could thus be regarded as a fine adjustment of beamforming filter transfer functions 76 which when used for the beamforming filters, to d frequency independent delays and gains are equivalent. However, it should be noted that, nevertheless, the DSB design is actually used only for the optimization target formulation and the frequency domain optimization 56 may start independently of the DSB design. In other words, according to a preferred embodiment, the DSB design is not adapted or used as a basis, thus serving merely as a template for the desired frequency response in the emission direction, ie for the optimization target definition, and the optimization algorithm 56 starts "from Scratch ", ie without knowledge of the DSB weighting. Namely, the frequency-independent delays and gains Ψ n and a n , as calculated in the module 54, can be generated in the same way by filters with transfer functions H n whose 2π-phase-jump-adjusted linear phase curve has a slope that corresponds to ψ η , and whose magnitude or magnitude corresponds to a n and is therefore constant. For which frequency support points these sampling points ω k with k = 1... K the optimization 56 is carried out, may be suitably set by the application. Thus, since the transfer function H n is a complex valued function, the variables to be optimized are 2 · N · K, where N is the number of converters and K is the number of frequency samples for which optimization 56 is performed. The optimized target frequency responses 78, which result from the optimization 56, can be achieved by optionally additionally subjecting the optimization to additional constraints, such as, for example, ancillary conditions regarding compliance with certain robustness criteria, as specified by the data 40. The optimization 56 can therefore in particular be a quadratic program with a secondary condition that does not fall below a certain robustness measure.

Es wurde im Vorhergehenden schon oftmals darauf hingewiesen, dass die Berechnung der Zielfrequenzgänge 78 auch anders durchgeführt werden könnte.It has often been pointed out above that the calculation of the target frequency responses 78 could also be carried out differently.

Bei dem Ausführungsbeispiel von Fig. 3 wird nun, bevor der Zielfrequenzgang 78 der Beamforming-Filter der Optimierung in der zweiten Berechnungseinrichtung 46 zugrunde gelegt wird, noch eine oder mehrere Modifikationen durchgeführt, die allerdings, wie bereits erwähnt, optional sind.In the embodiment of Fig. 3 Now, before the target frequency response 78 of the beamforming filters of the optimization in the second calculation device 46 is taken as a basis, one or more modifications are carried out, which, however, as already mentioned, are optional.

Wie im Folgenden beschrieben, ergeben sich nämlich die Frequenzgänge der einzelnen Ansteuerfilter n aus den in der Optimierung 56 erhaltenen Ansteuergewichten Hnk), indem ja jeweils die Gewichte des Filters entnommen werden. Diese Filter enthalten oftmals ein deutliches Delay bzw. eine deutliche Verzögerung, welches bzw. welche sich beispielsweise durch die Phase- bzw. Gruppenlaufzeit äußert. Dieses Delay ist für die weiteren Verarbeitungsstufen hinderlich, wie z.B. insbesondere die spätere Optimierung in der zweiten Berechnungseinrichtung 46. Auch der nachfolgend beschriebene optionale Glättungsschritt wird erschwert oder erfordert eine deutliche höhere Auflösung des Frequenzrasters bei der Optimierung 56 in der ersten Berechnungseinrichtung, da die Glättung eine Bestimmung der kontinuierlichen Phase durch ein "phase unwrapping" involviert. Je größer der im Frequenzgang enthaltene Anstieg der Phasenfunktion ist, desto schwieriger ist die korrekte Detektion und folgende Kompensation der Phasensprünge. Das wirkt sich negativ auf die Korrektheit der "phase-unwrapping"-Algorithmen aus.As described below, the frequency responses of the individual drive filters n result from the drive weights H nk ) obtained in the optimization 56, since the weights of the filter are taken in each case. These filters often contain a significant delay or delay, which manifests itself for example by the phase or group delay. This delay is a hindrance for the further processing stages, such as in particular the subsequent optimization in the second calculation means 46. The optional smoothing step described below is also made more difficult or requires a significantly higher resolution of the frequency raster in the optimization 56 in the first calculation means, since the smoothing is a Determination of the continuous phase involved by a phase unwrapping. The greater the increase in the phase function contained in the frequency response, the more difficult is the correct detection and subsequent compensation of the phase jumps. This has a negative effect on the correctness of the "phase-unwrapping" algorithms.

Des Weiteren ist es für den Optimierungsschritt in der zweiten Berechnungseinrichtung 46 vorteilhaft, wenn das dortige Optimierungsziel, d.h. Zielfrequenzgang 78, in einer Version vorliegt, die möglichst nahe an einem Zero-Phase-Frequenzgang liegt, in welchem also die durch Verzögerungen verursachten Phasenterme möglichst eliminiert werden. Weitere Anforderungen des Optimierungsschritts in der Berechnungseinrichtung 46 werden weiter unten genauer dargestellt. Allgemein sind folgende Aspekte zu beachten:
Die Kausalität der resultierenden Filter ist in dieser Stufe des Entwurfsprozesses nicht relevant. Es kann mit nicht-kausalen, nahe an Zero-Phase-Übertragungsfunktionen liegenden Wunschfrequenzgängen für die Ansteuerfilter gearbeitet werden. Die Kausalität kann nach dem FIR-Entwurf wieder kausal gemacht werden (durch Wiedereinfügen der extrahierten Delays, evtl. ergänzt durch zusätzliche Delays).
Furthermore, it is advantageous for the optimization step in the second calculation device 46 if the local optimization target, ie target frequency response 78, is in a version that is as close as possible to a zero-phase frequency response, in which the phase terms caused by delays are eliminated as far as possible become. Further requirements of the optimization step in the calculation device 46 will be described in more detail below. In general, the following aspects should be considered:
The causality of the resulting filters is not relevant at this stage of the design process. It is possible to work with non-causal, near zero-phase transfer functions desired frequency responses for the drive filter. The causality can be made causal again after the FIR design (by reinserting the extracted delays, possibly supplemented by additional delays).

Die oben zur Einbeziehung von Wandler-Eigenschaften bereits dargestellte Extraktion der Delays aus den Wandler-Daten reduziert bereits in manche im Wunschfrequenzgang Hn 78 des Ansteuerfilters n enthaltende Verzögerung. Dies mag hier und da jedoch nicht verwendungsfähig sein und durch das Modul 80 zur Delay-Anpassung ergänzt werden. Zur Anpassung der Verstärkungswerte kann folgendes Vorgehen verwendet werden.

  • Die Anpassung erfolgt für jedes Filter BFFn einzeln.
  • Durch einen Algorithmus zum "phase unwrapping" wird die kontinuierliche Phase des Frequenzgangs bestimmt.
  • Der lineare Anteil (d.h. der Anstieg) der Phasenfunktion wird durch eine Least-Squares-Fit mit einem Polynom erster Ordnung bestimmt. Daraus kann der lineare Anteil der Verzögerung bestimmt werden.
  • Optional: Der lineare Verzögerungsanteil wird auf ein ganzzahliges Vielfaches der Sampling-Periode gerundet bzw. abgerundet. Dies kann die spätere Rekombination vereinfachen, die dann nur eine Verschiebung der Impulsantwort erfordert (z.B. durch Voranstellen einer entsprechenden Zahl von Nullen oder durch eine Implementierung dieser Delays in Form einer Delay Line (Verzögerungsleitung).
  • Auf Basis dieses linearen Terms wird ein Vektor aus komplexen Exponentialen berechnet, welches einen zu diesem linearen Phasenterm negierten Phasenverlauf hat.
  • Durch Multiplikation des ursprünglichen Frequenzgangs 78 mit diesem Vektor aus komplexen Exponentialen wird die Verzögerung des Frequenzgangs angepasst.
  • Die Berechnungsvorschrift kann leicht variiert werden, z.B. Zerlegung des komplexen Frequenzgangs in Magnitudengang (besser: Zero-Phase-Frequenzgang) und kontinuierliche Phase, Bestimmung des linearen Verzögerungsanteils, Subtraktion dieses Anteils von der kontinuierlichen Phase, gefolgt von einer Rekombination von Magnitude und Phase, oder einer Übergabe beider Teile an die folgende Glättung.
Extraction of the delays from the transducer data, already shown above to include transducer characteristics, already reduces some delay in the desired frequency response H n 78 of the drive filter n . However, this may not be usable here and there and be supplemented by the delay adjustment module 80. The following procedure can be used to adjust the gain values.
  • The adaptation is done for each filter BFF n individually.
  • A phase unwrapping algorithm determines the continuous phase of the frequency response.
  • The linear portion (ie, slope) of the phase function is determined by a least squares fit with a first order polynomial. From this the linear part of the delay can be determined.
  • Optional: The linear delay component is rounded to an integer multiple of the sampling period. This can simplify the later recombination, which then requires only a shift of the impulse response (eg by prefixing a corresponding number of zeros or by implementing these delays in the form of a delay line).
  • On the basis of this linear term, a vector of complex exponentials is calculated which has a phase characteristic negated to this linear phase term.
  • By multiplying the original frequency response 78 by this vector of complex exponentials, the delay of the frequency response is adjusted.
  • The calculation rule can easily be varied, for example, decomposition of the complex frequency response in magnitude response (better: zero-phase response) and continuous phase, determination of the linear delay component, subtraction of this component from the continuous phase, followed by a recombination of magnitude and phase, or a transfer of both parts to the following smoothing.

Fig. 5 veranschaulicht noch einmal die Funktionsweise des Verzögerungsanpassungsmoduls 80 der Modifikationseinrichtung 48. Ausgangspunkt ist wie gesagt der Satz von gegebenenfalls zu modifizierenden Zielfrequenzgängen 78, d.h. Hnk). Fig. 5 zeigt illustrativ den Phasenverlauf 82 von Hnk). Er weist exemplarisch Phasensprünge 84 auf. Der um 2π-Phasensprung-bereinigte Phasenverlauf ist bei 86 gezeigt und dieser kann durch einen linearen Verlauf 88 approximiert werden, wie z.B. einen "least square fit", wobei der linea-re Anteil 88 eine Steigung aufweist, die einer frequenzunabhängigen Verzögerung ψ'η entspricht. Die Modifikation des Zielfrequenzgangs 78 durch das Modul 80 sieht nun vor, dass dieser lineare Anteil 88 beseitigt oder reduziert wird, d.h. der 2π-Phasensprung-bereinigte Phasenverlauf wird nivelliert bzw. begradigt, wobei Fig. 5 bei 90 den Phasenverlauf der so modifizierten Zielfrequenzgänge H'nk) zeigt. Die Verzögerungen ψ'η werden vorgemerkt bzw. gespeichert. Fig. 5 illustrates once again the operation of the delay adjustment module 80 of the modifier 48. As stated, the starting point is the set of target frequency responses 78 to be modified, ie H nk ). Fig. 5 Illustratively shows the phase curve 82 of H nk ). It has exemplary phase jumps 84. The 2π phase-shift-adjusted phase profile is shown at 86 and this can be approximated by a linear curve 88, such as a least square fit, where the linear portion 88 has a slope corresponding to a frequency-independent delay ψ ' η equivalent. The modification of the target frequency response 78 by the module 80 now provides that this linear component 88 is eliminated or reduced, ie the 2π phase-jump-adjusted phase characteristic is leveled or straightened Fig. 5 at 90 shows the phase characteristic of the thus modified target frequency responses H ' nk ). The delays ψ ' η are reserved or stored.

Ein weiteres Modul der Modifikationseinrichtung 48 ist das optional vorhandene Frequenzbereichsglättungsmodul 92. Mit der Frequenzbereichsglättung durch das Modul 92 hat es folgende Bewandtnis. Die durch den optimierungsbasierten Filterentwurf erzeugten Frequenzgänge 78 bzw. H'nk) der Ansteuerfilter n weisen typischerweise starke Fluktuationen der Magnitude bzw. des Betrags und auch der Phase auf. Solche Design-Vorgaben lassen sich in einem FIR-Filterentwurf nur schwer umsetzen bzw. erfordern dafür eine sehr hohe FIR-Filterordnung bzw. FIR-Länge der Beamforming-Filter. In letzterem Fall kann zwar eine gute Übereinstimmung mit den vorgegebenen Schnittstellen erzielt werden, jedoch treten zwischen den Stützstellen ωk häufig starke Überschwingphänomene auf, welche den Frequenzgang des resultierenden Beamformers verschlechtern. Auch aus psychoakustischen berlegungen heraus ist es oft nicht sinnvoll, solche schmalbandigen Fluktuationen abzubilden. Daher werden die Wunschfrequenzgänge 78 der Ansteuerfilter einem Glättungsalgorithmus unterzogen. Dieser wird beispielsweise aus psychoakustischen Überlegungen heraus mit einer frequenzabhängigen Fensterbreite von beispielsweise 1/3 Oktave oder 1/6 Oktave durchgeführt [HN00]. Da die Frequenzgänge komplexwertig sind, wird beispielsweise die Glättung getrennt für Magnitude und Phase durchgeführt, d.h. eine getrennte Glättung der Magnituden-Übertragungsfunktion (genauer genommen des "zero-phase"-Frequenzgangs (vgl. z.B. [Sar93, SI07]) und der kontinuierlichen ("unwrapped") Phase [PF04]. Möglich wäre, dass Magnitude und Phase durch einen "phase unwrapping"-Algorithmus in dem Modul 92 aus dem komplexen Frequenzgang Hηk) bzw. H'nk) generiert und unabhängig durch Faltung mit einem frequenzabhängigen Glättungsfilter auch als "Fenster" bezeichnet, geglättet wird. Das "phase unwrapping" in dem Modul 92 kann in dem Fall der Anwesenheit des Moduls 80 gegebenenfalls entfallen, da das "phase unwrapping" bereits im Modul 80 durchgeführt wurde. Anschließend werden beide geglätteten Teile, d.h. Magnitude und Phase, zum geglätteten komplexen Frequenzgang zusammengefügt, quasi zu H"ηk). Alternativ könnte auch die im Modul 80 gewonnene Separation des Frequenzgangs in "zero-Phase-Komponente" und kontinuierliche Phase, die direkt im Modul 90 geglättet und dann kombiniert werden. Fig. 5 deutet die Kombination der Anwendung der Module 80 und 92 an.Another module of the modification device 48 is the optional frequency-domain smoothing module 92. The frequency-domain smoothing by the module 92 has the following meaning. The frequency responses 78 and H ' nk ) of the drive filters n generated by the optimization-based filter design typically have large fluctuations of the magnitude and also of the phase. Such design specifications are difficult to implement in an FIR filter design or require a very high FIR filter order or FIR length of the beamforming filters. In the latter case, although a good agreement with the given interfaces can be achieved, however, strong overshoot phenomena frequently occur between the interpolation points ω k , which deteriorate the frequency response of the resulting beamformer. Even from psychoacoustic considerations, it often does not make sense to map such narrowband fluctuations. Therefore, the desired frequency responses 78 of the drive filters are subjected to a smoothing algorithm. This is done, for example, for psychoacoustic considerations with a frequency-dependent window width of, for example, 1/3 octave or 1/6 octave [HN00]. Since the frequency responses are complex-valued, for example, the smoothing is carried out separately for magnitude and phase, ie a separate smoothing of the magnitude transfer function (to be more precise of the "zero-phase" frequency response (cf., for example, [Sar93, SI07]) and the continuous ( It is possible that magnitude and phase are generated and independently by a phase unwrapping algorithm in the module 92 from the complex frequency response H ηk ) or H ' nk ) is smoothed by convolution with a frequency-dependent smoothing filter, also referred to as "window." The phase unwrapping in the module 92 may, in the case of the presence of the module 80, occur if necessary because phase unwrapping was already performed in module 80. Subsequently, both smoothed parts, ie magnitude and phase, are combined to form the smoothed complex frequency response, more or less to H " ηk ) Alternatively, the separation of the frequency response into" zero-phase component "and continuous phase obtained in module 80, which are smoothed directly in module 90 and then combined. Fig. 5 indicates the combination of application of modules 80 and 92.

Durch die Optimierung in der Berechnungseinrichtung 46 werden nun FIR-Filterkoeffizienten hBFFn (i) mit i = 1 ... l so bestimmt, dass die Zielfrequenzgänge der Beamforming-Filter approximiert werden, wie z.B. H"nk) in dem Fall der Anwendung beider Modifikationsmodule 80 und 92. Auf Details hierzu wird im Folgenden noch eingegangen. Wie allerdings schon erwähnt wurde, kann dabei Optimierungsverfahren für lineare, quadratische oder allgemeiner konvexe Oprimierungsprobleme verwendet werden. Dieses Optimierungsproblem kann dabei mit Nebenbedingungen versehen sein, die beispielsweise den Verlauf der Übertragungsfunktion der Beamforming-Filter betreffen, d.h. eine Nebenbedingung, die die Übertragungsfunktion bzw. den Frequenzbereich der Beamforming-Filter betrifft, wenn gegen die Optimierung in der Berechnungseinrichtung 46 ansonsten als Optimierungsvariablen die FIR-Filterkoeffizienten der Beamforming-Filter betrifft, die der Impulsantwort der Beamforming-Filter entsprechen.By the optimization in the calculation means 46 now FIR filter coefficients h BFF n ( i ) with i = 1 ... l determined such that the target frequency responses of the beamforming filters are approximated, such as H " nk ) in the case of using both modification modules 80 and 92. For details, see below As has already been mentioned, however, optimization methods for linear, quadratic or more generally convex compression problems can be used, and this optimization problem may be accompanied by constraints, which for example concern the course of the transfer function of the beamforming filters, ie a secondary condition that the The transfer function or the frequency range of the beamforming filters is concerned if the optimization in the calculation device 46 otherwise relates to the FIR filter coefficients of the beamforming filters which correspond to the impulse response of the beamforming filters as optimization variables.

Der Vollständigkeit halber wird aber vor einer näheren Beschreibung der Optimierung in der Berechnungseinrichtung 46 der Vollständigkeit halber noch auf die Bedeutung der Modifikationseinrichtung 50 eingegangen. Sie ist nämlich dafür zuständig, die Modifikation durch das Modul 80, d.h. die Nivellierung des Phasenverlaufs der Zielfrequenzgänge der Beamforming-Filter, gegebenenfalls wieder in die durch die Optimierung in der Berechnungseinrichtung 46 erhaltenen FIR-Filterkoeffizienten "zu integrieren", indem ein Art Delay-Rekombination durchgeführt, wie z.B. die unten noch einmal näher beschriebene Nulleneinfügung, wonach den FIR-Filterkoeffizienten Nullen vorangestellt werden. Das wird weiter unten beschrieben. Fig. 6 zeigt exemplarisch durch einen Doppelpfeil, dass die durch die Optimierung in der Berechnungseinrichtung 46 erhaltenen FIR-Filterkoeffizienten hBFFn Beamforming-Filterweise die Impulsantwort des jeweiligen Beam-forming-Filters n beschreiben und über eine FFT bzw. Fourier Transformationen in die Übertragungsfunktion Hn(ω) des jeweiligen Beamforming-Filters übergehen bzw. ihr entsprechen. Fig. 6 zeigt bei 96 exemplarisch die Impulsantwort und bei 98 exemplarisch den 2π-Phasensprung-bereinigten Phasenverlauf der Übertragungsfunktion. Die Modifikationseinrichtung 50 verwendet nun den für den jeweiligen Beamforming-Filter n gespeicherten Phasenverzögerungswert ψη, in dem die FIR-Filterkoeffizienten entsprechend verschoben werden gemäß h'BFFn (i) = hBFFn (i) ± ψ'n, wobei hierzu, wie bereits erwähnt, es vorteilhaft ist, wenn bei dem Nivellierungsmodul 80 die zur Nivellierung verwendete Steigung ψ'n auf ganzzahlige Vielfache der Zeitabstände der FIR-Filtertaps eingeschränkt wird, da dann die Berücksichtigung der Nivellierung durch das Modul 80 in der Modifikationseinrichtung 50 lediglich einer Verschiebung der FIR-Filterkoeffizienten hBFFn entspricht, während ansonsten eine Interpolation der FIR-Filterkoeffizienten zusätzlich erforderlich ist. Für die dem modifizierten FIR-Filterkoeffizienten h'BFFn entsprechenden Phasenverlauf bedeutet dies, wie in Fig. 6 bei 100 angedeutet, dass quasi die Nivellierung wieder rückgängig gemacht wird.For the sake of completeness, however, the meaning of the modification device 50 will be discussed for the sake of completeness prior to a more detailed description of the optimization in the calculation device 46. It is responsible for "integrating" the modification by the module 80, ie the leveling of the phase response of the target frequency responses of the beamforming filters, back into the FIR filter coefficients obtained by the optimization in the calculation means 46, if necessary, by adding a kind of delay Recombination performed, such as the zeros insertion described in more detail below, after which the FIR filter coefficients are prefixed zeros. This will be described below. Fig. 6 shows by way of example by a double arrow that the FIR filter coefficients h BFF obtained by the optimization in the calculation device 46 n Beamforming filter mode, the impulse response of the respective beam-forming filter n describe and pass over an FFT or Fourier transforms in the transfer function H n (ω) of the respective beamforming filter or correspond to her. Fig. 6 shows by way of example at 96 the impulse response and at 98 exemplarily the 2π phase-jump-corrected phase characteristic of the transfer function. The modification device 50 now uses the phase delay value ψ η stored for the respective beamforming filter n, in which the FIR filter coefficients are shifted accordingly in accordance with h ' BFF n ( i ) = h BFF n ( i ) ± ψ ' n , for which purpose, as already mentioned, it is advantageous if, in the leveling module 80, the gradient ψ' n used for leveling is limited to integer multiples of the time intervals of the FIR filter taps, since then the consideration of the leveling by the module 80 in the modification device 50 only a shift of the FIR filter coefficients h BFF n otherwise, interpolation of the FIR filter coefficients is additionally required. For the modified FIR filter coefficient h ' BFF n corresponding phase course this means as in Fig. 6 indicated at 100 that quasi leveling is reversed again.

Alternativ zu dem Vorgehen nach Fig. 6 in der Modifikationseinrichtung 50 könnte zusätzlich zu dem FIR-Filterkoeffizienten hBFFn sich in dem Beamforming-Filter n jeweils auch in welchem Fall jedes Beamforming-Filter n nicht nur durch die Beamforming-FIR-Filterkoeffizienten hBFFn definiert wäre, sondern auch durch die frequenzunabhängige Verzögerung ψ'η, wobei letztere in Beamforming-Filtern der Fig. 1 und 2 durch ein einfaches Verzögerungsglied, das mit dem FIR-Filter in Reihe geschaltet ist, berücksichtigt werden könnte.Alternatively to the procedure after Fig. 6 in the modifier 50, in addition to the FIR filter coefficient h, BFF n each beamforming filter n in the beamforming filter n in each case not only by the beamforming FIR filter coefficients h BFF n , but also by the frequency-independent delay ψ ' η , the latter in beamforming filters of the Fig. 1 and 2 could be considered by a simple delay connected in series with the FIR filter.

Es ist in der Regel nicht möglich, das Frequenzbereichsdesign bzw. die Frequenzbereichsoptimierung 56 über den gesamten Frequenzbereich des zeitdiskreten Filters, d.h. des FIR-Filters der Beamforming-Filter, nämlich von f = 0 Hz bis f = f s 2

Figure imgb0004
mit ƒs als Samp-lingfrequenz durchzuführen. Für sehr niedrige Frequenzen, insbesondere auch für f = 0 Hz, d.h. dem Gleichanteil, ist eine dezidierte Vorgabe des Abstrahlverhaltens nicht sinnvoll, gerade bei Modulierung realer Wandler. Ebenso sind für sehr hohe Frequenzen, wie z.B. relativ zur räumlichen Aliasing-Frequenz des Arrays, in der Regel keine sinnvollen Vorgaben möglich: 1) die Entstehung ausgeprägter Nebenkeulen kann nicht durch eine entsprechende Wunsch-Charakteristik verhindert werden. 2) Die Breite des "Beams" der gewünschten Abstrahlrichtung wird mit zunehmender Frequenz immer geringer. Somit ist es nicht oder nur mit hohem Spezifikationsaufwand möglich, sinnvolle, erfüllbare Vorgaben zur Breite der Beams in diesen Frequenzbereichen zu machen.It is usually not possible, the frequency domain design or the frequency range optimization 56 over the entire frequency range of the time-discrete filter, ie the FIR filter of the beamforming filter, namely from f = 0 Hz to f = f s 2
Figure imgb0004
with ƒ s as a sampling frequency. For very low frequencies, especially for f = 0 Hz, ie the DC component, a dedicated specification of the radiation behavior is not useful, especially when modulating real converter. Similarly, for very high frequencies, such as relative to the spatial aliasing frequency of the array, usually no meaningful guidelines possible: 1) the formation of pronounced side lobes can not be prevented by a corresponding desired characteristic. 2) The width of the "beam" of the desired direction of radiation decreases with increasing frequency. Thus, it is not possible or only with high specification effort to make meaningful, achievable specifications for the width of the beams in these frequency ranges.

Die soeben gemachten Aussagen betreffen die Frequenzbereichsoptimierung 56, lassen aber auch Rückschlüsse auf die Zeitbereichsoptimierung in der Zeitenberechnungseinrichtung 46 zu. Generell erlaubt der Optimierungsvorgang in der Berechnungseinrichtung 46, d.h. der optimierungsbasierte Entwurf von FIR-Filtern, die Einführung von Frequenzbereichen bzw. Frequenzabschnitten, für die keine Vorgaben gemacht werden, d.h. für die kein Wunschfrequenzgang bzw. Zielfrequenzgang vorliegt, d.h. für die kein Optimierungsziel festgelegt wird. Solche Bereiche können als Transitionsbänder bzw. "transition bands" oder "don't care bands" bezeichnet werden. Für die betrachteten Beamforminganwendungen zeigt sich jedoch, dass bereits sehr schmale Frequenzbereiche ohne Designspezifikation bzw. ohne Optimierungsziel bei der Optimierung der zweiten Berechnungseinrichtung 46 zu unkontrolliertem Verhalten der entworfenen FIR-Filter führen, wie z.B. zu einer extrem hohen Magnitude und zu Fluktuationen des Beamforming-Filterfrequenzganges in diesen Frequenzabschnitten.The statements just made relate to the frequency domain optimization 56, but also allow conclusions to be drawn about the time domain optimization in the time calculation device 46. Generally, the optimization process in the calculator 46, i. the optimization-based design of FIR filters, the introduction of frequency ranges or frequency sections for which no specifications are made, i. for which there is no desired frequency response or target frequency response, i. for which no optimization goal is specified. Such areas may be referred to as transition bands or "do not care bands". For the considered beamforming applications, however, it can be seen that even very narrow frequency ranges without design specification or without optimization target in the optimization of the second calculation means 46 lead to uncontrolled behavior of the designed FIR filters, such as e.g. to an extremely high magnitude and to fluctuations of the beamforming filter frequency response in these frequency sections.

Aus diesem Grund stellt Fig. 3 die optionale Möglichkeit dar, wonach Beschränkungen 42 für die Optimierungszielvorgabe hinsichtlich des Frequenzganges der in diesen Frequenzabschnitten vorgenommen werden. Wie es die gestrichelte Linie in Fig. 3 andeutet, und wie es der vorletzte Absatz darstellte, können die Frequenzabschnitte abhängig von Charakteristiken der Wandler gewählt sein. In das durch die Berechnungseinrichtung 46 zu lösende Optimierungsproblem wird die Frequenzbeschränkung 42 beispielsweise eingebunden, indem eine maximale Magnitude als Nebenbedingung für das konvexe Optimierungsproblem angegeben wird: ... unter der Nebenbedingung, dass | H ω | | H ^ ω | ω X ,

Figure imgb0005
wobei X eine diskretisierte Repräsentation der Transitions- bzw. "don't care"-Bänder darstellt, d.h. derjenigen Frequenzabschnitte, für die kein Optimierungsziel bei der Optimierung in der zweiten Berechnungseinrichtung 46 vorliegen soll, und |(ω)| die maximal erlaubte Magnitude des Frequenzganges bei der Frequenz ω innerhalb der Transitionsbänder X bezeichnet.That's why Fig. 3 the optional possibility, according to which restrictions 42 are made for the optimization target with regard to the frequency response of these frequency sections. As is the dashed line in Fig. 3 indicates, and as it represented the penultimate paragraph, the frequency sections may be selected depending on characteristics of the converter. For example, the frequency constraint 42 is included in the optimization problem to be solved by the calculation means 46 by specifying a maximum magnitude as a constraint for the convex optimization problem: ... under the constraint that | H ω | | H ^ ω | ω X .
Figure imgb0005
where X represents a discretized representation of the transition or "do not care" bands, ie those frequency segments for which there is no optimization target in the optimization in the second calculation means 46, and | Ĥ ( ω ) | denotes the maximum allowable magnitude of the frequency response at the frequency ω within the transition bands X.

Eine Alternative zur Verwendung von Frequenzbeschränkungen 42 bzw. Beschränkungen für hohe bzw. niedrige Frequenzen besteht in der Verwendung eines Hybrid-Designansatzes, der im Folgenden noch beschrieben wird.An alternative to the use of frequency restrictions 42 or restrictions for high and low frequencies, respectively, is the use of a hybrid design approach, which will be described below.

Ziel der Optimierung in der zweiten Berechnungseinrichtung 46 ist es aus denen durch das Frequenzbereichsdesign für die Beamformer gewonnenen Frequenzgänge, die oben als Hnk) bzw. H'nk) bzw. H"nk) bezeichnet und im Folgenden als Wunschfrequenzgang mit dem variablen Namen (ω) bezeichnet werden, FIR-Filter zu erzeugen, mit denen die Filterung der Quellsignale, d.h. der Lautsprechersignale in dem Fall eines Lautsprecherarrays, wie es in Fig. 1 gezeigt ist, und der Mikrofonausgangssignale in dem Fall eines Mikrofonarrays, wie es in Fig. 2 gezeigt ist, erfolgen kann. Dazu wird ein mathematisches Optimierungsverfahren verwendet, das beispielsweise ein Verfahren der konvexen Optimierung sein kann. Mit denselben wird der Frequenzgang H(w) des entworfenen FIR-Filters h(i) so bestimmt, dass (ω) bestmöglich approximiert wird, d.h. dass der Fehler bezüglich einer wählbaren Norm p minimal wird. Das Optimierungsproblem kann allgemein in der folgenden Form dargestellt werden: minimiere h i ,,0 i I H ω H ^ ω p unter der Nebenbedingung dass <Nebenbedingung en >

Figure imgb0006
The aim of the optimization in the second calculation device 46 is the frequencies obtained by the frequency domain design for the beamformers, which are denoted above as H nk ) and H ' nk ) and H " nk ), respectively hereinafter referred to as the desired frequency response with the variable name Ĥ ( ω ) to generate FIR filters, with which the filtering of the source signals, ie the speaker signals in the case of a loudspeaker array, as shown in FIG Fig. 1 and the microphone output signals in the case of a microphone array as shown in FIG Fig. 2 shown can be done. For this purpose, a mathematical optimization method is used, which can be, for example, a method of convex optimization. With them, the frequency response H (w) of the designed FIR filter h (i) is determined so that Ĥ ( ω ) is approximated as best as possible, ie that the error with respect to a selectable standard p becomes minimal. The optimization problem can generally be represented in the following form: minimize H i ,, 0 i I H ω - H ^ ω p under the constraint that <constraint s >
Figure imgb0006

Der Zusatz <Nebenbedingung(en)> ist optional. Nebenbedingungen müssen nicht vorliegen, können aber, wie im Vorhergehenden bereits hinsichtlich der Hochfrequenzbeschränkungen exemplarisch beschrieben, vorliegen. Eine einzelne Nebenbedingung ist auch möglich. Allgemein repräsentieren diese Nebenbedingungen eine Vielzahl möglicher Nebenbedingungen, die sich z.B., aber nicht ausschließlich auf den Frequenzgang oder die Koeffizienten des FIR-Filters beziehen. Die Frequenzvariable ω, hier als normalisierte Kreisfrequenz ω = 2πf/fs verwendet, ist üblicherweise diskretisiert. Damit lassen sich sowohl das Optimierungsproblem gemäß Gleichung (2) als auch die Nebenbedingungen typischerweise in Matrixform darstellen.The suffix <constraint (s)> is optional. Secondary conditions do not have to be present, but may be present, as described above with regard to the high-frequency restrictions, as an example. A single constraint is also possible. In general, these constraints represent a variety of possible constraints, including, but not limited to, the frequency response or coefficients of the FIR filter. The frequency variable ω, used here as a normalized angular frequency ω = 2πf / f s , is usually discretized. Thus, both the optimization problem according to equation (2) and the secondary conditions can typically be represented in matrix form.

Die im Rahmen der Frequenzbereichsoptimierung 56 (bzw. mit Modifizierung 80 und/oder 92) entstehenden Zielfrequenzgänge für die Zeitbereichsoptimierung in der zweiten Berechnungseinrichtung 46 sind generell komplexwertig und weisen einen nichttrivialen, insbesondere weder linearen noch minimalphasigen, Frequenzgang auf. Damit entspricht das Optimierungsproblem der oben genannten Gleichung (2) einem Filterentwurfsproblem für FIR-Filter mit beliebiger Phasencharakteristik. Dafür sind in der Literatur eine Vielzahl von Verfahren beschrieben, wie z.B. bei [PR95, KM95; KM99].The target frequency responses for the time domain optimization in the second calculation device 46 which arise in the context of the frequency domain optimization 56 (or with modification 80 and / or 92) are generally complex-valued and have a non-trivial, in particular neither linear nor minimal-phase, frequency response. Thus, the optimization problem of the above equation (2) corresponds to a filter design problem for FIR filters with arbitrary phase characteristics. For this purpose, a large number of methods are described in the literature, for example in [PR95, KM95; KM99].

Bei der Umsetzung des Entwurfsalgorithmus kommt den Filtern (ω) und Ĥ(ω) enthaltenen Verzögerungen, d.h. den linearen Term des um 2π-Phasensprünge bereinigten Phasengangs eine besondere Bedeutung zu. Wie in [KM99] dargestellt, resultiert die Verwendung beliebiger Phasengänge in sehr schlecht konditionierten Optimierungsproblemen oder degenerierten Lösungen. Dies trifft insbesondere dann zu, wenn die Standardformulierung eines kausalen FIR-Filters mit dem Frequenzgang H ω = n = 0 N e jωn

Figure imgb0007
verwendet wird. Aus diesem Grund wäre es möglich, wie in [KM99] vorgeschlagen, das Design auf Basis eines nichtkausalen FIR-Filters mit der Übertragungsfunktion H nc ω = n = 0 N h n G n , ω mit G n , ω = e n N 2
Figure imgb0008
vorzunehmen. Der kausale (3) und der nichtkausale Filter (4a) unterscheiden sich durch den reinen Delay-Term, nämlich H e = e j N 2 ω H nc ω .
Figure imgb0009
During the implementation of the design algorithm , the delays contained in the filters Ĥ ( ω ) and Ĥ (ω) , ie the linear term of the phase response which has been adjusted by 2π phase jumps, are of particular importance. As shown in [KM99], the use of arbitrary phase responses results in very poorly conditioned optimization problems or degenerate solutions. This is especially true when the standard formulation of a causal FIR filter with the frequency response H ω = Σ n = 0 N e - jωn
Figure imgb0007
is used. For this reason, it would be possible, as suggested in [KM99], to design based on a non-causal FIR filter with the transfer function H nc ω = Σ n = 0 N H n G n . ω With G n . ω = e - n - N 2
Figure imgb0008
make. The causal (3) and the non-causal filter (4a) differ by the pure delay term, viz H e = e - j N 2 ω H nc ω ,
Figure imgb0009

Bei der Verwendung des nichtkausalen Frequenzgangs sollte die Wunschfunktion (ω) so angepasst werden, dass der lineare Anteil der Phase möglichst nah bei 0 liegt. Dies wird effektiv durch die Modifikationen 80 und 50 realisiert.When using the non-causal frequency response, the desired function Ĥ ( ω ) should be adjusted so that the linear component of the phase is as close to 0 as possible. This is effectively realized by the modifications 80 and 50.

Nachdem in der Optimierung der zweiten Berechnungseinrichtung 46 die Impulsantworten der FIR-Filter, d.h. h(i) ermittelt wurden, integriert die Modifikationseinrichtung 50 optional die zuvor kompensierten Verzögerungskomponenten wieder in die Ansteuerfilter. Gemäß einem alternativen Ausführungsbeispiel wird die Integration der Delays ψ'η in die Filter n umgangen, indem die reinen Verzögerungen ψ'n zur Laufzeit der Beamforming-Anwendung mit Hilfe geeigneter Signalverarbeitungseinrichtungen, wie z.B. digitalen Verzögerungsleitungen (engl. Delay Lines) auf die Ein- oder Ausgangssignale der Steuerfilter angewendet werden. In diesem Fall ist lediglich sicherzustellen, dass die Impulsantworten der gewonnenen FIR-Filter kausal sind, d.h. die Indizes der Impulsantworten bei 0 beginnen. Eine solche Modifikation erfordert keine aktive Rechenoperationen zur Laufzeit, sondern entspricht lediglich der Einführung einer konstanten implementierungsbedingten Verzögerung für alle Ansteuerfilter n. Es sollte Sorge getragen werden, dass diese Verzögerung für alle Ansteuerfilter eines Beamformers konstant ist. Für die getrennte Anwendung der Verzögerung kann es vorteilhaft sein, die bei der Verzögerungsanpassung 80 extrahierten Verzögerungen als Vielfache der Samplingperiode zu wählen. In diesem Fall nämlich können die Verzögerungsleitungen wie bezüglich Fig. 6 schon beschrieben ist, für ganzzahlige Delays verwendet werden, die keine Filterungsoperationen, sondern lediglich einen indizierten Zugriff auf das Signal erfordern und auch keine Verzerrungen verursachen. Alternativ können auch beliebige Verzögerungswerte abgebildet werden. Dies erfordert jedoch Verzögerungsleitungen mit Zugriff auf beliebige Verzögerungen (engl. Fractional Delay Lines), welche Verzerrungen verursachen können, Rechenleistung benötigen und möglicherweise eine zusätzliche Latenz bzw. Verzögerung bedingen.After the impulse responses of the FIR filters, ie h (i), have been determined in the optimization of the second calculation device 46, the modification device 50 optionally integrates the previously compensated delay components back into the drive filters. According to an alternative embodiment, the integration of the delays ψ ' η into the filters n is bypassed by applying the pure delays ψ' n at runtime of the beamforming application be applied to the input or output signals of the control filters by means of suitable signal processing means, such as digital delay lines (English Delay Lines ). In this case it is only necessary to ensure that the impulse responses of the obtained FIR filters are causal, ie that the indices of the impulse responses begin at zero. Such a modification does not require active arithmetic operations at run-time, but merely corresponds to the introduction of a constant implementation-related delay for all drive filters n. It should be ensured that this delay is constant for all drive filters of a beamformer. For the separate application of the delay, it may be advantageous to select the delays extracted in delay adaptation 80 as multiples of the sampling period. Namely, in this case, the delay lines as with respect Fig. 6 as already described, are used for integer delays that do not require filtering operations but merely require indexed access to the signal and also do not cause distortion. Alternatively, any delay values can be mapped. However, this requires delay lines with access to arbitrary fractional delay lines , which can cause distortion, require processing power, and possibly require additional latency or delay.

Im Zusammenhang mit der Hochfrequenzbeschränkung 42 wurde bereits erörtert, dass eine Optimierung, die auf alle Frequenzen gleichermaßen bezogen ist, nicht immer sinnvoll ist. Das geht auch für Frequenzbereichsoptimierung 56. Oben wurde bereits angedeutet, dass bei der Frequenzbereichsoptimierung 56 auch ein hybrider Designansatz verwendet werden könnte. Gemäß diesem Ansatz wird ein optimierungsbasierter Ansatz zur Gewinnung der Frequenzbereichsansteuerfunktionen Hmk), wie er bisher beschrieben worden ist, mit einem Design kombiniert, das dem DSB-Design entspricht, wie es in dem Modul 54 berechnet wird, wobei der DSB-Designansatz für die hohen Frequenzen verwendet wird. Ziel ist dabei die Reduktion der benötigten Filterordnung bei gleichzeitiger Verbesserung der Robustheit. Dabei wird ausgenutzt, dass für hohe Frequenzen die Abstrahlcharakteristik des Wandlerarrays aufgrund des räumlichen Aliasing nicht mehr komplett kontrolliert werden kann. Deshalb wird für Frequenzen oberhalb einer festgelegten Grundfrequenz, wie z.B. einer Frequenz, die relativ nah an der räumlichen Aliasing-Frequenz des Wandlerarrays liegt, ein DSB -Designansatz verwendet. Dazu wird die Frequenzbereichsspezifikation des kompletten Filters aus zwei Teilen zusammengefügt: den mittels Optimierung gewonnenen Frequenzgängen bis zur Grenzfrequenz und den Frequenzgängen, die denen des DSB entsprechen, für die Frequenzen darüber. Die Kombination beider Verfahren erfolgt die durch darauffolgende, oben bereits beschriebene Glättung und den optimierungsbasierten FIR-Entwurf. Ein kritischer Schritt hierbei ist die Angleichung der Signallaufzeit (Delays) beider Entwurfsansätze. Beispielsweise ist es möglich, mittels eines Least-Square-Fittings ein Delay-Offset für den DSB so zu bestimmen, dass die Delay-Sprünge der einzelnen Ansteuerfilter im quadratischen Mittel minimiert werden.In the context of high-frequency restriction 42, it has already been discussed that optimization that applies equally to all frequencies does not always make sense. This also goes for frequency range optimization 56. Above, it has already been suggested that frequency domain optimization 56 could also use a hybrid design approach. According to this approach, an optimization-based approach for obtaining the frequency domain drive functions H mk ) as described so far is combined with a design corresponding to the DSB design as calculated in the module 54, wherein the DSB Design approach is used for the high frequencies. The aim is to reduce the required filter order while improving robustness. It is exploited that for high frequencies, the emission characteristics of the transducer array due to the spatial aliasing can not be completely controlled. Therefore, for frequencies above a fixed fundamental frequency, such as a frequency that is relatively close to the spatial aliasing frequency of the transducer array, a DSB design approach is used. For this purpose, the frequency domain specification of the complete filter is composed of two parts: the frequency responses obtained by optimization up to the cutoff frequency and the frequency responses corresponding to those of the DSB for the frequencies above it. The combination of both methods is followed by the subsequent smoothing already described above and the optimization-based FIR design. A critical step here is the alignment of the signal delays of both design approaches. For example, it is possible to use a least-square fitting to determine a delay offset for the DSB in such a way that the delay jumps of the individual control filters are minimized in the root mean square.

In verschiedenen exemplarischen Designs ermöglicht der Hybrid-Designansatz eine robustere Abstrahlung im hochfrequenten Bereich, was sich durch weniger erratische Fluktuationen des Verhaltens ohne nennenswerte Verluste der Performance auszeichnet, bei teilweise verbesserter Richtwirkung im niederfrequenten Bereich und zudem bei gleichbleibender Filterordnung. Als Ursache dafür kann angenommen werden, dass die durch eine bestimmte Filterordnung bereitgestellten Freiheitsgrade mit dem Hybrid-Designansatz besser für die Frequenzbereiche verwendet werden, in denen eine Beeinflussung der Charakteristik möglich ist, während für hohe Frequenzen, in denen aufgrund räumlichen Aliasing harte Einschränkungen für die Unterdrückung ungewünschter Abstrahlung bestehen, weniger Ressourcen aufgewendet werden.In various exemplary designs, the hybrid design approach allows for more robust high frequency radiation, resulting in less erratic fluctuations in performance without significant loss of performance, with partially improved low frequency directivity, and consistent filter ordering. The reason for this can be assumed that the degrees of freedom provided by a certain filter order are better used with the hybrid design approach for the frequency ranges in which the characteristic can be influenced, while for high frequencies in which due to spatial aliasing hard restrictions for the Suppression of unwanted radiation, less resources are spent.

Fig. 7 veranschaulicht noch einmal den Hybrid-Designansatz: Die zur Zeitbereichsoptimierung in der zweiten Berechnungseinrichtung 46 zu verwendende Übertragungsfunktion wird zusammengesetzt aus der gemäß der Frequenzbereichsoptimierung 56 erhaltenen Übertragungsfunktion, soweit ein Abschnitt niedrigerer Audiofrequenzen 100 betroffen ist, wobei die den frequenzunabhängigen Wertepaaren ψηaη entsprechenden Übertragungsfunktionen Hn in dem Abschnitt höherer Audiofrequenzen 102 verwendet werden. Abschnitt 100 und Abschnitt 102 können aneinander an einer Grenzfrequenz ωgrenz aneinander anschließen, die beispielsweise der räumlichen Grenzaliasingfrequenz des Wandlerarrays entspricht oder von letzterer weniger als 10% abweicht. Möglich wäre auch, dass, wie durch gestrichelte Punkte angedeutet, Niederfrequenzabschnitt und Hochfrequenzabschnitt 100 und 102 einander überlappen. Erstrecke sich Abschnitt 100 beispielsweise über [ωN,b, ωN,e] und Abschnitt 102 über [ωH,b, ωH,e], dann gilt beispielsweise ωN,b < ωH,b Λ ωN,e < ωH,e, wobei möglicherweise ωN,b = 0 und/oder ωH,b ≤ ωN,e oder sogar ωH,b = ωN,e und/oder 0,9·ωgrenz < ωH,b,ωN,e < 1,1·ωgrenz gilt. In dem Überlappungsbereich beider Abschnitte könnte die schließlich zu verwendende Zeitbereichsoptimierungsübertragungsfunktion beispielsweise durch Mittelung zwischen beiden Übertragungsfunktionen (DSB-Design und Optimierungsergebnis von 56) erhalten werden. Fig. 7 illustrates again the hybrid design approach: The transfer function to be used for time domain optimization in the second calculating means 46 is composed of the obtained according to the frequency range optimization 56 transfer function, as far as a portion of lower audio frequencies is concerned 100, where the the frequency-independent pairs of values ψ η a η corresponding transfer functions H n be used in the higher audio frequency section 102. Section 100 and section 102 can be concatenated to a cutoff frequency ω cross connect to each other, for example, corresponds to the spatial aliasing frequency border of the transducer array or from the latter deviates less than 10%. It is also possible that, as indicated by dashed dots, low-frequency section and high-frequency sections 100 and 102 overlap each other. For example, if section 100 extends over [ωN , b, ωN , e ] and section 102 over [ωH , b, ωH , e], then ωN , b <ωH , b ΛωN , eH, e, where possibly ω N, b = 0 and / or ω H, b ≤ ω N, e or even ω H, b = ω N, e and / or 0.9 · ω limitH, b, ω N, e <1.1 · ω limit applies. In the overlapping area of both sections, the time-domain optimization transfer function finally to be used could be obtained, for example, by averaging between both transfer functions (DSB design and optimization result of FIG. 56).

Zusammenfassend beschrieben also obige Ausführungsbeispiele eine Möglichkeit für die Schaffung eines Designs robuster FIR-Filter für Beamforming-Anwendungen. Aus komplexwertigen Frequenzgängen der einzelnen Beamforming-Filter werden FIR-Filter mit beliebigen Phasengängen erzeugbar. Besonderer Wert obiger Ausführungsbeispiele besteht darin, dass Robustheitseigenschaften der Beamformer erhalten werden können.In summary, the above embodiments thus described a possibility for the creation of a design of robust FIR filters for beamforming applications. From complex-valued frequency responses of the individual beamforming filters, FIR filters with arbitrary phase responses can be generated. Particular value of the above embodiments is that robustness properties of the beamformer can be obtained.

Besondere Vorteile obiger Ausführungsbeispiele bestehen beispielsweise darin, dass robuste FIR-Filter auch für komplexe Beamformingprobleme erhalten werden können, wie z.B. bei breitbandigem Betrieb bis über die Aliasingfrequenz des Wandlerarrays hinaus, oder bei komplexem Verhalten der Wandler, wie z.B. einem begrenzten Pegel bei niedrigen Frequenzen. Ein weiterer Vorteil besteht darin, dass das Frequenzraster der Frequenzgangspezifikation, d.h. in der Frequenzbereichsoptimierung 56, und die Filterordnung der FIR-Filter der Beamforming-Filter unabhängig voneinander gewählt werden können. Außerdem sind eine Vielzahl von Designspezifikationen für Beamformer und den Filtern möglich: Nebenbedingungen, wie z.B. Pegelgrenzen, Verhalten des Filters in Regionen, für die kein Beamformingfrequenzgang vorliegt, usw. können einfach integriert werden.Particular advantages of the above embodiments are, for example, that robust FIR filters can also be obtained for complex beamforming problems, such as e.g. in broadband operation beyond the aliasing frequency of the transducer array, or in the case of complex behavior of the transducers, e.g. a limited level at low frequencies. Another advantage is that the frequency raster of the frequency response specification, i. in the frequency domain optimization 56, and the filter order of the FIR filters of the beamforming filters can be selected independently of each other. In addition, a variety of design specifications for beamformers and the filters are possible: constraints, e.g. Level limits, behavior of the filter in regions where there is no beamforming frequency response, etc. can be easily integrated.

Die vorliegende Erfindung kann in einer Vielzahl von Beamforminganwendungen eingesetzt werden, wie z.B. bei Lautsprecherarrays zur raumselektiven Beschallung, zur Erzeugung von "Quiet Zones" oder zur Wiedergabe von Surround-Material über Lautsprecherzeilen (Soundbars). Ebenso können obige Ausführungsbeispiele auch von Mikrofonarrays verwendet werden, um Schall richtungsselektiv aufzunehmen.The present invention can be used in a variety of beamforming applications, e.g. in loudspeaker arrays for room-selective sonication, for generating "quiet zones" or for reproducing surround material via loudspeaker lines (soundbars). Likewise, the above embodiments may also be used by microphone arrays to record sound directionally selective.

Eventuell wären auch Beamforming-Anwendungen für elektromagnetische Wellen, wie z.B. für Mobilfunk- oder Radarantennen denkbar. Allerdings sind die dort benötigten Bandbreiten deutlich geringer als für Audioanwendungen, so dass eine Implementierung als FIR-Filter bzw. die Notwendigkeit eines Entwurfsansatzes für breitbandige Filter hier nur schwer abgeschätzt werden kann.Possibly beamforming applications for electromagnetic waves, e.g. conceivable for mobile or radar antennas. However, the bandwidths required there are significantly lower than for audio applications, so that an implementation as an FIR filter or the need for a design approach for broadband filters can be estimated only with difficulty here.

Obwohl manche Aspekte im Zusammenhang mit einer Vorrichtung beschrieben wurden, versteht es sich, dass diese Aspekte auch eine Beschreibung des entsprechenden Verfahrens darstellen, sodass ein Block oder ein Bauelement einer Vorrichtung auch als ein entsprechender Verfahrensschritt oder als ein Merkmal eines Verfahrensschrittes zu verstehen ist. Analog dazu stellen Aspekte, die im Zusammenhang mit einem oder als ein Verfahrensschritt beschrieben wurden, auch eine Beschreibung eines entsprechenden Blocks oder Details oder Merkmals einer entsprechenden Vorrichtung dar. Einige oder alle der Verfahrensschritte können durch einen Hardware-Apparat (oder unter Verwendung eines Hardware-Apparats), wie zum Beispiel einen Mikroprozessor, einen programmierbaren Computer oder eine elektronische Schaltung ausgeführt werden. Bei einigen Ausführungsbeispielen können einige oder mehrere der wichtigsten Verfahrensschritte durch einen solchen Apparat ausgeführt werden.Although some aspects have been described in the context of a device, it will be understood that these aspects also constitute a description of the corresponding method, so that a block or a component of a device is also to be understood as a corresponding method step or as a feature of a method step. Similarly, aspects described in connection with or as a method step also provide a description of a corresponding one Some or all of the method steps may be performed by a hardware device (or using a hardware device), such as a microprocessor, a programmable computer, or an electronic circuit. In some embodiments, some or more of the most important method steps may be performed by such an apparatus.

Der erfindungsgemäße Satz von FIR-Filterkoeffizienten 32 für die Beamforming-Filter kann auf einem digitalen Speichermedium gespeichert sein bzw. werden, oder kann auf einem Übertragungsmedium, wie beispielsweise einem drahtlosen Übertragungsmedium oder einem drahtgebundenen Übertragungsmedium, wie beispielsweise dem Internet, übertragen werden.The inventive set of FIR filter coefficients 32 for the beamforming filters may be stored on a digital storage medium, or may be transmitted on a transmission medium such as a wireless transmission medium or a wired transmission medium such as the Internet.

Je nach bestimmten Implementierungsanforderungen können Ausführungsbeispiele der Erfindung in Hardware oder in Software implementiert sein. Die Implementierung kann unter Verwendung eines digitalen Speichermediums, beispielsweise einer Floppy-Disk, einer DVD, einer Blu-ray Disc, einer CD, eines ROM, eines PROM, eines EPROM, eines EEPROM oder eines FLASH-Speichers, einer Festplatte oder eines anderen magnetischen oder optischen Speichers durchgeführt werden, auf dem elektronisch lesbare Steuersignale gespeichert sind, die mit einem programmierbaren Computersystem derart zusammenwirken können oder zusammenwirken, dass das jeweilige Verfahren durchgeführt wird. Deshalb kann das digitale Speichermedium computerlesbar sein.Depending on particular implementation requirements, embodiments of the invention may be implemented in hardware or in software. The implementation may be performed using a digital storage medium, such as a floppy disk, a DVD, a Blu-ray Disc, a CD, a ROM, a PROM, an EPROM, an EEPROM or FLASH memory, a hard disk, or other magnetic disk or optical memory are stored on the electronically readable control signals that can cooperate with a programmable computer system or cooperate such that the respective method is performed. Therefore, the digital storage medium can be computer readable.

Manche Ausführungsbeispiele gemäß der Erfindung umfassen also einen Datenträger, der elektronisch lesbare Steuersignale aufweist, die in der Lage sind, mit einem programmierbaren Computersystem derart zusammenzuwirken, dass eines der hierin beschriebenen Verfahren durchgeführt wird.Thus, some embodiments according to the invention include a data carrier having electronically readable control signals capable of interacting with a programmable computer system such that one of the methods described herein is performed.

Allgemein können Ausführungsbeispiele der vorliegenden Erfindung als Computerprogrammprodukt mit einem Programmcode implementiert sein, wobei der Programmcode dahin gehend wirksam ist, eines der Verfahren durchzuführen, wenn das Computerprogrammprodukt auf einem Computer abläuft.In general, embodiments of the present invention may be implemented as a computer program product having a program code, wherein the program code is operable to perform one of the methods when the computer program product runs on a computer.

Der Programmcode kann beispielsweise auch auf einem maschinenlesbaren Träger gespeichert sein.The program code can also be stored, for example, on a machine-readable carrier.

Andere Ausführungsbeispiele umfassen das Computerprogramm zum Durchführen eines der hierin beschriebenen Verfahren, wobei das Computerprogramm auf einem maschinenlesbaren Träger gespeichert ist.Other embodiments include the computer program for performing any of the methods described herein, wherein the computer program is stored on a machine-readable medium.

Mit anderen Worten ist ein Ausführungsbeispiel des erfindungsgemäßen Verfahrens somit ein Computerprogramm, das einen Programmcode zum Durchführen eines der hierin beschriebenen Verfahren aufweist, wenn das Computerprogramm auf einem Computer abläuft.In other words, an embodiment of the method according to the invention is thus a computer program which has a program code for performing one of the methods described herein when the computer program runs on a computer.

Ein weiteres Ausführungsbeispiel der erfindungsgemäßen Verfahren ist somit ein Datenträger (oder ein digitales Speichermedium oder ein computerlesbares Medium), auf dem das Computerprogramm zum Durchführen eines der hierin beschriebenen Verfahren aufgezeichnet ist.A further embodiment of the inventive method is thus a data carrier (or a digital storage medium or a computer-readable medium) on which the computer program is recorded for carrying out one of the methods described herein.

Ein weiteres Ausführungsbeispiel des erfindungsgemäßen Verfahrens ist somit ein Datenstrom oder eine Sequenz von Signalen, der bzw. die das Computerprogramm zum Durchführen eines der hierin beschriebenen Verfahren darstellt bzw. darstellen. Der Datenstrom oder die Sequenz von Signalen kann bzw. können beispielsweise dahin gehend konfiguriert sein, über eine Datenkommunikationsverbindung, beispielsweise über das Internet, transferiert zu werden.A further embodiment of the method according to the invention is thus a data stream or a sequence of signals, which represent the computer program for performing one of the methods described herein. The data stream or the sequence of signals may be configured, for example, to be transferred via a data communication connection, for example via the Internet.

Ein weiteres Ausführungsbeispiel umfasst eine Verarbeitungseinrichtung, beispielsweise einen Computer oder ein programmierbares Logikbauelement, die dahin gehend konfiguriert oder angepasst ist, eines der hierin beschriebenen Verfahren durchzuführen.Another embodiment includes a processing device, such as a computer or a programmable logic device, that is configured or adapted to perform one of the methods described herein.

Ein weiteres Ausführungsbeispiel umfasst einen Computer, auf dem das Computerprogramm zum Durchführen eines der hierin beschriebenen Verfahren installiert ist.Another embodiment includes a computer on which the computer program is installed to perform one of the methods described herein.

Ein weiteres Ausführungsbeispiel gemäß der Erfindung umfasst eine Vorrichtung oder ein System, die bzw. das ausgelegt ist, um ein Computerprogramm zur Durchführung zumindest eines der hierin beschriebenen Verfahren zu einem Empfänger zu übertragen. Die Übertragung kann beispielsweise elektronisch oder optisch erfolgen. Der Empfänger kann beispielsweise ein Computer, ein Mobilgerät, ein Speichergerät oder eine ähnliche Vorrichtung sein. Die Vorrichtung oder das System kann beispielsweise einen Datei-Server zur Übertragung des Computerprogramms zu dem Empfänger umfassen.Another embodiment according to the invention comprises a device or system adapted to transmit a computer program for performing at least one of the methods described herein to a receiver. The transmission can be done for example electronically or optically. The receiver may be, for example, a computer, a mobile device, a storage device or a similar device. For example, the device or system may include a file server for transmitting the computer program to the recipient.

Bei manchen Ausführungsbeispielen kann ein programmierbares Logikbauelement (beispielsweise ein feldprogrammierbares Gatterarray, ein FPGA) dazu verwendet werden, manche oder alle Funktionalitäten der hierin beschriebenen Verfahren durchzuführen. Bei manchen Ausführungsbeispielen kann ein feldprogrammierbares Gatterarray mit einem Mikroprozessor zusammenwirken, um eines der hierin beschriebenen Verfahren durchzuführen. Allgemein werden die Verfahren bei einigen Ausführungsbeispielen seitens einer beliebigen Hardwarevorrichtung durchgeführt. Diese kann eine universell einsetzbare Hardware wie ein Computerprozessor (CPU) sein oder für das Verfahren spezifische Hardware, wie beispielsweise ein ASIC.In some embodiments, a programmable logic device (eg, a field programmable gate array, an FPGA) may be used to to perform some or all of the functionalities of the methods described herein. In some embodiments, a field programmable gate array may cooperate with a microprocessor to perform one of the methods described herein. In general, in some embodiments, the methods are performed by any hardware device. This may be a universal hardware such as a computer processor (CPU) or hardware specific to the process, such as an ASIC.

Die oben beschriebenen Ausführungsbeispiele stellen lediglich eine Veranschaulichung der Prinzipien der vorliegenden Erfindung dar. Es versteht sich, dass Modifikationen und Variationen der hierin beschriebenen Anordnungen und Einzelheiten anderen Fachleuten einleuchten werden. Deshalb ist beabsichtigt, dass die Erfindung lediglich durch den Schutzumfang der nachstehenden Patentansprüche und nicht durch die spezifischen Einzelheiten, die anhand der Beschreibung und der Erläuterung der Ausführungsbeispiele hierin präsentiert wurden, beschränkt sei.The embodiments described above are merely illustrative of the principles of the present invention. It will be understood that modifications and variations of the arrangements and details described herein will be apparent to others of ordinary skill in the art. Therefore, it is intended that the invention be limited only by the scope of the appended claims and not by the specific details presented in the description and explanation of the embodiments herein.

Literaturliterature

[ACL93][ACL93] Ashraf S. Alkhairy, Kevin G. Christian, and Jae S. Lim. Design and characterization of optimal FIR filters with arbitrary phase. IEEE Transactions on Signal Processing, 41 (2):559-572, February 1993 . Ashraf S. Alkhairy, Kevin G. Christian, and Jae S. Lim. Design and characterization of optimal FIR filters with arbitrary phase. IEEE Transactions on Signal Processing, 41 (2): 559-572, February 1993 , [BW01][BW01] Michael Brandstein and Darren Ward, editors. Microphone Arrays: Signal Processing Techniques and Applications. Springer 2001 . Michael Brandstein and Darren Ward, editors. Microphone Arrays: Signal Processing Techniques and Applications. Springer 2001 , [HM00][HM00] Panagiotis D. Hatziantoniou and John N. Mourjopoulos. Generalized fractional-octave smoothing of audio and acoustic responses. Journal of the Audio Engineering Society, 48(4): 259-280, April 2000Panagiotis D. Hatziantoniou and John N. Mourjopoulos. Generalized fractional-octave smoothing of audio and acoustic responses. Journal of the Audio Engineering Society, 48 (4): 259-280, April 2000 [KM95][KM95] Lina J. Karam and James H. McClellan. Complex Chebyshev approximation for FIR filter design. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 42(3):207-216, March 1995 . Lina J. Karam and James H. McClellan. Complex Chebyshev approximation for FIR filter design. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 42 (3): 207-216, March 1995 , [KM99][KM99] Lina J. Karam and James H. McClellan. Chebyshev digital FIR filter design. Signal processing, 79(1):17-36, July 1999Lina J. Karam and James H. McClellan. Chebyshev digital FIR filter design. Signal Processing, 79 (1): 17-36, July 1999 [Lyo11][Lyo11] Richard G. Lyons. Understanding Digital Signal Processing (3rd Edition) (Hardcover), Pearson, Upper Saddle River, NJ, 3rd edition, 2011 . Richard G. Lyons. Understanding Digital Signal Processing (3rd Edition) (hardcover), Pearson, Upper Saddle River, NJ, 3rd edition, 2011 , [MK07][MK07] Edwin Mabande and Walter Kellermann. Towards superdirective beam-forming with loudspeaker arrays. In Conf. Rec. International Congress on Acoustics, 2007 . Edwin Mabande and Walter Kellermann. Towards superdirective beam-forming with loudspeaker arrays. In Conf. Rec. International Congress on Acoustics, 2007 , [MSK09][MSK09] Edwin Mabande, Adrian Schad, and Walter Kellermann. Design of robust superdirective beamformers as convex optimization problem. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2009), pages 77-80, April 2009 . Edwin Mabande, Adrian Schad, and Walter Kellermann. Design of robust superdirective beamformers as convex optimization problem. In the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2009), pages 77-80, April 2009 , [MSK11][MSK11] Edwin Mabande, Adrian Schad, and Walter Kellermann. A time-domain implementation of data-independent robust broadband beamfomers with low filter order. In Workshop on Hands-free Speech Communication and Microphone Arrays (HSCMA), pages 81-85, Edinburgh, UK, May 2011 . Edwin Mabande, Adrian Schad, and Walter Kellermann. A time-domain implementation of data-independent robust broadband beamfomers with low filter order. In Workshop on Hands-free Speech Communication and Microphone Arrays (HSCMA), pages 81-85, Edinburgh, UK, May 2011 , [PF04][PF04] Jörg Panzer and Lampos Ferekidis. The use of continuous phase for interpolation, smoothing and forming mean values of complex frequency response curves. In 116th AES Convention, Berlin, Germany, May 2004 . Jörg Panzer and Lampos Ferekidis. The use of continuous phase for interpolation, smoothing and forming. At 116th AES Convention, Berlin, Germany, May 2004 , [PR95][PR95] Alexander W. Potchinkov and R Reemtsen. The design of FIR filters in the complex plane by convex optimization. Signal Processing, 46(2):127-146, October 1995 . Alexander W. Potchinkov and R Reemtsen. The design of FIR filters in the complex plan by convex optimization. Signal Processing, 46 (2): 127-146, October 1995 , [Sar93][Sar93] Tapio Saramäki. Finite impulse response filter design. In S.K. Mitra and J.F. Kaiser editors, Handbook for Digital Signal Processing, chapter 4, pages 155-278. John Wiley & Sons, Inc., 1993 . Tapio Saramaki. Finite impulse response filter design. In SK Miter and JF Kaiser editors, Handbook for Digital Signal Processing, chapter 4, pages 155-278. John Wiley & Sons, Inc., 1993 , [S107][S107] Julius O. Smith III. Introduction to Digital Filters with Audio Applications, W3K Publishing, 2007 http: //w3k.org/books/http://www.w3k.org/books /. Julius O. Smith III. Introduction to Digital Filters with Audio Applications, W3K Publishing, 2007 http://w3k.org/books/http://www.w3k.org/books /. [Smi11][Smi11] Julius O. Smith. Spectral Audio Signal Processing. W3K Publishing 2011. [online] http://ccrma.stanford.edu~jos/sasp . Julius O. Smith. Spectral Audio Signal Processing. W3K Publishing 2011. [online] http: //ccrma.stanford.edu~jos/sasp ,

Claims (12)

  1. Device for calculating FIR filter coefficients for beam-forming filters of a transducer array (10), comprising:
    first calculation means (44) for calculating frequency domain filter weights of the beam-forming filters (141...,14N) for a predetermined frequency raster so as to obtain target frequency responses (78) for the beam-forming filters, so that application of the beam-forming filters to the transducer array (10) approximates a desired directional selectivity (36; 38; 70; 74); and
    second calculation means (46) for calculating the FIR filter coefficients (32) for the beam-forming filters so that frequency responses of the beam-forming filters approximate the target frequency responses;
    further comprising a target frequency response modification means (48) connected between the first calculation means (44) and the second calculation means (46) so as to modify the target frequency responses of the beam-forming filters as obtained by the first calculation means (44), so that the second calculation means (46) calculates the FIR filter coefficients for the beam-forming filters in such a manner that the frequency responses of the beam-forming filters approximate the target frequency responses in a form modified by the target frequency response modification means (48), said modification including
    frequency domain smoothing (92) and/or
    for each beam-forming filter, leveling (80) of a phase response (86), adjusted by 2π phase jumps, of the target frequency response of the respective beam-forming filter by removing a linear phase function portion (88), and storing a delay for the respective beam-forming filter, said delay corresponding to a slope of the linear phase function portion.
  2. Device as claimed in claim 1, wherein the first calculation means (44) is configured to perform the calculation by solving a first optimization problem according to which a deviation between a directional selectivity of the array, as results from the frequency domain filter weights, and the desired directional selectivity (74) is minimized.
  3. Device as claimed in claim 2, wherein the first calculation means (44) is configured such that the first optimization problem is a convex optimization problem.
  4. Device as claimed in claims 2 or 3, wherein the first calculation means (44) is configured to combine the calculation within a first range of relatively low audio frequencies (100) by solving the first optimization problem so as to obtain low-frequency domain target frequency responses for the beam-forming filters, and within a second range of relatively high audio frequencies (102) by calculating global-frequency delays and amplitude weights for the array as a function of the desired directional selectivity, and to subsequently combine the low-frequency domain target frequency responses with high-frequency domain target frequency responses which correspond to global-frequency delays and amplitude weights.
  5. Device as claimed in any of the previous claims, said device further comprising an FIR filter coefficient modification means (50) configured to subject the FIR filter coefficients (32) as are calculated by the second calculation means to a time-domain shift corresponding to the stored delay for the respective beam-forming filter.
  6. Device as claimed in any of the previous claims, wherein the second calculation means (46) is configured to perform the calculation by solving a second optimization problem according to which a deviation between the frequency responses of the beam-forming filters corresponding to the FIR filter coefficients and the target frequency responses is minimized.
  7. Device as claimed in claim 6, wherein the second calculation means (46) is configured such that the second optimization problem is a convex optimization problem.
  8. Device as claimed in claim 6 or 7, wherein the second calculation means (46) is configured such that the second optimization problem defines the deviation in a frequency-selective manner, or defines frequency-dependent tolerance thresholds for the deviation.
  9. Device as claimed in any of claims 6 to 8, wherein the second calculation means (46) is configured such that as a secondary condition, the second optimization problem comprises, in at least one frequency section wherein the deviation is not minimized, a restriction of the magnitude of the frequency responses of the beam-forming filters which correspond to the FIR filter coefficients.
  10. Device as claimed in any of claims 1 to 9, wherein a frequency resolution of the beam-forming filters as is defined by the FIR filter coefficients differs from a frequency resolution of the frequency raster for which the frequency domain filter weights of the beam-forming filters are calculated.
  11. Method of calculating FIR filter coefficients for beam-forming filters of a transducer array (10) comprising:
    calculating frequency domain filter weights of the beam-forming filters (141..., 14N) for a predetermined frequency raster so as to obtain target frequency responses (78) for the beam-forming filters, so that application of the beam-forming filters to the transducer array (10) approximates a desired directional selectivity (36; 38; 70; 74); and
    modifying the target frequency responses of the beam-forming filters, said modification including
    frequency domain smoothing (92) and/or
    for each beam-forming filter, leveling (80) of a phase response (86), adjusted by 2π phase jumps, of the target frequency response of the respective beam-forming filter by removing a linear phase function portion (88), and storing a delay for the respective beam-forming filter, said delay corresponding to a slope of the linear phase function portion;
    and
    calculating the FIR filter coefficients (32) for the beam-forming filters so that frequency responses of the beam-forming filters approximate the target frequency responses in a form modified by the target frequency response modification means (48).
  12. Computer program having a program code for performing the method of claim 11, when the program runs on a computer.
EP15753373.8A 2014-08-22 2015-08-21 Calculation of fir filter coefficients for beamformer filter Active EP3183891B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP14182043 2014-08-22
DE102015203600.6A DE102015203600B4 (en) 2014-08-22 2015-02-27 FIR filter coefficient calculation for beamforming filters
PCT/EP2015/069291 WO2016026970A1 (en) 2014-08-22 2015-08-21 Fir filter coefficient calculation for beam forming filters

Publications (2)

Publication Number Publication Date
EP3183891A1 EP3183891A1 (en) 2017-06-28
EP3183891B1 true EP3183891B1 (en) 2018-10-31

Family

ID=51429042

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15753373.8A Active EP3183891B1 (en) 2014-08-22 2015-08-21 Calculation of fir filter coefficients for beamformer filter

Country Status (7)

Country Link
US (1) US10419849B2 (en)
EP (1) EP3183891B1 (en)
JP (1) JP6427672B2 (en)
KR (1) KR102009274B1 (en)
CN (1) CN107223345B (en)
DE (1) DE102015203600B4 (en)
WO (1) WO2016026970A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108631753B (en) * 2018-05-15 2021-11-16 西安空间无线电技术研究所 Design method of integrated compensation digital filter
WO2020097820A1 (en) * 2018-11-14 2020-05-22 深圳市大疆创新科技有限公司 Wind noise processing method, device, and system employing multiple microphones, and storage medium
CN111261178B (en) * 2018-11-30 2024-09-20 北京京东尚科信息技术有限公司 Beam forming method and device
WO2020124589A1 (en) * 2018-12-21 2020-06-25 Qualcomm Incorporated Beam-strength related type-ii channel state information coefficient feedback
CN110149104B (en) * 2019-04-23 2023-08-04 埃夫特智能装备股份有限公司 Zero-phase-shift real-time filtering method for robot
US11337002B2 (en) * 2019-09-03 2022-05-17 Harman International Industries, Incorporated Loudspeaker system with active directivity control
KR102134028B1 (en) * 2019-09-23 2020-07-14 한화시스템 주식회사 Method for designing beam of active phase array radar
CN110728970B (en) * 2019-09-29 2022-02-25 东莞市中光通信科技有限公司 Method and device for digital auxiliary sound insulation treatment
CN111181982B (en) * 2019-12-31 2022-03-25 奇安信科技集团股份有限公司 Abnormal data identification method and device, computing equipment and medium
US11978966B2 (en) * 2020-01-14 2024-05-07 Src, Inc. Method for beamforming
EP4138412A1 (en) * 2021-08-16 2023-02-22 Harman Becker Automotive Systems GmbH A method for designing a line array loudspeaker arrangement
CN113868993B (en) * 2021-09-27 2023-06-30 上海圳呈微电子技术有限公司 Method for obtaining full frequency domain filter coefficient
WO2024128519A1 (en) * 2022-12-13 2024-06-20 엘지전자 주식회사 Wireless media device and image display device comprising same
CN116318051B (en) * 2023-03-16 2024-02-27 湖南迈克森伟电子科技有限公司 Digital shaping filter method and device, digital shaping filter and electronic equipment
CN117895988B (en) * 2024-03-15 2024-05-31 长光卫星技术股份有限公司 Method, equipment and medium for multi-beam shaping of array antenna based on least square method

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6594367B1 (en) * 1999-10-25 2003-07-15 Andrea Electronics Corporation Super directional beamforming design and implementation
GB2364121B (en) * 2000-06-30 2004-11-24 Mitel Corp Method and apparatus for locating a talker
US7336793B2 (en) * 2003-05-08 2008-02-26 Harman International Industries, Incorporated Loudspeaker system for virtual sound synthesis
EP1538867B1 (en) * 2003-06-30 2012-07-18 Nuance Communications, Inc. Handsfree system for use in a vehicle
KR20060113714A (en) 2003-11-24 2006-11-02 코닌클리케 필립스 일렉트로닉스 엔.브이. Adaptive beamformer with robustness against uncorrelated noise
US8170233B2 (en) * 2004-02-02 2012-05-01 Harman International Industries, Incorporated Loudspeaker array system
US7415117B2 (en) * 2004-03-02 2008-08-19 Microsoft Corporation System and method for beamforming using a microphone array
JP2006033502A (en) * 2004-07-16 2006-02-02 Sanyo Electric Co Ltd Sound pickup device
US7619563B2 (en) * 2005-08-26 2009-11-17 Step Communications Corporation Beam former using phase difference enhancement
DE602006016617D1 (en) * 2006-10-30 2010-10-14 Mitel Networks Corp Adjusting the weighting factors for beamforming for the efficient implementation of broadband beamformers
GB0906269D0 (en) * 2009-04-09 2009-05-20 Ntnu Technology Transfer As Optimal modal beamformer for sensor arrays
BR112012031656A2 (en) * 2010-08-25 2016-11-08 Asahi Chemical Ind device, and method of separating sound sources, and program
AR084090A1 (en) * 2010-12-03 2013-04-17 Fraunhofer Ges Forschung METHOD AND APPARATUS FOR SPACIALLY SELECTIVE ACQUISITION OF SOUND BY ACOUSTIC TRIANGULATION
WO2013006323A2 (en) * 2011-07-01 2013-01-10 Dolby Laboratories Licensing Corporation Equalization of speaker arrays
US10448161B2 (en) * 2012-04-02 2019-10-15 Qualcomm Incorporated Systems, methods, apparatus, and computer-readable media for gestural manipulation of a sound field
US9525938B2 (en) * 2013-02-06 2016-12-20 Apple Inc. User voice location estimation for adjusting portable device beamforming settings
US9942659B2 (en) 2014-02-06 2018-04-10 Bang & Olufsen A/S Loudspeaker transducer arrangement for directivity control

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
KR102009274B1 (en) 2019-08-09
US20170164100A1 (en) 2017-06-08
JP2017531971A (en) 2017-10-26
CN107223345A (en) 2017-09-29
KR20170044180A (en) 2017-04-24
JP6427672B2 (en) 2018-11-21
US10419849B2 (en) 2019-09-17
WO2016026970A1 (en) 2016-02-25
DE102015203600B4 (en) 2021-10-21
CN107223345B (en) 2020-04-07
DE102015203600A1 (en) 2016-02-25
EP3183891A1 (en) 2017-06-28

Similar Documents

Publication Publication Date Title
EP3183891B1 (en) Calculation of fir filter coefficients for beamformer filter
DE102018127071B3 (en) Audio signal processing with acoustic echo cancellation
EP3220158B1 (en) Signal processing method and device
DE60108752T2 (en) METHOD OF NOISE REDUCTION IN AN ADAPTIVE IRRADIATOR
DE102010055476B4 (en) A signal processing apparatus, a microphone array apparatus and a storage medium storing a signal processing program
DE112017007800T5 (en) Noise elimination device and noise elimination method
EP1771034A2 (en) Microphone calibration in a RGSC-beamformer
EP3065417B1 (en) Method for suppressing interference noise in an acoustic system
EP3926982A2 (en) Method for direction-dependent noise suppression for a hearing system comprising a hearing device
EP2981099B1 (en) Method and device for suppressing feedback
DE102018117557B4 (en) ADAPTIVE FILTERING
DE102018117558A1 (en) ADAPTIVE AFTER-FILTERING
DE102019123971B4 (en) ACTIVE NOISE COMPENSATION SYSTEM AND METHOD
DE112017007051B4 (en) signal processing device
EP2437521B2 (en) Method for frequency compression with harmonic adjustment and corresponding device
DE102022127870A1 (en) Method of generating an active noise reduction filter, storage medium and headphones
DE102019105458B4 (en) System and method for time delay estimation
DE102018117556B4 (en) SINGLE CHANNEL NOISE REDUCTION
DE112016007079T5 (en) NOISE REDUCTION DEVICE, ECHO LOCKING DEVICE, ANORGAL NOISE DETECTION DEVICE AND ANTI-TORCH DISPOSAL PROCEDURE
EP2965538B1 (en) Method for determining a configuration for a loudspeaker arrangement for radiating sound into a space and computer program product
DE102012008557B4 (en) Method for feedback suppression in electroacoustic systems
Celestinos et al. Non-Linear Optimization of Sound Field Control at Low Frequencies Produced by Loudspeakers in Rooms
WO2013156263A1 (en) Method and apparatus for spatially filtering sound waves
EP2487891B1 (en) Prevention of an acoustic echo in full duplex systems
DE112017007733T5 (en) Noise elimination device and noise elimination method

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170310

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180514

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1060835

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015006694

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20181031

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190228

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190131

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190301

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015006694

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190821

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190831

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190821

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150821

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1060835

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200821

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200821

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181031

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230524

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240819

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240822

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240821

Year of fee payment: 10